WO2010103756A1 - Module component, method for manufacturing same, and electronic apparatus using the module component - Google Patents

Module component, method for manufacturing same, and electronic apparatus using the module component Download PDF

Info

Publication number
WO2010103756A1
WO2010103756A1 PCT/JP2010/001496 JP2010001496W WO2010103756A1 WO 2010103756 A1 WO2010103756 A1 WO 2010103756A1 JP 2010001496 W JP2010001496 W JP 2010001496W WO 2010103756 A1 WO2010103756 A1 WO 2010103756A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
metal film
module component
sealing
top surface
Prior art date
Application number
PCT/JP2010/001496
Other languages
French (fr)
Japanese (ja)
Inventor
岩宮裕樹
堺幸雄
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009056198A external-priority patent/JP5391747B2/en
Priority claimed from JP2009093819A external-priority patent/JP2010245931A/en
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2010103756A1 publication Critical patent/WO2010103756A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • H01L2924/1617Cavity coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/141One or more single auxiliary printed circuits mounted on a main printed circuit, e.g. modules, adapters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09145Edge details
    • H05K2201/0919Exposing inner circuit layers or metal planes at the side edge of the printed circuit board [PCB] or at the walls of large holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/0929Conductive planes
    • H05K2201/09354Ground conductor along edge of main surface
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3442Leadless components having edge contacts, e.g. leadless chip capacitors, chip carriers

