WO2010103999A1 - Fluorescence temperature sensor - Google Patents

Fluorescence temperature sensor Download PDF

Info

Publication number
WO2010103999A1
WO2010103999A1 PCT/JP2010/053608 JP2010053608W WO2010103999A1 WO 2010103999 A1 WO2010103999 A1 WO 2010103999A1 JP 2010053608 W JP2010053608 W JP 2010053608W WO 2010103999 A1 WO2010103999 A1 WO 2010103999A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
fluorescence
excitation light
light
transmission
Prior art date
Application number
PCT/JP2010/053608
Other languages
French (fr)
Japanese (ja)
Inventor
静一郎 衣笠
Original Assignee
株式会社山武
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社山武 filed Critical 株式会社山武
Publication of WO2010103999A1 publication Critical patent/WO2010103999A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • G01K11/3206Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering
    • G01K11/3213Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres at discrete locations in the fibre, e.g. using Bragg scattering using changes in luminescence, e.g. at the distal end of the fibres

Definitions

  • the present invention relates to a fluorescence temperature sensor that measures temperature using a phosphor whose fluorescence characteristics change with temperature.
  • Fluorescent temperature sensors using phosphors are widely used as temperature sensors (see, for example, Patent Document 1).
  • This fluorescence temperature sensor measures temperature by using a phosphor whose fluorescence characteristics change with temperature. Specifically, the fluorescent light generated by the phosphor is detected by irradiating the phosphor with excitation light from a light source. And temperature is measured by the change of fluorescence characteristics, such as the fluorescence lifetime of the detected fluorescence.
  • the optical fiber that guides the excitation light and the optical fiber that guides the fluorescence are configured using the same type of optical fiber.
  • the fluorescence wavelength emitted from the phosphor of the fluorescence temperature sensor is longer than the wavelength of the excitation light.
  • an optical fiber that guides the excitation light and an optical fiber that guides the fluorescence are used.
  • the transmission efficiency of either excitation light or fluorescence is degraded, and it is necessary to increase the amount of excitation light in the light source in order to secure the amount of light, which is a burden on the light source There was a problem that it took.
  • a bundle optical fiber is used to connect to different types of optical fibers, so that a mismatch in the core area of the optical fiber or an optical axis shift occurs, and the bundle optical fiber Since light leaks at the connection port, the transmission efficiency of excitation light or fluorescence decreases. For this reason, there is a problem that it is necessary to increase the amount of excitation light from the light source, which places a burden on the light source.
  • the present invention has been made to solve the above-described problems, and provides a fluorescence temperature sensor capable of efficiently detecting fluorescence without increasing the emission intensity of excitation light in a light projecting unit. It is an object.
  • a fluorescence temperature sensor includes a phosphor that emits fluorescence according to the intensity of irradiated light, a light projecting unit that projects excitation light onto the phosphor, and a light receiving unit that receives fluorescence emitted from the phosphor.
  • the present invention since it is configured as described above, it is possible to efficiently detect fluorescence without increasing the emission intensity of the excitation light in the light projecting unit by increasing the transmission efficiency of the entire optical fiber.
  • a fluorescence temperature sensor 1 is brought into contact with a surface to be measured, a sensor probe 2 for emitting fluorescence according to temperature, and excitation light is projected onto the sensor probe 2. And a sensor module 3 for measuring the temperature of the surface to be measured from the amount of the received light.
  • the sensor probe 2 guides the phosphor 4 that emits fluorescence by the excitation light projected from the sensor module 3 and the excitation light projected by the sensor module 3 to the phosphor 4.
  • the optical fiber 5 for guiding the fluorescence emitted by the phosphor 4 to the sensor module 3, the cover 6 provided at the tip of the sensor probe 2 and covering the phosphor 4, and the optical fiber 5 are not damaged. It is comprised with the protective tube 7 to protect.
  • the optical fiber 5 that connects the sensor probe 2 and the phosphor 4 provided in the sensor module 3 includes an excitation light transmitting optical fiber 5a and a fluorescence transmitting optical fiber 5b.
  • the excitation light transmitting optical fiber 5 a is for guiding the excitation light projected from the light projecting unit 9 provided in the sensor module 3 to the phosphor 4.
  • the pumping light transmitting optical fiber 5a is made of a plastic optical fiber.
  • the fluorescence transmitting optical fiber 5b is for guiding the fluorescence emitted from the phosphor 4 to the light receiving unit 10 provided in the sensor module 3.
  • the fluorescent transmission optical fiber 5b is composed of a multicomponent glass optical fiber.
  • the sensor module 3 includes a light projecting unit 9 for projecting excitation light onto the phosphor 4 provided on the sensor probe 2 by the driving unit 8, and a phosphor 4 provided on the sensor probe 2.
  • the light receiving unit 10 for receiving the fluorescence emitted by the light receiving unit 10 and the processing unit 11 for calculating the temperature of the surface to be measured based on the amount of light received by the light receiving unit 10.
  • the operation of the fluorescence temperature sensor 1 configured as described above will be described.
  • the surface of the cover 6 in which the phosphor 4 provided at the tip of the sensor probe 2 of the fluorescence temperature sensor 1 is housed is brought into contact with the surface to be measured.
  • excitation light is projected from the light projecting unit 9 onto the phosphor 4.
  • the phosphor 4 emits fluorescence by the excitation light projected from the light projecting unit 9.
  • the light receiving unit 10 receives the fluorescence emitted by the phosphor 4.
  • the amount of light received by the light receiving unit 10 at this time is measured by the processing unit 11 one by one.
  • the light projecting unit 9 stops projecting the excitation light to the phosphor 4. Thereby, the phosphor 4 is quenched.
  • the extinction speed of the phosphor 4 increases as the temperature increases.
  • the processing unit 11 measures the extinction speed of the phosphor 4 to measure the temperature of the surface to be measured.
  • FIG. 2 is a diagram showing the attenuation of light in the excitation light transmitting optical fiber 5a and the fluorescence transmitting optical fiber 5b in the first embodiment of the present invention.
  • a ruby is used as the phosphor 4
  • a plastic optical fiber polymethyl methacrylate (PMMA)
  • PMMA polymethyl methacrylate
  • 2 shows attenuation amounts of excitation light and fluorescence.
  • the wavelength of the fluorescence emitted by the phosphor 4 (for example, 690 nm to 700 nm) is longer than the wavelength of the excitation light projected by the light projecting unit 9 (for example, 560 nm to 590 nm). Therefore, if the excitation light transmitting optical fiber 5a that guides the excitation light and the fluorescence transmission optical fiber 5b that guides the fluorescence are formed of the same optical fiber, the transmission efficiency of either the excitation light or the fluorescence deteriorates. .
  • the attenuation when the excitation light is guided by the plastic optical fiber is, for example, 0.08 dB / m
  • the attenuation when the excitation light is guided by the multicomponent glass optical fiber is, for example, 0.18 dB / m. Therefore, it is possible to improve the transmission efficiency by using a plastic optical fiber for the excitation light transmitting optical fiber 5a that guides the excitation light.
  • the attenuation when the fluorescence is guided by the plastic optical fiber is, for example, 0.35 dB / m
  • the attenuation when the fluorescence is guided by the multi-component glass optical fiber is, for example, 0.2 dB / m. is there. Therefore, it is possible to improve the transmission efficiency by using a multi-component glass optical fiber for the fluorescent transmission optical fiber 5b that guides the fluorescence.
  • the optical fiber that guides the excitation light and the fluorescence is set according to the wavelength of the excitation light and the wavelength of the fluorescence, thereby transmitting the excitation light and the fluorescence. Since the efficiency can be increased, it is not necessary to excessively increase the amount of excitation light projected from the light projecting unit 9, and the burden on the light source of the light projecting unit 9 can be suppressed.
  • ruby is used as the phosphor 4
  • a plastic optical fiber and a multicomponent glass optical fiber are used as optical fibers constituting the excitation light transmitting optical fiber 5a and the fluorescence transmitting optical fiber 5b.
  • the optical fiber which comprises the optical fiber 5a for excitation light transmission, and the optical fiber 5b for fluorescence transmission is suitably changed according to the wavelength of excitation light, and the wavelength of fluorescence It is.
  • the material of the excitation light transmitting optical fiber 5a is not limited to the PMMA as long as it does not deteriorate the transmission efficiency with respect to the wavelength of the excitation light of the light projecting unit 9 for emitting fluorescence.
  • the material for the optical fiber 5b for fluorescence transmission may be any material that does not deteriorate the transmission efficiency with respect to the wavelength of the fluorescence emitted by the phosphor, and is not limited to the multicomponent glass.
  • PMMA is used for the excitation light transmitting optical fiber 5a, it is also possible to apply fused silica, rare earth-doped quartz, or fluorine-based resin as the material of the fluorescence transmitting optical fiber 5b in place of the multicomponent glass. is there.
  • FIG. 3 is a view showing the structure of the fluorescence temperature sensor 1 according to the second embodiment of the present invention.
  • optical fibers made of materials suitable for the wavelengths of light to be guided are used as the optical fibers constituting the excitation light transmitting optical fiber 5a and the fluorescence transmitting optical fiber 5b.
  • the fluorescence temperature sensor 1 according to the second embodiment of the present invention uses the same optical fiber material used for the excitation light transmitting optical fiber 5a and the fluorescence transmitting optical fiber 5b.
  • the core area of the fluorescence transmission optical fiber 5b is configured to be larger than the core area of the excitation light transmission optical fiber 5a.
  • the pumping light transmitting optical fiber 5a is formed of, for example, a plastic optical fiber, and the bundle diameter is set to a predetermined diameter, for example, 1 mm in the embodiment.
