WO2010106089A2 - Device and method for generating steam with a high level of efficiency - Google Patents
Device and method for generating steam with a high level of efficiency Download PDFInfo
- Publication number
- WO2010106089A2 WO2010106089A2 PCT/EP2010/053432 EP2010053432W WO2010106089A2 WO 2010106089 A2 WO2010106089 A2 WO 2010106089A2 EP 2010053432 W EP2010053432 W EP 2010053432W WO 2010106089 A2 WO2010106089 A2 WO 2010106089A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transfer medium
- heat
- heat transfer
- generator
- steam generator
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/10—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/02—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
- Y02P80/15—On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
Definitions
- the invention relates to the generation of steam in a steam generator by utilizing a steam generator upstream thermal generator.
- waste heat In many industrial processes such as. In steel mills, cement works, in papermaking, etc. is at the end of the process in the form of waste heat, a heat source at a medium temperature level available, which can be used to operate a steam generator and thus lent Generate electricity.
- the stored in the waste heat heat energy can be used, which would otherwise be lost, so that the effective efficiency of the entire industrial process can be increased.
- a working medium is evaporated, which is subsequently supplied, for example, to a turbine coupled to an electric generator.
- a heated heat transfer medium is supplied to the steam generator, the heat stored in the heat transfer medium being transferred to the working medium, which results in the evaporation of the working medium.
- this heat transfer medium is heated using the waste heat.
- an average temperature level of the heat transfer medium in the order of about 60 0 C to 200 0 C can be achieved. The efficiency in steam generation based on the waste heat of an industrial process is therefore comparatively poor.
- a geothermal system in which the heat transfer medium is known to be pumped into a deep well to it with the help of geothermal energy heat. Again, the depth of the bore removable heat transfer medium is only at a medium temperature level.
- the heat energy stored in the heat transfer medium can be used for generating steam as described above, but here too the efficiency of steam generation is comparatively poor.
- the present invention therefore has as its object to improve the efficiency in the steam generation by utilizing heat of a heat transfer medium at medium temperature level.
- thermal generator also referred to in the literature as a "heat transformer"
- a thermal generator generally serves to generate heat at a high temperature level by supplying heat at a medium temperature level and dissipating heat at a low temperature level.
- a thermal generator is supplied with a primary heat transfer medium at a medium temperature level.
- this primary heat transfer medium may have been brought to an average temperature by utilizing a heat source such as the aforementioned waste heat pipe of an industrial plant or, as the geothermal plant.
- the thermal generator or heat transformer then, inter alia, a secondary heat transfer medium can be removed, whose temperature is higher than that of the primary heat transfer medium.
- the operation of the thermal generator is known, for example, from DE 35 21 195 A1 or DE 198 16 022 B4, is therefore not explained further here. With the thermal generator, it is thus possible to use the heat stored in the primary heat transfer medium to heat the secondary heat transfer medium. With the now comparatively hot secondary heat transfer medium can then be heated or vaporized in a steam generator, a working medium with relatively high efficiency.
- heat energy is transferred from a heat transfer medium to the working medium in a heat exchanger of the steam generator for the purpose of evaporating a working medium of a steam generator, which is designed in particular as a heat recovery steam generator, Kalina steam generator or ORC steam generator ("Organic Rankine Cycle") in that according to the invention the temperature of the heat transfer medium in a thermal generator is increased before the heat transfer medium is supplied to the heat exchanger, a high efficiency of steam generation can be ensured.
- Thermal energy is supplied to the thermal generator by means of a further heat transfer medium, wherein the temperature of the further heat transfer medium is increased in a waste or waste heat producing industrial plant by utilizing the residual or waste heat before the further heat transfer medium reaches the thermal generator. This ensures that the otherwise lost residual or waste heat of the industrial plant can be used to generate steam.
- thermal energy is supplied to the thermal generator by means of a further heat transfer medium.
- the temperature of the further heat transfer medium is increased in a geothermal plant by utilizing the geothermal heat before the further heat transfer medium supplied to the thermal generator so that geothermal heat can be used effectively to generate steam.
- the temperature of the further heat transfer medium supplied to the thermal generator is in the two
- Embodiments lower than the temperature of the heat transfer medium supplied to the heat exchanger of the steam generator.
- Working medium in a heat exchanger of a steam generator which is designed in particular as a heat recovery steam generator, Kalina steam generator or as ORC steam generator is in the heat exchanger for the evaporation of the working fluid heat energy from a heat transfer medium to the
- the apparatus further includes a thermal generator for increasing the temperature of the heat transfer medium.
