WO2010103797A1 - Fan impeller - Google Patents

Fan impeller Download PDF

Info

Publication number
WO2010103797A1
WO2010103797A1 PCT/JP2010/001632 JP2010001632W WO2010103797A1 WO 2010103797 A1 WO2010103797 A1 WO 2010103797A1 JP 2010001632 W JP2010001632 W JP 2010001632W WO 2010103797 A1 WO2010103797 A1 WO 2010103797A1
Authority
WO
WIPO (PCT)
Prior art keywords
hub
axial flow
shape portion
flow shape
outer peripheral
Prior art date
Application number
PCT/JP2010/001632
Other languages
French (fr)
Japanese (ja)
Inventor
酒井浩一
川添大輔
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201080006293.4A priority Critical patent/CN102301143B/en
Publication of WO2010103797A1 publication Critical patent/WO2010103797A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • F04D29/384Blades characterised by form

Definitions

  • the present invention relates to a blower impeller used for an outdoor unit of an air conditioner, and the like.
  • FIG. 9 is a perspective view of a known fan impeller
  • FIG. 10 is a plan view of the fan impeller as viewed from the downwind side
  • FIG. 11 is a plan view of another known blower impeller.
  • the mixed flow fan impeller 11 includes a substantially truncated cone-shaped hub 12 and a plurality of blades 13 provided on the hub 12.
  • the hub 12 comprises a conical hub 12a and a vertical hub 12b.
  • the conical hub 12 a is directly connected to the suction surface of the blade 13, and the outer circumferential surface of the conical hub 12 a is inclined with respect to the axial direction of the hub 12.
  • the vertical hubs 12b are provided between adjacent conical hubs 12a. Also, the vertical hub 12 b starts near the minimum radius of the conical hub 12 a and leads directly to the pressure surface of the vane 13.
  • the outer circumferential surface of the vertical hub 12 b is substantially parallel to the axial direction (vertical direction) of the hub 12.
  • the conical hub 12a and the vertical hub 12b are continuously connected, and the hub 12 has no missing part. Further, the hub 12 has a shape in which a portion on the leeward side of the vertical hub 12b is cut out leaving a margin at the step between the blades 13, the conical hub 12a, and the conical hub 12a and the vertical hub 12b.
  • the flow of air leaking from the pressure surface of the blade 13 to the suction surface of the blade 13 generates a blade end vortex generated on the suction surface near the outer peripheral side of the blade 13. It is promoted in the curve.
  • the convex curved portion on the hub 12 side of the blades 13 facilitates the inflow of air in the radial direction of the impeller 11 in the high load area.
  • the function of inducing the flow of air that turns around the inside of the hub 12 is exerted. That is, in the mixed flow fan impeller 11, since the pressure inside the hub 12 is lower than the pressure outside the hub 12, when the air flow tries to pass through the impeller 11, the air flow becomes the hub 12 Wrap around inside. The flow of air that turns around the inside of the hub 12 is guided by the notch 12 c of the vertical hub 12 b. Therefore, the flow state of the whole of the diagonal flow fan impeller 11 becomes optimum.
  • the portion where the axial flow shaped vertical hub 12 b is formed is a slight portion between the vanes 13 and 13.
  • the portion where the axial flow shaped vertical hub 12 b is formed is a slight portion between the vanes 13 and 13.
  • most of the space between the blades 13 and 13 is composed of a conical hub 12a having a truncated cone shape, as shown in FIG.
  • the impeller is in the shape of a diagonal flow impeller.
  • An object of the present invention is to solve the above-mentioned conventional problems, and an object thereof is to provide a blower impeller capable of improving the air blowing performance by suppressing the air flow resistance.
  • a blower impeller including: a rotationally driven hub; and a plurality of blades disposed around the hub and radially extending from the hub
  • the hub is configured by combining a mixed flow shape portion and an axial flow shape portion that forms a part of an outer peripheral portion of a column, and the mixed flow shape portion includes each of the hubs.
  • the present invention is characterized in that at least the suction surface side of each blade in the attachment portion of the blade is present, and the axial flow shape portion is present in a portion other than the mixed flow shape portion.
  • the vicinity of the mixed flow vane has the characteristics of the mixed flow fan and the impeller, high static pressure and high resistance to ventilation resistance can be exhibited.
  • the axial flow shaped portion between the blades can exhibit the characteristic of suppressing the air flow resistance, and the air volume performance can be improved.
  • a blower impeller is a blower impeller including: a rotationally driven hub; and a plurality of blades disposed around the hub and radially extending from the hub.
  • the hub is configured by combining a mixed flow shape portion and an axial flow shape portion that forms a part of an outer peripheral portion of a cylinder, and the mixed flow shape portion is formed of the above-mentioned attached portions of the blades of the hub.
  • the axial flow shape portion exists at least on the suction surface side of each blade, and the axial flow shape portion exists in a portion other than the diagonal flow shape portion, and the diameter of the outer peripheral surface of the axial flow shape portion between the blades of the hub is And the diameter of the upper surface of the hub, which is on the windward side.
  • a blower impeller according to a third aspect of the present invention is the fan impeller according to the second aspect of the present invention, wherein a portion between the blades in the axial flow shaped portion of the hub is a first axial flow
  • the hub is the outer peripheral surface of the first axial flow shape portion, and It is characterized in that a step is not formed between the outer peripheral surface of the second axial flow-shaped portion and the outer peripheral surface of the first axial flow-shaped portion having a diameter larger than that of the outer peripheral surface.
  • a blower impeller according to a fourth aspect of the present invention is the fan impeller according to the third aspect of the present invention, wherein the outer peripheral surface of the first axial flow shape portion and the outer peripheral surface of the first axial flow shape portion
  • the hub is formed by connecting the outer peripheral surface of the second axial flow-shaped portion having a larger diameter than that of the first axial flow-shaped portion with a plane based on a tangent of the first axial flow-shaped portion.
  • a step is not formed between the outer peripheral surface and the outer peripheral surface of the second axial flow shaped portion. According to this configuration, the collision of the air flow at the step between the axial flow shape and the mixed flow shape of the hub is alleviated, and the separation of the air flow at the hub is suppressed. Therefore, the air blowing performance is improved.
  • a fan impeller according to a fifth aspect of the present invention is the fan impeller according to the first through fourth aspects described above, wherein at least a part of the axial flow shape portion of the hub has a dimension in the air flow direction It is characterized by being smaller than the largest dimension of the flow direction of a flow shape part. According to this configuration, weight reduction is achieved because the hub is smaller.
  • the blade attachment portion of the hub has a diagonal flow shape
  • the vicinity of the diagonal flow vane has the characteristics of the diagonal flow fan impeller, and the static pressure is Exhibits high resistance to ventilation resistance.
  • the axial flow shaped portion between the blades can exhibit the characteristic of suppressing the air flow resistance, and the air volume performance can be improved.
  • the air volume performance is further improved by making the diameter of the outer peripheral surface of the axial flow shape portion between the blades of the hub smaller than the diameter of the upper surface on the windward side of the hub. At the same time, further weight reduction is achieved.
  • the blower impeller according to the present invention is characterized in that the static pressure of the mixed flow fan impeller is high and the resistance against the air flow resistance is high, while the air flow performance is characterized by suppressing the air flow resistance in the axial flow portion. It is intended to improve and can be applied to applications such as an outdoor unit of an air conditioner.
  • the perspective view of the fan impeller in Embodiment 1 of this invention Top view of blower fan according to Embodiment 1 of the present invention Side view of blower fan according to Embodiment 1 of the present invention
  • the perspective view of the fan impeller in Embodiment 2 of this invention Top view of blower fan according to Embodiment 2 of the present invention
  • the perspective view of the fan impeller in Embodiment 3 of this invention Top view of blower fan according to Embodiment 3 of the present invention
  • the perspective view of the fan impeller in Embodiment 3 of this invention Perspective view of a known blower impeller Top view of known fan impeller from downwind side Top view of other known blower impellers