  • the fluorescent transmission optical fiber 5b is formed of a plastic optical fiber made of the same material as the excitation light transmission optical fiber 5a. As shown in FIG. 3, the bundle diameter is larger than the bundle diameter of the excitation light transmission optical fiber 5a.
  • the predetermined diameter for example, 1.5 mm in this embodiment is configured.
  • the fluorescence temperature sensor 1 since the fluorescence more than the light energy of the excitation light projected from the light projecting unit 9 is not generated, the fluorescence intensity of the fluorescence received by the light receiving unit 10 is increased.
  • the transmission efficiency By increasing the bundle diameter of the fluorescent transmission optical fiber 5b with respect to the bundle diameter, the transmission efficiency can be increased.
  • the core area of the fluorescence transmission optical fiber 5b is changed to the excitation light transmission optical fiber 5a. Since the transmission efficiency of fluorescence can be increased by configuring so as to be larger than the core area, there is no need to excessively increase the amount of excitation light projected from the light projecting unit 9. The burden on the light source can be reduced.
  • the core area (bundle diameter) of the excitation light transmitting optical fiber 5a is exemplified as 1 mm
  • the core area (bundle diameter) of the fluorescence transmitting optical fiber 5b is exemplified as 1.5 mm.
  • the present invention is not limited to this. If the core area of the fluorescence transmission optical fiber 5b is selected to be larger than the core area of the excitation light transmission optical fiber 5a, it is possible to achieve the effect of improving the transmission efficiency.
  • FIG. 4 is a diagram showing the structure of the fluorescence temperature sensor 1 according to Embodiment 3 of the present invention.
  • the sensor probe 2 and the sensor module 3 are connected by the excitation light transmitting optical fiber 5a and the fluorescence transmitting optical fiber 5b.
  • the fluorescence temperature sensor 1 according to the third embodiment for example, when the optical fiber 5 is laid in a narrow region, the excitation light transmitting optical fiber 5a and the fluorescence transmitting light having different core areas using the bundle optical fiber 5c are used. It is configured to be connected to the fiber 5b.
  • the pumping light transmitting optical fiber 5a is made of, for example, a plastic optical fiber. As shown in FIG. 4, the fluorescent light 4 side tip of the pumping light transmitting optical fiber 5a is the pumping light transmitting optical fiber of the bundle optical fiber 5c. The optical axis is aligned with the 5a side and connected by an FC connector or the like. The core shape of the excitation light transmitting optical fiber 5a is circular.
  • the fluorescent transmission optical fiber 5b is made of, for example, a plastic optical fiber. As shown in FIG. 4, the fluorescent transmission optical fiber 5b has a fluorescent material 4 side tip at the fluorescence transmission optical fiber 5b side of the bundle optical fiber 5c. The optical axes are aligned and connected by an FC connector or the like. Further, the core shape of the excitation light transmitting optical fiber 5a is circular.
  • the bundle optical fiber 5c guides the excitation light guided by the excitation light transmitting optical fiber 5a to the phosphor 4, and guides the fluorescence emitted from the phosphor 4 to the fluorescence transmitting optical fiber 5b. is there. Further, the core shape of the bundle optical fiber 5c on the excitation light transmitting optical fiber 5a side and the core shape on the fluorescence transmitting optical fiber 5b side are circular.
  • the core area S SFO on the optical fiber 5b side is configured and connected so as to satisfy S IF ⁇ S SFI ⁇ S SFO ⁇ S OF .
  • FIG. 5 shows the ratio of the fluorescence intensity to the bundle diameter conditions (a) to (d) of the excitation light transmitting optical fiber 5a, the fluorescence transmitting optical fiber 5b, and the bundle optical fiber 5c according to the third embodiment of the present invention. It is the figure shown on the basis of the fluorescence intensity at the time of each bundle diameter condition of a).
  • the diameter of the optical fiber shown in FIG. 5 is an exemplification, and other values can be taken.
  • the core shapes of the excitation light transmitting optical fiber 5a, the fluorescence transmitting optical fiber 5b, and the bundle optical fiber 5c are circular.
  • the bundle diameter of the bundle optical fiber 5c on the excitation light transmitting optical fiber 5a side and the bundle diameter on the fluorescence transmitting optical fiber 5b side are both 1.2 mm. Further, an LED is used as the light projecting unit 9 that projects the excitation light, and a photodiode is used as the light receiving unit 10.
  • the bundle diameter of the excitation light transmission optical fiber 5a is 1 mm and the bundle diameter of the fluorescence transmission optical fiber 5b is 1 mm
  • the bundle light on the fluorescence transmission optical fiber 5b side is shown. Since the bundle diameter of the fluorescence transmission optical fiber 5b is smaller than the bundle diameter of the fiber 5c, the fluorescence leaks at the connection port between the fluorescence transmission optical fiber 5b and the bundle optical fiber 5c, and the fluorescence intensity decreases. .
  • the excitation light transmitting optical fiber is used. Since the bundle diameter of the excitation light transmitting optical fiber 5a is larger than the bundle diameter of the bundle optical fiber 5c on the 5a side, the excitation light leaks at the connection port between the excitation light transmitting optical fiber 5a and the bundle optical fiber 5c. As a result, the excitation light intensity decreases. Further, since the bundle diameter of the fluorescent transmission optical fiber 5b is smaller than the bundle diameter of the bundle optical fiber 5c on the fluorescent transmission optical fiber 5b side, the connection port between the fluorescent transmission optical fiber 5b and the bundle optical fiber 5c is used. The fluorescence leaks and the fluorescence intensity decreases.
  • the bundle diameter of the excitation light transmitting optical fiber 5a is 1.5 mm and the bundle diameter of the fluorescence transmitting optical fiber 5b is 1.5 mm, Since the bundle diameter of the excitation light transmitting optical fiber 5a is larger than the bundle diameter of the bundle optical fiber 5c on the optical fiber 5a side, the excitation light is transmitted at the connection port between the excitation light transmitting optical fiber 5a and the bundle optical fiber 5c. Leakage occurs and the excitation light intensity decreases.
  • the bundle diameter of the excitation light transmitting optical fiber 5a is 1 mm and the bundle diameter of the fluorescence transmitting optical fiber 5b is 1.5 mm, that is, the excitation light transmitting light.
  • the bundle diameter is increased in the order of the bundle diameter of the fiber 5a, the bundle diameter of the bundle optical fiber 5c, and the bundle diameter of the fluorescent transmission optical fiber 5b, there is no loss of excitation light and fluorescence between the connections, and it is most efficient.
  • the fluorescence can be guided to the light receiving unit 10.
  • the core of the pumping light transmitting optical fiber 5a is connected in the connection between the pumping light transmitting optical fiber 5a and the fluorescence transmitting optical fiber 5b and the bundle optical fiber 5c.
  • the core area increases in the order of the area, the core area of the bundle optical fiber 5c on the excitation light transmitting optical fiber 5a side, the core area of the bundle optical fiber 5c on the fluorescent transmitting optical fiber 5b side, and the core area of the fluorescent transmitting optical fiber 5b.
  • the excitation light transmitting optical fiber 5a, the fluorescence transmitting optical fiber 5b, and the bundle optical fiber 5c have been described as having a circular core shape, but the present invention is not limited thereto. Instead of this, an optical fiber having a rectangular core may be used.
  • the excitation light transmitting optical fiber 5a and the fluorescence transmitting optical fiber 5b are described using optical fibers made of the same material.
  • the present invention is not limited to this. Instead, the excitation light transmitting optical fiber 5a and the fluorescence transmitting optical waveguide 5b may be formed of optical fibers made of different materials.
  • the core area (bundle diameter) of the excitation light transmitting optical fiber 5a is 1 mm
  • the core area (bundle diameter) of the bundle optical fiber 5c is 1.2 mm
  • the fluorescent transmitting optical fiber is 1.5 mm
  • the core area of the excitation light transmitting optical fiber 5a: the core area of the bundle optical fiber 5c: the bundle diameter of the fluorescent transmitting optical fiber 5b is set to 0.5 mm: 1.0 mm: 1.5 mm, or 1.5 mm: Even if it is set to 1.8 mm: 2.0 mm, the transmission efficiency can be improved.
  • the relationship of the core area A of the excitation light transmitting optical fiber 5a: the core area C of the bundle optical fiber 5c: the core area B of the fluorescent transmitting optical fiber 5b is set so that A ⁇ C ⁇ B. That's fine.
  • the pumping light transmitting optical fiber 5a and the fluorescence transmitting optical fiber 5b are described as bundled optical fibers.
  • the present invention is not limited to this, and the pumping light transmitting optical fiber 5a and The fluorescence transmission optical fiber 5b may be formed of a single-core optical fiber.
  • the excitation light transmission optical fiber 5a is formed of a single-core optical fiber
  • the fluorescence transmission optical fiber 5b is a bundle of light. You may comprise combining, such as comprising with a fiber.
  • SYMBOLS 1 Fluorescence temperature sensor, 2 ... Sensor probe, 3 ... Sensor module, 4 ... Phosphor, 5 ... Optical fiber, 5a ... Excitation light transmission optical fiber, 5b ... Fluorescence transmission optical fiber, 5c ... Bundle optical fiber, 6 ... Cover, 7 ... Protective tube, 8 ... Drive part, 9 ... Light projecting part, 10 ... Light receiving part, 11 ... Processing part

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Provided is a fluorescence temperature sensor enabling efficient detection of fluorescence without increasing the intensity of light emitted from an exciting light source. The fluorescence temperature sensor (1) is provided with a fluorescent body (4) emitting fluorescence depending on the intensity of the irradiated light, a light projecting unit (9) for projecting an exciting light onto the fluorescent body (4), a light receiving unit (10) for receiving fluorescence emitted from the fluorescent body, an exciting light transmitting optical fiber (5a) for guiding the exciting light projected by the light projecting unit (9), and an fluorescence transmitting optical fiber (5b) for guiding fluorescence emitted from the fluorescent body (4). The exciting light transmitting optical fiber (5a) has different characteristics from those of the fluorescence transmitting optical fiber (5b).

