WO2010103633A1 - Apparatus for recovering chlorosilane and method of recovering chlorosilane with the same - Google Patents

Apparatus for recovering chlorosilane and method of recovering chlorosilane with the same Download PDF

Info

Publication number
WO2010103633A1
WO2010103633A1 PCT/JP2009/054666 JP2009054666W WO2010103633A1 WO 2010103633 A1 WO2010103633 A1 WO 2010103633A1 JP 2009054666 W JP2009054666 W JP 2009054666W WO 2010103633 A1 WO2010103633 A1 WO 2010103633A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
gas
tetrachlorosilane
chlorosilane
collection
Prior art date
Application number
PCT/JP2009/054666
Other languages
French (fr)
Japanese (ja)
Inventor
靖史 松尾
晃一 竹村
誠 松倉
和之 湯舟
一正 松音
潤 中本
裕介 和久田
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to PCT/JP2009/054666 priority Critical patent/WO2010103633A1/en
Priority to JP2011503605A priority patent/JP5329641B2/en
Priority to TW099102344A priority patent/TW201036912A/en
Publication of WO2010103633A1 publication Critical patent/WO2010103633A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/1071Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof
    • C01B33/10742Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by hydrochlorination of silicon or of a silicon-containing material
    • C01B33/10757Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by hydrochlorination of silicon or of a silicon-containing material with the preferential formation of trichlorosilane