  • Embodiment 1 1 is a perspective view of a blower impeller according to Embodiment 1 of the present invention
  • FIG. 2 is a plan view of the blower impeller according to Embodiment 1 of the present invention
  • FIG. 3 is a blower impeller according to Embodiment 1 of the present invention Side view of FIG.
  • the blower impeller 1 includes a hub 2 and a plurality of blades 3 disposed around the hub 2 and radially extending from the hub 2.
  • the hub 2 is rotationally driven by the rotational force of a fan motor (not shown) from the outside.
  • the hub 2 includes a mixed flow shape portion 2a, an axial flow shape portion 2b, and an upper surface 2c.
  • the outer peripheral surface of the mixed flow shape portion 2a has a side surface shape of a truncated cone.
  • the outer peripheral surface of the axial flow shape part 2b has a side surface shape of a cylinder.
  • the upper surface 2c has the shape of the upper bottom surface of the truncated cone described above.
  • the mixed flow shape part 2a exists at least on the negative pressure surface side of each blade 3 in the attachment part of each blade 3 of the hub 2, and the axial flow shape part 2b exists in parts other than the mixed flow shape part 2a.
  • the axial flow shape refers to a shape parallel to the rotation axis of the fan impeller 1.
  • the impeller 1 is provided with two blades 3.
  • the hub 2 is configured such that the attachment portions of the blades 3 and the axial flow shape portions 2b in which the roots of the blades 3 do not exist are alternately arranged by approximately one fourth on the plan view shown in FIG. .
  • the upper bottom surface of the truncated cone ie, the diameter of the upper surface 2c of the hub 2 Let Di be the diameter of the lower base of the frustum Dj.
  • a hub extension 4 in which a boss (not shown) to which a shaft of a fan motor is fixed is embedded.
  • the hub extension 4 is formed in a cylindrical shape having a diameter Dh smaller than the diameter Di of the axial flow shape portion 2b.
  • the outer peripheral surface of the mixed flow shape part 2a is hatched with oblique lines.
  • the outer peripheral surface of the mixed flow shape portion 2a does not necessarily have to form a part of a single truncated cone whose rotation axis is the rotation center of the blower impeller.
  • the outer peripheral surface of the mixed flow shape portion 2 a forms a smooth mixed flow surface with few steps between the suction surface 3 a and the hub 2 at the root of the blade 3.
  • the blade 3 is in the form of a blade of a mixed flow fan impeller.
  • the outer peripheral surface of the first axial flow shape portion 2b is , The side surface of a cylinder having a diameter Di of the upper surface 2c.
  • the maximum diameter of the mixed flow shape portion 2a is equal to the assumed diameter Dj of the lower base of the truncated cone.
  • an axial flow shape portion also exists on the pressure surface side (positive pressure surface side) of each blade 3 in the mounting portion of each blade 3 of the hub 2.
  • the axial flow shape is referred to as a pressure surface root.
  • the pressure surface root 2d is a second axial flow shaped portion different from the first axial flow shaped portion 2b.
  • the pressure surface root portion 2d is smooth from the first axial flow shaped portion 2b forming a part of a cylinder having a diameter Di to the mixed flow forming portion 2a having a lower bottom surface forming a part of a truncated cone having a diameter Dj. It forms a curved surface.
  • the outer peripheral surface of the pressure surface root 2d is not limited to a curved surface, and may be, for example, a flat surface.
  • the hub 2 is configured by combining the diagonal flow shape portion 2a, the axial flow shape portion 2b, the upper surface 2c, and the pressure surface root portion 2d. According to this configuration, since the mixed flow shape portion 2a in the vicinity of the blade 3 has the characteristics of the mixed flow fan and the impeller, it is possible to exhibit high static pressure and strong resistance to air flow resistance.
  • the apparent outer diameter of the axial flow shape portion 2b is the maximum diameter of the lower surface of the hub 2 It becomes smaller than Dj, and the axial flow shape part 2b can exhibit the characteristic which suppresses a ventilation resistance, and can improve air volume performance.
  • FIG. 4 is a perspective view of a blower impeller according to Embodiment 2 of the present invention
  • FIG. 5 is a plan view of the blower impeller according to Embodiment 2 of the present invention.
  • the elements corresponding to the elements described in the first embodiment described above are denoted by the same reference numerals, and the detailed description thereof is omitted.
  • the blower impeller according to the second embodiment is different from the blower impeller described in the first embodiment in the axial flow shape portion 2b between the adjacent blades 3
  • the diameter is as small as the diameter Dh of the hub extension 4.
  • the other configuration is the same.
  • the diameter of the axial flow shape part 2b between the adjacent blades 3 is the same as the diameter Dh of the hub extension 4 smaller than the diameter Di of the top surface 2c of the hub 2 by this configuration, the axis The apparent outer diameter of the flow-shaped portion 2b is further reduced, and the axial flow-shaped portion 2b can exhibit the characteristic of suppressing the air flow resistance more greatly.
  • the diagonal flow shape portion 2a in the vicinity of the blade 3 has the characteristics of the diagonal flow fan and the impeller as in the first embodiment described above, so it can exhibit high static pressure and strong resistance to ventilation resistance.
  • FIG. 6 is a perspective view of a blower impeller according to Embodiment 3 of the present invention
  • FIG. 7 is a plan view of the blower impeller according to Embodiment 3 of the present invention
  • FIG. 8 is a perspective view of the fan impeller as viewed from an angle different from that of FIG.
  • Elements corresponding to the elements described in the first and second embodiments are given the same reference numerals, and the detailed description thereof is omitted.
  • the blower impeller according to the third embodiment has an axial flow having a diameter Dh between adjacent blades 3 with respect to the blower impeller described in the second embodiment.
  • the outer peripheral surface of the shape portion 2b and the outer peripheral surface of a portion having a diameter Di near the root of the front edge 3c of the pressure surface root portion 2d are connected by a plane formed by the tangent L of the axial flow shape portion 2b It is a thing. That is, the hub 2 is configured such that a large step difference can not be made at the joint R1 between the outer peripheral surface of the axial flow shaped portion 2b and the outer peripheral surface of the pressure surface root portion 2d.
  • the blower impeller according to the third embodiment has an axial flow-shaped portion between the adjacent blades 3 with respect to the blower impeller described in the second embodiment.
  • the dimension of at least a portion of the air flow direction of 2b and the size of the air flow direction of the pressure surface root portion 2d are shorter from the downstream side of the air flow than the maximum size of the air flow direction of the mixed flow shape portion 2a.
  • the height is partially reduced (the hub height e ⁇ b in FIG. 6).
  • the joint R1 between the outer peripheral surface of the axial flow shape portion 2b and the outer peripheral surface of the pressure surface root portion 2d is chamfered, or the plane formed by the tangent L of the axial flow shape portion 2b is changed to a convex surface which slightly swells. To form a smoother shape. In this way, separation of the air flow in the hub 2 is suppressed, a smoother flow field of the air flow is formed, and the air blowing performance is greatly improved.
  • the blower impeller is further reduced in weight.
  • the structure which makes the height of the hub 2 low partially is applicable also to the air blower impeller in Embodiment 1 and 2 mentioned above.
  • the blower impeller according to the present invention is characterized in that the static pressure of the mixed flow blower impeller is high and strong against the air flow resistance, but in the axial flow portion, the air flow performance is improved by exhibiting the characteristic of suppressing the air flow resistance. It can be applied to uses such as an outdoor unit of an air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A fan impeller having reduced draft resistance and enhanced air blowing performance. A fan impeller (1) provided with a hub (2) and blades (3) extending radially from the hub (2), wherein the hub (2) is configured by combining oblique flow shape sections (2a) and circular column-like axial flow shape portions (2b, 2d). Each oblique flow shape section (2a) is at least located on each blade (3) on the negative pressure surface (3a) side thereof which is at a portion at which the blade (3) is mounted to the hub (2). The axial flow shape portions (2b, 2d) are located at portions other than the portions at which the oblique flow shape sections (2a) are located.

