JP2012520985A - High efficiency steam generator and method - Google Patents

High efficiency steam generator and method Download PDF

Info

Publication number
JP2012520985A
JP2012520985A JP2012500230A JP2012500230A JP2012520985A JP 2012520985 A JP2012520985 A JP 2012520985A JP 2012500230 A JP2012500230 A JP 2012500230A JP 2012500230 A JP2012500230 A JP 2012500230A JP 2012520985 A JP2012520985 A JP 2012520985A
Authority
JP
Japan
Prior art keywords
heat
transfer medium
heat transfer
boiler
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012500230A
Other languages
Japanese (ja)
Other versions
JP5420750B2 (en
Inventor
グロモル、ベルント
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JP2012520985A publication Critical patent/JP2012520985A/en
Application granted granted Critical
Publication of JP5420750B2 publication Critical patent/JP5420750B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本発明は、好ましくは廃熱ボイラ、カリーナボイラ又はORCボイラとして構成されているボイラの作動媒体(A)からの蒸気の発生に関し、ボイラに前置接続された熱発生器を利用している。ボイラは、作動媒体を蒸発させるために、本発明に従ってボイラに供給される前に熱発生器において加熱された高温の伝熱媒体を使用するので、高い蒸気発生効率を達成することができる。熱発生器のための熱源として、例えば工業設備の残留熱又は廃熱、あるいは地熱を使用する地熱設備が利用される。
【選択図】図2
The present invention relates to the generation of steam from the working medium (A) of the boiler, preferably configured as a waste heat boiler, a carina boiler or an ORC boiler, and utilizes a heat generator pre-connected to the boiler. Since the boiler uses a hot heat transfer medium heated in a heat generator before being fed to the boiler according to the present invention to evaporate the working medium, high steam generation efficiency can be achieved. As a heat source for the heat generator, for example, residual heat or waste heat of industrial equipment, or geothermal equipment using geothermal heat is used.
[Selection] Figure 2

Description

本発明は、ボイラに前置接続された熱発生器を利用したボイラの蒸気発生に関する。   The present invention relates to steam generation of a boiler using a heat generator connected in front of the boiler.

例えば製鋼所、セメント製造所における多くの工業プロセスや製紙等においては、プロセスの終端で廃熱の形にて中間温度レベルにある熱源が使用可能である。この廃熱はボイラを作動させ、それにより最終的に電流を発生させるのに利用することができる。都合のよいことに、さもなければ失われたであろう廃熱に蓄積された熱エネルギーが利用可能であり、それによって工業プロセス全体の実効率を高めることができる。   For example, in many industrial processes and papermaking at steel mills and cement mills, it is possible to use a heat source at an intermediate temperature level in the form of waste heat at the end of the process. This waste heat can be used to operate the boiler and thereby ultimately generate an electric current. Conveniently, the thermal energy stored in the waste heat that would otherwise be lost is available, thereby increasing the actual efficiency of the overall industrial process.

ボイラにおいては周知のごとく作動媒体が蒸発させられ、これが次に、例えば発電機に結合されたタービンに供給される。作動媒体を蒸発させるために、加熱された伝熱媒体がボイラに供給され、その伝熱媒体に蓄積された熱が作動媒体に伝達され、これが作動媒体の蒸発をもたらす。工業プロセスの廃熱を利用する場合に、この伝熱媒体は廃熱を利用して加熱される。この場合に典型的には約60℃ないし200℃の範囲内の伝熱媒体の中間温度レベルが到達可能であるにすぎない。従って、工業プロセスの廃熱に基づいて蒸気を発生させる場合の効率は比較的悪い。   As is well known in boilers, the working medium is evaporated and this is then fed, for example, to a turbine coupled to a generator. In order to evaporate the working medium, a heated heat transfer medium is supplied to the boiler and the heat stored in the heat transfer medium is transferred to the working medium, which results in evaporation of the working medium. When using waste heat of an industrial process, this heat transfer medium is heated using waste heat. In this case, an intermediate temperature level of the heat transfer medium typically in the range of about 60 ° C. to 200 ° C. is only reachable. Therefore, the efficiency when steam is generated based on the waste heat of the industrial process is relatively poor.

その代わりに熱源として地熱設備も使用可能である。地熱設備では周知のごとく地熱により伝熱媒体を加熱するために、伝熱媒体が深部ボーリングの中に注ぎ込まれる。この場合にも深部ボーリングから取り出される伝熱媒体は中間温度レベルにあるにすぎない。伝熱媒体に蓄積された熱エネルギーは、上述のごとく蒸気発生に利用できるが、しかしこの場合にも蒸気発生効率が比較的悪い。   Instead, geothermal equipment can also be used as a heat source. As is well known in geothermal facilities, the heat transfer medium is poured into the deep boring to heat the heat transfer medium by geothermal heat. Again, the heat transfer medium removed from the deep bore is only at an intermediate temperature level. The heat energy stored in the heat transfer medium can be used for steam generation as described above, but in this case as well, the steam generation efficiency is relatively poor.

本発明の課題は、中間温度レベルにある伝熱媒体の熱を利用した蒸気発生の際の効率を改善することにある。   An object of the present invention is to improve the efficiency of steam generation using the heat of a heat transfer medium at an intermediate temperature level.

この課題は、独立請求項に記載された発明によって解決される。有利な実施態様は従属請求項からもたらされる。   This problem is solved by the invention described in the independent claims. Advantageous embodiments result from the dependent claims.