- Thermal energy can be supplied to the thermal generator with the aid of a further heat transfer medium.
- the temperature of the further heat transfer medium can be increased in a residual or waste heat producing industrial plant by utilizing the residual or waste heat before the further heat transfer medium is supplied to the thermal generator. This ensures that the otherwise lost residual or waste heat of the industrial plant can be used to generate steam.
- the temperature of the further heat transfer medium can be increased in a geothermal plant by utilizing the geothermal heat before the further heat transfer medium is supplied to the thermal generator, so that the geothermal heat can be effectively used to generate steam.
- FIG. 1 waste heat utilization for steam generation according to the prior art
- FIG. 2 shows a first example of an application of a thermal generator for the waste heat utilization of an industrial plant
- Figure 3 shows a second application example of a thermal
- FIG. 1 shows an already known possibility for utilizing the waste heat of an industrial plant 100, for example a steelworks, for the evaporation of a working medium A of a steam generator 200.
- a heat exchanger 120 is installed, which is supplied by a Heat transfer medium W is flowed through.
- the temperature of the heat transfer medium W is increased in the heat exchanger 120 from a temperature Tl (W) to a temperature T2 (W).
- the heated heat transfer medium W passes, promoted by a pump 140, via a line 130 to a heat exchanger 220 of the steam generator 200.
- the heat exchanger 220 is also traversed by the working fluid to be evaporated A.
- a heat transfer from the heat transfer medium W takes place on the working fluid A, wherein the working fluid A is heated and evaporated, while the temperature of the heat transfer medium W decreases accordingly.
- the cooled heat transfer medium W arrives at closing via a line 150 back to the heat exchanger 120 in the waste heat pipe 110 of the steel plant 100 to be heated there again.
- the vaporized in the heat exchanger 220 of the boiler working fluid A is supplied via a line 230 of a turbine 240 and drives it.
- the turbine 240 is finally connected to generate electricity with a generator 250, so that ultimately in a conventional manner by utilizing the waste heat of the steel plant 100 power can be generated.
- the working fluid A expanded in the turbine 240 is typically conducted downstream of the turbine 240 via a line 260 to a cooler 270, in order subsequently to be conveyed back to the heat exchanger 220 with the aid of a pump 280.
- FIG. 2 shows a first application of the approach according to the invention.
- a heat exchanger 120 is present, in which the waste heat of the industrial plant 100 is used to a primary heat transfer medium Wl from a temperature Tl (Wl) to a higher temperature T2 (W1) to heat.
- the heated primary heat transfer medium Wl passes by means of the pump 140 via a line 130 to an input 301 of a thermal generator 300th
- the thermal generator 300 uses the heat stored in the waste heat stream of the industrial plant 100, which is at a relatively low temperature level Tl of about 60 0 C to 80 0 C, to the temperature of a secondary heat transfer medium W2 which is used in a process downstream of the thermal generator 300, for example a steam generator, in order to increase the temperature of a working medium A of the downstream process, in particular in order to evaporate the working medium A.
- the primary heat transfer medium Wl passes through the thermal generator 300, where it takes place in the there Cools processes, and is finally removed at an output 302. From the outlet 302, the primary heat transfer medium Wl passes via the line 150 back to the heat exchanger 120 in the waste heat pipe 110 of the industrial plant 100 to be heated there again.
- the secondary heat transfer medium W2 is supplied to the thermal generator 300 via an input 303.
- the secondary heat transfer medium W2 is finally heated by utilizing the heat of the primary heat transfer medium Wl from a temperature Tl (W2) to a temperature T2 (W2).
- the thus-heated secondary heat transfer medium W2 is now removed at the output 304 of the thermal generator 300 and fed by means of a pump 310 via a line 210 to the heat exchanger 220 of the steam generator 200.
- the heat exchanger 220 as described in connection with FIG. 1, the evaporation of the working medium A of the steam generator 200 is effected, so that power can be generated in the sequence with the turbine 240 and the generator 250.
- the secondary heat transfer medium W2 cools and is then returned via a line 290 to the input 303 of the thermal generator 300, where it is heated again.
- thermal generator 300 Due to the use of the thermal generator 300, the efficiency of the steam or power generation is higher than in the system described in connection with Figure 1, known in the art.
