WO2010102517A1 - 升力型垂直轴风力发电机风轮结构 - Google Patents

升力型垂直轴风力发电机风轮结构 Download PDF

Info

Publication number
WO2010102517A1
WO2010102517A1 PCT/CN2010/000299 CN2010000299W WO2010102517A1 WO 2010102517 A1 WO2010102517 A1 WO 2010102517A1 CN 2010000299 W CN2010000299 W CN 2010000299W WO 2010102517 A1 WO2010102517 A1 WO 2010102517A1
Authority
WO
WIPO (PCT)
Prior art keywords
support wing
degrees
vertical axis
blade
wind
Prior art date
Application number
PCT/CN2010/000299
Other languages
English (en)
French (fr)
Inventor
严强
沈益辉
张冬
蒋超奇
牛海峰
Original Assignee
Yan Qiang
Shen Yihui
Zhang Dong
Jiang Chaoqi
Niu Haifeng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42716401&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010102517(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Yan Qiang, Shen Yihui, Zhang Dong, Jiang Chaoqi, Niu Haifeng filed Critical Yan Qiang
Publication of WO2010102517A1 publication Critical patent/WO2010102517A1/zh
Priority to US13/228,477 priority Critical patent/US8496433B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/066Rotors characterised by their construction elements the wind engaging parts being movable relative to the rotor
    • F03D3/067Cyclic movements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the invention relates to a lift type vertical axis wind power generator, in particular to a structure capable of supporting a wing angle by adjusting a blade, so that the wind wheel always maintains a stable rotation speed when the ambient wind speed exceeds the rated wind speed, thereby ensuring a vertical axis wind power generator. Constant power output.
  • Wind speed the so-called wind speed is the average value of each instantaneous wind speed measured at a certain height for lOmin. Generally, the average value of the wind speed in lOmin above the grass is 10m.
  • Effective wind speed because the randomness of the wind speed is very large, not all wind speeds can make the wind turbine's wind wheel rotate, and not all wind speeds can make the wind wheel safely operate.
  • the so-called effective wind speed refers to making the wind turbine wind wheel safe.
  • the wind speed of operation also known as the available wind speed.
  • the effective wind speed range the wind speed section that can safely run the normal output power of the wind turbine rotor is called the effective wind speed range.
  • the effective wind speed range which is also known as the available wind speed range. For example, 6 ⁇ 20m/s.
  • the initial wind speed is called the initial wind speed when the wind turbine wind turbine starts to turn the action work.
  • the rated wind speed the wind speed at which the wind turbine generates the rated power, is called the rated wind speed.
  • the wind turbine When the wind speed is above a certain wind speed, the wind turbine should stop running to avoid damage to the wind turbine.
  • the wind speed at this time is called the stop wind speed, and the stop wind speed depends on the local wind speed.
  • Confirmation Speed control device because the wind speed is changed, the speed of the wind wheel will also change with the change of wind speed.
  • the device for running the wind wheel near the required rated speed is called 'speed control device, when the wind speed exceeds the rated wind speed.
  • the speed control device starts to start the speed control function, the speed control device only adjusts the speed when the rated wind speed is above.
  • the vertical axis wind turbine is divided into a horizontal horizontal axis wind turbine and a vertical vertical axis wind generator according to the position of the wind turbine rotating shaft in the spatial direction.
  • the wind turbine, the vertical axis wind turbine is connected to the vertical shaft by a plurality of blades through the support wings to form a wind wheel.
  • FIG. 1 it is a schematic diagram of a resistance type vertical axis wind wheel.
  • the wind acts on the wind wheel, and the pressure of the blade at the position D1 is twice that of the D2 position in which the position of D1 and D2 is The pressure is different, the wind pushes the wind wheel to rotate around the center of rotation clockwise. Therefore, the most significant feature of the resistance type wind wheel is that the wind pushes the blade from high pressure to low pressure, that is, the rotation direction of the wind wheel is always rotated from high pressure to low pressure. .
  • the height of the wind wheel is H
  • the width of the blade is R
  • the angular velocity of the rotor rotation is ⁇
  • the radius of gyration of the wind turbine is equal to the blade width R
  • the wind speed is V
  • the density is p. It is assumed that the pressure of the airflow to the plate is maximized, and the resistance of the blade when the windward area is the smallest is ignored.
  • the plate with the largest windward area can be equivalent to a plate with a width R and a height of H.
  • the resistance of the half of the wind wheel is available according to the definition of wind energy utilization -
  • a lift type vertical axis wind wheel In order to overcome the low efficiency of the resistance type vertical axis wind wheel, a lift type vertical axis wind wheel was invented, and Fig. 3 is a lift type vertical axis wind wheel.
  • the lift type wind wheel uses different shapes on both sides of the blade. When the wind blows on the blade surface, the wind speed of the outer surface and the inner surface of the blade is different due to the shape of the two sides of the blade and the mounting angle of the blade, so that it is outside the blade. The surface and the inner surface form a wind speed difference.
  • FIG. 4 it is a schematic diagram of the force analysis of the lift type vertical axis rotor blades. Since the wind wheel is rotating, the actual velocity and direction of the air relative to the blade is V2 (in Figure 4, V0 represents the speed of the wind and VI represents the velocity of the air relative to the direction of motion of the blade). At this wind speed and direction, the blade will Producing a resistance D parallel to the airflow and a lift L perpendicular to the airflow. When the wind speed is greater than a certain value, since the lift L of the airfoil is much larger than the resistance D, the blade is mainly generated by the component L1 of the lift L in the tangential direction. The torque drives the rotation.
  • the airfoil is typically an airfoil in an existing open airfoil library, or a new airfoil composed of two different curved surfaces of two different airfoils in the disclosed airfoil library, or a plurality of at least two second-order continuous An airfoil composed of a derivative curve, or an airfoil composed of a spline curve.
  • the leading edge of the blade wing the rounded head of the wing.
  • the trailing edge of the blade wing the pointed tail of the wing.
  • Blade string The line connecting the leading edge of the wing to the trailing edge of the wing, also known as the chord.
  • Mounting angle ⁇ The angle between the blade string and the tangent to the center of the blade, positive in the clockwise direction and negative in the counterclockwise direction.
  • Azimuth The angle between the center of the blade and the center of rotation and the positive half of the y-axis.
  • the magnitude and direction of the moment generated by the blades are always changing, and in some azimuthal torque directions, even in the opposite direction, in order to improve the efficiency of the lift type vertical axis wind wheel.
  • Many methods have been used, in addition to the selection of the appropriate airfoil, blade mounting angle, blade chord width and number of blades (see Chinese Patent Publication No. CN1873220A), a more effective method is to change when the blades are at different azimuths.
  • the different mounting angles ⁇ of the blades allow the blades to achieve maximum lift at any one of the azimuth angles, for example, Chinese Patent Publication No. CN1916397A, U.S. Patent No. 6,379,115 B1, and French Patent Publication No. FR2548740A1.
  • the method used in these patents is to adjust the mounting angle ⁇ of the blade at different azimuth angles within one revolution of the rotor, so that the blade obtains the optimal installation angle ⁇ , which is characterized by numerous different blades in the rotation one week.