Description

蛍光温度センサFluorescence temperature sensor
 この発明は、温度により蛍光特性が変化する蛍光体を用いて温度を測定する蛍光温度センサに関するものである。 The present invention relates to a fluorescence temperature sensor that measures temperature using a phosphor whose fluorescence characteristics change with temperature.
 温度センサとして、蛍光体を用いた蛍光温度センサが広く利用されている(例えば、特許文献1参照)。この蛍光温度センサは、温度により蛍光特性が変化する蛍光体を用いることにより温度を測定する。具体的には、光源からの励起光を蛍光体に照射して、蛍光体で発生した蛍光を検出する。そして、検出された蛍光の蛍光寿命などの蛍光特性の変化によって、温度を測定する。この蛍光温度センサでは、励起光を導光する光ファイバと、蛍光を導光する光ファイバとは同一種類の光ファイバを用いて構成されている。 Fluorescent temperature sensors using phosphors are widely used as temperature sensors (see, for example, Patent Document 1). This fluorescence temperature sensor measures temperature by using a phosphor whose fluorescence characteristics change with temperature. Specifically, the fluorescent light generated by the phosphor is detected by irradiating the phosphor with excitation light from a light source. And temperature is measured by the change of fluorescence characteristics, such as the fluorescence lifetime of the detected fluorescence. In this fluorescence temperature sensor, the optical fiber that guides the excitation light and the optical fiber that guides the fluorescence are configured using the same type of optical fiber.
 また、蛍光温度センサに用いられる光ファイバを狭い領域に敷設する場合、柔らかい光ファイバを用いて曲げやすくすることが望ましい。その解決方法として、細い光ファイバの利用が挙げられる。しかしながら、蛍光温度センサでは、励起光の光エネルギ以上の蛍光は発生しないため、蛍光体からの蛍光を受光部に伝送するためには、太い光ファイバを使用することが望ましい。しかしながら、特許文献1に開示される蛍光温度センサでは、1本の光ファイバにより構成されているため、曲げやすさと高い蛍光強度を実現することは難しく、伝送光量の増大と、曲げやすさを目的に、バンドル光ファイバを用いる方法がある(例えば特許文献2参照)。 Also, when an optical fiber used for a fluorescent temperature sensor is laid in a narrow area, it is desirable to make it easier to bend using a soft optical fiber. One solution is to use a thin optical fiber. However, since the fluorescence temperature sensor does not generate fluorescence more than the light energy of the excitation light, it is desirable to use a thick optical fiber in order to transmit the fluorescence from the phosphor to the light receiving unit. However, since the fluorescent temperature sensor disclosed in Patent Document 1 is composed of a single optical fiber, it is difficult to realize bendability and high fluorescence intensity, and the purpose is to increase the amount of transmitted light and bend easily. In addition, there is a method using a bundle optical fiber (for example, see Patent Document 2).
特表平11-508352号公報Japanese National Patent Publication No. 11-508352 特開2002-131173号公報JP 2002-131173 A
 しかしながら、蛍光温度センサの蛍光体の発する蛍光の波長は励起光の波長よりも長く、特許文献1に開示される蛍光温度センサでは、励起光を導光する光ファイバ及び蛍光を導光する光ファイバを同一種類の光ファイバを用いて構成するため、励起光または蛍光のどちらか一方の伝送効率が悪くなり、光量確保のために、光源での励起光の光量を上げる必要があり、光源に負担がかかるという課題があった。 However, the fluorescence wavelength emitted from the phosphor of the fluorescence temperature sensor is longer than the wavelength of the excitation light. In the fluorescence temperature sensor disclosed in Patent Document 1, an optical fiber that guides the excitation light and an optical fiber that guides the fluorescence are used. Are configured using the same type of optical fiber, the transmission efficiency of either excitation light or fluorescence is degraded, and it is necessary to increase the amount of excitation light in the light source in order to secure the amount of light, which is a burden on the light source There was a problem that it took.
 また、特許文献2に開示される蛍光温度センサでは、バンドル光ファイバを用いて、異種の光ファイバとの接続を行うため、光ファイバのコア面積のミスマッチや光軸ずれが生じ、バンドル光ファイバの接続口で光が漏洩するため、励起光または蛍光の伝達効率が低下する。そのため、光源での励起光の光量を上げる必要があり、光源に負担がかかるという課題があった。 In addition, in the fluorescence temperature sensor disclosed in Patent Document 2, a bundle optical fiber is used to connect to different types of optical fibers, so that a mismatch in the core area of the optical fiber or an optical axis shift occurs, and the bundle optical fiber Since light leaks at the connection port, the transmission efficiency of excitation light or fluorescence decreases. For this reason, there is a problem that it is necessary to increase the amount of excitation light from the light source, which places a burden on the light source.
 この発明は、上記のような課題を解決するためになされたもので、投光部での励起光の発光強度を高めることなく、蛍光を効率よく検出することができる蛍光温度センサを提供することを目的としている。 The present invention has been made to solve the above-described problems, and provides a fluorescence temperature sensor capable of efficiently detecting fluorescence without increasing the emission intensity of excitation light in a light projecting unit. It is an object.
 この発明に係る蛍光温度センサは、照射された光の強度に応じた蛍光を発する蛍光体と、励起光を蛍光体に投光する投光部と、蛍光体が発する蛍光を受光する受光部と、投光部が発する励起光を導光する励起光送信用光ファイバと、蛍光体が発する蛍光を導光する蛍光送信用光ファイバと、を備え、励起光送信用光ファイバと蛍光送信用光ファイバとは異なる特性を有するものである。 A fluorescence temperature sensor according to the present invention includes a phosphor that emits fluorescence according to the intensity of irradiated light, a light projecting unit that projects excitation light onto the phosphor, and a light receiving unit that receives fluorescence emitted from the phosphor. , An excitation light transmitting optical fiber that guides the excitation light emitted from the light projecting unit, and a fluorescence transmitting optical fiber that guides the fluorescence emitted from the phosphor, and the excitation light transmitting optical fiber and the fluorescence transmitting light. It has different characteristics from the fiber.
 この発明によれば、上記のように構成したので、光ファイバ全体の伝送効率を高めることより、投光部での励起光の発光強度を高めることなく、蛍光を効率よく検出することができる。 According to the present invention, since it is configured as described above, it is possible to efficiently detect fluorescence without increasing the emission intensity of the excitation light in the light projecting unit by increasing the transmission efficiency of the entire optical fiber.
この発明の実施の形態1に係る蛍光温度センサの構造を示す図である。It is a figure which shows the structure of the fluorescence temperature sensor which concerns on Embodiment 1 of this invention. この発明の実施の形態1における励起光送信用光ファイバ及び蛍光送信用光ファイバの光の減衰量を示す図である。It is a figure which shows the attenuation amount of the light of the optical fiber for excitation light in Embodiment 1 of this invention, and the optical fiber for fluorescence transmission. この発明の実施の形態2に係る蛍光温度センサの構造を示す図である。It is a figure which shows the structure of the fluorescence temperature sensor which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る蛍光温度センサの構造を示す図である。It is a figure which shows the structure of the fluorescence temperature sensor which concerns on Embodiment 3 of this invention. この発明の実施の形態3における励起光送信用光ファイバ、蛍光送信用光ファイバ及びバンドル光ファイバの各バンドル直径条件に対する蛍光強度の比を示す図である。It is a figure which shows ratio of the fluorescence intensity with respect to each bundle diameter condition of the optical fiber for excitation light in Embodiment 3 of this invention, the optical fiber for fluorescence transmission, and a bundle optical fiber.
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
(実施の形態1)
 図1に示すように、蛍光温度センサ1は、被測定面に接触させ、温度に応じた蛍光を発光するためのセンサプローブ2と、センサプローブ2に励起光を投光し、センサプローブ2からの蛍光を受光し、その受光量から被測定面の温度測定を行うためのセンサモジュール3と、により構成される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(Embodiment 1)
As shown in FIG. 1, a fluorescence temperature sensor 1 is brought into contact with a surface to be measured, a sensor probe 2 for emitting fluorescence according to temperature, and excitation light is projected onto the sensor probe 2. And a sensor module 3 for measuring the temperature of the surface to be measured from the amount of the received light.
 センサプローブ2は、図1に示すように、センサモジュール3より投光される励起光により蛍光を発光する蛍光体4と、センサモジュール3により投光される励起光を蛍光体4に導光し、蛍光体4が発する蛍光をセンサモジュール3に導光するための光ファイバ5と、センサプローブ2の先端に設けられ、蛍光体4を覆うカバー6と、光ファイバ5に傷が付かないように保護する保護管7とにより構成される。 As shown in FIG. 1, the sensor probe 2 guides the phosphor 4 that emits fluorescence by the excitation light projected from the sensor module 3 and the excitation light projected by the sensor module 3 to the phosphor 4. The optical fiber 5 for guiding the fluorescence emitted by the phosphor 4 to the sensor module 3, the cover 6 provided at the tip of the sensor probe 2 and covering the phosphor 4, and the optical fiber 5 are not damaged. It is comprised with the protective tube 7 to protect.
 ここで、センサプローブ2とセンサモジュール3に設けられる蛍光体4とを接続する光ファイバ5は、励起光送信用光ファイバ5aと蛍光送信用光ファイバ5bとにより構成される。 Here, the optical fiber 5 that connects the sensor probe 2 and the phosphor 4 provided in the sensor module 3 includes an excitation light transmitting optical fiber 5a and a fluorescence transmitting optical fiber 5b.
 励起光送信用光ファイバ5aはセンサモジュール3に設けられる投光部9から投光される励起光を蛍光体4に導光するためのものである。この励起光送信用光ファイバ5aはプラスチック光ファイバにより構成される。 The excitation light transmitting optical fiber 5 a is for guiding the excitation light projected from the light projecting unit 9 provided in the sensor module 3 to the phosphor 4. The pumping light transmitting optical fiber 5a is made of a plastic optical fiber.