Definitions

  • the present invention relates to a module part molded with resin and an electronic device using the module part.
  • FIG. 29 is a cross-sectional view of a conventional module component 1 described in Patent Document 1.
  • the module component 1 includes a circuit board 5, a wiring pattern 4 disposed on the circuit board 5, a ground layer 6 disposed inside the circuit board 5, a component 7 mounted on the wiring pattern 4,
  • the sealing part 3 which seals the circumference
  • the ground layer 6 exposed on the side surface of the circuit board 5 is electrically connected to the metal film 2.
  • the metal film 2 has a shielding effect for suppressing radiation received from the outside of the module component 1 and noise generated from the inside.
  • FIGS. 30A to 30C are cross-sectional views showing a method for manufacturing the module component 1.
  • the ground pattern 8 is arranged on the lower surface of the circuit board 5.
  • the shielding effect can be enhanced by electrically connecting the metal film 2 and the ground pattern 8.
  • a module component 1P is manufactured by mounting the component 7 on the circuit board 5 and providing the sealing portion 3.
  • a resist 9 such as a photoresist is formed on the lower surface of the module component 1P where the metal film 2 is not formed on the portion where the metal film 2 is not formed.
  • a metal film 2 is formed on the surface of the module component 1P to produce the module component 1Q. Since the resist 9 is disposed on the lower surface of the circuit board 5, the metal film 2 is not formed except for the ground pattern 8 on the lower surface.
  • the module 9 is manufactured by removing the resist 9 together with the metal film 2 covering the resist 9 by a patterning method called lift-off or the like.
  • a part of the metal film 2 becomes fragments 11A, 11B, and 11C.
  • the fragment 11C which is a part of those fragments, adheres onto the wiring pattern 4 and causes problems such as a short circuit. Further, the fragments 11A become burrs connected to the metal film 2.
  • the broken pieces 11A may be lost due to vibration or impact when the module component 1 is mounted.
  • the burrs may be peeled off over time. If a part of the metal film 2 is missing, a gap may be generated at the interface between the metal film 2 and the sealing portion 3, which may reduce the shielding effect of the metal film 2, and the module component 1 can be used for a long time. Reliability may be affected.
  • FIG. 31 shows a sectional view of another conventional module component 501.
  • the same reference numerals are assigned to the same portions as those of the module component 1 shown in FIG.
  • a module component 501 shown in FIG. 31 includes a sheet metal cover 502 instead of the metal film 2 of the module component 1 shown in FIG.
  • the cover 502 operates as an inverted F-type antenna and also operates as a shield case.
  • the sheet metal cover 502 has both functions of an antenna and a shield case, but is easily deformed by an external force or the like, and has a limited protection function for the reliability of the electronic component 507. And has a large weight.
  • the module component includes a circuit board, a component mounted on the upper surface of the circuit board, a sealing portion provided on the upper surface of the circuit board and sealing the component, and a ground provided on an outer peripheral portion of the lower surface of the circuit board.
  • a pattern and a metal film covering the sealing portion and the circuit board are provided.
  • the metal film has a top surface portion covering the top surface of the sealing portion, a side surface portion extending from the top surface portion and covering the side surface of the circuit board, and a bottom surface portion extending from the side surface portion and provided on the ground pattern.
  • the bottom surface portion has a thickness that decreases as the distance from the side surface portion increases.
  • the wiring pattern of the circuit board and the metal film can be electrically connected with high reliability.
  • FIG. 1A is a top perspective view of a module component according to Embodiment 1 of the present invention.
  • 1B is a cross-sectional view of the module component shown in FIG. 1A taken along line 1B-1B.
  • FIG. 1C is a cross-sectional view of the metal film of the module component in the first exemplary embodiment.
  • 2A is a top perspective view of another module component according to Embodiment 1.
  • FIG. 2B is a cross-sectional view taken along line 2B-2B of the module component shown in FIG. 2A.
  • FIG. 3A is a cross-sectional view illustrating the method for manufacturing the electronic device in the first embodiment.
  • FIG. 3B is a cross-sectional view illustrating the method for manufacturing the electronic device in the first embodiment.
  • FIG. 4A is a cross-sectional view of the electronic device in Embodiment 1.
  • FIG. 4B is an enlarged cross-sectional view of the electronic device shown in FIG. 4A.
  • 5A is a cross-sectional view of another electronic device according to Embodiment 1.
  • FIG. 5B is an enlarged cross-sectional view of the electronic device shown in FIG. 5A.
  • 6A is a cross-sectional view of still another electronic device according to Embodiment 1.
  • FIG. 6B is an enlarged cross-sectional view of the electronic device shown in FIG. 6A.
  • 7A is a bottom perspective view of the module component according to Embodiment 1.
  • FIG. 7B is a partial cross-sectional view of the module component shown in FIG. 7A.
  • FIG. 8A is a bottom perspective view of another module component according to Embodiment 1.
  • FIG. FIG. 8B is a partially enlarged view of the module component shown in FIG. 8A.
  • FIG. 9A is a cross-sectional view showing the method for manufacturing the electronic device in the second embodiment of the present invention.
  • 9B is a cross-sectional view of the electronic device illustrated in FIG. 9A.
  • 9C is a cross-sectional view of the electronic device illustrated in FIG. 9A.
  • FIG. 10A is a cross-sectional view showing the module component manufacturing method according to Embodiment 3 of the present invention.
  • FIG. 10B is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 3.
  • FIG. 10A is a cross-sectional view showing the module component manufacturing method according to Embodiment 3.
  • FIG. 10C is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 3.
  • FIG. 10D is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 3.
  • FIG. 11A is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 3.
  • FIG. 11B is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 3.
  • FIG. 11C is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 3.
  • FIG. 11D is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 3.
  • FIG. 12A is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 3.
  • FIG. 12B is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 3.
  • FIG. 12C is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 3.
  • FIG. 12D is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 3.
  • FIG. 13A is a cross-sectional view showing the module component manufacturing method according to Embodiment 4 of the present invention.
  • FIG. 13B is a cross-sectional view showing a method of manufacturing the module component shown in FIG. 13A.
  • FIG. 13C is a cross-sectional view showing the module component manufacturing method according to Embodiment 4 of the present invention.
  • FIG. 13D is a cross-sectional view showing a method for manufacturing the module component shown in FIG. 13A.
  • FIG. 14 shows the light reflectance of various metals.
  • FIG. 15A is a top perspective view of a module component according to Embodiment 5 of the present invention.
  • 15B is a cross-sectional view of the module component shown in FIG. 15A taken along line 15B-15B.
  • FIG. 15C is a cross-sectional view of the module component shown in FIG. 15A taken along line 15C-15C.
  • FIG. 15D is a cross-sectional view of the metal film of the module component in the fifth embodiment.
  • FIG. 16 is a cross-sectional view of the module component in the fifth embodiment.
  • FIG. 17 is a top view of the module component in the fifth embodiment.
  • FIG. 18 shows the shielding effect of the module component in the fifth embodiment.
  • FIG. 15A is a top perspective view of a module component according to Embodiment 5 of the present invention.
  • 15B is a cross-sectional view of the module component shown in FIG. 15A taken along line 15B-15B.
  • 19A is a top view showing the radiation distribution of electromagnetic waves of the module component in the fifth embodiment.
  • 19B is a side view showing the radiation distribution of the electromagnetic waves of the module component shown in FIG. 19A.
  • FIG. 20A is a top view showing the electromagnetic wave radiation intensity of the module component of the comparative example.
  • 20B is a side view showing the radiation intensity of the electromagnetic wave of the module component shown in FIG. 20A.
  • FIG. 21A is a top perspective view of another module component according to Embodiment 5.
  • 21B is a cross-sectional view of the module component taken along line 21B-21B shown in FIG. 21A.
  • FIG. 22A is a top perspective view of still another module component according to Embodiment 5.
  • FIG. 22B is a cross-sectional view of the module component taken along line 22B-22B shown in FIG. 22A.
  • FIG. 23 shows the relationship between the frequency of electromagnetic waves emitted from the metal film of the module component according to the fifth embodiment as an antenna and the thickness of the metal film.
  • FIG. 24 shows the relationship between the frequency of electromagnetic waves emitted from the metal film of the module component according to the fifth embodiment as an antenna and the lengths of sides and diagonal lines.
  • FIG. 25A is a cross-sectional view illustrating the method for manufacturing the electronic device in the fifth embodiment.
  • 25B is a cross-sectional view of the electronic device illustrated in FIG. 25A.
  • FIG. 26A is a cross-sectional view showing a module component manufacturing method according to Embodiment 5 of the present invention.
  • FIG. 26B is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 5.
  • FIG. 26C is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 5.
  • FIG. 26D is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 5.
  • FIG. 27A is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 5.
  • FIG. 27B is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 5.
  • FIG. 27C is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 5.
  • FIG. 27D is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 5.
  • FIG. 28A is a perspective view showing another method for manufacturing the module component according to Embodiment 5.
  • FIG. 28B is a perspective view showing another method for manufacturing the module component according to Embodiment 5.
  • FIG. 28C is a perspective view showing another method for manufacturing the module component according to Embodiment 5.
  • FIG. 29 is a cross-sectional view of a conventional module component.
  • 30A is a cross-sectional view showing a method for manufacturing the module component shown in FIG.
  • FIG. 30B is a cross-sectional view showing the method for manufacturing the module component shown in FIG.
  • FIG. 30C is a cross-sectional view showing a method of manufacturing the module component shown in FIG.
  • FIG. 31 is a cross-sectional view of another conventional module component.
  • FIG. 1A is a top perspective view of module component 100 according to Embodiment 1 of the present invention.
  • 1B is a cross-sectional view taken along line 1B-1B of module component 100 shown in FIG. 1A.
  • the module component 100 includes a circuit board 104, a component 108 mounted on the upper surface 104A of the circuit board 104, a sealing portion 109 provided on the upper surface 104A of the circuit board 104, and a metal film 101.
  • the sealing unit 109 seals the component 108.
  • the metal film 101 covers the side surface 104 ⁇ / b> C of the circuit board 104 and the sealing portion 109.
  • the circuit board 104 is, for example, a multilayer resin board, and includes an insulating layer 105 made of an insulating material such as glass epoxy resin or ceramic in which glass fibers are impregnated with epoxy resin.
  • the insulating layer 105 includes an upper surface 105A, a lower surface 105B, and a side surface 105C that become the upper surface 104A, the lower surface 104B, and the side surface 104C of the circuit board 104, respectively.
  • the circuit board 104 includes a wiring pattern 106, a land 113 provided on the upper surface 105A of the insulating layer 105, a ground pattern 110 provided on the lower surface 105B of the insulating layer 105, and a land provided on the lower surface 105B of the insulating layer 105. 111 and a via conductor 107 provided in the insulating layer 105.
  • the wiring pattern 106 is provided in the insulating layer 105 and at least one of the upper surface 105A and the lower surface 105B.
  • a component 108 is mounted on the land 113.
  • the via conductor 107 connects the wiring pattern 106 and the ground pattern 110.
  • the end 106C of the wiring pattern 106 is exposed on the side surface 104C of the circuit board 104, that is, the side surface 105C of the insulating layer 105.
  • the metal film 101 is electrically connected to the exposed end 106 ⁇ / b> C of the wiring pattern 106.
  • the ground pattern 110 is provided on the outer periphery of the lower surface 104B of the circuit board 104, that is, the lower surface 105B of the insulating layer 105.
  • the metal film 101 has a top surface portion 101A that covers the top surface 109A of the sealing portion 109, and a side surface portion 101B that extends from the top surface portion 101A to the side surface 104C of the circuit board 104.
  • the metal film 101 further includes a bottom surface portion 112 that extends from the side surface portion 101B and is located on the lower surface 110B of the ground pattern 110.
  • the bottom surface portion 112 has a thickness gradient with a thickness that decreases from the outer periphery to the inner periphery of the insulating layer 105 (circuit board 104).
  • the side surface portion 101B of the metal film 101 covers the side surface 109C of the sealing portion 109 and the side surface 104C of the circuit board 104, that is, extends beyond the boundary surface 102 between the sealing portion 109 and the circuit substrate 104.
  • the adhesion between the ground pattern 110 and the metal film 101 is enhanced, and no part of the metal film 101 such as a burr starts to be peeled off, thereby improving the electrical connection reliability over a long period of time.
  • the circuit board 104 is a multilayer board using, for example, glass epoxy resin for the insulating layer 105, the land 113, the wiring pattern 106, the ground pattern 110, and the land 111 can be formed of copper foil to reduce the cost.
  • the land 113, the wiring pattern 106, the ground pattern 110, and the land 111 may be formed of silver, silver palladium, or copper.
  • the wiring pattern may be formed by printing and baking a conductive paste, or may be formed by attaching a conductive foil such as a copper foil.
  • the component 108 is, for example, an active component such as a semiconductor integrated circuit (IC) or a passive component such as a coil or a capacitor.
  • IC semiconductor integrated circuit
  • passive component such as a coil or a capacitor.
  • the sealing portion 109 is made of, for example, a thermosetting resin, and when heated while being vacuum-pressed, the resin filler enters the gap between the circuit board 104 and the component 108 without generating a void.
  • the component 108 can be sealed.
  • the lower surface 109B of the sealing portion 109 abuts on the upper surface 104A of the circuit board 104.
  • the metal film 101 can be formed by sputtering or plating, or may be formed by printing and curing a commercially available conductive paste. That is, the metal film 101 is made of any one of a sputtered film, a plated film, a conductive paste, or a combination thereof.
  • the metal film 101 may be composed of two or more elements. For example, by forming a base layer made of copper on the surface of the sealing portion 109 and further providing an upper layer made of zinc, nickel, tin or the like on this base layer, the oxidation of copper in the base layer prevents the occurrence of rust. can do. By providing the upper layer made of silver on the base layer made of copper, the sheet resistance of the metal film 101 can be lowered, and the frequency region having a shielding effect can be widened to the high frequency side.
  • the two kinds of elements used in the metal film 101 may form the metal film 101 as an alloy.
  • Members such as copper and zinc or copper and nickel may be alloyed in advance and used as a sputtering target.
  • a copper target and a zinc target may be prepared separately and alloyed by sputtering them simultaneously. By doing so, man-hours can be reduced and costs can be reduced.
  • FIG. 1C is a cross-sectional view of another example of the metal film 101.
  • the metal film 101 includes a base layer 1101 made of titanium or chromium provided on the surface of the sealing portion 109, a copper layer 2101 formed on the base layer 1101, and zinc or nickel provided on the copper layer 2101. And an upper layer 3101 made of tin, a zinc alloy, a nickel alloy, or a tin alloy. Thereby, the adhesiveness of the sealing part 109 and the metal film 101 can be improved.
  • the surface of the sealing portion 109 is reverse-sputtered with argon (Ar) to clean the surface of the sealing portion 109, thereby further improving the adhesion with the metal film 101. Can be made.
  • the contact resistance can be reduced. Since the bottom surface portion 112 has a thickness that decreases from the outer periphery to the inner periphery of the circuit board 104 (insulating layer 105), it is difficult for stress to be generated and does not peel even by an external force or the like.
  • 2A and 2B are a top perspective view and a cross-sectional view of another module component 1100 according to Embodiment 1, respectively.
  • the same reference numerals are assigned to the same parts as those of the module component 100 shown in FIGS. 1A and 1B.
  • a chamfered portion 114 is provided at the edge of the boundary where the upper surface 109A and the side surface 109C of the sealing portion 109 are connected.
  • the metal film 101 covers the surface of the sealing portion 109 including the chamfered portion 114.
  • the chamfered portion 114 is a C-plane cut made of a plane having a predetermined angle gradient provided at the edge of the substantially perpendicular sealing portion 109.
  • the angle of the gradient is 45 degrees, but is not limited to this.
  • the chamfered portion 114 may have a plurality of angular gradients.
  • the chamfered portion 114 may be R-surface processing having a curved surface having a predetermined curvature radius instead of a flat surface.
  • the curvature radius is, for example, not less than 1 mm and not more than 5 mm, but is not limited thereto.
  • the chamfered portion 114 may have a staircase shape.
  • the chamfered portion 114 may be a plurality of combinations such as C surface cutting and R surface processing. The chamfered portion 114 can reduce the thickness variation when the metal film 101 is formed, and suppress the generation of internal stress of the metal film 101.
  • 3A and 3B are cross-sectional views illustrating a method for manufacturing the electronic device 119 in the first embodiment.
  • the electronic device 119 includes a module component 100, solder 117, a circuit board 118, and a fillet 120.
  • the circuit board 118 includes an insulation layer 105E, a wiring pattern 106B, and a via conductor 107B similar to the insulating layer 105, the wiring pattern 106, and the via conductor 107 of the circuit board 104.
  • the module component 100 is mounted on the upper surface 118A of the circuit board 118.
  • the wiring pattern 106B provided on the upper surface 118A of the circuit board 118 and the land 111 provided on the lower surface 104B of the circuit board 104 of the module component 100 are connected by the solder 117.
  • the solder 117 has a fillet 120 extending toward the top surface portion 101 ⁇ / b> A along the side surface portion 101 ⁇ / b> B of the metal film 101 of the module component 100.
  • the fillet 120 may be formed according to the application.
  • 4A and 4B are a sectional view and an enlarged sectional view showing electric field radiation of the module component 100 of the electronic device 119, respectively.
  • Noise is radiated in a specific frequency band from the circuit configured by the component 108 mounted on the circuit board 104 of the module component 100 (1100). Covering the module component 100 (1100) with a conductor like the metal film 101 provides a shielding effect that reduces noise radiated from the module component 100.
  • the frequency band of noise to be suppressed is around 10 GHz (for example, 9.8 GHz to 10.2 GHz).
  • the frequency of 10 GHz is divided by 1/4 to 2.4 GHz, and the frequency is divided by 1/2 to create a 5.0 GHz carrier wave or the like.
  • the electric field radiation 115A, 115B has a peak 103 at the edge, so that the shielding effect may be insufficient in the metal film 101.
  • the thickness of the metal film 101 is 1 ⁇ m or more and 200 ⁇ m or less, and preferably 10 ⁇ m or more and 100 ⁇ m or less.
  • the thickness is 200 ⁇ m or more, internal stress or the like may easily occur in the metal film 101.
  • the thickness is less than 1 ⁇ m, the shielding effect may be low.
  • FIGS. 5A and 5B are a cross-sectional view and an enlarged cross-sectional view of another electronic device 1119 according to Embodiment 1, respectively.
  • 5A and 5B the same reference numerals are given to the same portions as those of the electronic device 119 shown in FIGS. 4A and 4B.
  • An electronic device 1119 illustrated in FIGS. 5A and 5B includes a module component 3100 instead of the module component 100 of the electronic device 119 illustrated in FIGS. 4A and 4B.
  • the chamfered portion 114 of the module component 3100 shown in FIGS. 5A and 5B has a step shape.
  • the chamfered portion 114 having a staircase shape has a plurality of edges 114A.
  • the plurality of edges 114A disperse the electric field 116 as compared with the electronic device 119 shown in FIGS. 4A and 4B, so that the peak 103 of the electric field radiation 115A and 115B can be reduced.
  • 6A and 6B are a cross-sectional view and an enlarged cross-sectional view of still another electronic device 2119 according to Embodiment 1, respectively.
  • the same reference numerals are assigned to the same portions as those of the electronic device 1119 shown in FIGS. 5A and 5B.
  • the chamfered portion 114 of the module component 1100 has a C-plane cut formed by the plane shown in FIGS. 2A and 2B.
  • the chamfered portion 114 has a plurality of edges 114A.
  • the plurality of edges 114A disperse the electric field 116 as compared with the electronic device 119 shown in FIGS. 4A and 4B, so that the peak 103 of the electric field radiation 115A and 115B can be reduced.
  • the edge may be removed by performing R surface processing so that the chamfered portion 114 has a curved surface having a predetermined radius of curvature.
  • FIG. 7A is a bottom perspective view of the module component 100.
  • the lower surface of the module component 100 that is, the lower surface 104B (lower surface 105B) of the circuit board 104 (insulating layer 105) has a rectangular shape having four sides constituting the outer peripheral portion.
  • the ground pattern 110 is provided along at least two sides of the four sides of the outer peripheral portion of the lower surface 105B of the insulating layer 105.
  • a bottom surface portion 112 connected to the side surface portion 101 ⁇ / b> B of the metal film 101 is located on the lower surface 110 ⁇ / b> B of the ground pattern 110.
  • FIG. 7B is a partial cross-sectional view of the module component 100 shown in FIG. 7A.
  • the thickness of the bottom surface portion 112 decreases with increasing distance from the side surface portion 101B, that is, continuously decreases monotonically from the outer peripheral portion of the lower surface 105B of the insulating layer 105 toward the center, and the thickness becomes zero at the end 122A. .
  • the end 122A has a linear shape. With this structure, generation of internal stress in the bottom surface portion 112 is prevented, and even when a mechanical external force is applied, the bottom surface portion 112 is hardly peeled off and burrs are not easily generated. As a result, in the module component 100, the metal film 101 is not damaged due to vibration or impact during handling.
  • the lower surface 104B of the circuit board 104 substantially has a rectangular shape having four sides.
  • the ground pattern 110 is provided along at least two of the four sides of the lower surface 104 ⁇ / b> B of the circuit board 104.
  • the bottom surface portion 112 of the metal film 101 is provided on at least two of the four sides of the lower surface 104B of the circuit board 104.
  • the bottom surface portion 112 of the metal film 101 is provided on the ground pattern 110 beyond these two sides.
  • FIG. 8A is a bottom perspective view of still another module component 2100 in the first exemplary embodiment.
  • FIG. 8B is a partial cross-sectional view of the module component 2100 shown in FIG. 8A.
  • the same reference numerals are assigned to the same parts as those of the module component 100 shown in FIGS. 7A and 7B.
  • the thickness of the bottom surface portion 112 decreases as the distance from the side surface portion 101B decreases, that is, decreases continuously and monotonously from the outer peripheral portion of the lower surface 105B of the insulating layer 105 toward the center.
  • the thickness at the end 122 is zero.
  • the end 122 has an indefinite shape such as a zigzag wave shape instead of a linear shape. Since the end 122 has an indefinite shape, generation of internal stress can be further suppressed.
  • the end 122 may have a grain shape or a Damascus steel pattern, for example.
  • the end 122 of the bottom surface portion 112 By making the end 122 of the bottom surface portion 112 indefinite, the end 122 of the bottom surface portion 112 can be made longer than the linear end 122A shown in FIGS. 7A and 7B, and the bottom surface portion 112 is bonded to the insulating layer 105. By increasing the distance, the metal film 101 can be more strongly bonded to the insulating layer 105, and the metal film 101 can be made difficult to peel off.
  • FIG. 9A is a cross-sectional view illustrating a method for manufacturing electronic device 3119 according to Embodiment 2 of the present invention.
  • FIG. 9B is a cross-sectional view of the electronic device 3119.
  • 9A and 9B the same reference numerals are assigned to the same portions as those of the electronic device 119 illustrated in FIGS. 3A and 3B.
  • the solder 117 is provided on the upper surface 118A of the circuit board 118 of the electronic device 3119, and the module component 100 is mounted on the solder 117.
  • the ground pattern 121 A provided on the upper surface 118 A of the circuit board 118 and the ground pattern 110 connected to the metal film 101 of the module component 100 are electrically connected via solder 117.
  • solder 117 As described above, by mounting the module component 100 with high adhesion of the metal film 101 on the electronic device 119, it is possible to provide the electronic device 3119 with high electrical connection reliability.
  • the ground pattern 121A provided on the upper surface 118A of the circuit board 118 and the ground pattern 121B provided on the lower surface 118B of the circuit board 118 are connected by the via conductor 107B.
  • the ground pattern 110 and the ground pattern 121B of the module component 100 are electrically connected via the via conductor 107B.
  • the via conductor 107B is formed of a conductive resin or plating.
  • the via conductor 107B connects the internal layers of the circuit board 118.
  • the via conductor 107B may be formed of a combination of a plurality of via conductors, for example, a plurality of via conductors 107B.
  • the ground pattern 121A formed on the upper surface 118A of the circuit board 118 and the ground pattern 121B formed on the lower surface 118B may be connected by one via conductor 107A. Only one through via conductor 107A that penetrates the circuit board 118 may connect the ground patterns 121A and 121B. By connecting the ground patterns 121A and 121B with a smaller number of via conductors 107A, the yield and the resistance value can be lowered.
  • the ground potentials of the ground patterns 121A and 121B can be stabilized by connecting the via conductor 107A built in the circuit board 118 to the ground patterns 121A and 121B. Thereby, the shielding effect of the electronic device 119 can be stabilized. As a result, as shown in FIG. 9B, by using the via conductor 107A, the noise 103C from the direction from the side surface of the circuit board 118 can be reduced.
  • the ground pattern 121B is not necessarily limited to a large area pattern covering most of the lower surface, and may be a general ground pattern.
  • FIG. 9C is a cross-sectional view of the electronic device 4119 of the comparative example.
  • the electronic device 4119 does not have one via conductor that connects the ground pattern 121A provided on the upper surface 118A of the circuit board 118 and the ground pattern 121B provided on the lower surface 118B.
  • the noise 103E from the side surface of the circuit board 118 and the noise 103F radiated from the lower surface 118B of the circuit board 118 may not be reduced so much.
  • FIG. 3 are cross-sectional views illustrating a method for manufacturing the module component 100 according to Embodiment 3 of the present invention.
  • the circuit board sheet 204 has a land 113 (shown in FIG. 3A) for mounting the component 108 and a wiring pattern.
  • the component 108 is mounted on the land 113 on the circuit board sheet 204.
  • the component 108 is electrically connected to the land 113 with solder 117 (shown in FIG. 3A).
  • the periphery of the component 108 is sealed with a sealing resin 209, and then the circuit board sheet 204 and the sealing resin 209 are divided into pieces 123 as shown in FIG. 10D.
  • the circuit board sheet 204 and the sealing resin 209 are divided into a circuit board 104 and a sealing portion 109, respectively.
  • FIGS. 11A and 11D are cross-sectional views showing a method for manufacturing the module component 100 according to the third embodiment.
  • the obtained piece 123 is placed on a jig 125 having a holding portion 124.
  • An adhesive such as a double-sided tape can be used as the holding portion 124. It is desirable that the holding portion 124 be disposed below the individual pieces 123 and be disposed on the inner side of the peripheral portion of the circuit board 104.
  • a metal film 101 covering the pieces 123 is formed.
  • the piece 123 is placed on the holding portion 124 such that the outer peripheral portion 104T of the lower surface 104B of the circuit board 104 of the piece 123 is exposed from the holding portion 124.
  • the metal film 101 is formed on the outer peripheral portion 104T by wrapping around from the side surface of the piece 123 to the lower surface 104B.
  • the metal film 101 is formed, for example, by sputtering a metal element, the metal element sprayed from the upper surface of the individual piece 123 wraps around the lower surface 104B, so that the metal film 101 formed on the outer peripheral portion 104T of the lower surface 104B.
  • the thickness of the portion decreases from the outer periphery of the lower surface 104B toward the inner side, and the bottom surface portion 112 shown in FIGS. 7A and 8A is formed.
  • the module component 100 is obtained by peeling the piece 123 from the jig 125.
  • the electrical connection is concerned about vibration and impact when handling the module component 100. Reliability can be improved.
  • 12A to 12D are cross-sectional views illustrating another method for manufacturing the module component 100 according to the third embodiment. 12A to 12D, the same reference numerals are assigned to the same parts as those of the module component 100 shown in FIGS. 11A to 11D.
  • the holding part 124 of the jig 125 shown in FIGS. 11A to 11D has a rectangular cross section.
  • the jig 125 shown in FIGS. 12A to 12D includes a holding portion 124A having a trapezoidal cross section.
  • the jig 125 is provided with a hole 126.
  • the pieces 123 are held by the holding portion 124A of the jig 125 by sucking air through the holes 126 in the direction 103A.
  • a metal film 101 that covers the pieces 123 is formed.
  • the piece 123 is placed on the holding portion 124A so that the outer peripheral portion 104T of the lower surface 104B of the circuit board 104 of the piece 123 is exposed from the holding portion 124.
  • the metal film 101 is formed on the outer peripheral portion 104T by wrapping around from the side surface of the piece 123 to the lower surface 104B.
  • the metal film 101 is formed, for example, by sputtering a metal element, the metal element sprayed from the upper surface of the individual piece 123 wraps around the lower surface 104B, so that the metal film 101 formed on the outer peripheral portion 104T of the lower surface 104B.
  • the thickness of the portion decreases from the outer periphery of the lower surface 104B toward the inner side, and the bottom surface portion 112 shown in FIGS. 7A and 8A is formed. Thereafter, as shown in FIG. 12D, the individual parts 123 are removed from the jig 125 by injecting air in the direction 103 ⁇ / b> G, and the module component 100 is manufactured.
  • the holding portion 124A for holding the piece 123 has a trapezoidal cross section having an inclined surface 124B.
  • the slope 124B contacts the circuit board 104 of the module component 100 at an oblique angle. That is, the distance between the slope 214B and the lower surface 104B of the circuit board 104 decreases as it goes from the outer edge of the lower surface 104B to the inner portion. Accordingly, when the metal film 101 is formed by plating or conductive paste, the thickness of the metal film 101 is set to the inner side when the metal film 101 is formed to wrap around the lower surface 104B of the circuit board 104 of the piece 123. It can be made smaller.
  • end 122 having the indefinite shape shown in FIGS. 8A and 8B can be easily formed by the method shown in FIGS. 11A to 11D and FIGS. 12A to 12D.
  • the metal film 101 can be easily formed even by plating or applying a conductive resin, and the electrical connection reliability between the piece 123 and the metal film 101 can be increased.
  • FIGS. 10C and 10D are cross-sectional views showing a method for manufacturing module component 1100 according to Embodiment 4 of the present invention.
  • 13A and 13B the same reference numerals are assigned to the same portions as those in the manufacturing method according to the third embodiment shown in FIGS. 10C and 10D.
  • a groove 127 having a rectangular cross section is provided at the boundary between the pieces 123 in the sealing resin 209 that seals the component 108 mounted on the circuit board sheet 204.
  • the depth of the groove 127 is shorter than the distance from the upper surface of the piece 123 to the circuit board sheet 204, and the groove 127 does not reach the circuit board sheet 204.
  • the sealing resin 209 and the circuit board sheet 204 can be completely divided into a plurality of pieces 123 by cutting from the bottom center of the groove 127 to the lower surface of the circuit board sheet 204. .
  • a module component 1100 having a sealing portion 109 having a chamfered portion 114 having a stepped shape shown in FIGS. 5A and 5B is obtained.
  • FIGS. 13C and 13D are cross-sectional views showing a method for manufacturing another module component 1100 according to Embodiment 4 of the present invention.
  • 13C and FIG. 13D the same reference numerals are assigned to the same portions as those in the manufacturing method according to the third embodiment shown in FIGS. 10C and 10D.
  • a groove 128 having a V-shaped cross section at the boundary between the pieces 123 is provided in the sealing resin 209 that seals the component 108 mounted on the circuit board sheet 204.
  • the depth of the groove 128 is shorter than the distance from the upper surface of the piece 123 to the circuit board sheet 204, and the groove 128 does not reach the circuit board sheet 203.
  • the sealing resin 209 and the circuit board sheet 204 can be completely divided into a plurality of pieces 123 by cutting from the center of the bottom of the groove 128 to the lower surface of the circuit board sheet 204. .
  • a module component 1100 including a sealing portion 109 having a chamfered portion 114 having a C-surface cut shape shown in FIGS. 2A and 2B is obtained.
  • the piece 123 having a corner having a C-shaped corner or a step 123 having a corner shape is cut only by two steps of forming the grooves 127 and 128 and cutting the piece. Can be easily manufactured.
  • a dicing blade for forming the grooves 127 and 128 and a dicing blade for cutting the circuit board sheet 204 and the sealing resin 209 may be used.
  • the blade to be cut is thinner than the blade that forms the grooves 127 and 128.
  • the shape of one or more sides of the sealing portion 109 can be changed to a staircase or C-plane cut, R-plane processing, or These combinations can be formed.
  • the color difference ⁇ E between the lower surface 110B of the ground pattern 110 and the surface of the bottom surface portion 112 of the metal film 101 is 1 or more, preferably 2 or more, and more preferably 3 or more.
  • the presence or absence and shape of the metal film 101 (bottom surface portion 112) formed on the lower surface 110B of the ground pattern 110 can be easily determined by the color difference ⁇ E of these values.
  • FIG. 14 is a graph showing the relationship between the wavelength of light and the reflectance of gold (Au), silver (Ag), and copper (Cu), and shows the differences in the colors of various metals.
  • the horizontal axis indicates the wavelength of light
  • the horizontal axis indicates the reflectance of the light.
  • silver has a reflectance of 95% or more with respect to light at a wavelength of 400 to 700 nm, and as a result, it looks silver.
  • Copper has a low reflectivity with respect to light having a wavelength of 400 to 550 nm, and thus has a high reflectivity with respect to light with a wavelength of 550 nm or more, and thus appears as a kind of red copper color.
  • gold has a higher reflectance with respect to light having a wavelength near 550 nm than copper, and thus appears to be a golden color closer to yellow than copper.
  • the ground pattern 110 when the ground pattern 110 is made of copper foil, it looks reddish copper, and when it is plated with gold, it looks gold.
  • the metal film 101 contains two or more kinds of elements, the surface looks silver due to components such as nickel, zinc, and silver.
  • the color difference ⁇ E between these colors is 1 or more, so the state of the metal film 101 formed on the ground pattern 110 is It can be easily confirmed by visual inspection. Thereby, not only the electrical connection reliability of the metal film 101 but also the state of the bottom surface portion 112 can be reliably determined.
  • JIS L 0804, JIS L 0805, JIS Z 8721, JIS S 6006, 6007, 6016, 6020, 6028, etc. may be referred to.
  • the electrical connection reliability between the metal film 101 and the ground pattern 110 can be increased by the bottom surface portion 112. Therefore, an electronic device incorporating the circuit board 118 on which the module component is mounted can achieve high reliability against external impacts such as vibration during handling and drop impact.
  • FIG. 15A is a top perspective view of module component 600 according to Embodiment 5 of the present invention.
  • FIG. 15B is a cross-sectional view of the module component 600 shown in FIG. 15A taken along line 15B-15B.
  • the module component 600 includes a circuit board 604, a component 608 mounted on the upper surface 604A of the circuit board 604, a sealing portion 609 provided on the upper surface 604A of the circuit board 604, and a metal film 601.
  • the sealing unit 609 seals the component 608.
  • the metal film 601 covers the side surface 604C of the circuit board 604 and the sealing portion 609.
  • the circuit board 604 is, for example, a multilayer resin board, and includes an insulating layer 605 made of an insulating material such as glass epoxy resin or ceramic in which glass fibers are impregnated with epoxy resin.
  • the insulating layer 605 has an upper surface 605A, a lower surface 605B, and a side surface 605C that become the upper surface 604A, the lower surface 604B, and the side surface 604C of the circuit board 604, respectively.
  • the circuit board 604 further includes a wiring pattern 606, lands 606 ⁇ / b> A provided on the upper surface 605 ⁇ / b> A of the insulating layer 605, and via conductors 607 provided in the insulating layer 605.
  • the wiring pattern 606 is provided in the insulating layer 605 and at least one of the upper surface 605A and the lower surface 605B.
  • a component 608 is mounted on the land 606A.
  • the via conductor 607 connects the wiring pattern 606 and the ground pattern 1610.
  • the metal film 601 has a top surface portion 601A covering the top surface 609A of the sealing portion 609, a side surface portion 601B extending from the top surface portion 601A, and a bottom surface portion 601C extending from the side surface portion 601B.
  • the side surface portion 601B covers 604C of the circuit board 604.
  • the bottom surface portion 601C partially covers the ground pattern 1610.
  • the top surface portion 601A has a rectangular shape having a long side 612 extending in the longitudinal direction 600A and a short side 611.
  • the side surface portion 601B is provided with a slit 613 that exposes the side surface 604C of the circuit board 604 and the side surface 609C of the sealing portion 609.
  • FIG. 15C is a cross-sectional view taken along line 15C-15C of the module component 600 shown in FIG. 15A.
  • the slits 613 are respectively provided in the side portions 601B of the metal film 601 facing each other.
  • the slit 613 is not surrounded by the metal film 601 but is opened to form an opening 610.
  • top surface portion 601A and the side surface portion 601B of the metal film 601 function as an antenna that radiates the electromagnetic wave 603B.
  • the side surface portion 601B of the metal film 601 covers the side surface 609C of the sealing portion 609 and the side surface 604C of the circuit board 604, that is, extends beyond the boundary surface 602 between the sealing portion 609 and the circuit board 604.
  • the adhesion between the ground pattern 1610 and the metal film 601 is enhanced, and a portion where the metal film 601 such as a burr starts to be peeled off does not occur, so that electrical connection reliability over a long period is improved.
  • the top surface portion 601A of the metal film 601 is thicker than the portion covering the side surface portion 601B, particularly the side surface 609C of the sealing portion 609. Specifically, the thickness of the top surface portion 601A of the metal film 601 is 1.5 to 5 times the thickness of the portion of the side surface portion 601B that covers the side surface 609C of the sealing portion 609. Thereby, the top surface portion 601A and the side surface portion 601B can be reliably connected.
  • the bottom surface portion 601C of the metal film 601 has a thickness that decreases from the outer periphery to the inner periphery of the insulating layer 605 and has a thickness gradient. As a result, it is difficult for stress to occur, and the bottom surface portion 601C is hardly peeled off from the ground pattern 1610 even by an external force or the like, so that electrical connection reliability over a long period is improved.
  • the land 606A, the wiring pattern 606, and the ground pattern 110 may be formed of silver, silver palladium, or copper.
  • the wiring pattern may be formed by printing and baking a conductive paste, or may be formed by attaching a conductive foil such as a copper foil.
  • the component 608 is, for example, an active component such as a semiconductor integrated circuit (IC) or a passive component such as a coil or a capacitor, and the mounting density can be increased by using a chip component.
  • IC semiconductor integrated circuit
  • passive component such as a coil or a capacitor
  • the sealing portion 609 is made of, for example, a thermosetting resin, and when heated while being vacuum-pressed, the resin filler enters the gap between the circuit board 604 and the component 608 without generating voids.
  • the component 608 can be sealed.
  • a lower surface 609B of the sealing portion 609 abuts on an upper surface 604A of the circuit board 604.
  • the metal film 601 can be formed by sputtering or plating, or may be formed by printing and curing a commercially available conductive paste.
  • the metal film 601 may be composed of two or more elements. For example, by forming a base layer made of copper on the surface of the sealing portion 609 and providing an upper layer made of zinc, nickel, tin, or the like on this base layer, the oxidation of copper in the base layer prevents the occurrence of rust. can do. By providing the upper layer made of silver on the base layer made of copper, the sheet resistance of the metal film 601 can be lowered, and the frequency region having a shielding effect can be widened to the high frequency side.
  • the two kinds of elements used in the metal film 101 may form the metal film 101 as an alloy.
  • Members such as copper and zinc or copper and nickel may be alloyed in advance and used as a sputtering target.
  • a copper target and a zinc target may be prepared separately and alloyed by sputtering them simultaneously. By doing so, man-hours can be reduced and costs can be reduced.
  • FIG. 15D is a cross-sectional view of another example of the metal film 601.
  • the metal film 601 includes a base layer 1601 made of titanium or chromium provided on the surface of the sealing portion 609, a copper layer 2601 formed on the base layer 1601, and zinc or nickel provided on the copper layer 2601. And an upper layer 3601 made of tin, zinc alloy, nickel alloy, or tin alloy. Thereby, the adhesiveness of the sealing part 609 and the metal film 601 can be improved.
  • the surface of the sealing portion 609 is reverse-sputtered with argon (Ar) to clean the surface of the sealing portion 609, thereby further improving the adhesion with the metal film 601. Can be made.
  • the contact resistance can be reduced. Since the bottom surface portion 601C has a thickness that decreases from the outer periphery to the inner periphery of the circuit board 604 (insulating layer 605), stress is not easily generated and is not peeled off even by an external force or the like.
  • the slit 613 enhances the effect of the metal film 601 as an antenna.
  • the side surface 604C of the circuit board 604 or a part of the side surface 609C of the sealing portion 609 is exposed from the slit 613.
  • FIG. 16 is a cross-sectional view of the module component 600.
  • the module component 600 further includes a power supply unit 616, and the power supply unit 616 includes a reactance 614 and a port transmission source 615.
  • the port transmission source 615 includes a wiring pattern 606 located on the upper surface 604A of the circuit board 604.
  • the power feeding unit 616 is provided at a substantially central portion of the top surface portion 601 ⁇ / b> A of the metal film 601.
  • the reactance 514 is a capacitive or inductive space formed between the component 608 mounted near the center of the circuit board 604 and the top surface portion 601A of the metal film 601 or between the port transmission source 615 and the top surface portion 601A. It consists of coupling components and is coupled with parts (capacitive and inductive).
  • the thickness of the top surface portion 601A of the metal film 601 is set to be equal to or greater than the skin depth through which high-frequency current flows due to the skin effect at the frequency of the radiating electromagnetic wave 603, and the power feeding portion 616 provided on the top surface portion 601A of the metal film 601. Increase the power supply efficiency.
  • the thickness of the side surface portion 601B of the metal film 601 is set to be smaller than the skin depth, and thereby the radiation efficiency of electromagnetic waves radiated from the vicinity of the side surface of the module component 600 can be increased.
  • the skin depth D at the frequency f of the electromagnetic wave 603 is expressed by the following equation depending on the conductivity ⁇ and the permeability ⁇ of the metal film 601.
  • the skin depth D when the metal film 601 is made of copper is obtained.
  • the conductivity ⁇ of copper is 5.8 ⁇ 10 7 (S / m)
  • the magnetic permeability ⁇ is 4 ⁇ ⁇ 10 ⁇ 7 (H / m).
  • the skin depth D is about 0.95 ⁇ m according to the above formula.
  • the shielding effect and the antenna effect of the module component 600 are set by setting the thickness of the top surface portion 601A of the metal film 601 to 1 ⁇ m and the thickness of the side surface portion 601B to 0.2 to 0.33 ⁇ m. It is possible to achieve both.
  • the metal film 601 normally electromagnetically shields the module component 600 over a wide band (100 kHz to 12.75 GHz).
  • the metal film 601 functions as an antenna that radiates electromagnetic waves in a specific frequency range.
  • the length of the side 611 or the side 612 of the top surface portion 601A having the rectangular shape of the metal film 601 is set to 3 ⁇ / 10 to 7 ⁇ / 10.
  • the opening 610 formed by the slit 613 is provided on the side surface 609C of the sealing portion 609 and the side surface 604C of the circuit board 604 that are connected to the sides 612 facing each other.
  • the length 610W in the direction of the side 612 of the opening 610 is set to 3 / 10 ⁇ to 7 / 10 ⁇ .
  • the top surface portion 601A and the side surface portion 601B of the metal film 601 can be operated as an antenna that emits an electromagnetic wave having a wavelength ⁇ . Openings are not provided on the side surfaces of the sealing portion 609 and the circuit board 604 connected to the side 611, and the entire side surface portion 601 ⁇ / b> B of the metal film 601 is covered.
  • the wiring pattern 606 exposed on the side surface 604C of the circuit board 604 is connected to the side surface portion 601B of the metal film 601 connected to the side 611. Thereby, electromagnetic waves radiated from the side surface portion 601B connected to the side 611 can be suppressed, and the directivity of the metal film 601 as an antenna can be set in a direction perpendicular to the side 612.
  • the top surface portion 601A of the metal film 601 can be considered as a set of half-wave dipole antennas extending in the direction of the side 611.
  • the radiation efficiency of the module component 600 as an antenna by adjusting the area of the opening 610. For example, when the opening 610 is narrowed from the lower surface 104B of the circuit board 104 toward the top surface 601A of the metal film 601, a portion where the side surface 601B is connected to the wiring pattern 606 exposed on the side 604C of the circuit board 604 is formed. Since it can be gradually increased, the radiation efficiency can be adjusted. When the opening 610 is not provided, the radiation efficiency is lowest, which is effective when it is desired to shorten the reach of the radiated electromagnetic wave.
  • the length of the opening 610 is shorter than the desired wavelength of the radiated electromagnetic wave, so that the frequency to operate as an antenna is shifted to a high frequency. Is possible.
  • the side 611 When the metal film 601 is operated as an antenna that emits an electromagnetic wave having a wavelength ⁇ and the relative dielectric constant ⁇ r of the sealing portion 609 is set, the side 611 has a length of about ⁇ / (2 ⁇ ⁇ r 1/2 ) due to the wavelength reduction. Thus, the metal film 601 operates as an antenna that radiates and receives the electromagnetic waves.
  • the half wavelength ⁇ / 2 of an electromagnetic wave having a frequency of 5 GHz is about 3 (cm). In this case, if the length of the side 611 is about 3 / ⁇ r 1/2 (cm), the metal film 601 operates as an antenna that can radiate and receive the electromagnetic wave.
  • the module component 600 can be electromagnetically shielded over a wide band (100 kHz to 12.75 GHz), and electromagnetic waves in a specific frequency range can be generated. Operates as an antenna that can radiate and receive.
  • FIG. 17 is a top view of the module component 600.
  • the top surface portion 601A of the metal film 601 has a rectangular shape.
  • the length of the diagonal 601D of the top surface 601A is set to 1 / 2 ⁇ .
  • the length of the side 611 of the top surface portion 601A is desirably 3 / 10 ⁇ to 7 / 10 ⁇ . Further, the length of the diagonal line 601D of the top surface portion 601A may be set to 3 / 10 ⁇ to 7 / 10 ⁇ .
  • the length L611 of the side 611 is expressed as follows due to the wavelength reduction. .
  • FIG. 18 is a graph showing the electromagnetic shielding effect of metal used for the metal film 601 of the module component 600.
  • the horizontal axis indicates the frequency of the electromagnetic wave
  • the vertical axis indicates the theoretical calculation value of the attenuation amount of the electromagnetic wave.
  • Characteristic P601 indicates the attenuation of a commercially available layer made of white and white having a thickness of 80 ⁇ m.
  • a characteristic P602 indicates the attenuation of a layer made of copper foil having a thickness of 1.0 ⁇ m formed by sputtering.
  • P603 represents the attenuation of a layer made of a commercially available conductive paste having a thickness of 10 ⁇ m.
  • the attenuation amount is the largest for the layer made of conductive paste, the next is the layer made of white, and the attenuation amount of the layer made of copper formed by sputtering is the smallest.
  • the thickness of the top surface portion 601A of the metal film 601 is set to be 1.5 to 5 times the thickness of the side surface portion 601B.
  • the attenuation of electromagnetic waves can be effectively increased even if it is thin, so that the shielding effect of the module component 600 can be enhanced.
  • 19A and 19B are a top view and a side view showing the radiation distribution of electromagnetic waves of the module component 600 provided with the metal film 601 having the slits 613, respectively.
  • 20A and 20B are a top view and a side view showing the electromagnetic wave radiation intensity of the module component of the comparative example provided with the metal film 601 not having the slit 613, respectively.
  • the electric field strength E601A is the largest
  • the electric field strength E601B is the second largest
  • the electric field strength E601C is the third.
  • the electric field strength E601D is the smallest.
  • the electric field strength is high in the region near the module component 600, and the electric field strength is low in the region far from the module component.
  • a region 617A having high electric field strength is formed near the module component 600 shown in FIGS. 19A and 19B.
  • the region 617A having a high electric field strength is not formed.
  • the regions 617B and 617C formed by the module component 600 shown in FIGS. 19A and 19B are narrower than the regions 617B and 617C formed by the module component of the comparative example shown in FIGS. 20A and 20B.
  • the electric field strength can be made higher overall than the electric field strength of the module component of the comparative example shown in FIGS. 20A and 20B.
  • FIG. 21A is a top perspective view of another module component 1600 according to the fifth embodiment.
  • FIG. 21B is a cross-sectional view of the module component 1600 shown in FIG. 21A taken along line 21B-21B.
  • 21A and 21B the same reference numerals are assigned to the same parts as those of the module component 600 shown in FIGS. 15A and 15B.
  • An opening 610 and an opening 610A are provided in the side surface 601B connected to the side 612 of the metal film 601.
  • the opening 610 is provided at the center of the side surface 601B in the direction of the side 612, and the opening 610A is provided at both ends of the side surface 601B in the direction of the side 612.
  • the side surface portion 601B connected to the side 611 of the metal film 601 covers the entire side surface 609C of the sealing portion 609, but does not reach the side surface 604C of the circuit board 604 and is not connected to the wiring pattern 606. Thereby, the directivity of the module component 600 as an antenna can be set in the direction of the side 612, which is effective when the directivity of the module component 600 is to be adjusted.
  • FIG. 22A is a top perspective view of still another module component 2600 in the fifth embodiment.
  • FIG. 22B is a cross-sectional view of the module component 2600 shown in FIG. 22A taken along line 22B-22B.
  • 22A and 22B the same reference numerals are assigned to the same portions as those of the module component 1600 shown in FIGS. 21A and 21B.
  • an opening 610B is provided in a side surface 601B connected to the side 611 of the metal film 601.
  • the opening 610B exposes the side surface 604C of the circuit board 604 and further exposes the side surface 609C of the sealing portion 609 partially.
  • the antenna directivity adjustment range can be expanded.
  • FIG. 23 shows the relationship between the frequency of electromagnetic waves emitted from the metal film 601 as an antenna and the film thicknesses of the top surface portion 601A and the side surface portion 601B.
  • FIG. 24 shows the relationship between the frequency of electromagnetic waves and the lengths of the side 611 and the diagonal line 601D of the metal film 601.
  • the length of the diagonal line 601D shown in FIG. 24 is the maximum when the length of the side 611 of the module component 600 is 7 / 10 ⁇ and the shape of the top surface portion 601A of the metal film 601 is square. As shown in FIG. 24, in the actual calculation, the maximum length of the diagonal line 601D is in the range of 3 / 10 ⁇ to 7 / 10 ⁇ in consideration of the relative dielectric constant of the sealing portion 609.
  • a module component that operates as an antenna of an electromagnetic wave having a desired frequency in the top surface portion 601A and the side surface portion 601B.
  • the radiation efficiency of 600 can be increased.
  • the opening 610 can be formed simultaneously with a mask when the side surface 601B of the metal film 601 is formed.
  • the slit 613 can also be formed by a trimming process in which a slit is formed in the side surface portion 301B after the side surface portion 601B is formed.
  • FIG. 25A and FIG. 25B are cross-sectional views showing a method for manufacturing the electronic device 620 provided with the module component 600 according to the fifth embodiment.
  • the electronic device 620 includes a module component 600 and a circuit board 618 on which the module component 600 is mounted.
  • a wiring pattern 606B is provided on the upper surface 618A of the circuit board 618.
  • Solder 619 is provided on the wiring pattern 606B.
  • the module component 600 is mounted by being connected to the wiring pattern 606B on the upper surface 618A of the circuit board 618 with solder 619.
  • 26A to 26D are cross-sectional views showing a method for manufacturing the module component 600 according to the fifth embodiment.
  • the circuit board sheet 704 has a wiring pattern 606 for mounting the component 608.
  • the component 608 is mounted on the wiring pattern 606 on the circuit board sheet 704.
  • the component 608 is electrically connected to the wiring pattern 606 with solder 619.
  • FIG. 26C after the periphery of the component 608 is sealed with a sealing resin 709, the circuit board sheet 704 and the sealing resin 709 are divided into pieces 621 as shown in FIG. 26D.
  • the circuit board sheet 704 and the sealing resin 709 are divided into a circuit board 604 and a sealing portion 609, respectively.
  • FIGS. 27A to 27D are cross-sectional views showing a method for manufacturing the module component 600.
  • the obtained piece 621 is placed on a jig 623 having a holding portion 622.
  • An adhesive such as a double-sided tape can be used as the holding portion 622.
  • the holding portion 622 is preferably disposed below the piece 621 and on the inner side of the peripheral portion of the circuit board 604.
  • a metal film 601 covering the piece 621 is formed.
  • the piece 621 is placed on the holding portion 622 so that the outer peripheral portion 604T of the lower surface 604B of the circuit board 604 of the piece 621 is exposed from the holding portion 622.
  • the metal film 601 is formed on the outer peripheral portion 604T by wrapping around from the side surface of the piece 621 to the lower surface 604B.
  • the metal film 601 is formed, for example, by sputtering a metal element, the metal element sprayed from the upper surface of the piece 621 wraps around the lower surface 604B, so that the metal film 601 formed on the outer peripheral portion 604T of the lower surface 604B.
  • the thickness of the portion decreases from the outer periphery of the lower surface 604B toward the inside, and the bottom surface portion 662 shown in FIG. 15A is formed.
  • the module component 600 is obtained by peeling the piece 621 from the jig 623.
  • the electrical connection is concerned about vibration and impact when handling the module component 600. Reliability can be improved.
  • FIG. 28A to FIG. 28C are perspective views showing another method for manufacturing a module component, and show a method for forming the metal film 601.
  • the mask 624 is used to form a slit 613 and an opening 610 in the side surface 601B of the metal film 601.
  • the piece 621 is fixed to the jig 623 before the metal film 601 is formed.
  • the side surface of the piece 621 is in contact with the mask 624 or opposed at a small interval.
  • a metal film 601 is formed by a sputtering apparatus on the surface of the individual piece 621 whose side surface is covered with a mask 624. Since the material of the metal film 601 does not adhere to the portion where the mask 624 is in contact with or opposed to the mask 624, the opening 610 and the slit 613 can be formed on the side surface of the piece 621. By adjusting the distance between the mask 624 and the piece 621, a thickness gradient can be formed on the bottom surface portion 601C of the metal film 601 as shown in FIGS. 27B and 27C, for example.
  • the wiring pattern of the circuit board and the metal film can be electrically connected with high reliability, and the electronic device has high reliability against external impacts such as vibration and drop impact during handling. Useful for equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