Definitions

  • the present invention relates to a chlorosilane recovery apparatus having excellent recovery efficiency and a chlorosilane recovery method using the same.
  • Trichlorosilane (SiHCl 3 ) is a special material gas used for manufacturing semiconductors, liquid crystal panels, solar cells, and the like. In recent years, demand has been steadily expanding, and growth is expected as a CVD material widely used in the electronics field.
  • Trichlorosilane is produced by contacting tetrachlorosilane (SiCl 4 ) and hydrogen (H 2 ) to achieve the following thermal equilibrium state.
  • SiCl 4 + H 2 ⁇ SiHCl 3 + HCl (1) This reaction is performed by heating a raw material gas composed of gasified tetrachlorosilane and hydrogen to 700 to 1400 ° C. in a reaction furnace. At this time, the following equilibrium reaction occurs in addition to the above reaction, and monochlorosilane (SiH 3 Cl) and dichlorosilane (SiH 2 Cl 2 ) are by-produced in addition to trichlorosilane.
  • chlorosilanes other than trichlorosilane that is, monochlorosilane, dichlorosilane, and tetrachlorosilane, can be reused for the production of trichlorosilane or used as a raw material for producing monosilane (SiH 4 ). It is desirable to collect.
  • the mixed gas discharged from the reactor that is, the reaction product gas containing various chlorosilanes including trichlorosilane is transferred to the ⁇ 70 ° C. condenser. It is introduced from above (FIGS. 3 and 4). Therefore, the chlorosilane that has not been condensed in the condenser and of course the chlorosilane that has been condensed but not collected as a liquid but mixed in the gas flow in the form of fine particles is discharged from the condenser as uncondensed gas.
  • the non-condensed gas discharged from the condenser cooled to ⁇ 70 ° C. still contains a non-negligible amount of chlorosilane, which contributes to a reduction in chlorosilane recovery.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a chlorosilane recovery apparatus having excellent recovery efficiency and a chlorosilane recovery method using the same.
  • the chlorosilane recovery apparatus of the present invention is A cooler for cooling chlorosilane gas containing tetrachlorosilane; A collection tank containing a collection liquid containing tetrachlorosilane; A gas-liquid mixture supply pipe for deriving a gas-liquid mixture composed of a liquid component liquefied by the cooler and a gas component not liquefied from the cooler into the collected liquid in the collection tank; A tetrachlorosilane supply pipe for adjusting the concentration of tetrachlorosilane in the collection liquid to be higher than the concentration of tetrachlorosilane in the liquid component of the gas-liquid mixture by adding tetrachlorosilane to the collection tank;
  • the chlorosilane recovery apparatus of the present invention is A cooler for cooling chlorosilane gas comprising tetrachlorosilane and at least one chlorosilane selected from the group consisting of monochlorosilane, dichlorosilane, and trichlorosilane;
  • a gas-liquid mixture supply pipe for deriving a gas-liquid mixture composed of a liquid component liquefied by the cooler and a gas component not liquefied from the cooler into the collected liquid in the collection tank;
  • a tetrachlorosilane supply pipe for adjusting the concentration of tetrachlorosilane in the collection liquid to be higher than the concentration of tetrachlorosilane in the liquid component of the gas-liquid mixture
  • the chlorosilane recovery method of the present invention comprises: A step of cooling chlorosilane gas containing tetrachlorosilane, A step of deriving a gas-liquid mixture comprising a liquid component liquefied by cooling and a gas component not liquefied into a collection liquid containing tetrachlorosilane, Adding tetrachlorosilane to the collection liquid and adjusting the tetrachlorosilane concentration of the collection liquid to be higher than the tetrachlorosilane concentration of the liquid component of the gas-liquid mixture; A step of recovering chlorosilane from the collected liquid.
  • the chlorosilane recovery method of the present invention includes: Cooling a chlorosilane gas comprising tetrachlorosilane and at least one chlorosilane selected from the group consisting of monochlorosilane, dichlorosilane and trichlorosilane; A gas-liquid mixture comprising a liquid component liquefied by cooling and a gas component not liquefied comprises tetrachlorosilane and at least one chlorosilane selected from the group consisting of monochlorosilane, dichlorosilane and trichlorosilane.
  • the present inventors derive a gas-liquid mixture obtained by cooling chlorosilane gas containing tetrachlorosilane into a collection liquid having a higher tetrachlorosilane concentration than the liquid components constituting the gas-liquid mixture.
  • a gas-liquid mixture obtained by cooling chlorosilane gas containing tetrachlorosilane into a collection liquid having a higher tetrachlorosilane concentration than the liquid components constituting the gas-liquid mixture.
  • the gas component of the gas-liquid mixture is vented as fine bubbles in the collected liquid, so that it is condensed by cooling, but is suspended in the gas component in the form of fine particles. Can be brought into contact with the interface with the collection liquid with a high probability, and can be reliably captured in the collection liquid.
  • the gas component of the gas-liquid mixture is aerated in the collection liquid as fine bubbles to surround the finely divided gas component and cool it, the gas component can be cooled more reliably. it can. Therefore, the chlorosilane contained in the gas component of the gas-liquid mixture in an uncondensed state can be more reliably condensed.
  • the recovery efficiency of chlorosilane can be improved by positively adding tetrachlorosilane to the collection liquid and adjusting the tetrachlorosilane concentration of the collection liquid to be higher than the liquid component of the gas-liquid mixture.
  • emitted as uncondensed gas can be reduced.
  • the chlorosilane contained in the gas component without being condensed can be more reliably condensed, and the gas component can be condensed. Mist chlorosilane floating in the form of fine particles can be captured more reliably.
  • the recovery efficiency of chlorosilane can be improved by adjusting the concentration of tetrachlorosilane in the collected liquid to be higher than the liquid component of the gas-liquid mixture. For this reason, the amount of chlorosilane that would otherwise be discharged as uncondensed gas can be reduced, and as a result, the productivity of the target chlorosilane can be greatly improved.
  • FIG. 1 schematically shows a chlorosilane recovery device of this embodiment.
  • the chlorosilane recovery apparatus 100 of this embodiment is A cooler 102 for cooling chlorosilane gas containing tetrachlorosilane;
  • a collection tank 106 containing a collection liquid 111 containing tetrachlorosilane;
  • a gas-liquid mixture supply pipe 103 for deriving a gas-liquid mixture composed of a liquid component liquefied by the cooler 102 and a gas component not liquefied from the cooler 102 into a collecting liquid 111 in the collecting tank 106;
  • a tetrachlorosilane supply pipe 109 for adjusting the concentration of tetrachlorosilane in the collection liquid 111 to be higher than the liquid component of the gas-liquid mixture by adding tetrachlorosilane to the collection tank 106;
  • the cooler 102 is not particularly limited as long as it can finally cool the chlorosilane gas containing tetrachlorosilane to about ⁇ 40 to ⁇ 70 ° C., more preferably about ⁇ 60 to ⁇ 70 ° C.
  • the chlorosilane gas containing tetrachlorosilane it may be possible to cool to a lower temperature.
  • the boiling point of HCl that can be contained in the chlorosilane gas is ⁇ 85 ° C. and the coagulation temperature of tetrachlorosilane is ⁇ 70 ° C., it is preferable to cool to the above temperature range.
  • the cooler 102 includes a chlorosilane gas introduction pipe 101 that introduces chlorosilane gas into the cooler 102, and a collection tank that will be described later with a gas-liquid mixture comprising a liquid component liquefied by the cooler 102 and a gas component that has not been liquefied.
  • the gas-liquid mixture supply pipe 103 that supplies the collected liquid 111 accommodated in 106 is connected.
  • the collection tank 106 is made of a material that does not react with chlorosilane gas, typically a metal such as stainless steel.
  • a gas-liquid mixture supply pipe 103 for taking in the gas-liquid mixture obtained by the cooler 102 is connected to the lower side wall of the collection tank 106, and the tip of the gas-liquid mixture supply pipe 103 is connected to the inside of the collection tank 106. Has been inserted to reach.
  • a condensate drain pipe 107 is connected to the bottom of the collection tank 106 so that the liquid component collected in the collection tank 106 can be taken out together with the collection liquid 111 described later.
  • An uncondensed gas extraction pipe 108 is connected to the upper part of the collection tank 106 so that uncondensed gas components that have not been collected in the collection tank 106 can be derived.
  • a cooling unit 110 for cooling the collection liquid 111 accommodated in the collection tank 106 is provided on the outer peripheral portion of the collection tank 106.
  • the cooling unit 110 is capable of cooling the collected liquid 111 to a temperature substantially equal to or lower than the liquid component of the gas-liquid mixture cooled by the cooler 102, preferably about ⁇ 60 to ⁇ 70 ° C.
  • the temperature of the collected liquid 111 is substantially the same temperature or lower than that of the gas-liquid mixture, when the gas-liquid mixture is supplied to the collected liquid 111, the mist-like chlorosilane is warmed. It is possible to prevent vaporization again.
  • the gas component of the gas-liquid mixture is vented as fine bubbles in the collection liquid 111, the cooled collection liquid 111 surrounds the bubbles, so that the gas component can be further reliably cooled.
  • the gas-liquid mixture supply pipe 103 supplies a gas-liquid mixture composed of the liquid component liquefied by the cooler 102 and the gas component not liquefied into the collection liquid 111 accommodated in the collection tank 106. Since a gas component is contained in the gas-liquid mixture supplied from the gas-liquid mixture supply pipe 103, the gas component is vented into the collection liquid 111 with such a configuration. For this reason, the gas component divided into fine bubbles can be surrounded and cooled, and the gas component can be reliably cooled.
  • the bubbles of the released gas component are further refined, and the cooling efficiency is further improved.
  • the distal end portion 104 of the gas-liquid mixture supply pipe 103 is not particularly limited, and for example, the pipe may be bent in a concentric circle shape, a spiral shape, or a parallel shape, and a large number of blowing holes 105 may be formed therethrough. Further, as the distal end portion 104, a disc-shaped or spherical header having a large number of blowing holes 105 provided at the distal end of the gas-liquid mixture supply pipe 103 may be attached.
  • ⁇ Tetrachlorosilane supply pipe The tetrachlorosilane supply pipe 109 supplies liquid tetrachlorosilane to the inside of the collection tank 106 to adjust the tetrachlorosilane concentration in the collection liquid 111.
  • the tetrachlorosilane concentration in the collection liquid 111 gradually decreases while the gas-liquid mixture cooled by the cooler 102 is supplied.
  • the tetrachlorosilane supply pipe 109 supplements tetrachlorosilane with a decrease in the tetrachlorosilane concentration in the collection liquid 111, and maintains the tetrachlorosilane concentration at a constant value higher than the tetrachlorosilane concentration of the liquid component of the gas-liquid mixture.
  • the temperature of the tetrachlorosilane supplied from the tetrachlorosilane supply pipe 109 is cooled to a temperature substantially equal to or lower than that of the collection liquid 111 so that the temperature of the collection liquid 111 is not increased by the supply of tetrachlorosilane. Keep it.
  • the supplied tetrachlorosilane is uniformly mixed in the collection liquid 111 by stirring the collection liquid 111 with bubbles released from the tip 104 of the gas-liquid mixture supply pipe 103.
  • ⁇ Collecting liquid> As the collection liquid 111, a liquid having substantially the same composition as the liquid component obtained by cooling the chlorosilane gas with the cooler 102 is used. Typically, tetrachlorosilane is added to the liquid component obtained by the cooler 102 and the tetrachlorosilane concentration is increased as compared with the liquid component. Moreover, the composition of the liquid component of a gas-liquid mixture can be investigated beforehand, and tetrachlorosilane and various chlorosilanes can be mixed and prepared.
  • the collected liquid 111 is cooled by the cooling unit 110 to a temperature substantially equal to or lower than the liquid component of the gas-liquid mixture cooled by the cooler 102, preferably about ⁇ 60 to ⁇ 70 ° C. .
  • the tetrachlorosilane concentration of the collection liquid 111 is adjusted to be higher than the liquid component obtained by cooling the chlorosilane gas with the cooler 102 via the tetrachlorosilane supply pipe 109 as described above.
  • the concentration of tetrachlorosilane in the collection liquid 111 is adjusted to be 10% or more, more preferably 20% or more higher than the liquid component of the gas-liquid mixture, the recovery efficiency is large. An improvement is observed.
  • the reaction tower 200 for reacting the raw material gas at a high temperature, and the reaction product gas extracted from the reaction tower 200 are rapidly cooled to freeze the equilibrium.
  • a raw material gas obtained by mixing gasified tetrachlorosilane and hydrogen is supplied to the reaction furnace 201 from the bottom of the reaction tower 200 through a raw material gas supply pipe 204.
  • the reaction furnace 201 is made of graphite, and the internal temperature can be maintained in the range of more than 700 ° C. and not more than 1400 ° C. by heating with a heater 202 provided around. If the reaction temperature is 700 ° C. or higher, the equilibrium of the above formula (1) is sufficiently tilted to the right, and if it is 1400 ° C. or lower, it is preferable because the phenomenon that metal silicon precipitates and leads to blockage of the apparatus can be suppressed.
  • the reaction product gas that has been heated in the reaction furnace 201 and has reached the thermal equilibrium state represented by the above formula (1) moves upward of the reaction furnace 201 and maintains a temperature of 1200 ° C. or higher. It is introduced into the quenching tower 300 through 203.
  • the reactor gas extraction pipe 203 passes through the side wall of the quenching tower 300 and reaches the inside of the quenching tower 300.
  • a coolant is sprayed from the primary spray nozzle 301 to the reaction product gas released from the reactor gas extraction pipe 203 to bring the reaction product gas into contact with the coolant in the form of fine droplets.
  • the latent heat of vaporization when the coolant is vaporized can be used to instantly and efficiently remove heat from the reaction product gas, and the reaction product gas is instantaneously cooled to a temperature of 600 ° C. or lower where the equilibrium is frozen. .
  • the rapidly cooled reaction product gas rises inside the quenching tower 300.
  • a coolant is further sprayed from the secondary spray nozzle 302 to condense the high-boiling point polymer (Si 2 Cl 6 , Si 3 Cl 8 , Si 2 H 2 Cl 4, etc.) in the reaction product gas while condensing the reaction.
  • the coolant sprayed into the quenching tower 300 is extracted by the pump 303, cooled by the heat exchanger 304, and supplied again to the quenching tower 300 through the primary spray nozzle and the secondary spray nozzle.
  • the reaction product gas that is still in a gaseous state even when cooled to the range of 30 to 60 ° C. is extracted from the quenching tower gas component extraction pipe 305 and introduced into the condenser 400.
  • the condenser 400 may be a generally used condenser.
  • the capacitor 400 is described as if it is a single device, but a capacitor consisting of only a single device has a large load on the device, and it may be difficult to perform sufficient cooling. In that case, it is good also as a structure which arranges a some apparatus in series and performs stepwise cooling.
  • the liquid component condensed by the condenser 400 is led out to the storage tank 500 through the condenser liquid component lead-out pipe 401. Most of the chlorosilane contained in the reaction product gas is condensed by the condenser 400.
  • the gaseous component passing through the capacitor 400 that is, the chlorosilane gas containing unreacted tetrachlorosilane is supplied to the cooler 102 of the chlorosilane recovery apparatus 100 via the chlorosilane gas introduction pipe 101.
  • the chlorosilane gas supplied from the condenser 400 is finally cooled to about ⁇ 5 to ⁇ 20 ° C. so that the cooler 102 is not overloaded.
  • the chlorosilane gas is finally cooled to ⁇ 40 to ⁇ 70 ° C.
  • a gas-liquid mixture composed of a liquid component liquefied by cooling and a gas component not liquefied is supplied to the collection liquid 111 accommodated in the collection tank 106 via the tip 104 of the gas-liquid mixture supply pipe 103. Is done. At this time, the liquid component of the gas-liquid mixture is absorbed by the collection liquid 111, and the gas component is aerated in the collection liquid 111 in the form of fine bubbles and moves upward of the collection tank 106.
  • tetrachlorosilane is supplied from the tetrachlorosilane supply pipe 109 into the collection liquid 111, and the concentration of tetrachlorosilane in the collection liquid 111 is adjusted to be higher than the concentration of tetrachlorosilane in the liquid component of the gas-liquid mixture.
  • the temperature of the collected liquid 111 is the same as or lower than that of the gas-liquid mixture cooled in the cooler 102 by the cooling unit 110 provided on the outer periphery of the collection tank 106, and is about ⁇ 60 to ⁇ 70 ° C. Cool to range.
  • Chlorosilane trapped in the collection liquid 111 in the collection tank 106 is led out to the storage tank 500 through the condensate drain pipe 107. Further, the gas component that has not been captured in the collection tank 106 is discharged out of the chlorosilane recovery device 100 from the uncondensed gas extraction pipe 108. In this embodiment, the uncondensed gas extraction pipe 108 is passed through the condenser 400 to be used for cooling the chlorosilane gas in the condenser 400.
  • the liquid components condensed in the chlorosilane recovery apparatus 100 and the condenser 400 are further led out from the storage tank 500 to a distillation tower (not shown), where monochlorosilane, dichlorosilane and tetrachlorosilane including trichlorosilane are separated.
  • the cooling unit 110 is provided on the outer peripheral portion of the collection tank 106.
  • the collection liquid 111 may be cooled to substantially the same temperature or lower than the liquid component of the gas-liquid mixture. If possible, it is not necessary to provide the cooling unit 110 on the outer peripheral portion of the collection tank 106.
  • the collection liquid 111 may be extracted from the collection tank 106, cooled by an external cooler, and then circulated back to the collection tank 106.
  • the collection liquid 111 may be extracted to the outside, and the tetrachlorosilane concentration in the collection liquid 111 may be adjusted there and circulated to the collection tank 106.
  • Example 1 In Example 1, the apparatus shown in FIGS. 1 and 2 was used.
  • the reaction furnace 201 was heated by a heater 202 having an inner diameter of 50 mm and a length of 800 mm and a maximum output of 500 KW, and the center of the reaction furnace 201 was heated to 1300 ° C.
  • a raw material gas (molar ratio 1: 2) composed of tetrachlorosilane and hydrogen previously heated to 600 ° C. is continuously supplied to the reaction furnace 201 through the raw material gas supply pipe 204 at a flow rate of 27 mol / hour.
  • the gas reacted in 201 was supplied into the quenching tower 300 having an inner diameter of 140 mm and a length of 1300 mm through the reactor gas extraction pipe 203.
  • the temperature of the coolant was kept at 30 ° C. by passing through the heat exchanger 304.
  • the sprayed coolant was extracted from the bottom of the quenching tower 300 using a pump 303 and continuously circulated for use. If necessary, the cooling liquid was supplemented with tetrachlorosilane or trichlorosilane to keep the composition constant.
  • the reaction product gas cooled in the quenching tower 300 is cooled in stages by a condenser 400 in which four condensers are arranged in series, so that the temperature of the finally discharged chlorosilane gas becomes ⁇ 10 ° C. Cooled down. At this time, the condensate liquefied by the condenser 400 was led to the storage tank 500.
  • the chlorosilane gas cooled to ⁇ 10 ° C. by the condenser 400 was supplied to the cooler 102 where it was cooled to ⁇ 70 ° C.
  • a gas-liquid mixture composed of a liquid component and a gas component obtained by cooling with the cooler 102 was led through the gas-liquid mixture supply pipe 103 while being bubbled into the collection liquid 111 in the collection tank 106. .
  • the concentration of tetrachlorosilane in the liquid component obtained by cooling with the cooler 102 was 38%. Therefore, in Example 1, the concentration of tetrachlorosilane in the collection liquid 111 was set to 50%, and tetrachlorosilane was appropriately supplemented from the tetrachlorosilane supply pipe 109 so as to keep this concentration constant during operation of the apparatus.
  • the liquid component captured in the collection tank 106 was appropriately led out to the storage tank 500 together with the collection liquid 111.
  • the liquid component stored in the storage tank 500 was further sent to the distillation tower, where chlorosilane was separated and purified.
  • the uncondensed chlorosilane loss that was not condensed was 0.28%.
  • Example 1 Chlorosilane was separated and purified under the same conditions as in Example 1 except that the gas-liquid mixture was led out to the internal space of the collection tank 106 without using the collection liquid 111. In this case, the uncondensed chlorosilane loss was 0.42%, and the chlorosilane loss increased by about 50%.
  • Examples 2 to 5 and Comparative Example 2 Chlorosilane was separated and purified under the same conditions as in Example 1 except that the concentration of tetrachlorosilane in the collection liquid 111 was adjusted to the value shown in Table 1 below. For each of Examples 2 to 5 and Comparative Example 2, the recovery rate of chlorosilane was examined. The results are shown in Table 1 below together with the results of Example 1.
  • Example 1 ⁇ Consideration of results> From the experimental results of Example 1 and Comparative Example 1, the chlorosilane loss can be reduced by supplying the gas-liquid mixture while bubbling it into the collection liquid, and as a result, the recovery rate of the target chlorosilane can be improved. I understand. Further, as shown in Examples 1 to 5 and Comparative Example 2, by adjusting the tetrachlorosilane concentration of the collected liquid to be higher than the tetrachlorosilane concentration of the liquid component of the gas-liquid mixture, chlorosilane loss can be reduced, As a result, it can be seen that the desired recovery rate of chlorosilane can be improved.
  • Example 5 it can be seen that if the tetrachlorosilane concentration is increased as much as possible, it is effective to reduce chlorosilane loss.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

A chlorosilane recovery apparatus (100) which has excellent recovery efficiency. The apparatus includes: a cooler (102) which cools a chlorosilane gas comprising tetrachlorosilane; a collection tank (106) which holds a collection liquid (111) containing tetrachlorosilane; a gas/liquid mixture supply pipe (103) through which a gas/liquid mixture comprising a liquid ingredient liquefied with the cooler and a gas ingredient which has not been liquefied is led out from the cooler (102) to the collection liquid (111) in the collection tank (106); and a tetrachlorosilane supply pipe (109) through which tetrachlorosilane is added to the collectiontank (106) to regulate the tetrachlorosilane concentration in the collection liquid so as to be higher than the tetrachlorosilane concentration in the liquid ingredient in the gas/liquid mixture.