 蛍光送信用光ファイバ5bは蛍光体4が発する蛍光をセンサモジュール3に設けられる受光部10に導光するためのものである。この蛍光送信用光ファイバ5bは多成分ガラス光ファイバにより構成される。 The fluorescence transmitting optical fiber 5b is for guiding the fluorescence emitted from the phosphor 4 to the light receiving unit 10 provided in the sensor module 3. The fluorescent transmission optical fiber 5b is composed of a multicomponent glass optical fiber.
 センサモジュール3は、図1に示すように、駆動部8により、センサプローブ2に設けられる蛍光体4に励起光を投光するための投光部9と、センサプローブ2に設けられる蛍光体4が発する蛍光を受光するための受光部10と、受光部10が受光した受光量に基づいて、被測定面の温度を算出するための処理部11とにより構成される。 As shown in FIG. 1, the sensor module 3 includes a light projecting unit 9 for projecting excitation light onto the phosphor 4 provided on the sensor probe 2 by the driving unit 8, and a phosphor 4 provided on the sensor probe 2. The light receiving unit 10 for receiving the fluorescence emitted by the light receiving unit 10 and the processing unit 11 for calculating the temperature of the surface to be measured based on the amount of light received by the light receiving unit 10.
 次に、上記のように構成される蛍光温度センサ1の動作について説明する。
 まず、蛍光温度センサ1のセンサプローブ2先端に設けられる蛍光体4が収納されるカバー6表面を被測定面に接触させる。次いで、投光部9から励起光が蛍光体4に投光される。この投光部9から投光された励起光により蛍光体4は蛍光を発光する。受光部10はこの蛍光体4が発光する蛍光を受光している。このときの受光部10が受光する受光量は、処理部11により逐一計測されている。次いで、投光部9は、蛍光体4への励起光の投光を停止する。これにより、蛍光体4は消光する。この蛍光体4の消光速度は温度が高くなるほど速くなる。この蛍光体4の消光速度を処理部11が計測することにより、被測定面の温度を計測する。
Next, the operation of the fluorescence temperature sensor 1 configured as described above will be described.
First, the surface of the cover 6 in which the phosphor 4 provided at the tip of the sensor probe 2 of the fluorescence temperature sensor 1 is housed is brought into contact with the surface to be measured. Next, excitation light is projected from the light projecting unit 9 onto the phosphor 4. The phosphor 4 emits fluorescence by the excitation light projected from the light projecting unit 9. The light receiving unit 10 receives the fluorescence emitted by the phosphor 4. The amount of light received by the light receiving unit 10 at this time is measured by the processing unit 11 one by one. Next, the light projecting unit 9 stops projecting the excitation light to the phosphor 4. Thereby, the phosphor 4 is quenched. The extinction speed of the phosphor 4 increases as the temperature increases. The processing unit 11 measures the extinction speed of the phosphor 4 to measure the temperature of the surface to be measured.
 次に、励起光送信用光ファイバ5aと蛍光送信用光ファイバ5bに用いられる光ファイバの材質設定方法について説明する。
 図2はこの発明の実施の形態1における励起光送信用光ファイバ5a及び蛍光送信用光ファイバ5bの光の減衰量を示す図である。
 この図2では、蛍光体4としてルビーを使用し、励起光送信用光ファイバ5a及び蛍光送信用光ファイバ5bとしてプラスチック光ファイバ(ポリメチルメタクリレート(PMMA))及び多成分ガラス光ファイバを用いた場合での励起光及び蛍光の減衰量を示している。
Next, a material setting method for optical fibers used for the excitation light transmitting optical fiber 5a and the fluorescence transmitting optical fiber 5b will be described.
FIG. 2 is a diagram showing the attenuation of light in the excitation light transmitting optical fiber 5a and the fluorescence transmitting optical fiber 5b in the first embodiment of the present invention.
In FIG. 2, a ruby is used as the phosphor 4, and a plastic optical fiber (polymethyl methacrylate (PMMA)) and a multicomponent glass optical fiber are used as the excitation light transmitting optical fiber 5a and the fluorescence transmitting optical fiber 5b. 2 shows attenuation amounts of excitation light and fluorescence.
 図2に示すように、投光部9が投光する励起光の波長(例えば、560nm~590nm)に対して、蛍光体4の発光する蛍光の波長(例えば、690nm~700nm)は長くなる。そのため、励起光を導光する励起光送信用光ファイバ5a及び蛍光を導光する蛍光送信用光ファイバ5bを同一の光ファイバで構成すると、励起光または蛍光のどちらか一方の伝送効率が悪くなる。そこで、励起光の波長及び蛍光の波長に基づいて、最適な伝送効率を有する材質の光ファイバを用いて励起光送信用光ファイバ5a及び蛍光送信用光導波路5bを構成することにより、励起光及び蛍光ともに良好な伝送を行うことができる。 As shown in FIG. 2, the wavelength of the fluorescence emitted by the phosphor 4 (for example, 690 nm to 700 nm) is longer than the wavelength of the excitation light projected by the light projecting unit 9 (for example, 560 nm to 590 nm). Therefore, if the excitation light transmitting optical fiber 5a that guides the excitation light and the fluorescence transmission optical fiber 5b that guides the fluorescence are formed of the same optical fiber, the transmission efficiency of either the excitation light or the fluorescence deteriorates. . Therefore, by configuring the excitation light transmission optical fiber 5a and the fluorescence transmission optical waveguide 5b using optical fibers made of materials having optimum transmission efficiency based on the wavelength of the excitation light and the fluorescence wavelength, Both fluorescence and good transmission can be performed.
 図2に示すように、プラスチック光ファイバにより励起光を導光したときの減衰量は、例えば0.08dB/mであり、多成分ガラス光ファイバにより励起光を導光したときの減衰量は例えば、0.18dB/mである。したがって、励起光を導光する励起光送信用光ファイバ5aに対してはプラスチック光ファイバを用いることで伝送効率を良好にすることができる。 As shown in FIG. 2, the attenuation when the excitation light is guided by the plastic optical fiber is, for example, 0.08 dB / m, and the attenuation when the excitation light is guided by the multicomponent glass optical fiber is, for example, 0.18 dB / m. Therefore, it is possible to improve the transmission efficiency by using a plastic optical fiber for the excitation light transmitting optical fiber 5a that guides the excitation light.
 一方、プラスチック光ファイバにより蛍光を導光したときの減衰量は、例えば0.35dB/mであり、多成分ガラス光ファイバにより蛍光を導光したときの減衰量は、例えば0.2dB/mである。したがって、蛍光を導光する蛍光送信用光ファイバ5bに対しては多成分ガラス光ファイバを用いることで伝送効率を良好にすることができる。 On the other hand, the attenuation when the fluorescence is guided by the plastic optical fiber is, for example, 0.35 dB / m, and the attenuation when the fluorescence is guided by the multi-component glass optical fiber is, for example, 0.2 dB / m. is there. Therefore, it is possible to improve the transmission efficiency by using a multi-component glass optical fiber for the fluorescent transmission optical fiber 5b that guides the fluorescence.
 以上のように、この発明の実施の形態1によれば、励起光と蛍光を導光する光ファイバを励起光の波長及び蛍光の波長に応じてそれぞれ設定することにより、励起光及び蛍光に対する伝送効率を高めることができるので、投光部9から投光する励起光の光量を過度に上げる必要はなく、投光部9の光源の負担を抑えることができる。 As described above, according to the first embodiment of the present invention, the optical fiber that guides the excitation light and the fluorescence is set according to the wavelength of the excitation light and the wavelength of the fluorescence, thereby transmitting the excitation light and the fluorescence. Since the efficiency can be increased, it is not necessary to excessively increase the amount of excitation light projected from the light projecting unit 9, and the burden on the light source of the light projecting unit 9 can be suppressed.
 なお、この発明の実施の形態1では、蛍光体4としてルビーを使用し、励起光送信用光ファイバ5a及び蛍光送信用光ファイバ5bを構成する光ファイバとしてプラスチック光ファイバ及び多成分ガラス光ファイバを用いて説明したが、これに限るものではなく、励起光送信用光ファイバ5a及び蛍光送信用光ファイバ5bを構成する光ファイバは、励起光の波長及び蛍光の波長に応じて適宜変更されるものである。 In the first embodiment of the present invention, ruby is used as the phosphor 4, and a plastic optical fiber and a multicomponent glass optical fiber are used as optical fibers constituting the excitation light transmitting optical fiber 5a and the fluorescence transmitting optical fiber 5b. Although explained using, it is not restricted to this, The optical fiber which comprises the optical fiber 5a for excitation light transmission, and the optical fiber 5b for fluorescence transmission is suitably changed according to the wavelength of excitation light, and the wavelength of fluorescence It is.
 また、励起光送信用光ファイバ5aの材質は、蛍光を発光するための投光部9の励起光の波長に対して伝送効率を悪化させない材質であればよく、上記PMMAに限定されない。同様に、蛍光送信用光ファイバ5bの材質は、蛍光体が発する蛍光の波長に対して伝送効率を悪化させない材質であればよく、上記多成分ガラスに限定されない。例えば、励起光送信用光ファイバ5aにPMMAを用いた場合、蛍光送信用光ファイバ5bの材質として、多成分ガラスに代えて、溶融石英、希土類ドープ石英、フッ素系樹脂を適用することも可能である。 Further, the material of the excitation light transmitting optical fiber 5a is not limited to the PMMA as long as it does not deteriorate the transmission efficiency with respect to the wavelength of the excitation light of the light projecting unit 9 for emitting fluorescence. Similarly, the material for the optical fiber 5b for fluorescence transmission may be any material that does not deteriorate the transmission efficiency with respect to the wavelength of the fluorescence emitted by the phosphor, and is not limited to the multicomponent glass. For example, when PMMA is used for the excitation light transmitting optical fiber 5a, it is also possible to apply fused silica, rare earth-doped quartz, or fluorine-based resin as the material of the fluorescence transmitting optical fiber 5b in place of the multicomponent glass. is there.
(実施の形態2)
 図3はこの発明の実施の形態2に係る蛍光温度センサ1の構造を示す図である。
 上記実施の形態1に係る蛍光温度センサ1では、励起光送信用光ファイバ5aと蛍光送信用光ファイバ5bを構成する光ファイバとして、それぞれ導光する光の波長に適した材質の光ファイバを用いて構成したが、この発明の実施の形態2に係る蛍光温度センサ1は、励起光送信用光ファイバ5aと蛍光送信用光ファイバ5bに用いられる光ファイバの材質は同一のものを使用し、図3に示すように、励起光送信用光ファイバ5aのコア面積に対して蛍光送信用光ファイバ5bのコア面積が大きくなるように構成したものである。
 以下、図1に示した、この発明の実施の形態1に係る蛍光温度センサ1と同一または同様の構成については、同一の符号を付しその説明を省略する。
(Embodiment 2)
FIG. 3 is a view showing the structure of the fluorescence temperature sensor 1 according to the second embodiment of the present invention.