Description

送風機羽根車Blower impeller
 本発明は、空気調和機の室外機などに使用される送風機羽根車に関する。 The present invention relates to a blower impeller used for an outdoor unit of an air conditioner, and the like.
 以下、特許文献1に記載されている既知の送風機羽根車について、図面を交えて説明する。図9は既知の送風機羽根車の斜視図、図10はその風機羽根車を風下側から見た平面図である。図11は他の既知の送風機羽根車の平面図である。 Hereinafter, the known fan impeller described in Patent Document 1 will be described with reference to the drawings. FIG. 9 is a perspective view of a known fan impeller, and FIG. 10 is a plan view of the fan impeller as viewed from the downwind side. FIG. 11 is a plan view of another known blower impeller.
 図9ないし図11に示すように、斜流送風機羽根車11は、略円錐台形状のハブ12と、ハブ12に設けられた複数枚の羽根13とを備える。ハブ12は、円錐ハブ12aと垂直ハブ12bからなる。 As shown in FIGS. 9 to 11, the mixed flow fan impeller 11 includes a substantially truncated cone-shaped hub 12 and a plurality of blades 13 provided on the hub 12. The hub 12 comprises a conical hub 12a and a vertical hub 12b.
 円錐ハブ12aは、羽根13の負圧面と直接つながっており、円錐ハブ12aの外周面は、ハブ12の軸心方向に対して傾斜している。垂直ハブ12bは、隣り合う円錐ハブ12a間に設けられている。また、垂直ハブ12bは、円錐ハブ12aの最小半径近傍より始まり、羽根13の圧力面に直接つながる。垂直ハブ12bの外周面は、ハブ12の軸心方向(垂直方向)に対してほぼ平行である。 The conical hub 12 a is directly connected to the suction surface of the blade 13, and the outer circumferential surface of the conical hub 12 a is inclined with respect to the axial direction of the hub 12. The vertical hubs 12b are provided between adjacent conical hubs 12a. Also, the vertical hub 12 b starts near the minimum radius of the conical hub 12 a and leads directly to the pressure surface of the vane 13. The outer circumferential surface of the vertical hub 12 b is substantially parallel to the axial direction (vertical direction) of the hub 12.
 円錐ハブ12aと垂直ハブ12bとは連続的につながっており、ハブ12は欠落部を持たない。また、ハブ12は、羽根13、円錐ハブ12a、および円錐ハブ12aと垂直ハブ12bとの間の段差部に代を残して垂直ハブ12bの風下側の一部を切り抜いた形状をしている。 The conical hub 12a and the vertical hub 12b are continuously connected, and the hub 12 has no missing part. Further, the hub 12 has a shape in which a portion on the leeward side of the vertical hub 12b is cut out leaving a margin at the step between the blades 13, the conical hub 12a, and the conical hub 12a and the vertical hub 12b.
 以上説明した構成によれば、羽根13の圧力面から羽根13の負圧面に向う空気の洩れ流れにより、羽根13の外周側付近の負圧面に発生する羽根端渦の生成が羽根13の凹状の曲線部において促進される。また、羽根13のハブ12側の凸状の曲線部により、高負荷域における羽根車11の半径方向への空気の流入が円滑になる。 According to the configuration described above, the flow of air leaking from the pressure surface of the blade 13 to the suction surface of the blade 13 generates a blade end vortex generated on the suction surface near the outer peripheral side of the blade 13. It is promoted in the curve. In addition, the convex curved portion on the hub 12 side of the blades 13 facilitates the inflow of air in the radial direction of the impeller 11 in the high load area.
 更に、垂直ハブ12bの風下側の一部が切り抜かれているので、ハブ12の内側へ回り込む空気の流れを誘導する作用が発揮される。すなわち、斜流送風機羽根車11においては、ハブ12の内側の圧力がハブ12の外側の圧力よりも低いので、羽根車11を空気の流れが過ぎていこうとする時、空気の流れがハブ12の内側へ回り込む。そのハブ12の内側へ回り込む空気の流れが、垂直ハブ12bの切り欠き部12cにより誘導される。したがって、斜流送風機羽根車11全体の流動状態が最適になる。 Furthermore, since a part on the downwind side of the vertical hub 12b is cut out, the function of inducing the flow of air that turns around the inside of the hub 12 is exerted. That is, in the mixed flow fan impeller 11, since the pressure inside the hub 12 is lower than the pressure outside the hub 12, when the air flow tries to pass through the impeller 11, the air flow becomes the hub 12 Wrap around inside. The flow of air that turns around the inside of the hub 12 is guided by the notch 12 c of the vertical hub 12 b. Therefore, the flow state of the whole of the diagonal flow fan impeller 11 becomes optimum.
 また、羽根端渦の生成を促進させる作用と、ハブ12の内側へ回り込む空気の流れを誘導する作用とがあいまって、斜流送風機羽根車11においてスムーズな空気の流動状態が実現でき、その結果、低騒音化と送風機効率が改善される。 Further, the action of promoting the generation of the blade end vortices and the action of inducing the flow of the air flowing inward of the hub 12 are combined, and a smooth air flow state can be realized in the mixed flow fan impeller 11, and as a result Low noise and improved blower efficiency.
 また、垂直ハブ12bの一部が切り抜かれているので、その分使用材料が低減されて、コストダウンも実現できる。 In addition, since a part of the vertical hub 12b is cut out, the amount of material used is reduced, and cost reduction can also be realized.
特開2007-291902号公報JP, 2007-291902, A
 しかしながら、上述した既知の送風機羽根車のハブにおいて、軸流形状の垂直ハブ12bが形成されている部分は、羽根13と羽根13との間のわずかな部分である。特に、図11に示すように、2枚の羽根を有する羽根車の場合、羽根13と羽根13との間の大部分は、円錐台形状の円錐ハブ12aで構成されており、図11に示す羽根車は、あくまで斜流羽根車の形状をしている。 However, in the known blower impeller hub described above, the portion where the axial flow shaped vertical hub 12 b is formed is a slight portion between the vanes 13 and 13. In particular, as shown in FIG. 11, in the case of an impeller having two blades, most of the space between the blades 13 and 13 is composed of a conical hub 12a having a truncated cone shape, as shown in FIG. The impeller is in the shape of a diagonal flow impeller.
 確かに、送風機羽根車において、ハブの羽根近傍の形状が円錐台形状であると、いわゆる斜流羽根車の特徴としての静圧が高く通風抵抗に強い特性が得られる。しかし、羽根の枚数が少なくなり、ハブの羽根と羽根との間の形状の大部分が円錐台状になると、ハブの見かけの外径が大きくなることによって、反って通風が妨げられる。 Certainly, in the fan impeller, when the shape near the blade of the hub is a truncated cone, a high static pressure as a feature of a so-called mixed flow impeller is obtained, and a characteristic resistant to ventilation resistance is obtained. However, if the number of blades is reduced and most of the shapes between the blades of the hub are frusto-conical, the apparent outer diameter of the hub is increased, thereby hindering air flow.
 本発明は上記従来の問題を解決するもので、通風抵抗を抑制して送風性能の向上を図ることができる送風機羽根車を提供することを目的とする。 An object of the present invention is to solve the above-mentioned conventional problems, and an object thereof is to provide a blower impeller capable of improving the air blowing performance by suppressing the air flow resistance.
 上記目的を達成するために、第1の発明にかかる送風機羽根車は、回転駆動されるハブと、前記ハブの周囲に配置されて、前記ハブから放射状に延出する複数枚の羽根と、を備える送風機羽根車において、前記ハブが、斜流形状部と円柱の外周部の一部を形成する軸流形状部とを組み合わせて構成されており、前記斜流形状部が、前記ハブの前記各羽根の取り付け部分における前記各羽根の負圧面側に少なくとも存在し、前記軸流形状部が、前記斜流形状部以外の部分に存在することを特徴とする。 In order to achieve the above object, according to a first aspect of the present invention, there is provided a blower impeller including: a rotationally driven hub; and a plurality of blades disposed around the hub and radially extending from the hub In the blower impeller, the hub is configured by combining a mixed flow shape portion and an axial flow shape portion that forms a part of an outer peripheral portion of a column, and the mixed flow shape portion includes each of the hubs. The present invention is characterized in that at least the suction surface side of each blade in the attachment portion of the blade is present, and the axial flow shape portion is present in a portion other than the mixed flow shape portion.
 この構成によれば、斜流羽根の近傍は、斜流送風機羽根車の特徴を持つため、静圧が高く通風抵抗に強い特性を発揮することができる。同時に、羽根と羽根との間の軸流形状部は、通風抵抗を抑制する特性を発揮することができ、風量性能を向上させることができる。 According to this configuration, since the vicinity of the mixed flow vane has the characteristics of the mixed flow fan and the impeller, high static pressure and high resistance to ventilation resistance can be exhibited. At the same time, the axial flow shaped portion between the blades can exhibit the characteristic of suppressing the air flow resistance, and the air volume performance can be improved.
