WO2010105413A1 - 反馈信号编码方法及装置 - Google Patents

反馈信号编码方法及装置 Download PDF

Info

Publication number
WO2010105413A1
WO2010105413A1 PCT/CN2009/070846 CN2009070846W WO2010105413A1 WO 2010105413 A1 WO2010105413 A1 WO 2010105413A1 CN 2009070846 W CN2009070846 W CN 2009070846W WO 2010105413 A1 WO2010105413 A1 WO 2010105413A1
Authority
WO
WIPO (PCT)
Prior art keywords
feedback signal
ack
nack
dtx
mapped
Prior art date
Application number
PCT/CN2009/070846
Other languages
English (en)
French (fr)
Inventor
范叔炬
李靖
马雪利
王宗杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42739115&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010105413(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to ES09841697T priority Critical patent/ES2423813T3/es
Priority to PCT/CN2009/070846 priority patent/WO2010105413A1/zh
Priority to EP09841697.7A priority patent/EP2408134B1/en
Priority to EP15178179.6A priority patent/EP2975793B1/en
Priority to KR1020117022381A priority patent/KR101118973B1/ko
Priority to CN200980157778.0A priority patent/CN102349258B/zh
Priority to AU2009342391A priority patent/AU2009342391B2/en
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13154107.0A priority patent/EP2592774B1/en
Priority to RU2011141772/08A priority patent/RU2474061C1/ru
Priority to IN3766KON2011 priority patent/IN2011KN03766A/en
Publication of WO2010105413A1 publication Critical patent/WO2010105413A1/zh
Priority to US12/980,451 priority patent/US7987403B2/en
Priority to US13/235,091 priority patent/US8526530B2/en
Priority to US13/951,898 priority patent/US9344530B2/en
Priority to US15/000,597 priority patent/US10021219B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/04Protocols for data compression, e.g. ROHC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L2001/125Arrangements for preventing errors in the return channel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a feedback signal encoding method and apparatus. Background technique
  • the user equipment (User Equipment, hereinafter referred to as UE) listens to the high-speed shared control channel (HS-SCCH), if no data is received. If the UE does not act, it can be understood that: the UE does not send information to the base station (Node ⁇ ), and the feedback information learned by the Node B is discontinuous transmission (hereinafter referred to as DTX) information; And detecting data on the high speed downlink shared channel (HS-DSCHs) according to the control channel information, and if the received data is correct, sending an acknowledgement (ACKnowledgement, hereinafter referred to as ACK) information to the Node B, and if the received data is incorrect, The Node B sends a Negative ACKnowledgement (hereinafter referred to as NACK) message.
  • NACK Negative ACKnowledgement
  • HARQ-ACK Hybrid Automatic Repeat reQuest-ACKnowledgement
  • the above-mentioned transmitted information is encoded and transmitted to Node B through an uplink high-speed dedicated physical control channel (HS-DPCCH).
  • HS-DPCCH uplink high-speed dedicated physical control channel
  • Node B receives the feedback information and decodes it. If it is ACK, it sends new data. If it is NACK, it retransmits the data. If it is DTX, it resends the new data.
  • Table 1-1 Single-Carrier HARQ-ACK Coding Scheme
  • a dual-carrier coding scheme is provided, which requires feedback of 9 signals, wherein 8 codewords are needed (DTX does not need to use codewords), as shown in Table 1-2:
  • TC Three-carrier
  • the inventors discovered through research on the prior art: If the TC problem is solved by using the prior art, the most direct method is to use three code channels. , use one code channel per carrier, and then use the coding scheme shown in Table 1-1; or use two code channels, one of which uses the coding scheme shown in Table 1-1, and the other two carriers use the table.
  • the coding scheme shown in 1-2 is the most direct method.
  • CM Cubic Metric
  • the embodiment of the invention provides a method and a device for encoding a feedback signal, which are used to encode a feedback signal of three carriers by using a single code channel.
  • the signal for encoding the three carriers includes: mapping the feedback signals of the three carriers into codewords in a code group; wherein the codewords are in a code group consisting of G1 ⁇ G16, and HI ⁇ H10 Selecting; and the code distance relationship of the codewords in the code group is as shown in Table 1-3:
  • the signal for encoding the three carriers includes: mapping the feedback signals of the three carriers into codewords in a code group; wherein the codewords are from A1 to A6, B1 to B6, CI to C6, and The code group consisting of D1 ⁇ D6 is selected; and the code distance relationship of the code words in the code group is as shown in Table 1-4 below:
  • the signal for encoding the three carriers includes: mapping the feedback signals of the three carriers into codewords in a code group; wherein the codewords are from A1 to A6, B1 to B6, C1 to C6, Dl ⁇ D6, and the code group consisting of El and Fl are selected; and the code distance relationship of the code words in the code group is as shown in Table 1-5:
  • the signal for encoding the three carriers includes: mapping the feedback signals of the three carriers into codewords in a code group; wherein the codewords are from A1 to A6, B1 to B6, C1 to C6, Dl ⁇ D6, and the code group consisting of El and Fl are selected; and the code distance relationship of the code words in the code group is as shown in Table 1-6: Table 1 -6
  • An encoding module configured to encode a feedback signal of three carriers
  • a sending module configured to send a bit sequence of the encoded output on the uplink high-speed dedicated physical control channel HS-DPCCH;
  • the encoding module is configured to map the feedback signals of the three carriers into codewords in a code group; wherein the codewords are selected from a code group consisting of G1 G16 and HI ⁇ H10; and the code The code distance relationship of the codewords in the group is shown in Table 1-3.
  • Another feedback signal encoding apparatus provided by the embodiment of the present invention includes:
  • An encoding module configured to encode a feedback signal of three carriers
  • a sending module configured to send a bit sequence of the encoded output on the uplink high-speed dedicated physical control channel HS-DPCCH;
  • the encoding module is configured to map the feedback signals of the three carriers into codewords in a code group; wherein the codewords are composed of A1 ⁇ A6, B1 ⁇ B6, CI ⁇ C6, and Dl ⁇ D6
  • the code group is selected in the code group; and the code distance relationship of the code words in the code group is as shown in Table 1-4.
  • An encoding module configured to encode a feedback signal of three carriers
  • a sending module configured to send a bit sequence of the encoded output on the uplink high-speed dedicated physical control channel HS-DPCCH;
  • the encoding module is configured to map the feedback signals of the three carriers into codewords in a code group; wherein the codewords are from A1 ⁇ A6, B1 ⁇ B6, CI ⁇ C6, Dl ⁇ D6, and El And the code group consisting of F1 is selected; and the code distance relationship of the code words in the code group is as shown in Table 1-5.
  • An encoding module configured to encode a feedback signal of three carriers
  • a sending module configured to send a bit sequence of the encoded output on the uplink high-speed dedicated physical control channel HS-DPCCH;
  • the encoding module is configured to map the feedback signals of the three carriers into codewords in a code group; wherein the codewords are from A1 ⁇ A6, B1 ⁇ B6, CI ⁇ C6, Dl ⁇ D6, and El And the code group consisting of F1 is selected; and the code distance relationship of the code words in the code group is as shown in Table 1-6.
  • DRAWINGS 1 is a schematic structural diagram of a three-carrier HARQ-ACK joint encoder according to an embodiment of the present invention
  • Embodiment 1 of a feedback signal encoding method provided by the present invention
  • FIG. 3 is a schematic structural diagram of Embodiment 1 of a feedback signal encoding apparatus according to the present invention. detailed description
  • FIG. 1 is a schematic structural diagram of a three-carrier HARQ-ACK joint encoder according to an embodiment of the present invention.
  • the Node B sends data to the UE simultaneously on the three carriers at most. After receiving the maximum of three data blocks, the UE needs to separately provide feedback on the received data, and the feedback information includes DTX, ACK, and NACK.
  • the UE synthesizes the feedback information of the three carriers, encodes it into a 10-bit (bit) 0- 1 sequence, and feeds back to the Node B through the HS-DPCCH.
  • the Node B selects the decoding space according to the mode for decoding.
  • the input signal of the joint encoder is a feedback signal of the UE to the received data
  • i, j, and k are feedback signals of three carrier receiving data, respectively, and the values of i, j, and k can be DTX, ACK or NACK.
  • the output signal of the joint encoder is a 10-bit 0-1 sequence, denoted by X ijk .
  • the function of the joint encoder is to encode the UE for up to three carrier feedback signals, and carry the output bit sequence on the HS-DPCCH for transmission.
  • Node B uses three carriers to transmit data, there are seven data transmission modes, see Table 1-7.
  • Each of the foregoing transmission modes corresponds to a decoding space.
  • the Node B may select a decoding space according to a transmission mode and perform decoding in the decoding space.
  • the feedback signal NDA is a shorthand for NACK-DTX-ACK, indicating that the feedback information of carrier 1 is NACK, the feedback information of carrier 2 is DTX, and the feedback information of carrier 3 is ACK.
  • Other feedback signals are similar.
  • Embodiment 1 of the feedback signal encoding method provided by the present invention is a method for encoding a signal.
  • FIG. 2 is a flowchart of Embodiment 1 of a method for encoding a feedback signal according to the present invention. As shown in FIG. 2, the embodiment includes the following steps:
  • Step 101 Encoding a feedback signal of three carriers
  • Step 102 Send a bit sequence of the encoded output on the HS-DPCCH.
  • Step 101 includes mapping the feedback signals of the three carriers into codewords in a code group, which is a code group that satisfies a specific code distance relationship, and can be obtained by computer search or other methods, and meets certain requirements (such as compatibility). Under the condition that the code group is selected, the minimum code distance is the largest and the minimum code distance is the least.
  • the code group of this embodiment includes a total of 26 code words, and these code words are selected from a code group consisting of G1 G16 and H1 H10. The code distance relationship between each code word can be seen in Table 1-9.
  • the numbers in Table 1-9 indicate the code spacing between codewords, for example: the code distance between G1 and G2 is 6, the code distance between G1 and G6 is 4, and so on. Further, in step 101, the feedback signal is mapped to the codewords included in the code group, as shown in Table 1-10.
  • Table 1-10 Schematic diagram of the mapping scheme of the feedback signal and the codeword in the first embodiment of the feedback signal encoding method
  • this embodiment maps the feedback signal DND to G8; maps the feedback signal DAD to H8; maps the feedback signal NDD to H3; maps the feedback signal NND to H7; maps the feedback signal NAD to H9; mapping feedback signal ADD to G3; mapping feedback signal AND to G4; mapping feedback signal AAD to H6; mapping feedback signal DDN to HI; mapping feedback signal DNN to G6; mapping feedback signal DAN to G10; Mapping the feedback signal NDN to G2; mapping the feedback signal NNN to H2; mapping the feedback signal NAN to G16; mapping the feedback signal ADN to G12; mapping the feedback signal ANN to G15; mapping the feedback signal AAN to G5;
  • the signal DDA is mapped to G1; the feedback signal DNA is mapped to G14; the feedback signal DAA is mapped to G7; the feedback signal NDA is mapped to H4; the feedback signal NNA is mapped to H5; the feedback signal NAA is mapped to G11; and the feedback signal is ADA Map to H
  • this embodiment provides a codeword value corresponding to the above codeword, where the codeword value is a bit sequence, as shown in Table 1-11, the code group consisting of the codeword value is a minimum code interval of 4 The 26 yuan code group.
  • Table 1 - 1 1. Signaling method of the feedback signal The schematic table of the correspondence between the codeword and the bit sequence in the first embodiment
  • Table 1-11 is a specific example.
  • the present embodiment is not limited to the corresponding relationship shown in Table 1-11.
  • the corresponding relationship obtained by simple deformation based on Table 1-11 also belongs to the scope of protection of this embodiment.
  • Table 1-11 arbitrarily changes the order between columns, or reverses a column value.
  • This embodiment provides a method for encoding a feedback signal of three carriers in the TC mode.
  • the method uses a single code channel, saves power overhead, improves system capacity, does not affect CM value, and improves system performance.
  • this embodiment selects a code group that satisfies a specific code distance relationship, and provides feedback.
  • the signal and codeword mapping scheme minimizes the cost of signal misdetection (including RLC retransmission and physical layer retransmission) and improves data transmission efficiency.
  • This embodiment includes: a feedback signal encoding three carriers, and a bit sequence of the encoded output is transmitted on the HS-DPCCH.
  • the signal for encoding the three carriers includes mapping the feedback signals of the three carriers into codewords in a code group, and the code group is a code group that satisfies a specific code distance relationship, and can be obtained by computer search or other methods, and is satisfied.
  • the principle of selecting a code group is that the minimum code distance is the largest and the minimum code distance is the least.
  • the code group selected in this embodiment includes a total of 24 code words, and these code words are selected from code groups consisting of A1 ⁇ A6, B1 ⁇ B6, C1 ⁇ C6, and Dl ⁇ D6.
  • the code distance relationship between each code word can be seen in Table 1-12.
  • the numbers in Table 1-12 indicate the code distance between code words, for example: The code distance between A1 and A1 is 0. The code size of A1 and A2 is 6, the code of A1 and B1 is 10, and so on.
  • the feedback signal is mapped to the codewords included in the code group, as shown in Table 1-13.
  • Table 1-13 Schematic diagram of the mapping scheme of the feedback signal and the codeword in the second embodiment of the feedback signal coding method
  • this embodiment maps the feedback signal DND to D1; maps the feedback signal DAD to C1; maps the feedback signal NDD to B1; maps the feedback signal NND to C2; maps the feedback signal NAD to A2; map the feedback signal ADD to A1; map the feedback signal AND to B2; map the feedback signal AAD to D2; map the feedback signal DDN to A3; map the feedback signal DNN to C2; map the feedback signal DAN Is the C5; mapping the feedback signal NDN to D6; mapping the feedback signal NNN to C2; mapping the feedback signal NAN to A5; mapping the feedback signal ADN to D4; mapping the feedback signal ANN to A4; mapping the feedback signal AAN to B6 Mapping the feedback signal DDA to B3; mapping the feedback signal DNA to C3; mapping the feedback signal DAA to C4; mapping the feedback signal NDA to D5; mapping the feedback signal NNA to A6; mapping the feedback signal NAA to B4; The feedback signal ADA is mapped to D3; the feedback signal ADA is mapped to D
  • some feedback signals are coded with the same codeword.
  • the feedback signals N-N-D, D-N-N, and N-N-N are all encoded by C2. Since the decoding of the Node B can be performed according to the transmission mode, the decoding space can be decoded in the decoding space. Therefore, when the transmission mode is the mode 1 to 6, the codeword transmitted in this embodiment can be accurately decoded during decoding. Decoding; when the transmission mode is mode 7, when the Node B decodes the codeword C2, it will judge that the feedback signal is NNN.
  • this embodiment provides a codeword value corresponding to the above codeword, and the codeword value is a bit sequence. See Table 1-14.
  • the code group consisting of the codeword value is a 24-bit code group.
  • Table 1-14 Schematic diagram of the correspondence between the codeword and the bit sequence in the second embodiment of the feedback signal coding method
  • Tables 1-14 are a specific example, and the embodiment is not limited to the correspondence shown in Table 1-14, and the corresponding relationship obtained by simple deformation based on Table 1-14 is also It belongs to the scope of protection of this embodiment, for example: arbitrarily changing the order between columns on the basis of Table 1-14, or negating a column value.
  • 26 feedback signals are encoded by 24 codewords.
  • the decoding of the Node B may be caused to be wrong, such as decoding the feedback signal NND or DNN of the UE into NNN. Affects the bit error rate; however, using fewer codewords can improve the overall performance of the system. In the scenario where higher system performance is required, this embodiment has good applicability.
  • This embodiment provides a method for encoding feedback signals of three carriers in the TC mode, and uses a single code channel to save power overhead without affecting the CM value and improving system performance.
  • mapping scheme of the feedback signal and the codeword For the mapping scheme of this embodiment, see Table 1-15.