In the fluorescence temperature sensor 1 according to the first embodiment, optical fibers made of materials suitable for the wavelengths of light to be guided are used as the optical fibers constituting the excitation light transmitting optical fiber 5a and the fluorescence transmitting optical fiber 5b. However, the fluorescence temperature sensor 1 according to the second embodiment of the present invention uses the same optical fiber material used for the excitation light transmitting optical fiber 5a and the fluorescence transmitting optical fiber 5b. 3, the core area of the fluorescence transmission optical fiber 5b is configured to be larger than the core area of the excitation light transmission optical fiber 5a.
Hereinafter, the same or similar components as those in the fluorescence temperature sensor 1 according to Embodiment 1 of the present invention shown in FIG.
 励起光送信用光ファイバ5aは、例えば、プラスチック光ファイバにより形成され、そのバンドル直径は所定の直径、当該実施の形態では例えば、1mmに構成される。 The pumping light transmitting optical fiber 5a is formed of, for example, a plastic optical fiber, and the bundle diameter is set to a predetermined diameter, for example, 1 mm in the embodiment.
 蛍光送信用光ファイバ5bは、励起光送信用光ファイバ5aと同一材質のプラスチック光ファイバにより形成され、図3に示すように、そのバンドル直径は励起光送信用光ファイバ5aのバンドル直径よりも太い所定の直径、当該実施の形態では例えば、1.5mmに構成される。 The fluorescent transmission optical fiber 5b is formed of a plastic optical fiber made of the same material as the excitation light transmission optical fiber 5a. As shown in FIG. 3, the bundle diameter is larger than the bundle diameter of the excitation light transmission optical fiber 5a. The predetermined diameter, for example, 1.5 mm in this embodiment is configured.
 蛍光温度センサ1では、投光部9から投光される励起光の光エネルギ以上の蛍光は発生しないため、受光部10で受光する蛍光の蛍光強度を高めるため、励起光送信用光ファイバ5aのバンドル直径に対して、蛍光送信用光ファイバ5bのバンドル直径を大きくすることで、伝送効率を高めることできる。 In the fluorescence temperature sensor 1, since the fluorescence more than the light energy of the excitation light projected from the light projecting unit 9 is not generated, the fluorescence intensity of the fluorescence received by the light receiving unit 10 is increased. By increasing the bundle diameter of the fluorescent transmission optical fiber 5b with respect to the bundle diameter, the transmission efficiency can be increased.
 以上のように、この発明の実施の形態2によれば、励起光よりも弱い蛍光光量を効率的に伝送するために、蛍光送信用光ファイバ5bのコア面積を、励起光送信用光ファイバ5aのコア面積よりも大きくなるように構成することで、蛍光の伝送効率を高めることができるので、投光部9から投光する励起光の光量を過度に上げる必要はなく、投光部9の光源の負担を抑えることができる。 As described above, according to the second embodiment of the present invention, in order to efficiently transmit the amount of fluorescence light weaker than the excitation light, the core area of the fluorescence transmission optical fiber 5b is changed to the excitation light transmission optical fiber 5a. Since the transmission efficiency of fluorescence can be increased by configuring so as to be larger than the core area, there is no need to excessively increase the amount of excitation light projected from the light projecting unit 9. The burden on the light source can be reduced.
 なお、この発明の上記実施の形態2では、励起光送信用光ファイバ5aのコア面積(バンドル直径)を1mm、蛍光送信用光ファイバ5bのコア面積(バンドル直径)を1.5mmと例示したが、これに限定されるものではない。蛍光送信用光ファイバ5bのコア面積が励起光送信用光ファイバ5aのコア面積より大きくなるように選択すれば、伝送効率を向上させるという作用効果を奏することが可能である。 In the second embodiment of the present invention, the core area (bundle diameter) of the excitation light transmitting optical fiber 5a is exemplified as 1 mm, and the core area (bundle diameter) of the fluorescence transmitting optical fiber 5b is exemplified as 1.5 mm. However, the present invention is not limited to this. If the core area of the fluorescence transmission optical fiber 5b is selected to be larger than the core area of the excitation light transmission optical fiber 5a, it is possible to achieve the effect of improving the transmission efficiency.
(実施の形態3)
 図4はこの発明の実施の形態3における蛍光温度センサ1の構造を示す図である。
 上記実施の形態1,2に係る蛍光温度センサ1では、センサプローブ2とセンサモジュール3とを励起光送信用光ファイバ5a及び蛍光送信用光ファイバ5bにより接続して構成したが、この発明の実施の形態3に係る蛍光温度センサ1では、例えば、狭い領域に光ファイバ5を敷設するような場合に、バンドル光ファイバ5cを用いてコア面積の異なる励起光送信用光ファイバ5a及び蛍光送信用光ファイバ5bと接続するように構成したものである。
 以下、図1,3に示した、この発明の実施の形態1に係る蛍光温度センサ1と同一または同様の構成については、同一の符号を付しその説明を省略する。
(Embodiment 3)
FIG. 4 is a diagram showing the structure of the fluorescence temperature sensor 1 according to Embodiment 3 of the present invention.
In the fluorescence temperature sensor 1 according to the first and second embodiments, the sensor probe 2 and the sensor module 3 are connected by the excitation light transmitting optical fiber 5a and the fluorescence transmitting optical fiber 5b. In the fluorescence temperature sensor 1 according to the third embodiment, for example, when the optical fiber 5 is laid in a narrow region, the excitation light transmitting optical fiber 5a and the fluorescence transmitting light having different core areas using the bundle optical fiber 5c are used. It is configured to be connected to the fiber 5b.
Hereinafter, the same or similar components as those of the fluorescent temperature sensor 1 according to Embodiment 1 of the present invention shown in FIGS.
 励起光送信用光ファイバ5aは、例えば、プラスチック光ファイバにより構成され、図4に示すように、励起光送信用光ファイバ5aの蛍光体4側先端はバンドル光ファイバ5cの励起光送信用光ファイバ5a側と光軸を合わせてFCコネクタ等により接続されている。また、この励起光送信用光ファイバ5aのコア形状は円形である。 The pumping light transmitting optical fiber 5a is made of, for example, a plastic optical fiber. As shown in FIG. 4, the fluorescent light 4 side tip of the pumping light transmitting optical fiber 5a is the pumping light transmitting optical fiber of the bundle optical fiber 5c. The optical axis is aligned with the 5a side and connected by an FC connector or the like. The core shape of the excitation light transmitting optical fiber 5a is circular.
 蛍光送信用光ファイバ5bは、例えば、プラスチック光ファイバにより構成され、図4に示すように、蛍光送信用光ファイバ5bの蛍光体4側先端はバンドル光ファイバ5cの蛍光送信用光ファイバ5b側と光軸を合わせてFCコネクタ等により接続されている。また、この励起光送信用光ファイバ5aのコア形状は円形である。 The fluorescent transmission optical fiber 5b is made of, for example, a plastic optical fiber. As shown in FIG. 4, the fluorescent transmission optical fiber 5b has a fluorescent material 4 side tip at the fluorescence transmission optical fiber 5b side of the bundle optical fiber 5c. The optical axes are aligned and connected by an FC connector or the like. Further, the core shape of the excitation light transmitting optical fiber 5a is circular.
 バンドル光ファイバ5cは、励起光送信用光ファイバ5aにより導光される励起光を蛍光体4に導光し、蛍光体4が発する蛍光を蛍光送信用光ファイバ5bに導光するためのものである。また、バンドル光ファイバ5cの励起光送信用光ファイバ5a側のコア形状及び蛍光送信用光ファイバ5b側のコア形状は円形である。 The bundle optical fiber 5c guides the excitation light guided by the excitation light transmitting optical fiber 5a to the phosphor 4, and guides the fluorescence emitted from the phosphor 4 to the fluorescence transmitting optical fiber 5b. is there. Further, the core shape of the bundle optical fiber 5c on the excitation light transmitting optical fiber 5a side and the core shape on the fluorescence transmitting optical fiber 5b side are circular.
 ここで、励起光送信用光ファイバ5aのコア面積SIF、蛍光送信用光ファイバ5bのコア面積SOF、バンドル光ファイバ5cの励起光送信用光ファイバ5a側のコア面積SSFI及び蛍光送信用光ファイバ5b側のコア面積SSFOは、SIF<SSFI≦SSFO<SOFを満たすように構成され接続される。 Here, the core area S IF of the excitation light transmitting optical fiber 5a, the core area S OF of the fluorescence transmitting optical fiber 5b, the core area S SFI on the excitation light transmitting optical fiber 5a side of the bundle optical fiber 5c, and the fluorescence transmitting The core area S SFO on the optical fiber 5b side is configured and connected so as to satisfy S IF <S SFI ≦ S SFO <S OF .
 図5はこの発明の実施の形態3における励起光送信用光ファイバ5a、蛍光送信用光ファイバ5b及びバンドル光ファイバ5cの各バンドル直径条件(a)~(d)に対する蛍光強度の比を、(a)の各バンドル直径条件のときの蛍光強度を基準にして示した図である。図5に示す光ファイバの直径は例示であり、これ以外の値を採ることも可能である。ここで、励起光送信用光ファイバ5a、蛍光送信用光ファイバ5b及びバンドル光ファイバ5cのコア形状は円形である。また、バンドル光ファイバ5cの励起光送信用光ファイバ5a側のバンドル直径及び蛍光送信用光ファイバ5b側のバンドル直径は共に1.2mmである。また、励起光を投光する投光部9としてLEDを用い、受光部10としてフォトダイオードを用いている。 FIG. 5 shows the ratio of the fluorescence intensity to the bundle diameter conditions (a) to (d) of the excitation light transmitting optical fiber 5a, the fluorescence transmitting optical fiber 5b, and the bundle optical fiber 5c according to the third embodiment of the present invention. It is the figure shown on the basis of the fluorescence intensity at the time of each bundle diameter condition of a). The diameter of the optical fiber shown in FIG. 5 is an exemplification, and other values can be taken. Here, the core shapes of the excitation light transmitting optical fiber 5a, the fluorescence transmitting optical fiber 5b, and the bundle optical fiber 5c are circular. The bundle diameter of the bundle optical fiber 5c on the excitation light transmitting optical fiber 5a side and the bundle diameter on the fluorescence transmitting optical fiber 5b side are both 1.2 mm. Further, an LED is used as the light projecting unit 9 that projects the excitation light, and a photodiode is used as the light receiving unit 10.