- the thermal generator is effectively connected between the waste heat pipe of the industrial plant and the steam generator and causes the heat transfer medium supplied to the steam generator to have a higher temperature.
- an input 305 and an output 306 are indicated in FIG. 2, via which the thermal generator 300 can be supplied and removed with another medium.
- a thermal generator is generally used to generate heat at a high temperature Temperature level by supplying heat at a medium temperature level and dissipating heat at a low temperature level.
- the supplied via the input 305 and removable at the output 306 medium is used to dissipate heat at the low temperature level.
- the primary heat transfer medium W 1 heat is supplied at an intermediate temperature level, and the secondary heat transfer medium W 2 dissipates heat at a high temperature level and transports it to the heat exchanger 220 of the steam generator 200.
- FIG. 3 shows a second application of the approach according to the invention.
- the primary heat transfer medium Wl which has hitherto been brought to an elevated temperature T2 (W1) with the aid of the waste heat of an industrial plant, is here heated in a geothermal plant 400.
- geothermal energy uses the heat stored in the earth's crust.
- a heat exchanger 410 is placed at a certain depth and is passed through by a primary heat transfer medium Wl, so that the elevated temperature prevailing there can be used to increase the temperature T (Wl) of the primary heat transfer medium Wl to a value T2 (W1).
- the thus heated primary heat transfer medium Wl is conveyed according to the invention by means of a pump 420 via a line 430 to an input 301 of a thermal generator 300.
- the thermal generator 300 is used to heat a secondary heat transfer medium W2 from a temperature Tl (W2) to a higher temperature T2 (W2) based on the heat stored in the primary heat transfer medium Wl.
- the heated heat transfer medium W2 is then used analogously to the method described in connection with Figure 2 in a steam generator 200 for steam and power generation.
- the invention has been described concretely in applications in an industrial plant and in a geothermal plant.
- the industrial plant can be a plant in which a residual or waste heat is generated, ie, for example, a steelworks, a cement works, a paper manufacturer or the like. ches.
- a waste heat of a power plant for the purpose described above:
- the waste heat produced in power plants which is obtained, for example, in the flue gases after the combustion of the fuel and / or behind the turbine, contains large energy reserves, in particular in the form of residual heat ,
- the residual heat can be used according to the invention to heat the above-described primary heat transfer medium, which is supplied to the thermal generator.
- the secondary heat transfer medium can then be preheated, for example, the combustion air required for combustion in the power plant, to effect a more effective combustion.
- the secondary heat transfer medium can be used to generate in a steam generator as described above power for equipment of the power plant, for example. Pumps.
- the steam generator 200 shown in the figures may, for example, be a waste heat steam generator (AHDE or HRSG, a Kalina steam generator or an ORC steam generator) .
- AHDE waste heat steam generator
- HRSG Kalina steam generator
- ORC steam generator ORC steam generator
- T2 (W2) of the secondary heat transfer medium Due to the elevated temperature T2 (W2) of the secondary heat transfer medium, it is basically not impossible to use a steam generator that works with water as the working medium A.
- Both the ORC and Kalina processes are suitable for steam generation by utilizing heat from a heat transfer medium at low or medium temperature levels.
- the efficiency in the generation of steam is very much dependent on the temperature of the heat source or the heat transfer medium.
- the Carnot efficiency increases three times when the temperature of the heat transfer medium from 60 ° C to 120 0 C is increased. An increase in the temperature to 200 ° C. results in the efficiency rising approximately to five times the value.