Description

クロロシラン回収装置およびそれを用いたクロロシラン回収方法Chlorosilane recovery apparatus and chlorosilane recovery method using the same
 本発明は、回収効率に優れたクロロシラン回収装置およびそれを用いたクロロシラン回収方法に関する。 The present invention relates to a chlorosilane recovery apparatus having excellent recovery efficiency and a chlorosilane recovery method using the same.
 トリクロロシラン(SiHCl)は、半導体、液晶パネル、太陽電池等の製造に用いられる特殊材料ガスである。近年、需要は順調に拡大し、エレクトロニクス分野で広く使用されるCVD材料として、今後も伸びが期待されている。 Trichlorosilane (SiHCl 3 ) is a special material gas used for manufacturing semiconductors, liquid crystal panels, solar cells, and the like. In recent years, demand has been steadily expanding, and growth is expected as a CVD material widely used in the electronics field.
 トリクロロシランは、テトラクロロシラン(SiCl)と水素(H)とを接触させ、以下の熱平衡状態を達成することによって生成される。
      SiCl+H⇔SiHCl+HCl     (1)
 この反応は、ガス化したテトラクロロシランと水素からなる原料ガスを反応炉において700~1400℃に加熱することによって行われる。
 また、このとき上記反応以外に以下の平衡反応が起こり、トリクロロシラン以外にもモノクロロシラン(SiHCl)やジクロロシラン(SiHCl)が副生される。
      SiCl+3H⇔SiHCl+3HCl   (2)
      SiCl+2H⇔SiHCl+2HCl  (3)
Trichlorosilane is produced by contacting tetrachlorosilane (SiCl 4 ) and hydrogen (H 2 ) to achieve the following thermal equilibrium state.
SiCl 4 + H 2 ⇔SiHCl 3 + HCl (1)
This reaction is performed by heating a raw material gas composed of gasified tetrachlorosilane and hydrogen to 700 to 1400 ° C. in a reaction furnace.
At this time, the following equilibrium reaction occurs in addition to the above reaction, and monochlorosilane (SiH 3 Cl) and dichlorosilane (SiH 2 Cl 2 ) are by-produced in addition to trichlorosilane.
SiCl 4 + 3H 2 ⇔SiH 3 Cl + 3HCl (2)
SiCl 4 + 2H 2 ⇔SiH 2 Cl 2 + 2HCl (3)
 トリクロロシランを効率よく回収するためには、特許文献1に示されるように、上記式(1)の熱平衡状態に達した後、一旦生成したトリクロロシランが再びテトラクロロシランへと戻らないよう、反応生成ガスを可能な限り瞬時に所定温度にまで冷却して平衡を凍結する。上記平衡状態を瞬時に凍結するには、典型的には、反応生成ガスを1秒未満のうちに600℃程度にまで急冷する必要がある。急冷後の反応生成ガスには、上記式(1)により生成されたトリクロロシランおよび塩化水素の他、多量の未反応テトラクロロシランおよび水素、並びに上記式(2)および(3)を経て副生したモノクロロシランおよびジクロロシランが含まれている。 In order to efficiently recover trichlorosilane, as shown in Patent Document 1, after reaching the thermal equilibrium state of the above formula (1), a reaction product is generated so that once generated trichlorosilane does not return to tetrachlorosilane again. The equilibrium is frozen by cooling the gas to a predetermined temperature as quickly as possible. In order to instantly freeze the equilibrium state, it is typically necessary to rapidly cool the reaction product gas to about 600 ° C. in less than one second. The reaction product gas after quenching was by-produced through a large amount of unreacted tetrachlorosilane and hydrogen and the above formulas (2) and (3) in addition to trichlorosilane and hydrogen chloride generated by the above formula (1). Monochlorosilane and dichlorosilane are included.
反応生成ガスから目的とするトリクロロシランを取り出すには、凝縮器で-70℃程度にまで冷却して、凝縮分であるクロロシランと、未凝縮分である塩化水素、水素、未凝縮クロロシランとに分け、さらに、凝縮分であるクロロシランを蒸留してトリクロロシランを回収する。
 また、トリクロロシラン以外のクロロシラン、すなわちモノクロロシラン、ジクロロシランおよびテトラクロロシランについても、トリクロロシランの生成に再利用したり、モノシラン(SiH)の生成原料として利用したりすることができため、効率よく回収することが望ましい。
特開昭60-81010号公報
To extract the target trichlorosilane from the reaction product gas, cool it to about -70 ° C with a condenser and separate it into chlorosilane, which is a condensed component, and hydrogen chloride, hydrogen, and uncondensed chlorosilane, which are uncondensed components. Further, chlorosilane which is a condensed component is distilled to recover trichlorosilane.
In addition, chlorosilanes other than trichlorosilane, that is, monochlorosilane, dichlorosilane, and tetrachlorosilane, can be reused for the production of trichlorosilane or used as a raw material for producing monosilane (SiH 4 ). It is desirable to collect.
JP 60-81010 A
発明の概要Summary of the Invention
 ところで、特許文献1に記載のトリクロロシラン製造法によれば、反応器から排出される混合ガス、すなわちトリクロロシランをはじめとする種々のクロロシランを含む反応生成ガスが、-70℃の凝縮器にその上方から導入される(第3図および第4図)。そのため、凝縮器において凝縮されなかったクロロシランはもちろん、凝縮されたものの液体として捕集されず微粒子状のままガス流に混入してしまったクロロシランは、未凝縮ガスとして凝縮器から排出されてしまう。かくして、-70℃にまで冷却した凝縮器から排出される未凝縮ガス中にも、依然として無視し得ない量のクロロシランが含まれており、クロロシランの回収率を低減する一因となっていた。 By the way, according to the method for producing trichlorosilane described in Patent Document 1, the mixed gas discharged from the reactor, that is, the reaction product gas containing various chlorosilanes including trichlorosilane is transferred to the −70 ° C. condenser. It is introduced from above (FIGS. 3 and 4). Therefore, the chlorosilane that has not been condensed in the condenser and of course the chlorosilane that has been condensed but not collected as a liquid but mixed in the gas flow in the form of fine particles is discharged from the condenser as uncondensed gas. Thus, the non-condensed gas discharged from the condenser cooled to −70 ° C. still contains a non-negligible amount of chlorosilane, which contributes to a reduction in chlorosilane recovery.
 本発明は上記事情に鑑みてなされたものであり、回収効率に優れたクロロシラン回収装置およびそれを用いたクロロシラン回収方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a chlorosilane recovery apparatus having excellent recovery efficiency and a chlorosilane recovery method using the same.
 本発明は、前記課題を解決するために以下の構成を採用した。
 すなわち、本発明のクロロシラン回収装置は、
テトラクロロシランを含むクロロシランガスを冷却する冷却器と、
テトラクロロシランを含む捕集液を収容した捕集槽と、
前記冷却器で液化された液体成分と液化されなかった気体成分とからなる気液混合物を冷却器から前記捕集槽内の捕集液中に導出する気液混合物供給管と、
前記捕集槽にテトラクロロシランを添加して捕集液のテトラクロロシラン濃度が前記気液混合物の液体成分のテトラクロロシラン濃度より高くなるように調節するテトラクロロシラン供給管と
を有する。
The present invention employs the following configuration in order to solve the above problems.
That is, the chlorosilane recovery apparatus of the present invention is
A cooler for cooling chlorosilane gas containing tetrachlorosilane;
A collection tank containing a collection liquid containing tetrachlorosilane;
A gas-liquid mixture supply pipe for deriving a gas-liquid mixture composed of a liquid component liquefied by the cooler and a gas component not liquefied from the cooler into the collected liquid in the collection tank;
A tetrachlorosilane supply pipe for adjusting the concentration of tetrachlorosilane in the collection liquid to be higher than the concentration of tetrachlorosilane in the liquid component of the gas-liquid mixture by adding tetrachlorosilane to the collection tank;
 より具体的には、本発明のクロロシラン回収装置は、
テトラクロロシランと、モノクロロシラン、ジクロロシランおよびトリクロロシランからなる群から選択される少なくとも一つのクロロシランとを含むクロロシランガスを冷却する冷却器と、
テトラクロロシランと、モノクロロシラン、ジクロロシランおよびトリクロロシランからなる群から選択される少なくとも一つのクロロシランとを含む捕集液を収容した捕集槽と、
前記冷却器で液化された液体成分と液化されなかった気体成分とからなる気液混合物を冷却器から前記捕集槽内の捕集液中に導出する気液混合物供給管と、
前記捕集槽にテトラクロロシランを添加して捕集液のテトラクロロシラン濃度が前記気液混合物の液体成分のテトラクロロシラン濃度より高くなるように調節するテトラクロロシラン供給管と
を有する。
More specifically, the chlorosilane recovery apparatus of the present invention is
A cooler for cooling chlorosilane gas comprising tetrachlorosilane and at least one chlorosilane selected from the group consisting of monochlorosilane, dichlorosilane, and trichlorosilane;
A collection tank containing a collection liquid containing tetrachlorosilane and at least one chlorosilane selected from the group consisting of monochlorosilane, dichlorosilane and trichlorosilane;
A gas-liquid mixture supply pipe for deriving a gas-liquid mixture composed of a liquid component liquefied by the cooler and a gas component not liquefied from the cooler into the collected liquid in the collection tank;
A tetrachlorosilane supply pipe for adjusting the concentration of tetrachlorosilane in the collection liquid to be higher than the concentration of tetrachlorosilane in the liquid component of the gas-liquid mixture by adding tetrachlorosilane to the collection tank;
 また、本発明のクロロシラン回収方法は、
テトラクロロシランを含むクロロシランガスを冷却する工程、
前記冷却により液化された液体成分と液化されなかった気体成分とからなる気液混合物をテトラクロロシランを含有する捕集液中に導出する工程、
前記捕集液にテトラクロロシランを添加して捕集液のテトラクロロシラン濃度が前記気液混合物の液体成分のテトラクロロシラン濃度より高くなるように調節する工程、
前記捕集液からクロロシランを回収する工程
を有する。
Moreover, the chlorosilane recovery method of the present invention comprises:
A step of cooling chlorosilane gas containing tetrachlorosilane,
A step of deriving a gas-liquid mixture comprising a liquid component liquefied by cooling and a gas component not liquefied into a collection liquid containing tetrachlorosilane,
Adding tetrachlorosilane to the collection liquid and adjusting the tetrachlorosilane concentration of the collection liquid to be higher than the tetrachlorosilane concentration of the liquid component of the gas-liquid mixture;
A step of recovering chlorosilane from the collected liquid.
 より具体的には、本発明のクロロシラン回収方法は、
テトラクロロシランと、モノクロロシラン、ジクロロシランおよびトリクロロシランからなる群から選択される少なくとも一つのクロロシランとを含むクロロシランガスを冷却する工程、
前記冷却により液化された液体成分と液化されなかった気体成分とからなる気液混合物をテトラクロロシランと、モノクロロシラン、ジクロロシランおよびトリクロロシランからなる群から選択される少なくとも一つのクロロシランとを含む捕集液中に導出する工程、
前記捕集液にテトラクロロシランを添加して捕集液のテトラクロロシラン濃度が前記気液混合物の液体成分のテトラクロロシラン濃度より高くなるように調節する工程、
前記捕集液からクロロシランを回収する工程
を有する。
More specifically, the chlorosilane recovery method of the present invention includes:
Cooling a chlorosilane gas comprising tetrachlorosilane and at least one chlorosilane selected from the group consisting of monochlorosilane, dichlorosilane and trichlorosilane;
A gas-liquid mixture comprising a liquid component liquefied by cooling and a gas component not liquefied comprises tetrachlorosilane and at least one chlorosilane selected from the group consisting of monochlorosilane, dichlorosilane and trichlorosilane. Deriving into the liquid,
Adding tetrachlorosilane to the collection liquid and adjusting the tetrachlorosilane concentration of the collection liquid to be higher than the tetrachlorosilane concentration of the liquid component of the gas-liquid mixture;
A step of recovering chlorosilane from the collected liquid.
 本発明者等は、鋭意研究の結果、テトラクロロシランを含むクロロシランガスを冷却して得られた気液混合物を、気液混合物を構成する液体成分よりテトラクロロシラン濃度の高い捕集液中に導出することにより、トリクロロシランをはじめとする各種クロロシランの回収率を従来よりも大幅に向上できることを見出した。 As a result of earnest research, the present inventors derive a gas-liquid mixture obtained by cooling chlorosilane gas containing tetrachlorosilane into a collection liquid having a higher tetrachlorosilane concentration than the liquid components constituting the gas-liquid mixture. As a result, it has been found that the recovery rate of various chlorosilanes including trichlorosilane can be greatly improved as compared with the prior art.
 このような構成とすることにより、気液混合物の気体成分が捕集液中に微細な泡として通気されるため、冷却により凝縮はされたものの気体成分中に微粒子状のまま浮遊しているミスト状のクロロシランを捕集液との界面に高確率で接触させることができ捕集液中に確実に捕捉することができる。
 また、気液混合物の気体成分を捕集液に微細な泡として通気することにより、微細に分断された気体成分を捕集液が取り囲んで冷却するため、気体成分をより確実に冷却することができる。そのため、気液混合物の気体成分中に未凝縮のまま含まれているクロロシランをより確実に凝縮することができる。
By adopting such a configuration, the gas component of the gas-liquid mixture is vented as fine bubbles in the collected liquid, so that it is condensed by cooling, but is suspended in the gas component in the form of fine particles. Can be brought into contact with the interface with the collection liquid with a high probability, and can be reliably captured in the collection liquid.