A module component is provided with: a circuit board; a component mounted on the upper surface of the circuit board; a sealing section which is arranged on the upper surface of the circuit board and seals the component; a ground pattern arranged on the outer circumferential portion on the lower surface of the circuit board; and a metal film which covers the sealing section and the circuit board. The metal film has: a top surface section which covers the upper surface of the sealing section; a side surface section which extends from the top surface section and covers the side surfaces of the circuit board; and a bottom surface section which extends from the side surface sections and is arranged on the ground pattern. The bottom surface section has a smaller thickness at a further distance from the side section. In the module component, the wiring pattern on the circuit board can be electrically connected with the metal film with high reliability.

Description

モジュール部品とその製造方法と、およびそのモジュール部品を用いた電子機器MODULE COMPONENT, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE USING THE MODULE COMPONENT
 本発明は、樹脂でモールド成型されたモジュール部品とこれを用いた電子機器に関する。 The present invention relates to a module part molded with resin and an electronic device using the module part.
 図29は特許文献1に記載されている従来のモジュール部品1の断面図である。モジュール部品1は、回路基板5と、回路基板5上に配置された配線パターン4と、回路基板5の内部に配置されたグランド層6と、配線パターン4の上に実装された部品7と、部品7の周囲を封止する封止部3と、封止部3の外面に設けられた金属膜2とを備える。回路基板5の側面に露出したグランド層6は金属膜2と電気的に接続される。金属膜2はモジュール部品1の外部から受けるノイズ、および内部から発生するノイズの輻射を抑圧するシールド効果を有する。 FIG. 29 is a cross-sectional view of a conventional module component 1 described in Patent Document 1. The module component 1 includes a circuit board 5, a wiring pattern 4 disposed on the circuit board 5, a ground layer 6 disposed inside the circuit board 5, a component 7 mounted on the wiring pattern 4, The sealing part 3 which seals the circumference | surroundings of the component 7 and the metal film 2 provided in the outer surface of the sealing part 3 are provided. The ground layer 6 exposed on the side surface of the circuit board 5 is electrically connected to the metal film 2. The metal film 2 has a shielding effect for suppressing radiation received from the outside of the module component 1 and noise generated from the inside.
 図30Aから図30Cはモジュール部品1の製造方法を示す断面図である。図30Aから図30Cに示すモジュール部品1では、回路基板5の下面にグランドパターン8が配置されている。金属膜2とグランドパターン8とを電気的に接続することでシールド効果を高めることができる。 30A to 30C are cross-sectional views showing a method for manufacturing the module component 1. In the module component 1 shown in FIGS. 30A to 30C, the ground pattern 8 is arranged on the lower surface of the circuit board 5. The shielding effect can be enhanced by electrically connecting the metal film 2 and the ground pattern 8.
 図30Aに示すように、回路基板5上に部品7を実装して封止部3を設けることによりモジュール部品1Pを作製する。金属膜2が形成されていないモジュール部品1Pの下面の金属膜2を形成しない部分にフォトレジスト等のレジスト9を形成する。 30A, a module component 1P is manufactured by mounting the component 7 on the circuit board 5 and providing the sealing portion 3. A resist 9 such as a photoresist is formed on the lower surface of the module component 1P where the metal film 2 is not formed on the portion where the metal film 2 is not formed.
 次に、図30Bに示すように、モジュール部品1Pの表面に金属膜2を形成してモジュール部品1Qを作製する。回路基板5の下面にレジスト9が配置されているので、下面のグランドパターン8以外には金属膜2が形成されない。 Next, as shown in FIG. 30B, a metal film 2 is formed on the surface of the module component 1P to produce the module component 1Q. Since the resist 9 is disposed on the lower surface of the circuit board 5, the metal film 2 is not formed except for the ground pattern 8 on the lower surface.
 次に図30Cに示すように、レジスト9を覆う金属膜2と共にレジスト9をリフトオフ等と呼ばれるパターニング方法で除去してモジュール部品1を作製する。レジスト9と共に金属膜2を剥離すると、金属膜2の一部が破片11A、11B、11Cとなる。それらの破片のうちの一部である破片11Cは配線パターン4の上に付着して短絡等の不具合を発生させる可能性がある。また破片11Aは金属膜2に繋がったバリとなる。 Next, as shown in FIG. 30C, the module 9 is manufactured by removing the resist 9 together with the metal film 2 covering the resist 9 by a patterning method called lift-off or the like. When the metal film 2 is peeled off together with the resist 9, a part of the metal film 2 becomes fragments 11A, 11B, and 11C. There is a possibility that the fragment 11C, which is a part of those fragments, adheres onto the wiring pattern 4 and causes problems such as a short circuit. Further, the fragments 11A become burrs connected to the metal film 2.
 バリとなった破片11Aは、モジュール部品1を実装する際等の振動や衝撃により欠落する恐れがある。またそのバリは経時変化で剥がれる可能性がある。金属膜2の一部が欠落した場合、金属膜2と封止部3との界面に空隙を生じ、金属膜2によるシールド効果が低下してしまう可能性があり、モジュール部品1の長期に渡る信頼性に影響を与える可能性がある。 The broken pieces 11A may be lost due to vibration or impact when the module component 1 is mounted. In addition, the burrs may be peeled off over time. If a part of the metal film 2 is missing, a gap may be generated at the interface between the metal film 2 and the sealing portion 3, which may reduce the shielding effect of the metal film 2, and the module component 1 can be used for a long time. Reliability may be affected.
 図31は他の従来のモジュール部品501の断面図を示す。図31において、図29に示すモジュール部品1と同じ部分には同じ参照番号を付す。図31に示すモジュール部品501は、図29に示すモジュール部品1の金属膜2の代わりに板金製のカバー502を備える。カバー502は、逆F型アンテナとして動作すると共に、シールドケースとしても動作する。 FIG. 31 shows a sectional view of another conventional module component 501. In FIG. 31, the same reference numerals are assigned to the same portions as those of the module component 1 shown in FIG. A module component 501 shown in FIG. 31 includes a sheet metal cover 502 instead of the metal film 2 of the module component 1 shown in FIG. The cover 502 operates as an inverted F-type antenna and also operates as a shield case.
 図31に示すモジュール部品501では、板金製カバー502はアンテナとシールドケースとの両方の機能を有しているが、外力等で変形しやすく、電子部品507の信頼性等に対する保護機能が限られており、大きい重量を有する。 In the module component 501 shown in FIG. 31, the sheet metal cover 502 has both functions of an antenna and a shield case, but is easily deformed by an external force or the like, and has a limited protection function for the reliability of the electronic component 507. And has a large weight.
特開2006-286915号公報JP 2006-286915 A
 モジュール部品は、回路基板と、回路基板の上面に実装された部品と、回路基板の上面に設けられてかつ部品を封止する封止部と、回路基板の下面の外周部分に設けられたグランドパターンと、封止部と回路基板とを覆う金属膜とを備える。金属膜は、封止部の上面を覆う天面部と、天面部から延びてかつ回路基板の側面を覆う側面部と、側面部から延びて、グランドパターン上に設けられた底面部とを有する。底面部は側面部から離れるにしたがって小さくなる厚みを有する。 The module component includes a circuit board, a component mounted on the upper surface of the circuit board, a sealing portion provided on the upper surface of the circuit board and sealing the component, and a ground provided on an outer peripheral portion of the lower surface of the circuit board. A pattern and a metal film covering the sealing portion and the circuit board are provided. The metal film has a top surface portion covering the top surface of the sealing portion, a side surface portion extending from the top surface portion and covering the side surface of the circuit board, and a bottom surface portion extending from the side surface portion and provided on the ground pattern. The bottom surface portion has a thickness that decreases as the distance from the side surface portion increases.
 このモジュール部品では、回路基板の配線パターンと金属膜とを高信頼性で電気的に接続することができる。 In this module component, the wiring pattern of the circuit board and the metal film can be electrically connected with high reliability.
図1Aは本発明の実施の形態1におけるモジュール部品の上面斜視図である。FIG. 1A is a top perspective view of a module component according to Embodiment 1 of the present invention. 図1Bは図1Aに示すモジュール部品の線1B-1Bにおける断面図である。1B is a cross-sectional view of the module component shown in FIG. 1A taken along line 1B-1B. 図1Cは実施の形態1におけるモジュール部品の金属膜の断面図である。FIG. 1C is a cross-sectional view of the metal film of the module component in the first exemplary embodiment. 図2Aは実施の形態1における他のモジュール部品の上面斜視図である。2A is a top perspective view of another module component according to Embodiment 1. FIG. 図2Bは図2Aに示すモジュール部品の線2B-2Bにおける断面図である。2B is a cross-sectional view taken along line 2B-2B of the module component shown in FIG. 2A. 図3Aは実施の形態1における電子機器の製造方法を示す断面図である。FIG. 3A is a cross-sectional view illustrating the method for manufacturing the electronic device in the first embodiment. 図3Bは実施の形態1における電子機器の製造方法を示す断面図である。FIG. 3B is a cross-sectional view illustrating the method for manufacturing the electronic device in the first embodiment. 図4Aは実施の形態1における電子機器の断面図である。4A is a cross-sectional view of the electronic device in Embodiment 1. FIG. 図4Bは図4Aに示す電子機器の拡大断面図である。4B is an enlarged cross-sectional view of the electronic device shown in FIG. 4A. 図5Aは実施の形態1における他の電子機器の断面図である。5A is a cross-sectional view of another electronic device according to Embodiment 1. FIG. 図5Bは図5Aに示す電子機器の拡大断面図である。FIG. 5B is an enlarged cross-sectional view of the electronic device shown in FIG. 5A. 図6Aは実施の形態1におけるさらに他の電子機器の断面図である。6A is a cross-sectional view of still another electronic device according to Embodiment 1. FIG. 図6Bは図6Aに示す電子機器の拡大断面図である。6B is an enlarged cross-sectional view of the electronic device shown in FIG. 6A. 図7Aは実施の形態1におけるモジュール部品の下面斜視図である。7A is a bottom perspective view of the module component according to Embodiment 1. FIG. 図7Bは図7Aに示すモジュール部品の部分断面図である。FIG. 7B is a partial cross-sectional view of the module component shown in FIG. 7A. 図8Aは実施の形態1における他のモジュール部品の下面斜視図である。8A is a bottom perspective view of another module component according to Embodiment 1. FIG. 図8Bは図8Aに示すモジュール部品の部分拡大図である。FIG. 8B is a partially enlarged view of the module component shown in FIG. 8A. 図9Aは本発明の実施の形態2における電子機器の製造方法を示す断面図である。FIG. 9A is a cross-sectional view showing the method for manufacturing the electronic device in the second embodiment of the present invention. 図9Bは図9Aに示す電子機器の断面図である。9B is a cross-sectional view of the electronic device illustrated in FIG. 9A. 図9Cは図9Aに示す電子機器の断面図である。9C is a cross-sectional view of the electronic device illustrated in FIG. 9A. 図10Aは本発明の実施の形態3におけるモジュール部品の製造方法を示す断面図である。FIG. 10A is a cross-sectional view showing the module component manufacturing method according to Embodiment 3 of the present invention. 図10Bは実施の形態3におけるモジュール部品の製造方法を示す断面図である。FIG. 10B is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 3. 図10Cは実施の形態3におけるモジュール部品の製造方法を示す断面図である。FIG. 10C is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 3. 図10Dは実施の形態3におけるモジュール部品の製造方法を示す断面図である。FIG. 10D is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 3. 図11Aは実施の形態3におけるモジュール部品の製造方法を示す断面図である。FIG. 11A is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 3. 図11Bは実施の形態3におけるモジュール部品の製造方法を示す断面図である。FIG. 11B is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 3. 図11Cは実施の形態3におけるモジュール部品の製造方法を示す断面図である。FIG. 11C is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 3. 図11Dは実施の形態3におけるモジュール部品の製造方法を示す断面図である。FIG. 11D is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 3. 図12Aは実施の形態3におけるモジュール部品の製造方法を示す断面図である。FIG. 12A is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 3. 図12Bは実施の形態3におけるモジュール部品の製造方法を示す断面図である。FIG. 12B is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 3. 図12Cは実施の形態3におけるモジュール部品の製造方法を示す断面図である。FIG. 12C is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 3. 図12Dは実施の形態3におけるモジュール部品の製造方法を示す断面図である。FIG. 12D is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 3. 図13Aは本発明の実施の形態4におけるモジュール部品の製造方法を示す断面図である。FIG. 13A is a cross-sectional view showing the module component manufacturing method according to Embodiment 4 of the present invention. 図13Bは図13Aに示すモジュール部品の製造方法を示す断面図である。FIG. 13B is a cross-sectional view showing a method of manufacturing the module component shown in FIG. 13A. 図13Cは本発明の実施の形態4におけるモジュール部品の製造方法を示す断面図である。FIG. 13C is a cross-sectional view showing the module component manufacturing method according to Embodiment 4 of the present invention. 図13Dは図13Aに示すモジュール部品の製造方法を示す断面図である。FIG. 13D is a cross-sectional view showing a method for manufacturing the module component shown in FIG. 13A. 図14は各種金属の光の反射率を示す。FIG. 14 shows the light reflectance of various metals. 図15Aは本発明の実施の形態5におけるモジュール部品の上面斜視図である。FIG. 15A is a top perspective view of a module component according to Embodiment 5 of the present invention. 図15Bは図15Aに示すモジュール部品の線15B-15Bにおける断面図である。15B is a cross-sectional view of the module component shown in FIG. 15A taken along line 15B-15B. 図15Cは図15Aに示すモジュール部品の線15C-15Cにおける断面図である。FIG. 15C is a cross-sectional view of the module component shown in FIG. 15A taken along line 15C-15C. 図15Dは実施の形態5におけるモジュール部品の金属膜の断面図である。FIG. 15D is a cross-sectional view of the metal film of the module component in the fifth embodiment. 図16は実施の形態5におけるモジュール部品の断面図である。FIG. 16 is a cross-sectional view of the module component in the fifth embodiment. 図17は実施の形態5におけるモジュール部品の上面図である。FIG. 17 is a top view of the module component in the fifth embodiment. 図18は実施の形態5におけるモジュール部品のシールド効果を示す。FIG. 18 shows the shielding effect of the module component in the fifth embodiment. 図19Aは実施の形態5におけるモジュール部品の電磁波の放射分布を示す上面図である。FIG. 19A is a top view showing the radiation distribution of electromagnetic waves of the module component in the fifth embodiment. 図19Bは図19Aに示すモジュール部品の電磁波の放射分布を示す側面図である。19B is a side view showing the radiation distribution of the electromagnetic waves of the module component shown in FIG. 19A. 図20Aは比較例のモジュール部品の電磁波の放射強度を示す上面図である。FIG. 20A is a top view showing the electromagnetic wave radiation intensity of the module component of the comparative example. 図20Bは図20Aに示すモジュール部品の電磁波の放射強度を示す側面図である。20B is a side view showing the radiation intensity of the electromagnetic wave of the module component shown in FIG. 20A. 図21Aは実施の形態5における他のモジュール部品の上面斜視図である。FIG. 21A is a top perspective view of another module component according to Embodiment 5. 図21Bは図21Aに示す線21B-21Bにおけるモジュール部品の断面図である。21B is a cross-sectional view of the module component taken along line 21B-21B shown in FIG. 21A. 図22Aは実施の形態5におけるさらに他のモジュール部品の上面斜視図である。FIG. 22A is a top perspective view of still another module component according to Embodiment 5. 図22Bは図22Aに示す線22B-22Bにおけるモジュール部品の断面図である。22B is a cross-sectional view of the module component taken along line 22B-22B shown in FIG. 22A. 図23は実施の形態5におけるモジュール部品の金属膜がアンテナとして放射する電磁波の周波数と金属膜の膜厚の関係を示す。FIG. 23 shows the relationship between the frequency of electromagnetic waves emitted from the metal film of the module component according to the fifth embodiment as an antenna and the thickness of the metal film. 図24は実施の形態5におけるモジュール部品の金属膜がアンテナとして放する電磁波の周波数と、辺や対角線の長さの関係を示す。FIG. 24 shows the relationship between the frequency of electromagnetic waves emitted from the metal film of the module component according to the fifth embodiment as an antenna and the lengths of sides and diagonal lines. 図25Aは実施の形態5における電子機器の製造方法を示す断面図である。FIG. 25A is a cross-sectional view illustrating the method for manufacturing the electronic device in the fifth embodiment. 図25Bは図25Aに示す電子機器の断面図である。25B is a cross-sectional view of the electronic device illustrated in FIG. 25A. 図26Aは本発明の実施の形態5におけるモジュール部品の製造方法を示す断面図である。FIG. 26A is a cross-sectional view showing a module component manufacturing method according to Embodiment 5 of the present invention. 図26Bは実施の形態5におけるモジュール部品の製造方法を示す断面図である。FIG. 26B is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 5. 図26Cは実施の形態5におけるモジュール部品の製造方法を示す断面図である。FIG. 26C is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 5. 図26Dは実施の形態5におけるモジュール部品の製造方法を示す断面図である。FIG. 26D is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 5. 図27Aは実施の形態5におけるモジュール部品の製造方法を示す断面図である。FIG. 27A is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 5. 図27Bは実施の形態5におけるモジュール部品の製造方法を示す断面図である。FIG. 27B is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 5. 図27Cは実施の形態5におけるモジュール部品の製造方法を示す断面図である。FIG. 27C is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 5. 図27Dは実施の形態5におけるモジュール部品の製造方法を示す断面図である。FIG. 27D is a cross-sectional view illustrating the module component manufacturing method according to Embodiment 5. 図28Aは実施の形態5におけるモジュール部品の他の製造方法を示す斜視図である。FIG. 28A is a perspective view showing another method for manufacturing the module component according to Embodiment 5. 図28Bは実施の形態5におけるモジュール部品の他の製造方法を示す斜視図である。FIG. 28B is a perspective view showing another method for manufacturing the module component according to Embodiment 5. 図28Cは実施の形態5におけるモジュール部品の他の製造方法を示す斜視図である。FIG. 28C is a perspective view showing another method for manufacturing the module component according to Embodiment 5. 図29は従来のモジュール部品の断面図である。FIG. 29 is a cross-sectional view of a conventional module component. 図30Aは図29に示すモジュール部品の製造方法を示す断面図である。30A is a cross-sectional view showing a method for manufacturing the module component shown in FIG. 図30Bは図29に示すモジュール部品の製造方法を示す断面図である。FIG. 30B is a cross-sectional view showing the method for manufacturing the module component shown in FIG. 図30Cは図29に示すモジュール部品の製造方法を示す断面図である。FIG. 30C is a cross-sectional view showing a method of manufacturing the module component shown in FIG. 図31は他の従来のモジュール部品の断面図である。FIG. 31 is a cross-sectional view of another conventional module component.
 (実施の形態1)
 図1Aは本発明の実施の形態1におけるモジュール部品100の上面斜視図である。図1Bは図1Aに示すモジュール部品100の線1B-1Bにおける断面図である。
(Embodiment 1)
FIG. 1A is a top perspective view of module component 100 according to Embodiment 1 of the present invention. 1B is a cross-sectional view taken along line 1B-1B of module component 100 shown in FIG. 1A.
 モジュール部品100は、回路基板104と、回路基板104の上面104Aに実装された部品108と、回路基板104の上面104Aに設けられた封止部109と、金属膜101とを備える。封止部109は部品108を封止する。金属膜101は回路基板104の側面104Cと封止部109とを覆う。 The module component 100 includes a circuit board 104, a component 108 mounted on the upper surface 104A of the circuit board 104, a sealing portion 109 provided on the upper surface 104A of the circuit board 104, and a metal film 101. The sealing unit 109 seals the component 108. The metal film 101 covers the side surface 104 </ b> C of the circuit board 104 and the sealing portion 109.
 回路基板104は、例えば、多層の樹脂基板であり、ガラス繊維をエポキシ樹脂で含浸させたガラスエポキシ樹脂やセラミック等の絶縁物よりなる絶縁層105を備える。絶縁層105は、回路基板104のそれぞれ上面104Aと下面104Bと側面104Cとなる上面105Aと下面105Bと側面105Cとを有する。回路基板104は、配線パターン106と、絶縁層105の上面105Aに設けられたランド113と、絶縁層105の下面105Bに設けられたグランドパターン110と、絶縁層105の下面105Bに設けられたランド111と、絶縁層105内に設けられたビア導体107とをさらに備える。配線パターン106は絶縁層105の内部と上面105Aと下面105Bの少なくとも1つに設けられている。ランド113には部品108が実装されている。ビア導体107は配線パターン106やグランドパターン110を接続する。 The circuit board 104 is, for example, a multilayer resin board, and includes an insulating layer 105 made of an insulating material such as glass epoxy resin or ceramic in which glass fibers are impregnated with epoxy resin. The insulating layer 105 includes an upper surface 105A, a lower surface 105B, and a side surface 105C that become the upper surface 104A, the lower surface 104B, and the side surface 104C of the circuit board 104, respectively. The circuit board 104 includes a wiring pattern 106, a land 113 provided on the upper surface 105A of the insulating layer 105, a ground pattern 110 provided on the lower surface 105B of the insulating layer 105, and a land provided on the lower surface 105B of the insulating layer 105. 111 and a via conductor 107 provided in the insulating layer 105. The wiring pattern 106 is provided in the insulating layer 105 and at least one of the upper surface 105A and the lower surface 105B. A component 108 is mounted on the land 113. The via conductor 107 connects the wiring pattern 106 and the ground pattern 110.
 配線パターン106の端106Cは回路基板104の側面104Cすなわち絶縁層105の側面105Cに露出する。金属膜101は、露出した配線パターン106の端106Cと電気的に接続される。グランドパターン110は回路基板104の下面104Bすなわち絶縁層105の下面105Bの外周部に設けられている。金属膜101は、封止部109の上面109Aを覆う天面部101Aと、天面部101Aから回路基板104の側面104Cまで延びる側面部101Bとを有する。金属膜101は、側面部101Bから延びて、かつグランドパターン110の下面110B上に位置する底面部112をさらに有する。底面部112は、絶縁層105(回路基板104)の外周から内周に向かって小さくなる厚みを有して厚み勾配を有する。 The end 106C of the wiring pattern 106 is exposed on the side surface 104C of the circuit board 104, that is, the side surface 105C of the insulating layer 105. The metal film 101 is electrically connected to the exposed end 106 </ b> C of the wiring pattern 106. The ground pattern 110 is provided on the outer periphery of the lower surface 104B of the circuit board 104, that is, the lower surface 105B of the insulating layer 105. The metal film 101 has a top surface portion 101A that covers the top surface 109A of the sealing portion 109, and a side surface portion 101B that extends from the top surface portion 101A to the side surface 104C of the circuit board 104. The metal film 101 further includes a bottom surface portion 112 that extends from the side surface portion 101B and is located on the lower surface 110B of the ground pattern 110. The bottom surface portion 112 has a thickness gradient with a thickness that decreases from the outer periphery to the inner periphery of the insulating layer 105 (circuit board 104).
 金属膜101の側面部101Bは、封止部109の側面109Cと回路基板104の側面104Cとを覆う、すなわち、封止部109と回路基板104との境界面102を超えて延びる。これにより、グランドパターン110と金属膜101との密着性を高め、バリ等の金属膜101の剥がれ始める部分が発生しないので、長期に渡る電気的な接続信頼性が向上する。 The side surface portion 101B of the metal film 101 covers the side surface 109C of the sealing portion 109 and the side surface 104C of the circuit board 104, that is, extends beyond the boundary surface 102 between the sealing portion 109 and the circuit substrate 104. As a result, the adhesion between the ground pattern 110 and the metal film 101 is enhanced, and no part of the metal film 101 such as a burr starts to be peeled off, thereby improving the electrical connection reliability over a long period of time.
 回路基板104が絶縁層105に例えばガラスエポキシ樹脂を用いた多層基板である場合、ランド113、配線パターン106、グランドパターン110、ランド111を銅箔で形成することでコストダウンが可能である。 When the circuit board 104 is a multilayer board using, for example, glass epoxy resin for the insulating layer 105, the land 113, the wiring pattern 106, the ground pattern 110, and the land 111 can be formed of copper foil to reduce the cost.
 回路基板104が絶縁層105にセラミック基板を用いた場合、ランド113、配線パターン106、グランドパターン110、ランド111を銀、銀パラジウム、あるいは銅で形成してもよい。配線パターンは導電ペーストの印刷、焼成で形成しても良く、あるいは銅箔等の導体箔を貼り付けて形成しても良い。 When the circuit board 104 uses a ceramic substrate for the insulating layer 105, the land 113, the wiring pattern 106, the ground pattern 110, and the land 111 may be formed of silver, silver palladium, or copper. The wiring pattern may be formed by printing and baking a conductive paste, or may be formed by attaching a conductive foil such as a copper foil.
 部品108は、例えば、半導体集積回路(IC)等の能動部品やコイル、コンデンサ等の受動部品であり、部品108としてチップ部品を用いることで実装密度を高められる。 The component 108 is, for example, an active component such as a semiconductor integrated circuit (IC) or a passive component such as a coil or a capacitor. By using a chip component as the component 108, the mounting density can be increased.
 封止部109は、例えば、熱硬化性樹脂にて構成されており、真空加圧しながら加熱すると、樹脂フィラーが回路基板104と部品108との隙間に入ることで、ボイドを発生させることなく、部品108を封止することができる。封止部109の下面109Bは回路基板104の上面104Aに当接する。 The sealing portion 109 is made of, for example, a thermosetting resin, and when heated while being vacuum-pressed, the resin filler enters the gap between the circuit board 104 and the component 108 without generating a void. The component 108 can be sealed. The lower surface 109B of the sealing portion 109 abuts on the upper surface 104A of the circuit board 104.
 金属膜101は、スパッタまたはめっきで形成でき、あるいは市販の導電性ペーストを印刷して硬化させて形成してもよい。すなわち、金属膜101は、スパッタ膜、めっき膜、導電性ペーストのいずれか、あるいはこれらの組み合わせよりなる。 The metal film 101 can be formed by sputtering or plating, or may be formed by printing and curing a commercially available conductive paste. That is, the metal film 101 is made of any one of a sputtered film, a plated film, a conductive paste, or a combination thereof.
 また、金属膜101は、二種類以上の元素から構成しても良い。例えば封止部109の表面に銅からなる下地層を形成し、この下地層上に、更に亜鉛やニッケル、錫等よりなる上層を設けることで、下地層の銅の酸化は錆びの発生を防止することができる。銅よりなる下地層上に銀よりなる上層を設けることにより金属膜101のシート抵抗を下げることができ、シールド効果を有する周波数域を高周波側に広げることができる。 Further, the metal film 101 may be composed of two or more elements. For example, by forming a base layer made of copper on the surface of the sealing portion 109 and further providing an upper layer made of zinc, nickel, tin or the like on this base layer, the oxidation of copper in the base layer prevents the occurrence of rust. can do. By providing the upper layer made of silver on the base layer made of copper, the sheet resistance of the metal film 101 can be lowered, and the frequency region having a shielding effect can be widened to the high frequency side.
 なお、金属膜101に使用する2種類の元素は、合金として金属膜101を形成してもよい。銅と亜鉛、あるいは銅とニッケル等の部材を予め合金化し、これをスパッタ用ターゲットとしても良い。あるいは銅のターゲットと、亜鉛のターゲットを別々に用意し、これを同時にスパッタすることで、合金化しても良い。こうすることで、工数を低減でき、コストダウンできる。 Note that the two kinds of elements used in the metal film 101 may form the metal film 101 as an alloy. Members such as copper and zinc or copper and nickel may be alloyed in advance and used as a sputtering target. Alternatively, a copper target and a zinc target may be prepared separately and alloyed by sputtering them simultaneously. By doing so, man-hours can be reduced and costs can be reduced.