  • the installation angle ⁇ of the smaller angle, and the change of the installation angle ⁇ is started from the start of the rotation of the wind wheel, so that the lift type vertical axis wind wheel obtains a sufficiently large torque at a low rotation speed corresponding to the low wind speed, It is to improve the self-starting performance of the lift type wind turbine and to improve the efficiency of the lift type wind wheel at higher wind speeds.
  • the resistance type vertical axis wind wheel and the lift type vertical axis wind wheel are completely different, and the method of improving their efficiency is also different.
  • the speed of the wind turbine is proportional to the ambient wind speed within a certain wind speed range.
  • the higher the ambient wind speed the higher the rotational speed of the wind wheel.
  • Wind energy is proportional to the cube of the ambient wind speed.
  • the ambient wind speed increases from 10 m/s to 25 m/s, the wind energy increases by nearly 16 times. Due to the volatility of wind speed in nature, no matter what kind of wind turbine, there is a rated wind speed, that is, the fan reaches the best working condition at the wind speed. Therefore, when the wind speed exceeds the rated wind speed, the power of the fan can be stabilized at the rated speed. Near power, to protect generators and systems will not be destroyed because of too much power Bad, the horizontal axis fan can solve this problem by yawing, that is, reducing the windward area of the fan.
  • the resistance type vertical fan Since the blade mounting angle of the resistance type vertical axis wind wheel can be arbitrarily changed within a wide angle range without limitation, the resistance type vertical fan also achieves the same purpose by reducing the windward area of the wind wheel, and achieves the goal by changing the windward area. In the method of reducing the power of the wind wheel, the efficiency of the wind wheel is not changed.
  • German Patent Publication No. DE2717379A1 discloses the purpose of achieving a stable power by shrinking the diameter of the wind wheel after the rotation speed is increased. The limit is that the wind wheel is contracted into a drum.
  • the method of lifting the vertical axis wind wheel to reduce the power of the wind wheel by changing the windward area of the wind wheel is relatively complicated, and can be realized by hydraulic device combined with electronic control technology, but the cost is high, and it is difficult to be used in small and medium vertical axis wind turbines. In the application, I will not elaborate here.
  • the power formula of the fan ⁇ pVSCp, it can be seen that in addition to reducing the windward area S, it is better to reduce the wind turbine efficiency Cp to maintain a stable output power to protect the system from wind speed. Damaged, and the cost is lower.
  • the present invention is directed to the deficiencies of the prior art described above, and overcomes the shortcomings of the existing vertical axis wind turbine design, and proposes a lift type vertical axis wind turbine wind wheel structure to solve the problem of constant power output of the vertical axis wind power generator. Especially in the application of small and medium vertical axis wind turbines, that is, a speed governing mechanism of a vertical axis wind turbine.
  • the invention is directed to the invention of the wind turbine structure of a lift type vertical axis wind turbine.
  • a specific technical solution of the present invention is as follows - a lift type vertical axis wind turbine wind wheel structure, which is connected by a plurality of blades through a support wing and a vertical shaft to constitute a wind wheel.
  • the blade the airfoil of which is an airfoil in the existing disclosed airfoil library, or an airfoil composed of two different curved surfaces of two airfoil types in the existing male airfoil type library, or at least An airfoil composed of a second-order continuous derivable function curve, or an airfoil composed of a spline curve,
  • the support wing includes a fixed support wing 1 connected to the vertical axis, and a rotary support wing 2 connected to the blade,
  • One end 21 of the rotating support wing is coupled to one end 12 of the fixed support wing and is rotatable about an end 12 of the fixed support wing.
  • One end of the rotating support wing 21 is connected to one end 12 of the fixed support wing, and a center axis of rotation 3 is provided.
  • a control member 4 for controlling a rotation angle of the rotation of the support support wing 2 about the rotation center axis 3 is connected to the other end 22 of the above-mentioned rotation support wing, and the control member 4 is connected to the fixed support wing end 12' adjacent to the aforementioned rotation support wing, In this way, a plurality of control components 4 are sequentially arranged along the wind wheel in one direction,
  • the control component 4 is one or more of an elastic component, a hydraulic component, and an electrical component;
  • the installation angle ⁇ is the angle between the blade string and the center tangent of the blade, and the mounting angle ⁇ ranges from -12 to 12 degrees;
  • the angle G between the blade string and the rotating support wing ranges from 7 to 100 degrees.
  • the angle ⁇ between the above-mentioned rotating support wing and the fixed support wing extension line is 0 to 90 degrees.
  • the preferred range of the angle A between the above-mentioned rotating support wing and the fixed support wing extension line is
  • the ratio of the length of the fixed support wing to the rotating support wing is 10: 1-1: 1.
  • is less than minus 6 degrees
  • the efficiency of the wind wheel is almost reduced by more than 10 times.
  • the windward area of the wheel is unchanged, and the installation angle is further increased to a negative angle.
  • the component force L1 of the lift force in the tangential direction will not only change the size but also gradually change the direction, thereby changing the rotation direction of the wind wheel. Based on this, we will give the blade mounting angle an initial force through the elastic part, so that the blade mounting angle change is set between positive 8 degrees and minus 8 degrees.
  • This initial force is exactly equal to the wind wheel rotating around the rated wind speed.
  • the component of the centrifugal force generated when the center of rotation is rotated, so that the installation angle of the blade remains unchanged when the wind speed does not exceed the rated wind speed.
  • the centrifugal force generated by the blade is increased due to the increase of the rotational speed of the wind wheel.
  • Increase to the initial force greater than the preset elastic component so that the blade mounting angle is gradually reduced from 8 degrees.
  • the wind turbine power does not increase much.
  • the rotational speed increases correspondingly, and the centrifugal force component increases accordingly.
  • the blade mounting angle When the initial force is greater than the initial force of the elastic member, the blade mounting angle will be further reduced to less than 2 degrees and change to a negative angle. As long as the wind speed continues to increase, the mounting angle of the blade will gradually decrease to a negative angle, thereby rapidly reducing the torque of the blade. The efficiency of the wind wheel is rapidly reduced, and the work of maintaining the lift type of the wind wheel is stabilized after the wind speed is rapidly increased. Rate output, which solves the speed limit of the lift type wind turbine after exceeding the rated wind speed Problem; The lift type vertical axis wind wheel has a wider range of uses.
  • the above elastic member is a tension spring.
  • One end of the tension spring is connected to an adjustable length tensioning device.
  • an adjustable length tensioning device By adjusting the tensioning device, different initial forces can be set in advance, that is, the tensioning device is used to adjust the rated wind speed.
  • the above tensioning device is an adjustable length screw, and the tensioning device can be adjusted to a range of 1 to 50 cm.
  • the elastic member may also be a compression spring or a hydraulic component.
  • the structure of the rotation center shaft 3 is a slot structure, and one end 12 of the fixed support wing is pin-connected to one end 21 of the rotation support wing to be a rotation center shaft 3; the end of the fixed support wing end 12 is provided with a groove portion.
  • the end portion corresponding to one end 21 of the rotating support wing is provided with a protruding portion.