  • this embodiment maps the feedback signal DND to D1; maps the feedback signal DAD to C1; maps the feedback signal NDD to B1; maps the feedback signal NND to C2; maps the feedback signal NAD to A2; mapping feedback signal ADD to A1; mapping feedback signal AND to B2; mapping feedback signal AAD to D2; mapping feedback signal DDN to A3; mapping feedback signal DNN to C5; mapping feedback signal DAN to C4; Mapping the feedback signal NDN to C2; mapping the feedback signal NNN to C2; The feed signal NAN is mapped to A5; the feedback signal ADN is mapped to D3; the feedback signal ANN is mapped to A4; the feedback signal AAN is mapped to B6; the feedback signal DDA is mapped to B3; the feedback signal DNA is mapped to B4; The DAA is mapped to D5; the feedback signal NDA is mapped to C3; the feedback signal NNA is mapped to D4; the feedback signal NAA is mapped to D6; the feedback signal
  • Table 1-15 Schematic diagram of the mapping scheme of the feedback signal and the codeword in the third embodiment of the feedback signal coding method
  • the code distance relationship between the codewords used in this embodiment and the correspondence between the codewords and the codeword values may be the same as the second embodiment of the above-mentioned feedback signal coding method. See Tables 1-12 and 1-14.
  • some feedback signals are also encoded by the same codeword.
  • the feedback signals N-N-D, N-D-N, and N-N-N are all encoded by C2. Since the decoding of the Node B can be performed according to the transmission mode, the decoding space can be decoded in the decoding space. Therefore, when the transmission mode is the mode 1 to 6, the codeword transmitted in this embodiment can be accurately decoded during decoding. Decoding; when the transmission mode is mode 7, when the Node B decodes the codeword C2, it will judge that the feedback signal is NNN.
  • 26 feedback signals are encoded by 24 codewords.
  • the decoding of the Node B may be caused to be wrong, such as decoding the feedback signal NND or NDN of the UE into NNN. Affects the bit error rate; however, using fewer codewords can improve the overall system Body performance. In the scenario where higher system performance is required, this embodiment has good applicability.
  • This embodiment provides a method for encoding feedback signals of three carriers in the TC mode, and uses a single code channel to save power overhead without affecting the CM value and improving system performance.
  • mapping scheme of the feedback signal and the codeword For the mapping scheme of this embodiment, see Table 1-16.
  • Table 1-16 Schematic diagram of the mapping scheme of the feedback signal and the codeword in the fourth embodiment of the feedback signal coding method
  • the feedback signal DND is mapped to D1; the feedback signal DAD is mapped to C1; the feedback signal NDD is mapped to B1; the feedback signal NND is mapped to C2; and the feedback signal NAD is mapped to C5;
  • the feedback signal ADD is mapped to A1; the feedback signal AND is mapped to A4; the feedback signal AAD is mapped to D3; the feedback signal DDN is mapped to A3; the feedback signal DNN is mapped to A2; the feedback signal DAN is mapped to C4;
  • the NDN is mapped to C2; the feedback signal NNN is mapped to C2; the feedback signal NAN is mapped to A5; the feedback signal ADN is mapped to D3; the feedback signal ANN is mapped to B2; the feedback signal AAN is mapped to B6; and the feedback signal DDA is mapped Is B3; maps the feedback signal DNA to B4; maps the feedback signal DAA to D4; maps the feedback signal NDA to D4; maps
  • the code distance relationship between the codewords used in this embodiment and the correspondence between the codewords and the codeword values may be the same as the second embodiment of the feedback signal coding method described above, see Tables 1-12 and 1-14.
  • some feedback signals are also encoded by the same codeword.
  • the feedback signals N-N-D, N-D-N, and N-N-N are all encoded by C2. Since the decoding of the Node B can be performed according to the transmission mode, the decoding space can be decoded in the decoding space. Therefore, when the transmission mode is the mode 1 to 6, the codeword transmitted in this embodiment can be accurately decoded during decoding. Decoding; when the transmission mode is mode 7, when the Node B decodes the codeword C2, it will judge that the feedback signal is NNN.
  • 26 feedback signals are encoded by 24 codewords.
  • the decoding of the Node B may be caused to be wrong, such as decoding the feedback signal NND or NDN of the UE into NNN. Affects the bit error rate; however, using fewer codewords can improve the overall performance of the system. In the scenario where higher system performance is required, this embodiment has good applicability.
  • This embodiment provides a method for encoding feedback signals of three carriers in the TC mode, and uses a single code channel to save power overhead without affecting the CM value and improving system performance.
  • This embodiment includes: a feedback signal encoding three carriers, and a bit sequence of the encoded output is transmitted on the HS-DPCCH.
  • the signal for encoding the three carriers includes mapping the feedback signals of the three carriers into codewords in a code group, and the code group is a code group that satisfies a specific code distance relationship, and can be obtained by computer search or other methods, and is satisfied.
  • the principle of selecting a code group is that the minimum code distance is the largest and the minimum code distance is the least.
  • the code group selected in this embodiment includes a total of 26 code words, and the code words are from A1 to A6.
  • B1 ⁇ B6, C1 ⁇ C6, D1 ⁇ D6, and the code group consisting of El and F1 are selected.
  • the code distance relationship between each code word can be seen in Table 1-12 and Table 1-17.
  • Table 1-18 Schematic diagram of the mapping scheme of the feedback signal and the codeword in the fifth embodiment of the feedback signal encoding method
  • this embodiment maps the feedback signal DND to D1; maps the feedback signal DAD to C1; maps the feedback signal NDD to B1; maps the feedback signal NND to C2; maps the feedback signal NAD to ⁇ 2; map feedback signal ADD to A1; map feedback signal AND to ⁇ 2; map feedback signal AAD to D2; map feedback signal DDN to ⁇ 3; map feedback signal DNN to E1; map feedback signal DAN to C6; Mapping the feedback signal NDN to D3; mapping the feedback signal ⁇ - ⁇ - ⁇ to F1; mapping the feedback signal ⁇ - ⁇ - ⁇ to ⁇ 5; mapping the feedback signal ADN to D6; mapping the feedback signal ⁇ - ⁇ - ⁇ to ⁇ 6; map the feedback signal ⁇ - ⁇ - ⁇ to ⁇ 4; map the feedback signal DDA to A3; map the feedback signal DNA to C3; map the feedback signal DAA to D5; map the feedback signal NDA to C4; - ⁇ - ⁇ maps to C5; maps the feedback signal ⁇ - ⁇ -
  • this embodiment provides a codeword value corresponding to the above codeword, and the codeword value is a ratio
  • the codeword value is a ratio
  • the code group consisting of the codeword value is a 26-ary code group with a minimum code distance of 3. Table 1-19.
  • Table 1-19 is a specific example.
  • the present embodiment is not limited to the corresponding relationship shown in Table 1-19.
  • the corresponding relationship obtained by simple deformation based on Table 1-19 also belongs to the scope of protection of this embodiment.
  • Table 1-19 arbitrarily changes the order between columns, or reverses a column value.
  • This embodiment provides a method for encoding a feedback signal of three carriers in the TC mode, which uses a single code channel, saves power overhead, does not affect the CM value, and improves system performance.
  • Embodiment 6 of the feedback signal encoding method provided by the present invention is a method for encoding a signal.
  • the difference between the embodiment and the feedback signal encoding method in the fifth embodiment is: a mapping scheme of the feedback signal and the codeword.
  • a mapping scheme of the feedback signal and the codeword see Table 1-20.
  • Table 1-20 Schematic diagram of the mapping scheme of the feedback signal and the codeword in the sixth embodiment of the feedback signal encoding method
  • this embodiment maps the feedback signal DND to A2; maps the feedback signal DAD to B2; maps the feedback signal NDD to B1; maps the feedback signal NND to E1; maps the feedback signal NAD to D2; map the feedback signal ADD to A1; map the feedback signal AND to C5; map the feedback signal AAD to B4; map the feedback signal DDN to A3; map the feedback signal DNN to F1; map the feedback signal DAN to C1; Mapping the feedback signal NDN to C2; mapping the feedback signal NNN to C6; mapping the feedback signal NAN to D5; mapping the feedback signal ADN to C4; mapping the feedback signal ANN to A6; mapping the feedback signal AAN to D3;
  • the signal DDA is mapped to B3; the feedback signal DNA is mapped to C3; the feedback signal DAA is mapped to B6; the feedback signal NDA is mapped to B5; the feedback signal NNA is mapped to D4; the feedback signal NAA is mapped to A4; and the feedback signal
  • the code-distance relationship between the codewords used in this embodiment and the correspondence between the codewords and the codeword values may be the same as the fifth embodiment of the above-mentioned feedback signal coding method. See Tables 1-12 and 1-17.
  • This embodiment provides a method for encoding feedback signals of three carriers in the TC mode, and uses a single code channel to save power overhead without affecting the CM value and improving system performance.
  • This embodiment includes: a feedback signal encoding three carriers, and a bit sequence of the encoded output is transmitted on the HS-DPCCH.
  • the signal for encoding the three carriers includes mapping the feedback signals of the three carriers into codewords in a code group, and the code group is a code group that satisfies a specific code distance relationship, and can be obtained by computer search or other methods, and is satisfied.
  • the principle of selecting a code group is that the minimum code distance is the largest and the minimum code distance is the least.
  • the code group selected in this embodiment includes a total of 26 code words, and these code words are selected from code groups consisting of A1 ⁇ A6, B1 ⁇ B6, C1 ⁇ C6, D1 ⁇ D6, and El, F1.
  • the code distance relationship between each code word can be seen in Table 1-21.
  • Table 1 -21 Schematic diagram of the code distance relationship of the seventh embodiment of the feedback signal coding method
  • the feedback signal is mapped to the codeword contained in the code group, see Table 1-22. .
  • this embodiment maps the feedback signal DND to D1; maps the feedback signal DAD to C1; maps the feedback signal NDD to B1; maps the feedback signal NND to C2; maps the feedback signal NAD to A2; map the feedback signal ADD to A1; map the feedback signal AND to B2; map the feedback signal AAD to D2; map the feedback signal DDN to B6;
  • the feed signal DNN is mapped to C5; the feedback signal DAN is mapped to C6; the feedback signal NDN is mapped to D4; the feedback signal NNN is mapped to E2; the feedback signal NAN is mapped to A3; the feedback signal ADN is mapped to D3;
  • the ANN is mapped to A5; the feedback signal AAN is mapped to F2; the feedback signal DDA is mapped to A6; the feedback signal DNA is mapped to C4; the feedback signal DAA is mapped to C
  • this embodiment provides a codeword value corresponding to the above codeword, and the codeword value is a bit sequence. See Table 1-23, and the code group consisting of the codeword value is a 26-ary code group.
  • Table 1-23 is a specific example, and the embodiment is not limited to the correspondence shown in Table 1-23, and the corresponding relationship obtained by simple deformation based on Table 1-23 is also It belongs to the scope of protection of this embodiment, for example: arbitrarily change the order between columns based on Table 1-23, or reverse the value of a column.
  • This embodiment provides a method for encoding feedback signals of three carriers in the TC mode, and uses a single code channel to save power overhead without affecting the CM value and improving system performance.
  • the embodiment of the present invention provides a solution for three carriers in the HARQ-ACK technology. According to the foregoing description, the embodiment of the present invention is further applicable to dual code channels, and can solve 4, 5, and 6 carriers. Technical solution for the HARQ-ACK information feedback problem.
  • SC a single carrier coding scheme, that is, a coding scheme corresponding to Table 1-1;
  • DC a dual carrier coding scheme, that is, a coding scheme corresponding to Table 1-2;
  • TC a coding scheme of a three-carrier, that is, an encoding scheme described in the embodiment of the present invention
  • the TC coding scheme can be used in the 1st code channel, and the SC coding scheme can be used in the 2nd code channel;
  • the TC coding scheme can be used in the 1st code channel, in the 2nd code channel
  • the DC coding scheme is used in the code channel;
  • the TC coding scheme can be used in the first code channel, and the TC coding scheme is also used in the second code channel.
  • Embodiment 1 of the feedback signal encoding apparatus provided by the present invention:
  • FIG. 3 is a schematic structural diagram of Embodiment 1 of a feedback signal encoding apparatus according to the present invention.
  • this embodiment includes an encoding module 1 and a transmitting module 2; wherein, the encoding module 1 is used to encode a feedback signal of three carriers.
  • the transmitting module 2 is configured to send the bit sequence of the encoded output on the HS-DPCCH.
  • the encoding module 1 is configured to map the feedback signals of the three carriers into codewords in a code group, where the codewords are selected from the code groups consisting of G1 ⁇ G16 and HI ⁇ H10; The code distance relationship of codewords can be seen in Table 1-9.
  • the present embodiment can be encoded according to the description in the first embodiment of the feedback signal encoding method of the present invention.
  • This embodiment provides a device for encoding a feedback signal of three carriers in the TC mode, which uses a single code channel, saves power overhead, and does not affect the CM value, thereby improving system performance.
  • the embodiment includes an encoding module for encoding a feedback signal of three carriers, and a transmitting module for transmitting a bit sequence of the encoded output on the HS-DPCCH.
  • the encoding module is configured to map the feedback signals of the three carriers into codewords in a code group, wherein the codewords are composed of codes A1 ⁇ A6, B1 ⁇ B6, C1 ⁇ C6, and D1 ⁇ D6 Select from the group; the code distance relationship of the codewords in the code group can be seen in Table 1-12.
  • the present embodiment can be coded according to the descriptions of Embodiment 2 to Embodiment 4 of the feedback signal encoding method of the present invention described above.
  • This embodiment provides a device for encoding a feedback signal of three carriers in the TC mode, which uses a single code channel, saves power overhead, and does not affect the CM value, thereby improving system performance.
  • the embodiment includes an encoding module for encoding a feedback signal of three carriers, and a transmitting module for transmitting a bit sequence of the encoded output on the HS-DPCCH.
  • the encoding module is configured to map the feedback signals of the three carriers into codewords in a code group, where the codewords are from A1 to A6, B1 to B6, C1 to C6, D1 to D6, and El,
  • the code group consisting of Fl is selected; the code distance relationship of codewords in the code group can be seen in Table 1-17.
  • the present embodiment can be coded according to the descriptions of Embodiment 5 and Embodiment 6 of the feedback signal encoding method of the present invention described above.
  • This embodiment provides an apparatus for encoding a feedback signal of three carriers in a TC mode. By setting a single code channel, power consumption is saved, and the CM value is not affected, and the performance of the system is improved.
  • the fourth embodiment of the feedback signal encoding apparatus provided by the present invention:
  • the embodiment includes an encoding module for encoding a feedback signal of three carriers, and a transmitting module for transmitting a bit sequence of the encoded output on the HS-DPCCH.
  • the encoding module is configured to map the feedback signals of the three carriers into codewords in a code group, where the codewords are from A1 to A6, B1 to B6, C1 to C6, D1 to D6, and El,
  • the code group consisting of Fl is selected; the code distance relationship of the code words in the code group can be seen in Table 1-21.
  • the present embodiment can be encoded according to the description in the seventh embodiment of the feedback signal encoding method of the present invention described above.
  • This embodiment provides a device for encoding a feedback signal of three carriers in the TC mode, which uses a single code channel, saves power overhead, and does not affect the CM value, thereby improving system performance.
  • the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk. It is not limited thereto; although the embodiments of the present invention have been described in detail with reference to the foregoing embodiments, those skilled in the art should understand that they can still modify the technical solutions described in the foregoing embodiments, or some of the technologies. The features are equivalent to the equivalents of the technical solutions of the embodiments of the embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