本発明による課題解決手段の基本的な考え方は、作動媒体の蒸発を生じさせる伝熱媒体の温度を高めるために、文献では「熱変換器(Waermetransformator)」とも呼ばれている熱発生器を使用することにある。熱発生器は、一般に、中間温度レベルの熱を供給して低い温度レベルの熱を運び去ることによって、高い温度レベルの熱を発生させるために用いられる。   The basic idea of the problem-solving means according to the present invention is to use a heat generator, also called “Waermetransformator” in the literature, to increase the temperature of the heat transfer medium that causes evaporation of the working medium. There is to do. Heat generators are commonly used to generate high temperature levels of heat by supplying intermediate temperature levels of heat and carrying away low temperature levels of heat.

熱発生器には中間温度レベルの1次伝熱媒体が供給される。例えば、既述の工業設備廃熱管又は地熱設備のような熱源を利用して、この1次伝熱媒体を中間温度に持ち込むことができる。そして、熱発生器もしくは熱変換器から、とりわけ1次伝熱媒体の温度よりも高い温度を有する2次媒体を取り出すことができる。熱発生器の動作態様は、例えば独国特許出願公開第3521195号明細書又は独国特許第19816022号明細書から公知であり、従ってここではそれ以上更に説明することはしない。   The heat generator is supplied with a primary heat transfer medium at an intermediate temperature level. For example, the primary heat transfer medium can be brought to an intermediate temperature by using a heat source such as the industrial facility waste heat pipe or the geothermal facility described above. A secondary medium having a temperature higher than that of the primary heat transfer medium can be taken out from the heat generator or heat converter. The mode of operation of the heat generator is known, for example, from German Offenlegungsschrift 352 211 195 or German Pat. No. 19816022 and is therefore not further described here.

熱発生器により、1次伝熱媒体に蓄積された熱を2次伝熱媒体の加熱のために利用することができる。その際に、今や比較的高温の2次伝熱媒体を用いて、ボイラにて作動媒体を比較的高い効率で加熱し、もしくは蒸発させることができる。   With the heat generator, the heat accumulated in the primary heat transfer medium can be used for heating the secondary heat transfer medium. In doing so, it is now possible to heat or evaporate the working medium with relatively high efficiency in a boiler using a relatively high temperature secondary heat transfer medium.

本発明による蒸気発生方法においては、特に廃熱ボイラ、カリーナボイラ又はORC(有機ランキンサイクル)ボイラとして構成されているボイラの作動媒体を蒸発させるために、ボイラの熱交換器において熱エネルギーが伝熱媒体から作動媒体へ伝達される。伝熱媒体を熱交換器に供給する前に本発明に従って伝熱媒体の温度を熱発生器において高めることによって、高い蒸気発生効率を保証することができる。   In the steam generation method according to the present invention, heat energy is transferred in the boiler heat exchanger in order to evaporate the working medium of the boiler, particularly configured as a waste heat boiler, a carina boiler or an ORC (organic Rankine cycle) boiler. Transmitted from the medium to the working medium. By increasing the temperature of the heat transfer medium in the heat generator according to the present invention before supplying the heat transfer medium to the heat exchanger, high steam generation efficiency can be ensured.

熱発生器にはもう一つの伝熱媒体により熱エネルギーが供給され、残留熱又は廃熱を発生する工業設備において、このもう一つの伝熱媒体が熱発生器に到達する前に、残留熱又は廃熱の利用により、このもう一つの伝熱媒体の温度が高められる。これによって、工業設備のさもなければ失われてしまう残留熱又は廃熱を蒸気発生に利用できることが達成される。   In an industrial facility where the heat generator is supplied with thermal energy by another heat transfer medium and generates residual heat or waste heat, the residual heat or The use of waste heat increases the temperature of this other heat transfer medium. This achieves that residual heat or waste heat that would otherwise be lost in industrial equipment can be used for steam generation.

代替実施態様においても熱発生器にはもう一つの伝熱媒体により熱エネルギーが供給される。このもう一つの伝熱媒体の温度は、地熱設備において地熱を利用して、このもう一つの伝熱媒体が熱発生器に供給される前に高められるので、地熱を蒸気発生のために有効に利用することができる。   In an alternative embodiment, the heat generator is also supplied with thermal energy by another heat transfer medium. The temperature of this other heat transfer medium is increased using geothermal heat in the geothermal facility, before this other heat transfer medium is supplied to the heat generator, so that geothermal heat is effectively used for steam generation. Can be used.

熱発生器に供給されるもう一つの伝熱媒体の温度は、両実施態様において、ボイラの熱交換器に供給される伝熱媒体の温度よりも低い。   The temperature of the other heat transfer medium supplied to the heat generator is lower in both embodiments than the temperature of the heat transfer medium supplied to the boiler heat exchanger.

特に廃熱ボイラ、カリーナボイラ又はORCボイラとして構成されているボイラの熱交換器において作動媒体を蒸発させるための本発明による装置では、作動媒体を蒸発させるための熱交換器において熱エネルギーが伝熱媒体から作動媒体に伝達可能である。更に、この装置は伝熱媒体の温度を高めるための熱発生器を有する。   Particularly in the apparatus according to the invention for evaporating the working medium in a heat exchanger of a boiler configured as a waste heat boiler, a carina boiler or an ORC boiler, the heat energy is transferred in the heat exchanger for evaporating the working medium. It can be transmitted from the medium to the working medium. Furthermore, the apparatus has a heat generator for increasing the temperature of the heat transfer medium.