 また、第2の発明にかかる送風機羽根車は、回転駆動されるハブと、前記ハブの周囲に配置されて、前記ハブから放射状に延出する複数枚の羽根と、を備える送風機羽根車において、前記ハブが、斜流形状部と円柱の外周部の一部を形成する軸流形状部とを組み合わせて構成されており、前記斜流形状部が、前記ハブの前記各羽根の取り付け部分における前記各羽根の負圧面側に少なくとも存在し、前記軸流形状部が、前記斜流形状部以外の部分に存在し、前記ハブの前記各羽根の間の前記軸流形状部の外周面の直径が、前記ハブの風上側となる上面の直径より小さいことを特徴とする。 A blower impeller according to a second aspect of the present invention is a blower impeller including: a rotationally driven hub; and a plurality of blades disposed around the hub and radially extending from the hub. The hub is configured by combining a mixed flow shape portion and an axial flow shape portion that forms a part of an outer peripheral portion of a cylinder, and the mixed flow shape portion is formed of the above-mentioned attached portions of the blades of the hub. The axial flow shape portion exists at least on the suction surface side of each blade, and the axial flow shape portion exists in a portion other than the diagonal flow shape portion, and the diameter of the outer peripheral surface of the axial flow shape portion between the blades of the hub is And the diameter of the upper surface of the hub, which is on the windward side.
 この構成によれば、羽根と羽根との間の軸流形状部の外周面の直径が、ハブの風上側となる上面の直径より小さいので、風量性能が向上すると共に、軽量化が達成される。 According to this configuration, since the diameter of the outer peripheral surface of the axial flow shape portion between the blades is smaller than the diameter of the upper surface on the windward side of the hub, air volume performance is improved and weight reduction is achieved. .
 また、第3の発明にかかる送風機羽根車は、上述した第2の発明にかかる送風機羽根車において、前記ハブの前記軸流形状部のうち、前記各羽根の間の部分を第1の軸流形状部分とし、前記各羽根の取り付け部分における前記各羽根の正圧面側の部分を第2の軸流形状部分とした場合、前記ハブが、前記第1の軸流形状部分の外周面と、前記第1の軸流形状部分の外周面よりも直径が大きい前記第2の軸流形状部分の外周面との間に段差が形成されないように構成されていることを特徴とする。この構成によれば、ハブの軸流形状から斜流形状に至る部分の段差での気流の衝突が緩和されると共に、ハブにおける気流の剥離が抑制される。したがって、送風性能が向上する。 A blower impeller according to a third aspect of the present invention is the fan impeller according to the second aspect of the present invention, wherein a portion between the blades in the axial flow shaped portion of the hub is a first axial flow When the portion on the positive pressure surface side of each blade in the mounting portion of each blade is used as a second axial flow shape portion, the hub is the outer peripheral surface of the first axial flow shape portion, and It is characterized in that a step is not formed between the outer peripheral surface of the second axial flow-shaped portion and the outer peripheral surface of the first axial flow-shaped portion having a diameter larger than that of the outer peripheral surface. According to this configuration, the collision of the air flow at the step between the axial flow shape and the mixed flow shape of the hub is alleviated, and the separation of the air flow at the hub is suppressed. Therefore, the air blowing performance is improved.
 また、第4の発明にかかる送風機羽根車は、上述した第3の発明にかかる送風機羽根車において、前記第1の軸流形状部分の外周面と、前記第1の軸流形状部分の外周面よりも直径が大きい前記第2の軸流形状部分の外周面とを、前記第1の軸流形状部分の接線に基づく平面で繋ぐことで、前記ハブが、前記第1の軸流形状部分の外周面と前記第2の軸流形状部分の外周面との間に段差が形成されないように構成されていることを特徴とする。この構成によれば、ハブの軸流形状から斜流形状に至る部分の段差での気流の衝突が緩和されると共に、ハブにおける気流の剥離が抑制される。したがって、送風性能が向上する。 A blower impeller according to a fourth aspect of the present invention is the fan impeller according to the third aspect of the present invention, wherein the outer peripheral surface of the first axial flow shape portion and the outer peripheral surface of the first axial flow shape portion The hub is formed by connecting the outer peripheral surface of the second axial flow-shaped portion having a larger diameter than that of the first axial flow-shaped portion with a plane based on a tangent of the first axial flow-shaped portion. A step is not formed between the outer peripheral surface and the outer peripheral surface of the second axial flow shaped portion. According to this configuration, the collision of the air flow at the step between the axial flow shape and the mixed flow shape of the hub is alleviated, and the separation of the air flow at the hub is suppressed. Therefore, the air blowing performance is improved.
 また、第5の発明にかかる送風機羽根車は、上述した第1ないし第4の発明にかかる送風機羽根車において、前記ハブの前記軸流形状部の少なくとも一部の気流方向の寸法が、前記斜流形状部の気流方向の最大寸法よりも小さいことを特徴とする。この構成によれば、ハブが小さくなるので、軽量化が達成される。 A fan impeller according to a fifth aspect of the present invention is the fan impeller according to the first through fourth aspects described above, wherein at least a part of the axial flow shape portion of the hub has a dimension in the air flow direction It is characterized by being smaller than the largest dimension of the flow direction of a flow shape part. According to this configuration, weight reduction is achieved because the hub is smaller.
 以上のように、本発明にかかる送風機羽根車によれば、ハブの羽根の取り付け部分が斜流形状であるので、斜流羽根の近傍が、斜流送風機羽根車の特徴を持ち、静圧が高く通風抵抗に強い特性を発揮する。同時に、羽根と羽根との間の軸流形状部分は、通風抵抗を抑制する特性を発揮することができ、風量性能を向上させることができる。 As described above, according to the fan impeller of the present invention, since the blade attachment portion of the hub has a diagonal flow shape, the vicinity of the diagonal flow vane has the characteristics of the diagonal flow fan impeller, and the static pressure is Exhibits high resistance to ventilation resistance. At the same time, the axial flow shaped portion between the blades can exhibit the characteristic of suppressing the air flow resistance, and the air volume performance can be improved.
 さらに、ハブの各羽根の間の軸流形状部の外周面の直径を、ハブの風上側となる上面の直径より小さくすることにより、風量性能がより大きく向上する。同時に、より一層の軽量化が達成される。 Furthermore, the air volume performance is further improved by making the diameter of the outer peripheral surface of the axial flow shape portion between the blades of the hub smaller than the diameter of the upper surface on the windward side of the hub. At the same time, further weight reduction is achieved.
 このように、本発明にかかる送風機羽根車は、斜流送風機羽根車の静圧が高く通風抵抗に強い特徴を持ちながら、軸流部分においては通風抵抗を抑制する特性を発揮して風量性能の向上を図るものであり、空気調和機の室外機などの用途に適用することができる。 As described above, the blower impeller according to the present invention is characterized in that the static pressure of the mixed flow fan impeller is high and the resistance against the air flow resistance is high, while the air flow performance is characterized by suppressing the air flow resistance in the axial flow portion. It is intended to improve and can be applied to applications such as an outdoor unit of an air conditioner.
本発明の実施の形態1における送風機羽根車の斜視図The perspective view of the fan impeller in Embodiment 1 of this invention 本発明の実施の形態1における送風機羽根車の平面図Top view of blower fan according to Embodiment 1 of the present invention 本発明の実施の形態1における送風機羽根車の側面図Side view of blower fan according to Embodiment 1 of the present invention 本発明の実施の形態2における送風機羽根車の斜視図The perspective view of the fan impeller in Embodiment 2 of this invention 本発明の実施の形態2における送風機羽根車の平面図Top view of blower fan according to Embodiment 2 of the present invention 本発明の実施の形態3における送風機羽根車の斜視図The perspective view of the fan impeller in Embodiment 3 of this invention 本発明の実施の形態3における送風機羽根車の平面図Top view of blower fan according to Embodiment 3 of the present invention 本発明の実施の形態3における送風機羽根車の斜視図The perspective view of the fan impeller in Embodiment 3 of this invention 既知の送風機羽根車の斜視図Perspective view of a known blower impeller 既知の送風機羽根車を風下側から見た平面図Top view of known fan impeller from downwind side 他の既知の送風機羽根車の平面図Top view of other known blower impellers