反馈信号编码方法及装置
技术领域
本发明实施例涉及通信技术领域, 尤其涉及一种反馈信号编码方法及装 置。 背景技术
在物理层的混合自动重传请求 ( Hybrid Automatic Repeat reQuest, 以下 简称: HARQ )过程中, 用户设备 ( User Equipment , 以下简称: UE )监听高 速共享控制信道(HS-SCCH ) , 若没有接收到数据, 则 UE没有动作, 可以 理解为: UE不会向基站(Node Β )发送信息, 则此时 Node B获知的反馈信 息为非连续传输(Discontinuous Transmission, 以下简称: DTX )信息; 若接 收到数据, 则根据控制信道信息检测高速下行共享信道(HS-DSCHs )上的数 据, 若接收的数据正确, 则向 Node B发送确认( ACKnowledgement , 以下简 称: ACK )信息, 若接收的数据错误, 则向 Node B发送非确认(Negative ACKnowledgement, 以下简称: NACK )信息。 上述的 DTX, ACK, NACK 信息统称为混合自动重传请求 -确认 ( Hybrid Automatic Repeat reQuest- ACKnowledgement, 以下简称 HARQ-ACK )信息。 上述发送的信息经过编码 后,通过上行链路高速专用物理控制信道( HS-DPCCH )发送给 Node B。 Node B接收到反馈信息并进行译码, 若为 ACK, 则发送新数据; 若为 NACK, 则 重传数据; 若为 DTX, 则重发新数据。
在第三代合作伙伴计划(3GPP )的标准中, 引入了高速下行链路分组接 入(DC-HSDPA )技术, 用以提高用户体验。 基于该技术, 现有技术提供了 若干种 HARQ-ACK编码方案, 具体说明如下。
在 3GPP协议 TS25.212的 R5版本中, 提供了单载波的编码方案。 这种 情况下共需反馈 3个信号: ACK, NACK, DTX; 其中 ACK和 NACK需要 使用码字, 如表 1-1所示:
表 1-1. 单载波的 HARQ-ACK编码方案
Figure imgf000004_0001
在 3GPP协议 TS25.212的 R8版本中, 提供了双载波的编码方案, 该方 案需要反馈 9个信号, 其中需要 8个码字 (DTX不需使用码字) , 如表 1-2 所示:
表 1-2. 双载波的 HARQ-ACK编码方案
Figure imgf000004_0002
目前, 关于三载波(Ternary Cell, 以下简称: TC )技术的研究还未展开, 发明人通过研究现有技术发现: 如果利用现有技术解决 TC 问题, 最直接的 方法为釆用三个码道, 每个载波使用一个码道, 然后釆用表 1-1 所示的编码 方案; 或者釆用两个码道, 其中一个载波使用表 1-1 所示的编码方案, 另外 两个载波使用表 1-2所示的编码方案。 该方法的缺点是需要消耗过多的功率, 通常消耗的功率为单载波的 2 ~ 3倍, 并且导致系统立方量度( Cubic Metric, 以下简称: CM )值升高, 影响了系统的性能。 发明内容
本发明实施例提供了一种反馈信号编码方法及装置, 用以实现釆用单码 道对三个载波的反馈信号进行编码。
本发明实施例提供的一种反馈信号编码方法, 包括:
编码三个载波的反馈信号;
在上行链路高速专用物理控制信道 HS-DPCCH上发送编码输出的比特序 列; 其中,
所述编码三个载波的反馈信号包括: 将所述三个载波的反馈信号映射为 一码组中的码字; 其中, 所述码字从 Gl ~ G16, 以及 HI ~ H10组成的码组中 选取; 且所述码组中码字的码距关系如下表 1-3所示:
表 1-3
Gl G2 G3 G4 G5 G6 G7 G8 G9 G10 Gi l G12 G13 G14 G15 G16 HI H2 H3 H4 H5 H6 H7 H8 H9 H10
G1 0 6 6 6 6 4 6 4 6 4 6 6 6 4 4 4 10 4 4 4 4 6 4 6 4 6
G2 6 0 6 6 6 4 4 6 4 6 6 6 4 6 4 4 4 10 4 4 4 6 6 4 6 4
G3 6 6 0 6 4 6 6 4 4 6 6 6 4 4 6 4 4 4 10 4 6 4 4 6 6 4
G4 6 6 6 0 4 6 4 6 6 4 6 6 4 4 4 6 4 4 4 10 6 4 6 4 4 6
G5 6 6 4 4 0 4 6 6 6 6 6 4 6 6 4 4 4 4 6 6 10 6 4 4 4 4
G6 4 4 6 6 4 0 6 6 6 6 6 4 4 4 6 6 6 6 4 4 6 10 4 4 4 4
G7 6 4 6 4 6 6 0 4 6 6 6 4 6 4 6 4 4 6 4 6 4 4 10 6 4 4
G8 4 6 4 6 6 6 4 0 6 6 6 4 4 6 4 6 6 4 6 4 4 4 6 10 4 4
G9 6 4 4 6 6 6 6 6 0 4 6 4 6 4 4 6 4 6 6 4 4 4 4 4 10 6
G10 4 6 6 4 6 6 6 6 4 0 6 4 4 6 6 4 6 4 4 6 4 4 4 4 6 10
G1 1 6 6 6 6 6 6 6 6 6 6 0 6 6 6 6 6 4 4 4 4 4 4 4 4 4 4
G12 6 6 6 6 4 4 4 4 4 4 6 0 6 6 6 6 4 4 4 4 6 6 6 6 6 6
G13 6 4 4 4 6 4 6 4 6 4 6 6 0 6 6 6 4 6 6 6 4 6 4 6 4 6
G14 4 6 4 4 6 4 4 6 4 6 6 6 6 0 6 6 6 4 6 6 4 6 6 4 6 4
G15 4 4 6 4 4 6 6 4 4 6 6 6 6 6 0 6 6 6 4 6 6 4 4 6 6 4
G16 4 4 4 6 4 6 4 6 6 4 6 6 6 6 6 0 6 6 6 4 6 4 6 4 4 6
HI 10 4 4 4 4 6 4 6 4 6 4 4 4 6 6 6 0 6 6 6 6 4 6 4 6 4
H2 4 10 4 4 4 6 6 4 6 4 4 4 6 4 6 6 6 0 6 6 6 4 4 6 4 6
H3 4 4 10 4 6 4 4 6 6 4 4 4 6 6 4 6 6 6 0 6 4 6 6 4 4 6 H4 4 4 4 10 6 4 6 4 4 6 4 4 6 6 6 4 6 6 6 0 4 6 4 6 6 4
H5 4 4 6 6 10 6 4 4 4 4 4 6 4 4 6 6 6 6 4 4 0 4 6 6 6 6
H6 6 6 4 4 6 10 4 4 4 4 4 6 6 6 4 4 4 4 6 6 4 0 6 6 6 6
H7 4 6 4 6 4 4 10 6 4 4 4 6 4 6 4 6 6 4 6 4 6 6 0 4 6 6
H8 6 4 6 4 4 4 6 10 4 4 4 6 6 4 6 4 4 6 4 6 6 6 4 0 6 6
H9 4 6 6 4 4 4 4 4 10 6 4 6 4 6 6 4 6 4 4 6 6 6 6 6 0 4
H10 6 4 4 6 4 4 4 4 6 10 4 6 6 4 4 6 4 6 6 4 6 6 6 6 4 0 表 1-3中的数值表示对应码字之间的码距。
本发明实施例提供的另一种反馈信号编码方法, 包括:
编码三个载波的反馈信号;
在上行链路高速专用物理控制信道 HS-DPCCH上发送编码输出的比特序 列; 其中,
所述编码三个载波的反馈信号包括: 将所述三个载波的反馈信号映射为 一码组中的码字; 其中, 所述码字从 A1 ~ A6, B1 ~ B6, CI ~ C6, 以及 Dl ~ D6组成的码组中选取; 且所述码组中码字的码距关系如下表 1-4所示:
表 1-4
Figure imgf000006_0001
C2 5 5 5 5 5 5 5 5 5 5 5 5 6 0 6 6 6 6 4 10 4 4 4 4
C3 5 5 5 5 5 5 5 5 5 5 5 5 6 6 0 6 6 6 4 4 10 4 4 4
C4 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 0 6 6 4 4 4 10 4 4
C5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 0 6 4 4 4 4 10 4
C6 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 0 4 4 4 4 4 10
Dl 5 5 5 5 5 5 5 5 5 5 5 5 10 4 4 4 4 4 0 6 6 6 6 6
D2 5 5 5 5 5 5 5 5 5 5 5 5 4 10 4 4 4 4 6 0 6 6 6 6
D3 5 5 5 5 5 5 5 5 5 5 5 5 4 4 10 4 4 4 6 6 0 6 6 6
D4 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 10 4 4 6 6 6 0 6 6
D5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 10 4 6 6 6 6 0 6
D6 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 10 6 6 6 6 6 0 表 1—4中的数值表示对应码字之间的码距。
本发明实施例提供的又一种反馈信号编码方法, 包括:
编码三个载波的反馈信号;
在上行链路高速专用物理控制信道 HS-DPCCH上发送编码输出的比特序 列; 其中,
所述编码三个载波的反馈信号包括: 将所述三个载波的反馈信号映射为 一码组中的码字; 其中, 所述码字从 A1 ~ A6, B1 ~ B6, C1 ~ C6, Dl ~ D6, 以及 El、 Fl组成的码组中选取; 且所述码组中码字的码距关系如下表 1-5所 示:
表 1-5
A 1 A2 A3 A4 A5 A6 B 1 B2 B3 B4 B5 B6 C 1 C2 C3 C4 C5 C6 D 1 D2 D3 D4 D5 D6 E 1 F 1
A 1 0 6 6 6 6 6 10 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 6 4
A2 6 0 6 6 6 6 4 10 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 6 4
A3 6 6 0 6 6 6 4 4 10 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 6 4
A4 6 6 6 0 6 6 4 4 4 10 4 4 5 5 5 5 5 5 5 5 5 5 5 5 4 6
A5 6 6 6 6 0 6 4 4 4 4 10 4 5 5 5 5 5 5 5 5 5 5 5 5 4 6
A6 6 6 6 6 6 0 4 4 4 4 4 10 5 5 5 5 5 5 5 5 5 5 5 5 4 6
B 1 10 4 4 4 4 4 0 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 4 6
B2 4 10 4 4 4 4 6 0 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 4 6 B3 4 4 10 4 4 4 6 6 0 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 4 6
B4 4 4 4 10 4 4 6 6 6 0 6 6 5 5 5 5 5 5 5 5 5 5 5 5 6 4
B5 4 4 4 4 10 4 6 6 6 6 0 6 5 5 5 5 5 5 5 5 5 5 5 5 6 4
B6 4 4 4 4 4 10 6 6 6 6 6 0 5 5 5 5 5 5 5 5 5 5 5 5 6 4
C I 5 5 5 5 5 5 5 5 5 5 5 5 0 6 6 6 6 6 10 4 4 4 4 4 7 3
C2 5 5 5 5 5 5 5 5 5 5 5 5 6 0 6 6 6 6 4 10 4 4 4 4 7 3
C3 5 5 5 5 5 5 5 5 5 5 5 5 6 6 0 6 6 6 4 4 10 4 4 4 3 7
C4 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 0 6 6 4 4 4 10 4 4 7 3
C5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 0 6 4 4 4 4 10 4 3 7
C6 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 0 4 4 4 4 4 10 3 7
D l 5 5 5 5 5 5 5 5 5 5 5 5 10 4 4 4 4 4 0 6 6 6 6 6 3 7
D2 5 5 5 5 5 5 5 5 5 5 5 5 4 10 4 4 4 4 6 0 6 6 6 6 3 7
D3 5 5 5 5 5 5 5 5 5 5 5 5 4 4 10 4 4 4 6 6 0 6 6 6 7 3
D4 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 10 4 4 6 6 6 0 6 6 3 7
D5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 10 4 6 6 6 6 0 6 7 3
D6 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 10 6 6 6 6 6 0 7 3
E l 6 6 6 4 4 4 4 4 4 6 6 6 7 7 3 7 3 3 3 3 7 3 7 7 0 10
F l 4 4 4 6 6 6 6 6 6 4 4 4 3 3 7 3 7 7 7 7 3 7 3 3 10 0 表 1-5中的数值表示对应码字之间的码距。
本发明实施例提供的再一种反馈信号编码方法, 包括:
编码三个载波的反馈信号;
在上行链路高速专用物理控制信道 HS-DPCCH上发送编码输出的比特序 列; 其中,
所述编码三个载波的反馈信号包括: 将所述三个载波的反馈信号映射为 一码组中的码字; 其中, 所述码字从 A1 ~ A6, B1 ~ B6, C1 ~ C6, Dl ~ D6, 以及 El、 Fl组成的码组中选取;且所述码组中码字的码距关系如下表 1-6所示: 表 1 -6
A 1 A2 A3 A4 A5 A6 B 1 B2 B3 B4 B5 B6 C 1 C2 C3 C4 C5 C6 D 1 D2 D3 D4 D5 D6 E2 F2
A 1 0 6 6 6 6 6 10 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 7 3
A2 6 0 6 6 6 6 4 10 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5
A3 6 6 0 6 6 6 4 4 10 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 A4 6 6 6 0 6 6 4 4 4 10 4 4 5 5 5 5 5 5 5 5 5 5 5 5 3 7
A5 6 6 6 6 0 6 4 4 4 4 10 4 5 5 5 5 5 5 5 5 5 5 5 5 7 3
A6 6 6 6 6 6 0 4 4 4 4 4 10 5 5 5 5 5 5 5 5 5 5 5 5 3 7
B l 10 4 4 4 4 4 0 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 3 7
B2 4 10 4 4 4 4 6 0 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5
B3 4 4 10 4 4 4 6 6 0 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5
B4 4 4 4 10 4 4 6 6 6 0 6 6 5 5 5 5 5 5 5 5 5 5 5 5 7 3
B5 4 4 4 4 10 4 6 6 6 6 0 6 5 5 5 5 5 5 5 5 5 5 5 5 3 7
B6 4 4 4 4 4 10 6 6 6 6 6 0 5 5 5 5 5 5 5 5 5 5 5 5 7 3
C I 5 5 5 5 5 5 5 5 5 5 5 5 0 6 6 6 6 6 10 4 4 4 4 4 6 4
C2 5 5 5 5 5 5 5 5 5 5 5 5 6 0 6 6 6 6 4 10 4 4 4 4 2 8
C3 5 5 5 5 5 5 5 5 5 5 5 5 6 6 0 6 6 6 4 4 10 4 4 4 6 4
C4 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 0 6 6 4 4 4 10 4 4 6 4
C5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 0 6 4 4 4 4 10 4 4 6
C6 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 0 4 4 4 4 4 10 6 4
D l 5 5 5 5 5 5 5 5 5 5 5 5 10 4 4 4 4 4 0 6 6 6 6 6 4 6
D2 5 5 5 5 5 5 5 5 5 5 5 5 4 10 4 4 4 4 6 0 6 6 6 6 8 2
D3 5 5 5 5 5 5 5 5 5 5 5 5 4 4 10 4 4 4 6 6 0 6 6 6 4 6
D4 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 10 4 4 6 6 6 0 6 6 4 6
D5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 10 4 6 6 6 6 0 6 6 4
D6 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 10 6 6 6 6 6 0 4 6