 図5(a)に示すように、励起光送信用光ファイバ5aのバンドル直径が1mm、かつ、蛍光送信用光ファイバ5bのバンドル直径が1mmの場合では、蛍光送信用光ファイバ5b側のバンドル光ファイバ5cのバンドル直径に対して、蛍光送信用光ファイバ5bのバンドル直径が小さいため、蛍光送信用光ファイバ5bとバンドル光ファイバ5cとの接続口で蛍光が漏洩してしまい、蛍光強度が低下する。 As shown in FIG. 5A, when the bundle diameter of the excitation light transmission optical fiber 5a is 1 mm and the bundle diameter of the fluorescence transmission optical fiber 5b is 1 mm, the bundle light on the fluorescence transmission optical fiber 5b side is shown. Since the bundle diameter of the fluorescence transmission optical fiber 5b is smaller than the bundle diameter of the fiber 5c, the fluorescence leaks at the connection port between the fluorescence transmission optical fiber 5b and the bundle optical fiber 5c, and the fluorescence intensity decreases. .
 また、図5(c)に示すように、励起光送信用光ファイバ5aのバンドル直径が1.5mm、かつ、蛍光送信用光ファイバ5bのバンドル直径が1mmの場合では、励起光送信用光ファイバ5a側のバンドル光ファイバ5cのバンドル直径に対して、励起光送信用光ファイバ5aのバンドル直径が大きいため、励起光送信用光ファイバ5aとバンドル光ファイバ5cとの接続口で励起光が漏洩してしまい、励起光強度が低下する。さらに、蛍光送信用光ファイバ5b側のバンドル光ファイバ5cのバンドル直径に対して、蛍光送信用光ファイバ5bのバンドル直径が小さいため、蛍光送信用光ファイバ5bとバンドル光ファイバ5cとの接続口で蛍光が漏洩してしまい、蛍光強度が低下する。 As shown in FIG. 5C, when the bundle diameter of the excitation light transmitting optical fiber 5a is 1.5 mm and the bundle diameter of the fluorescence transmitting optical fiber 5b is 1 mm, the excitation light transmitting optical fiber is used. Since the bundle diameter of the excitation light transmitting optical fiber 5a is larger than the bundle diameter of the bundle optical fiber 5c on the 5a side, the excitation light leaks at the connection port between the excitation light transmitting optical fiber 5a and the bundle optical fiber 5c. As a result, the excitation light intensity decreases. Further, since the bundle diameter of the fluorescent transmission optical fiber 5b is smaller than the bundle diameter of the bundle optical fiber 5c on the fluorescent transmission optical fiber 5b side, the connection port between the fluorescent transmission optical fiber 5b and the bundle optical fiber 5c is used. The fluorescence leaks and the fluorescence intensity decreases.
 また、図5(d)に示すように、励起光送信用光ファイバ5aのバンドル直径が1.5mm、かつ、蛍光送信用光ファイバ5bのバンドル直径が1.5mmの場合では、励起光送信用光ファイバ5a側のバンドル光ファイバ5cのバンドル直径に対して、励起光送信用光ファイバ5aのバンドル直径が大きいため、励起光送信用光ファイバ5aとバンドル光ファイバ5cとの接続口で励起光が漏洩してしまい、励起光強度が低下する。 Further, as shown in FIG. 5D, when the bundle diameter of the excitation light transmitting optical fiber 5a is 1.5 mm and the bundle diameter of the fluorescence transmitting optical fiber 5b is 1.5 mm, Since the bundle diameter of the excitation light transmitting optical fiber 5a is larger than the bundle diameter of the bundle optical fiber 5c on the optical fiber 5a side, the excitation light is transmitted at the connection port between the excitation light transmitting optical fiber 5a and the bundle optical fiber 5c. Leakage occurs and the excitation light intensity decreases.
 一方、図5(b)に示すように、励起光送信用光ファイバ5aのバンドル直径を1mmとして、蛍光送信用光ファイバ5bのバンドル直径を1.5mmとした場合、すなわち、励起光送信用光ファイバ5aのバンドル直径、バンドル光ファイバ5cのバンドル直径、蛍光送信用光ファイバ5bのバンドル直径の順にバンドル直径を大きくした場合には、各接続間での励起光及び蛍光の損失がなく最も効率よく蛍光を受光部10に導光することができる。 On the other hand, as shown in FIG. 5B, when the bundle diameter of the excitation light transmitting optical fiber 5a is 1 mm and the bundle diameter of the fluorescence transmitting optical fiber 5b is 1.5 mm, that is, the excitation light transmitting light. When the bundle diameter is increased in the order of the bundle diameter of the fiber 5a, the bundle diameter of the bundle optical fiber 5c, and the bundle diameter of the fluorescent transmission optical fiber 5b, there is no loss of excitation light and fluorescence between the connections, and it is most efficient. The fluorescence can be guided to the light receiving unit 10.
 以上のように、この発明の実施の形態3によれば、励起光送信用光ファイバ5a及び蛍光送信用光ファイバ5bと、バンドル光ファイバ5cとの接続において、励起光送信用光ファイバ5aのコア面積、バンドル光ファイバ5cの励起光送信用光ファイバ5a側のコア面積、バンドル光ファイバ5cの蛍光送信用光ファイバ5b側のコア面積、蛍光送信用光ファイバ5bのコア面積の順にコア面積を大きくし、励起光及び蛍光の送信側の光ファイバのコアを受信側の光ファイバのコアで覆うように接続することで、励起光送信用光ファイバ5a及び蛍光送信用光ファイバ5bとバンドル光ファイバ5cとの接続間での励起光及び蛍光の漏れを防ぐことができ、励起光及び蛍光の伝送効率を高めることができるため、投光部9から投光する励起光の光量を過度に上げる必要はなく、投光部9の光源の負担を抑えることができる。 As described above, according to the third embodiment of the present invention, the core of the pumping light transmitting optical fiber 5a is connected in the connection between the pumping light transmitting optical fiber 5a and the fluorescence transmitting optical fiber 5b and the bundle optical fiber 5c. The core area increases in the order of the area, the core area of the bundle optical fiber 5c on the excitation light transmitting optical fiber 5a side, the core area of the bundle optical fiber 5c on the fluorescent transmitting optical fiber 5b side, and the core area of the fluorescent transmitting optical fiber 5b. Then, by connecting the core of the optical fiber on the transmission side of the excitation light and the fluorescence so as to be covered with the core of the optical fiber on the reception side, the optical fiber 5a for excitation light transmission, the optical fiber 5b for fluorescence transmission, and the bundle optical fiber 5c Excitation light and fluorescence leakage between the connections can be prevented, and the transmission efficiency of excitation light and fluorescence can be increased. It is not necessary to increase the amount of light excessively, it is possible to suppress the burden of the light source of the light projecting unit 9.
 なお、この発明の実施の形態3に係る蛍光温度センサ1では、励起光送信用光ファイバ5a、蛍光送信用光ファイバ5b及びバンドル光ファイバ5cのコア形状は円形状として説明したが、これに限るものではなく、矩形のコアを有する光ファイバを用いて構成してもよい。 In the fluorescence temperature sensor 1 according to Embodiment 3 of the present invention, the excitation light transmitting optical fiber 5a, the fluorescence transmitting optical fiber 5b, and the bundle optical fiber 5c have been described as having a circular core shape, but the present invention is not limited thereto. Instead of this, an optical fiber having a rectangular core may be used.
 また、この発明の実施の形態3に係る蛍光温度センサ1では、励起光送信用光ファイバ5a及び蛍光送信用光ファイバ5bとを同一の材質の光ファイバを用いて説明したが、これに限るものではなく、励起光送信用光ファイバ5aと蛍光送信用光同波路5bとを別の材質の光ファイバにより構成してもよい。 In the fluorescence temperature sensor 1 according to the third embodiment of the present invention, the excitation light transmitting optical fiber 5a and the fluorescence transmitting optical fiber 5b are described using optical fibers made of the same material. However, the present invention is not limited to this. Instead, the excitation light transmitting optical fiber 5a and the fluorescence transmitting optical waveguide 5b may be formed of optical fibers made of different materials.
 また、この発明の上記実施の形態3では、励起光送信用光ファイバ5aのコア面積(バンドル直径)を1mm、バンドル光ファイバ5cのコア面積(バンドル直径)を1.2mm、蛍光送信用光ファイバ5bのコア面積(バンドル直径)を1.5mmとしたが、これら例示した面積に限定されない。例えば、励起光送信用光ファイバ5aのコア面積:バンドル光ファイバ5cのコア面積:蛍光送信用光ファイバ5bのバンドル直径を、0.5mm:1.0mm:1.5mmとしたり、1.5mm:1.8mm:2.0mmとしたりしても伝送効率を向上させることができる。すなわち、励起光送信用光ファイバ5aのコア面積A:バンドル光ファイバ5cのコア面積C:蛍光送信用光ファイバ5bのコア面積Bの関係が、A<C<Bとなるように設定されていればよい。 In Embodiment 3 of the present invention, the core area (bundle diameter) of the excitation light transmitting optical fiber 5a is 1 mm, the core area (bundle diameter) of the bundle optical fiber 5c is 1.2 mm, and the fluorescent transmitting optical fiber. Although the core area (bundle diameter) of 5b is 1.5 mm, it is not limited to these exemplified areas. For example, the core area of the excitation light transmitting optical fiber 5a: the core area of the bundle optical fiber 5c: the bundle diameter of the fluorescent transmitting optical fiber 5b is set to 0.5 mm: 1.0 mm: 1.5 mm, or 1.5 mm: Even if it is set to 1.8 mm: 2.0 mm, the transmission efficiency can be improved. That is, the relationship of the core area A of the excitation light transmitting optical fiber 5a: the core area C of the bundle optical fiber 5c: the core area B of the fluorescent transmitting optical fiber 5b is set so that A <C <B. That's fine.
 また、上述の実施の形態では励起光送信用光ファイバ5a及び蛍光送信用光ファイバ5bをバンドルの光ファイバにより構成して説明したが、これに限るものではなく、励起光送信用光ファイバ5a及び蛍光送信用光ファイバ5bを単芯の光ファイバにより構成しても構わず、また、例えば励起光送信用光ファイバ5aを単芯の光ファイバにより構成し、蛍光送信用光ファイバ5bをバンドルの光ファイバにより構成するなど、組み合わせて構成しても構わない。 In the above-described embodiment, the pumping light transmitting optical fiber 5a and the fluorescence transmitting optical fiber 5b are described as bundled optical fibers. However, the present invention is not limited to this, and the pumping light transmitting optical fiber 5a and The fluorescence transmission optical fiber 5b may be formed of a single-core optical fiber. For example, the excitation light transmission optical fiber 5a is formed of a single-core optical fiber, and the fluorescence transmission optical fiber 5b is a bundle of light. You may comprise combining, such as comprising with a fiber.
1…蛍光温度センサ、2…センサプローブ、3…センサモジュール、4…蛍光体、5…光ファイバ、5a…励起光送信用光ファイバ、5b…蛍光送信用光ファイバ、5c…バンドル光ファイバ、6…カバー、7…保護管、8…駆動部、9…投光部、10…受光部、11…処理部 DESCRIPTION OF SYMBOLS 1 ... Fluorescence temperature sensor, 2 ... Sensor probe, 3 ... Sensor module, 4 ... Phosphor, 5 ... Optical fiber, 5a ... Excitation light transmission optical fiber, 5b ... Fluorescence transmission optical fiber, 5c ... Bundle optical fiber, 6 ... Cover, 7 ... Protective tube, 8 ... Drive part, 9 ... Light projecting part, 10 ... Light receiving part, 11 ... Processing part