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明は限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited by this embodiment.
  (実施の形態1)
 図1は本発明の実施の形態1における送風機羽根車の斜視図、図2は本発明の実施の形態1における送風機羽根車の平面図、図3は本発明の実施の形態1における送風機羽根車の側面図である。この送風機羽根車1が、図2に示す回転方向に回転すると、図2の図面上、手前から奥へ向う方向に気流が生ずる。
Embodiment 1
1 is a perspective view of a blower impeller according to Embodiment 1 of the present invention, FIG. 2 is a plan view of the blower impeller according to Embodiment 1 of the present invention, and FIG. 3 is a blower impeller according to Embodiment 1 of the present invention Side view of FIG. When the fan impeller 1 is rotated in the rotational direction shown in FIG. 2, an air flow is generated in the direction from the near side to the far side in the drawing of FIG.
 図1から図3に示すように、送風機羽根車1は、ハブ2と、ハブ2の周囲に配置されて、ハブ2から放射状に延出する複数枚の羽根3と、を備える。ハブ2は、外部よりファンモータ(図示せず)の回転力を受けて回転駆動される。 As shown in FIGS. 1 to 3, the blower impeller 1 includes a hub 2 and a plurality of blades 3 disposed around the hub 2 and radially extending from the hub 2. The hub 2 is rotationally driven by the rotational force of a fan motor (not shown) from the outside.
 ハブ2は、斜流形状部2aと軸流形状部2bと上面2cとを備える。斜流形状部2aの外周面は、円錐台の側面形状を有する。軸流形状部2bの外周面は、円柱の側面形状を有する。上面2cは、前記した円錐台の上底面の形状を有する。 The hub 2 includes a mixed flow shape portion 2a, an axial flow shape portion 2b, and an upper surface 2c. The outer peripheral surface of the mixed flow shape portion 2a has a side surface shape of a truncated cone. The outer peripheral surface of the axial flow shape part 2b has a side surface shape of a cylinder. The upper surface 2c has the shape of the upper bottom surface of the truncated cone described above.
 斜流形状部2aは、ハブ2の各羽根3の取り付け部分における各羽根3の負圧面側に少なくとも存在し、軸流形状部2bは、斜流形状部2a以外の部分に存在する。ここで、軸流形状とは、送風機羽根車1の回転軸と平行な形状を云う。 The mixed flow shape part 2a exists at least on the negative pressure surface side of each blade 3 in the attachment part of each blade 3 of the hub 2, and the axial flow shape part 2b exists in parts other than the mixed flow shape part 2a. Here, the axial flow shape refers to a shape parallel to the rotation axis of the fan impeller 1.
 この実施の形態1では、羽根車1は2枚の羽根3を備える。ハブ2は、羽根3の取り付け部分と、羽根3の付け根が存在しない軸流形状部2bとが、図2に示す平面図上で、ほぼ4分の1ずつ交互に配置されて構成されている。なお、この実施の形態1では、図2に示すように、送風機羽根車1の回転中心を回転軸とする円錐台を想定して、その円錐台の上底面、すなわちハブ2の上面2cの直径をDiとし、その円錐台の下底面の直径をDjとする。 In the first embodiment, the impeller 1 is provided with two blades 3. The hub 2 is configured such that the attachment portions of the blades 3 and the axial flow shape portions 2b in which the roots of the blades 3 do not exist are alternately arranged by approximately one fourth on the plan view shown in FIG. . In the first embodiment, as shown in FIG. 2, assuming a truncated cone whose rotation axis is the center of rotation of the fan impeller 1, the upper bottom surface of the truncated cone, ie, the diameter of the upper surface 2c of the hub 2 Let Di be the diameter of the lower base of the frustum Dj.
 また、ハブ2の風上側には、ファンモーターのシャフトが固定されるボス〈図示せず〉を埋め込んだハブ延長部4が設けられている。このハブ延長部4は、軸流形状部2bの直径Diより小さい直径Dhの円柱状に形成されている。 Further, on the windward side of the hub 2, a hub extension 4 in which a boss (not shown) to which a shaft of a fan motor is fixed is embedded. The hub extension 4 is formed in a cylindrical shape having a diameter Dh smaller than the diameter Di of the axial flow shape portion 2b.
 図1および図2において、斜流形状部2aの外周面は、斜線のハッチングを施して示している。斜流形状部2aの外周面は、必ずしも、送風機羽根車の回転中心を回転軸とする単一の円錐台の一部を形成する必要はない。斜流形状部2aの外周面は、羽根3の付け根において、負圧面3aとハブ2との段差が少ないスムーズな斜流面を形成している。なお、羽根3は、斜流送風機羽根車の羽根の形態を成している。 In FIG. 1 and FIG. 2, the outer peripheral surface of the mixed flow shape part 2a is hatched with oblique lines. The outer peripheral surface of the mixed flow shape portion 2a does not necessarily have to form a part of a single truncated cone whose rotation axis is the rotation center of the blower impeller. The outer peripheral surface of the mixed flow shape portion 2 a forms a smooth mixed flow surface with few steps between the suction surface 3 a and the hub 2 at the root of the blade 3. The blade 3 is in the form of a blade of a mixed flow fan impeller.
 また、ハブ2の羽根3と羽根3との間で羽根3の付け根が存在しない軸流形状部2bを第1の軸流形状部分とすると、この第1の軸流形状部分2bの外周面は、上面2cの直径Diを有する円柱の側面そのものである。またここでは、斜流形状部2aの最大直径は、想定した円錐台の下底面の直径Djと同であるものとする。 Further, assuming that the axial flow shape portion 2b in which the root of the blade 3 does not exist between the blades 3 and 3 of the hub 2 is a first axial flow shape portion, the outer peripheral surface of the first axial flow shape portion 2b is , The side surface of a cylinder having a diameter Di of the upper surface 2c. Here, it is assumed that the maximum diameter of the mixed flow shape portion 2a is equal to the assumed diameter Dj of the lower base of the truncated cone.
 この実施の形態1では、ハブ2の各羽根3の取り付け部分における各羽根3の圧力面側(正圧面側)にも軸流形状部が存在する。ここでは、その軸流形状部を圧力面付け根部と云う。 In the first embodiment, an axial flow shape portion also exists on the pressure surface side (positive pressure surface side) of each blade 3 in the mounting portion of each blade 3 of the hub 2. Here, the axial flow shape is referred to as a pressure surface root.
 圧力面付け根部2dは、第1の軸流形状部分2bとは異なる第2の軸流形状部分である。この圧力面付け根部2dは、直径Diを有する円柱の一部を成す第1の軸流形状部分2bから、下底面が直径Djを有する円錐台の一部を成す斜流形状部2aにかけてスムーズな曲面を形成している。なお、圧力面付け根部2dの外周面は曲面に限るものではなく、例えば平面でもよい。 The pressure surface root 2d is a second axial flow shaped portion different from the first axial flow shaped portion 2b. The pressure surface root portion 2d is smooth from the first axial flow shaped portion 2b forming a part of a cylinder having a diameter Di to the mixed flow forming portion 2a having a lower bottom surface forming a part of a truncated cone having a diameter Dj. It forms a curved surface. In addition, the outer peripheral surface of the pressure surface root 2d is not limited to a curved surface, and may be, for example, a flat surface.
 このように、この実施の形態1では、ハブ2は、斜流形状部2aと軸流形状部2bと上面2cと圧力面付け根部2dを組み合わせて構成されている。この構成によれば、羽根3の近傍の斜流形状部2aは、斜流送風機羽根車の特徴を持つため、静圧が高く通風抵抗に強い特性を発揮することができる。同時に、隣り合う羽根3の間の軸流形状部2bの直径がハブ2の上面2cの直径Diと同じであるので、その軸流形状部2bの見かけの外径がハブ2の下面の最大直径Djより小さくなり、その軸流形状部2bは、通風抵抗を抑制する特性を発揮して、風量性能を向上させることができる。 Thus, in the first embodiment, the hub 2 is configured by combining the diagonal flow shape portion 2a, the axial flow shape portion 2b, the upper surface 2c, and the pressure surface root portion 2d. According to this configuration, since the mixed flow shape portion 2a in the vicinity of the blade 3 has the characteristics of the mixed flow fan and the impeller, it is possible to exhibit high static pressure and strong resistance to air flow resistance. At the same time, since the diameter of the axial flow shape portion 2b between the adjacent blades 3 is the same as the diameter Di of the upper surface 2c of the hub 2, the apparent outer diameter of the axial flow shape portion 2b is the maximum diameter of the lower surface of the hub 2 It becomes smaller than Dj, and the axial flow shape part 2b can exhibit the characteristic which suppresses a ventilation resistance, and can improve air volume performance.