E2 7 5 5 3 7 3 3 5 5 7 3 7 6 2 6 6 4 6 4 8 4 4 6 4 0 10
F2 3 5 5 7 3 7 7 5 5 3 7 3 4 8 4 4 6 4 6 2 6 6 4 6 10 0 表 1-6中的数值表示对应码字之间的码距。
本发明实施例提供的一种反馈信号编码装置, 包括:
编码模块, 用于编码三个载波的反馈信号;
发送模块,用于在上行链路高速专用物理控制信道 HS-DPCCH上发送编 码输出的比特序列; 其中,
所述编码模块用于将所述三个载波的反馈信号映射为一码组中的码字; 其中, 所述码字从 G1 G16, 以及 HI ~ H10组成的码组中选取; 且所述码组 中码字的码距关系如表 1 -3所示。 本发明实施例提供的另一种反馈信号编码装置, 包括:
编码模块, 用于编码三个载波的反馈信号;
发送模块,用于在上行链路高速专用物理控制信道 HS-DPCCH上发送编 码输出的比特序列; 其中,
所述编码模块用于将所述三个载波的反馈信号映射为一码组中的码字; 其中, 所述码字从 A1~A6, B1~B6, CI ~C6, 以及 Dl ~ D6组成的码组中选 取; 且所述码组中码字的码距关系如表 1-4所示。
本发明实施例提供的又一种反馈信号编码装置, 包括:
编码模块, 用于编码三个载波的反馈信号;
发送模块,用于在上行链路高速专用物理控制信道 HS-DPCCH上发送编 码输出的比特序列; 其中,
所述编码模块用于将所述三个载波的反馈信号映射为一码组中的码字; 其中, 所述码字从 A1~A6, B1~B6, CI ~C6, Dl ~D6, 以及 El、 F1组成 的码组中选取; 且所述码组中码字的码距关系如表 1-5所示。
本发明实施例提供的再一种反馈信号编码装置, 包括:
编码模块, 用于编码三个载波的反馈信号;
发送模块,用于在上行链路高速专用物理控制信道 HS-DPCCH上发送编 码输出的比特序列; 其中,
所述编码模块用于将所述三个载波的反馈信号映射为一码组中的码字; 其中, 所述码字从 A1~A6, B1~B6, CI ~C6, Dl ~D6, 以及 El、 F1组成 的码组中选取; 且所述码组中码字的码距关系如表 1-6所示。
本发明实施例提供了一种在 TC模式下, 对三个载波的反馈信号进行联合 编码的方法, 釆用单码道, 节约了功率开销, 且不会影响 CM值, 提高了系统 的性能。 附图说明 图 1为本发明实施例所适用的三载波 HARQ-ACK联合编码器的结构 示意图;
图 2为本发明提供的反馈信号编码方法实施例一的流程图;
图 3为本发明提供的反馈信号编码装置实施例一的结构示意图。 具体实施方式
图 1为本发明实施例所适用的三载波 HARQ-ACK联合编码器的结构示意 图。 在 TC模式下, Node B最多在三个载波上同时向 UE发送数据, UE在接收 到最多三个数据块后, 需要对接收数据情况分别作出反馈, 反馈信息包括 DTX、 ACK和 NACK。 UE综合三个载波的反馈信息, 将其编码为 10比特( bit ) 0- 1序列, 通过 HS-DPCCH反馈给 Node B。 Node B根据模式选择译码空间进行 解码。
如图 1所示, 该联合编码器的输入信号为 UE对接收数据的反馈信号, i、 j 和 k分别为三个载波接收数据情况的反馈信号, i、 j和 k的取值均可以为 DTX、 ACK或 NACK。 该联合编码器的输出信号为 10比特 0-1序列, 用 Xijk表示。联合 编码器的功能是将 UE对最多三个载波反馈信号进行编码, 将输出的比特序列 承载在 HS-DPCCH上进行发送。
Node B在使用三载波发送数据时, 存在 7种数据发送模式, 参见表 1-7。
表 1-7. 三载波数据发送模式
Figure imgf000011_0001
在表 1-7中, "On" 表示在该载波上发送数据, "Off 表示该载波上不 发送数据或该载波关闭。
上述每个发送模式都对应一译码空间, 参见表 1-8, Node B在接收到 UE 的反馈信号编码后, 可以根据发送模式选择译码空间, 在译码空间内进行译 码。
表 1-8. 发送模式与译码空间的对应关系
Figure imgf000012_0001
在表 1-8中, 举例来说, 反馈信号 N-D-A是 NACK-DTX-ACK的简写, 表 示载波 1的反馈信息为 NACK, 载波 2的反馈信息为 DTX, 载波 3的反馈信息为 ACK。 其他反馈信号与此类似。
本发明提供的反馈信号编码方法实施例一:
图 2为本发明提供的反馈信号编码方法实施例一的流程图, 如图 2所示, 本实施例包括如下步骤:
步骤 101、 编码三个载波的反馈信号;
步骤 102、 在 HS-DPCCH上发送编码输出的比特序列。
步骤 101包括将三个载波的反馈信号映射为一码组中的码字,该码组为满 足特定码距关系的码组, 可以通过计算机搜索或其他方法获得, 在满足一定 要求(如兼容性) 的条件下, 选择码组的原则为最小码距最大、 最小码距的 数目最少。 本实施例的码组共包含 26个码字, 这些码字从 G1 G16, 以及 H1 H10 组成的码组中选取。 各个码字之间的码距关系可参见表 1-9。
表 1 -9. 反馈信号编码方法实施例一的码距关系示意表
Figure imgf000013_0001
表 1-9中的数字表示码字间的码距, 例如: G1与 G2的码距为 6, G1与 G6 的码距为 4, 依此类推。 进一步的, 在步骤 101中, 将反馈信号映射为该码组中包含的码字, 可 见表 1-10。
表 1-10.反馈信号编码方法实施例一中反馈信号与码字的映射方案的示意表
Figure imgf000014_0001
从表 1-10可以看出, 本实施例将反馈信号 D-N-D映射为 G8; 将反馈 信号 D-A-D映射为 H8; 将反馈信号 N-D-D映射为 H3; 将反馈信号 N-N-D 映射为 H7; 将反馈信号 N-A-D映射为 H9; 将反馈信号 A-D-D映射为 G3; 将反馈信号 A-N-D映射为 G4; 将反馈信号 A-A-D映射为 H6; 将反馈信号 D-D-N映射为 HI ; 将反馈信号 D-N-N映射为 G6; 将反馈信号 D-A-N映射 为 G10; 将反馈信号 N-D-N映射为 G2; 将反馈信号 N-N-N映射为 H2; 将 反馈信号 N-A-N映射为 G16; 将反馈信号 A-D-N映射为 G12; 将反馈信号 A-N-N映射为 G15; 将反馈信号 A-A-N映射为 G5; 将反馈信号 D-D-A映射 为 G1 ; 将反馈信号 D-N-A映射为 G14; 将反馈信号 D-A-A映射为 G7; 将 反馈信号 N-D-A映射为 H4;将反馈信号 N-N-A映射为 H5;将反馈信号 N-A-A 映射为 G11 ;将反馈信号 A-D-A映射为 H10;将反馈信号 A-N-A映射为 G9; 将反馈信号 A-A-A映射为 G13。
再进一步, 本实施例提供了与上述码字对应的码字值, 该码字值即为比 特序列,可参见表 1-11 ,由该码字值组成的码组为一最小码距为 4的 26元码组。 表 1 - 1 1.反馈信号编码方法实施例一中码字与比特序列对应关系的示意表
Figure imgf000015_0001
表 1-11为一具体实例, 本实施例不仅限于表 1-11示出的对应关系, 在表 1-11基础上进行简单变形得到的对应关系也属于本实施例所要保护范围, 例 如: 在表 1-11基础上任意改变列间的顺序, 或者对某个列值取反等。
本实施例提供了一种在 TC模式下, 对三个载波的反馈信号进行编码的方 法, 釆用单码道, 节约了功率开销, 提高了系统容量, 且不会影响 CM值, 提 高了系统的性能; 并且, 本实施例选择满足特定码距关系的码组, 并提供了 反馈信号与码字的映射方案, 使得信号错检代价 (包括 RLC重传及物理层重 传代价)最小, 提高了数据传输效率。
本发明提供的反馈信号编码方法实施例二:
本实施例包括: 编码三个载波的反馈信号, 在 HS-DPCCH上发送编码输 出的比特序列。
其中编码三个载波的反馈信号包括将三个载波的反馈信号映射为一码组 中的码字, 该码组为满足特定码距关系的码组, 可以通过计算机搜索或其他 方法获得, 在满足一定要求(如兼容性) 的条件下, 选择码组的原则为最小 码距最大、 最小码距的数目最少。
具体地说, 本实施例选择的码组共包含 24个码字, 这些码字从 A1 ~ A6, B1 ~ B6, C1 ~ C6, 以及 Dl ~ D6组成的码组中选取。 各个码字之间的码距关 系可参见表 1-12。
表 1 -12. 反馈信号编码方法实施例二的码距关系示意表
A1 A2 A3 A4 A5 A6 B 1 B2 B3 B4 B5 B6 C 1 C2 C3 C4 C5 C6 D 1 D2 D3 D4 D5 D6
A1 0 6 6 6 6 6 10 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5
A2 6 0 6 6 6 6 4 10 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5
A3 6 6 0 6 6 6 4 4 10 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5
A4 6 6 6 0 6 6 4 4 4 10 4 4 5 5 5 5 5 5 5 5 5 5 5 5
A5 6 6 6 6 0 6 4 4 4 4 10 4 5 5 5 5 5 5 5 5 5 5 5 5
A6 6 6 6 6 6 0 4 4 4 4 4 10 5 5 5 5 5 5 5 5 5 5 5 5
B 1 10 4 4 4 4 4 0 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5
B2 4 10 4 4 4 4 6 0 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5
B3 4 4 10 4 4 4 6 6 0 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5
B4 4 4 4 10 4 4 6 6 6 0 6 6 5 5 5 5 5 5 5 5 5 5 5 5
B5 4 4 4 4 10 4 6 6 6 6 0 6 5 5 5 5 5 5 5 5 5 5 5 5
B6 4 4 4 4 4 10 6 6 6 6 6 0 5 5 5 5 5 5 5 5 5 5 5 5
C 1 5 5 5 5 5 5 5 5 5 5 5 5 0 6 6 6 6 6 10 4 4 4 4 4
C2 5 5 5 5 5 5 5 5 5 5 5 5 6 0 6 6 6 6 4 10 4 4 4 4 C3 5 5 5 5 5 5 5 5 5 5 5 5 6 6 0 6 6 6 4 4 10 4 4 4
C4 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 0 6 6 4 4 4 10 4 4
C5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 0 6 4 4 4 4 10 4
C6 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 0 4 4 4 4 4 10
Dl 5 5 5 5 5 5 5 5 5 5 5 5 10 4 4 4 4 4 0 6 6 6 6 6
D2 5 5 5 5 5 5 5 5 5 5 5 5 4 10 4 4 4 4 6 0 6 6 6 6
D3 5 5 5 5 5 5 5 5 5 5 5 5 4 4 10 4 4 4 6 6 0 6 6 6
D4 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 10 4 4 6 6 6 0 6 6
D5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 10 4 6 6 6 6 0 6
D6 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 10 6 6 6 6 6 0 表 1-12的数字表示码字间的码距, 例如: A1与 A1的码距为 0, A1与 A2的 码巨为 6, A1与 B1的码巨为 10, 依此类推。
进一步的, 将反馈信号映射为该码组中包含的码字, 可参见表 1-13。
表 1-13.反馈信号编码方法实施例二中反馈信号与码字的映射方案的示意表
Figure imgf000017_0001
从表 1-13 可以看出, 本实施例将反馈信号 D-N-D映射为 D1 ; 将反馈 信号 D-A-D映射为 C1 ; 将反馈信号 N-D-D映射为 B1 ; 将反馈信号 N-N-D 映射为 C2; 将反馈信号 N-A-D映射为 A2; 将反馈信号 A-D-D映射为 A1 ; 将反馈信号 A-N-D映射为 B2; 将反馈信号 A-A-D映射为 D2; 将反馈信号 D-D-N映射为 A3; 将反馈信号 D-N-N映射为 C2; 将反馈信号 D-A-N映射 为 C5; 将反馈信号 N-D-N映射为 D6; 将反馈信号 N-N-N映射为 C2; 将反 馈信号 N-A-N映射为 A5;将反馈信号 A-D-N映射为 D4;将反馈信号 A-N-N 映射为 A4; 将反馈信号 A-A-N映射为 B6; 将反馈信号 D-D-A映射为 B3; 将反馈信号 D-N-A映射为 C3; 将反馈信号 D-A-A映射为 C4; 将反馈信号 N-D-A映射为 D5; 将反馈信号 N-N-A映射为 A6; 将反馈信号 N-A-A映射 为 B4; 将反馈信号 A-D-A映射为 D3; 将反馈信号 A-N-A映射为 B5; 将反 馈信号 A-A-A映射为 C6。
见表 1-13 , 本实施例中有些反馈信号釆用相同的码字进行编码, 例如: 反馈信号 N-N-D、 D-N-N和 N-N-N均釆用 C2进行编码。 由于 Node B译码时可 以根据发送模式选择译码空间, 在译码空间内进行译码, 因此, 当发送模式 为模式 1 ~ 6时, 本实施例发送的码字在译码时能够准确被译码; 当发送模式 为模式 7时, Node B译码得到码字 C2时, 则会判决反馈信号为 N-N-N。
再进一步, 本实施例提供了与上述码字对应的码字值, 该码字值即为比 特序列, 可参见表 1-14, 由该码字值组成的码组为一 24元码组。
表 1-14.反馈信号编码方法实施例二中码字与比特序列对应关系的示意表 码字 比特序列
A1 1 1 1 1 1 1 1 1 1 1
A2 0 0 1 1 0 0 1 1 0 0
A3 1 1 0 0 0 1 1 0 0 0
A4 1 0 0 1 0 0 0 0 1 1
A5 0 1 0 0 1 0 0 1 1 0
A6 0 0 1 0 1 1 0 0 0 1
B 1 0 0 0 0 0 0 0 0 0 0
B2 1 1 0 0 1 1 0 0 1 1
B3 0 0 1 1 1 0 0 1 1 1
B4 0 1 1 0 1 1 1 1 0 0
B5 1 0 1 1 0 1 1 0 0 1
B6 1 1 0 1 0 0 1 1 1 0
C 1 1 1 1 1 1 0 0 0 0 0
C2 0 1 0 1 0 1 0 1 0 1 C3 0 1 1 0 0 0 1 0 1 1
C4 1 0 1 0 0 1 0 1 1 0
C5 0 0 0 1 1 1 1 0 1 0
C6 1 0 0 0 1 0 1 1 0 1
D l 0 0 0 0 0 1 1 1 1 1
D2 1 0 1 0 1 0 1 0 1 0
D3 1 0 0 1 1 1 0 1 0 0
D4 0 1 0 1 1 0 1 0 0 1
D5 1 1 1 0 0 0 0 1 0 1
D6 0 1 1 1 0 1 0 0 1 0 表 1—14为一具体实例, 本实施例不仅限于表 1-14示出的对应关系, 在表 1-14基础上进行简单变形得到的对应关系也属于本实施例所要保护范围, 例 如: 在表 1-14基础上任意改变列间的顺序, 或者对某个列值取反等。
本实施例釆用 24个码字对 26个反馈信号进行编码, 当发送模式为模式 7 时, 可能会导致 Node B的译码出现错误, 如将 UE的反馈信号 N-N-D或 D-N-N 译码为 N-N-N, 影响了误码率; 但是, 釆用较少的码字, 可以提高系统的整 体性能。 在要求较高系统性能的场景下, 本实施例具有良好的适用性。
本实施例提供了一种在 TC模式下, 对三个载波的反馈信号进行编码的方 法, 釆用单码道, 节约了功率开销, 且不会影响 CM值, 提高了系统的性能。
本发明提供的反馈信号编码方法实施例三:
本实施例与反馈信号编码方法实施例二的不同之处在于: 反馈信号与码 字的映射方案。 本实施例的映射方案可参见表 1-15。
从表 1-15可以看出, 本实施例将反馈信号 D-N-D映射为 D1 ; 将反馈 信号 D-A-D映射为 C1 ; 将反馈信号 N-D-D映射为 B1 ; 将反馈信号 N-N-D 映射为 C2; 将反馈信号 N-A-D映射为 A2; 将反馈信号 A-D-D映射为 A1 ; 将反馈信号 A-N-D映射为 B2; 将反馈信号 A-A-D映射为 D2; 将反馈信号 D-D-N映射为 A3; 将反馈信号 D-N-N映射为 C5; 将反馈信号 D-A-N映射 为 C4; 将反馈信号 N-D-N映射为 C2; 将反馈信号 N-N-N映射为 C2; 将反 馈信号 N-A-N映射为 A5;将反馈信号 A-D-N映射为 D3;将反馈信号 A-N-N 映射为 A4; 将反馈信号 A-A-N映射为 B6; 将反馈信号 D-D-A映射为 B3; 将反馈信号 D-N-A映射为 B4; 将反馈信号 D-A-A映射为 D5; 将反馈信号 N-D-A映射为 C3; 将反馈信号 N-N-A映射为 D4; 将反馈信号 N-A-A映射 为 D6; 将反馈信号 A-D-A映射为 B5; 将反馈信号 A-N-A映射为 A6; 将反 馈信号 A-A-A映射为 C6。
表 1-15. 反馈信号编码方法实施例三中反馈信号与码字的映射方案的示意表
Figure imgf000020_0001
本实施例釆用的码字间的码距关系以及码字与码字值的对应关系可以与 上述反馈信号编码方法实施例二相同, 参见表 1-12和 1-14。