 図1Cは金属膜101の他の例の断面図である。金属膜101は、封止部109の表面に設けられたチタンもしくはクロムよりなる下地層1101と、下地層1101上に形成された銅層2101と、銅層2101の上に設けられた亜鉛やニッケル、錫もしくは亜鉛合金やニッケル合金、錫合金よりなる上層3101とを有する。これにより、封止部109と金属膜101との密着性を高めることができる。 FIG. 1C is a cross-sectional view of another example of the metal film 101. The metal film 101 includes a base layer 1101 made of titanium or chromium provided on the surface of the sealing portion 109, a copper layer 2101 formed on the base layer 1101, and zinc or nickel provided on the copper layer 2101. And an upper layer 3101 made of tin, a zinc alloy, a nickel alloy, or a tin alloy. Thereby, the adhesiveness of the sealing part 109 and the metal film 101 can be improved.
 なお、上記の下地層を形成する前に、封止部109の表面にアルゴン(Ar)で逆スパッタリングを施して封止部109の表面を洗浄することで更に金属膜101との密着性を向上させることができる。 In addition, before forming the base layer, the surface of the sealing portion 109 is reverse-sputtered with argon (Ar) to clean the surface of the sealing portion 109, thereby further improving the adhesion with the metal film 101. Can be made.
 図1Bに示すように、グランドパターン110と金属膜101の底面部112とは面で接触しているので、接触抵抗を小さくすることができる。底面部112は回路基板104(絶縁層105)の外周から内周に向かって小さくなる厚みを有するので、応力が発生しにくく、外力等でも剥離しない。 As shown in FIG. 1B, since the ground pattern 110 and the bottom surface portion 112 of the metal film 101 are in contact with each other, the contact resistance can be reduced. Since the bottom surface portion 112 has a thickness that decreases from the outer periphery to the inner periphery of the circuit board 104 (insulating layer 105), it is difficult for stress to be generated and does not peel even by an external force or the like.
 図2Aと図2Bはそれぞれ実施の形態1における他のモジュール部品1100の上面斜視図と断面図である。図2Aと図2Bにおいて、図1Aと図1Bに示すモジュール部品100と同じ部分には同じ参照番号を付す。図2Aと図2Bに示すモジュール部品1100では、封止部109の上面109Aと側面109Cとが繋がる境界のエッジには面取り部114が設けられている。金属膜101は面取り部114と含めて封止部109の表面を覆う。面取り部114は、略直角の封止部109のエッジに設けられた所定の角度の勾配を有する平面よりなるC面カットである。なお勾配の角度は45度であるが、これに限定されない。また面取り部114は複数の角度の勾配を有していてもよい。また、面取り部114は平面ではなく所定の曲率半径を有する曲面を有するR面加工であってもよい、曲率半径は例えば1mm以上半径5mm以下であるが、これに限定されない。また、面取り部114は階段形状を有していてよい。また、面取り部114は、C面カット、R面加工等の複数の組み合わせであっても良い。面取り部114により、金属膜101の形成時の厚みバラツキを低減し、金属膜101の内部応力の発生を抑制することができる。 2A and 2B are a top perspective view and a cross-sectional view of another module component 1100 according to Embodiment 1, respectively. 2A and 2B, the same reference numerals are assigned to the same parts as those of the module component 100 shown in FIGS. 1A and 1B. In the module component 1100 shown in FIGS. 2A and 2B, a chamfered portion 114 is provided at the edge of the boundary where the upper surface 109A and the side surface 109C of the sealing portion 109 are connected. The metal film 101 covers the surface of the sealing portion 109 including the chamfered portion 114. The chamfered portion 114 is a C-plane cut made of a plane having a predetermined angle gradient provided at the edge of the substantially perpendicular sealing portion 109. The angle of the gradient is 45 degrees, but is not limited to this. Further, the chamfered portion 114 may have a plurality of angular gradients. Further, the chamfered portion 114 may be R-surface processing having a curved surface having a predetermined curvature radius instead of a flat surface. The curvature radius is, for example, not less than 1 mm and not more than 5 mm, but is not limited thereto. Further, the chamfered portion 114 may have a staircase shape. Further, the chamfered portion 114 may be a plurality of combinations such as C surface cutting and R surface processing. The chamfered portion 114 can reduce the thickness variation when the metal film 101 is formed, and suppress the generation of internal stress of the metal film 101.
 図3Aと図3Bは実施の形態1における電子機器119の製造方法を示す断面図である。電子機器119は、モジュール部品100と、半田117と、回路基板118と、フィレット120とを備える。回路基板118は、回路基板104の絶縁層105と配線パターン106とビア導体107と同様の絶縁層105Eと配線パターン106Bとビア導体107Bとを備える。 3A and 3B are cross-sectional views illustrating a method for manufacturing the electronic device 119 in the first embodiment. The electronic device 119 includes a module component 100, solder 117, a circuit board 118, and a fillet 120. The circuit board 118 includes an insulation layer 105E, a wiring pattern 106B, and a via conductor 107B similar to the insulating layer 105, the wiring pattern 106, and the via conductor 107 of the circuit board 104.
 図3Aに示すように、モジュール部品100を回路基板118の上面118Aに実装する。このとき、回路基板118の上面118Aに設けられた配線パターン106Bとモジュール部品100の回路基板104の下面104Bに設けられたランド111は半田117で接続される。図3Bに示すように、半田117はモジュール部品100の金属膜101の側面部101Bに沿って天面部101Aに向かって延びるフィレット120を有する。フィレット120により、回路基板118とモジュール部品100との固定強度(あるいは剥離強度)を高められる。なおフィレット120は、用途に応じて形成すれば良い。 3A, the module component 100 is mounted on the upper surface 118A of the circuit board 118. At this time, the wiring pattern 106B provided on the upper surface 118A of the circuit board 118 and the land 111 provided on the lower surface 104B of the circuit board 104 of the module component 100 are connected by the solder 117. As shown in FIG. 3B, the solder 117 has a fillet 120 extending toward the top surface portion 101 </ b> A along the side surface portion 101 </ b> B of the metal film 101 of the module component 100. By the fillet 120, the fixing strength (or peel strength) between the circuit board 118 and the module component 100 can be increased. The fillet 120 may be formed according to the application.
 図4Aと図4Bはそれぞれ電子機器119のモジュール部品100の電界輻射を示す断面図と拡大断面図である。 4A and 4B are a sectional view and an enlarged sectional view showing electric field radiation of the module component 100 of the electronic device 119, respectively.
 モジュール部品100(1100)の回路基板104に実装された部品108で構成された回路から、特定の周波数帯においてノイズが輻射される。金属膜101のように導体でモジュール部品100(1100)を覆うことでモジュール部品100から輻射されるノイズを低減するシールド効果が得られる。 Noise is radiated in a specific frequency band from the circuit configured by the component 108 mounted on the circuit board 104 of the module component 100 (1100). Covering the module component 100 (1100) with a conductor like the metal film 101 provides a shielding effect that reduces noise radiated from the module component 100.
 実施の形態1では抑えるノイズの周波数帯域は、例えば無線LANの場合、10GHz前後(例えば、9.8GHz~10.2GHz)である。10GHzの周波数を、1/4分周して2.4GHzを、1/2分周して5.0GHzの搬送波等を作成する。 In the first embodiment, for example, in the case of a wireless LAN, the frequency band of noise to be suppressed is around 10 GHz (for example, 9.8 GHz to 10.2 GHz). The frequency of 10 GHz is divided by 1/4 to 2.4 GHz, and the frequency is divided by 1/2 to create a 5.0 GHz carrier wave or the like.
 図4Bに示すように、モジュール部品100のエッジに電界116が集中した場合、電界輻射115A、115Bはそのエッジにピーク103を有するので、金属膜101ではシールド効果が不足する可能性がある。 As shown in FIG. 4B, when the electric field 116 is concentrated on the edge of the module component 100, the electric field radiation 115A, 115B has a peak 103 at the edge, so that the shielding effect may be insufficient in the metal film 101.
 実施の形態1では金属膜101の厚みは1μm以上200μm以下、望ましくは10μm以上100μm以下である。厚みが200μm以上とした場合、金属膜101に内部応力等が発生しやすい場合がある。また、厚みが1μm未満の場合、シールド効果が低い場合がある。 In Embodiment 1, the thickness of the metal film 101 is 1 μm or more and 200 μm or less, and preferably 10 μm or more and 100 μm or less. When the thickness is 200 μm or more, internal stress or the like may easily occur in the metal film 101. When the thickness is less than 1 μm, the shielding effect may be low.
 図5Aと図5Bはそれぞれ実施の形態1により他の電子機器1119の断面図と拡大断面図である。図5Aと図5Bにおいて、図4Aと図4Bに示す電子機器119と同じ部分には同じ参照番号を付す。図5Aと図5Bに示す電子機器1119は、図4Aと図4Bに示す電子機器119のモジュール部品100の代わりにモジュール部品3100を備える。図5Aと図5Bに示すモジュール部品3100の面取り部114は階段形状を有する。 FIGS. 5A and 5B are a cross-sectional view and an enlarged cross-sectional view of another electronic device 1119 according to Embodiment 1, respectively. 5A and 5B, the same reference numerals are given to the same portions as those of the electronic device 119 shown in FIGS. 4A and 4B. An electronic device 1119 illustrated in FIGS. 5A and 5B includes a module component 3100 instead of the module component 100 of the electronic device 119 illustrated in FIGS. 4A and 4B. The chamfered portion 114 of the module component 3100 shown in FIGS. 5A and 5B has a step shape.
 階段形状を有する面取り部114は複数のエッジ114Aを有する。複数のエッジ114Aにより、図4Aと図4Bに示す電子機器119に比べて電界116が分散するので、電界輻射115A、115Bのピーク103を小さくすることができる。 The chamfered portion 114 having a staircase shape has a plurality of edges 114A. The plurality of edges 114A disperse the electric field 116 as compared with the electronic device 119 shown in FIGS. 4A and 4B, so that the peak 103 of the electric field radiation 115A and 115B can be reduced.
 図6Aと図6Bはそれぞれ実施の形態1によるさらに他の電子機器2119の断面図と拡大断面図である。図6Aと図6Bにおいて、図5Aと図5Bに示す電子機器1119と同じ部分には同じ参照番号を付す。図6Aと図6Bに示す電子機器2119では、モジュール部品1100の面取り部114は図2Aと図2Bに示す平面よりなるC面カットを有する。面取り部114は複数のエッジ114Aを有する。複数のエッジ114Aにより、図4Aと図4Bに示す電子機器119に比べて電界116が分散するので、電界輻射115A、115Bのピーク103を小さくすることができる。 6A and 6B are a cross-sectional view and an enlarged cross-sectional view of still another electronic device 2119 according to Embodiment 1, respectively. 6A and 6B, the same reference numerals are assigned to the same portions as those of the electronic device 1119 shown in FIGS. 5A and 5B. In the electronic device 2119 shown in FIGS. 6A and 6B, the chamfered portion 114 of the module component 1100 has a C-plane cut formed by the plane shown in FIGS. 2A and 2B. The chamfered portion 114 has a plurality of edges 114A. The plurality of edges 114A disperse the electric field 116 as compared with the electronic device 119 shown in FIGS. 4A and 4B, so that the peak 103 of the electric field radiation 115A and 115B can be reduced.
 なお、電界116を更に分散させるため、面取り部114が所定の曲率半径を有する曲面を有するようにR面加工を施すことでエッジを除去してもよい。 In addition, in order to further disperse the electric field 116, the edge may be removed by performing R surface processing so that the chamfered portion 114 has a curved surface having a predetermined radius of curvature.
 以上のように、モジュール部品1100から外部機器に対してノイズによる干渉を抑制することが可能となる。 As described above, it is possible to suppress interference due to noise from the module component 1100 to the external device.
 図7Aはモジュール部品100の下面斜視図である。モジュール部品100下面すなわち回路基板104(絶縁層105)の下面104B(下面105B)は外周部を構成する4つの辺を有する矩形状を有する。グランドパターン110は絶縁層105の下面105Bの外周部の4つの辺のうち少なくとも2つの辺に沿って設けられている。金属膜101の側面部101Bに繋がる底面部112はグランドパターン110の下面110Bに位置する。 FIG. 7A is a bottom perspective view of the module component 100. The lower surface of the module component 100, that is, the lower surface 104B (lower surface 105B) of the circuit board 104 (insulating layer 105) has a rectangular shape having four sides constituting the outer peripheral portion. The ground pattern 110 is provided along at least two sides of the four sides of the outer peripheral portion of the lower surface 105B of the insulating layer 105. A bottom surface portion 112 connected to the side surface portion 101 </ b> B of the metal film 101 is located on the lower surface 110 </ b> B of the ground pattern 110.
 図7Bは図7Aに示すモジュール部品100の部分断面図である。底面部112の厚みは側面部101Bから離れるにつれて小さくなる、すなわち絶縁層105の下面105Bの外周部から中央に向かうにつれて連続的に単調に小さくなっており、端122Aで厚みはゼロになっている。端122Aは直線形状を有する。この構造により底面部112における内部応力の発生を防止し、機械的な外力を受けても底面部112は剥がれにくく、バリが発生しにくい。この結果、モジュール部品100では、取り扱い時の振動や衝撃等によっても、金属膜101の欠損が発生しない。 FIG. 7B is a partial cross-sectional view of the module component 100 shown in FIG. 7A. The thickness of the bottom surface portion 112 decreases with increasing distance from the side surface portion 101B, that is, continuously decreases monotonically from the outer peripheral portion of the lower surface 105B of the insulating layer 105 toward the center, and the thickness becomes zero at the end 122A. . The end 122A has a linear shape. With this structure, generation of internal stress in the bottom surface portion 112 is prevented, and even when a mechanical external force is applied, the bottom surface portion 112 is hardly peeled off and burrs are not easily generated. As a result, in the module component 100, the metal film 101 is not damaged due to vibration or impact during handling.
 このように、回路基板104の下面104Bは4つの辺を有する矩形状を実質的に有する。グランドパターン110は回路基板104の下面104Bの4つの辺のうちの少なくとも2つの辺に沿って設けられている。金属膜101の底面部112は回路基板104の下面104Bの4つの辺のうちのそれら少なくとも2つの辺に設けられている。金属膜101の底面部112はそれら2つの辺を超えてグランドパターン110に設けられている。 Thus, the lower surface 104B of the circuit board 104 substantially has a rectangular shape having four sides. The ground pattern 110 is provided along at least two of the four sides of the lower surface 104 </ b> B of the circuit board 104. The bottom surface portion 112 of the metal film 101 is provided on at least two of the four sides of the lower surface 104B of the circuit board 104. The bottom surface portion 112 of the metal film 101 is provided on the ground pattern 110 beyond these two sides.
 図8Aは実施の形態1におけるさらに他のモジュール部品2100の下面斜視図である。図8Bは図8Aに示すモジュール部品2100の部分断面図である。図8Aと図8Bにおいて、図7Aと図7Bに示すモジュール部品100と同じ部分には同じ参照番号を付す。図8Aと図8Bに示すモジュール部品2100では、底面部112の厚みは側面部101Bから離れるにつれて小さくなる、すなわち絶縁層105の下面105Bの外周部から中央に向かうにつれて連続的に単調に小さくなっており、端122で厚みはゼロになっている。端122は直線形状ではなくジグザグの波形状等の不定形状を有する。端122が不定形状を有することで、さらに内部応力の発生を抑制できる。端122は、例えば木目形状あるいはダマスカス鋼の模様の形状を有していてもよい。 FIG. 8A is a bottom perspective view of still another module component 2100 in the first exemplary embodiment. FIG. 8B is a partial cross-sectional view of the module component 2100 shown in FIG. 8A. 8A and 8B, the same reference numerals are assigned to the same parts as those of the module component 100 shown in FIGS. 7A and 7B. In the module component 2100 shown in FIGS. 8A and 8B, the thickness of the bottom surface portion 112 decreases as the distance from the side surface portion 101B decreases, that is, decreases continuously and monotonously from the outer peripheral portion of the lower surface 105B of the insulating layer 105 toward the center. The thickness at the end 122 is zero. The end 122 has an indefinite shape such as a zigzag wave shape instead of a linear shape. Since the end 122 has an indefinite shape, generation of internal stress can be further suppressed. The end 122 may have a grain shape or a Damascus steel pattern, for example.
 底面部112の端122を不定形状とすることで、底面部112の端122を、図7Aと図7Bに示す直線形状の端122Aより長くすることができ、底面部112を絶縁層105と接合させる距離を長くすることで金属膜101をより強固に絶縁層105に接合させることができ金属膜101を剥がれにくくすることができる。 By making the end 122 of the bottom surface portion 112 indefinite, the end 122 of the bottom surface portion 112 can be made longer than the linear end 122A shown in FIGS. 7A and 7B, and the bottom surface portion 112 is bonded to the insulating layer 105. By increasing the distance, the metal film 101 can be more strongly bonded to the insulating layer 105, and the metal film 101 can be made difficult to peel off.
 (実施の形態2)
 図9Aは本発明の実施の形態2における電子機器3119の製造方法を示す断面図である。図9Bは電子機器3119の断面図である。図9Aと図9Bにおいて、図3Aと図3Bに示す電子機器119と同じ部分には同じ参照番号を付す。
(Embodiment 2)
FIG. 9A is a cross-sectional view illustrating a method for manufacturing electronic device 3119 according to Embodiment 2 of the present invention. FIG. 9B is a cross-sectional view of the electronic device 3119. 9A and 9B, the same reference numerals are assigned to the same portions as those of the electronic device 119 illustrated in FIGS. 3A and 3B.
 電子機器3119の回路基板118の上面118Aに半田117が設けられており、半田117上にモジュール部品100が実装される。 The solder 117 is provided on the upper surface 118A of the circuit board 118 of the electronic device 3119, and the module component 100 is mounted on the solder 117.
 図9Bに示すように、回路基板118の上面118Aに設けられたグランドパターン121Aと、モジュール部品100の金属膜101に接続されたグランドパターン110は半田117を介して電気的に接続されている。このように、金属膜101の密着性が高いモジュール部品100を電子機器119に搭載することで、電気的接続信頼性の高い電子機器3119を提供することが可能となる。 As shown in FIG. 9B, the ground pattern 121 A provided on the upper surface 118 A of the circuit board 118 and the ground pattern 110 connected to the metal film 101 of the module component 100 are electrically connected via solder 117. As described above, by mounting the module component 100 with high adhesion of the metal film 101 on the electronic device 119, it is possible to provide the electronic device 3119 with high electrical connection reliability.
 また、回路基板118の上面118Aに設けられたグランドパターン121Aと、回路基板118の下面118Bに設けられたグランドパターン121Bはビア導体107Bで接続されている。このようにビア導体107Bを介してモジュール部品100のグランドパターン110とグランドパターン121Bとが電気的に接続されている。ビア導体107Bは導電性樹脂またはめっきにより形成される。またビア導体107Bは回路基板118の内部の層間を接続する。 The ground pattern 121A provided on the upper surface 118A of the circuit board 118 and the ground pattern 121B provided on the lower surface 118B of the circuit board 118 are connected by the via conductor 107B. Thus, the ground pattern 110 and the ground pattern 121B of the module component 100 are electrically connected via the via conductor 107B. The via conductor 107B is formed of a conductive resin or plating. The via conductor 107B connects the internal layers of the circuit board 118.
 図9Bに示すように、ビア導体107Bは、複数のビア導体、例えば複数のビア導体107Bの組み合わせで形成されていてもよい。1つのビア導体107Aで回路基板118の上面118Aに形成されたグランドパターン121Aと、下面118Bに形成されたグランドパターン121Bとを接続してもよい。回路基板118を貫通する1つのみの貫通ビア導体107Aがグランドパターン121A、121Bを接続してもよい。より少ない数のビア導体107Aでグランドパターン121A、121Bを接続することにより歩留まりや抵抗値を低くすることができる。 As shown in FIG. 9B, the via conductor 107B may be formed of a combination of a plurality of via conductors, for example, a plurality of via conductors 107B. The ground pattern 121A formed on the upper surface 118A of the circuit board 118 and the ground pattern 121B formed on the lower surface 118B may be connected by one via conductor 107A. Only one through via conductor 107A that penetrates the circuit board 118 may connect the ground patterns 121A and 121B. By connecting the ground patterns 121A and 121B with a smaller number of via conductors 107A, the yield and the resistance value can be lowered.
 回路基板118に内蔵されたビア導体107Aをグランドパターン121A、121Bに接続することで、グランドパターン121A,121Bのグランド電位を安定させることができる。これにより、電子機器119のシールド効果を安定させることが可能となる。その結果、図9Bに示すように、ビア導体107Aを用いることで、回路基板118の側面からの方向からのノイズ103Cを小さくできる。 The ground potentials of the ground patterns 121A and 121B can be stabilized by connecting the via conductor 107A built in the circuit board 118 to the ground patterns 121A and 121B. Thereby, the shielding effect of the electronic device 119 can be stabilized. As a result, as shown in FIG. 9B, by using the via conductor 107A, the noise 103C from the direction from the side surface of the circuit board 118 can be reduced.
 グランドパターン121Bは下面のほとんどを覆う大面積のパターンに限定される必要は無く、一般的なグランドパターンでよい。 The ground pattern 121B is not necessarily limited to a large area pattern covering most of the lower surface, and may be a general ground pattern.
 図9Cは比較例の電子機器4119の断面図である。電子機器4119では、回路基板118の上面118Aに設けられたグランドパターン121Aと、下面118Bに設けられたグランドパターン121Bとを接続する1つのビア導体を有していない。この場合、回路基板118の側面からのノイズ103Eや、回路基板118の下面118Bから放射されるノイズ103Fがあまり低減されない可能性がある。 FIG. 9C is a cross-sectional view of the electronic device 4119 of the comparative example. The electronic device 4119 does not have one via conductor that connects the ground pattern 121A provided on the upper surface 118A of the circuit board 118 and the ground pattern 121B provided on the lower surface 118B. In this case, the noise 103E from the side surface of the circuit board 118 and the noise 103F radiated from the lower surface 118B of the circuit board 118 may not be reduced so much.
 図9Cに示す比較例の電子機器4119では、回路基板118の上面118Aにモジュール部品100が実装された場合、グランドパターン121Aのグランド電位が安定せず、回路基板118の側面から電界輻射115A、115Bが現れ、シールド効果が低下してしまう可能性がある。したがって、図9Bに示すグランドパターン121A、121Bを接続する1つのビア導体107Aを設けることが望ましい。 In the electronic device 4119 of the comparative example shown in FIG. 9C, when the module component 100 is mounted on the upper surface 118A of the circuit board 118, the ground potential of the ground pattern 121A is not stable, and the electric field radiation 115A and 115B from the side surface of the circuit board 118. May appear and the shielding effect may be reduced. Therefore, it is desirable to provide one via conductor 107A that connects the ground patterns 121A and 121B shown in FIG. 9B.
 (実施の形態3)
 図10Aから図10Dは本発明の実施の形態3におけるモジュール部品100の製造方法を示す断面図である。
(Embodiment 3)
10A to 10D are cross-sectional views illustrating a method for manufacturing the module component 100 according to Embodiment 3 of the present invention.
 回路基板シート204は部品108を実装するためのランド113(図3Aに示す)と配線パターンを有する。まず、図10Aに示すように、回路基板シート204上のランド113に部品108を実装する。次に、図10Bに示すように、半田117(図3Aに示す)で部品108をランド113に電気的に接続する。次に、図10Cに示すように、部品108の周囲を封止樹脂209により封止した後、図10Dに示すように、回路基板シート204と封止樹脂209とを個片123に分割する。回路基板シート204と封止樹脂209は分割されてそれぞれ回路基板104と封止部109となる。 The circuit board sheet 204 has a land 113 (shown in FIG. 3A) for mounting the component 108 and a wiring pattern. First, as shown in FIG. 10A, the component 108 is mounted on the land 113 on the circuit board sheet 204. Next, as shown in FIG. 10B, the component 108 is electrically connected to the land 113 with solder 117 (shown in FIG. 3A). Next, as shown in FIG. 10C, the periphery of the component 108 is sealed with a sealing resin 209, and then the circuit board sheet 204 and the sealing resin 209 are divided into pieces 123 as shown in FIG. 10D. The circuit board sheet 204 and the sealing resin 209 are divided into a circuit board 104 and a sealing portion 109, respectively.
 図11Aから図11Dは実施の形態3におけるモジュール部品100の製造方法を示す断面図である。図11Aと図11Bに示すように、保持部124を有する治具125の上に、得られた個片123を配置する。保持部124として両面テープ等の接着剤を用いることができる。保持部124は個片123の下部に配置されるとともに、回路基板104の周縁部より内側に配置することが望ましい。 11A to 11D are cross-sectional views showing a method for manufacturing the module component 100 according to the third embodiment. As shown in FIGS. 11A and 11B, the obtained piece 123 is placed on a jig 125 having a holding portion 124. An adhesive such as a double-sided tape can be used as the holding portion 124. It is desirable that the holding portion 124 be disposed below the individual pieces 123 and be disposed on the inner side of the peripheral portion of the circuit board 104.
 次に、図11Cに示すように、個片123を覆う金属膜101を形成する。個片123の回路基板104の下面104Bの外周部104Tが保持部124から露出するように個片123が保持部124上に載置される。金属膜101は、個片123の側面から下面104Bに回りこんで外周部104Tに形成される。金属膜101を例えば金属元素をスパッタリングすることで形成する場合には、個片123の上面から吹き付けられた金属元素は下面104Bに回り込むことで、下面104Bの外周部104Tに形成される金属膜101の部分の厚みは、下面104Bの外周から内側に向かって小さくなり、図7Aや図8Aに示す底面部112が形成される。 Next, as shown in FIG. 11C, a metal film 101 covering the pieces 123 is formed. The piece 123 is placed on the holding portion 124 such that the outer peripheral portion 104T of the lower surface 104B of the circuit board 104 of the piece 123 is exposed from the holding portion 124. The metal film 101 is formed on the outer peripheral portion 104T by wrapping around from the side surface of the piece 123 to the lower surface 104B. When the metal film 101 is formed, for example, by sputtering a metal element, the metal element sprayed from the upper surface of the individual piece 123 wraps around the lower surface 104B, so that the metal film 101 formed on the outer peripheral portion 104T of the lower surface 104B. The thickness of the portion decreases from the outer periphery of the lower surface 104B toward the inner side, and the bottom surface portion 112 shown in FIGS. 7A and 8A is formed.
 最後に、図11Dに示すように、個片123を治具125から剥離することで、モジュール部品100が得られる。 Finally, as shown in FIG. 11D, the module component 100 is obtained by peeling the piece 123 from the jig 125.
 このように、個片123の下面の端から内側に向かって薄くなる金属膜101ではバリの欠落が発生しにくいので、モジュール部品100を取り扱う際の振動や衝撃に対して懸念される電気的接続信頼性を向上させることができる。 As described above, since the metal film 101 that is thinned inward from the lower surface end of the individual piece 123 is less likely to lose burrs, the electrical connection is concerned about vibration and impact when handling the module component 100. Reliability can be improved.
 図12Aから図12Dは、実施の形態3におけるモジュール部品100の他の製造方法を示す断面図である。図12Aから図12Dにおいて、図11Aから図11Dに示すモジュール部品100と同じ部分には同じ参照番号を付す。 12A to 12D are cross-sectional views illustrating another method for manufacturing the module component 100 according to the third embodiment. 12A to 12D, the same reference numerals are assigned to the same parts as those of the module component 100 shown in FIGS. 11A to 11D.
 図11Aから図11Dに示す治具125の保持部124は矩形状の断面を有する。図12Aから図12Dに示す治具125は台形形状の断面を有する保持部124Aを備える。 The holding part 124 of the jig 125 shown in FIGS. 11A to 11D has a rectangular cross section. The jig 125 shown in FIGS. 12A to 12D includes a holding portion 124A having a trapezoidal cross section.
 図12Aに示すように、治具125には孔126が設けられている。図12Bに示すように、エアーを方向103Aに孔126を通して吸い込むことにより個片123を治具125の保持部124Aに保持する。 As shown in FIG. 12A, the jig 125 is provided with a hole 126. As shown in FIG. 12B, the pieces 123 are held by the holding portion 124A of the jig 125 by sucking air through the holes 126 in the direction 103A.