 すなわち、ハブ2の2つの形状部分のそれぞれの特性が発揮されて、送風機羽根車1全体として風量性能が向上する。 That is, the respective characteristics of the two shaped portions of the hub 2 are exhibited, and the air volume performance of the entire fan impeller 1 is improved.
  (実施の形態2)
 図4は本発明の実施の形態2における送風機羽根車の斜視図、図5は本発明の実施の形態2における送風機羽根車の平面図である。なお、前述した実施の形態1において説明した要素に対応する要素には同一符号を付して、それらの詳しい説明は省略する。
Second Embodiment
FIG. 4 is a perspective view of a blower impeller according to Embodiment 2 of the present invention, and FIG. 5 is a plan view of the blower impeller according to Embodiment 2 of the present invention. The elements corresponding to the elements described in the first embodiment described above are denoted by the same reference numerals, and the detailed description thereof is omitted.
 図4、図5に示すように、この実施の形態2における送風機羽根車は、前述の実施の形態1で説明した送風機羽根車に対して、隣り合う羽根3の間の軸流形状部2bの直径をハブ延長部4の直径Dhと同等まで小さくしたものである。それ以外の構成は同じである。 As shown in FIGS. 4 and 5, the blower impeller according to the second embodiment is different from the blower impeller described in the first embodiment in the axial flow shape portion 2b between the adjacent blades 3 The diameter is as small as the diameter Dh of the hub extension 4. The other configuration is the same.
 このように構成することにより、隣り合う羽根3の間の軸流形状部2bの直径が、ハブ2の上面2cの直径Diよりも小さいハブ延長部4の直径Dhと同じであるので、その軸流形状部2bの見かけの外径がさらに小さくなり、その軸流形状部2bは、通風抵抗を抑制する特性をさらに大きく発揮することができる。羽根3の近傍の斜流形状部2aは、前述した実施の形態1と同様に斜流送風機羽根車の特徴を持つため、静圧が高く通風抵抗に強い特性を発揮することができる。 Since the diameter of the axial flow shape part 2b between the adjacent blades 3 is the same as the diameter Dh of the hub extension 4 smaller than the diameter Di of the top surface 2c of the hub 2 by this configuration, the axis The apparent outer diameter of the flow-shaped portion 2b is further reduced, and the axial flow-shaped portion 2b can exhibit the characteristic of suppressing the air flow resistance more greatly. The diagonal flow shape portion 2a in the vicinity of the blade 3 has the characteristics of the diagonal flow fan and the impeller as in the first embodiment described above, so it can exhibit high static pressure and strong resistance to ventilation resistance.
 このように、ハブ2の2つの形状部分のそれぞれの特性が発揮されて、送風機羽根車1全体として風量性能がより大きく向上する。さらに、隣り合う羽根3の間の軸流形状部2bの直径が小さくなるので、軽量化が達成される。 Thus, the respective characteristics of the two shaped portions of the hub 2 are exhibited, and the air volume performance of the entire fan impeller 1 is further improved. Furthermore, since the diameter of the axial flow shaped portion 2b between the adjacent blades 3 is reduced, weight reduction is achieved.
  (実施の形態3)
 図6は本発明の実施の形態3における送風機羽根車の斜視図、図7は本発明の実施の形態3における送風機羽根車の平面図である。また、図8は、図6とは異なる角度から見た送風機羽根車の斜視図である。なお、前述した実施の形態1および2において説明した要素に対応する要素には同一符号を付して、それらの詳しい説明は省略する。
Third Embodiment
FIG. 6 is a perspective view of a blower impeller according to Embodiment 3 of the present invention, and FIG. 7 is a plan view of the blower impeller according to Embodiment 3 of the present invention. FIG. 8 is a perspective view of the fan impeller as viewed from an angle different from that of FIG. Elements corresponding to the elements described in the first and second embodiments are given the same reference numerals, and the detailed description thereof is omitted.
 図6ないし図8に示すように、この実施の形態3における送風機羽根車は、前述の実施の形態2で説明した送風機羽根車に対して、隣り合う羽根3の間の直径Dhを有する軸流形状部2bの外周面と、圧力面付け根部2dの羽根3の前縁3cの付け根近傍の直径Diを有する部分の外周面とを、軸流形状部2bの接線Lにより形成される平面で繋いだものである。すなわち、軸流形状部2bの外周面と圧力面付け根部2dの外周面との繋ぎ目R1に大きな段差ができないようにハブ2が構成されている。 As shown in FIG. 6 to FIG. 8, the blower impeller according to the third embodiment has an axial flow having a diameter Dh between adjacent blades 3 with respect to the blower impeller described in the second embodiment. The outer peripheral surface of the shape portion 2b and the outer peripheral surface of a portion having a diameter Di near the root of the front edge 3c of the pressure surface root portion 2d are connected by a plane formed by the tangent L of the axial flow shape portion 2b It is a thing. That is, the hub 2 is configured such that a large step difference can not be made at the joint R1 between the outer peripheral surface of the axial flow shaped portion 2b and the outer peripheral surface of the pressure surface root portion 2d.
 さらに、図6と図8に示すように、この実施の形態3における送風機羽根車は、前述の実施の形態2で説明した送風機羽根車に対して、隣り合う羽根3の間の軸流形状部2bの少なくとも一部の気流方向の寸法、および圧力面付け根部2dの気流方向の寸法を、斜流形状部2aの気流方向の最大寸法よりも、気流の下流側から短くして、ハブ2の高さを部分的に低く形成したものである(図6においてハブ高さe<b)。 Furthermore, as shown in FIG. 6 and FIG. 8, the blower impeller according to the third embodiment has an axial flow-shaped portion between the adjacent blades 3 with respect to the blower impeller described in the second embodiment. The dimension of at least a portion of the air flow direction of 2b and the size of the air flow direction of the pressure surface root portion 2d are shorter from the downstream side of the air flow than the maximum size of the air flow direction of the mixed flow shape portion 2a. The height is partially reduced (the hub height e <b in FIG. 6).
 なお、以上説明した以外の構成は、前述の実施の形態2における送風機羽根車と同じである。 The configuration other than that described above is the same as the fan impeller in the second embodiment described above.
 このように構成することにより、軸流形状部2bの外周面と圧力面付け根部2dの外周面との間に段差ができないので、段差による気流の衝突が防止され、円滑な気流の流れ場が形成されて、送風性能が向上する。 With such a configuration, no level difference can be made between the outer peripheral surface of the axial flow shape portion 2b and the outer peripheral surface of the pressure surface root portion 2d, so that the collision of the air flow due to the level difference is prevented, and the smooth flow area of the air flow is obtained. It is formed to improve the blowing performance.
 また、軸流形状部2bの外周面と圧力面付け根部2dの外周面との繋ぎ目R1を面取りしたり、軸流形状部2bの接線Lにより形成される平面を、わずかに膨らむ凸面に変更して、より滑らかな形状を構成してもよい。このようにすれば、ハブ2における気流の剥離が抑制され、より円滑な気流の流れ場が形成されて、送風性能がより大きく向上する。 In addition, the joint R1 between the outer peripheral surface of the axial flow shape portion 2b and the outer peripheral surface of the pressure surface root portion 2d is chamfered, or the plane formed by the tangent L of the axial flow shape portion 2b is changed to a convex surface which slightly swells. To form a smoother shape. In this way, separation of the air flow in the hub 2 is suppressed, a smoother flow field of the air flow is formed, and the air blowing performance is greatly improved.
 また、ハブ2の高さが部分的に低くなることで、送風機羽根車がより軽量化される。 In addition, as the height of the hub 2 partially decreases, the blower impeller is further reduced in weight.
 なお、ハブ2の高さを部分的に低くする構成は、前述した実施の形態1および2における送風機羽根車にも適用することができる。 In addition, the structure which makes the height of the hub 2 low partially is applicable also to the air blower impeller in Embodiment 1 and 2 mentioned above.
 本発明にかかる送風機羽根車は、斜流送風機羽根車の静圧が高く通風抵抗に強い特徴を持ちながら、軸流部分においては通風抵抗を抑制する特性を発揮して風量性能の向上を図るものであり、空気調和機の室外機などの用途に適用することができる。 The blower impeller according to the present invention is characterized in that the static pressure of the mixed flow blower impeller is high and strong against the air flow resistance, but in the axial flow portion, the air flow performance is improved by exhibiting the characteristic of suppressing the air flow resistance. It can be applied to uses such as an outdoor unit of an air conditioner.