见表 1-15, 本实施例中也有些反馈信号釆用相同的码字进行编码, 例如: 反馈信号 N-N-D、 N-D-N和 N-N-N均釆用 C2进行编码。 由于 Node B译码时可 以根据发送模式选择译码空间, 在译码空间内进行译码, 因此, 当发送模式 为模式 1 ~ 6时, 本实施例发送的码字在译码时能够准确被译码; 当发送模式 为模式 7时, Node B译码得到码字 C2时, 则会判决反馈信号为 N-N-N。
本实施例釆用 24个码字对 26个反馈信号进行编码, 当发送模式为模式 7 时, 可能会导致 Node B的译码出现错误, 如将 UE的反馈信号 N-N-D或 N-D-N 译码为 N-N-N, 影响了误码率; 但是, 釆用较少的码字, 可以提高系统的整 体性能。 在要求较高系统性能的场景下, 本实施例具有良好的适用性。
本实施例提供了一种在 TC模式下, 对三个载波的反馈信号进行编码的方 法, 釆用单码道, 节约了功率开销, 且不会影响 CM值, 提高了系统的性能。
本发明提供的反馈信号编码方法实施例四:
本实施例与反馈信号编码方法实施例二的不同之处在于: 反馈信号与码 字的映射方案。 本实施例的映射方案可参见表 1-16。
表 1-16. 反馈信号编码方法实施例四中反馈信号与码字的映射方案的示意表
Figure imgf000021_0001
从表 1-16可以看出, 将反馈信号 D-N-D映射为 Dl ; 将反馈信号 D-A-D映 射为 C1 ; 将反馈信号 N-D-D映射为 B1 ; 将反馈信号 N-N-D映射为 C2; 将反馈 信号 N-A-D映射为 C5; 将反馈信号 A-D-D映射为 A1 ; 将反馈信号 A-N-D映射 为 A4; 将反馈信号 A-A-D映射为 D3; 将反馈信号 D-D-N映射为 A3; 将反馈信 号 D-N-N映射为 A2; 将反馈信号 D-A-N映射为 C4; 将反馈信号 N-D-N映射为 C2; 将反馈信号 N-N-N映射为 C2; 将反馈信号 N-A-N映射为 A5; 将反馈信号 A-D-N映射为 D3; 将反馈信号 A-N-N映射为 B2; 将反馈信号 A-A-N映射为 B6; 将反馈信号 D-D-A映射为 B3;将反馈信号 D-N-A映射为 B4;将反馈信号 D-A-A 映射为 D4; 将反馈信号 N-D-A映射为 D4; 将反馈信号 N-N-A映射为 C3; 将反 馈信号 N-A-A映射为 D6; 将反馈信号 A-D-A映射为 B5; 将反馈信号 A-N-A映 射为 A6; 将反馈信号 A-A-A映射为 C6。
本实施例釆用的码字间的码距关系以及码字与码字值的对应关系可以与 上述反馈信号编码方法实施例二相同, 参见表 1-12和 1-14。
见表 1-16, 本实施例中也有些反馈信号釆用相同的码字进行编码, 例如: 反馈信号 N-N-D、 N-D-N和 N-N-N均釆用 C2进行编码。 由于 Node B译码时可 以根据发送模式选择译码空间, 在译码空间内进行译码, 因此, 当发送模式 为模式 1 ~ 6时, 本实施例发送的码字在译码时能够准确被译码; 当发送模式 为模式 7时, Node B译码得到码字 C2时, 则会判决反馈信号为 N-N-N。
本实施例釆用 24个码字对 26个反馈信号进行编码, 当发送模式为模式 7 时, 可能会导致 Node B的译码出现错误, 如将 UE的反馈信号 N-N-D或 N-D-N 译码为 N-N-N, 影响了误码率; 但是, 釆用较少的码字, 可以提高系统的整 体性能。 在要求较高系统性能的场景下, 本实施例具有良好的适用性。
本实施例提供了一种在 TC模式下, 对三个载波的反馈信号进行编码的方 法, 釆用单码道, 节约了功率开销, 且不会影响 CM值, 提高了系统的性能。
本发明提供的反馈信号编码方法实施例五:
本实施例包括: 编码三个载波的反馈信号, 在 HS-DPCCH上发送编码输 出的比特序列。
其中编码三个载波的反馈信号包括将三个载波的反馈信号映射为一码组 中的码字, 该码组为满足特定码距关系的码组, 可以通过计算机搜索或其他 方法获得, 在满足一定要求(如兼容性) 的条件下, 选择码组的原则为最小 码距最大、 最小码距的数目最少。
具体地说, 本实施例选择的码组共包含 26个码字, 这些码字从 A1 ~ A6,
B1 ~ B6, C1 ~ C6, D1 ~ D6, 以及 El、 F1组成的码组中选取。 各个码字之 间的码距关系可参见表 1-12和表 1-17。
表 1-17. 反馈信号编码方法实施例五的码距关系示意表
Figure imgf000022_0001
El 6 6 6 4 4 4 4 4 4 6 6 6 7 7 3 7 3 3 3 3 7 3 7 7 0 10
Fl 4 4 4 6 6 6 6 6 6 4 4 4 3 3 7 3 7 7 7 7 3 7 3 3 10 0 进一步的, 将反馈信号映射为该码组中包含的码字, 可参见表 1-18。
表 1-18.反馈信号编码方法实施例五中反馈信号与码字的映射方案的示意表
Figure imgf000023_0001
从表 1-18可以看出, 本实施例将反馈信号 D-N-D映射为 D1 ; 将反馈信 号 D-A-D映射为 C1 ; 将反馈信号 N-D-D映射为 B1 ; 将反馈信号 N-N-D映 射为 C2; 将反馈信号 N-A-D映射为 Α2; 将反馈信号 A-D-D映射为 A1 ; 将 反馈信号 A-N-D映射为 Β2;将反馈信号 A-A-D映射为 D2;将反馈信号 D-D-N 映射为 Β3; 将反馈信号 D-N-N映射为 E1 ; 将反馈信号 D-A-N映射为 C6; 将反馈信号 N-D-N映射为 D3; 将反馈信号 Ν-Ν-Ν映射为 F1 ; 将反馈信号 Ν-Α-Ν映射为 Α5; 将反馈信号 A-D-N映射为 D6; 将反馈信号 Α-Ν-Ν映射 为 Α6; 将反馈信号 Α-Α-Ν映射为 Β4; 将反馈信号 D-D-A映射为 A3; 将反 馈信号 D-N-A映射为 C3;将反馈信号 D-A-A映射为 D5;将反馈信号 N-D-A 映射为 C4; 将反馈信号 Ν-Ν-Α映射为 C5; 将反馈信号 Ν-Α-Α映射为 D4; 将反馈信号 A-D-A映射为 Β5; 将反馈信号 Α-Ν-Α映射为 Α4; 将反馈信号 Α-Α-Α映射为 Β6。
再进一步, 本实施例提供了与上述码字对应的码字值, 该码字值即为比 特序列,可参见表 1-19,由该码字值组成的码组为一最小码距为 3的 26元码组。 表 1-19.反馈信号编码方法实施例五中码字与比特序列对应关系的示意表
Figure imgf000024_0001
表 1-19为一具体实例, 本实施例不仅限于表 1-19示出的对应关系, 在表 1-19基础上进行简单变形得到的对应关系也属于本实施例所要保护范围, 例 如: 在表 1-19基础上任意改变列间的顺序, 或者对某个列值取反等。 本实施例提供了一种在 TC模式下, 对三个载波的反馈信号进行编码的方 法, 釆用单码道, 节约了功率开销, 且不会影响 CM值, 提高了系统的性能。
本发明提供的反馈信号编码方法实施例六:
本实施例与反馈信号编码方法实施例五的不同之处在于: 反馈信号与码 字的映射方案。 本实施例的映射方案可参见表 1-20。
表 1-20.反馈信号编码方法实施例六中反馈信号与码字的映射方案的示意表
Figure imgf000025_0001
从表 1-20可以看出, 本实施例将反馈信号 D-N-D映射为 A2; 将反馈 信号 D-A-D映射为 B2; 将反馈信号 N-D-D映射为 B1 ; 将反馈信号 N-N-D 映射为 E1 ; 将反馈信号 N-A-D映射为 D2; 将反馈信号 A-D-D映射为 A1; 将反馈信号 A-N-D映射为 C5; 将反馈信号 A-A-D映射为 B4; 将反馈信号 D-D-N映射为 A3; 将反馈信号 D-N-N映射为 F1 ; 将反馈信号 D-A-N映射 为 C1 ; 将反馈信号 N-D-N映射为 C2; 将反馈信号 N-N-N映射为 C6; 将反 馈信号 N-A-N映射为 D5;将反馈信号 A-D-N映射为 C4;将反馈信号 A-N-N 映射为 A6; 将反馈信号 A-A-N映射为 D3; 将反馈信号 D-D-A映射为 B3; 将反馈信号 D-N-A映射为 C3; 将反馈信号 D-A-A映射为 B6; 将反馈信号 N-D-A映射为 B5; 将反馈信号 N-N-A映射为 D4; 将反馈信号 N-A-A映射 为 A4; 将反馈信号 A-D-A映射为 D6; 将反馈信号 A-N-A映射为 D1 ; 将反 馈信号 A-A-A映射为 A5。
本实施例釆用的码字间的码距关系以及码字与码字值的对应关系可以与 上述反馈信号编码方法实施例五相同, 参见表 1-12、 1-17。
本实施例提供了一种在 TC模式下, 对三个载波的反馈信号进行编码的方 法, 釆用单码道, 节约了功率开销, 且不会影响 CM值, 提高了系统的性能。
本发明提供的反馈信号编码方法实施例七:
本实施例包括: 编码三个载波的反馈信号, 在 HS-DPCCH上发送编码输 出的比特序列。
其中编码三个载波的反馈信号包括将三个载波的反馈信号映射为一码组 中的码字, 该码组为满足特定码距关系的码组, 可以通过计算机搜索或其他 方法获得, 在满足一定要求(如兼容性) 的条件下, 选择码组的原则为最小 码距最大、 最小码距的数目最少。
具体地说, 本实施例选择的码组共包含 26个码字, 这些码字从 A1 ~ A6, B1 ~ B6, C1 ~ C6, D1 ~ D6, 以及 El、 F1组成的码组中选取。 各个码字之 间的码距关系可参见表 1-21。
表 1 -21. 反馈信号编码方法实施例七的码距关系示意表
Figure imgf000026_0001
C I 5 5 5 5 5 5 5 5 5 5 5 5 0 6 6 6 6 6 10 4 4 4 4 4 6 4
C2 5 5 5 5 5 5 5 5 5 5 5 5 6 0 6 6 6 6 4 10 4 4 4 4 2 8
C3 5 5 5 5 5 5 5 5 5 5 5 5 6 6 0 6 6 6 4 4 10 4 4 4 6 4
C4 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 0 6 6 4 4 4 10 4 4 6 4
C5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 0 6 4 4 4 4 10 4 4 6
C6 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 0 4 4 4 4 4 10 6 4
D l 5 5 5 5 5 5 5 5 5 5 5 5 10 4 4 4 4 4 0 6 6 6 6 6 4 6
D2 5 5 5 5 5 5 5 5 5 5 5 5 4 10 4 4 4 4 6 0 6 6 6 6 8 2
D3 5 5 5 5 5 5 5 5 5 5 5 5 4 4 10 4 4 4 6 6 0 6 6 6 4 6
D4 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 10 4 4 6 6 6 0 6 6 4 6
D5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 10 4 6 6 6 6 0 6 6 4
D6 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 10 6 6 6 6 6 0 4 6
E2 7 5 5 3 7 3 3 5 5 7 3 7 6 2 6 6 4 6 4 8 4 4 6 4 0 10
F2 3 5 5 7 3 7 7 5 5 3 7 3 4 8 4 4 6 4 6 2 6 6 4 6 10 0 进一步的, 将反馈信号映射为该码组中包含的码字, 可参见表 1-22。
表 1-22. 反馈信号编码方法实施例七中反馈信号与码字的映射方案的示意表
Figure imgf000027_0001
从表 1-22可以看出, 本实施例将反馈信号 D-N-D映射为 Dl ; 将反馈信号 D-A-D映射为 C1; 将反馈信号 N-D-D映射为 B1 ; 将反馈信号 N-N-D映射为 C2; 将反馈信号 N-A-D映射为 A2;将反馈信号 A-D-D映射为 A1 ;将反馈信号 A-N-D 映射为 B2; 将反馈信号 A-A-D映射为 D2; 将反馈信号 D-D-N映射为 B6; 将反 馈信号 D-N-N映射为 C5; 将反馈信号 D-A-N映射为 C6; 将反馈信号 N-D-N映 射为 D4; 将反馈信号 N-N-N映射为 E2; 将反馈信号 N-A-N映射为 A3; 将反馈 信号 A-D-N映射为 D3; 将反馈信号 A-N-N映射为 A5; 将反馈信号 A-A-N映射 为 F2; 将反馈信号 D-D-A映射为 A6; 将反馈信号 D-N-A映射为 C4; 将反馈信 号 D-A-A映射为 C3; 将反馈信号 N-D-A映射为 D5; 将反馈信号 N-N-A映射为 A4; 将反馈信号 N-A-A映射为 B5; 将反馈信号 A-D-A映射为 D6; 将反馈信号 A-N-A映射为 B3; 将反馈信号 A-A-A映射为 B4。
再进一步, 本实施例提供了与上述码字对应的码字值, 该码字值即为比 特序列, 可参见表 1-23 , 由该码字值组成的码组为 26元码组。
表 1-23.反馈信号编码方法实施例七中码字与比特序列对应关系的示意表
Figure imgf000028_0001
D3 1 0 0 1 1 1 0 1 0 0
D4 0 1 0 1 1 0 1 0 0 1
D5 1 1 1 0 0 0 0 1 0 1
D6 0 1 1 1 0 1 0 0 1 0
E2 0 0 0 1 0 1 0 0 0 1
F2 1 1 1 0 1 0 1 1 1 0 表 1-23为一具体实例, 本实施例不仅限于表 1-23示出的对应关系, 在表 1-23基础上进行简单变形得到的对应关系也属于本实施例所要保护范围, 例 如: 在表 1-23基础上任意改变列间的顺序, 或者对某个列值取反等。
本实施例提供了一种在 TC模式下, 对三个载波的反馈信号进行编码的方 法, 釆用单码道, 节约了功率开销, 且不会影响 CM值, 提高了系统的性能。
综上所述, 本发明实施例提供了 HARQ-ACK技术中三载波的解决方案, 根据上述描述, 进一步的, 本发明实施例还适用于双码道, 可以解决 4载波、 5载波及 6载波的 HARQ-ACK信息反馈问题的技术方案。
为了便于描述, 本发明实施例规定以下术语的含义:
SC: 单载波的编码方案, 即表 1-1对应的编码方案;
DC: 双载波的编码方案, 即表 1-2对应的编码方案;
TC: 三载波的编码方案, 即本发明实施例所描述的编码方案;
对于 4载波的情况: 可以在第 1码道中釆用 TC编码方案, 在第 2码道中釆 用 SC编码方案; 对于 5载波的情况: 可以在第 1码道中釆用 TC编码方案, 在第 2码道中釆用 DC编码方案; 对于 6载波的情况: 可以在第 1码道中釆用 TC编码 方案, 在第 2码道中也釆用 TC编码方案。
本发明提供的反馈信号编码装置实施例一:
图 3为本发明提供的反馈信号编码装置实施例一的结构示意图, 如图 3 所示, 本实施例包括编码模块 1和发送模块 2; 其中, 编码模块 1用于编码 三个载波的反馈信号,发送模块 2用于在 HS-DPCCH上发送编码输出的比特 序列。 本实施例中, 编码模块 1用于将三个载波的反馈信号映射为一码组中的 码字, 其中, 码字从 G1 ~ G16, 以及 HI ~ H10组成的码组中选取; 码组中码 字的码距关系可参见表 1-9所示。
具体地, 本实施例可以按照上述本发明反馈信号编码方法实施例一中的 描述进行编码。
本实施例提供了一种在 TC模式下, 对三个载波的反馈信号进行编码的装 置, 釆用单码道, 节约了功率开销, 且不会影响 CM值, 提高了系统的性能。
本发明提供的反馈信号编码装置实施例二:
本实施例包括编码模块和发送模块, 编码模块用于编码三个载波的反 馈信号, 发送模块用于在 HS-DPCCH上发送编码输出的比特序列。
本实施例中, 编码模块用于将三个载波的反馈信号映射为一码组中的码 字, 其中, 码字从 A1 ~ A6, B1 ~ B6, C1 ~ C6, 以及 Dl ~ D6组成的码组中 选取; 码组中码字的码距关系可参见表 1-12所示。
具体地, 本实施例可以按照上述本发明反馈信号编码方法实施例二至实 施例四中的描述进行编码。
本实施例提供了一种在 TC模式下, 对三个载波的反馈信号进行编码的装 置, 釆用单码道, 节约了功率开销, 且不会影响 CM值, 提高了系统的性能。
本发明提供的反馈信号编码装置实施例三:
本实施例包括编码模块和发送模块, 编码模块用于编码三个载波的反 馈信号, 发送模块用于在 HS-DPCCH上发送编码输出的比特序列。
本实施例中, 编码模块用于将三个载波的反馈信号映射为一码组中的码 字, 其中, 码字从 A1 ~ A6, B1 ~ B6, C1 ~ C6, D1 ~ D6, 以及 El、 Fl组成 的码组中选取; 码组中码字的码距关系可参见表 1-17所示。
具体地, 本实施例可以按照上述本发明反馈信号编码方法实施例五和实 施例六中的描述进行编码。
本实施例提供了一种在 TC模式下, 对三个载波的反馈信号进行编码的装 置, 釆用单码道, 节约了功率开销, 且不会影响 CM值, 提高了系统的性能。 本发明提供的反馈信号编码装置实施例四:
本实施例包括编码模块和发送模块, 编码模块用于编码三个载波的反 馈信号, 发送模块用于在 HS-DPCCH上发送编码输出的比特序列。
本实施例中, 编码模块用于将三个载波的反馈信号映射为一码组中的码 字, 其中, 码字从 A1 ~ A6, B1 ~ B6, C1 ~ C6, D1 ~ D6, 以及 El、 Fl组成 的码组中选取; 码组中码字的码距关系可参见表 1-21所示。
具体地, 本实施例可以按照上述本发明反馈信号编码方法实施例七中的 描述进行编码。
本实施例提供了一种在 TC模式下, 对三个载波的反馈信号进行编码的装 置, 釆用单码道, 节约了功率开销, 且不会影响 CM值, 提高了系统的性能。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤, 而前述 的存储介质包括: ROM, RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。 非对其限制; 尽管参照前述实施例对本发明实施例进行了详细的说明, 本领 域的普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案 进行修改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的本质脱离本发明实施例各实施例技术方案的精神和范 围。