  • the invention improves the structure of the blade support wing so that the wind wheel maintains a stable rotational speed at an ambient wind speed exceeding the rated wind speed, thereby ensuring a constant power output of the vertical axis wind power generator.
  • Figure 1 is a schematic view of a resistance type vertical axis wind wheel.
  • Figure 2 is a schematic view of another resistance type vertical axis wind wheel.
  • Figure 3 is a schematic view of a lift type vertical axis wind wheel.
  • Figure 4 is a schematic diagram of the force analysis of the lift type vertical axis wind wheel.
  • Figure 5 is an angle diagram of the lift type vertical axis wind wheel.
  • Fig. 6 is a schematic view showing the lift type vertical axis wind wheel of the first embodiment.
  • Fig. 7 is a schematic view showing the lift type vertical axis wind wheel of the second embodiment.
  • Figure 8 is a schematic view of a lift type vertical axis wind wheel of Embodiment 3.
  • Figure 9 is a partially enlarged schematic view of Figure 8.
  • Figure 10 is a force analysis diagram of the blade support wing.
  • Figure 11 is a schematic structural view (cross-sectional side view) of the center axis 3 of the swivel.
  • Fig. 12 is a schematic structural view (top view) of the center axis 3 of the rotation.
  • Fig. 13 is a schematic structural view (perspective view) of the center axis 3 of the rotation.
  • Figure 14 is a schematic view of a lift type vertical axis wind wheel of Embodiment 4.
  • Figure 15 is a partially enlarged schematic view of Figure 14.
  • Figure 16 is a force analysis diagram of the blade support wing of the embodiment 7.
  • the wind turbine structure of the lift type vertical axis wind turbine of the present invention is connected by a plurality of blades through a support wing and a vertical shaft to form a wind wheel, the blade of which is an airfoil in the existing open airfoil library.
  • Airfoil or an airfoil composed of two different curved surfaces of two airfoils in the existing open airfoil library, or an airfoil composed of at least a second-order continuous derivable function curve, or a spline curve
  • the airfoil comprises a fixed support wing 1 connected to the vertical shaft, and a rotary support wing 2 connected to the blade, and one end 21 of the rotary support wing is connected to one end 12 of the fixed support wing and can be fixed around the fixed wing Supporting one end 12 of the wing to rotate,
  • a rotation center axis 3 is provided at a joint of one end 21 of the rotation support wing with one end 12 of the fixed support wing, and a rotation angle of the rotation support support wing 2 about the rotation center axis 3 is connected to the other end 22 of the rotation support wing.
  • the control member 4 is connected to one end 12' of the fixed support wing adjacent to the aforementioned rotating support wing. In this way, a plurality of control members 4 are sequentially disposed in one direction of the wind wheel, and the elastic member is a tension spring. As shown in Figure 10, it is the force analysis diagram of the blade support wing:
  • ab denotes a fixed support wing
  • ac denotes a rotation support wing
  • a point denotes the position of the center axis of rotation 3
  • point b denotes the center of the wind wheel
  • fe denotes a blade string, wherein point f represents the leading edge of the blade, and point e represents the blade
  • the edge, point d indicates the position at which the fixed support wing end 12' adjacent to the rotating support wing is connected.
  • the installation angle ⁇ is the angle between the blade string and the center tangent of the blade, and the mounting angle ⁇ ranges from -12 to 12 degrees;
  • the angle G between the blade string and the rotating support wing is 7 to 100 degrees
  • the mounting angle ⁇ corresponds to the angular range of the selected angle G.
  • the angle A between the above-mentioned rotating support wing and the fixed support wing extension line is 0 to 90 degrees. Further, it is preferable that the angle A of the above-mentioned rotation support wing and the fixed support wing extension line is 20 to 90 degrees.
  • the blades of the Goe63 airfoil are selected to form the wind wheel, the diameter of the wind wheel is 1.36 meters, and the installation angle range is selected to be -12 to 12 degrees, -9 to 9 degrees and -8 to 8
  • the fixed support wing and the rotating support wing length ratio is 1:1
  • the rated wind speed is set to 10 m/s, that is, the wind speed of the device starts from 10 m/s and then acts on the vertical axis wind turbine.
  • the power output value does not change much. Without the blade support wing structure of the present invention, the output power will increase from 170 watts to about 2660 watts.
  • an initial angle of adjusting the mounting angle ⁇ may be used to be greater than 12 degrees, for example, to 18 degrees, even at low wind speeds.
  • the power output is low, but the effect of constant power output can be substantially achieved.
  • the installation angle ⁇ is selected In the case of -10 ⁇ 16, the starting wind speed can be reduced, and at 10 m/s, the power is 102 watts. It can be seen from the above that the blade supporting wing structure selected in the present embodiment is used to solve the problem of constant power output by the wind tunnel experiment.
  • control unit is
  • the elastic member is a tension spring
  • one end of the spring is fixed on the rotating support wing connecting the blades
  • the other end is connected to the adjustable length tensioning device to be connected to the fixed support.
  • the initial force is set by the pretensioning device.
  • the pretensioning device can be a simple adjustable length screw or other adjustable length element to obtain the initial force.
  • the preload can be adjusted by determining the parameters of the spring.
  • the pre-tightening amount of the device is obtained, and through a plurality of practices, a pre-tightening amount of between 1 and 50 cm can obtain a better effect.
  • the rated power of the fan is set to 1, 3, 5, 10, 50, 100, 200, 300KW, it corresponds to the length adjusted by the spring pretensioning device.
  • the selection of pre-tightening amount is not limited to the above l ⁇ 50cm, for example, 0.5cm can be selected.
  • the resilient member is a compression spring having one end secured to the pivoting support wing of the connecting blade and the other end coupled to the extension arm of the fixed support wing.
  • the structure of the center axis 3 of the rotation is a slot structure, and one end 12 of the fixed support wing is pin-connected to one end 21 of the rotation support wing to be a rotation center axis 3; the end of the fixed support wing end 12 is provided with a groove portion.
  • the end portion corresponding to one end 21 of the rotating support wing is provided with a protruding portion.
  • the contact faces of the groove portion and the protruding portion cooperate with each other to control Rotate the rotation of the support wing to bring the angle to the set value.
  • the groove portion and the protruding portion of the both end portions can be interchanged.
  • the end portion of the fixed support wing end 12 is used as a protruding portion, corresponding to the rotation support.
  • the end of one end of the wing 21 is defined as a groove portion, and the rotation of the support wing can be controlled by the mutual engagement limit of the contact surface to bring the angle to a set value.
  • the length ratio of the fixed support wing and the rotary support wing can be selected according to design requirements. For example, when the length ratio of the fixed support wing and the rotary support wing is 10:1, the centrifugal force of the rotation support wing to rotate around the fixed support wing is small, and a small elastic member such as a small-sized spring can be selected. At the same time, the length ratio of the fixed support wing and the rotating support wing can be designed to be 9: 1, 8: 1, 7: 1, 6: 1, 5: 1, 4: 1, 3: 1 , 2: 1, etc.
  • the centrifugal force of the rotating support wing around the long support wing is large, and a large size or power elastic component is required, for example, the tension of the spring needs to be large, the spring The size and weight also increase.
  • Figure 16 shows the force analysis diagram of the blade support wing.
  • the angle A can be set to 15 degrees, and the power of the vertical axis wind turbine can still be achieved. Constant requirements, so the angle A can be set from 0 to 90 degrees.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Description