Claims (5)

  1.  回転駆動されるハブと、前記ハブの周囲に配置されて、前記ハブから放射状に延出する複数枚の羽根と、を備える送風機羽根車において、
     前記ハブは、斜流形状部と円柱の外周部の一部を形成する軸流形状部とを組み合わせて構成されており、
     前記斜流形状部は、前記ハブの前記各羽根の取り付け部分における前記各羽根の負圧面側に少なくとも存在し、
     前記軸流形状部は、前記斜流形状部以外の部分に存在する
    ことを特徴とする送風機羽根車。
    A blower impeller comprising: a rotationally driven hub; and a plurality of blades disposed around the hub and radially extending from the hub.
    The hub is configured by combining a mixed flow shape portion and an axial flow shape portion that forms a part of an outer peripheral portion of a cylinder,
    The mixed flow shape portion exists at least on the suction surface side of each blade in the mounting portion of each blade of the hub,
    The fan impeller according to claim 1, wherein the axial flow shape portion exists in a portion other than the mixed flow shape portion.
  2.  回転駆動されるハブと、前記ハブの周囲に配置されて、前記ハブから放射状に延出する複数枚の羽根と、を備える送風機羽根車において、
     前記ハブは、斜流形状部と円柱の外周部の一部を形成する軸流形状部とを組み合わせて構成されており、
     前記斜流形状部は、前記ハブの前記各羽根の取り付け部分における前記各羽根の負圧面側に少なくとも存在し、
     前記軸流形状部は、前記斜流形状部以外の部分に存在し、
     前記ハブの前記各羽根の間の前記軸流形状部の外周面の直径が、前記ハブの風上側となる上面の直径より小さい
    ことを特徴とする送風機羽根車。
    A blower impeller comprising: a rotationally driven hub; and a plurality of blades disposed around the hub and radially extending from the hub.
    The hub is configured by combining a mixed flow shape portion and an axial flow shape portion that forms a part of an outer peripheral portion of a cylinder,
    The mixed flow shape portion exists at least on the suction surface side of each blade in the mounting portion of each blade of the hub,
    The axial flow shape portion exists in a portion other than the mixed flow shape portion,
    The fan impeller according to claim 1, wherein a diameter of an outer peripheral surface of the axial flow shape portion between the blades of the hub is smaller than a diameter of an upper surface on the windward side of the hub.
  3.  前記ハブの前記軸流形状部のうち、前記各羽根の間の部分を第1の軸流形状部分とし、前記各羽根の取り付け部分における前記各羽根の正圧面側の部分を第2の軸流形状部分とした場合、前記ハブは、前記第1の軸流形状部分の外周面と、前記第1の軸流形状部分の外周面よりも直径が大きい前記第2の軸流形状部分の外周面との間に段差が形成されないように構成されていることを特徴とする請求項2記載の送風機羽根車。 Of the axial flow-shaped portions of the hub, a portion between the blades is used as a first axial flow-shaped portion, and a portion on the pressure side of each blade in the mounting portion of the blades is a second axial flow In the case of the shape portion, the hub has an outer peripheral surface of the first axial flow shape portion and an outer peripheral surface of the second axial flow shape portion having a diameter larger than the outer peripheral surface of the first axial flow shape portion. The fan impeller according to claim 2, characterized in that no step is formed therebetween.
  4.  前記ハブは、前記第1の軸流形状部分の外周面と、前記第1の軸流形状部分の外周面よりも直径が大きい前記第2の軸流形状部分の外周面とを、前記第1の軸流形状部分の接線に基づく平面で繋ぐことで、前記第1の軸流形状部分の外周面と前記第2の軸流形状部分の外周面との間に段差が形成されないように構成されていることを特徴とする請求項3記載の送風機羽根車。 The hub includes an outer peripheral surface of the first axial flow-shaped portion and an outer peripheral surface of the second axial flow-shaped portion having a diameter larger than that of the first axial flow-shaped portion. Connected by a plane based on a tangent of the axial flow shaped portion, so that no step is formed between the outer peripheral surface of the first axial flow shaped portion and the outer peripheral surface of the second axial flow shaped portion The fan impeller according to claim 3, characterized in that:
  5.  前記ハブの前記軸流形状部の少なくとも一部の気流方向の寸法が、前記斜流形状部の気流方向の最大寸法よりも小さいことを特徴とする請求項1ないし4のいずれかに記載の送風機羽根車。
     