この熱発生器にはもう一つの伝熱媒体の助けにより熱エネルギーが供給可能である。もう一つの伝熱媒体が熱発生器に供給される前に、このもう一つの伝熱媒体の温度が、残留熱又は廃熱を発生する工業設備において残留熱又は廃熱を利用して高められるとよい。これによって、さもでなければ失われる工業設備の残留熱又は廃熱を蒸気発生のために利用することができる。   The heat generator can be supplied with thermal energy with the aid of another heat transfer medium. Before the other heat transfer medium is supplied to the heat generator, the temperature of the other heat transfer medium is increased by utilizing the residual heat or waste heat in an industrial facility that generates the residual heat or waste heat. Good. This allows residual heat or waste heat from industrial equipment that would otherwise be lost to be utilized for steam generation.

代替の実施態様においても、熱発生器にもう一つの伝熱媒体により熱エネルギーが供給可能である。このもう一つの伝熱媒体が熱発生器に供給される前に、このもう一つの伝熱媒体の温度が、地熱設備において地熱を利用して高められ得るので、地熱を蒸気発生のために有効に利用することができる。   In an alternative embodiment, the heat generator can be supplied with thermal energy by another heat transfer medium. Before this other heat transfer medium is supplied to the heat generator, the temperature of this other heat transfer medium can be increased using geothermal heat in the geothermal installation, so geothermal heat is effective for steam generation. Can be used.

以下において説明する実施例から図面に基づいて本発明の他の利点、特徴および詳細を明らかにする。   Other advantages, features and details of the invention will become apparent from the embodiments described below on the basis of the drawings.

図1は従来技術による蒸気発生のための廃熱利用を示す。FIG. 1 shows the use of waste heat for steam generation according to the prior art. 図2は工業設備の廃熱を利用するための熱発生器の第1の実施例を示す。FIG. 2 shows a first embodiment of a heat generator for utilizing the waste heat of industrial equipment. 図3は地熱設備において発生する熱を利用するための熱発生器の第2の実施例を示すFIG. 3 shows a second embodiment of the heat generator for utilizing the heat generated in the geothermal facility.

これらの図において同一もしくは互いに対応する範囲、構成部品、構成部品グループ又は方法ステップが同一の参照符号で示されている。配管における流れ方向が矢印によって示されている。   In these figures, the same or corresponding ranges, components, component groups or method steps are denoted by the same reference numerals. The direction of flow in the piping is indicated by arrows.

図1は、ボイラ200の作動媒体Aを蒸発させるために工業設備100、例えば製鋼所の廃熱を利用する既知の可能性を示している。製鋼所100の簡単に示されているだけの廃熱配管110中には伝熱媒体Wによって貫流される熱交換器120が設置されている。伝熱媒体Wの温度が熱交換器120において温度T1(W)から温度T2(W)に高められる。   FIG. 1 shows the known possibility of using the waste heat of an industrial facility 100, for example a steel mill, to evaporate the working medium A of the boiler 200. A heat exchanger 120 that is flowed by the heat transfer medium W is installed in the waste heat pipe 110 that is simply shown in the steel mill 100. The temperature of the heat transfer medium W is increased from the temperature T1 (W) to the temperature T2 (W) in the heat exchanger 120.

加熱された伝熱媒体Wは、ポンプ140によって運ばれて、配管130を介してボイラ200の熱交換器220に達する。更に、熱交換器220は、蒸発させるべき作動媒体Aによって貫流される。熱交換器220においては伝熱媒体Wから作動媒体Aへの熱伝達が行なわれ、その際に作動媒体Aが加熱されて蒸発させられるのに対して、伝熱媒体Wの温度は相応に低下する。冷えた伝熱媒体Wは、引き続いて配管150を介して製鋼所100の廃熱配管110中の熱交換器120へ、そこにおいて再び加熱されるべく還流される。   The heated heat transfer medium W is carried by the pump 140 and reaches the heat exchanger 220 of the boiler 200 through the pipe 130. Furthermore, the heat exchanger 220 is flowed through by the working medium A to be evaporated. In the heat exchanger 220, heat is transferred from the heat transfer medium W to the working medium A. At this time, the working medium A is heated and evaporated, whereas the temperature of the heat transfer medium W is correspondingly lowered. To do. The cooled heat transfer medium W is subsequently refluxed through the pipe 150 to the heat exchanger 120 in the waste heat pipe 110 of the steel mill 100 where it is heated again.

ボイラの熱交換器220において蒸発させられた作動媒体Aは、配管230を介してタービン240に供給されてこれを駆動する。タービン240は最終的に電流を発生すべく発電機250に接続されているので、結局、公知の如くに製鋼所100の廃熱利用により電流を発生させることができる。タービン240において膨張させられた作動媒体Aは、典型的には、タービン240に引き続いて配管260を介して冷却器270に導かれ、次にポンプ280の助けにより再び熱交換器220へ運ばれる。   The working medium A evaporated in the boiler heat exchanger 220 is supplied to the turbine 240 via the pipe 230 to drive it. Since the turbine 240 is finally connected to the generator 250 to generate a current, the current can be generated by utilizing the waste heat of the steel mill 100 as is known. The working medium A expanded in the turbine 240 is typically led to the cooler 270 via the pipe 260 following the turbine 240 and then transported again to the heat exchanger 220 with the help of the pump 280.

図2は本発明による装置の第1の適用例を示す。この場合にも、工業設備100の廃熱配管110中に熱交換器120が存在することから出発し、この熱交換器120において工業設備100の廃熱が1次伝熱媒体W1を温度T1(W1)からより高い温度T2(W1)に加熱するために利用される。加熱された1次伝熱媒体W1がポンプ140の助けにより配管130を介して熱発生器300の入口301に達する。   FIG. 2 shows a first application example of the device according to the invention. Also in this case, the heat exchanger 120 is present in the waste heat pipe 110 of the industrial equipment 100, and in this heat exchanger 120, the waste heat of the industrial equipment 100 converts the primary heat transfer medium W1 to the temperature T1 ( Used to heat from W1) to a higher temperature T2 (W1). The heated primary heat transfer medium W1 reaches the inlet 301 of the heat generator 300 through the pipe 130 with the help of the pump 140.