升力型垂直轴风力发电机风轮结构
技术领域
本发明涉及升力型垂直轴风力发电机,尤指一种可通过调节叶片支 持翼角度的结构, 使得风轮在环境风速超过额定风速的情况下始终保 持稳定的转速, 从而确保垂直轴风力发电机恒定的功率输出。
技术背景
对于风力发电机技术领域,首先需明确如下常用技术术语及定义: 风速, 所谓风速是指某一高度连续 lOmin所测得各瞬时风速的平 均值。 一般以草地上空 10m高的 lOmin内风速的平均值为参考。
有效风速, 因风速的随机性很大, 并不是所有风速都能使风力发 电机的风轮转动, 也不是所有风速都能使风轮安全运行, 所谓有效风 速, 是指使风力发电机风轮安全运转的风速, 亦称可利用风速。
有效风速范围, 把风力发电机风轮能安全运转正常输出功率的风 速段称为有效风速范围。 在设计风力发电机时把起始风速、 额定风速 和停机风速之间的风速称作有效风速范围, 亦称可利用风速范围。 例 如 6~20m/s。
起始风速, 使风力发电机风轮幵始转动作功时的风速称为起始风 速。
额定风速, 风力发电机发出额定功率的电力时的风速称为额定风 速。
停机风速, 当风速大到某一风速以上时, 风力发电机应停止运行 以避免风力发电机遭到破坏, 此时的风速称为停机风速, 停机风速视 当地风速情况而定。
1
确认本 调速装置, 因风速是变化的,风轮的转速也会随风速的变化而变 化, 为了使风轮运转在所需要的额定转速附近的装置称为'调速装置, 当风速超过额定风速时, 调速装置开始起动调速功能, 调速装置只在 额定风速以上时进行调速。
垂直轴风力发电机, 依据风力发电机旋转轴在空间方向位置的不 同, 划分为水平方向的水平轴风力发电机和垂直方向的垂直轴风力发 电机。
风轮, 垂直轴风力发电机由若干叶片通过支持翼与垂直轴连接, 构成风轮。
垂直轴风力发电机可分为阻力型和升力型, 他们的原理和结构都 是不相同的, 阻力型风轮的叶片可采用类似风碗、 半球型、 半圆型桶 体、 甚至于一块平板, 例如如图 1所示, 是一种阻力型垂直轴风轮的 示意图。 当该风轮中的叶片为半圆形的桶体时, 风力作用于风轮, 叶 片在处于 D1位置所受的压力是处于 D2位置的 2倍,在该风轮中由于 D1和 D2位置的压力不同, 风力便推动风轮按顺时针围绕回转中心旋 转, 因此阻力型风轮最显著的特点是风力推动叶片从高压向低压方向 运动, 即风轮的旋转方向始终是从高压向低压方向旋转。
为了提高阻力型风轮的效率, 也即提高 Dl、 D2位置之间叶片的 压力差, 人们想过多种办法, 比如增加叶片数量、 改变叶片形状等, 最明显的办法是叶片在 D2位置时改变叶片在风轮下半区的角度,如果 假设 D1位置为零度, 则在 D2位置时改变到 90度, 如图 2所示。 而 改变角度的办法也有许多种, 比如中国专利公开号 CN85103919A, 但 无论采用什么方式, 阻力型风轮的最大风能利用率不超过 2/27, 下面 是阻力型风轮在完全忽略叶片在下半周所受阻力情况下,通过推导得 到的结论:
假设风轮的高度为 H, 叶片宽度为 R, 风轮旋转的角速度为^ 风 轮的回转半径等于叶片宽度 R, 风速为 V, 密度为 p。 假设气流对平板 的压力取得最大值, 并忽略迎风面积最小时叶片的阻力, 此时迎风面 积最大的平板可以等效为宽 R, 高 H的平板。
风轮迎风面积总的风能为: E = -pV3S = -pV32RH = pV'RH
2 2
空气相对于平板的速度为: v = -^
气流作用于平板上的压力为: p p(V一 coRf RH 产生的功率为: Ρ(αή = Τω≤ pR o = ^ p(V - o)R)2 RHR o = ^ p(V - ωϋγ R2 Ηω 对上式求极值可得,当^ =0=V时 Ρ取得最小值,当^^=1/3¥时 P取得 最大值, 即阻力型风轮的最大功率出现在风轮转动的线速度是风速的
1/3时, 将^ =1/3V代入, 可得功率的最大值为 ^/^3i?H, 如果忽略
27
风轮半边的阻力作用, 根据风能利用率的定义可得 -
η =风轮的功率 /风轮迎风面积总的风能= = 3 ~一 =—≤ 8%。
E pV3RH 27 为了克服阻力型垂直轴风轮的低效率, 人们又发明了升力型垂直 轴风轮, 图 3为一种升力型垂直轴风轮。 升力型风轮是利用叶片二面 不同的形状, 当风吹在叶片表面, 由于叶片二面形状和叶片安装角的 缘故, 叶片外表面和内表面的风速是不同的, 这样就在叶片的外表面 和内表面形成了风速差, 从流体力学可以知道, 当内、 外表面流体速 度不一致时, 在二个表面之间形成了压力差, 也就是升力, 当选择一 定的叶片安装角时, 由于压力差所产生的升力的分力就将产生绕风轮 回转中心的驱动力矩, 使风轮旋转。
如图 4所示, 是升力型垂直轴风轮叶片的受力分析示意图。 由于 风轮在旋转中, 空气相对与叶片的实际速度和方向是 V2 (图 4中, V0 表示风的速度, VI 表示空气相对于叶片运动方向的速度), 在这个风 速和方向下,叶片会产生平行于气流的阻力 D和垂直于气流的升力 L, 当风速大于一定值后, 由于翼型的升力 L要远远大于阻力 D, 因此叶 片主要靠升力 L在切线方向上的分力 L1产生的力矩驱动旋转。因此升 力型风轮最显著的特点是叶片必须具有一定的翼型和叶片安装角较 小, 参见中国专利公开号 CN1831330A。 翼型通常是现有公开翼型库 中的翼型, 或利用这些公开翼型库中的二种不同翼型的二个不同曲面 组成的新翼型,或由多个至少满足二阶连续可导函数曲线组成的翼型, 或由样条曲线组成的翼型。
由于风轮的叶片在做圆周运动中产生的气动阻力大小跟叶片的安 装角有关, 安装角越大, 产生的阻力越大。 因此升力型风轮为了能够 获得较高的效率, 叶片的安装角都较小。 为了表明升力型风轮中叶片 安装角对风轮效率的重要性, 为了方便描述, 如图 5给出了一些相关 叶片参数的定义:
叶片翼的前缘: 翼的圆头。
叶片翼的后缘: 翼的尖尾。
叶片弦线: 翼的前缘与翼的后缘的连线, 亦称翼弦。
安装角 α : 叶片弦线与过叶片中心切线的夹角, 顺时针方向为正, 逆时针方向为负。
方位角: 叶片中心与旋转中心的连线与 y轴正半轴的夹角。 另外, 由于升力型风轮的叶片在不同方位角时, 叶片所产生力矩 的大小和方向始终都在变化中, 在有些方位角力矩方向甚至相反, 因 此为了提高升力型垂直轴风轮的效率, 人们也采用了许多方法, 除了 必须选择合适的翼型、 叶片安装角、 叶片的弦宽和叶片数量外 (参见 中国专利公开号 CN1873220A), 更有效的方法是在叶片处于不同方位 角时, 改变叶片不同的安装角 α, 使叶片在任何一个方位角时都获得 最大升力, 例如中国专利公开号 CN1916397A , 美国专利号 US6379115B1 , 法国专利公开号 FR2548740A1。 这些专利中所采用的 方法都是在风轮旋转一周内调整叶片在不同方位角时的安装角 α, 使 叶片获得最佳的安装角 α, 其特点是叶片在旋转一周内有无数个不同 的较小角度的安装角 α, 而安装角 α的变化是从风轮开始旋转时就开 始的, 从而使升力型垂直轴风轮在低风速对应的低转速时获得足够大 的扭矩,· 目的都是为了提高升力型风轮的自启动性能, 以及提高升力 型风轮在较高风速下的效率。
从上述可见, 阻力型垂直轴风轮和升力型垂直轴风轮是完全不同 的, 提高他们效率的方法也是不同的。