- the inventive use of a thermal generator which is upstream of the steam generation and brings the heat transfer medium to a higher temperature, thus has a positive effect on the efficiency.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/138,700 US20120012280A1 (en) | 2009-03-20 | 2010-03-17 | Device and method for generating steam with a high level of efficiency |
JP2012500230A JP5420750B2 (en) | 2009-03-20 | 2010-03-17 | High efficiency steam generator and method |
EP10711188A EP2409003A2 (en) | 2009-03-20 | 2010-03-17 | Device and method for generating steam with a high level of efficiency |
RU2011142317/06A RU2529767C2 (en) | 2009-03-20 | 2010-03-17 | Method for generation of steam with high efficiency factor |
CN2010800126090A CN102362047A (en) | 2009-03-20 | 2010-03-17 | Device and method for generating steam with a high level of efficiency |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009014036.0 | 2009-03-20 | ||
DE102009014036A DE102009014036A1 (en) | 2009-03-20 | 2009-03-20 | Apparatus and method for producing high efficiency steam |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010106089A2 true WO2010106089A2 (en) | 2010-09-23 |
WO2010106089A3 WO2010106089A3 (en) | 2011-08-25 |
Family
ID=42628893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/053432 WO2010106089A2 (en) | 2009-03-20 | 2010-03-17 | Device and method for generating steam with a high level of efficiency |
Country Status (7)
Country | Link |
---|---|
US (1) | US20120012280A1 (en) |
EP (1) | EP2409003A2 (en) |
JP (1) | JP5420750B2 (en) |
CN (1) | CN102362047A (en) |
DE (1) | DE102009014036A1 (en) |
RU (1) | RU2529767C2 (en) |
WO (1) | WO2010106089A2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11480074B1 (en) | 2021-04-02 | 2022-10-25 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11486370B2 (en) | 2021-04-02 | 2022-11-01 | Ice Thermal Harvesting, Llc | Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations |
US11486330B2 (en) | 2021-04-02 | 2022-11-01 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11493029B2 (en) | 2021-04-02 | 2022-11-08 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11578706B2 (en) | 2021-04-02 | 2023-02-14 | Ice Thermal Harvesting, Llc | Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature |
US11592009B2 (en) | 2021-04-02 | 2023-02-28 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11644014B2 (en) | 2021-04-02 | 2023-05-09 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic Rankine cycle operation |
US11644015B2 (en) | 2021-04-02 | 2023-05-09 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11959466B2 (en) | 2021-04-02 | 2024-04-16 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic Rankine cycle operation |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202009014845U1 (en) | 2009-10-16 | 2010-10-14 | Jelinek, Michael | Gravity traction table |
JP6113687B2 (en) * | 2014-07-10 | 2017-04-12 | 株式会社育水舎アクアシステム | Outdoor unit system |
WO2016091969A1 (en) * | 2014-12-09 | 2016-06-16 | Energeotek Ab | System for providing energy from a geothermal source |
CN107683390A (en) * | 2015-03-31 | 2018-02-09 | 三菱日立电力系统株式会社 | Boiler, the steam for possessing the boiler produce equipment and the method for operation of boiler |
IT201900023025A1 (en) * | 2019-12-05 | 2021-06-05 | Mario Ghiringhelli | RANKINE CYCLE HEAT RECOVERY EQUIPMENT WITH ORGANIC FLUIDS TO PRODUCE ELECTRICITY ON A TISSUE PAPER PRODUCTION MACHINE |
CN112413922B (en) * | 2020-11-18 | 2022-06-21 | 山东大学 | Power-cooling combined supply system and method for fully utilizing middle-low grade industrial waste heat |
CN113755658B (en) * | 2020-12-31 | 2022-10-11 | 厦门大学 | Secondary energy storage system based on waste heat utilization of steel plant |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3521195A1 (en) | 1985-06-13 | 1986-12-18 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Method and arrangement for the optimum utilisation of waste heat in a waste heat transformer |
DE19816022A1 (en) | 1998-04-09 | 1999-10-14 | Deutsch Zentr Luft & Raumfahrt | Heat recovery system improved to enable thermal transformer to be operated with very high efficiency |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2945973A1 (en) * | 1979-11-14 | 1981-05-21 | Schneider, Christian, Dipl.-Ing., 8650 Kulmbach | DEVICE FOR HEATING CONVERSION |
SU1035247A1 (en) * | 1981-07-22 | 1983-08-15 | Государственный Научно-Исследовательский Энергетический Институт Им.Г.М.Кржижановского | Geothermal power unit |
US4776169A (en) * | 1988-02-03 | 1988-10-11 | Coles Jr Otis C | Geothermal energy recovery apparatus |
US5526646A (en) * | 1989-07-01 | 1996-06-18 | Ormat Industries Ltd. | Method of and apparatus for producing work from a source of high pressure, two phase geothermal fluid |
FR2670570B1 (en) * | 1990-12-14 | 1994-03-18 | Commissariat A Energie Atomique | WORKING FLUID FOR ABSORPTION HEAT PUMPS OPERATING AT VERY HIGH TEMPERATURES. |