冒頭に述べたように、熱発生器300の助けにより、約60℃〜80℃の比較的低い温度レベルT1にある工業設備100の廃熱流に蓄積された熱を次のために利用することができる。即ち、熱発生器300の後段のプロセス、例えば蒸気発生において使用される2次伝熱媒体W2の温度を高め、その2次伝熱媒体W2の側では後段のプロセスの作動媒体Aの温度を高め、特に作動媒体Aを蒸発させるために利用することができる。   As mentioned at the outset, with the help of the heat generator 300, the heat stored in the waste heat stream of the industrial facility 100 at a relatively low temperature level T1 of about 60 ° C. to 80 ° C. can be used for the following: it can. That is, the temperature of the secondary heat transfer medium W2 used in the subsequent process of the heat generator 300, for example, steam generation is increased, and the temperature of the working medium A of the subsequent process is increased on the secondary heat transfer medium W2 side. In particular, it can be used for evaporating the working medium A.

1次伝熱媒体W1は熱発生器300を通り抜け、熱発生器300内で行なわれるプロセスで冷え、最終的には出口302において取り出すことができる。1次伝熱媒体W1は、出口302から配管150を介して工業設備100の廃熱配管110中の熱交換器120へ戻り、そこで再び加熱される。   The primary heat transfer medium W <b> 1 passes through the heat generator 300, is cooled by a process performed in the heat generator 300, and can be finally taken out at the outlet 302. The primary heat transfer medium W1 returns from the outlet 302 via the pipe 150 to the heat exchanger 120 in the waste heat pipe 110 of the industrial facility 100, where it is heated again.

2次伝熱媒体W2が熱発生器300に入口303を介して導入される。この熱発生器では2次伝熱媒体W2が最終的に、1次伝熱媒体W1の熱の利用により、温度T1(W2)から温度T2(W2)に加熱される。このように加熱された2次伝熱媒体W2が今や熱発生器300の出口304において取り出され、ポンプ310の助けにより配管210を介してボイラ200の熱交換器220に供給される。これが、熱交換器220において、図1との関連で説明したようにボイラ200の作動媒体Aの蒸発を起こさせ、その結果タービン240および発電機250により電流を発生させることができる。その際に2次伝熱媒体W2が冷え、引き続いて配管290を介して再び熱発生器300の入口303に導入されて、そこで再び加熱される。   The secondary heat transfer medium W2 is introduced into the heat generator 300 through the inlet 303. In this heat generator, the secondary heat transfer medium W2 is finally heated from the temperature T1 (W2) to the temperature T2 (W2) by using the heat of the primary heat transfer medium W1. The secondary heat transfer medium W <b> 2 thus heated is now taken out at the outlet 304 of the heat generator 300 and supplied to the heat exchanger 220 of the boiler 200 through the pipe 210 with the help of the pump 310. This causes the working medium A of the boiler 200 to evaporate in the heat exchanger 220 as described in connection with FIG. 1, and as a result, current can be generated by the turbine 240 and the generator 250. At that time, the secondary heat transfer medium W2 is cooled, and subsequently introduced again into the inlet 303 of the heat generator 300 via the pipe 290, where it is heated again.

熱発生器300の使用のおかげで、図1と関連して説明した従来技術における公知の設備の場合よりも、蒸気発生もしくは電流発生の効率が高い。この熱発生器は、工業設備の廃熱配管とボイラとの間に有効に接続されていて、ボイラに供給される伝熱媒体が、より高い温度を有するように作用する。   Thanks to the use of the heat generator 300, the efficiency of steam generation or current generation is higher than in the case of the known equipment in the prior art described in connection with FIG. This heat generator is effectively connected between the waste heat piping of the industrial facility and the boiler, and acts so that the heat transfer medium supplied to the boiler has a higher temperature.

完全のために、図2にはなおも、熱発生器300にもう一つの媒体の供給および排出を可能にする入口305および出口306が示されている。説明導入部において述べたように、熱発生器は、一般に、中間の温度レベルにある熱を供給して低い温度レベルにある熱を排出することによって、高い温度レベルにある熱を発生させるために用いられる。入口305を介して供給されて出口306で取出し得る媒体は、低い温度レベルにある熱を排出するために用いられる。1次伝熱媒体W1の助けにより、中間の温度レベルにある熱が供給され、2次伝熱媒体W2が高い温度レベルにある熱を導出し、これをボイラ200の熱交換器220へ搬送する。   For completeness, FIG. 2 still shows an inlet 305 and an outlet 306 that allow the heat generator 300 to supply and discharge another medium. As mentioned in the introduction, heat generators generally generate heat at high temperature levels by supplying heat at intermediate temperature levels and exhausting heat at low temperature levels. Used. The media supplied through inlet 305 and available at outlet 306 is used to exhaust heat at a low temperature level. With the help of the primary heat transfer medium W1, heat at an intermediate temperature level is supplied, and the secondary heat transfer medium W2 derives heat at a high temperature level and transports this to the heat exchanger 220 of the boiler 200. .