 次に、図12Cに示すように、個片123を覆う金属膜101を形成する。個片123の回路基板104の下面104Bの外周部104Tが保持部124から露出するように個片123が保持部124A上に載置される。金属膜101は、個片123の側面から下面104Bに回りこんで外周部104Tに形成される。金属膜101を例えば金属元素をスパッタリングすることで形成する場合には、個片123の上面から吹き付けられた金属元素は下面104Bに回り込むことで、下面104Bの外周部104Tに形成される金属膜101の部分の厚みは、下面104Bの外周から内側に向かって小さくなり、図7Aや図8Aに示す底面部112が形成される。その後、図12Dに示すように、エアーを方向103Gに噴射することで個片123を治具125から取り外し、モジュール部品100を作製する。 Next, as shown in FIG. 12C, a metal film 101 that covers the pieces 123 is formed. The piece 123 is placed on the holding portion 124A so that the outer peripheral portion 104T of the lower surface 104B of the circuit board 104 of the piece 123 is exposed from the holding portion 124. The metal film 101 is formed on the outer peripheral portion 104T by wrapping around from the side surface of the piece 123 to the lower surface 104B. When the metal film 101 is formed, for example, by sputtering a metal element, the metal element sprayed from the upper surface of the individual piece 123 wraps around the lower surface 104B, so that the metal film 101 formed on the outer peripheral portion 104T of the lower surface 104B. The thickness of the portion decreases from the outer periphery of the lower surface 104B toward the inner side, and the bottom surface portion 112 shown in FIGS. 7A and 8A is formed. Thereafter, as shown in FIG. 12D, the individual parts 123 are removed from the jig 125 by injecting air in the direction 103 </ b> G, and the module component 100 is manufactured.
 個片123を保持する保持部124Aは斜面124Bを有する台形形状の断面を有する。斜面124Bはモジュール部品100の回路基板104に対して斜めの角度で当接する。すなわち、斜面214Bと回路基板104の下面104Bとの間の距離は、下面104Bの外縁から内側部分に向かうにしたがって小さくなる。これにより、金属膜101をめっきや導電性ペーストで形成する場合に、金属膜101が個片123の回路基板104の下面104Bに回りこんで形成される際に、金属膜101の厚みを内側に向かって小さくすることができる。 The holding portion 124A for holding the piece 123 has a trapezoidal cross section having an inclined surface 124B. The slope 124B contacts the circuit board 104 of the module component 100 at an oblique angle. That is, the distance between the slope 214B and the lower surface 104B of the circuit board 104 decreases as it goes from the outer edge of the lower surface 104B to the inner portion. Accordingly, when the metal film 101 is formed by plating or conductive paste, the thickness of the metal film 101 is set to the inner side when the metal film 101 is formed to wrap around the lower surface 104B of the circuit board 104 of the piece 123. It can be made smaller.
 また、図11Aから図11Dや図12Aから図12Dに示す方法により、図8Aと図8Bに示す不定形状を有する端122を容易に形成することができる。 Further, the end 122 having the indefinite shape shown in FIGS. 8A and 8B can be easily formed by the method shown in FIGS. 11A to 11D and FIGS. 12A to 12D.
 この方法により、めっきや導電性樹脂の塗布によっても金属膜101を容易に形成することが可能となり、個片123と金属膜101との電気的接続信頼性を高くすることができる。 By this method, the metal film 101 can be easily formed even by plating or applying a conductive resin, and the electrical connection reliability between the piece 123 and the metal film 101 can be increased.
 (実施の形態4)
 図13Aと図13Bは本発明の実施の形態4におけるモジュール部品1100の製造方法を示す断面図である。図13Aと図13Bにおいて、図10Cと図10Dに示す実施の形態3における製造方法と同じ部分には同じ参照番号を付す。図13Aに示すように、回路基板シート204の上に実装された部品108を封止した封止樹脂209に、個片123の境目で矩形状の断面を有する溝127が設けられる。なお、溝127の深さは、個片123の上面から回路基板シート204までの距離より短く、溝127は回路基板シート204まで達していない。次に、図13Bに示すように、溝127の底の中央から回路基板シート204の下面まで裁断して封止樹脂209と回路基板シート204を複数の個片123に完全に分割することができる。個片123の表面に金属膜101を形成することにより、図5Aと図5Bに示す階段形状を有する面取り部114を有する封止部109を備えたモジュール部品1100が得られる。
(Embodiment 4)
13A and 13B are cross-sectional views showing a method for manufacturing module component 1100 according to Embodiment 4 of the present invention. 13A and 13B, the same reference numerals are assigned to the same portions as those in the manufacturing method according to the third embodiment shown in FIGS. 10C and 10D. As shown in FIG. 13A, a groove 127 having a rectangular cross section is provided at the boundary between the pieces 123 in the sealing resin 209 that seals the component 108 mounted on the circuit board sheet 204. The depth of the groove 127 is shorter than the distance from the upper surface of the piece 123 to the circuit board sheet 204, and the groove 127 does not reach the circuit board sheet 204. Next, as shown in FIG. 13B, the sealing resin 209 and the circuit board sheet 204 can be completely divided into a plurality of pieces 123 by cutting from the bottom center of the groove 127 to the lower surface of the circuit board sheet 204. . By forming the metal film 101 on the surface of the piece 123, a module component 1100 having a sealing portion 109 having a chamfered portion 114 having a stepped shape shown in FIGS. 5A and 5B is obtained.
 図13Cと図13Dは本発明の実施の形態4における他のモジュール部品1100の製造方法を示す断面図である。図13Cと図13Dにおいて、図10Cと図10Dに示す実施の形態3における製造方法と同じ部分には同じ参照番号を付す。図13Cに示すように、回路基板シート204の上に実装された部品108を封止した封止樹脂209に、個片123の境目でV字形状の断面を有する溝128が設けられる。なお、溝128の深さは、個片123の上面から回路基板シート204までの距離より短く、溝128は回路基板シート203まで達していない。次に、図13Dに示すように、溝128の底の中央から回路基板シート204の下面まで裁断して封止樹脂209と回路基板シート204を複数の個片123に完全に分割することができる。個片123の表面に金属膜101を形成することにより、図2Aと図2Bに示すC面カット形状を有する面取り部114を有する封止部109を備えたモジュール部品1100が得られる。 FIGS. 13C and 13D are cross-sectional views showing a method for manufacturing another module component 1100 according to Embodiment 4 of the present invention. 13C and FIG. 13D, the same reference numerals are assigned to the same portions as those in the manufacturing method according to the third embodiment shown in FIGS. 10C and 10D. As shown in FIG. 13C, a groove 128 having a V-shaped cross section at the boundary between the pieces 123 is provided in the sealing resin 209 that seals the component 108 mounted on the circuit board sheet 204. The depth of the groove 128 is shorter than the distance from the upper surface of the piece 123 to the circuit board sheet 204, and the groove 128 does not reach the circuit board sheet 203. Next, as shown in FIG. 13D, the sealing resin 209 and the circuit board sheet 204 can be completely divided into a plurality of pieces 123 by cutting from the center of the bottom of the groove 128 to the lower surface of the circuit board sheet 204. . By forming the metal film 101 on the surface of the piece 123, a module component 1100 including a sealing portion 109 having a chamfered portion 114 having a C-surface cut shape shown in FIGS. 2A and 2B is obtained.
 図13Aから図13Dに示す方法により、溝127、128の形成と個片の裁断という二回の工程のみで、コーナーがC面カットされた個片123や階段形状を有するコーナーを有する個片123を容易に製造することができる。 The method shown in FIGS. 13A to 13D, the piece 123 having a corner having a C-shaped corner or a step 123 having a corner shape is cut only by two steps of forming the grooves 127 and 128 and cutting the piece. Can be easily manufactured.
 溝127、128を形成するダイシングブレードと、回路基板シート204と封止樹脂209を裁断するダイシングブレードとを用いてもよい。裁断するブレードは溝127、128を形成するブレードよりも薄い。 A dicing blade for forming the grooves 127 and 128 and a dicing blade for cutting the circuit board sheet 204 and the sealing resin 209 may be used. The blade to be cut is thinner than the blade that forms the grooves 127 and 128.
 図13Aから図13Dに示す方法において、溝127、128の断面の形状を選択して変更することで、封止部109の一以上の辺の形状を階段またはC面カット、R面加工、あるいはこれらの組み合わせ形状にすることができる。 In the method shown in FIGS. 13A to 13D, by selecting and changing the cross-sectional shape of the grooves 127 and 128, the shape of one or more sides of the sealing portion 109 can be changed to a staircase or C-plane cut, R-plane processing, or These combinations can be formed.
 次に、図7A、図7B、図8A、図8Bに示すモジュール部品100、2100において、グランドパターン110と金属膜101の底面部112とを見分ける方法について説明する。 Next, a method for discriminating between the ground pattern 110 and the bottom surface portion 112 of the metal film 101 in the module components 100 and 2100 shown in FIGS. 7A, 7B, 8A, and 8B will be described.
 グランドパターン110の下面110Bと金属膜101の底面部112の表面の色差ΔEは1以上、望ましくは2以上、更に望ましくは3以上である。これらの値の色差ΔEにより、グランドパターン110の下面110B上に形成されて金属膜101(底面部112)の有無や形状を容易に判別できる。 The color difference ΔE between the lower surface 110B of the ground pattern 110 and the surface of the bottom surface portion 112 of the metal film 101 is 1 or more, preferably 2 or more, and more preferably 3 or more. The presence or absence and shape of the metal film 101 (bottom surface portion 112) formed on the lower surface 110B of the ground pattern 110 can be easily determined by the color difference ΔE of these values.
 図14は、光の波長と、金(Au)と銀(Ag)と銅(Cu)の反射率との関係を示すグラフであり、様々な金属の色の違いを示す。図14において、横軸は光の波長を示し、横軸はその光の反射率を示す。図14に示すように、銀は、400~700nmの波長に光に対して95%以上の反射率を有しており、この結果として銀色に見える。銅は、400~550nmの波長の光に対して反射率が低く、550nm以上の波長の光に対する反射率が高いので、一種の赤色である銅色として見える。また、金は、銅に比べて、550nm付近の波長の光に対する反射率が高いので、銅色より黄色に近い黄金色に見える。 FIG. 14 is a graph showing the relationship between the wavelength of light and the reflectance of gold (Au), silver (Ag), and copper (Cu), and shows the differences in the colors of various metals. In FIG. 14, the horizontal axis indicates the wavelength of light, and the horizontal axis indicates the reflectance of the light. As shown in FIG. 14, silver has a reflectance of 95% or more with respect to light at a wavelength of 400 to 700 nm, and as a result, it looks silver. Copper has a low reflectivity with respect to light having a wavelength of 400 to 550 nm, and thus has a high reflectivity with respect to light with a wavelength of 550 nm or more, and thus appears as a kind of red copper color. In addition, gold has a higher reflectance with respect to light having a wavelength near 550 nm than copper, and thus appears to be a golden color closer to yellow than copper.
 例えば、グランドパターン110が銅箔からなる場合には赤銅色に見え、金めっきが施されている場合には金色に見える。金属膜101が2種類以上の元素を含有する場合には、表面はニッケル、亜鉛、銀などの成分による銀色に見える。グランドパターン110の下面110Bと金属膜101の表面の色差ΔEの値が上記の範囲になるようにそれらの材料を選択することにより、金属膜101の状態を複雑で高価な装置を使わずとも肉眼で簡単に認識でき、CCDカメラ等の通常の撮像装置で自動的に容易に判別できる。 For example, when the ground pattern 110 is made of copper foil, it looks reddish copper, and when it is plated with gold, it looks gold. When the metal film 101 contains two or more kinds of elements, the surface looks silver due to components such as nickel, zinc, and silver. By selecting these materials so that the value of the color difference ΔE between the lower surface 110B of the ground pattern 110 and the surface of the metal film 101 falls within the above range, the state of the metal film 101 can be visually checked without using a complicated and expensive device. Can be easily recognized, and can be automatically and easily determined by a normal imaging device such as a CCD camera.
 赤銅色、銀色、金色等をL*a*b表色系で表現すると、それらの色の間の色差ΔEが1以上となるので、グランドパターン110の上に形成される金属膜101の状態を目視による検査で容易に確認できる。これにより、金属膜101の電気的接続信頼性のみならず、底面部112の状態も確実に判別可能となる。なお色差ΔE及び色差ΔEの測定方法及び測定装置等に関しては、JIS L 0804、JIS L 0805、JIS Z 8721、JIS S 6006、6007、6016、6020、6028等を参考にすればよい。 If red, bronze, silver, gold, etc. are expressed in the L * a * b color system, the color difference ΔE between these colors is 1 or more, so the state of the metal film 101 formed on the ground pattern 110 is It can be easily confirmed by visual inspection. Thereby, not only the electrical connection reliability of the metal film 101 but also the state of the bottom surface portion 112 can be reliably determined. Regarding the measuring method and measuring device of the color difference ΔE and the color difference ΔE, JIS L 0804, JIS L 0805, JIS Z 8721, JIS S 6006, 6007, 6016, 6020, 6028, etc. may be referred to.
 実施の形態1~4におけるモジュール部品は、底面部112により金属膜101とグランドパターン110の電気的接続信頼性を高くできる。よって、そのモジュール部品が実装された回路基板118を内蔵した電子機器は、取扱時の振動や落下衝撃等の外部衝撃に対し、高い信頼性を実現することができる。 In the module parts according to the first to fourth embodiments, the electrical connection reliability between the metal film 101 and the ground pattern 110 can be increased by the bottom surface portion 112. Therefore, an electronic device incorporating the circuit board 118 on which the module component is mounted can achieve high reliability against external impacts such as vibration during handling and drop impact.
 (実施の形態5)
 図15Aは本発明の実施の形態5におけるモジュール部品600の上面斜視図である。図15Bは図15Aに示すモジュール部品600の線15B-15Bにおける断面図である。
(Embodiment 5)
FIG. 15A is a top perspective view of module component 600 according to Embodiment 5 of the present invention. FIG. 15B is a cross-sectional view of the module component 600 shown in FIG. 15A taken along line 15B-15B.
 モジュール部品600は、回路基板604と、回路基板604の上面604Aに実装された部品608と、回路基板604の上面604Aに設けられた封止部609と、金属膜601とを備える。封止部609は部品608を封止する。金属膜601は回路基板604の側面604Cと封止部609とを覆う。 The module component 600 includes a circuit board 604, a component 608 mounted on the upper surface 604A of the circuit board 604, a sealing portion 609 provided on the upper surface 604A of the circuit board 604, and a metal film 601. The sealing unit 609 seals the component 608. The metal film 601 covers the side surface 604C of the circuit board 604 and the sealing portion 609.
 回路基板604は、例えば、多層の樹脂基板であり、ガラス繊維をエポキシ樹脂で含浸させたガラスエポキシ樹脂やセラミック等の絶縁物よりなる絶縁層605を備える。絶縁層605は、回路基板604のそれぞれ上面604Aと下面604Bと側面604Cとなる上面605Aと下面605Bと側面605Cとを有する。回路基板604は、配線パターン606と、絶縁層605の上面605Aに設けられたランド606Aと、絶縁層605内に設けられたビア導体607とをさらに備える。配線パターン606は絶縁層605の内部と上面605Aと下面605Bの少なくとも1つに設けられている。ランド606Aには部品608が実装されている。ビア導体607は配線パターン606やグランドパターン1610を接続する。 The circuit board 604 is, for example, a multilayer resin board, and includes an insulating layer 605 made of an insulating material such as glass epoxy resin or ceramic in which glass fibers are impregnated with epoxy resin. The insulating layer 605 has an upper surface 605A, a lower surface 605B, and a side surface 605C that become the upper surface 604A, the lower surface 604B, and the side surface 604C of the circuit board 604, respectively. The circuit board 604 further includes a wiring pattern 606, lands 606 </ b> A provided on the upper surface 605 </ b> A of the insulating layer 605, and via conductors 607 provided in the insulating layer 605. The wiring pattern 606 is provided in the insulating layer 605 and at least one of the upper surface 605A and the lower surface 605B. A component 608 is mounted on the land 606A. The via conductor 607 connects the wiring pattern 606 and the ground pattern 1610.
 金属膜601は、封止部609の上面609Aを覆う天面部601Aと、天面部601Aから延びる側面部601Bと、側面部601Bから延びる底面部601Cとを有する。側面部601Bは、回路基板604の604Cを覆う。底面部601Cはグランドパターン1610を部分的に覆う。天面部601Aは、長手方向600Aに延びる長辺612と、短辺611とを有する矩形状を有する。側面部601Bには、回路基板604の側面604Cと封止部609の側面609Cとを露出させるスリット613が設けられている。 The metal film 601 has a top surface portion 601A covering the top surface 609A of the sealing portion 609, a side surface portion 601B extending from the top surface portion 601A, and a bottom surface portion 601C extending from the side surface portion 601B. The side surface portion 601B covers 604C of the circuit board 604. The bottom surface portion 601C partially covers the ground pattern 1610. The top surface portion 601A has a rectangular shape having a long side 612 extending in the longitudinal direction 600A and a short side 611. The side surface portion 601B is provided with a slit 613 that exposes the side surface 604C of the circuit board 604 and the side surface 609C of the sealing portion 609.
 図15Cは図15Aに示すモジュール部品600の線15C-15Cにおける断面図である。スリット613は、金属膜601の互いに対向する側面部601Bにそれぞれ設けられている。スリット613は金属膜601で囲まれておらず開放されて開口部610を構成している。 FIG. 15C is a cross-sectional view taken along line 15C-15C of the module component 600 shown in FIG. 15A. The slits 613 are respectively provided in the side portions 601B of the metal film 601 facing each other. The slit 613 is not surrounded by the metal film 601 but is opened to form an opening 610.
 金属膜601の特に天面部601Aと側面部601Bは電磁波603Bを放射するアンテナとして機能する。 In particular, the top surface portion 601A and the side surface portion 601B of the metal film 601 function as an antenna that radiates the electromagnetic wave 603B.
 金属膜601の側面部601Bは、封止部609の側面609Cと回路基板604の側面604Cとを覆う、すなわち、封止部609と回路基板604との境界面602を超えて延びる。これにより、グランドパターン1610と金属膜601との密着性を高め、バリ等の金属膜601の剥がれ始める部分が発生しないので、長期に渡る電気的な接続信頼性が向上する。 The side surface portion 601B of the metal film 601 covers the side surface 609C of the sealing portion 609 and the side surface 604C of the circuit board 604, that is, extends beyond the boundary surface 602 between the sealing portion 609 and the circuit board 604. As a result, the adhesion between the ground pattern 1610 and the metal film 601 is enhanced, and a portion where the metal film 601 such as a burr starts to be peeled off does not occur, so that electrical connection reliability over a long period is improved.
 金属膜601の天面部601Aは側面部601B、特に封止部609の側面609Cを覆う部分より厚い。具体的には、金属膜601の天面部601Aの厚みは、側面部601Bのうち封止部609の側面609Cを覆う部分の厚みの1.5倍以上5倍以下である。これによって天面部601Aと側面部601Bとを確実に接続することができる。 The top surface portion 601A of the metal film 601 is thicker than the portion covering the side surface portion 601B, particularly the side surface 609C of the sealing portion 609. Specifically, the thickness of the top surface portion 601A of the metal film 601 is 1.5 to 5 times the thickness of the portion of the side surface portion 601B that covers the side surface 609C of the sealing portion 609. Thereby, the top surface portion 601A and the side surface portion 601B can be reliably connected.
 金属膜601の底面部601Cは、絶縁層605の外周から内周に向かって小さくなる厚みを有して厚み勾配を有する。これにより応力が発生しにくく、底面部601Cは外力等でもグランドパターン1610から剥離しにくいので、長期に渡る電気的な接続信頼性が向上する。 The bottom surface portion 601C of the metal film 601 has a thickness that decreases from the outer periphery to the inner periphery of the insulating layer 605 and has a thickness gradient. As a result, it is difficult for stress to occur, and the bottom surface portion 601C is hardly peeled off from the ground pattern 1610 even by an external force or the like, so that electrical connection reliability over a long period is improved.
 回路基板604が絶縁層605にセラミック基板を用いた場合、ランド606A、配線パターン606、グランドパターン110を銀、銀パラジウム、あるいは銅で形成してもよい。配線パターンは導電ペーストの印刷、焼成で形成しても良く、あるいは銅箔等の導体箔を貼り付けて形成しても良い。 When the circuit board 604 uses a ceramic substrate for the insulating layer 605, the land 606A, the wiring pattern 606, and the ground pattern 110 may be formed of silver, silver palladium, or copper. The wiring pattern may be formed by printing and baking a conductive paste, or may be formed by attaching a conductive foil such as a copper foil.
 部品608は、例えば、半導体集積回路(IC)等の能動部品やコイル、コンデンサ等の受動部品であり、チップ部品とすることで実装密度を高められる。 The component 608 is, for example, an active component such as a semiconductor integrated circuit (IC) or a passive component such as a coil or a capacitor, and the mounting density can be increased by using a chip component.
 封止部609は、例えば、熱硬化性樹脂にて構成されており、真空加圧しながら加熱すると、樹脂フィラーが回路基板604と部品608との隙間に入ることで、ボイドを発生させることなく、部品608を封止することができる。封止部609の下面609Bは回路基板604の上面604Aに当接する。 The sealing portion 609 is made of, for example, a thermosetting resin, and when heated while being vacuum-pressed, the resin filler enters the gap between the circuit board 604 and the component 608 without generating voids. The component 608 can be sealed. A lower surface 609B of the sealing portion 609 abuts on an upper surface 604A of the circuit board 604.
 金属膜601は、スパッタまたはめっきで形成でき、あるいは市販の導電性ペーストを印刷して硬化させて形成してもよい。 The metal film 601 can be formed by sputtering or plating, or may be formed by printing and curing a commercially available conductive paste.
 また金属膜601は、二種類以上の元素から構成しても良い。例えば封止部609の表面に銅からなる下地層を形成し、この下地層上に、更に亜鉛やニッケル、錫等よりなる上層を設けることで、下地層の銅の酸化は錆びの発生を防止することができる。銅よりなる下地層上に銀よりなる上層を設けることにより金属膜601のシート抵抗を下げることができ、シールド効果を有する周波数域を高周波側に広げることができる。 The metal film 601 may be composed of two or more elements. For example, by forming a base layer made of copper on the surface of the sealing portion 609 and providing an upper layer made of zinc, nickel, tin, or the like on this base layer, the oxidation of copper in the base layer prevents the occurrence of rust. can do. By providing the upper layer made of silver on the base layer made of copper, the sheet resistance of the metal film 601 can be lowered, and the frequency region having a shielding effect can be widened to the high frequency side.
 なお、金属膜101に使用する2種類の元素は、合金として金属膜101を形成してもよい。銅と亜鉛、あるいは銅とニッケル等の部材を予め合金化し、これをスパッタ用ターゲットとしても良い。あるいは銅のターゲットと、亜鉛のターゲットを別々に用意し、これを同時にスパッタすることで、合金化しても良い。こうすることで、工数を低減でき、コストダウンできる。 Note that the two kinds of elements used in the metal film 101 may form the metal film 101 as an alloy. Members such as copper and zinc or copper and nickel may be alloyed in advance and used as a sputtering target. Alternatively, a copper target and a zinc target may be prepared separately and alloyed by sputtering them simultaneously. By doing so, man-hours can be reduced and costs can be reduced.
 図15Dは金属膜601の他の例の断面図である。金属膜601は、封止部609の表面に設けられたチタンもしくはクロムよりなる下地層1601と、下地層1601上に形成された銅層2601と、銅層2601の上に設けられた亜鉛やニッケル、錫もしくは亜鉛合金やニッケル合金、錫合金よりなる上層3601とを有していてもよい。これにより、封止部609と金属膜601との密着性を高めることができる。 FIG. 15D is a cross-sectional view of another example of the metal film 601. The metal film 601 includes a base layer 1601 made of titanium or chromium provided on the surface of the sealing portion 609, a copper layer 2601 formed on the base layer 1601, and zinc or nickel provided on the copper layer 2601. And an upper layer 3601 made of tin, zinc alloy, nickel alloy, or tin alloy. Thereby, the adhesiveness of the sealing part 609 and the metal film 601 can be improved.
 なお、上記の下地層を形成する前に、封止部609の表面にアルゴン(Ar)で逆スパッタリングを施して封止部609の表面を洗浄することで更に金属膜601との密着性を向上させることができる。 In addition, before forming the base layer, the surface of the sealing portion 609 is reverse-sputtered with argon (Ar) to clean the surface of the sealing portion 609, thereby further improving the adhesion with the metal film 601. Can be made.
 図15Bに示すように、グランドパターン1610と金属膜601の底面部601Cとは面で接触しているので、接触抵抗を小さくすることができる。底面部601Cは回路基板604(絶縁層605)の外周から内周に向かって小さくなる厚みを有するので、応力が発生しにくく、外力等でも剥離しない。 15B, since the ground pattern 1610 and the bottom surface portion 601C of the metal film 601 are in contact with each other, the contact resistance can be reduced. Since the bottom surface portion 601C has a thickness that decreases from the outer periphery to the inner periphery of the circuit board 604 (insulating layer 605), stress is not easily generated and is not peeled off even by an external force or the like.
 スリット613は金属膜601のアンテナとしての効果を高める。スリット613から回路基板604の側面604Cもしくは封止部609の側面609Cの一部を露出する。 The slit 613 enhances the effect of the metal film 601 as an antenna. The side surface 604C of the circuit board 604 or a part of the side surface 609C of the sealing portion 609 is exposed from the slit 613.
 次に、実施の形態5におけるモジュール部品600の金属膜601の天面部601Aと側面部601Bのアンテナとしての機能について説明する。図16はモジュール部品600の断面図である。 Next, functions of the top surface portion 601A and the side surface portion 601B of the metal film 601 of the module component 600 according to Embodiment 5 as antennas will be described. FIG. 16 is a cross-sectional view of the module component 600.
 モジュール部品600は給電部616をさらに備え、給電部616はリアクタンス614と、ポート発信源615とを有する。ポート発信源615は回路基板604の上面604Aに位置する配線パターン606よりなる。給電部616は金属膜601の天面部601Aの略中央部に設けられている。 The module component 600 further includes a power supply unit 616, and the power supply unit 616 includes a reactance 614 and a port transmission source 615. The port transmission source 615 includes a wiring pattern 606 located on the upper surface 604A of the circuit board 604. The power feeding unit 616 is provided at a substantially central portion of the top surface portion 601 </ b> A of the metal film 601.
 リアクタンス514は、回路基板604の中央付近に実装された部品608と金属膜601の天面部601Aとの間やポート発信源615と天面部601Aとの間に形成された容量性または誘導性の空間結合成分よりなり、部品(容量性、誘導性)で結合されている。金属膜601の天面部601Aの厚みは、放射する電磁波603の周波数での表皮効果により高周波電流が流れる表皮深さ以上に設定されており、金属膜601の天面部601Aに設けられた給電部616の給電効率を高める。一方、金属膜601の側面部601Bの厚みは、その表皮深さより小さく設定されており、これにより、モジュール部品600の側面付近から放射される電磁波の放射効率を高めることが可能となる。電磁波603の周波数fでの表皮深さDは金属膜601の導電率σと透磁率μにより以下の式で表される。 The reactance 514 is a capacitive or inductive space formed between the component 608 mounted near the center of the circuit board 604 and the top surface portion 601A of the metal film 601 or between the port transmission source 615 and the top surface portion 601A. It consists of coupling components and is coupled with parts (capacitive and inductive). The thickness of the top surface portion 601A of the metal film 601 is set to be equal to or greater than the skin depth through which high-frequency current flows due to the skin effect at the frequency of the radiating electromagnetic wave 603, and the power feeding portion 616 provided on the top surface portion 601A of the metal film 601. Increase the power supply efficiency. On the other hand, the thickness of the side surface portion 601B of the metal film 601 is set to be smaller than the skin depth, and thereby the radiation efficiency of electromagnetic waves radiated from the vicinity of the side surface of the module component 600 can be increased. The skin depth D at the frequency f of the electromagnetic wave 603 is expressed by the following equation depending on the conductivity σ and the permeability μ of the metal film 601.