In addition, since the gas component of the gas-liquid mixture is aerated in the collection liquid as fine bubbles to surround the finely divided gas component and cool it, the gas component can be cooled more reliably. it can. Therefore, the chlorosilane contained in the gas component of the gas-liquid mixture in an uncondensed state can be more reliably condensed.
 さらに、驚くべきことに、捕集液にテトラクロロシランを積極的に添加して、捕集液のテトラクロロシラン濃度を気液混合物の液体成分よりも高くなるように調節することにより、クロロシランの回収効率が向上することが見出された。これにより、従来であれば未凝縮ガスとして排出されてしまうクロロシランの量を低減することができる。 Surprisingly, the recovery efficiency of chlorosilane can be improved by positively adding tetrachlorosilane to the collection liquid and adjusting the tetrachlorosilane concentration of the collection liquid to be higher than the liquid component of the gas-liquid mixture. Has been found to improve. Thereby, the quantity of the chlorosilane which will be conventionally discharged | emitted as uncondensed gas can be reduced.
 このように、本発明に係るクロロシラン回収装置およびそれを用いたクロロシラン回収方法によれば、気体成分中に未凝縮のまま含まれているクロロシランをより確実に凝縮することができ、気体成分中に微粒子状のまま浮遊しているミスト状のクロロシランをより確実に捕捉することができる。しかも、捕集液のテトラクロロシラン濃度を気液混合物の液体成分よりも高くなるように調節することにより、クロロシランの回収効率を向上させることができる。このため、従来であれば未凝縮ガスとして排出されてしまうクロロシランの量を低減することができ、結果的に、目的とするクロロシランの生産性を大幅に改善することができる。 Thus, according to the chlorosilane recovery apparatus and the chlorosilane recovery method using the same according to the present invention, the chlorosilane contained in the gas component without being condensed can be more reliably condensed, and the gas component can be condensed. Mist chlorosilane floating in the form of fine particles can be captured more reliably. Moreover, the recovery efficiency of chlorosilane can be improved by adjusting the concentration of tetrachlorosilane in the collected liquid to be higher than the liquid component of the gas-liquid mixture. For this reason, the amount of chlorosilane that would otherwise be discharged as uncondensed gas can be reduced, and as a result, the productivity of the target chlorosilane can be greatly improved.
本発明の一実施形態であるクロロシラン回収装置の説明図である。It is explanatory drawing of the chlorosilane collection | recovery apparatus which is one Embodiment of this invention. 図1のクロロシラン回収装置を用いたクロロシラン回収方法を実施するための説明図である。It is explanatory drawing for implementing the chlorosilane collection | recovery method using the chlorosilane collection | recovery apparatus of FIG.
符号の説明Explanation of symbols
100  クロロシラン回収装置
101  クロロシランガス導入管
102  冷却器
103  気液混合物供給管
104  先端部
105  吹き出し孔
106  捕集槽
107  凝縮液抜き取り管
108  未凝縮ガス抜出管
109  テトラクロロシラン供給管
110  冷却ユニット
111  捕集液
200  反応塔
201  反応炉
202  ヒータ
203  反応炉ガス抜出管
204  原料ガス供給管
300  急冷塔
301  一次スプレーノズル
302  二次スプレーノズル
303  ポンプ
304  熱交換器
305  急冷塔ガス成分抜出管
400  コンデンサ
401  コンデンサ液体成分導出管
500  貯槽
DESCRIPTION OF SYMBOLS 100 Chlorosilane collection | recovery apparatus 101 Chlorosilane gas introduction pipe | tube 102 Cooler 103 Gas-liquid mixture supply pipe | tube 104 Front-end | tip part 105 Outlet hole 106 Collection tank 107 Condensate liquid extraction pipe | tube 108 Uncondensed gas extraction pipe | tube 109 Liquid collection 200 Reaction tower 201 Reaction furnace 202 Heater 203 Reactor gas extraction pipe 204 Raw material gas supply pipe 300 Quench tower 301 Primary spray nozzle 302 Secondary spray nozzle 303 Pump 304 Heat exchanger 305 Quench tower gas component extraction pipe 400 Condenser 401 Condenser liquid component outlet tube 500 Storage tank
発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION
<用語の説明>
本明細書および請求の範囲において、「クロロシラン」とは、SiHCl4-n、n=0~3で表されるモノクロロシラン、ジクロロシラン、トリクロロシランまたはテトラクロロシラン、並びにこれらの混合物の総称を意味するものとする。
 また、「クロロシランガス」とは、SiHCl4-n、n=0~3で表されるモノクロロシラン、ジクロロシラン、トリクロロシランまたはテトラクロロシラン、並びにこれらの混合物を含む気体を意味するものとする。従って、クロロシランガスには、クロロシラン以外の物質、例えば、反応系に存在するHガスやHClガスが含まれてもよい。
<Explanation of terms>
In the present specification and claims, “chlorosilane” is a generic term for SiH n Cl 4-n , monochlorosilane, dichlorosilane, trichlorosilane or tetrachlorosilane represented by n = 0 to 3, and mixtures thereof. Shall mean.
The term “chlorosilane gas” means a gas containing SiH n Cl 4-n , monochlorosilane, dichlorosilane, trichlorosilane or tetrachlorosilane represented by n = 0 to 3, and a mixture thereof. . Therefore, the chlorosilane gas may contain substances other than chlorosilane, such as H 2 gas and HCl gas present in the reaction system.
 以下、本発明の実施の形態について、図面を用いて説明する。
1.クロロシラン回収装置
 図1は、本実施形態のクロロシラン回収装置を概略的に示したものである。
 本実施形態のクロロシラン回収装置100は、
テトラクロロシランを含むクロロシランガスを冷却する冷却器102と、
テトラクロロシランを含む捕集液111を収容した捕集槽106と、
前記冷却器102で液化された液体成分と液化されなかった気体成分とからなる気液混合物を冷却器102から前記捕集槽106内の捕集液111中に導出する気液混合物供給管103と、
前記捕集槽106にテトラクロロシランを添加して捕集液111のテトラクロロシラン濃度が前記気液混合物の液体成分より高くなるように調節するテトラクロロシラン供給管109と
を有する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1. Chlorosilane Recovery Device FIG. 1 schematically shows a chlorosilane recovery device of this embodiment.
The chlorosilane recovery apparatus 100 of this embodiment is
A cooler 102 for cooling chlorosilane gas containing tetrachlorosilane;
A collection tank 106 containing a collection liquid 111 containing tetrachlorosilane;
A gas-liquid mixture supply pipe 103 for deriving a gas-liquid mixture composed of a liquid component liquefied by the cooler 102 and a gas component not liquefied from the cooler 102 into a collecting liquid 111 in the collecting tank 106; ,
A tetrachlorosilane supply pipe 109 for adjusting the concentration of tetrachlorosilane in the collection liquid 111 to be higher than the liquid component of the gas-liquid mixture by adding tetrachlorosilane to the collection tank 106;
<冷却器>
 冷却器102は、テトラクロロシランを含むクロロシランガスを最終的に-40~-70℃程度、さらに好ましくは-60~-70℃程度まで冷却できるものであれば、特に限定されない。クロロシランをクロロシランガスから十分に凝縮させるためには、これよりもさらに低い温度まで冷却することも考えられる。しかし、クロロシランガス中に含まれ得るHClの沸点が-85℃であること及びテトラクロロシランの凝固温度が-70℃であることから、上記温度範囲まで冷却することが好ましい。
冷却器102は、冷却器102内にクロロシランガスを導入するクロロシランガス導入管101と、冷却器102で液化された液体成分と液化されなかった気体成分とからなる気液混合物を後述する捕集槽106内に収容された捕集液111中に供給する気液混合物供給管103とに接続されている。
<Cooler>
The cooler 102 is not particularly limited as long as it can finally cool the chlorosilane gas containing tetrachlorosilane to about −40 to −70 ° C., more preferably about −60 to −70 ° C. In order to sufficiently condense the chlorosilane from the chlorosilane gas, it may be possible to cool to a lower temperature. However, since the boiling point of HCl that can be contained in the chlorosilane gas is −85 ° C. and the coagulation temperature of tetrachlorosilane is −70 ° C., it is preferable to cool to the above temperature range.
The cooler 102 includes a chlorosilane gas introduction pipe 101 that introduces chlorosilane gas into the cooler 102, and a collection tank that will be described later with a gas-liquid mixture comprising a liquid component liquefied by the cooler 102 and a gas component that has not been liquefied. The gas-liquid mixture supply pipe 103 that supplies the collected liquid 111 accommodated in 106 is connected.
<捕集槽>
 捕集槽106は、クロロシランガスと反応しない材質、典型的にはステンレス等の金属から構成される。捕集槽106の下部側壁には、冷却器102で得られた気液混合物を取り込むための気液混合物供給管103が接続され、気液混合物供給管103の先端は捕集槽106の内部に達するように挿入されている。また、捕集槽106の底部には凝縮液抜き取り管107が接続されており、後述する捕集液111と共に捕集槽106に捕集された液体成分を取り出せるようになっている。また、捕集槽106の上部には未凝縮ガス抜出管108が接続されており、捕集槽106で捕集されなかった未凝縮の気体成分を導出できるようになっている。
<Collection tank>
The collection tank 106 is made of a material that does not react with chlorosilane gas, typically a metal such as stainless steel. A gas-liquid mixture supply pipe 103 for taking in the gas-liquid mixture obtained by the cooler 102 is connected to the lower side wall of the collection tank 106, and the tip of the gas-liquid mixture supply pipe 103 is connected to the inside of the collection tank 106. Has been inserted to reach. In addition, a condensate drain pipe 107 is connected to the bottom of the collection tank 106 so that the liquid component collected in the collection tank 106 can be taken out together with the collection liquid 111 described later. An uncondensed gas extraction pipe 108 is connected to the upper part of the collection tank 106 so that uncondensed gas components that have not been collected in the collection tank 106 can be derived.
 捕集槽106の外周部には、捕集槽106の内部に収容されている捕集液111を冷却するための冷却ユニット110が設けられている。冷却ユニット110は、捕集液111を、前記冷却器102で冷却された気液混合物の液体成分とほぼ同じ温度もしくはそれ以下の温度、好ましくは-60~-70℃程度まで冷却できるものであれば、特に限定されない。捕集液111の温度を気液混合物とほぼ同じ温度もしくはそれ以下の温度まで冷却しておくことにより、気液混合物が捕集液111に供給された際に、ミスト状のクロロシランが温められて再び気化してしまうことを防止することができる。さらに、気液混合物の気体成分を捕集液111中に微細な泡として通気する際に、冷却された捕集液111が泡を取り囲むため、気体成分をさらに確実に冷却することができる。 A cooling unit 110 for cooling the collection liquid 111 accommodated in the collection tank 106 is provided on the outer peripheral portion of the collection tank 106. The cooling unit 110 is capable of cooling the collected liquid 111 to a temperature substantially equal to or lower than the liquid component of the gas-liquid mixture cooled by the cooler 102, preferably about −60 to −70 ° C. There is no particular limitation. By cooling the temperature of the collected liquid 111 to substantially the same temperature or lower than that of the gas-liquid mixture, when the gas-liquid mixture is supplied to the collected liquid 111, the mist-like chlorosilane is warmed. It is possible to prevent vaporization again. Furthermore, when the gas component of the gas-liquid mixture is vented as fine bubbles in the collection liquid 111, the cooled collection liquid 111 surrounds the bubbles, so that the gas component can be further reliably cooled.
<気液混合物供給管>
 気液混合物供給管103は、冷却器102で液化された液体成分と液化されなかった気体成分とからなる気液混合物を、捕集槽106に収容されている捕集液111中に供給する。気液混合物供給管103から供給される気液混合物中には気体成分が含まれているため、このような構成とすることにより、気体成分が捕集液111中に通気される。このため、微細な泡に分断された気体成分を捕集液が取り囲んで冷却でき、気体成分を確実に冷却することができる。
<Gas-liquid mixture supply pipe>
The gas-liquid mixture supply pipe 103 supplies a gas-liquid mixture composed of the liquid component liquefied by the cooler 102 and the gas component not liquefied into the collection liquid 111 accommodated in the collection tank 106. Since a gas component is contained in the gas-liquid mixture supplied from the gas-liquid mixture supply pipe 103, the gas component is vented into the collection liquid 111 with such a configuration. For this reason, the gas component divided into fine bubbles can be surrounded and cooled, and the gas component can be reliably cooled.
 また、捕集槽106内に挿入された気液混合物供給管103の先端部104に多数の吹き出し孔105を設けることにより、放出される気体成分の泡をより微細化し、冷却効率のさらなる向上を図ることができる。気液混合物供給管103の先端部104は、特に限定されず、例えば同心円状、渦巻き状、並列状に管を屈曲形成させて多数の吹き出し孔105を貫通形成させたものとすることができる。また、先端部104として、気液混合物供給管103の先端に多数の吹き出し孔105を設けた円盤状または球状等のヘッダを取り付ける構成としてもよい。 In addition, by providing a large number of blowing holes 105 at the tip 104 of the gas-liquid mixture supply pipe 103 inserted into the collection tank 106, the bubbles of the released gas component are further refined, and the cooling efficiency is further improved. Can be planned. The distal end portion 104 of the gas-liquid mixture supply pipe 103 is not particularly limited, and for example, the pipe may be bent in a concentric circle shape, a spiral shape, or a parallel shape, and a large number of blowing holes 105 may be formed therethrough. Further, as the distal end portion 104, a disc-shaped or spherical header having a large number of blowing holes 105 provided at the distal end of the gas-liquid mixture supply pipe 103 may be attached.