对于叶片安装角 α固定的垂直轴风力发电机, 在一定的风速范围 内, 其风轮的转速和环境风速成正比, 环境风速越高, 风轮的转速也 越高。 而风能与环境风速的立方成正比, 当环境风速从 10米 /秒增加 到 25米 /秒时, 则风能增加了近 16倍。 由于自然界风速的变化无常, 因此无论何种风力发电机, 都设有一个额定风速, 即在该风速下风机 达到最佳工作状态, 因此当风速超过额定风速后都要求风机的功率能 够稳定在额定功率附近, 以保护发电机和系统不会因为功率太大而毁 坏, 水平轴风机可以通过偏航的方式, 即减小风机的迎风面积解决这 个问题。
由于阻力型垂直轴风轮的叶片安装角可以不受限制的在一个大角 度范围内任意变化, 因此阻力型垂直风机也是通过减小风轮的迎风面 积达到相同的目的,在通过改变迎风面积达到降低风轮功率的方法中, 都不改变风轮的效率。 如德国专利公开号 DE2717379A1 , 披露了通过 转速提高后收缩风轮直径达到稳定功率的目的, 极限情况是风轮收缩 成一个圆桶。
升力型垂直轴风轮通过改变风轮的迎风面积来降低风轮的功率的 方法其结构比较复杂, 可通过液压装置结合电子控制技术实现, 但成 本较高, 难以在中小型垂直轴风力发电机中应用, 在此不做阐述。 通 过风机的功率公式 = ^pVSCp可以看出, 降低风机功率除了降低迎风 面积 S外,更好的方法是通过降低风轮的效率 Cp来保持稳定的输出功 率, 以保护系统不至因风速太高而损坏, 而且成本较低。
在中国专利公开号 CN1831330A中, 为了使风轮能获得较高的效 率, 叶片较佳的安装角在 2-8度之间, 叶片安装角在该范围内效率变 化不大, 低于或高于这个角度范围将迅速降低风轮的效率。 在中国专 利公开号 CN1844662A中, 通过限位槽将叶片安装角的变化范围限定 在一个小范围内。 中国专利公开号 CN1945009A中, 通过改变叶片安 装角的方式来降低升力型风轮在超过额定风速后的效率, 以达到当风 速超过额定风速后保持较稳定的输出功率, 其特点是通过弹性部件使 叶片安装角的变化在较小范围内进行, 但上述专利文献都未披露安装 角的角度变化范围, 同时对弹性部件尚有改进的余地。 发明内容
本发明针对上述现有技术的不足, 克服现有垂直轴风力发电机设 计上的缺陷, 提出一种升力型垂直轴风力发电机风轮结构, 以解决垂 直轴风力发电机的功率恒定输出问题, 尤其是在中小型垂直轴风力发 电机中的应用, 即一种垂直轴风力发电机的调速机构。
本发明是针对升力型垂直轴风力发电机风轮结构的创造发明。 本发明的具体技术方案如下- 一种升力型垂直轴风力发电机风轮结构, 由若干叶片通过支持翼 与垂直轴连接, 构成风轮,
所述叶片, 其翼型是现有公开翼型库中的翼型, 或利用现有公幵 翼型库中的两种翼型的二个不同曲面组成的翼型, 或由多个至少满足 二阶连续可导函数曲线组成的翼型, 或由样条曲线组成的翼型,
所述支持翼包括与垂直轴连接的固定支持翼 1, 与叶片连接的转 动支持翼 2,
所述转动支持翼的一端 21与固定支持翼的一端 12连接并可绕该 固定支持翼的一端 12转动,
所述的转动支持翼的一端 21与所述固定支持翼的一端 12连接处 设有回转中心轴 3,
在上述转动支持翼的另一端 22连接可控制转动支持翼 2绕回转中 心轴 3旋转的旋转角度的控制部件 4, 该控制部件 4与前述转动支持 翼相邻的固定支持翼一端 12 ' 连接, 以此方法沿风轮单方向依次设置 若干个控制部件 4,
所述控制部件 4是弹性部件、液压部件、 电气部件的一种或多种; 安装角 α为叶片弦线与过叶片中心切线的夹角, 安装角 α的范 围是 -12~12度;
叶片弦线与转动支持翼的夹角 G的范围是 7~100度。
上述转动支持翼与固定支持翼延长线的夹角 Α的范围是 0〜90度。 上述转动支持翼与固定支持翼延长线的夹角 A 的较佳范围是
20~90度。
上述固定支持翼与转动支持翼的长度比值范围是 10: 1-1: 1。 如图 5中, 当叶片安装角 α的角度逐渐变小并向负值变化时, 风 轮的效率将迅速降低,当 α小于负 6度时风轮的效率几乎降低 10倍以 上, 此时风轮的迎风面积不变, 进一步将安装角向负角度增大, 升力 在切向方向上的分力 L1不仅改变大小也将逐步改变方向,从而改变风 轮的旋转方向。 基于此, 我们将通过弹性部件给予叶片安装角一个初 始力, 使得叶片安装角变化设定在正 8度到负 8度之间, 这个初始力 恰好等于风轮在额定风速旋转时, 叶片围绕其回转中心旋转时产生的 离心力的分力, 使风轮在风速不超过额定风速时叶片的安装角保持不 变, 当风速超过额定风速后, 由于风轮转速的提高使得叶片产生的离 心力的分力增加到大于预先设定的弹性部件的初始力, 从而使叶片安 装角从 8度开始逐步降低, 在此过程中风轮功率增加不多, 当风速继 续增加, 转速相应增加, 离心力的分力也相应增大到大于弹性部件的 初始力后, 叶片安装角将进一步降低到小于 2度并向负角度变化, 只 要风速继续增大, 叶片的安装角将逐步降低到负角度, 从而迅速降低 叶片的扭矩, 使风轮的效率快速降低, 达到风速迅速增加后保持升力 型风轮稳定的功率输出, 解决了升力型风轮在超过额定风速后的限速 问题; 使升力型垂直轴风轮有更广泛的用途。
上述弹性部件是拉伸弹簧。
上述拉伸弹簧的一端连接有可调节长度的张紧装置。 可通过该张 紧装置的调节, 预先设置不同的初始力, 也就是通过张紧装置来调节 额定风速。
上述张紧装置是一个可调节长度的螺丝, 该张紧装置的可调节范 围为 1〜50厘米。
上述弹性部件也可以是压缩弹簧或液压元件。
上述回转中心轴 3处的结构是插槽结构,固定支持翼的一端 12与 转动支持翼的一端 21对应以销连接, 成为回转中心轴 3; 固定支持翼 一端 12的端部设有凹槽部, 对应转动支持翼一端 21的端部设有凸出 部, 当固定支持翼 1与转动支持翼 2绕回转中心轴 3转动时, 凹槽部 与凸出部的接触面相互配合限位, 以控制转动支持翼的旋转, 使角度 达到设定值。
本发明通过对叶片支持翼的结构改进, 使得风轮在环境风速超过 额定风速的情况下始终保持稳定转速, 从而确保垂直轴风力发电机的 恒定功率输出。
本发明将在下面结合附图及具体实施方式进行描述。
附图说明
图 1是一种的阻力型垂直轴风轮示意图。
图 2 是另一阻力型垂直轴风轮示意图。
图 3是一种升力型垂直轴风轮示意图。
图 4 是升力型垂直轴风轮的受力分析示意图。 图 5 是升力型垂直轴风轮的角度示意图。
图 6 是实施例 1的升力型垂直轴风轮示意图。
图 7 是实施例 2的升力型垂直轴风轮示意图。
图 8是实施例 3的升力型垂直轴风轮示意图。
图 9是图 8局部放大示意图。
图 10是叶片支持翼的受力分析图。
图 11是回转中心轴 3处的结构示意图 (剖面侧视图)。
图 12是回转中心轴 3处的结构示意图 (俯视图)。
图 13是回转中心轴 3处的结构示意图 (立体图)。
图 14是实施例 4的升力型垂直轴风轮示意图。
图 15是图 14局部放大示意图。
图 16是实施例 7叶片支持翼的受力分析图。
具体实施方式
通过下面给出的本发明的具体实施例可以进一步清楚地了解本发 明, 但它们不是对本发明的限定。
实施例 1:
本发明升力型垂直轴风力发电机风轮结构, 如图 6所示, 由若干 叶片通过支持翼与垂直轴连接, 构成风轮, 所述叶片, 其翼型是现有 公开翼型库中的翼型, 或利用现有公开翼型库中的两种翼型的二个不 同曲面组成的翼型, 或由多个至少满足二阶连续可导函数曲线组成的 翼型, 或由样条曲线组成的翼型, 所述支持翼包括与垂直轴连接的固 定支持翼 1, 与叶片连接的转动支持翼 2, 所述转动支持翼的一端 21 与固定支持翼的一端 12连接并可绕该固定支持翼的一端 12转动,所述 的转动支持翼的一端 21与所述固定支持翼的一端 12连接处设有回转 中心轴 3, 在上述转动支持翼的另一端 22连接可控制转动支持翼 2绕 回转中心轴 3旋转的旋转角度的控制部件 4, 该控制部件 4与前述转 动支持翼相邻的固定支持翼一端 12 ' 连接, 以此方法沿风轮单方向依 次设置若干个控制部件 4, 所述弹性部件是拉伸弹簧。 如图 10所示, 是叶片支持翼的受力分析图:
其中, ab表示固定支持翼, ac表示转动支持翼, a点表示回转中 心轴 3的位置, b点表示风轮中心, fe表示叶片弦线, 其中 f点表示叶 片前缘, e点表示叶片后缘, d点表示与转动支持翼相邻的固定支持翼 一端 12 ' 连接的位置。
安装角 α为叶片弦线与过叶片中心切线的夹角, 安装角 α的范围 是 -12~12度;
叶片弦线与转动支持翼的夹角 G的范围是 7~100度;
如下表, 安装角 α对应选择夹角 G的角度范围。
安装角 α 夹角 G
-12〜12度 7〜100度
-11~12度 7~100度
-10〜12度 7~100度
-9-12度 7〜: 100度
-8-12度 7〜: 100度
-12~11度 7~99度
-11~11度 7~99度
-10~11度 7~99度 -9〜11度 7~99度
-8-11度 7~99度
-12-10度 7~98度
-11〜10度 7~98度
-10~10度 7~98度
-9-10度 7〜98度
-8-10度 7-98度
-12-9度 7~97度
-11〜9度 7~97度
-10-9度 7〜97度
一 9〜9度 7~97度
-8〜9度 7~97度
-12-8度 7~96度
-1 8度 7〜96度
-10~8度 7~96度
-9〜8度 7~96度
-8〜8度 7~96度
上述转动支持翼与固定支持翼延长线的夹角 A的范围是 0~90度。 进一步, 优选上述转动支持翼与固定支持翼延长线的夹角 A的范 围是 20~90度。
如下表, 是以安装角 α分别为 12、 9、 6、 3、 0、 -3、 -6、 -9、 -12 度时, 对应选择夹角 G的角度范围。 安装角 α 夹角 G
12度 22-100度
9度 19-97度
6度 16-94度
3度 13-91度
0度 10-88度
-3度 7~85度
-6度 7~85度
-9度 7~85度
-12度 7-85度
如下表, 是以安装角 α分别为 12、 9、 6、 3、 0、 -3、 -6、 -9、 -12 度时, 对应选择夹角 G, 夹角 A的角度范围。
Figure imgf000015_0001
以上述实施例 1的叶片支持翼结构, 选取 Goe63翼型的叶片组成 风轮, 风轮直径 1.36米, 安装角范围选为 -12〜12度, -9~9度和 -8~8 度三种情况, 固定支持翼和转动支持翼长度比为 1 : 1, 设定额定风 速为 10米 /秒,即该装置的风速从 10米 /秒以后开始对垂直轴风力发电 机发生作用, 通过如下 CFD的计算表, 当风速从 10米 /秒增加到 15 米秒时、 20米 /秒和 25米 /秒时, 其功率输出值变化不大。 而如果不使 用本发明的叶片支持翼结构, 输出功率将从 170瓦增加到约 2660瓦。
CFD计算表
Figure imgf000016_0001
更进一步, 为了达到降低启动风速, 同时保持在高风速下的恒定 功率输出的目的, 可以采用调整安装角 α的初始角度大于 12度, 例如 达到 18度的情况, 这样虽然在低风速的情况下, 功率输出较低, 但可 以大体上达到恒定功率输出的效果。 如上表所示, 当安装角 α选取 -10~16的情况下, 可降低启动风速, 在 10米 /秒时, 功率是 102瓦。 由上述可知, 采用本实施例所选用的叶片支持翼结构, 经风洞实 验, 达到本发明解决功率恒定输出的问题。
实施例 2:
如图 7所示, 与实施例 1结构基本相同, 所不同的是, 控制部件
4未与转动支持翼相邻的固定支持翼一端 12' 连接, 而是与固定支持 翼上的固定部固定连接, 其余与实施例 1相同。 同样可以达到本发明 解决功率恒定输出的问题。
实施例 3 :
如图 8, 图 9所示, 结合实施例 1 的结构, 弹性部件是一个拉伸 弹簧, 弹簧的一端固定在连接叶片的转动支持翼上, 另一端连接调节 长度的张紧装置连接到固定支持翼上。 通过该张紧装置的调节, 可预 先设置不同的初始力, 也就是通过张紧装置来调节额定风速。 初始力 通过预紧装置设定, 预紧装置可以是个简单的可调节长度的螺丝、 也 可以是其它可调节长度的元件, 以获得初始力。 由于初始力有诸多因 素确定, 通过多次实验得知, 改变叶片重量、 风轮直径、 和在不同额 定风速下, 初始力的变化很大, 但都可以在确定弹簧的参数后通过调 节预紧装置的预紧量获得, 通过多次实践, 预紧量在 1-50厘米之间可 以获得较好的效果。 如下表, 当风机额定功率设定为 1、 3、 5、 10、 50、 100、 200、 300KW时, 与该弹簧预紧装置调整的长度对应关系。
Figure imgf000017_0001
5kw 3-15cm
lOkw 3~15cm
50kw 10~40cm
lOOkw 15~50cm
200kw 15~50cm
300kw 15~50cm 当然, 鉴于实际选用叶片重量、 风轮直径、 不同额定风速下的设 计情况,对于预紧量的选择不局限在上述 l~50cm,例如也可选择 0.5cm 等情况。
实施例 4
结合图 14, 15的结构, 弹性部件是一个压缩弹簧, 压縮弹簧的一 端固定在连接叶片的转动支持翼上, 另一端连接到固定支持翼的延长 臂。 通过该压缩弹簧的调节, 可预先设置所需的初始预紧力, 以调节 额定风速。 并尽可能减轻弹簧的重量和体积。 针对中型或大型的垂直 轴风力发电机, 该弹性部件可采用液压部件替代。
实施例 5
如图 11〜13, 分别是回转中心轴 3处的结构示意图的侧视图、 剖 面俯视图和立体图。 回转中心轴 3处的结构是插槽结构, 固定支持翼 的一端 12与转动支持翼的一端 21对应以销连接, 成为回转中心轴 3 ; 固定支持翼一端 12的端部设有凹槽部, 对应转动支持翼一端 21的端 部设有凸出部, 当固定支持翼 1与转动支持翼 2绕回转中心轴 3转动 时, 凹槽部与凸出部的接触面相互配合限位, 以控制转动支持翼的旋 转, 使角度达到设定值。 同理, 可以将两端部的凹槽部和凸出部进行 互换, 例如, 将固定支持翼一端 12的端部设为凸出部, 对应转动支持 翼一端 21的端部设为凹槽部,同样可以通过接触面的相互配合限位, 以控制转动支持翼的旋转, 使角度达到设定值。
实施例 6
在上述实施例中, 固定支持翼和转动支持翼的长度比可依据设计 要求进行选取。例如,当选取固定支持翼和转动支持翼的长度比为 10: 1 时, 转动支持翼围绕固定支持翼转动的离心力小, 可以选择较小的 弹性部件, 比如小尺寸的弹簧。 同时, 可设计固定支持翼和转动支持 翼的长度比为 9: 1, 8: 1, 7: 1, 6: 1, 5: 1, 4: 1, 3: 1 , 2: 1等 等。 当选取固定支持翼和转动支持翼的长度比为 1 : 1时, 转动支持翼 围绕长支持翼的离心力较大, 需较大尺寸或功率的弹性部件, 比如弹 簧的拉力就需较大, 弹簧的尺寸、 重量也随之增大。
实施例 Ί
如图 16叶片支持翼的受力分析图,当将叶片安装角设置为 10度, 夹角 G设置为 90度时, 夹角 A设置可为 15度, 依然可以达到垂直轴 风力发电机的功率恒定的要求, 因此可将夹角 A设在 0~90度。
尽管对本发明已经作了详细的说明并引证了一些具体实施例, 但 对本领域熟练技术人员来说, 只要不离开本发明人的设计思路和范围 也可作各种变化和修正是显然的。