 D=1/(π・f・σ・μ)1/2
 例えば、金属膜601が銅よりなる場合の表皮深さDを求める。銅の導電率σは5.8×10(S/m)であり透磁率μは4π×10-7(H/m)である。例えば、モジュール部品600の金属膜601から放射する電磁波603の周波数fが5GHzである場合には、表皮深さDは上記の式により約0.95μmとなる。
D = 1 / (π · f · σ · μ) 1/2
For example, the skin depth D when the metal film 601 is made of copper is obtained. The conductivity σ of copper is 5.8 × 10 7 (S / m), and the magnetic permeability μ is 4π × 10 −7 (H / m). For example, when the frequency f of the electromagnetic wave 603 radiated from the metal film 601 of the module component 600 is 5 GHz, the skin depth D is about 0.95 μm according to the above formula.
 従って、周波数fが5MHzの場合には金属膜601の天面部601Aの厚みを1μm、側面部601Bの厚みを0.2~0.33μmに設定することで、モジュール部品600のシールド効果とアンテナ効果とを両立させることが可能となる。 Accordingly, when the frequency f is 5 MHz, the shielding effect and the antenna effect of the module component 600 are set by setting the thickness of the top surface portion 601A of the metal film 601 to 1 μm and the thickness of the side surface portion 601B to 0.2 to 0.33 μm. It is possible to achieve both.
 金属膜601は通常、広帯域(100kHz~12.75GHz)にわたってモジュール部品600を電磁的にシールドしている。実施の形態5におけるモジュール部品600では、金属膜601は特定の周波数の範囲の電磁波を放射するアンテナとして機能する。波長λの電磁波を放射する場合に、金属膜601の矩形状を有する天面部601Aの辺611または辺612の長さを3λ/10~7λ/10にする。 The metal film 601 normally electromagnetically shields the module component 600 over a wide band (100 kHz to 12.75 GHz). In the module component 600 according to the fifth embodiment, the metal film 601 functions as an antenna that radiates electromagnetic waves in a specific frequency range. When the electromagnetic wave having the wavelength λ is emitted, the length of the side 611 or the side 612 of the top surface portion 601A having the rectangular shape of the metal film 601 is set to 3λ / 10 to 7λ / 10.
 図15Cに示すように、スリット613で形成される開口部610は互いに対向する辺612に繋がる封止部609の側面609Cと回路基板604の側面604Cに設けられている。開口部610の辺612の方向の長さ610Wは3/10λ~7/10λに設定されている。これにより、金属膜601の天面部601Aと側面部601Bは波長λの電磁波を放射するアンテナとして動作させる事が可能となる。辺611に繋がる封止部609と回路基板604の側面には開口部が設けられておらず、金属膜601の側面部601Bに全体が覆われている。回路基板604の側面604Cに露出する配線パターン606が辺611に繋がる金属膜601の側面部601Bに接続されている。これにより、辺611に繋がる側面部601Bから放射される電磁波を抑制することができ、辺612と直角の方向に金属膜601のアンテナとしての指向性を設定することができる。金属膜601の天面部601Aは辺611の方向に延びる半波長ダイポールアンテナの集合と考えることができる。 As shown in FIG. 15C, the opening 610 formed by the slit 613 is provided on the side surface 609C of the sealing portion 609 and the side surface 604C of the circuit board 604 that are connected to the sides 612 facing each other. The length 610W in the direction of the side 612 of the opening 610 is set to 3 / 10λ to 7 / 10λ. As a result, the top surface portion 601A and the side surface portion 601B of the metal film 601 can be operated as an antenna that emits an electromagnetic wave having a wavelength λ. Openings are not provided on the side surfaces of the sealing portion 609 and the circuit board 604 connected to the side 611, and the entire side surface portion 601 </ b> B of the metal film 601 is covered. The wiring pattern 606 exposed on the side surface 604C of the circuit board 604 is connected to the side surface portion 601B of the metal film 601 connected to the side 611. Thereby, electromagnetic waves radiated from the side surface portion 601B connected to the side 611 can be suppressed, and the directivity of the metal film 601 as an antenna can be set in a direction perpendicular to the side 612. The top surface portion 601A of the metal film 601 can be considered as a set of half-wave dipole antennas extending in the direction of the side 611.
 開口部610の面積を調整することで、モジュール部品600のアンテナとしての放射効率を制御することが可能となる。例えば、回路基板104の下面104Bから金属膜601の天面部601Aに向かうにしたがって開口部610を狭くする場合、側面部601Bが回路基板604の側面604Cに露出した配線パターン606と接続される部分を徐々に大きくすることができるので、放射効率を調整することができる。開口部610が設けられていない場合には最も放射効率が低くなるので、放射する電磁波の到達距離を短縮させたい場合に有効である。 It is possible to control the radiation efficiency of the module component 600 as an antenna by adjusting the area of the opening 610. For example, when the opening 610 is narrowed from the lower surface 104B of the circuit board 104 toward the top surface 601A of the metal film 601, a portion where the side surface 601B is connected to the wiring pattern 606 exposed on the side 604C of the circuit board 604 is formed. Since it can be gradually increased, the radiation efficiency can be adjusted. When the opening 610 is not provided, the radiation efficiency is lowest, which is effective when it is desired to shorten the reach of the radiated electromagnetic wave.
 開口部610が天面部601Aと平行な方向で変化する場合には、開口部610の長さが、放射する電磁波の所望の波長より短くなるので、アンテナとして動作させる周波数を高域へシフトさせることが可能となる。 When the opening 610 changes in a direction parallel to the top surface 601A, the length of the opening 610 is shorter than the desired wavelength of the radiated electromagnetic wave, so that the frequency to operate as an antenna is shifted to a high frequency. Is possible.
 波長λの電磁波を放射するアンテナとして金属膜601を動作させ、封止部609の比誘電率εrとすると、波長短縮により辺611が約λ/(2×εr1/2)の長さを有することにより、その電磁波を放射かつ受信するアンテナとして金属膜601が動作する。例えば、周波数5GHzの電磁波の半波長λ/2は約3(cm)である。この場合には、辺611の長さが約3/εr1/2(cm)であれば、金属膜601はその電磁波を放射かつ受信できるアンテナとして動作する。 When the metal film 601 is operated as an antenna that emits an electromagnetic wave having a wavelength λ and the relative dielectric constant εr of the sealing portion 609 is set, the side 611 has a length of about λ / (2 × εr 1/2 ) due to the wavelength reduction. Thus, the metal film 601 operates as an antenna that radiates and receives the electromagnetic waves. For example, the half wavelength λ / 2 of an electromagnetic wave having a frequency of 5 GHz is about 3 (cm). In this case, if the length of the side 611 is about 3 / εr 1/2 (cm), the metal film 601 operates as an antenna that can radiate and receive the electromagnetic wave.
 金属膜601がめっき、蒸着あるいはスパッタで製造された場合、一般的に金属間結合を有するので、広帯域(100kHz~12.75GHz)にわたってモジュール部品600を電磁シールドでき、かつ特定の周波数範囲の電磁波を放射し受信できるアンテナとして動作する。 When the metal film 601 is manufactured by plating, vapor deposition, or sputtering, since it generally has an intermetallic bond, the module component 600 can be electromagnetically shielded over a wide band (100 kHz to 12.75 GHz), and electromagnetic waves in a specific frequency range can be generated. Operates as an antenna that can radiate and receive.
 図17はモジュール部品600の上面図である。金属膜601の天面部601Aは矩形状を有する。天面部601Aの対角線601Dの長さは1/2λに設定されている。天面部601Aの辺611の長さは3/10λ~7/10λであることが望ましい。また、天面部601Aの対角線601Dの長さを3/10λ~7/10λに設定してもよい。 FIG. 17 is a top view of the module component 600. The top surface portion 601A of the metal film 601 has a rectangular shape. The length of the diagonal 601D of the top surface 601A is set to 1 / 2λ. The length of the side 611 of the top surface portion 601A is desirably 3 / 10λ to 7 / 10λ. Further, the length of the diagonal line 601D of the top surface portion 601A may be set to 3 / 10λ to 7 / 10λ.
 例えば、前述のように、5GHzの周波数でアンテナとして動作させるために、封止部609の比誘電率εr=4である場合には、波長短縮により辺611の長さL611は以下で表される。 For example, as described above, in order to operate as an antenna at a frequency of 5 GHz, when the relative dielectric constant εr = 4 of the sealing portion 609, the length L611 of the side 611 is expressed as follows due to the wavelength reduction. .
 L611=λ/(2×εr1/2)≒1.5cm
 図18はモジュール部品600の金属膜601に用いられる金属の電磁シールド効果を示すグラフである。図18において、横軸は電磁波の周波数を示し、縦軸は電磁波の減衰量の理論計算値を示す。特性P601は市販の厚み80μmの洋白からなる層の減衰量を示す。特性P602はスパッタによって形成した厚み1.0μmの銅箔からなる層の減衰量を示す。P603は厚み10μmの市販の導電性ペーストよりなる層の減衰量を示す。
L611 = λ / (2 × εr 1/2 ) ≈1.5 cm
FIG. 18 is a graph showing the electromagnetic shielding effect of metal used for the metal film 601 of the module component 600. In FIG. 18, the horizontal axis indicates the frequency of the electromagnetic wave, and the vertical axis indicates the theoretical calculation value of the attenuation amount of the electromagnetic wave. Characteristic P601 indicates the attenuation of a commercially available layer made of white and white having a thickness of 80 μm. A characteristic P602 indicates the attenuation of a layer made of copper foil having a thickness of 1.0 μm formed by sputtering. P603 represents the attenuation of a layer made of a commercially available conductive paste having a thickness of 10 μm.
 図18に示すように、減衰量は、導電性ペーストよりなる層が最も大きく、次が洋白よりなる層が大きく、スパッタで形成されて銅よりなる層の減衰量が最も小さい。金属膜601の天面部601Aの厚みを側面部601Bの厚みの1.5倍以上5倍以下に設定する。これにより、金属膜601と特にスパッタで形成する場合に、モジュール部品600のアンテナとして動作する周波数以外でシールドする周波数帯域でシールド性を劣化させず、かつアンテナとして動作する周波数で放射効率を損なわない。このように、金属膜601の天面部601Aと側面部601Bの厚みを積極的に調整することで、薄くても電磁波の減衰量を効果的に増加できるため、モジュール部品600のシールド効果を高められる。 As shown in FIG. 18, the attenuation amount is the largest for the layer made of conductive paste, the next is the layer made of white, and the attenuation amount of the layer made of copper formed by sputtering is the smallest. The thickness of the top surface portion 601A of the metal film 601 is set to be 1.5 to 5 times the thickness of the side surface portion 601B. As a result, when the metal film 601 is formed by sputtering in particular, the shielding performance is not deteriorated in a frequency band shielded at a frequency other than the frequency operating as the antenna of the module component 600, and the radiation efficiency is not impaired at the frequency operating as the antenna. . Thus, by actively adjusting the thickness of the top surface portion 601A and the side surface portion 601B of the metal film 601, the attenuation of electromagnetic waves can be effectively increased even if it is thin, so that the shielding effect of the module component 600 can be enhanced. .
 図19Aと図19Bは、それぞれスリット613を有する金属膜601を備えたモジュール部品600の電磁波の放射分布を示す上面図と側面図である。図20Aと図20Bは、それぞれスリット613を有していない金属膜601を備えた比較例のモジュール部品の電磁波の放射強度を示す上面図と側面図である。 19A and 19B are a top view and a side view showing the radiation distribution of electromagnetic waves of the module component 600 provided with the metal film 601 having the slits 613, respectively. 20A and 20B are a top view and a side view showing the electromagnetic wave radiation intensity of the module component of the comparative example provided with the metal film 601 not having the slit 613, respectively.
 図19Aと図19B、図20A、図20Bにおいて、領域617A~617Dでのそれぞれの電界強度E601A~E601Dでは、電界強度E601Aが最も大きく、電界強度E601Bが2番目に大きく、電界強度E601Cが3番目に大きく、電界強度E601Dが最も小さい。このように、モジュール部品600の近くの領域では電界強度が高く、モジュール部品から遠い領域ほど電界強度は低くなる。図19Aと図19Bに示すモジュール部品600の近くには高い電界強度を有する領域617Aが形成されている。しかし、図20Aと図20Bに示す比較例のモジュール部品では、電界強度が高い領域617Aは形成されていない。また、図19Aと図19Bに示すモジュール部品600が形成する領域617B、617Cは、図20Aと図20Bに示す比較例のモジュール部品が形成す領域617B,617Cより狭い。 19A, 19B, 20A, and 20B, in each of the field strengths E601A to E601D in the regions 617A to 617D, the electric field strength E601A is the largest, the electric field strength E601B is the second largest, and the electric field strength E601C is the third. The electric field strength E601D is the smallest. Thus, the electric field strength is high in the region near the module component 600, and the electric field strength is low in the region far from the module component. A region 617A having high electric field strength is formed near the module component 600 shown in FIGS. 19A and 19B. However, in the module component of the comparative example shown in FIGS. 20A and 20B, the region 617A having a high electric field strength is not formed. Further, the regions 617B and 617C formed by the module component 600 shown in FIGS. 19A and 19B are narrower than the regions 617B and 617C formed by the module component of the comparative example shown in FIGS. 20A and 20B.
 以上説明したように、図19Aと図19Bに示すモジュール部品600にスリット613を設けることで、電界強度を図20Aと図20Bに示す比較例のモジュール部品の電界強度より全体的に高くできる。 As described above, by providing the slit 613 in the module component 600 shown in FIGS. 19A and 19B, the electric field strength can be made higher overall than the electric field strength of the module component of the comparative example shown in FIGS. 20A and 20B.
 図21Aは実施の形態5における他のモジュール部品1600の上面斜視図である。図21Bは図21Aに示すモジュール部品1600の線21B-21Bにおける断面図である。図21Aと図21Bにおいて、図15Aと図15Bに示すモジュール部品600と同じ部分には同じ参照番号を付す。金属膜601の辺612に繋がる側面部601Bには開口部610とさらに開口部610Aが設けられている。開口部610は側面部601Bの辺612の方向での中央部に設けられており、開口部610Aは側面部601Bの辺612の方向での両端部に設けられている。金属膜601の辺611に繋がる側面部601Bは封止部609の側面609Cの全体を覆うが、回路基板604の側面604Cには達しておらず、配線パターン606には接続されていない。これにより、モジュール部品600のアンテナとしての指向性を辺612の方向に設定することができ、モジュール部品600の指向性を調整したい場合、有効である。 FIG. 21A is a top perspective view of another module component 1600 according to the fifth embodiment. FIG. 21B is a cross-sectional view of the module component 1600 shown in FIG. 21A taken along line 21B-21B. 21A and 21B, the same reference numerals are assigned to the same parts as those of the module component 600 shown in FIGS. 15A and 15B. An opening 610 and an opening 610A are provided in the side surface 601B connected to the side 612 of the metal film 601. The opening 610 is provided at the center of the side surface 601B in the direction of the side 612, and the opening 610A is provided at both ends of the side surface 601B in the direction of the side 612. The side surface portion 601B connected to the side 611 of the metal film 601 covers the entire side surface 609C of the sealing portion 609, but does not reach the side surface 604C of the circuit board 604 and is not connected to the wiring pattern 606. Thereby, the directivity of the module component 600 as an antenna can be set in the direction of the side 612, which is effective when the directivity of the module component 600 is to be adjusted.
 図22Aは実施の形態5におけるさらに他のモジュール部品2600の上面斜視図である。図22Bは図22Aに示すモジュール部品2600の線22B-22Bにおける断面図である。図22Aと図22Bにおいて、図21Aと図21Bに示すモジュール部品1600と同じ部分には同じ参照番号を付す。モジュール部品2600では、金属膜601の辺611に繋がる側面部601Bに開口部610Bが設けられている。開口部610Bは回路基板604の側面604Cを露出させ、さらに封止部609の側面609Cを部分的に露出させる。開口部610、610A、610Bにより、アンテナの指向性の調整範囲を拡大させることが可能となる。 FIG. 22A is a top perspective view of still another module component 2600 in the fifth embodiment. FIG. 22B is a cross-sectional view of the module component 2600 shown in FIG. 22A taken along line 22B-22B. 22A and 22B, the same reference numerals are assigned to the same portions as those of the module component 1600 shown in FIGS. 21A and 21B. In the module component 2600, an opening 610B is provided in a side surface 601B connected to the side 611 of the metal film 601. The opening 610B exposes the side surface 604C of the circuit board 604 and further exposes the side surface 609C of the sealing portion 609 partially. With the openings 610, 610A, and 610B, the antenna directivity adjustment range can be expanded.
 図23は、金属膜601がアンテナとして放射する電磁波の周波数と天面部601Aと側面部601Bの膜厚の関係を示す。また、図24は、電磁波の周波数と、金属膜601の辺611や対角線601Dの長さの関係を示す。 FIG. 23 shows the relationship between the frequency of electromagnetic waves emitted from the metal film 601 as an antenna and the film thicknesses of the top surface portion 601A and the side surface portion 601B. FIG. 24 shows the relationship between the frequency of electromagnetic waves and the lengths of the side 611 and the diagonal line 601D of the metal film 601.
 図24に示す対角線601Dの長さは、モジュール部品600の辺611の長さが7/10λでありかつ金属膜601の天面部601Aの形状が正方形である場合に最大となる。図24に示すように、実際の計算では封止部609の比誘電率を考慮して、対角線601Dの最大長が3/10λ~7/10λの範囲に入っている。 The length of the diagonal line 601D shown in FIG. 24 is the maximum when the length of the side 611 of the module component 600 is 7 / 10λ and the shape of the top surface portion 601A of the metal film 601 is square. As shown in FIG. 24, in the actual calculation, the maximum length of the diagonal line 601D is in the range of 3 / 10λ to 7 / 10λ in consideration of the relative dielectric constant of the sealing portion 609.
 図23に示すように金属膜601の天面部601Aの厚みと側面部601Bの厚みとの関係を維持することにより、天面部601Aと側面部601Bにおける所望の周波数の電磁波のアンテナとして動作するモジュール部品600の放射効率を高めることができる。 As shown in FIG. 23, by maintaining the relationship between the thickness of the top surface portion 601A of the metal film 601 and the thickness of the side surface portion 601B, a module component that operates as an antenna of an electromagnetic wave having a desired frequency in the top surface portion 601A and the side surface portion 601B. The radiation efficiency of 600 can be increased.
 なお、開口部610は金属膜601の側面部601Bを形成する際にマスクにより同時に形成することができる。スリット613は側面部601Bを形成した後に側面部301Bに切れ目を入れるトリミング工程で形成することもできる。 The opening 610 can be formed simultaneously with a mask when the side surface 601B of the metal film 601 is formed. The slit 613 can also be formed by a trimming process in which a slit is formed in the side surface portion 301B after the side surface portion 601B is formed.
 図25Aと図25Bは実施の形態5におけるモジュール部品600を備えた電子機器620の製造方法を示す断面図である。電子機器620は、モジュール部品600と、モジュール部品600が実装された回路基板618とを備える。回路基板618の上面618Aには配線パターン606Bが設けられている。配線パターン606Bには半田619が設けられている。モジュール部品600は、回路基板618の上面618Aの配線パターン606Bに半田619で接続されて実装される。 FIG. 25A and FIG. 25B are cross-sectional views showing a method for manufacturing the electronic device 620 provided with the module component 600 according to the fifth embodiment. The electronic device 620 includes a module component 600 and a circuit board 618 on which the module component 600 is mounted. A wiring pattern 606B is provided on the upper surface 618A of the circuit board 618. Solder 619 is provided on the wiring pattern 606B. The module component 600 is mounted by being connected to the wiring pattern 606B on the upper surface 618A of the circuit board 618 with solder 619.
 以下、モジュール部品600の製造方法について説明する。 Hereinafter, a method for manufacturing the module component 600 will be described.
 図26Aから図26Dは実施の形態5におけるモジュール部品600の製造方法を示す断面図である。 26A to 26D are cross-sectional views showing a method for manufacturing the module component 600 according to the fifth embodiment.
 回路基板シート704は部品608を実装するための配線パターン606を有する。まず、図26Aに示すように、回路基板シート704上の配線パターン606に部品608を実装する。次に、図26Bに示すように、半田619で部品608を配線パターン606に電気的に接続する。次に、図26Cに示すように、部品608の周囲を封止樹脂709により封止した後、図26Dに示すように、回路基板シート704と封止樹脂709とを個片621に分割する。回路基板シート704と封止樹脂709は分割されてそれぞれ回路基板604と封止部609となる。 The circuit board sheet 704 has a wiring pattern 606 for mounting the component 608. First, as shown in FIG. 26A, the component 608 is mounted on the wiring pattern 606 on the circuit board sheet 704. Next, as shown in FIG. 26B, the component 608 is electrically connected to the wiring pattern 606 with solder 619. Next, as shown in FIG. 26C, after the periphery of the component 608 is sealed with a sealing resin 709, the circuit board sheet 704 and the sealing resin 709 are divided into pieces 621 as shown in FIG. 26D. The circuit board sheet 704 and the sealing resin 709 are divided into a circuit board 604 and a sealing portion 609, respectively.
 図27Aから図27Dはモジュール部品600の製造方法を示す断面図である。図27Aと図27Bに示すように、保持部622を有する治具623の上に、得られた個片621を配置する。保持部622として両面テープ等の接着剤を用いることができる。保持部622は個片621の下部に配置されるとともに、回路基板604の周縁部より内側に配置することが望ましい。 27A to 27D are cross-sectional views showing a method for manufacturing the module component 600. As shown in FIGS. 27A and 27B, the obtained piece 621 is placed on a jig 623 having a holding portion 622. An adhesive such as a double-sided tape can be used as the holding portion 622. The holding portion 622 is preferably disposed below the piece 621 and on the inner side of the peripheral portion of the circuit board 604.
 次に、図27Cに示すように、個片621を覆う金属膜601を形成する。個片621の回路基板604の下面604Bの外周部604Tが保持部622から露出するように個片621が保持部622上に載置される。金属膜601は、個片621の側面から下面604Bに回りこんで外周部604Tに形成される。金属膜601を例えば金属元素をスパッタリングすることで形成する場合には、個片621の上面から吹き付けられた金属元素は下面604Bに回り込むことで、下面604Bの外周部604Tに形成される金属膜601の部分の厚みは、下面604Bの外周から内側に向かって小さくなり、図15Aに示す底面部662が形成される。 Next, as shown in FIG. 27C, a metal film 601 covering the piece 621 is formed. The piece 621 is placed on the holding portion 622 so that the outer peripheral portion 604T of the lower surface 604B of the circuit board 604 of the piece 621 is exposed from the holding portion 622. The metal film 601 is formed on the outer peripheral portion 604T by wrapping around from the side surface of the piece 621 to the lower surface 604B. When the metal film 601 is formed, for example, by sputtering a metal element, the metal element sprayed from the upper surface of the piece 621 wraps around the lower surface 604B, so that the metal film 601 formed on the outer peripheral portion 604T of the lower surface 604B. The thickness of the portion decreases from the outer periphery of the lower surface 604B toward the inside, and the bottom surface portion 662 shown in FIG. 15A is formed.
 最後に、図27Dに示すように、個片621を治具623から剥離することで、モジュール部品600が得られる。 Finally, as shown in FIG. 27D, the module component 600 is obtained by peeling the piece 621 from the jig 623.
 このように、個片621の下面の端から内側に向かって薄くなる金属膜601ではバリの欠落が発生しにくいので、モジュール部品600を取り扱う際の振動や衝撃に対して懸念される電気的接続信頼性を向上させることができる。 As described above, since the metal film 601 that becomes thinner from the lower end to the inside of the individual piece 621 is less likely to lose burrs, the electrical connection is concerned about vibration and impact when handling the module component 600. Reliability can be improved.
 図28Aから図28Cはモジュール部品の他の製造方法を示す斜視図であり、金属膜601の形成方法を示す。マスク624は、金属膜601の側面部601Bにスリット613や開口部610を形成するために用いられる。 FIG. 28A to FIG. 28C are perspective views showing another method for manufacturing a module component, and show a method for forming the metal film 601. The mask 624 is used to form a slit 613 and an opening 610 in the side surface 601B of the metal film 601.
 図28Aと図28Bに示すように、金属膜601を形成する前に個片621を治具623に固定する。個片621の側面はマスク624に当接しているかもしくは小さい間隔で対向している。 28A and 28B, the piece 621 is fixed to the jig 623 before the metal film 601 is formed. The side surface of the piece 621 is in contact with the mask 624 or opposed at a small interval.
 図28Cに示すように、マスク624で側面が覆われた個片621の表面にスパッタ装置で金属膜601を形成する。マスク624が当接しているあるいは対向している部分には金属膜601の材料が付着しないので、個片621の側面に開口部610やスリット613を形成することができる。なおマスク624と個片621との距離を調整することで、例えば図27Bと図27Cに示すように、金属膜601の底面部601Cに厚み勾配を形成することができる。 As shown in FIG. 28C, a metal film 601 is formed by a sputtering apparatus on the surface of the individual piece 621 whose side surface is covered with a mask 624. Since the material of the metal film 601 does not adhere to the portion where the mask 624 is in contact with or opposed to the mask 624, the opening 610 and the slit 613 can be formed on the side surface of the piece 621. By adjusting the distance between the mask 624 and the piece 621, a thickness gradient can be formed on the bottom surface portion 601C of the metal film 601 as shown in FIGS. 27B and 27C, for example.
 なお、実施の形態において、「上面」「下面」等の方向を示す用語は回路基板や部品等のモジュール部品の構成部品の相対的な位置関係にのみ依存する相対的な方向を示し、上下方向等の絶対的な方向を示すものではない。 In the embodiment, terms indicating directions such as “upper surface” and “lower surface” indicate relative directions that depend only on the relative positional relationship of the component parts of the module parts such as the circuit board and the parts, and the vertical direction. It does not indicate the absolute direction.
 本発明によるモジュール部品では、回路基板の配線パターンと金属膜とを高信頼性で電気的に接続することができ、取扱時の振動や落下衝撃等の外部衝撃に対して高い信頼性を有する電子機器に有用である。 In the module component according to the present invention, the wiring pattern of the circuit board and the metal film can be electrically connected with high reliability, and the electronic device has high reliability against external impacts such as vibration and drop impact during handling. Useful for equipment.
100  モジュール部品
101  金属膜
101A  天面部
101B  側面部
104  回路基板(第1の回路基板)
108  部品
109  封止部
110  グランドパターン(第1のグランドパターン)
112  底面部
118  回路基板(第2の回路基板)
119  電子機器
121A  グランドパターン(第2のグランドパターン)
121B  グランドパターン(第3のグランドパターン)
600  モジュール部品
601  金属膜
601A  天面部
601B  側面部
601C  底面部
604  回路基板
608  部品
609  封止部
616  給電部
618  回路基板(第2の回路基板)
620  電子機器
DESCRIPTION OF SYMBOLS 100 Module component 101 Metal film 101A Top surface part 101B Side surface part 104 Circuit board (1st circuit board)
108 Component 109 Sealing portion 110 Ground pattern (first ground pattern)
112 Bottom portion 118 Circuit board (second circuit board)
119 Electronic equipment 121A Ground pattern (second ground pattern)
121B ground pattern (third ground pattern)
600 Module component 601 Metal film 601A Top surface portion 601B Side surface portion 601C Bottom surface portion 604 Circuit board 608 Component 609 Sealing portion 616 Power feeding portion 618 Circuit board (second circuit board)
620 Electronic equipment