<テトラクロロシラン供給管>
 テトラクロロシラン供給管109は、捕集槽106の内部に液体状のテトラクロロシランを供給して捕集液111中のテトラクロロシラン濃度を調節する。捕集液111中のテトラクロロシラン濃度は、冷却器102で冷却された気液混合物を供給していく内に徐々に低下してしまう。テトラクロロシラン供給管109は、捕集液111内のテトラクロロシラン濃度の低下に合わせてテトラクロロシランを補充し、テトラクロロシラン濃度を気液混合物の液体成分のテトラクロロシラン濃度より高い一定の値に維持する。
<Tetrachlorosilane supply pipe>
The tetrachlorosilane supply pipe 109 supplies liquid tetrachlorosilane to the inside of the collection tank 106 to adjust the tetrachlorosilane concentration in the collection liquid 111. The tetrachlorosilane concentration in the collection liquid 111 gradually decreases while the gas-liquid mixture cooled by the cooler 102 is supplied. The tetrachlorosilane supply pipe 109 supplements tetrachlorosilane with a decrease in the tetrachlorosilane concentration in the collection liquid 111, and maintains the tetrachlorosilane concentration at a constant value higher than the tetrachlorosilane concentration of the liquid component of the gas-liquid mixture.
 テトラクロロシランの供給により捕集液111の温度を上昇させることがないように、テトラクロロシラン供給管109から供給されるテトラクロロシランの温度を捕集液111とほぼ同一の温度もしくはそれ以下の温度まで冷却しておく。
供給されたテトラクロロシランは、前記気液混合物供給管103の先端部104から放出される泡により捕集液111が撹拌されることによって、捕集液111中に均一に混ぜ合わせられる。
The temperature of the tetrachlorosilane supplied from the tetrachlorosilane supply pipe 109 is cooled to a temperature substantially equal to or lower than that of the collection liquid 111 so that the temperature of the collection liquid 111 is not increased by the supply of tetrachlorosilane. Keep it.
The supplied tetrachlorosilane is uniformly mixed in the collection liquid 111 by stirring the collection liquid 111 with bubbles released from the tip 104 of the gas-liquid mixture supply pipe 103.
<捕集液>
 捕集液111は、冷却器102でクロロシランガスを冷却して得られる液体成分とほぼ同一の組成のものを用いる。典型的には、冷却器102で得られた液体成分にテトラクロロシランを添加し、液体成分と比べてテトラクロロシラン濃度を高くしたものを使用する。また、事前に気液混合物の液体成分の組成を調べておき、テトラクロロシランと種々のクロロシランとを混合して調製することもできる。
<Collecting liquid>
As the collection liquid 111, a liquid having substantially the same composition as the liquid component obtained by cooling the chlorosilane gas with the cooler 102 is used. Typically, tetrachlorosilane is added to the liquid component obtained by the cooler 102 and the tetrachlorosilane concentration is increased as compared with the liquid component. Moreover, the composition of the liquid component of a gas-liquid mixture can be investigated beforehand, and tetrachlorosilane and various chlorosilanes can be mixed and prepared.
 捕集液111は、前記冷却ユニット110により、前記冷却器102で冷却された気液混合物の液体成分とほぼ同じ温度もしくはそれ以下の温度、好ましくは-60~-70℃程度まで冷却しておく。このような構成とすることにより、気液混合物が捕集液111に供給された際に、ミスト状のクロロシランが温められて再び気化してしまうことを防止することができる。また、通気された気体成分を確実に冷却することができる。 The collected liquid 111 is cooled by the cooling unit 110 to a temperature substantially equal to or lower than the liquid component of the gas-liquid mixture cooled by the cooler 102, preferably about −60 to −70 ° C. . By adopting such a configuration, it is possible to prevent the mist-like chlorosilane from being warmed and vaporized again when the gas-liquid mixture is supplied to the collection liquid 111. Further, the gas component that has been ventilated can be reliably cooled.
 また、捕集液111のテトラクロロシラン濃度は、上述したようにテトラクロロシラン供給管109を介して、冷却器102でクロロシランガスを冷却して得られる液体成分よりも高くなるように調節される。特に、下記の実施例に示すように、捕集液111のテトラクロロシラン濃度を気液混合物の液体成分より10%以上、さらに好ましくは20%以上高くなるように調節した場合に、回収効率に大きな向上が認められる。これは恐らく、クロロシランガス中に含まれるクロロシランのうち最も沸点の高いテトラクロロシランを捕集液111に添加することにより、捕集液111の蒸気圧が下がり、クロロシランの気化を抑えることができ、結果的に未凝縮ガスとして排出されてしまうクロロシラン量を低減できるためと考えられる。 Also, the tetrachlorosilane concentration of the collection liquid 111 is adjusted to be higher than the liquid component obtained by cooling the chlorosilane gas with the cooler 102 via the tetrachlorosilane supply pipe 109 as described above. In particular, as shown in the following examples, when the concentration of tetrachlorosilane in the collection liquid 111 is adjusted to be 10% or more, more preferably 20% or more higher than the liquid component of the gas-liquid mixture, the recovery efficiency is large. An improvement is observed. This is probably due to the addition of tetrachlorosilane having the highest boiling point among the chlorosilanes contained in the chlorosilane gas to the collection liquid 111, thereby reducing the vapor pressure of the collection liquid 111 and suppressing the vaporization of chlorosilane. This is considered to be because the amount of chlorosilane that is exhausted as uncondensed gas can be reduced.
2.クロロシラン回収方法
 次に、上記クロロシラン回収装置を用いてクロロシランを製造する方法について、図2を用いて説明する。本実施態様では、図2に記載するように、クロロシラン回収装置100の他に、原料ガスを高温で反応させる反応塔200、反応塔200から抜き出された反応生成ガスを急冷して平衡を凍結するための急冷塔300、急冷塔300から抜き出された気体成分を凝縮するためのコンデンサ400、コンデンサ400およびクロロシラン回収装置100において凝縮された凝縮液体成分を貯蔵するための貯槽500とから構成される。
2. Chlorosilane Recovery Method Next, a method for producing chlorosilane using the chlorosilane recovery apparatus will be described with reference to FIG. In this embodiment, as shown in FIG. 2, in addition to the chlorosilane recovery apparatus 100, the reaction tower 200 for reacting the raw material gas at a high temperature, and the reaction product gas extracted from the reaction tower 200 are rapidly cooled to freeze the equilibrium. A cooling tower 300 for condensing, a condenser 400 for condensing a gas component extracted from the quenching tower 300, a condenser 400, and a storage tank 500 for storing the condensed liquid component condensed in the chlorosilane recovery device 100. The
 まず、ガス化したテトラクロロシランと水素とを混合した原料ガスを原料ガス供給管204を通じて反応塔200の底部から反応炉201に供給する。
 反応炉201は黒鉛製であり、周囲に設けられたヒータ202にて加熱することで、内部温度を700℃を超え1400℃以下の範囲に保つことができる。反応温度が700℃以上であれば上記式(1)の平衡が十分に右側に傾くため好ましく、1400℃以下であれば金属シリコンが析出して装置の閉塞に繋がる現象を抑制できるため好ましい。
First, a raw material gas obtained by mixing gasified tetrachlorosilane and hydrogen is supplied to the reaction furnace 201 from the bottom of the reaction tower 200 through a raw material gas supply pipe 204.
The reaction furnace 201 is made of graphite, and the internal temperature can be maintained in the range of more than 700 ° C. and not more than 1400 ° C. by heating with a heater 202 provided around. If the reaction temperature is 700 ° C. or higher, the equilibrium of the above formula (1) is sufficiently tilted to the right, and if it is 1400 ° C. or lower, it is preferable because the phenomenon that metal silicon precipitates and leads to blockage of the apparatus can be suppressed.
 反応炉201内で加熱され、上記式(1)に示す熱平衡状態に達した反応生成ガスは、反応炉201の上方へ移動し、1200℃以上の温度を保った状態で反応炉ガス抜出管203を通じて急冷塔300に導入される。 The reaction product gas that has been heated in the reaction furnace 201 and has reached the thermal equilibrium state represented by the above formula (1) moves upward of the reaction furnace 201 and maintains a temperature of 1200 ° C. or higher. It is introduced into the quenching tower 300 through 203.
 反応炉ガス抜出管203は急冷塔300の側壁を貫通して急冷塔300の内部に達している。反応炉ガス抜出管203から放出される反応生成ガスに対し、一次スプレーノズル301から冷却液を噴霧して、反応生成ガスと微細液滴状の冷却液とを接触させる。これによって、冷却液が気化する際の蒸発潜熱を利用して反応生成ガスから瞬時に効率よく熱を奪うことができ、反応生成ガスを平衡が凍結する600℃以下の範囲まで瞬間的に急冷する。 The reactor gas extraction pipe 203 passes through the side wall of the quenching tower 300 and reaches the inside of the quenching tower 300. A coolant is sprayed from the primary spray nozzle 301 to the reaction product gas released from the reactor gas extraction pipe 203 to bring the reaction product gas into contact with the coolant in the form of fine droplets. As a result, the latent heat of vaporization when the coolant is vaporized can be used to instantly and efficiently remove heat from the reaction product gas, and the reaction product gas is instantaneously cooled to a temperature of 600 ° C. or lower where the equilibrium is frozen. .
 次いで、急冷された反応生成ガスは、急冷塔300内部を上昇する。ここで、二次スプレーノズル302から冷却液をさらに噴霧して、反応生成ガス中の高沸点ポリマー(SiCl、SiCl、SiCl等)を凝縮させつつ、反応生成ガスの温度を30~60℃の範囲まで穏やかに冷却する。 Next, the rapidly cooled reaction product gas rises inside the quenching tower 300. Here, a coolant is further sprayed from the secondary spray nozzle 302 to condense the high-boiling point polymer (Si 2 Cl 6 , Si 3 Cl 8 , Si 2 H 2 Cl 4, etc.) in the reaction product gas while condensing the reaction. Gently cool the product gas temperature to the range of 30-60 ° C.
 急冷塔300内に噴霧される冷却液はポンプ303により抜き取られ、熱交換器304により冷却され、一次スプレーノズル並びに二次スプレーノズルを通じて再び急冷塔300に供給される。 The coolant sprayed into the quenching tower 300 is extracted by the pump 303, cooled by the heat exchanger 304, and supplied again to the quenching tower 300 through the primary spray nozzle and the secondary spray nozzle.
 30~60℃の範囲に冷却してもなお気体状である反応生成ガスは、急冷塔ガス成分抜出管305より抜き出され、コンデンサ400に導入される。
 コンデンサ400は、一般的に用いられている凝縮器を使用することができる。図2ではコンデンサ400が一つの装置であるかのように記載されているが、単一の装置のみからなるコンデンサでは装置にかかる負荷が大きく、十分な冷却を行うことが難しい場合があるため、その場合には複数の装置を直列的に並べて段階的な冷却を行う構成としてもよい。
The reaction product gas that is still in a gaseous state even when cooled to the range of 30 to 60 ° C. is extracted from the quenching tower gas component extraction pipe 305 and introduced into the condenser 400.
The condenser 400 may be a generally used condenser. In FIG. 2, the capacitor 400 is described as if it is a single device, but a capacitor consisting of only a single device has a large load on the device, and it may be difficult to perform sufficient cooling. In that case, it is good also as a structure which arranges a some apparatus in series and performs stepwise cooling.
 コンデンサ400によって凝縮した液体成分はコンデンサ液体成分導出管401を介して貯槽500に導出される。反応生成ガスに含まれるクロロシランの大部分がコンデンサ400で凝縮される。一方、コンデンサ400を通過する気体成分、すなわち未反応のテトラクロロシランを含むクロロシランガスは、クロロシランガス導入管101を介してクロロシラン回収装置100の冷却器102に供給される。コンデンサ400から供給されるクロロシランガスは、冷却器102に過度の負荷がかからないよう、最終的に-5~-20℃程度の範囲まで冷却しておく。 The liquid component condensed by the condenser 400 is led out to the storage tank 500 through the condenser liquid component lead-out pipe 401. Most of the chlorosilane contained in the reaction product gas is condensed by the condenser 400. On the other hand, the gaseous component passing through the capacitor 400, that is, the chlorosilane gas containing unreacted tetrachlorosilane is supplied to the cooler 102 of the chlorosilane recovery apparatus 100 via the chlorosilane gas introduction pipe 101. The chlorosilane gas supplied from the condenser 400 is finally cooled to about −5 to −20 ° C. so that the cooler 102 is not overloaded.