図3は本発明による装置の第2の適用例を示す。1次伝熱媒体W1は、これまでは工業設備の廃熱の助けにより高められた温度T2(W1)をもたらされていたが、ここでは地熱設備400において加熱される。よく知られているように、地熱設備は地殻に蓄積された熱を利用する。熱交換器410が定められた深さに配置されていて、1次伝熱媒体W1によって貫流されるので、1次伝熱媒体W1の温度T1(W1)を値T2(W1)に高めるために、そこにおいて支配的な高められた温度を利用することができる。そのように加熱された1次伝熱媒体W1が、本発明に従って、ポンプ420の助けにより配管430を介して熱発生器300の入口301に運ばれる。上述のように、熱発生器300は、1次伝熱媒体W1に蓄積された熱に基づいて2次伝熱媒体W2を温度T1(W2)から温度T2(W2)に加熱するために利用される。加熱された伝熱媒体W2は、次に、図2との関連で説明した方法と同様にボイラ200において蒸気発生および電流発生のために使用される。   FIG. 3 shows a second application example of the device according to the invention. The primary heat transfer medium W1 has heretofore been provided with a temperature T2 (W1) that has been increased with the aid of waste heat from the industrial equipment, but here it is heated in the geothermal equipment 400. As is well known, geothermal facilities use the heat stored in the crust. Since the heat exchanger 410 is disposed at a predetermined depth and is flowed by the primary heat transfer medium W1, in order to increase the temperature T1 (W1) of the primary heat transfer medium W1 to the value T2 (W1) The dominant elevated temperature can be used there. The primary heat transfer medium W1 thus heated is conveyed to the inlet 301 of the heat generator 300 via the pipe 430 with the help of the pump 420 according to the present invention. As described above, the heat generator 300 is used to heat the secondary heat transfer medium W2 from the temperature T1 (W2) to the temperature T2 (W2) based on the heat accumulated in the primary heat transfer medium W1. The The heated heat transfer medium W2 is then used for steam generation and current generation in the boiler 200 in a manner similar to the method described in connection with FIG.

これらの図において本発明は具体的に工業設備および地熱設備における適用例で説明されている。工業設備は、基本的には残留熱又は廃熱が付随的に発生する設備、即ち、例えば製鋼所、セメント工場、製紙工場等であるとよい。発電所の廃熱を上述の目的のために利用することも考えられ得る。発電所において発生する廃熱、例えば燃料の燃焼後および/又はタービン後方における排ガス中に生じる廃熱は、特に残留熱の形で、大きな蓄積エネルギーを含んでいる。この残留熱を、本発明に従って、熱発生器に供給される上述の1次伝熱媒体を加熱するために利用することができる。この熱発生器は2次伝熱媒体に、より高い温度をもたらすために使用される。その際に、2次伝熱媒体により、例えば発電所において燃焼のために必要とされる燃焼空気を、効率的な燃焼を生じさせるべく、予熱することができる。この2次伝熱媒体は、上述の如きボイラにおいて、発電所の機器類、例えばポンプ用の電流を発生させるのに利用してもよい。   In these figures, the present invention is specifically described with application examples in industrial and geothermal facilities. The industrial equipment may be basically equipment in which residual heat or waste heat is incidentally generated, that is, for example, a steel mill, a cement factory, a paper mill and the like. It is also conceivable to use the waste heat of the power plant for the above-mentioned purposes. Waste heat generated at the power plant, for example waste heat generated in the exhaust gas after combustion of the fuel and / or behind the turbine, contains significant stored energy, particularly in the form of residual heat. This residual heat can be used to heat the above-described primary heat transfer medium supplied to the heat generator according to the present invention. This heat generator is used to bring higher temperatures to the secondary heat transfer medium. In doing so, the secondary heat transfer medium can preheat, for example, the combustion air required for combustion in the power plant to produce efficient combustion. This secondary heat transfer medium may be used to generate a current for power plant equipment, for example, a pump, in the boiler as described above.

一般化するならば、上述のように本発明を応用するのに適したこれらの全ての設備、即ち発電所、地熱設備等を含めた残留熱又は廃熱を発生する工業設備は、「熱源」という概念に纏められる。つまり、これは一般に、1次伝熱媒体を低い温度T1(W1)からより高い温度T2(W1)に加熱することを可能にする熱エネルギーを自由に使用できる設備のことである。   In general terms, all these facilities suitable for applying the present invention as described above, namely industrial facilities that generate residual heat or waste heat, including power plants, geothermal facilities, etc., are “heat sources”. It is summarized in the concept. That is, this is generally a facility that can freely use thermal energy that allows the primary heat transfer medium to be heated from a lower temperature T1 (W1) to a higher temperature T2 (W1).

これらの図に示されたボイラ200は、例えば廃熱ボイラ(AHDEもしくはHRSG,「排熱回収ボイラ」)、カリーナボイラ又はORCボイラであるとよい。これらの特殊なボイラの全てに共通するのは、蒸発されるべき作動媒体が水に比べて低い沸点を有することである。いわゆる「カリーナプロセス」は、低い温度レベルでの蒸気発生法であり、蒸発させるべき作動媒体が水ではなくて、アンモニア・水混合物であり、これは低い温度で既に蒸発する。同様にいわゆる「ORCプロセス」は公知であり、このプロセスでは蒸発させるべき作動媒体として低い蒸発温度を有する有機液体が使用される。   The boiler 200 shown in these drawings may be, for example, a waste heat boiler (AHDE or HRSG, “exhaust heat recovery boiler”), a carina boiler, or an ORC boiler. Common to all these special boilers is that the working medium to be evaporated has a lower boiling point than water. The so-called “carina process” is a method of steam generation at low temperature levels, where the working medium to be evaporated is not water, but an ammonia / water mixture, which already evaporates at low temperatures. Similarly, the so-called “ORC process” is known, in which an organic liquid having a low evaporation temperature is used as the working medium to be evaporated.