Claims

权 利 要 求
1、一种升力型垂直轴风力发电机风轮结构, 由若干叶片通过支持翼与 垂直神连接, 构成风轮,
所述叶片, 其翼型是现有公开翼型库中的翼型, 或利用现有公开 翼型库中的两种翼型的二个不同曲面组成的翼型, 或由多个至少满足 二阶连续可导函数曲线组成的翼型, 或由样条曲线组成的翼型,
所述支持翼包括与垂直轴连接的固定支持翼 (1 ), 与叶片连接的 转动支持翼 (2),
所述转动支持翼的一端 (21 ) 与固定支持翼的一端 (12) 连接并 可绕该固定支持翼的一端 (12) 转动,
所述的转动支持翼的一端 (21 ) 与所述固定支持翼的一端 (12) 连接处设有回转中心轴 (3 ),
在上述转动支持翼的另一端 (22)连接可控制转动支持翼(2)绕 回转中心轴 (3 ) 旋转的旋转角度的控制部件 (4), 该控制部件 (4) 与前述转动支持翼相邻的固定支持翼一端 (12 ' ) 连接, 以此方法沿 风轮单方向依次设置若干个控制部件 (4),
所述控制部件(4)是弹性部件、 液压部件、 电气部件的一种或多 种; 其特征在于,
安装角(α )为叶片弦线与过叶片中心切线的夹角, 安装角(α )的范 围是 -12~12度;
叶片弦线与转动支持翼的夹角 (G)的范围是 7~100度。 ,
2、 根据权利要求 1所述的升力型垂直轴风力发电机风轮结构, 其特征在于,转动支持翼与固定支持翼延长线的夹角 (Α)的范围是 0〜90 度。
3、根据权利要求 2所述的升力型垂直轴风力发电机风轮结构, 其 特征在于, 夹角 (Α)的范围是 20~90度。
4、根据权利要求 1所述的升力型垂直轴风力发电机风轮结构, 其 特征在于, 所述固定支持翼与转动支持翼的长度比值范围是 10: 1-1: l o
5、根据权利要求 1所述的升力型垂直轴风力发电机风轮结构, 其 特征在于, 所述弹性部件是拉伸弹簧或压缩弹簧或或液压元件。
6、根据权利要求 5所述的升力型垂直轴风力发电机风轮结构, 其 特征在于, 所述拉伸弹簧的一端连接有可调节长度的张紧装置。
7、根据权利要求 6所述的升力型垂直轴风力发电机风轮结构, 其 特征在于, 所述张紧装置是一个可调节长度的螺丝, 该张紧装置的可 调节范围为 1~50厘米。
8、根据 1~7任意一项权利要求所述的升力型垂直轴风力发电机风 轮结构, 其特征在于, 所述回转中心轴(3 )处的结构是插槽结构, 固 定支持翼的一端 (12) 与转动支持翼的一端 (21 )对应以销连接, 成 为回转中心轴 (3 ); 固定支持翼一端 (12) 的端部设有凹槽部, 对应 转动支持翼一端(21 )的端部设有凸出部, 当固定支持翼(1 )与转动 支持翼 (2) 绕回转中心轴 (3 ) 转动时, 凹槽部与凸出部的接触面相 互配合限位, 以控制转动支持翼的旋转, 使角度达到设定值。
PCT/CN2010/000299 2009-03-12 2010-03-12 升力型垂直轴风力发电机风轮结构 WO2010102517A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/228,477 US8496433B2 (en) 2009-03-12 2011-09-09 Wind mill structure of lift-type vertical axis wind turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910128001.3 2009-03-12
CN200910128001.3A CN101832225B (zh) 2009-03-12 2009-03-12 升力型垂直轴风力发电机风轮结构

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/228,477 Continuation US8496433B2 (en) 2009-03-12 2011-09-09 Wind mill structure of lift-type vertical axis wind turbine

Publications (1)

Publication Number Publication Date
WO2010102517A1 true WO2010102517A1 (zh) 2010-09-16

Family

ID=42716401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000299 WO2010102517A1 (zh) 2009-03-12 2010-03-12 升力型垂直轴风力发电机风轮结构

Country Status (3)