Claims

权 利 要 求
1、 一种反馈信号编码方法, 其特征在于包括:
编码三个载波的反馈信号;
在上行链路高速专用物理控制信道 HS-DPCCH上发送编码输出的比特序 列; 其中,
所述编码三个载波的反馈信号包括: 将所述三个载波的反馈信号映射为 一码组中的码字; 其中, 所述码字从 Gl ~ G16, 以及 HI ~ H10组成的码组中 选取; 且所述码组中码字的码距关系如下表 2-1所示:
表 2-1
Gl G2 G3 G4 G5 G6 G7 G8 G9 G10 Gi l G12 G13 G14 G15 G16 HI H2 H3 H4 H5 H6 H7 H8 H9 H10
G1 0 6 6 6 6 4 6 4 6 4 6 6 6 4 4 4 10 4 4 4 4 6 4 6 4 6
G2 6 0 6 6 6 4 4 6 4 6 6 6 4 6 4 4 4 10 4 4 4 6 6 4 6 4
G3 6 6 0 6 4 6 6 4 4 6 6 6 4 4 6 4 4 4 10 4 6 4 4 6 6 4
G4 6 6 6 0 4 6 4 6 6 4 6 6 4 4 4 6 4 4 4 10 6 4 6 4 4 6
G5 6 6 4 4 0 4 6 6 6 6 6 4 6 6 4 4 4 4 6 6 10 6 4 4 4 4
G6 4 4 6 6 4 0 6 6 6 6 6 4 4 4 6 6 6 6 4 4 6 10 4 4 4 4
G7 6 4 6 4 6 6 0 4 6 6 6 4 6 4 6 4 4 6 4 6 4 4 10 6 4 4
G8 4 6 4 6 6 6 4 0 6 6 6 4 4 6 4 6 6 4 6 4 4 4 6 10 4 4
G9 6 4 4 6 6 6 6 6 0 4 6 4 6 4 4 6 4 6 6 4 4 4 4 4 10 6
G10 4 6 6 4 6 6 6 6 4 0 6 4 4 6 6 4 6 4 4 6 4 4 4 4 6 10
G1 1 6 6 6 6 6 6 6 6 6 6 0 6 6 6 6 6 4 4 4 4 4 4 4 4 4 4
G12 6 6 6 6 4 4 4 4 4 4 6 0 6 6 6 6 4 4 4 4 6 6 6 6 6 6
G13 6 4 4 4 6 4 6 4 6 4 6 6 0 6 6 6 4 6 6 6 4 6 4 6 4 6
G14 4 6 4 4 6 4 4 6 4 6 6 6 6 0 6 6 6 4 6 6 4 6 6 4 6 4
G15 4 4 6 4 4 6 6 4 4 6 6 6 6 6 0 6 6 6 4 6 6 4 4 6 6 4
G16 4 4 4 6 4 6 4 6 6 4 6 6 6 6 6 0 6 6 6 4 6 4 6 4 4 6
HI 10 4 4 4 4 6 4 6 4 6 4 4 4 6 6 6 0 6 6 6 6 4 6 4 6 4
H2 4 10 4 4 4 6 6 4 6 4 4 4 6 4 6 6 6 0 6 6 6 4 4 6 4 6
H3 4 4 10 4 6 4 4 6 6 4 4 4 6 6 4 6 6 6 0 6 4 6 6 4 4 6
H4 4 4 4 10 6 4 6 4 4 6 4 4 6 6 6 4 6 6 6 0 4 6 4 6 6 4
H5 4 4 6 6 10 6 4 4 4 4 4 6 4 4 6 6 6 6 4 4 0 4 6 6 6 6
H6 6 6 4 4 6 10 4 4 4 4 4 6 6 6 4 4 4 4 6 6 4 0 6 6 6 6 H7 4 6 4 6 4 4 10 6 4 4 4 6 4 6 4 6 6 4 6 4 6 6 0 4 6 6
H8 6 4 6 4 4 4 6 10 4 4 4 6 6 4 6 4 4 6 4 6 6 6 4 0 6 6
H9 4 6 6 4 4 4 4 4 10 6 4 6 4 6 6 4 6 4 4 6 6 6 6 6 0 4
H10 6 4 4 6 4 4 4 4 6 10 4 6 6 4 4 6 4 6 6 4 6 6 6 6 4 0 表 2-1中的数值表示对应码字之间的码距。
2、 根据权利要求 1 所述的反馈信号编码方法, 其特征在于, 所述将三 个载波的反馈信号映射为一码组中的码字包括:
将反馈信号 DTX-NACK-DTX映射为 G8; 将反馈信号 DTX-ACK-DTX 映射为 H8 ; 将反馈信号 NACK-DTX-DTX 映射为 H3; 将反馈信号 NACK-NACK-DTX映射为 H7; 将反馈信号 NACK-ACK-DTX映射为 H9; 将反馈信号 ACK-DTX-DTX映射为 G3; 将反馈信号 ACK-NACK-DTX映射 为 G4; 将反馈信号 ACK-ACK-DTX映射为 H6;
将反馈信 号 DTX-DTX-NACK 映射 为 HI ; 将反馈信 号
DTX-NACK-NACK映射为 G6; 将反馈信号 DTX-ACK-NACK映射为 G10; 将反馈信号 NACK-DTX-NACK映射为 G2;将反馈信号 NACK-NACK-NACK 映射为 H2 ; 将反馈信号 NACK-ACK-NACK 映射为 G16 ; 将反馈信号 ACK-DTX-NACK映射为 G12; 将反馈信号 ACK-NACK-NACK映射为 G15; 将反馈信号 ACK-ACK-NACK映射为 G5;
将反馈信号 DTX-DTX-ACK映射为 G1 ; 将反馈信号 DTX-NACK-ACK 映射为 G14 ; 将反馈信号 DTX-ACK-ACK 映射为 G7; 将反馈信号 NACK-DTX-ACK映射为 H4; 将反馈信号 NACK-NACK-ACK映射为 H5; 将反馈信号 NACK-ACK-ACK映射为 G11 ;将反馈信号 ACK-DTX-ACK映射 为 H10 ; 将反馈信号 ACK-NACK-ACK 映射为 G9; 将反馈信号 ACK-ACK- ACK映射为 G13。
3、 根据权利要求 2所述的反馈信号编码方法, 其特征在于: 所述码字 与所述比特序列的对应关系如下表 2-2所示: 表 2-2
Figure imgf000034_0001
所述比特序列为 10比特 0-1序列。
4、 一种反馈信号编码方法, 其特征在于包括:
编码三个载波的反馈信号;
在上行链路高速专用物理控制信道 HS-DPCCH上发送编码输出的比特序 列; 其中,
所述编码三个载波的反馈信号包括: 将所述三个载波的反馈信号映射为 一码组中的码字; 其中, 所述码字从 A1~A6, B1~B6, CI ~C6, 以及 Dl~ D6组成的码组中选取; 且所述码组中码字的码距关系如下表 2-3所示:
表 2-3
Figure imgf000035_0001
表 2-3中的数值表示对应码字之间的码距。
5、 根据权利要求 4所述的反馈信号编码方法, 其特征在于, 所述将三 个载波的反馈信号映射为一码组中的码字包括:
将反馈信号 DTX-NACK-DTX映射为 D1 ; 将反馈信号 DTX-ACK-DTX 映射为 C1 ; 将反馈信号 NACK-DTX-DTX 映射为 B1; 将反馈信号 NACK-NACK-DTX映射为 C2;将反馈信号 NACK-ACK-DTX映射为 A2;将 反馈信号 ACK-DTX-DTX映射为 A1 ; 将反馈信号 ACK-NACK-DTX映射为 B2; 将反馈信号 ACK-ACK-DTX映射为 D2;
将反馈信 号 DTX-DTX-NACK 映射 为 A3 ; 将反馈信 号 DTX-NACK-NACK映射为 C2;将反馈信号 DTX-ACK-NACK映射为 C5; 将 反馈信号 NACK-DTX-NACK映射为 D6; 将反馈信号 NACK-NACK-NACK 映射为 C2 ; 将反馈信号 NACK-ACK-NACK 映射为 A5; 将反馈信号 ACK-DTX-NACK映射为 D4; 将反馈信号 ACK-NACK-NACK映射为 A4; 将反馈信号 ACK-ACK-NACK映射为 B6;
将反馈信号 DTX-DTX-ACK映射为 B3; 将反馈信号 DTX-NACK-ACK 映射为 C3 ; 将反馈信号 DTX-ACK-ACK 映射为 C4; 将反馈信号 NACK-DTX-ACK映射为 D5; 将反馈信号 NACK-NACK-ACK映射为 A6; 将反馈信号 NACK-ACK-ACK映射为 B4; 将反馈信号 ACK-DTX-ACK映射 为 D3;将反馈信号 ACK-NACK-ACK映射为 B5;将反馈信号 ACK- ACK-ACK 映射为 C6。
6、 根据权利要求 4所述的反馈信号编码方法, 其特征在于, 所述将三 个载波的反馈信号映射为一码组中的码字包括:
将反馈信号 DTX-NACK-DTX映射为 D1 ; 将反馈信号 DTX-ACK-DTX 映射为 C1 ; 将反馈信号 NACK-DTX-DTX 映射为 B1; 将反馈信号 NACK-NACK-DTX映射为 C2;将反馈信号 NACK-ACK-DTX映射为 A2;将 反馈信号 ACK-DTX-DTX映射为 A1 ; 将反馈信号 ACK-NACK-DTX映射为 B2; 将反馈信号 ACK-ACK-DTX映射为 D2;
将反馈信 号 DTX-DTX-NACK 映射 为 A3 ; 将反馈信 号 DTX-NACK-NACK映射为 C5;将反馈信号 DTX-ACK-NACK映射为 C4; 将 反馈信号 NACK-DTX-NACK映射为 C2; 将反馈信号 NACK-NACK-NACK 映射为 C2 ; 将反馈信号 NACK-ACK-NACK 映射为 A5; 将反馈信号 ACK-DTX-NACK映射为 D3; 将反馈信号 ACK-NACK-NACK映射为 A4; 将反馈信号 ACK-ACK-NACK映射为 B6;
将反馈信号 DTX-DTX-ACK映射为 B3; 将反馈信号 DTX-NACK-ACK 映射为 B4 ; 将反馈信号 DTX-ACK-ACK 映射为 D5; 将反馈信号 NACK-DTX-ACK映射为 C3; 将反馈信号 NACK-NACK-ACK映射为 D4; 将反馈信号 NACK-ACK-ACK映射为 D6; 将反馈信号 ACK-DTX-ACK映射 为 B5;将反馈信号 ACK-NACK-ACK映射为 A6;将反馈信号 ACK-ACK-ACK 映射为 C6。
7、 根据权利要求 4所述的反馈信号编码方法, 其特征在于, 所述将三 个载波的反馈信号映射为一码组中的码字包括:
将反馈信号 DTX-NACK-DTX映射为 D1 ; 将反馈信号 DTX-ACK-DTX 映射为 C1 ; 将反馈信号 NACK-DTX-DTX 映射为 B1; 将反馈信号 NACK-NACK-DTX映射为 C2;将反馈信号 NACK-ACK-DTX映射为 C5;将 反馈信号 ACK-DTX-DTX映射为 A1 ; 将反馈信号 ACK-NACK-DTX映射为 A4; 将反馈信号 ACK-ACK-DTX映射为 D3;
将反馈信 号 DTX-DTX-NACK 映射 为 A3 ; 将反馈信 号 DTX-NACK-NACK映射为 A2;将反馈信号 DTX-ACK-NACK映射为 C4;将 反馈信号 NACK-DTX-NACK映射为 C2; 将反馈信号 NACK-NACK-NACK 映射为 C2 ; 将反馈信号 NACK-ACK-NACK 映射为 A5; 将反馈信号 ACK-DTX-NACK映射为 D3; 将反馈信号 ACK-NACK-NACK映射为 B2; 将反馈信号 ACK-ACK-NACK映射为 B6;
将反馈信号 DTX-DTX-ACK映射为 B3; 将反馈信号 DTX-NACK-ACK 映射为 B4 ; 将反馈信号 DTX-ACK-ACK 映射为 D4; 将反馈信号 NACK-DTX-ACK映射为 D4; 将反馈信号 NACK-NACK-ACK映射为 C3; 将反馈信号 NACK-ACK-ACK映射为 D6; 将反馈信号 ACK-DTX-ACK映射 为 B5;将反馈信号 ACK-NACK-ACK映射为 A6;将反馈信号 ACK- ACK-ACK 映射为 C6。
8、 根据权利要求 5或 6或 7所述的反馈信号编码方法, 其特征在于: 所述码字与所述比特序列的对应关系如下表 2-4所示:
表 2-4
Figure imgf000038_0001
所述比特序列为 10比特 0-1序列。
9、 一种反馈信号编码方法, 其特征在于包括:
编码三个载波的反馈信号;
在上行链路高速专用物理控制信道 HS-DPCCH上发送编码输出的比特序 列; 其中,
所述编码三个载波的反馈信号包括: 将所述三个载波的反馈信号映射为 一码组中的码字; 其中, 所述码字从 A1~A6, B1~B6, C1~C6, Dl ~D6, 以及 El、 Fl组成的码组中选取; 且所述码组中码字的码距关系如下表 2-5所 表 2-5
Figure imgf000039_0001
D3 5 5 5 5 5 5 5 5 5 5 5 5 4 4 10 4 4 4 6 6 0 6 6 6 7 3
D4 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 10 4 4 6 6 6 0 6 6 3 7
D5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 10 4 6 6 6 6 0 6 7 3
D6 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 10 6 6 6 6 6 0 7 3
El 6 6 6 4 4 4 4 4 4 6 6 6 7 7 3 7 3 3 3 3 7 3 7 7 0 10
F l 4 4 4 6 6 6 6 6 6 4 4 4 3 3 7 3 7 7 7 7 3 7 3 3 10 0 表 2-5中的数值表示对应码字之间的码距。
10、 根据权利要求 9所述的反馈信号编码方法, 其特征在于, 所述将三 个载波的反馈信号映射为一码组中的码字包括:
将反馈信号 DTX-NACK-DTX映射为 D1 ; 将反馈信号 DTX-ACK-DTX 映射为 C1 ; 将反馈信号 NACK-DTX-DTX 映射为 B1; 将反馈信号 NACK-NACK-DTX映射为 C2;将反馈信号 NACK-ACK-DTX映射为 A2;将 反馈信号 ACK-DTX-DTX映射为 A1 ; 将反馈信号 ACK-NACK-DTX映射为 B2; 将反馈信号 ACK-ACK-DTX映射为 D2;