Claims (4)

  1.  照射された光の強度に応じた蛍光を発する蛍光体と、
     励起光を前記蛍光体に投光する投光部と、
     前記蛍光体が発する蛍光を受光する受光部と、
     前記投光部が発する励起光を導光する励起光送信用光ファイバと、
     前記蛍光体が発する蛍光を導光する蛍光送信用光ファイバと、を備え、
     前記励起光送信用光ファイバと前記蛍光送信用光ファイバとは異なる特性を有する、
    蛍光温度センサ。
    A phosphor that emits fluorescence according to the intensity of the irradiated light;
    A light projecting unit that projects excitation light onto the phosphor;
    A light receiving portion for receiving fluorescence emitted by the phosphor;
    An excitation light transmitting optical fiber for guiding the excitation light emitted by the light projecting unit;
    An optical fiber for fluorescence transmission that guides the fluorescence emitted by the phosphor, and
    The excitation light transmitting optical fiber and the fluorescence transmitting optical fiber have different characteristics.
    Fluorescent temperature sensor.
  2.  前記励起光送信用光ファイバは前記投光部が発する励起光の波長に基づいて前記励起光送信用光ファイバの材質を決定し、
     前記蛍光送信用光ファイバは前記蛍光体が発する蛍光の波長に基づいて前記蛍光送信用光ファイバの材質を決定する、
    請求項1記載の蛍光温度センサ。
    The pumping light transmitting optical fiber determines the material of the pumping light transmitting optical fiber based on the wavelength of the pumping light emitted by the light projecting unit,
    The fluorescent transmission optical fiber determines the material of the fluorescent transmission optical fiber based on the wavelength of fluorescence emitted by the phosphor.
    The fluorescence temperature sensor according to claim 1.
  3.  前記蛍光送信用光ファイバのコア面積は、前記励起光送信用光ファイバのコア面積よりも大きく構成される、
    請求項1記載の蛍光温度センサ。
    The core area of the optical fiber for fluorescence transmission is configured to be larger than the core area of the optical fiber for excitation light transmission,
    The fluorescence temperature sensor according to claim 1.
  4.  前記励起光送信用光ファイバ及び前記蛍光送信用光ファイバと接続し、前記励起光送信用光ファイバからの励起光を前記蛍光体に導光し、前記蛍光体の発する蛍光を前記蛍光送信用光ファイバに導光するためのバンドル光ファイバを備え、
     前記励起光送信用光ファイバのコア面積、前記バンドル光ファイバの前記蛍光送信用光ファイバ側のコア面積、前記バンドル光ファイバの前記蛍光送信用光ファイバ側のコア面積、前記蛍光送信用光ファイバのコア面積の順にコア面積を大きくなるように構成した、
    請求項1記載の蛍光温度センサ。
    The excitation light transmission optical fiber and the fluorescence transmission optical fiber are connected, the excitation light from the excitation light transmission optical fiber is guided to the phosphor, and the fluorescence emitted from the phosphor is converted into the fluorescence transmission light. A bundle optical fiber for guiding the fiber,
    The core area of the optical fiber for excitation light transmission, the core area of the bundle optical fiber on the side of the optical fiber for fluorescent transmission, the core area of the optical fiber for optical transmission of the bundle optical fiber, the optical fiber for optical transmission of fluorescence Configured to increase the core area in the order of the core area,
    The fluorescence temperature sensor according to claim 1.
PCT/JP2010/053608 2009-03-10 2010-03-05 Fluorescence temperature sensor WO2010103999A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009056679A JP5676852B2 (en) 2009-03-10 2009-03-10 Fluorescence temperature sensor
JP2009-056679 2009-03-10