 冷却器102では、クロロシランガスは最終的に-40~-70℃まで冷却される。冷却により液化した液体成分および液化しなかった気体成分からなる気液混合物は、気液混合物供給管103の先端部104を介して捕集槽106の内部に収容されている捕集液111に供給される。このとき、気液混合物の液体成分は捕集液111に吸収され、気体成分は捕集液111中に微細な泡状で通気されて捕集槽106の上方へと移動する。 In the cooler 102, the chlorosilane gas is finally cooled to −40 to −70 ° C. A gas-liquid mixture composed of a liquid component liquefied by cooling and a gas component not liquefied is supplied to the collection liquid 111 accommodated in the collection tank 106 via the tip 104 of the gas-liquid mixture supply pipe 103. Is done. At this time, the liquid component of the gas-liquid mixture is absorbed by the collection liquid 111, and the gas component is aerated in the collection liquid 111 in the form of fine bubbles and moves upward of the collection tank 106.
 一方で、テトラクロロシラン供給管109から捕集液111中にテトラクロロシランを供給して、捕集液111のテトラクロロシラン濃度を気液混合物の液体成分のテトラクロロシラン濃度より高くなるように調節する。また、捕集槽106の外周に設けられた冷却ユニット110により捕集液111の温度を冷却器102において冷却された気液混合物と同じかそれ以下の温度である-60~-70℃程度の範囲に冷却する。 Meanwhile, tetrachlorosilane is supplied from the tetrachlorosilane supply pipe 109 into the collection liquid 111, and the concentration of tetrachlorosilane in the collection liquid 111 is adjusted to be higher than the concentration of tetrachlorosilane in the liquid component of the gas-liquid mixture. Further, the temperature of the collected liquid 111 is the same as or lower than that of the gas-liquid mixture cooled in the cooler 102 by the cooling unit 110 provided on the outer periphery of the collection tank 106, and is about −60 to −70 ° C. Cool to range.
 捕集槽106の捕集液111に捕捉されたクロロシランは、凝縮液抜き取り管107を介して貯槽500に導出される。また、捕集槽106で捕捉されなかった気体成分は、未凝縮ガス抜出管108からクロロシラン回収装置100の外に排出される。この実施態様では、未凝縮ガス抜出管108をコンデンサ400に通過させることによって、コンデンサ400におけるクロロシランガスの冷却に利用している。 Chlorosilane trapped in the collection liquid 111 in the collection tank 106 is led out to the storage tank 500 through the condensate drain pipe 107. Further, the gas component that has not been captured in the collection tank 106 is discharged out of the chlorosilane recovery device 100 from the uncondensed gas extraction pipe 108. In this embodiment, the uncondensed gas extraction pipe 108 is passed through the condenser 400 to be used for cooling the chlorosilane gas in the condenser 400.
 クロロシラン回収装置100およびコンデンサ400で凝縮された液体成分は貯槽500からさらに蒸留塔(不図示)に導出され、そこでトリクロロシランをはじめとするモノクロロシラン、ジクロロシラン、テトラクロロシランの分離が行われる。 The liquid components condensed in the chlorosilane recovery apparatus 100 and the condenser 400 are further led out from the storage tank 500 to a distillation tower (not shown), where monochlorosilane, dichlorosilane and tetrachlorosilane including trichlorosilane are separated.
 なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
 例えば、上記実施態様では、捕集槽106の外周部に冷却ユニット110を設ける構成としたが、捕集液111を気液混合物の液体成分とほぼ同じ温度もしくはそれ以下の温度に冷却することができれば、冷却ユニット110を捕集槽106の外周部に設ける必要はない。例えば、捕集槽106から捕集液111を抜き出し、外部冷却器で冷却した後に再び捕集槽106へと循環させる構成としてもよい。同様に、捕集液111を外部に抜き出し、そこで捕集液111中のテトラクロロシラン濃度を調節し、捕集槽106に循環させてもよい。 For example, in the above embodiment, the cooling unit 110 is provided on the outer peripheral portion of the collection tank 106. However, the collection liquid 111 may be cooled to substantially the same temperature or lower than the liquid component of the gas-liquid mixture. If possible, it is not necessary to provide the cooling unit 110 on the outer peripheral portion of the collection tank 106. For example, the collection liquid 111 may be extracted from the collection tank 106, cooled by an external cooler, and then circulated back to the collection tank 106. Similarly, the collection liquid 111 may be extracted to the outside, and the tetrachlorosilane concentration in the collection liquid 111 may be adjusted there and circulated to the collection tank 106.
<実施例1>
 実施例1は、図1および図2に示す装置を用いた。反応炉201は内径50mm、長さ800mmで、最大出力500KWのヒータ202により加熱されるようになっており、反応炉201の中心部が温度1300℃となるように加熱した。
<Example 1>
In Example 1, the apparatus shown in FIGS. 1 and 2 was used. The reaction furnace 201 was heated by a heater 202 having an inner diameter of 50 mm and a length of 800 mm and a maximum output of 500 KW, and the center of the reaction furnace 201 was heated to 1300 ° C.
 予め600℃に加熱したテトラクロロシランと水素とからなる原料ガス(モル比=1:2)を27モル/時間の流量で原料ガス供給管204を通じて反応炉201に連続的に供給し、さらに反応炉201において反応したガスを反応炉ガス抜出管203を通じて内径140mm、長さ1300mmの急冷塔300内部に供給した。 A raw material gas (molar ratio = 1: 2) composed of tetrachlorosilane and hydrogen previously heated to 600 ° C. is continuously supplied to the reaction furnace 201 through the raw material gas supply pipe 204 at a flow rate of 27 mol / hour. The gas reacted in 201 was supplied into the quenching tower 300 having an inner diameter of 140 mm and a length of 1300 mm through the reactor gas extraction pipe 203.
 急冷塔300において、トリクロロシランとテトラクロロシランの混合物(モル比=85:15)からなる冷却液を一次スプレーノズル301および二次スプレーノズル302を介して連続的に噴霧した。 In the quenching tower 300, a cooling liquid composed of a mixture of trichlorosilane and tetrachlorosilane (molar ratio = 85: 15) was continuously sprayed through the primary spray nozzle 301 and the secondary spray nozzle 302.
 冷却液の温度は、熱交換器304を通過させることにより30℃に保った。噴霧した冷却液は急冷塔300の塔底よりポンプ303を用いて抜き出して、連続的に循環させて使用した。必要に応じて、冷却液に、テトラクロロシランあるいはトリクロロシランを補充し、組成を一定に保った。 The temperature of the coolant was kept at 30 ° C. by passing through the heat exchanger 304. The sprayed coolant was extracted from the bottom of the quenching tower 300 using a pump 303 and continuously circulated for use. If necessary, the cooling liquid was supplemented with tetrachlorosilane or trichlorosilane to keep the composition constant.
 次いで、急冷塔300で冷却された反応生成ガスを凝縮器を直列的に4つ並べたコンデンサ400で段階的に冷却し、最終的に排出されるクロロシランガスの温度が-10℃になるように冷却した。このとき、コンデンサ400で液化された凝縮分は貯槽500に導出した。 Next, the reaction product gas cooled in the quenching tower 300 is cooled in stages by a condenser 400 in which four condensers are arranged in series, so that the temperature of the finally discharged chlorosilane gas becomes −10 ° C. Cooled down. At this time, the condensate liquefied by the condenser 400 was led to the storage tank 500.
 コンデンサ400で-10℃に冷却されたクロロシランガスを冷却器102に供給し、ここで-70℃に冷却した。冷却器102で冷却することによって得られた液体成分と気体成分とからなる気液混合物を、気液混合物供給管103を介して捕集槽106内の捕集液111中にバブリングさせながら導出した。 The chlorosilane gas cooled to −10 ° C. by the condenser 400 was supplied to the cooler 102 where it was cooled to −70 ° C. A gas-liquid mixture composed of a liquid component and a gas component obtained by cooling with the cooler 102 was led through the gas-liquid mixture supply pipe 103 while being bubbled into the collection liquid 111 in the collection tank 106. .
 この場合に冷却器102で冷却することによって得られた液体成分におけるテトラクロロシランの濃度は38%であった。そこで、本実施例1では捕集液111のテトラクロロシラン濃度を50%とし、本装置の運転中、この濃度を一定に保つようにテトラクロロシラン供給管109から適宜テトラクロロシランを補充した。 In this case, the concentration of tetrachlorosilane in the liquid component obtained by cooling with the cooler 102 was 38%. Therefore, in Example 1, the concentration of tetrachlorosilane in the collection liquid 111 was set to 50%, and tetrachlorosilane was appropriately supplemented from the tetrachlorosilane supply pipe 109 so as to keep this concentration constant during operation of the apparatus.
 捕集槽106で捕捉された液体成分を捕集液111ごと適宜貯槽500に導出した。貯槽500に貯蔵された液体成分をさらに蒸留塔へ送り、そこでクロロシランを分離・精製した。
凝縮されなかった未凝縮分のクロロシランロスは、0.28%であった。
The liquid component captured in the collection tank 106 was appropriately led out to the storage tank 500 together with the collection liquid 111. The liquid component stored in the storage tank 500 was further sent to the distillation tower, where chlorosilane was separated and purified.
The uncondensed chlorosilane loss that was not condensed was 0.28%.
<比較例1>
 捕集液111を使用せず、気液混合物を捕集槽106の内部空間に導出したこと以外は、実施例1と同じ条件でクロロシランを分離・精製した。
この場合の未凝縮のクロロシランロスは、0.42%であり、約50%近くもクロロシランロスが増える結果となった。
<Comparative Example 1>
Chlorosilane was separated and purified under the same conditions as in Example 1 except that the gas-liquid mixture was led out to the internal space of the collection tank 106 without using the collection liquid 111.
In this case, the uncondensed chlorosilane loss was 0.42%, and the chlorosilane loss increased by about 50%.
<実施例2~5および比較例2>
 捕集液111におけるテトラクロロシラン濃度を以下の表1に示す値に調節したこと以外は、実施例1と同じ条件でクロロシランを分離・精製した。
 実施例2~5および比較例2のそれぞれについて、クロロシランの回収率を調べた。実施例1の結果と併せて、結果を以下の表1に示す。
<Examples 2 to 5 and Comparative Example 2>
Chlorosilane was separated and purified under the same conditions as in Example 1 except that the concentration of tetrachlorosilane in the collection liquid 111 was adjusted to the value shown in Table 1 below.
For each of Examples 2 to 5 and Comparative Example 2, the recovery rate of chlorosilane was examined. The results are shown in Table 1 below together with the results of Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <結果の考察>
 上記の実施例1および比較例1の実験結果から、気液混合物を捕集液中にバブリングさせながら供給することにより、クロロシランロスを削減でき、その結果、目的とするクロロシランの回収率を向上できることがわかる。また、実施例1~5および比較例2に示されるとおり、捕集液のテトラクロロシラン濃度を気液混合物の液体成分のテトラクロロシラン濃度より高くなるように調節することにより、クロロシランロスを削減でき、その結果、目的とするクロロシランの回収率を向上できることがわかる。
なお、実施例5の結果によれば、テトラクロロシラン濃度を限りなく高くすればクロロシランロスの削減に効果的であることがわかるが、後段のプロセスにおいてテトラクロロシランを分離する際に蒸留塔にかかる負荷が高くなるため、経済的観点からはあまり好ましくなかった。
従って、気液混合物の液体成分中のテトラクロロシラン濃度に対して捕集液のテトラクロロシラン濃度を好ましくは10%以上高くすることによりクロロシランの回収率を大幅に向上させることができるが、回収率と経済性の両面を考慮するならば、このテトラクロロシラン濃度の増加量を20~50%の範囲とすることが好ましい。
<Consideration of results>
From the experimental results of Example 1 and Comparative Example 1, the chlorosilane loss can be reduced by supplying the gas-liquid mixture while bubbling it into the collection liquid, and as a result, the recovery rate of the target chlorosilane can be improved. I understand. Further, as shown in Examples 1 to 5 and Comparative Example 2, by adjusting the tetrachlorosilane concentration of the collected liquid to be higher than the tetrachlorosilane concentration of the liquid component of the gas-liquid mixture, chlorosilane loss can be reduced, As a result, it can be seen that the desired recovery rate of chlorosilane can be improved.
According to the results of Example 5, it can be seen that if the tetrachlorosilane concentration is increased as much as possible, it is effective to reduce chlorosilane loss. However, the load applied to the distillation column when tetrachlorosilane is separated in the subsequent process. Is not preferable from an economic point of view.
Therefore, the recovery rate of chlorosilane can be significantly improved by increasing the tetrachlorosilane concentration of the collected liquid preferably by 10% or more with respect to the tetrachlorosilane concentration in the liquid component of the gas-liquid mixture. Considering both economical aspects, it is preferable to set the increase amount of the tetrachlorosilane concentration in the range of 20 to 50%.
 以上、本発明を実施例に基づいて説明した。この実施例はあくまで例示であり、種々の変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 In the above, this invention was demonstrated based on the Example. It is to be understood by those skilled in the art that this embodiment is merely an example, and that various modifications are possible and that such modifications are within the scope of the present invention.