将反馈信号 DTX-DTX-NACK映射为 B3;将反馈信号 DTX-NACK-NACK 映射为 E1 ; 将反馈信号 DTX-ACK-NACK 映射为 C6; 将反馈信号 NACK-DTX-NACK映射为 D3;将反馈信号 NACK-NACK-NACK映射为 F1 ; 将反馈信号 NACK-ACK-NACK映射为 A5;将反馈信号 ACK-DTX-NACK映 射为 D6 ; 将反馈信号 ACK-NACK-NACK 映射为 A6; 将反馈信号 ACK-ACK-NACK映射为 B4;
将反馈信号 DTX-DTX-ACK映射为 A3; 将反馈信号 DTX-NACK-ACK 映射为 C3 ; 将反馈信号 DTX-ACK-ACK 映射为 D5; 将反馈信号 NACK-DTX-ACK映射为 C4;将反馈信号 NACK-NACK-ACK映射为 C5;将 反馈信号 NACK-ACK-ACK映射为 D4; 将反馈信号 ACK-DTX-ACK映射为 B5; 将反馈信号 ACK-NACK-ACK映射为 A4; 将反馈信号 ACK- ACK-ACK 映射为 B6。
11、 根据权利要求 9所述的反馈信号编码方法, 其特征在于, 所述将三 个载波的反馈信号映射为一码组中的码字包括:
将反馈信号 DTX-NACK-DTX映射为 A2; 将反馈信号 DTX-ACK-DTX 映射为 B2 ; 将反馈信号 NACK-DTX-DTX 映射为 B1; 将反馈信号 NACK-NACK-DTX映射为 E1 ; 将反馈信号 NACK-ACK-DTX映射为 D2; 将 反馈信号 ACK-DTX-DTX映射为 A1 ; 将反馈信号 ACK-NACK-DTX映射为 C5; 将反馈信号 ACK-ACK-DTX映射为 B4;
将反馈信 号 DTX-DTX-NACK 映射 为 A3 ; 将反馈信 号 DTX-NACK-NACK映射为 F1 ; 将反馈信号 DTX-ACK-NACK映射为 C1 ; 将 反馈信号 NACK-DTX-NACK映射为 C2; 将反馈信号 NACK-NACK-NACK 映射为 C6 ; 将反馈信号 NACK-ACK-NACK 映射为 D5; 将反馈信号 ACK-DTX-NACK映射为 C4; 将反馈信号 ACK-NACK-NACK映射为 A6; 将反馈信号 ACK-ACK-NACK映射为 D3;
将反馈信号 DTX-DTX-ACK映射为 B3; 将反馈信号 DTX-NACK-ACK 映射为 C3 ; 将反馈信号 DTX-ACK-ACK 映射为 B6; 将反馈信号 NACK-DTX-ACK映射为 B5; 将反馈信号 NACK-NACK-ACK映射为 D4; 将反馈信号 NACK-ACK-ACK映射为 A4; 将反馈信号 ACK-DTX-ACK映射 为 D6;将反馈信号 ACK-NACK-ACK映射为 D1 ;将反馈信号 ACK-ACK-ACK 映射为 A5。
12、 根据权利要求 10或 11所述的反馈信号编码方法, 其特征在于: 所 述码字与所述比特序列的对应关系如下表 2-6所示:
表 2-6 码字 比特序列
A1 1 1 1 1 1 1 1 1 1 1
A2 0 0 1 1 0 0 1 1 0 0
A3 1 1 0 0 0 1 1 0 0 0
A4 1 0 0 1 0 0 0 0 1 1
A5 0 1 0 0 1 0 0 1 1 0
A6 0 0 1 0 1 1 0 0 0 1 Bl 0 0 0 0 0 0 0 0 0 0
B2 1 1 0 0 1 1 0 0 1 1
B3 0 0 1 1 1 0 0 1 1 1
B4 0 1 1 0 1 1 1 1 0 0
B5 1 0 1 1 0 1 1 0 0 1
B6 1 1 0 1 0 0 1 1 1 0
CI 1 1 1 1 1 0 0 0 0 0
C2 0 1 0 1 0 1 0 1 0 1
C3 0 1 1 0 0 0 1 0 1 1
C4 1 0 1 0 0 1 0 1 1 0
C5 0 0 0 1 1 1 1 0 1 0
C6 1 0 0 0 1 0 1 1 0 1
Dl 0 0 0 0 0 1 1 1 1 1
D2 1 0 1 0 1 0 1 0 1 0
D3 1 0 0 1 1 1 0 1 0 0
D4 0 1 0 1 1 0 1 0 0 1
D5 1 1 1 0 0 0 0 1 0 1
D6 0 1 1 1 0 1 0 0 1 0
El 0 0 0 0 1 0 1 0 1 1
Fl 1 1 1 1 0 1 0 1 0 0 所述比特序列为 10比特 0-1序列。
13、 一种反馈信号编码方法, 其特征在于包括:
编码三个载波的反馈信号;
在上行链路高速专用物理控制信道 HS-DPCCH上发送编码输出的比特序 列; 其中,
所述编码三个载波的反馈信号包括: 将所述三个载波的反馈信号映射为 一码组中的码字; 其中, 所述码字从 A1~A6, B1~B6, C1~C6, Dl ~D6, 以及 El、 Fl组成的码组中选取; 且所述码组中码字的码距关系如下表 2-7所 表 2-7
Figure imgf000043_0001
表 2-7中的数值表示对应码字之间的码距。
14、 根据权利要求 13所述的反馈信号编码方法, 其特征在于, 所述将 三个载波的反馈信号映射为一码组中的码字包括:
将反馈信号 DTX-NACK-DTX映射为 D1 ; 将反馈信号 DTX-ACK-DTX 映射为 CI ; 将反馈信号 NACK-DTX-DTX 映射为 Bl; 将反馈信号 NACK-NACK-DTX映射为 C2;将反馈信号 NACK-ACK-DTX映射为 A2;将 反馈信号 ACK-DTX-DTX映射为 A1 ; 将反馈信号 ACK-NACK-DTX映射为 B2; 将反馈信号 ACK-ACK-DTX映射为 D2;
将反馈信号 DTX-DTX-NACK映射为 B6;将反馈信号 DTX-NACK-NACK 映射为 C5 ; 将反馈信号 DTX-ACK-NACK 映射为 C6; 将反馈信号 NACK-DTX-NACK映射为 D4;将反馈信号 NACK-NACK-NACK映射为 E2; 将反馈信号 NACK-ACK-NACK映射为 A3;将反馈信号 ACK-DTX-NACK映 射为 D3 ; 将反馈信号 ACK-NACK-NACK 映射为 A5; 将反馈信号 ACK-ACK-NACK映射为 F2;
将反馈信号 DTX-DTX-ACK映射为 A6; 将反馈信号 DTX-NACK-ACK 映射为 C4 ; 将反馈信号 DTX-ACK-ACK 映射为 C3; 将反馈信号 NACK-DTX-ACK映射为 D5; 将反馈信号 NACK-NACK-ACK映射为 A4; 将反馈信号 NACK-ACK-ACK映射为 B5; 将反馈信号 ACK-DTX-ACK映射 为 D6;将反馈信号 ACK-NACK-ACK映射为 B3;将反馈信号 ACK- ACK-ACK 映射为 B4。
15、 根据权利要求 14所述的反馈信号编码方法, 其特征在于: 所述码 字与所述比特序列的对应关系如下表 2-8所示:
表 2-8
Figure imgf000044_0001
B3 0 0 1 1 1 0 0 1 1 1
B4 0 1 1 0 1 1 1 1 0 0
B5 1 0 1 1 0 1 1 0 0 1
B6 1 1 0 1 0 0 1 1 1 0
C I 1 1 1 1 1 0 0 0 0 0
C2 0 1 0 1 0 1 0 1 0 1
C3 0 1 1 0 0 0 1 0 1 1
C4 1 0 1 0 0 1 0 1 1 0
C5 0 0 0 1 1 1 1 0 1 0
C6 1 0 0 0 1 0 1 1 0 1
D l 0 0 0 0 0 1 1 1 1 1
D2 1 0 1 0 1 0 1 0 1 0
D3 1 0 0 1 1 1 0 1 0 0
D4 0 1 0 1 1 0 1 0 0 1
D5 1 1 1 0 0 0 0 1 0 1
D6 0 1 1 1 0 1 0 0 1 0
E2 0 0 0 1 0 1 0 0 0 1
F2 1 1 1 0 1 0 1 1 1 0 所述比特序列为 10比特 0-1序列。
16、 一种执行权利要求 1-3任一所述的反馈信号编码方法的反馈信号编 码装置, 其特征在于包括:
编码模块, 用于编码三个载波的反馈信号;
发送模块,用于在上行链路高速专用物理控制信道 HS-DPCCH上发送编 码输出的比特序列; 其中,
所述编码模块用于将所述三个载波的反馈信号映射为一码组中的码字; 其中, 所述码字从 G1 G16, 以及 HI ~ H10组成的码组中选取; 且所述码组 中码字的码距关系如表 2-1所示。
17、 一种执行权利要求 4-8任一所述的反馈信号编码方法的反馈信号编 码装置, 其特征在于包括:
编码模块, 用于编码三个载波的反馈信号; 发送模块,用于在上行链路高速专用物理控制信道 HS-DPCCH上发送编 码输出的比特序列; 其中,
所述编码模块用于将所述三个载波的反馈信号映射为一码组中的码字; 其中, 所述码字从 A1~A6, B1~B6, CI ~C6, 以及 Dl ~ D6组成的码组中 选取; 且所述码组中码字的码距关系如表 2-3所示。
18、 一种执行权利要求 9-12任一所述的反馈信号编码方法的反馈信号 编码装置, 其特征在于包括:
编码模块, 用于编码三个载波的反馈信号;
发送模块,用于在上行链路高速专用物理控制信道 HS-DPCCH上发送编 码输出的比特序列; 其中,
所述编码模块用于将所述三个载波的反馈信号映射为一码组中的码字; 其中, 所述码字从 A1~A6, B1~B6, C1~C6, Dl ~D6, 以及 El、 Fl组成 的码组中选取; 且所述码组中码字的码距关系如表 2-5所示。
19、 一种执行权利要求 13-15任一所述的反馈信号编码方法的反馈信号 编码装置, 其特征在于包括:
编码模块, 用于编码三个载波的反馈信号;
发送模块,用于在上行链路高速专用物理控制信道 HS-DPCCH上发送编 码输出的比特序列; 其中,
所述编码模块用于将所述三个载波的反馈信号映射为一码组中的码字; 其中, 所述码字从 A1~A6, B1~B6, C1~C6, Dl ~D6, 以及 El、 Fl组成 的码组中选取; 且所述码组中码字的码距关系如表 2-7所示。
PCT/CN2009/070846 2009-03-17 2009-03-17 反馈信号编码方法及装置 WO2010105413A1 (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
IN3766KON2011 IN2011KN03766A (zh) 2009-03-17 2009-03-17
AU2009342391A AU2009342391B2 (en) 2009-03-17 2009-03-17 Method and apparatus for encoding a feedback signal
EP09841697.7A EP2408134B1 (en) 2009-03-17 2009-03-17 Feedback signal coding method and apparatus
EP15178179.6A EP2975793B1 (en) 2009-03-17 2009-03-17 Method and apparatus for encoding feedback signal
EP13154107.0A EP2592774B1 (en) 2009-03-17 2009-03-17 Method and apparatus for encoding feedback signal
CN200980157778.0A CN102349258B (zh) 2009-03-17 2009-03-17 反馈信号编码方法及装置
PCT/CN2009/070846 WO2010105413A1 (zh) 2009-03-17 2009-03-17 反馈信号编码方法及装置
ES09841697T ES2423813T3 (es) 2009-03-17 2009-03-17 Método y aparato de codificación de señal de realimentación
KR1020117022381A KR101118973B1 (ko) 2009-03-17 2009-03-17 피드백 신호 코딩 방법 및 장치
RU2011141772/08A RU2474061C1 (ru) 2009-03-17 2009-03-17 Способ и устройство кодирования сигнала обратной связи
US12/980,451 US7987403B2 (en) 2009-03-17 2010-12-29 Method and apparatus for encoding feedback signal
US13/235,091 US8526530B2 (en) 2009-03-17 2011-09-16 Method and apparatus for encoding feedback signal
US13/951,898 US9344530B2 (en) 2009-03-17 2013-07-26 Method and apparatus for encoding feedback signal
US15/000,597 US10021219B2 (en) 2009-03-17 2016-01-19 Method and apparatus for encoding feedback signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/070846 WO2010105413A1 (zh) 2009-03-17 2009-03-17 反馈信号编码方法及装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/980,451 Continuation US7987403B2 (en) 2009-03-17 2010-12-29 Method and apparatus for encoding feedback signal
US13/235,091 Continuation US8526530B2 (en) 2009-03-17 2011-09-16 Method and apparatus for encoding feedback signal