しかし、2次伝熱媒体の高められた温度T2(W2)により、基本的には、水を作動媒体Aとして動作するボイラを使用することも排除されてはいない。   However, the use of a boiler that operates with water as the working medium A is basically not excluded due to the increased temperature T2 (W2) of the secondary heat transfer medium.

ORCプロセスおよびカリーナプロセスはいずれも、低い又は中間の温度レベルにある伝熱媒体の熱を利用することによって蒸気を発生させるのに適している。しかし、蒸気発生時の効率は熱源もしくは伝熱媒体の温度に非常に強く依存する。例えば、伝熱媒体の温度が60℃から120℃に高められる場合に、カルノー効率は3倍に向上する。200℃への昇温は効率を約5倍の値に高める。従って、本発明によりボイラに前置され伝熱媒体を昇温する熱発生器を使用することによって、効率に有利な結果がもたらされる。   Both the ORC process and the carina process are suitable for generating steam by utilizing the heat of the heat transfer medium at low or intermediate temperature levels. However, the efficiency at the time of steam generation is very strongly dependent on the temperature of the heat source or heat transfer medium. For example, when the temperature of the heat transfer medium is increased from 60 ° C. to 120 ° C., the Carnot efficiency is improved three times. Raising the temperature to 200 ° C. increases the efficiency to a value about 5 times. Thus, the use of a heat generator that heats the heat transfer medium in front of the boiler according to the present invention provides an advantageous result in efficiency.

100 工業設備
110 廃熱配管
120 熱交換器
130 配管
140 ポンプ
150 配管
200 ボイラ
210 配管
220 熱交換器
230 配管
240 タービン
250 発電機
260 配管
270 冷却器
280 ポンプ
290 配管
300 熱発生器
301 入口
302 出口
303 入口
304 出口
305 入口
306 出口
310 ポンプ
400 地熱設備
410 熱交換器
420 ポンプ
430 配管
A 作動媒体
W1 1次伝熱媒体
W2 2次伝熱媒体
100 Industrial Equipment 110 Waste Heat Piping 120 Heat Exchanger 130 Piping 140 Pump 150 Piping 200 Boiler 210 Piping 220 Heat Exchanger 230 Piping 240 Turbine 250 Generator 260 Piping 270 Cooler 280 Pump 290 Piping 300 Heat Generator 301 Inlet 302 Outlet 303 Inlet 304 Outlet 305 Inlet 306 Outlet 310 Pump 400 Geothermal facility 410 Heat exchanger 420 Pump 430 Pipe A Working medium W1 Primary heat transfer medium W2 Secondary heat transfer medium

熱発生器には中間温度レベルの1次伝熱媒体が供給される。例えば、既述の工業設備廃熱管又は地熱設備のような熱源を利用して、この1次伝熱媒体を中間温度に持ち込むことができる。そして、熱発生器もしくは熱変換器から、とりわけ1次伝熱媒体の温度よりも高い温度を有する2次媒体を取り出すことができる。熱発生器は、いわゆる「吸収式ヒートポンプ」であって、その動作態様は、例えば独国特許出願公開第3521195号明細書又は独国特許第19816022号明細書から公知であり、従ってここではそれ以上更に説明することはしない。
The heat generator is supplied with a primary heat transfer medium at an intermediate temperature level. For example, the primary heat transfer medium can be brought to an intermediate temperature by using a heat source such as the industrial facility waste heat pipe or the geothermal facility described above. A secondary medium having a temperature higher than that of the primary heat transfer medium can be taken out from the heat generator or heat converter. Heat generator is a so-called "absorption heat pump", the operation mode of its is, for example, known from German Patent Application Publication No. 3521195 or German Patent No. 19816022, here therefore it No further explanation is given above.

Claims (7)