Claims (13)

  1. 上面と下面と側面とを有する回路基板と、
    前記回路基板の前記上面に実装された部品と、
    前記回路基板の前記上面に設けられてかつ前記部品を封止し、上面を有する封止部と、
    前記回路基板の前記下面の外周部分に設けられたグランドパターンと、
       前記封止部の前記上面を覆う天面部と、
       前記天面部から延びてかつ前記回路基板の前記側面を覆う側面部と、
       前記側面部から延びて、前記グランドパターン上に設けられ、前記側面部から離れるにしたがって小さくなる厚みを有する底面部と、
    を有する金属膜と、
    を備えたモジュール部品。
    A circuit board having an upper surface, a lower surface and side surfaces;
    Components mounted on the top surface of the circuit board;
    A sealing portion provided on the top surface of the circuit board and sealing the component, and having a top surface;
    A ground pattern provided on an outer peripheral portion of the lower surface of the circuit board;
    A top surface portion covering the upper surface of the sealing portion;
    A side surface portion extending from the top surface portion and covering the side surface of the circuit board;
    A bottom surface portion extending from the side surface portion, provided on the ground pattern, and having a thickness that decreases with increasing distance from the side surface portion;
    A metal film having
    With modular parts.
  2. 前記回路基板の前記下面は4つの辺を有する矩形状を実質的に有し、
    前記グランドパターンは前記回路基板の前記下面の前記4つの辺のうちの少なくとも2つの辺に沿って設けられており、
    前記金属膜の前記底面部は前記回路基板の前記下面の前記4つの辺のうちの前記少なくとも2つの辺を超えて前記グランドパターンに設けられている、請求項1に記載のモジュール部品。
    The lower surface of the circuit board substantially has a rectangular shape having four sides;
    The ground pattern is provided along at least two of the four sides of the lower surface of the circuit board;
    2. The module component according to claim 1, wherein the bottom surface portion of the metal film is provided in the ground pattern beyond the at least two sides of the four sides of the lower surface of the circuit board.
  3. 前記金属膜は、スパッタ膜、めっき膜、導電性ペーストのいずれか、あるいはこれらの組み合わせよりなる、請求項1に記載のモジュール部品。 The module component according to claim 1, wherein the metal film is formed of any one of a sputtered film, a plated film, and a conductive paste, or a combination thereof.
  4. 前記グランドパターンの表面と前記金属膜の表面との色差ΔEが3以上である、請求項1に記載のモジュール部品。 The module component according to claim 1, wherein a color difference ΔE between the surface of the ground pattern and the surface of the metal film is 3 or more.
  5. 前記封止部の、前記金属膜の前記天面部と前記側面部とが繋がる部分は、階段形状またはC面カット形状、R面加工形状、あるいはこれらの組み合わせ形状を有する、請求項1に記載のモジュール部品。 The portion of the sealing portion where the top surface portion and the side surface portion of the metal film are connected has a stepped shape, a C surface cut shape, an R surface processed shape, or a combination shape thereof. Module parts.
  6. 回路基板シートに複数の部品を実装するステップと、
    前記回路基板シートに実装された前記複数の部品を封止樹脂で封止するステップと、
    前記回路基板シートを前記封止樹脂と共に個片に分割するステップと、
    前記個片を治具に保持するステップと、
    前記個片を前記治具に保持するステップの間に、厚み勾配を有する金属膜を前記個片の表面に形成するステップと、
    を含む、モジュール部品の製造方法。
    Mounting a plurality of components on a circuit board sheet;
    Sealing the plurality of components mounted on the circuit board sheet with a sealing resin;
    Dividing the circuit board sheet into pieces together with the sealing resin;
    Holding the piece in a jig;
    A step of forming a metal film having a thickness gradient on the surface of the piece during the step of holding the piece on the jig;
    A method for manufacturing a module component, comprising:
  7.    上面と下面と側面とを有する第1の回路基板と、
       前記第1の回路基板の前記上面に実装された部品と、
       前記第1の回路基板の前記上面に設けられてかつ前記部品を封止し、上面を有する封止部と、
       前記第1の回路基板の前記下面の外周部分に設けられた第1のグランドパターンと、
       前記封止部と前記第1の回路基板とを覆う金属膜と、
    を含むモジュール部品と、
    前記モジュール部品が搭載された上面を有する第2の回路基板と、
    を備え、
    前記第1の回路基板は、前記側面に露出する配線パターンを有し、
    前記金属膜は、
       前記封止部の前記上面を覆う天面部と、
       前記天面部から延びてかつ前記回路基板の前記側面を覆い、前記配線パターンに電気的に接続された側面部と、
       前記側面部から延びて、前記第1のグランドパターン上に設けられ、前記側面部から離れるにしたがって小さくなる厚みを有する底面部と、
    を有する、電子機器。
    A first circuit board having an upper surface, a lower surface and a side surface;
    Components mounted on the top surface of the first circuit board;
    A sealing portion provided on the upper surface of the first circuit board and sealing the component, and having a top surface;
    A first ground pattern provided on an outer peripheral portion of the lower surface of the first circuit board;
    A metal film covering the sealing portion and the first circuit board;
    Module parts including
    A second circuit board having an upper surface on which the module component is mounted;
    With
    The first circuit board has a wiring pattern exposed on the side surface,
    The metal film is
    A top surface portion covering the upper surface of the sealing portion;
    A side surface portion extending from the top surface portion and covering the side surface of the circuit board and electrically connected to the wiring pattern;
    A bottom surface portion extending from the side surface portion, provided on the first ground pattern, and having a thickness that decreases with increasing distance from the side surface portion;
    Having an electronic device.
  8. 前記第2の回路基板は、
       前記第2の回路基板の前記上面に設けられた第2のグランドパターンと、
       前記第2の回路基板の下面に設けられた第3のグランドパターンと、
       前記モジュール部品の前記第1のグランドパターンに電気的に接続されており、かつ前記第2のグランドパターンと前記第3のグランドパターンとに接続されたビア導体と、
    を有する、請求項7に記載の電子機器。
    The second circuit board is:
    A second ground pattern provided on the upper surface of the second circuit board;
    A third ground pattern provided on the lower surface of the second circuit board;
    A via conductor electrically connected to the first ground pattern of the module component and connected to the second ground pattern and the third ground pattern;
    The electronic device according to claim 7, comprising:
  9. 上面と下面と側面とを有する回路基板と、
    前記回路基板の前記上面に実装された部品と、
    前記回路基板の前記上面に設けられてかつ前記部品を封止し、前記回路基板の前記上面に当接する下面と、上面と、側面とを有する封止部と、
       前記封止部の前記上面を覆う天面部と、
       前記天面部から延びてかつ前記回路基板の前記側面と前記封止部の前記側面とを覆う側面部と、
    を有する金属膜と、
    前記金属膜に給電して前記金属膜をアンテナとして動作させる給電部と、
    を備え、
    前記金属膜の前記天面部の厚みは、前記側面部のうちの前記封止部の前記側面を覆う部分の厚みの1.5倍以上5倍以下である、モジュール部品。
    A circuit board having an upper surface, a lower surface and side surfaces;
    Components mounted on the top surface of the circuit board;
    A sealing portion that is provided on the upper surface of the circuit board and seals the component, and includes a lower surface that contacts the upper surface of the circuit board, an upper surface, and a side surface;
    A top surface portion covering the upper surface of the sealing portion;
    A side surface portion extending from the top surface portion and covering the side surface of the circuit board and the side surface of the sealing portion;
    A metal film having
    A power feeding unit that feeds power to the metal film and operates the metal film as an antenna;
    With
    The thickness of the said top surface part of the said metal film is a module component which is 1.5 times or more and 5 times or less of the thickness of the part which covers the said side surface of the said sealing part among the said side surface parts.
  10. 前記給電部は前記金属膜の前記天面部と前記回路基板の前記上面との間で形成された結合成分よりなる、請求項9記載のモジュール部品。 The module component according to claim 9, wherein the power feeding portion is formed of a coupling component formed between the top surface portion of the metal film and the upper surface of the circuit board.
  11. 前記金属膜は、スパッタ膜、めっき膜、導電性ペーストのいずれか、あるいはこれらの組み合わせよりなる、請求項9に記載のモジュール部品。 The module component according to claim 9, wherein the metal film is formed of any one of a sputtered film, a plated film, and a conductive paste, or a combination thereof.
  12. 回路基板シートに複数の部品を実装するステップと、
    前記回路基板に実装された前記複数の部品を封止樹脂で封止するステップと、
    前記回路基板シートを前記封止樹脂と共に個片に分割するステップと、
    前記個片を治具に保持する保持工程と、
    前記個片を前記治具に保持するステップの間に、金属膜を前記個片の表面に形成するステップと、
    を含み、
    前記個片は、
       上面と下面と側面とを有する回路基板と、
       前記複数の部品のうちの1つと、
       前記回路基板の前記上面に設けられてかつ前記複数の部品のうちの前記1つを封止し、前記回路基板の前記上面に当接する下面と、上面と、側面とを有して前記封止樹脂よりなる封止部と、
       前記金属膜に給電して前記金属膜をアンテナとして動作させる給電部と、
    を備え、
    前記金属膜は、
       前記封止部の前記上面を覆う天面部と、
       前記天面部から延びてかつ前記回路基板の前記側面と前記封止部の前記側面とを覆う側面部と、
    を有し、
    前記金属膜の前記天面部の厚みは、前記側面部のうちの前記封止部の前記側面を覆う部分の厚みの1.5倍以上5倍以下である、モジュール部品の製造方法。
    Mounting a plurality of components on a circuit board sheet;
    Sealing the plurality of components mounted on the circuit board with a sealing resin;
    Dividing the circuit board sheet into pieces together with the sealing resin;
    A holding step of holding the pieces in a jig;
    During the step of holding the piece on the jig, forming a metal film on the surface of the piece;
    Including
    The piece is
    A circuit board having an upper surface, a lower surface and side surfaces;
    One of the plurality of parts;
    The sealing is provided on the upper surface of the circuit board and seals the one of the plurality of components and has a lower surface, an upper surface, and a side surface that are in contact with the upper surface of the circuit board. A sealing portion made of resin;
    A power feeding unit that feeds power to the metal film and operates the metal film as an antenna;
    With
    The metal film is
    A top surface portion covering the upper surface of the sealing portion;
    A side surface portion extending from the top surface portion and covering the side surface of the circuit board and the side surface of the sealing portion;
    Have
    The thickness of the said top surface part of the said metal film is a manufacturing method of the module components which is 1.5 to 5 times the thickness of the part which covers the said side surface of the said sealing part among the said side parts.
  13.    上面と下面と側面とを有する第1の回路基板と、
       前記第1の回路基板の前記上面に実装された部品と、
       前記第1の回路基板の前記上面に設けられてかつ前記部品を封止し、上面と下面と側面とを有する封止部と、
       前記封止部と前記第1の回路基板とを覆う金属膜と、
       前記金属膜に給電して前記金属膜をアンテナとして動作させる給電部と、
    を有するモジュール基板と、
    前記モジュール基板が固定された第2の回路基板と、
    を備え、
    前記第1の回路基板は、前記第1の回路基板の前記側面に露出する配線パターンを有し、
    前記金属膜は、
       前記封止部の前記上面を覆う天面部と、
       前記天面部から延びてかつ前記第1の回路基板の前記側面と前記封止部の前記側面とを覆い、前記配線パターンに電気的に接続された側面部と、
    を有し、
    前記金属膜の前記天面部の厚みは前記金属膜のうちの前記封止部の前記側面を覆う部分の厚みの1.5倍以上5倍以下である、電子機器。
    A first circuit board having an upper surface, a lower surface and a side surface;
    Components mounted on the top surface of the first circuit board;
    A sealing portion that is provided on the upper surface of the first circuit board and seals the component, and has an upper surface, a lower surface, and a side surface;
    A metal film covering the sealing portion and the first circuit board;
    A power feeding unit that feeds power to the metal film and operates the metal film as an antenna;
    A module substrate having
    A second circuit board to which the module board is fixed;
    With
    The first circuit board has a wiring pattern exposed on the side surface of the first circuit board;
    The metal film is
    A top surface portion covering the upper surface of the sealing portion;
    A side portion extending from the top surface portion and covering the side surface of the first circuit board and the side surface of the sealing portion and electrically connected to the wiring pattern;
    Have
    The thickness of the said top surface part of the said metal film is an electronic device which is 1.5 times or more and 5 times or less of the thickness of the part which covers the said side surface of the said sealing part among the said metal films.
PCT/JP2010/001496 2009-03-10 2010-03-04 Module component, method for manufacturing same, and electronic apparatus using the module component WO2010103756A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-056198 2009-03-10
JP2009056198A JP5391747B2 (en) 2009-03-10 2009-03-10 MODULE COMPONENT, METHOD FOR PRODUCING MODULE COMPONENT, AND ELECTRONIC DEVICE USING THE SAME
JP2009093819A JP2010245931A (en) 2009-04-08 2009-04-08 Antenna integrated module component, method for manufacturing the same, and electronic apparatus using the module component
JP2009-093819 2009-04-08