Country Link
US (1) US8496433B2 (zh)
CN (1) CN101832225B (zh)
WO (1) WO2010102517A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9404474B2 (en) * 2011-07-26 2016-08-02 Wing Power Energy, Inc. System and method for efficient wind power generation
CN102562443A (zh) * 2012-03-14 2012-07-11 李树广 立式风电铝合金风叶系统
ITDP20120015A1 (it) * 2012-07-16 2014-01-17 Roberto Pisacane Cerchio generatore di forza motrice da energia eolica per i veicoli a trazione
JP5963146B2 (ja) * 2013-05-25 2016-08-03 吉二 玉津 風切羽開閉翼システムを用いた垂直軸式水風車原動機
US9765636B2 (en) * 2014-03-05 2017-09-19 Baker Hughes Incorporated Flow rate responsive turbine blades and related methods
IL232303A0 (en) 2014-04-28 2014-09-30 Alexander Margolis A wind turbine with a vertical axis and self-directing blades
EP2957768A1 (en) 2014-06-16 2015-12-23 Cockerill Maintenance & Ingenierie S.A. Improved vertical axis wind turbine
DE102014011695A1 (de) * 2014-08-07 2016-02-11 Fresenius Medical Care Deutschland Gmbh Blutbehandlungsvorrichtung mit einer Funktionseinheit zur Durchführung der Blutbehandlung und Verfahren zur Überprüfung der Funktionsfähigkeit und/oder des Betriebszustandes der Funktionseinheit
CN106762429A (zh) * 2016-12-28 2017-05-31 王伟民 蜂窝风力发电站
CN107061148A (zh) * 2016-12-28 2017-08-18 王伟民 实时变桨风轮及风力发电机
CN107013411A (zh) * 2017-05-26 2017-08-04 王伟民 串式垂直轴风力发电机
GB2561926B (en) * 2017-07-04 2020-04-29 Vertogen Ltd Wind turbine
DE102017007887B4 (de) * 2017-08-21 2021-09-23 Harald Augenstein Windrad mit Vertikalachse in Form eines Baumes
TWM562339U (zh) * 2018-03-19 2018-06-21 True Ten Industrial Co Ltd 驅動扇葉組
CN108520556A (zh) * 2018-04-08 2018-09-11 大连理工大学 基于ansys cfx的双垂直轴风机旋转数值计算方法
CN112253380A (zh) * 2020-10-22 2021-01-22 合肥庭鸾能源有限公司 一种垂直轴风力发电机的叶片角度调节装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0021790A1 (en) * 1979-06-19 1981-01-07 Frederick Charles Evans Vertical-axis windmills and turbines
DE19544400A1 (de) * 1995-11-29 1997-06-05 En Umwelt Beratung E V I Einrichtung zur Einstellung der Blätter von Vertikalachs-Rotoren für den Schwachwindanlauf und für die Überlastabschaltung
CN1831330A (zh) * 2006-03-29 2006-09-13 严强 垂直轴风力发电机叶片安装方法
JP2008075487A (ja) * 2006-09-20 2008-04-03 Victor Co Of Japan Ltd 風車、発電装置および風車を用いた発電方法
WO2008046283A1 (fr) * 2006-10-11 2008-04-24 Qiang Yan Structure de bras de support pour une pale d'aérogénérateur à axe vertical

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1859584A (en) * 1925-11-19 1932-05-24 Autogiro Co Of America Aircraft with rotative wings
US1974074A (en) * 1931-05-22 1934-09-18 Autogiro Co Of America Aircraft sustaining rotor
US4299537A (en) 1979-06-19 1981-11-10 Evans Frederick C Interlinked variable-pitch blades for windmills and turbines
SE433648B (sv) * 1981-05-15 1984-06-04 Saab Scania Ab Varvtalsbegrensande anordning vid en vertikalaxlad vindturbin
US4718821A (en) * 1986-06-04 1988-01-12 Clancy Brian D Windmill blade
EP0679805B1 (en) * 1993-10-14 1995-12-20 Raul Ernesto Verastegui Cross-wind-axis wind turbine
FR2864184B1 (fr) * 2003-12-19 2006-03-03 Arvinmeritor Light Vehicle Sys Tendeur de cable
CN100365273C (zh) * 2006-05-11 2008-01-30 严强 垂直轴风力发电机功率恒定输出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0021790A1 (en) * 1979-06-19 1981-01-07 Frederick Charles Evans Vertical-axis windmills and turbines
DE19544400A1 (de) * 1995-11-29 1997-06-05 En Umwelt Beratung E V I Einrichtung zur Einstellung der Blätter von Vertikalachs-Rotoren für den Schwachwindanlauf und für die Überlastabschaltung
CN1831330A (zh) * 2006-03-29 2006-09-13 严强 垂直轴风力发电机叶片安装方法
JP2008075487A (ja) * 2006-09-20 2008-04-03 Victor Co Of Japan Ltd 風車、発電装置および風車を用いた発電方法
WO2008046283A1 (fr) * 2006-10-11 2008-04-24 Qiang Yan Structure de bras de support pour une pale d'aérogénérateur à axe vertical

Also Published As

Publication number Publication date
CN101832225B (zh) 2014-06-11
US20120003092A1 (en) 2012-01-05
CN101832225A (zh) 2010-09-15
US8496433B2 (en) 2013-07-30

Similar Documents

Publication Publication Date Title
WO2010102517A1 (zh) 升力型垂直轴风力发电机风轮结构
WO2008046283A1 (fr) Structure de bras de support pour une pale d'aérogénérateur à axe vertical
WO2007143918A1 (fr) Système de commande automatique d'angle de rotation de pale pour un générateur éolien à axe vertical
CN203796495U (zh) 一种展翼变桨式垂直轴风力发电机组
WO2008003230A1 (en) A method for installing blades and wind wheel of vertical axis wind power generator
CN104018985A (zh) 垂直轴风力机柔性可伸缩辅助叶片机构
JP2004197643A (ja) 垂直軸型風車装置
CN101457744B (zh) 被动变桨风力发电机
CN201281003Y (zh) 活叶调速型风力发电机组
WO2011095054A1 (zh) 高效大功率垂直轴风力发电机
CN110318943A (zh) 一种叶尖自适应转动变形的垂直轴h型风力机叶片
US8322035B2 (en) Vertical axis wind turbine and method of installing blades therein
CN201339543Y (zh) 被动变桨风力发电机
CN202140243U (zh) 一种调角度风轮
CN103291539B (zh) 一种叶片摆翼的设计方法和一种带叶片摆翼的h型立轴风力机
CN105134478A (zh) 一种整流风力发电机组及制造方法
CN102493914B (zh) 升力型垂直轴风力发电机的辅助风机
CN109322785A (zh) 嵌套式共轴双转子垂直轴风力机的风轮装置
TW201615978A (zh) 小型垂直軸風力發電機被動式葉片傾角調變裝置
CN102042176B (zh) 自调整桨叶角度的恒速风力发电机
CN113417799A (zh) 一种垂直轴风力机支臂辅助启动装置
Soraghan et al. Influence of lift to drag ratio on optimal aerodynamic performance of straight blade vertical axis wind turbines
CN201635921U (zh) 一种转速可调的垂直轴风力机
CN101776041B (zh) 一种变桨距型垂直轴风轮
TWI273165B (en) A vertical axial wind engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750313

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/12/2011)

122 Ep: pct application non-entry in european phase

Ref document number: 10750313

Country of ref document: EP

Kind code of ref document: A1