     
    The fan according to any one of claims 1 to 4, wherein a dimension in an air flow direction of at least a part of the axial flow shape portion of the hub is smaller than a maximum dimension in the air flow direction of the mixed flow shape portion. Impeller.

PCT/JP2010/001632 2009-03-10 2010-03-09 Fan impeller WO2010103797A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080006293.4A CN102301143B (en) 2009-03-10 2010-03-09 Fan impeller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-056213 2009-03-10
JP2009056213A JP5120299B2 (en) 2009-03-10 2009-03-10 Blower impeller

Publications (1)

Publication Number Publication Date
WO2010103797A1 true WO2010103797A1 (en) 2010-09-16

Family

ID=42728093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001632 WO2010103797A1 (en) 2009-03-10 2010-03-09 Fan impeller

Country Status (3)

Country Link
JP (1) JP5120299B2 (en)
CN (1) CN102301143B (en)
WO (1) WO2010103797A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104024649A (en) * 2011-12-28 2014-09-03 大金工业株式会社 Axial flow fan

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265491A (en) * 1991-02-21 1992-09-21 Matsushita Electric Ind Co Ltd Mixed flow impeller
JP2006063879A (en) * 2004-08-26 2006-03-09 Daikin Ind Ltd Propeller fan
JP2007162542A (en) * 2005-12-13 2007-06-28 Matsushita Electric Ind Co Ltd Blower impeller and air conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323397A (en) * 1989-05-12 1991-01-31 Matsushita Electric Ind Co Ltd Impeller
JPH0325897U (en) * 1989-07-21 1991-03-18
JP2760606B2 (en) * 1989-11-10 1998-06-04 株式会社東芝 Axial fan
JPH0436096A (en) * 1990-05-30 1992-02-06 Matsushita Refrig Co Ltd Impeller for axial flow blower
JPH05340390A (en) * 1991-07-02 1993-12-21 Toshiba Corp Fan structure
ITBO20040468A1 (en) * 2004-07-23 2004-10-23 Spal Srl AXIAL FAN WITH INCREASED FLOW

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265491A (en) * 1991-02-21 1992-09-21 Matsushita Electric Ind Co Ltd Mixed flow impeller
JP2006063879A (en) * 2004-08-26 2006-03-09 Daikin Ind Ltd Propeller fan
JP2007162542A (en) * 2005-12-13 2007-06-28 Matsushita Electric Ind Co Ltd Blower impeller and air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104024649A (en) * 2011-12-28 2014-09-03 大金工业株式会社 Axial flow fan
EP2799720A1 (en) * 2011-12-28 2014-11-05 Daikin Industries, Ltd. Axial flow fan
EP2799720A4 (en) * 2011-12-28 2014-12-03 Daikin Ind Ltd Axial flow fan
US9051941B2 (en) 2011-12-28 2015-06-09 Daikin Industries, Ltd. Axial-flow fan
CN104024649B (en) * 2011-12-28 2019-05-03 大金工业株式会社 Aerofoil fan

Also Published As

Publication number Publication date
CN102301143B (en) 2014-10-22
JP2010209774A (en) 2010-09-24
CN102301143A (en) 2011-12-28
JP5120299B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
AU2013321833B2 (en) Propeller fan and air conditioner equipped with same
JP5880288B2 (en) Blower
JP6063619B2 (en) Centrifugal fan
JP5728209B2 (en) Centrifugal fan
CN210050072U (en) Axial-flow fan
JP5151331B2 (en) Multi-blade impeller and multi-blade fan
KR101817956B1 (en) Impeller for a blower
JP2007247494A (en) Diagonal flow blower impeller
WO2010103797A1 (en) Fan impeller
JPH06307397A (en) Propeller fan and air conditioner provided therewith
US20130330182A1 (en) Centrifugal blower
JP2010101227A (en) Propeller fan, fluid feeding device, and molding die
JP2006077631A (en) Impeller for centrifugal blower
JP2006258107A (en) Axial blower
US11536288B2 (en) Propeller fan
CN108105158A (en) Diffuser, wind turbine, dust catcher and smoke extractor
JP4797776B2 (en) Mixed flow blower impeller and air conditioner
JPS6361800A (en) Axial fan
JP6930644B1 (en) Propeller fan
JP4649146B2 (en) Propeller fan
CN215171036U (en) Centrifugal impeller and centrifugal fan
JP4476960B2 (en) Axial fan
JP5890972B2 (en) Centrifugal fan impeller
JP2009275696A (en) Propeller fan, and air conditioner using it
US6210114B1 (en) Cross flow fan for air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080006293.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750554

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10750554

Country of ref document: EP

Kind code of ref document: A1