ボイラ(200)、特に廃熱ボイラ、カリーナボイラ又はORCボイラの作動媒体(A)を蒸発させるための方法であって、ボイラ(200)の熱交換器(220)において作動媒体(A)を蒸発させるために熱エネルギーが伝熱媒体(W2)から作動媒体(A)に伝達される方法において、
伝熱媒体(W2)が熱交換器(220)に供給される前に、伝熱媒体(W2)の温度(T(W2))が熱発生器(300)において高められることを特徴とする方法。
A method for evaporating a working medium (A) of a boiler (200), in particular a waste heat boiler, a carina boiler or an ORC boiler, evaporating the working medium (A) in a heat exchanger (220) of the boiler (200) In order that the heat energy is transferred from the heat transfer medium (W2) to the working medium (A),
The method characterized in that the temperature (T (W2)) of the heat transfer medium (W2) is raised in the heat generator (300) before the heat transfer medium (W2) is supplied to the heat exchanger (220). .
熱発生器(300)にもう一つの伝熱媒体(W1)により熱エネルギーが供給され、このもう一つの伝熱媒体(W1)が熱発生器(300)に供給される前に残留熱又は廃熱を発生する工業設備(100)において残留熱又は廃熱を利用して、このもう一つの伝熱媒体(W1)の温度(T(W1))が高められることを特徴とする請求項1記載の方法。   Heat energy is supplied to the heat generator (300) by another heat transfer medium (W1), and residual heat or waste is discharged before the other heat transfer medium (W1) is supplied to the heat generator (300). The temperature (T (W1)) of the other heat transfer medium (W1) is increased by utilizing residual heat or waste heat in the industrial facility (100) that generates heat. the method of. 熱発生器(300)にもう一つの伝熱媒体(W1)により熱エネルギーが供給され、このもう一つの伝熱媒体(W1)が熱発生器(300)に供給される前に地熱設備(400)において地熱を利用して、このもう一つの伝熱媒体(W1)の温度(T(W1))が高められることを特徴とする請求項1記載の方法。   Heat energy is supplied to the heat generator (300) by another heat transfer medium (W1), and before this other heat transfer medium (W1) is supplied to the heat generator (300), the geothermal equipment (400 The method according to claim 1, characterized in that the temperature (T (W1)) of the other heat transfer medium (W1) is increased using geothermal heat. 熱発生器(300)に供給されるもう一つの伝熱媒体(W1)の温度(T2(W1))がボイラ(200)の熱交換器(220)に供給される伝熱媒体(W2)の温度T2(W2)よりも低いことを特徴とする請求項2又は3記載の方法。   The temperature (T2 (W1)) of another heat transfer medium (W1) supplied to the heat generator (300) is the heat transfer medium (W2) supplied to the heat exchanger (220) of the boiler (200). 4. The method according to claim 2, wherein the temperature is lower than the temperature T2 (W2). ボイラ(200)、特に廃熱ボイラ、カリーナボイラ又はORCボイラの熱交換器(220)において作動媒体(A)を蒸発させるための装置であって、作動媒体(A)を蒸発させるための熱交換器(220)において熱エネルギーが伝熱媒体(W2)から作動媒体(A)に伝達可能である装置において、
この装置が伝熱媒体(W2)の温度(T(W2))を高めるための熱発生器(300)を有することを特徴とする装置。
A device for evaporating the working medium (A) in a heat exchanger (220) of a boiler (200), in particular a waste heat boiler, a carina boiler or an ORC boiler, for heat exchange for evaporating the working medium (A) In the apparatus in which heat energy can be transferred from the heat transfer medium (W2) to the working medium (A) in the vessel (220),
The apparatus has a heat generator (300) for increasing the temperature (T (W2)) of the heat transfer medium (W2).
熱発生器(300)にもう一つの伝熱媒体(W1)により熱エネルギーが供給可能であり、このもう一つの伝熱媒体(W1)が熱発生器(300)に供給される前に、このもう一つの伝熱媒体(W1)の温度(T(W1))が残留熱又は廃熱を発生する工業設備(100)において残留熱又は廃熱を利用して高められ得ることを特徴とする請求項5記載の装置。   Heat energy can be supplied to the heat generator (300) by another heat transfer medium (W1), and before the other heat transfer medium (W1) is supplied to the heat generator (300), The temperature (T (W1)) of another heat transfer medium (W1) can be increased by utilizing the residual heat or waste heat in the industrial facility (100) that generates the residual heat or waste heat. Item 6. The device according to Item 5. 熱発生器(300)にもう一つの伝熱媒体(W1)により熱エネルギーが供給可能であり、このもう一つの伝熱媒体(W1)が熱発生器(300)に供給される前に、このもう一つの伝熱媒体(W1)の温度(T(W1))が、地熱設備(400)において地熱を利用して高められ得ることを特徴とする請求項5記載の装置。   Heat energy can be supplied to the heat generator (300) by another heat transfer medium (W1), and before the other heat transfer medium (W1) is supplied to the heat generator (300), The device according to claim 5, characterized in that the temperature (T (W1)) of the other heat transfer medium (W1) can be increased using geothermal heat in the geothermal installation (400).
JP2012500230A 2009-03-20 2010-03-17 High efficiency steam generator and method Expired - Fee Related JP5420750B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009014036A DE102009014036A1 (en) 2009-03-20 2009-03-20 Apparatus and method for producing high efficiency steam
DE102009014036.0 2009-03-20
PCT/EP2010/053432 WO2010106089A2 (en) 2009-03-20 2010-03-17 Device and method for generating steam with a high level of efficiency

Publications (2)

Publication Number Publication Date
JP2012520985A true JP2012520985A (en) 2012-09-10
JP5420750B2 JP5420750B2 (en) 2014-02-19

Family

ID=42628893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012500230A Expired - Fee Related JP5420750B2 (en) 2009-03-20 2010-03-17 High efficiency steam generator and method

Country Status (7)

Country Link
US (1) US20120012280A1 (en)
EP (1) EP2409003A2 (en)
JP (1) JP5420750B2 (en)
CN (1) CN102362047A (en)
DE (1) DE102009014036A1 (en)
RU (1) RU2529767C2 (en)
WO (1) WO2010106089A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017721A (en) * 2014-07-10 2016-02-01 株式会社育水舎アクアシステム Outdoor machine system