NZ248730A (en) * | 1992-10-02 | 1996-03-26 | Ormat Ind Ltd | High pressure geothermal power plant with primary steam turbine and at least one power plant module having low pressure turbine |
DE19916684C2 (en) * | 1999-04-14 | 2001-05-17 | Joachim Schwieger | Process for heat transformation using a vortex unit |
US7062913B2 (en) * | 1999-12-17 | 2006-06-20 | The Ohio State University | Heat engine |
DE10029732A1 (en) * | 2000-06-23 | 2002-01-03 | Andreas Schiller | Thermal power plant has heat exchanger arrangement arranged to heat second working fluid before it enters second vapor generator using waste heat from first vapor generator |
RU2184255C2 (en) * | 2000-09-07 | 2002-06-27 | Косарев Александр Владимирович | Gas turbine plant |
US6347520B1 (en) * | 2001-02-06 | 2002-02-19 | General Electric Company | Method for Kalina combined cycle power plant with district heating capability |
US7124584B1 (en) * | 2005-10-31 | 2006-10-24 | General Electric Company | System and method for heat recovery from geothermal source of heat |
JP2008232534A (en) * | 2007-03-20 | 2008-10-02 | Tokyo Electric Power Co Inc:The | Vapor production system and vapor production method |
JP5157224B2 (en) * | 2007-04-05 | 2013-03-06 | 東京電力株式会社 | Steam generation system |
US8561405B2 (en) * | 2007-06-29 | 2013-10-22 | General Electric Company | System and method for recovering waste heat |
DE102008005978B4 (en) * | 2008-01-24 | 2010-06-02 | E-Power Gmbh | Low-temperature power plant and method for operating a thermodynamic cycle |
-
2009
- 2009-03-20 DE DE102009014036A patent/DE102009014036A1/en not_active Withdrawn
-
2010
- 2010-03-17 WO PCT/EP2010/053432 patent/WO2010106089A2/en active Application Filing
- 2010-03-17 RU RU2011142317/06A patent/RU2529767C2/en not_active IP Right Cessation
- 2010-03-17 US US13/138,700 patent/US20120012280A1/en not_active Abandoned
- 2010-03-17 JP JP2012500230A patent/JP5420750B2/en not_active Expired - Fee Related
- 2010-03-17 EP EP10711188A patent/EP2409003A2/en not_active Withdrawn
- 2010-03-17 CN CN2010800126090A patent/CN102362047A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3521195A1 (en) | 1985-06-13 | 1986-12-18 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Method and arrangement for the optimum utilisation of waste heat in a waste heat transformer |
DE19816022A1 (en) | 1998-04-09 | 1999-10-14 | Deutsch Zentr Luft & Raumfahrt | Heat recovery system improved to enable thermal transformer to be operated with very high efficiency |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11480074B1 (en) | 2021-04-02 | 2022-10-25 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11486370B2 (en) | 2021-04-02 | 2022-11-01 | Ice Thermal Harvesting, Llc | Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations |
US11486330B2 (en) | 2021-04-02 | 2022-11-01 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11493029B2 (en) | 2021-04-02 | 2022-11-08 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11542888B2 (en) | 2021-04-02 | 2023-01-03 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11549402B2 (en) | 2021-04-02 | 2023-01-10 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11572849B1 (en) | 2021-04-02 | 2023-02-07 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11578706B2 (en) | 2021-04-02 | 2023-02-14 | Ice Thermal Harvesting, Llc | Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature |
US11592009B2 (en) | 2021-04-02 | 2023-02-28 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11598320B2 (en) | 2021-04-02 | 2023-03-07 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11624355B2 (en) | 2021-04-02 | 2023-04-11 | Ice Thermal Harvesting, Llc | Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations |
US11644014B2 (en) | 2021-04-02 | 2023-05-09 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic Rankine cycle operation |
US11644015B2 (en) | 2021-04-02 | 2023-05-09 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11668209B2 (en) | 2021-04-02 | 2023-06-06 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11680541B2 (en) | 2021-04-02 | 2023-06-20 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11732697B2 (en) | 2021-04-02 | 2023-08-22 | Ice Thermal Harvesting, Llc | Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature |
US11761353B2 (en) | 2021-04-02 | 2023-09-19 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11761433B2 (en) | 2021-04-02 | 2023-09-19 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic Rankine cycle operation |
US11773805B2 (en) | 2021-04-02 | 2023-10-03 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11879409B2 (en) | 2021-04-02 | 2024-01-23 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11905934B2 (en) | 2021-04-02 | 2024-02-20 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11933280B2 (en) | 2021-04-02 | 2024-03-19 | Ice Thermal Harvesting, Llc | Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations |
US11933279B2 (en) | 2021-04-02 | 2024-03-19 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11946459B2 (en) | 2021-04-02 | 2024-04-02 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11959466B2 (en) | 2021-04-02 | 2024-04-16 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic Rankine cycle operation |
US11971019B2 (en) | 2021-04-02 | 2024-04-30 | Ice Thermal Harvesting, Llc | Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature |
US12049875B2 (en) | 2021-04-02 | 2024-07-30 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic Rankine cycle operation |
US12060867B2 (en) | 2021-04-02 | 2024-08-13 | Ice Thermal Harvesting, Llc | Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on working fluid temperature |
US12104553B2 (en) | 2021-04-02 | 2024-10-01 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US12110878B2 (en) | 2021-04-02 | 2024-10-08 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
Also Published As
Publication number | Publication date |
---|---|
WO2010106089A3 (en) | 2011-08-25 |
US20120012280A1 (en) | 2012-01-19 |
RU2011142317A (en) | 2013-04-27 |
DE102009014036A1 (en) | 2010-09-23 |
EP2409003A2 (en) | 2012-01-25 |
CN102362047A (en) | 2012-02-22 |
RU2529767C2 (en) | 2014-09-27 |
JP2012520985A (en) | 2012-09-10 |
JP5420750B2 (en) | 2014-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010106089A2 (en) | Device and method for generating steam with a high level of efficiency | |
EP2347102B1 (en) | Method for operating a thermodynamic cycle, and thermodynamic cycle | |
DE69927925T2 (en) | Recovery of waste heat in an organic energy converter by means of an intermediate liquid circuit | |
EP1771641B1 (en) | Method and device for the transfer of heat from a heat source to a thermodynamic circuit with a working medium of at least two substances with non-isothermal evaporation and condensation | |
EP2812542B1 (en) | Energy storage power plant and method for operating such a power plant | |
EP2342458B1 (en) | Solar hybrid power plant with gas and steam power plant | |
DE10335143B4 (en) | Method for increasing the efficiency of a gas turbine plant and suitable gas turbine plant | |
EP3362739B1 (en) | Generation of process steam by means of a high-temperature heat pump | |
WO2008067855A2 (en) | Method and apparatus for increasing the performance and efficiency of an orc power plant process | |
CH702163A2 (en) | Method for increasing the power output of a gas and steam combined cycle power plant during selected periods of operation. | |
DE102010027226A1 (en) | Solar power plant part of a solar thermal power plant and solar thermal power plant with solar collector surfaces for heat transfer medium and work medium | |
DE102010004457A1 (en) | Method for generating technical operation in electrical power plant, involves cooling medium from one temperature another temperature by cyclic process that converts heat into technical operation | |
DE102012102368A1 (en) | Combined cycle power plant | |
DE102013210430B4 (en) | Energy storage device for preheating feedwater | |
DE102016112601A1 (en) | Device for power generation according to the ORC principle, geothermal system with such a device and operating method | |
EP2480763B1 (en) | Steam power station | |
DE102004048932A1 (en) | Power plant for generating of electrical and/or thermal energy has one or more medium temperature heat consumer supplied via flow of heat transfer fluid with heat energy with energy content deriving from geothermal reservoir | |
EP2122165B1 (en) | Method and a device for the generation of steam in steam power plants, wherein cold condensate and/or combustion air is preheated before the generation of steam | |
DE4300192A1 (en) | Operating at least two waste heat processes working in conjunction with each other | |
EP2868873A1 (en) | Thermal power plant with use of the waste heat of an alternator | |
DE102011114199B4 (en) | Process for the thermal and thermoelectric exhaust gas or hot gas heat utilization with steam cycle, as well as means for exhaust gas or hot gas heat utilization | |
DE102010010614A1 (en) | Method for energy generation in organic rankine cycle-system with working medium circuit, involves conveying total mass flow of organic rankine cycle-fluid by pump, where pump is disposed upstream to preheater | |
DE202015103407U1 (en) | Combined heat and power system | |
EP3365534A1 (en) | Method for preheating feed water of a steam generator of a power plant, and steam power plant for carrying out the method | |
EP2927436A1 (en) | Method for operating a power plant using electrical support and related power plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080012609.0 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010711188 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012500230 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13138700 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2011142317 Country of ref document: RU Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10711188 Country of ref document: EP Kind code of ref document: A2 |