Publications (1)

Publication Number Publication Date
WO2010103999A1 true WO2010103999A1 (en) 2010-09-16

Family

ID=42728288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053608 WO2010103999A1 (en) 2009-03-10 2010-03-05 Fluorescence temperature sensor

Country Status (2)

Country Link
JP (1) JP5676852B2 (en)
WO (1) WO2010103999A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103883956A (en) * 2012-12-24 2014-06-25 鸿富锦精密工业(深圳)有限公司 Light source and LED car lamp with same
CN104345051A (en) * 2013-07-31 2015-02-11 恩德莱斯和豪瑟尔测量及调节技术分析仪表两合公司 Arrangement for optical measurement of a process variable and measuring device comprising such an arrangement
CN113390528A (en) * 2020-03-13 2021-09-14 艾科赛乐维特技术公司 Monolithic phosphor composites for sensing systems
US11353369B2 (en) 2020-11-05 2022-06-07 Accelovant Technologies Corporation Optoelectronic transducer module for thermographic temperature measurements
US11359976B2 (en) 2020-10-23 2022-06-14 Accelovant Technologies Corporation Multipoint surface temperature measurement system and method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3910303A1 (en) * 2020-05-12 2021-11-17 Nexans Optical temperature sensor head, temperature sensor device and electric machine with a temperature sensor head

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213738A (en) * 1985-03-20 1986-09-22 Nagoyashi Optical fiber temperature measuring sensor
JPS62298734A (en) * 1986-06-18 1987-12-25 Omron Tateisi Electronics Co Fluorescent type optical fiber probe
JPH068724B2 (en) * 1984-12-19 1994-02-02 株式会社日立製作所 Optical detector
JPH06325199A (en) * 1993-05-17 1994-11-25 Hitachi Maxell Ltd Optical reader and optical read system for latent image mark
JP2000205968A (en) * 1998-03-06 2000-07-28 Schneider Electric Ind Sa Measuring probe and measuring apparatus and facility with at least one measuring probe
JP2004028629A (en) * 2002-06-21 2004-01-29 Air Water Inc Temperature sensor and temperature measuring instrument using it
JP2004159731A (en) * 2002-11-11 2004-06-10 Japan Science & Technology Agency Laser dental treatment tool and laser treatment method
JP2005099521A (en) * 2003-09-25 2005-04-14 Matsushita Electric Works Ltd Optical transmission device
JP2007024826A (en) * 2005-07-21 2007-02-01 Fujikura Ltd Optical detection sensor
JP2008256766A (en) * 2007-04-02 2008-10-23 Fujifilm Corp Optical fiber end face protection structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2640982B2 (en) * 1988-11-29 1997-08-13 三菱レイヨン株式会社 Plastic optical fiber
US5107445A (en) * 1990-12-04 1992-04-21 Luxtron Corporation Modular luminescence-based measuring system using fast digital signal processing
JP3102813B2 (en) * 1991-10-01 2000-10-23 理化学研究所 Temperature sensor
JPH05150135A (en) * 1991-11-29 1993-06-18 Kyocera Corp Connecting structure of optical fiber and/or optical waveguide
JPH09127360A (en) * 1995-11-02 1997-05-16 Omron Corp Optical fiber connecting device, optical coupling method for optical fiber, and manufacture of optical fiber cable and optical element
JP2003222961A (en) * 2002-01-31 2003-08-08 Noritsu Koki Co Ltd Image reader and photographic processing device having the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068724B2 (en) * 1984-12-19 1994-02-02 株式会社日立製作所 Optical detector
JPS61213738A (en) * 1985-03-20 1986-09-22 Nagoyashi Optical fiber temperature measuring sensor
JPS62298734A (en) * 1986-06-18 1987-12-25 Omron Tateisi Electronics Co Fluorescent type optical fiber probe
JPH06325199A (en) * 1993-05-17 1994-11-25 Hitachi Maxell Ltd Optical reader and optical read system for latent image mark
JP2000205968A (en) * 1998-03-06 2000-07-28 Schneider Electric Ind Sa Measuring probe and measuring apparatus and facility with at least one measuring probe
JP2004028629A (en) * 2002-06-21 2004-01-29 Air Water Inc Temperature sensor and temperature measuring instrument using it
JP2004159731A (en) * 2002-11-11 2004-06-10 Japan Science & Technology Agency Laser dental treatment tool and laser treatment method
JP2005099521A (en) * 2003-09-25 2005-04-14 Matsushita Electric Works Ltd Optical transmission device
JP2007024826A (en) * 2005-07-21 2007-02-01 Fujikura Ltd Optical detection sensor
JP2008256766A (en) * 2007-04-02 2008-10-23 Fujifilm Corp Optical fiber end face protection structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103883956A (en) * 2012-12-24 2014-06-25 鸿富锦精密工业(深圳)有限公司 Light source and LED car lamp with same
CN104345051A (en) * 2013-07-31 2015-02-11 恩德莱斯和豪瑟尔测量及调节技术分析仪表两合公司 Arrangement for optical measurement of a process variable and measuring device comprising such an arrangement
US9488581B2 (en) 2013-07-31 2016-11-08 Endress+Hauser Conducta Gmbh+Co. Kg Arrangement for optical measurement of a process variable and measuring device comprising such an arrangement
CN113390528A (en) * 2020-03-13 2021-09-14 艾科赛乐维特技术公司 Monolithic phosphor composites for sensing systems
JP2021148787A (en) * 2020-03-13 2021-09-27 アクセロバント テクノロジーズ コーポレーション Monolithic phosphor composite for sensing system
US11236267B2 (en) 2020-03-13 2022-02-01 Accelovant Technologies Corporation Fiber optic measuring device with monolithic phosphor composite
JP7078942B2 (en) 2020-03-13 2022-06-01 アクセロバント テクノロジーズ コーポレーション Monolithic fluorescent compound for sensing systems
US11359976B2 (en) 2020-10-23 2022-06-14 Accelovant Technologies Corporation Multipoint surface temperature measurement system and method thereof
US11353369B2 (en) 2020-11-05 2022-06-07 Accelovant Technologies Corporation Optoelectronic transducer module for thermographic temperature measurements

Also Published As

Publication number Publication date
JP5676852B2 (en) 2015-02-25
JP2010210404A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
WO2010103999A1 (en) Fluorescence temperature sensor
US20160254637A1 (en) Fiber laser device
JP5460914B2 (en) Fiber laser apparatus and positioning method of laser beam irradiation position
JP6534999B2 (en) Optical fiber laser device
US9874671B2 (en) Light diffusing fiber lighting device
JP2006253099A (en) Light emitting device
US7283293B2 (en) High efficiency optical amplifying fiber
JP2008122838A (en) Light-emitting apparatus
US20050002607A1 (en) Method for manufacturing of an optical fiber with a decoupling interface for scattered light, use of an optical fiber and device for monitoring of the light power guided through an optical fiber
US20170038514A1 (en) Light source apparatus and endoscope apparatus with the light source apparatus
US10760992B2 (en) Optical power monitor device and optical power monitor method
JP2019175886A (en) Fiber laser apparatus
WO2007015577A1 (en) Combined light source
JP5378861B2 (en) Optical fiber laser
JP4812175B2 (en) Device comprising a waveguide structure
US9203205B2 (en) Fiber laser device
US7292761B2 (en) Optical transmission device
US11304591B2 (en) Optical connection module for endoscope, endoscope, and endoscope system
JP2003218813A (en) Optical signal monitoring device
JP2008232947A (en) Optical fiber type surface plasmon sensor and measuring device using it
KR20180065804A (en) Optical fiber in-line temperature sensor and apparatus for measuring temperature using the sensor
WO2014132473A1 (en) Linear light emitting body, solid-state light emitting device, and solid-state illumination device
JP2005121980A (en) Optical fiber and optical fiber device
WO2022064832A1 (en) Fiber laser device
JP5290777B2 (en) Light leakage measuring method and light leakage measuring module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10750753

Country of ref document: EP

Kind code of ref document: A1