Claims (15)

  1.  テトラクロロシランを含むクロロシランガスを冷却する冷却器と、
    テトラクロロシランを含む捕集液を収容した捕集槽と、
    冷却器で液化された液体成分と液化されなかった気体成分とからなる気液混合物を冷却器から捕集槽内の捕集液中に導出する気液混合物供給管と、
    捕集槽にテトラクロロシランを添加して捕集液のテトラクロロシラン濃度が気液混合物の液体成分のテトラクロロシラン濃度より高くなるように調節するテトラクロロシラン供給管と
    を有するクロロシラン回収装置。
    A cooler for cooling chlorosilane gas containing tetrachlorosilane;
    A collection tank containing a collection liquid containing tetrachlorosilane;
    A gas-liquid mixture supply pipe for deriving a gas-liquid mixture composed of a liquid component liquefied by a cooler and a gas component not liquefied from a cooler into a collecting liquid in a collecting tank;
    A chlorosilane recovery apparatus comprising: a tetrachlorosilane supply pipe for adding tetrachlorosilane to a collection tank and adjusting the concentration of tetrachlorosilane in the collection liquid to be higher than the concentration of tetrachlorosilane in the liquid component of the gas-liquid mixture.
  2. テトラクロロシランと、モノクロロシラン、ジクロロシランおよびトリクロロシランからなる群から選択される少なくとも一つのクロロシランとを含むクロロシランガスを冷却する冷却器と、
    テトラクロロシランと、モノクロロシラン、ジクロロシランおよびトリクロロシランからなる群から選択される少なくとも一つのクロロシランとを含む捕集液を収容した捕集槽と、
    冷却器で液化された液体成分と液化されなかった気体成分とからなる気液混合物を冷却器から捕集槽内の捕集液中に導出する気液混合物供給管と、
    捕集槽にテトラクロロシランを添加して捕集液のテトラクロロシラン濃度が気液混合物の液体成分のテトラクロロシラン濃度より高くなるように調節するテトラクロロシラン供給管と
    を有するクロロシラン回収装置。
    A cooler for cooling chlorosilane gas comprising tetrachlorosilane and at least one chlorosilane selected from the group consisting of monochlorosilane, dichlorosilane, and trichlorosilane;
    A collection tank containing a collection liquid containing tetrachlorosilane and at least one chlorosilane selected from the group consisting of monochlorosilane, dichlorosilane and trichlorosilane;
    A gas-liquid mixture supply pipe for deriving a gas-liquid mixture composed of a liquid component liquefied by a cooler and a gas component not liquefied from a cooler into a collecting liquid in a collecting tank;
    A chlorosilane recovery apparatus comprising: a tetrachlorosilane supply pipe for adding tetrachlorosilane to a collection tank and adjusting the concentration of tetrachlorosilane in the collection liquid to be higher than the concentration of tetrachlorosilane in the liquid component of the gas-liquid mixture.
  3.  クロロシランガスがテトラクロロシランとトリクロロシランとを含み、かつ、捕集液がテトラクロロシランとトリクロロシランとを含む請求項1記載のクロロシラン回収装置。 The chlorosilane recovery apparatus according to claim 1, wherein the chlorosilane gas contains tetrachlorosilane and trichlorosilane, and the collection liquid contains tetrachlorosilane and trichlorosilane.
  4.  捕集槽に捕集液を冷却するための冷却ユニットが設けられている請求項1記載のクロロシラン回収装置。 The chlorosilane collection | recovery apparatus of Claim 1 with which the cooling unit for cooling a collection liquid is provided in the collection tank.
  5.  捕集液が気液混合物の液体成分と略同一の温度もしくはそれ以下の温度まで冷却される請求項4記載のクロロシラン回収装置。 The chlorosilane recovery apparatus according to claim 4, wherein the collected liquid is cooled to a temperature substantially equal to or lower than a liquid component of the gas-liquid mixture.
  6.  捕集液が-60~-70℃に冷却される請求項5記載のクロロシラン回収装置。 The chlorosilane recovery device according to claim 5, wherein the collected liquid is cooled to -60 to -70 ° C.
  7.  捕集液のテトラクロロシラン濃度が気液混合物の液体成分のテトラクロロシラン濃度より10%以上高くなるように調節される請求項1ないし6のいずれか一項に記載のクロロシラン回収装置。 The chlorosilane collection | recovery apparatus as described in any one of Claim 1 thru | or 6 adjusted so that the tetrachlorosilane density | concentration of a collection liquid may become 10% or more higher than the tetrachlorosilane density | concentration of the liquid component of a gas-liquid mixture.
  8.  捕集液のテトラクロロシラン濃度が気液混合物の液体成分のテトラクロロシラン濃度より20~50%高くなるように調節される請求項7記載のクロロシラン回収装置。 The chlorosilane recovery device according to claim 7, wherein the concentration of tetrachlorosilane in the collection liquid is adjusted to be 20 to 50% higher than the concentration of tetrachlorosilane in the liquid component of the gas-liquid mixture.
  9.  テトラクロロシランを含むクロロシランガスを冷却する工程、
    冷却により液化された液体成分と液化されなかった気体成分とからなる気液混合物をテトラクロロシランを含む捕集液中に導出する工程、
    捕集液にテトラクロロシランを添加して捕集液のテトラクロロシラン濃度が気液混合物の液体成分のテトラクロロシラン濃度より高くなるように調節する工程、
    捕集液からクロロシランを回収する工程
    を有するクロロシラン回収方法。
    A step of cooling chlorosilane gas containing tetrachlorosilane,
    Deriving a gas-liquid mixture comprising a liquid component liquefied by cooling and a gas component not liquefied into a collection liquid containing tetrachlorosilane;
    Adding tetrachlorosilane to the collection liquid and adjusting the tetrachlorosilane concentration of the collection liquid to be higher than the tetrachlorosilane concentration of the liquid component of the gas-liquid mixture;
    A chlorosilane recovery method comprising a step of recovering chlorosilane from a collected liquid.
  10. テトラクロロシランと、モノクロロシラン、ジクロロシランおよびトリクロロシランからなる群から選択される少なくとも一つのクロロシランとを含むクロロシランガスを冷却する工程、
    冷却により液化された液体成分と液化されなかった気体成分とからなる気液混合物をテトラクロロシランと、モノクロロシラン、ジクロロシランおよびトリクロロシランからなる群から選択される少なくとも一つのクロロシランとを含む捕集液中に導出する工程、
    捕集液にテトラクロロシランを添加して捕集液のテトラクロロシラン濃度が気液混合物の液体成分のテトラクロロシラン濃度より高くなるように調節する工程、
    捕集液からクロロシランを回収する工程
    を有するクロロシラン回収方法。
    Cooling a chlorosilane gas comprising tetrachlorosilane and at least one chlorosilane selected from the group consisting of monochlorosilane, dichlorosilane and trichlorosilane;
    A gas-liquid mixture comprising a liquid component liquefied by cooling and a gas component not liquefied comprises a tetrachlorosilane and at least one chlorosilane selected from the group consisting of monochlorosilane, dichlorosilane and trichlorosilane. The process of deriving in,
    Adding tetrachlorosilane to the collection liquid and adjusting the tetrachlorosilane concentration of the collection liquid to be higher than the tetrachlorosilane concentration of the liquid component of the gas-liquid mixture;
    A chlorosilane recovery method comprising a step of recovering chlorosilane from a collected liquid.
  11. クロロシランガスがテトラクロロシランとトリクロロシランとを含み、かつ、捕集液がテトラクロロシランとトリクロロシランとを含む請求項9記載のクロロシラン回収方法。 The chlorosilane recovery method according to claim 9, wherein the chlorosilane gas contains tetrachlorosilane and trichlorosilane, and the collection liquid contains tetrachlorosilane and trichlorosilane.
  12.  捕集液を気液混合物の液体成分と略同一の温度もしくはそれ以下の温度まで冷却する工程を有する請求項9記載のクロロシラン回収方法。 The method for recovering chlorosilane according to claim 9, further comprising a step of cooling the collected liquid to a temperature substantially equal to or lower than that of the liquid component of the gas-liquid mixture.
  13. 捕集液を-60~-70℃に冷却する請求項12記載のクロロシラン回収方法。 The method for recovering chlorosilane according to claim 12, wherein the collected liquid is cooled to -60 to -70 ° C.
  14.  捕集液のテトラクロロシラン濃度を気液混合物の液体成分のテトラクロロシラン濃度より10%以上高くなるように調節する請求項9ないし13のいずれか一項に記載のクロロシラン回収方法。 The chlorosilane recovery method according to any one of claims 9 to 13, wherein the concentration of tetrachlorosilane in the collection liquid is adjusted to be 10% or more higher than the concentration of tetrachlorosilane in the liquid component of the gas-liquid mixture.
  15.  捕集液のテトラクロロシラン濃度を気液混合物の液体成分のテトラクロロシラン濃度より20~50%高くなるように調節する請求項14記載のクロロシラン回収方法。 The method for recovering chlorosilane according to claim 14, wherein the concentration of tetrachlorosilane in the collected liquid is adjusted to be 20 to 50% higher than the concentration of tetrachlorosilane in the liquid component of the gas-liquid mixture.
PCT/JP2009/054666 2009-03-11 2009-03-11 Apparatus for recovering chlorosilane and method of recovering chlorosilane with the same WO2010103633A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2009/054666 WO2010103633A1 (en) 2009-03-11 2009-03-11 Apparatus for recovering chlorosilane and method of recovering chlorosilane with the same
JP2011503605A JP5329641B2 (en) 2009-03-11 2009-03-11 Chlorosilane recovery apparatus and chlorosilane recovery method using the same
TW099102344A TW201036912A (en) 2009-03-11 2010-01-28 Recovery device of chlorosilane and recovery method of chlorosilane using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/054666 WO2010103633A1 (en) 2009-03-11 2009-03-11 Apparatus for recovering chlorosilane and method of recovering chlorosilane with the same