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009014845U1 (en) 2009-10-16 2010-10-14 Jelinek, Michael Gravity traction table
EP3230659A1 (en) * 2014-12-09 2017-10-18 Energeotek AB System for providing energy from a geothermal source
KR102142849B1 (en) * 2015-03-31 2020-08-10 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Boiler, steam-generating plant provided with same, and method for operating boiler
IT201900023025A1 (en) * 2019-12-05 2021-06-05 Mario Ghiringhelli RANKINE CYCLE HEAT RECOVERY EQUIPMENT WITH ORGANIC FLUIDS TO PRODUCE ELECTRICITY ON A TISSUE PAPER PRODUCTION MACHINE
CN112413922B (en) * 2020-11-18 2022-06-21 山东大学 Power-cooling combined supply system and method for fully utilizing middle-low grade industrial waste heat
CN113755658B (en) * 2020-12-31 2022-10-11 厦门大学 Secondary energy storage system based on waste heat utilization of steel plant
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11326550B1 (en) 2021-04-02 2022-05-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11421663B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11293414B1 (en) 2021-04-02 2022-04-05 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic rankine cycle operation
US11187212B1 (en) 2021-04-02 2021-11-30 Ice Thermal Harvesting, Llc Methods for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on working fluid temperature
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001044658A1 (en) * 1999-12-17 2001-06-21 The Ohio State University Heat engine
JP2008232534A (en) * 2007-03-20 2008-10-02 Tokyo Electric Power Co Inc:The Vapor production system and vapor production method
JP2008256280A (en) * 2007-04-05 2008-10-23 Tokyo Electric Power Co Inc:The Steam generating system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2945973A1 (en) * 1979-11-14 1981-05-21 Schneider, Christian, Dipl.-Ing., 8650 Kulmbach DEVICE FOR HEATING CONVERSION
SU1035247A1 (en) * 1981-07-22 1983-08-15 Государственный Научно-Исследовательский Энергетический Институт Им.Г.М.Кржижановского Geothermal power unit
DE3521195A1 (en) 1985-06-13 1986-12-18 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Method and arrangement for the optimum utilisation of waste heat in a waste heat transformer
US4776169A (en) * 1988-02-03 1988-10-11 Coles Jr Otis C Geothermal energy recovery apparatus
US5526646A (en) * 1989-07-01 1996-06-18 Ormat Industries Ltd. Method of and apparatus for producing work from a source of high pressure, two phase geothermal fluid
FR2670570B1 (en) * 1990-12-14 1994-03-18 Commissariat A Energie Atomique WORKING FLUID FOR ABSORPTION HEAT PUMPS OPERATING AT VERY HIGH TEMPERATURES.
NZ248730A (en) * 1992-10-02 1996-03-26 Ormat Ind Ltd High pressure geothermal power plant with primary steam turbine and at least one power plant module having low pressure turbine
DE19816022B4 (en) * 1998-04-09 2006-04-13 Deutsches Zentrum für Luft- und Raumfahrt e.V. Waste heat recovery plant
DE19916684C2 (en) * 1999-04-14 2001-05-17 Joachim Schwieger Process for heat transformation using a vortex unit
DE10029732A1 (en) * 2000-06-23 2002-01-03 Andreas Schiller Thermal power plant has heat exchanger arrangement arranged to heat second working fluid before it enters second vapor generator using waste heat from first vapor generator
RU2184255C2 (en) * 2000-09-07 2002-06-27 Косарев Александр Владимирович Gas turbine plant
US6347520B1 (en) * 2001-02-06 2002-02-19 General Electric Company Method for Kalina combined cycle power plant with district heating capability
US7124584B1 (en) * 2005-10-31 2006-10-24 General Electric Company System and method for heat recovery from geothermal source of heat
US8561405B2 (en) * 2007-06-29 2013-10-22 General Electric Company System and method for recovering waste heat
DE102008005978B4 (en) * 2008-01-24 2010-06-02 E-Power Gmbh Low-temperature power plant and method for operating a thermodynamic cycle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001044658A1 (en) * 1999-12-17 2001-06-21 The Ohio State University Heat engine
JP2008232534A (en) * 2007-03-20 2008-10-02 Tokyo Electric Power Co Inc:The Vapor production system and vapor production method
JP2008256280A (en) * 2007-04-05 2008-10-23 Tokyo Electric Power Co Inc:The Steam generating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017721A (en) * 2014-07-10 2016-02-01 株式会社育水舎アクアシステム Outdoor machine system

Also Published As

Publication number Publication date
US20120012280A1 (en) 2012-01-19
JP5420750B2 (en) 2014-02-19
EP2409003A2 (en) 2012-01-25
DE102009014036A1 (en) 2010-09-23
RU2011142317A (en) 2013-04-27
WO2010106089A2 (en) 2010-09-23
CN102362047A (en) 2012-02-22
RU2529767C2 (en) 2014-09-27
WO2010106089A3 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5420750B2 (en) High efficiency steam generator and method
JP5897302B2 (en) Steam turbine power generation system
US20120255309A1 (en) Utilizing steam and/or hot water generated using solar energy
KR101317222B1 (en) High efficiency feedwater heater
WO2017187619A1 (en) Combustion device and power generation facility
JP2015519500A5 (en)
JP2011085133A5 (en)
CN101839154A (en) Distributed type residual-heat/residual-pressure power generation system and distributed type residual-heat/residual-pressure power generation method
JP2010096495A (en) Combined cycle power generation plant
KR101140126B1 (en) Hybrid of solar thermal power plant and fossil fuel boiler
JPH11173109A (en) Power generation and hot water supply system
JP2009097735A (en) Feed-water warming system and exhaust heat recovering boiler
JP2009097389A (en) Decompression installation provided with energy recovery function
JP4823998B2 (en) Waste power generation method
RU2629319C1 (en) Work method of combined heat-and-power station boiler plant
JP2009180101A (en) Decompression arrangement equipped with energy recovery capability
US20160273410A1 (en) Thermal power plant with use of the waste heat from a generator
JP2016160848A (en) Exhaust heat recovery system
US20120210714A1 (en) Hydrogen based combined steam cycle apparatus
RU2767427C1 (en) Gas heater operation method (versions)
RU2580768C2 (en) Method of electric power generation by thermal power station
WO2015012345A1 (en) Boiler water supply preheater system and boiler water supply preheating method
JP2004188267A (en) Apparatus for treating boiler blow water of exhaust gas treating system in waste melting equipment
RU2531682C1 (en) Plant for treatment of make-up water of heat and power plant
TW202436746A (en) Waste combustion power generation device and waste combustion power generation method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130820

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131120

LAPS Cancellation because of no payment of annual fees