Publications (1)

Publication Number Publication Date
WO2010103756A1 true WO2010103756A1 (en) 2010-09-16

Family

ID=42728052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001496 WO2010103756A1 (en) 2009-03-10 2010-03-04 Module component, method for manufacturing same, and electronic apparatus using the module component

Country Status (2)

Country Link
TW (1) TWI431752B (en)
WO (1) WO2010103756A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101857A1 (en) * 2011-01-28 2012-08-02 株式会社村田製作所 Module substrate
JP2013026330A (en) * 2011-07-19 2013-02-04 Murata Mfg Co Ltd Circuit module
JP2013526769A (en) * 2010-03-23 2013-06-24 アルカテル−ルーセント IC package reinforcement with beams
JP2018006461A (en) * 2016-06-29 2018-01-11 株式会社ディスコ Packaging method of device
JP2018006462A (en) * 2016-06-29 2018-01-11 株式会社ディスコ Packaging method of device
WO2018159290A1 (en) * 2017-02-28 2018-09-07 株式会社村田製作所 Electronic component with thin-film shield layer
JP2018170419A (en) * 2017-03-30 2018-11-01 太陽誘電株式会社 Electronic component module
JP2018186205A (en) * 2017-04-26 2018-11-22 Tdk株式会社 Laminated electronic component and manufacturing method thereof
US10756024B2 (en) 2017-03-30 2020-08-25 Taiyo Yuden Co., Ltd. Electronic component module and method of manufacturing the same
WO2022138744A1 (en) * 2020-12-25 2022-06-30 株式会社村田製作所 Electronic component, electronic component manufacturing method, and circuit module
WO2022264737A1 (en) * 2021-06-15 2022-12-22 株式会社村田製作所 Antenna module and communication device having same
JP7444487B1 (en) 2022-10-05 2024-03-06 日本ミクロン株式会社 solar power wireless sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10629455B1 (en) 2018-11-20 2020-04-21 Nanya Technology Corporation Semiconductor package having a blocking dam

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001339016A (en) * 2000-05-30 2001-12-07 Alps Electric Co Ltd Surface mounting electronic circuit unit
JP2006286915A (en) * 2005-03-31 2006-10-19 Taiyo Yuden Co Ltd Circuit module
JP2007067407A (en) * 2005-08-30 2007-03-15 Samsung Electro-Mechanics Co Ltd Backside-ground-type flip chip semiconductor package
WO2007060784A1 (en) * 2005-11-28 2007-05-31 Murata Manufacturing Co., Ltd. Circuit module and method for fabricating the same
JP2008147572A (en) * 2006-12-13 2008-06-26 Shinko Electric Ind Co Ltd Package with shielded case

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001339016A (en) * 2000-05-30 2001-12-07 Alps Electric Co Ltd Surface mounting electronic circuit unit
JP2006286915A (en) * 2005-03-31 2006-10-19 Taiyo Yuden Co Ltd Circuit module
JP2007067407A (en) * 2005-08-30 2007-03-15 Samsung Electro-Mechanics Co Ltd Backside-ground-type flip chip semiconductor package
WO2007060784A1 (en) * 2005-11-28 2007-05-31 Murata Manufacturing Co., Ltd. Circuit module and method for fabricating the same
JP2008147572A (en) * 2006-12-13 2008-06-26 Shinko Electric Ind Co Ltd Package with shielded case

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526769A (en) * 2010-03-23 2013-06-24 アルカテル−ルーセント IC package reinforcement with beams
WO2012101857A1 (en) * 2011-01-28 2012-08-02 株式会社村田製作所 Module substrate
JP5633582B2 (en) * 2011-01-28 2014-12-03 株式会社村田製作所 Module board
JP2013026330A (en) * 2011-07-19 2013-02-04 Murata Mfg Co Ltd Circuit module
JP2018006461A (en) * 2016-06-29 2018-01-11 株式会社ディスコ Packaging method of device
JP2018006462A (en) * 2016-06-29 2018-01-11 株式会社ディスコ Packaging method of device
US10964645B2 (en) 2017-02-28 2021-03-30 Murata Manufacturing Co., Ltd. Electronic component with thin-film shield layer
JPWO2018159290A1 (en) * 2017-02-28 2019-12-12 株式会社村田製作所 Electronic component with thin-film shield layer
WO2018159290A1 (en) * 2017-02-28 2018-09-07 株式会社村田製作所 Electronic component with thin-film shield layer
JP2018170419A (en) * 2017-03-30 2018-11-01 太陽誘電株式会社 Electronic component module
US10490512B2 (en) 2017-03-30 2019-11-26 Taiyo Yuden Co., Ltd. Method of making plural electronic component modules
US10756024B2 (en) 2017-03-30 2020-08-25 Taiyo Yuden Co., Ltd. Electronic component module and method of manufacturing the same
JP2018186205A (en) * 2017-04-26 2018-11-22 Tdk株式会社 Laminated electronic component and manufacturing method thereof
JP7155499B2 (en) 2017-04-26 2022-10-19 Tdk株式会社 LAMINATED ELECTRONIC COMPONENT AND MANUFACTURING METHOD THEREOF
WO2022138744A1 (en) * 2020-12-25 2022-06-30 株式会社村田製作所 Electronic component, electronic component manufacturing method, and circuit module
WO2022264737A1 (en) * 2021-06-15 2022-12-22 株式会社村田製作所 Antenna module and communication device having same
JP7444487B1 (en) 2022-10-05 2024-03-06 日本ミクロン株式会社 solar power wireless sensor

Also Published As

Publication number Publication date
TW201041113A (en) 2010-11-16
TWI431752B (en) 2014-03-21

Similar Documents

Publication Publication Date Title
WO2010103756A1 (en) Module component, method for manufacturing same, and electronic apparatus using the module component
JP5391747B2 (en) MODULE COMPONENT, METHOD FOR PRODUCING MODULE COMPONENT, AND ELECTRONIC DEVICE USING THE SAME
US9748179B2 (en) Package and method of manufacturing the same
JP4512101B2 (en) Manufacturing method of semiconductor chip
CN104037166B (en) Comprise the semiconductor package assembly and a manufacturing method thereof of antenna stack
US6842093B2 (en) Radio frequency circuit module on multi-layer substrate
US8368185B2 (en) Semiconductor device packages with electromagnetic interference shielding
JP2010245931A (en) Antenna integrated module component, method for manufacturing the same, and electronic apparatus using the module component
WO2021124806A1 (en) Electronic component module and method for manufacturing electronic component module
US11018434B2 (en) Antenna apparatus, and manufacturing method
US20100101841A1 (en) Printed circuit board
EP2209356A1 (en) Conformal reference planes in substrates
US11252812B2 (en) Electronic device module
JP3878795B2 (en) Multilayer wiring board
US20150282297A1 (en) Printed Circuit Board
EP1289352A2 (en) High-frequency circuit device and method for manufacturing the same
US20210335733A1 (en) Electronic device module and method of manufacturing electronic device module
JP2741090B2 (en) Printed board
JPH01135099A (en) Electronic circuit package
WO2022065246A1 (en) Electronic component module, and method for manufacturing electronic component module
CN212324448U (en) Embedded electronic device
JP2005277897A (en) Plate antenna and its manufacturing method
JPH11220285A (en) Hybrid module and manufacture thereof
CN117812804A (en) Circuit board and manufacturing method thereof
JPH0722720A (en) Electronic circuit package

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10750514

Country of ref document: EP

Kind code of ref document: A1