Publications (1)

Publication Number Publication Date
WO2010103633A1 true WO2010103633A1 (en) 2010-09-16

Family

ID=42727941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054666 WO2010103633A1 (en) 2009-03-11 2009-03-11 Apparatus for recovering chlorosilane and method of recovering chlorosilane with the same

Country Status (3)

Country Link
JP (1) JP5329641B2 (en)
TW (1) TW201036912A (en)
WO (1) WO2010103633A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102992328A (en) * 2012-08-17 2013-03-27 陕西天宏硅材料有限责任公司 Process for recycling chlorosilane gas-containing waste gas and waste liquid in process of distilling chlorosilane
CN105439151A (en) * 2014-08-13 2016-03-30 新特能源股份有限公司 Method and device for recovering chlorosilane in tail gas of polysilicon production
JP2016064952A (en) * 2014-09-25 2016-04-28 デンカ株式会社 Manufacturing method of pentachlorodisilane and pentachlorodisilane manufactured by the same
JP2016064951A (en) * 2014-09-25 2016-04-28 デンカ株式会社 Manufacturing method of octachlorotrisilane and octachlorotrisilane manufactured by the same
JP2016064953A (en) * 2014-09-25 2016-04-28 デンカ株式会社 Manufacturing method of hexachlorodisilane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935017A (en) * 1982-08-23 1984-02-25 Denki Kagaku Kogyo Kk Preparation of trichlorosilane
JPS6081010A (en) * 1983-10-13 1985-05-09 Denki Kagaku Kogyo Kk Manufacture of trichlorosilane
JPH0297415A (en) * 1988-08-20 1990-04-10 Huels Ag Method for increasing amount of silicon tetrachloride in reaction of hydrogen chloride or mixture of hydrogen chloride and chlorine with metal silicon-containing substance
JP2002173312A (en) * 2000-12-06 2002-06-21 Sumitomo Titanium Corp Method for purifying trichlorosilane
WO2008053786A1 (en) * 2006-10-31 2008-05-08 Mitsubishi Materials Corporation Trichlorosilane production apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935017A (en) * 1982-08-23 1984-02-25 Denki Kagaku Kogyo Kk Preparation of trichlorosilane
JPS6081010A (en) * 1983-10-13 1985-05-09 Denki Kagaku Kogyo Kk Manufacture of trichlorosilane
JPH0297415A (en) * 1988-08-20 1990-04-10 Huels Ag Method for increasing amount of silicon tetrachloride in reaction of hydrogen chloride or mixture of hydrogen chloride and chlorine with metal silicon-containing substance
JP2002173312A (en) * 2000-12-06 2002-06-21 Sumitomo Titanium Corp Method for purifying trichlorosilane
WO2008053786A1 (en) * 2006-10-31 2008-05-08 Mitsubishi Materials Corporation Trichlorosilane production apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102992328A (en) * 2012-08-17 2013-03-27 陕西天宏硅材料有限责任公司 Process for recycling chlorosilane gas-containing waste gas and waste liquid in process of distilling chlorosilane
CN105439151A (en) * 2014-08-13 2016-03-30 新特能源股份有限公司 Method and device for recovering chlorosilane in tail gas of polysilicon production
CN105439151B (en) * 2014-08-13 2018-12-25 新特能源股份有限公司 The recovery method and device of a kind of chlorosilane in tail gas in production of polysilicon
JP2016064952A (en) * 2014-09-25 2016-04-28 デンカ株式会社 Manufacturing method of pentachlorodisilane and pentachlorodisilane manufactured by the same
JP2016064951A (en) * 2014-09-25 2016-04-28 デンカ株式会社 Manufacturing method of octachlorotrisilane and octachlorotrisilane manufactured by the same
JP2016064953A (en) * 2014-09-25 2016-04-28 デンカ株式会社 Manufacturing method of hexachlorodisilane

Also Published As

Publication number Publication date
JP5329641B2 (en) 2013-10-30
TW201036912A (en) 2010-10-16
JPWO2010103633A1 (en) 2012-09-10

Similar Documents

Publication Publication Date Title
JP5601438B2 (en) Trichlorosilane production method and trichlorosilane production apparatus
JP5358678B2 (en) Process for recovering hexachlorodisilane and plant for the process
JP4620694B2 (en) Method for producing high purity trichlorosilane
JP5397580B2 (en) Method and apparatus for producing trichlorosilane and method for producing polycrystalline silicon
JP5329641B2 (en) Chlorosilane recovery apparatus and chlorosilane recovery method using the same
JP5455137B2 (en) Method and apparatus for purifying trichlorosilane
JP5633160B2 (en) Trichlorosilane production equipment
JP6391389B2 (en) Method for producing octachlorotrisilane and octachlorotrisilane produced by the method
JP5826854B2 (en) Method and system for purifying silane
JP5374576B2 (en) Trichlorosilane cooling tower and method for producing trichlorosilane using the same
US10294110B2 (en) Pentachlorodisilane production method and pentachlorodisilane produced by same
JP2710382B2 (en) Method for producing high-purity dichlorosilane
CN102196995A (en) Process for production of trichlorosilane and method for use thereof
JP5392488B2 (en) Production method and use of trichlorosilane
WO2010116500A1 (en) Trichlorosilane cooling tower and trichlorosilane manufacturing method using the same
JP6391390B2 (en) Method for producing hexachlorodisilane
JP6283482B2 (en) Trichlorosilane production method
JP5333725B2 (en) Method for producing and using trichlorosilane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841461

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011503605

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09841461

Country of ref document: EP

Kind code of ref document: A1