Publications (1)

Publication Number Publication Date
WO2010105413A1 true WO2010105413A1 (zh) 2010-09-23

Family

ID=42739115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070846 WO2010105413A1 (zh) 2009-03-17 2009-03-17 反馈信号编码方法及装置

Country Status (9)

Country Link
US (4) US7987403B2 (zh)
EP (3) EP2592774B1 (zh)
KR (1) KR101118973B1 (zh)
CN (1) CN102349258B (zh)
AU (1) AU2009342391B2 (zh)
ES (1) ES2423813T3 (zh)
IN (1) IN2011KN03766A (zh)
RU (1) RU2474061C1 (zh)
WO (1) WO2010105413A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099926A3 (en) * 2010-02-15 2011-10-06 Telefonaktiebolaget L M Ericsson (Publ) Harq ack/nack signaling for multi-carrier hsdpa

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2592774B1 (en) 2009-03-17 2015-09-23 Huawei Technologies Co., Ltd. Method and apparatus for encoding feedback signal
WO2011142552A2 (en) * 2010-05-08 2011-11-17 Lg Electronics Inc. Error propagation protection in non-binary multiple ack/nacks
US11350407B2 (en) 2017-06-16 2022-05-31 Motorola Mobility Llc Information indicating data in slots

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222304A (zh) * 2007-01-09 2008-07-16 北京三星通信技术研究有限公司 传输harq ack/nack的设备和方法
WO2008153361A1 (en) * 2007-06-14 2008-12-18 Electronics And Telecommunications Research Institute Method of transmitting ack/nack bit supporting harq in mobile communication system supporting multi user mimo
CN101340715A (zh) * 2007-07-05 2009-01-07 中兴通讯股份有限公司 多载波时分同步码分多址系统的高速上行分组接入方法
CN101383684A (zh) * 2007-09-07 2009-03-11 中兴通讯股份有限公司 即时反馈突发失败消息的方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080305183A1 (en) 2007-06-08 2008-12-11 E. I. Du Pont De Nemours And Company Process for eliminating bacterial spores on surfaces and sporicide for use in the process
US6487184B1 (en) * 2000-08-25 2002-11-26 Motorola, Inc. Method and apparatus for supporting radio acknowledgement information for a uni-directional user data channel
CA2484725C (en) 2002-05-09 2011-09-13 Nokia Corporation Hsdpa cqi, ack, nack power offset known in node b and in srnc
US20050250497A1 (en) 2004-05-05 2005-11-10 Amitava Ghosh Acknowledgement method for ACK/NACK signaling to facilitate UE uplink data transfer
KR100714973B1 (ko) * 2004-08-16 2007-05-04 삼성전자주식회사 하이브리드 자동재전송요구 시스템에서 신호점 사상규칙을변경하기 위한 장치 및 방법
US8340139B2 (en) * 2004-10-06 2012-12-25 Broadcom Corporation Method and system for weight determination in a single channel (SC) multiple-input multiple-output (MIMO) system for WCDMA/HSDPA
EP1832025A4 (en) * 2004-12-27 2011-01-05 Lg Electronics Inc SUPPORT OF A HYBRID AUTOMATIC TRANSMISSION REQUIREMENTS IN A RADIO ACCESS SYSTEM WITH ORTHOGONAL FREQUENCY MULTIPLEX ACCESS
US7764727B2 (en) * 2005-01-12 2010-07-27 Atheros Communications, Inc. Selecting MCS in a MIMO system
KR100739182B1 (ko) * 2005-12-08 2007-07-13 엘지전자 주식회사 시공간 harq 기법을 제공하는 이동 통신 단말기 및 그방법
TWI623209B (zh) * 2006-02-03 2018-05-01 內數位科技公司 每時間間隔支援多數混合自動重複請求程序方法及系統
FR2896988B1 (fr) 2006-02-03 2008-03-14 Oreal Compositions contenant un filtre uv-b du type ester de l'acide cinnamique et un derive de s-triazine ; procede de photostabilisation d'un filtre uv-b du type ester de l'acide cinnamique
WO2008021062A1 (en) * 2006-08-11 2008-02-21 Interdigital Technology Corporation Wireless communication method and system for indexing codebook and codeword feedback
DK2087630T3 (en) * 2006-10-02 2017-01-30 Nokia Technologies Oy DEVICE, PROCEDURE AND COMPUTER PROGRAM PRODUCT WITH HYBRID ARQ FEEDBACK FOR HSDPA MIMO
US8176376B2 (en) * 2006-10-02 2012-05-08 Telefonaktiebolaget Lm Ericsson (Publ) Optimal error protection coding for MIMO ACK/NACK/POST information
US20100298833A1 (en) 2007-06-07 2010-11-25 Smith & Nephew, Inc. Systems, methods and devices for preparing a knee joint for implants in a knee surgery
CN101335981B (zh) 2007-06-26 2011-09-28 鼎桥通信技术有限公司 一种三载波td-scdma系统的载波分配方法
US8693406B2 (en) * 2007-08-09 2014-04-08 Intel Corporation Multi-user resource allocation and medium access control (MAC) overhead reduction for mobile worldwide interoperability for microwave access (WiMAX) systems
US8477734B2 (en) * 2008-03-25 2013-07-02 Qualcomm Incorporated Reporting of ACK and CQI information in a wireless communication system
US7924754B2 (en) * 2008-09-23 2011-04-12 Telefonaktiebolaget L M Ericsson Multiple carrier acknowledgment signaling
CN101741512B (zh) 2008-11-05 2013-04-17 华为技术有限公司 编码方法和装置
JP5531023B2 (ja) * 2008-11-21 2014-06-25 インターデイジタル パテント ホールディングス インコーポレイテッド ワイヤレス通信でマルチキャリアを利用するための方法および装置
KR20110138421A (ko) * 2008-12-30 2011-12-27 인터디지탈 패튼 홀딩스, 인크 다수의 다운링크 캐리어 동작을 위한 제어 채널 피드백
WO2010099653A1 (zh) 2009-03-03 2010-09-10 深圳华为通信技术有限公司 信号编码方法及装置、联合反馈信号编码方法
EP2592774B1 (en) * 2009-03-17 2015-09-23 Huawei Technologies Co., Ltd. Method and apparatus for encoding feedback signal
CN102292940B (zh) * 2009-04-20 2014-04-02 华为技术有限公司 一种采用arq机制的头压缩通信方法和装置
CN101882981A (zh) * 2009-05-04 2010-11-10 中兴通讯股份有限公司 获取确认/非确认信息的方法及系统
US8767797B2 (en) * 2009-10-05 2014-07-01 Qualcomm Incorporated Apparatus and method for providing HARQ feedback in a multi-carrier wireless communication system
US8477672B2 (en) * 2010-02-10 2013-07-02 Qualcomm Incorporated 4C-HSDPA acknowledgment signaling
WO2011099926A2 (en) * 2010-02-15 2011-08-18 Telefonaktiebolaget L M Ericsson (Publ) Harq ack/nack signaling for multi-carrier hsdpa
CN102754384B (zh) * 2010-02-16 2015-10-07 瑞典爱立信有限公司 具有用于dtx和ack/nack的不对等差错保护的用两个分开的码字将harq反馈信息编码的技术
CN103929288B (zh) * 2010-06-16 2017-06-06 Lg电子株式会社 发送控制信息的方法及其设备
WO2012034281A1 (en) * 2010-09-16 2012-03-22 Huawei Technologies Co., Ltd. Feedback information relating to a mobile communications system using carrier aggregation
CN108183777B (zh) * 2012-05-10 2020-12-18 瑞典爱立信有限公司 用于混合自动重传请求信令的方法和装置
US8923880B2 (en) * 2012-09-28 2014-12-30 Intel Corporation Selective joinder of user equipment with wireless cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222304A (zh) * 2007-01-09 2008-07-16 北京三星通信技术研究有限公司 传输harq ack/nack的设备和方法
WO2008153361A1 (en) * 2007-06-14 2008-12-18 Electronics And Telecommunications Research Institute Method of transmitting ack/nack bit supporting harq in mobile communication system supporting multi user mimo
CN101340715A (zh) * 2007-07-05 2009-01-07 中兴通讯股份有限公司 多载波时分同步码分多址系统的高速上行分组接入方法
CN101383684A (zh) * 2007-09-07 2009-03-11 中兴通讯股份有限公司 即时反馈突发失败消息的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP TS 25.212 V8.4.0 ,TECHNICAL SPECIFICATION, December 2008 (2008-12-01), XP050366778 *
See also references of EP2408134A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099926A3 (en) * 2010-02-15 2011-10-06 Telefonaktiebolaget L M Ericsson (Publ) Harq ack/nack signaling for multi-carrier hsdpa

Also Published As

Publication number Publication date
CN102349258B (zh) 2014-02-19
EP2975793A1 (en) 2016-01-20
EP2408134B1 (en) 2013-05-15
ES2423813T3 (es) 2013-09-24
US10021219B2 (en) 2018-07-10
US20120002749A1 (en) 2012-01-05
US20160135164A1 (en) 2016-05-12
AU2009342391A1 (en) 2011-10-13
EP2408134A1 (en) 2012-01-18
EP2975793B1 (en) 2019-07-10
KR101118973B1 (ko) 2012-02-28
RU2474061C1 (ru) 2013-01-27
US20110087945A1 (en) 2011-04-14
IN2011KN03766A (zh) 2015-07-10
CN102349258A (zh) 2012-02-08
EP2592774B1 (en) 2015-09-23
US20130329640A1 (en) 2013-12-12
EP2592774A1 (en) 2013-05-15
EP2408134A4 (en) 2012-01-18
KR20110121717A (ko) 2011-11-08
US7987403B2 (en) 2011-07-26
AU2009342391B2 (en) 2013-08-29
US9344530B2 (en) 2016-05-17
US8526530B2 (en) 2013-09-03

Similar Documents

Publication Publication Date Title
US8289943B2 (en) Signal encoding method and device, method for encoding joint feedback signal
KR101565423B1 (ko) 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국
WO2013097347A1 (zh) 混合自动重传请求应答信息的发送方法和装置
WO2013040969A1 (zh) 传输控制信息的方法、用户设备和基站
WO2009137646A2 (en) Bundling of ack information in a wireless communication system
WO2012146107A1 (zh) Ack/nack反馈信息的传输方法和设备
WO2012163307A1 (zh) 接收、发送调度信息的方法、装置及系统
EP2556614A1 (en) Harq ack/nack transmission for multi-carrier operation
JP2013501419A (ja) アップリンク多入力多出力のためのハイブリッド自動再送要求動作および復号化ステータスシグナリング
EP3182633B1 (en) Method for implementing hybrid automatic repeat request and corresponding user equipment
WO2012088877A1 (zh) 一种应答信息的发送方法及用户终端
WO2010105413A1 (zh) 反馈信号编码方法及装置
WO2012139457A1 (zh) 编码块存储方法和设备
WO2019134140A1 (zh) 反馈应答信息发送方法、接收方法、装置及系统
WO2018228553A1 (zh) 数据传输的方法、网络设备和终端设备
WO2010115311A1 (zh) 一种传输高速专用物理控制信道的方法及基站
WO2018202194A1 (zh) 信息传输方法及装置
AU2013237651B2 (en) Method and apparatus for encoding a feedback signal
CN201248041Y (zh) 指示字段被定址到的临时块流的设备和处理该字段的设备
Li et al. The Research and Improvement of HARQ in TD-LTE Systems
CN116686392A (zh) 对移动通信网络中的控制信息的压缩

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980157778.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841697

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3766/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009342391

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117022381

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009841697

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009342391

Country of ref document: AU

Date of ref document: 20090317

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011141772

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0924938

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0924938

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110919