WO2010101373A2 - Multiband and broadband antenna, and communication apparatus comprising same - Google Patents

Multiband and broadband antenna, and communication apparatus comprising same Download PDF

Info

Publication number
WO2010101373A2
WO2010101373A2 PCT/KR2010/001220 KR2010001220W WO2010101373A2 WO 2010101373 A2 WO2010101373 A2 WO 2010101373A2 KR 2010001220 W KR2010001220 W KR 2010001220W WO 2010101373 A2 WO2010101373 A2 WO 2010101373A2
Authority
WO
WIPO (PCT)
Prior art keywords
metamaterial
antenna
feed line
band
stub
Prior art date
Application number
PCT/KR2010/001220
Other languages
French (fr)
Korean (ko)
Other versions
WO2010101373A3 (en
Inventor
유병훈
성원모
지정근
Original Assignee
주식회사 이엠따블유
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엠따블유 filed Critical 주식회사 이엠따블유
Publication of WO2010101373A2 publication Critical patent/WO2010101373A2/en
Publication of WO2010101373A3 publication Critical patent/WO2010101373A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • H01Q5/15Resonant antennas for operation of centre-fed antennas comprising one or more collinear, substantially straight or elongated active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element

Definitions

  • the present invention relates to a multiband and wideband antenna and a communication device including the same. More specifically, the present invention relates to an antenna and a communication apparatus including the same, which can further reduce the size of the antenna by using the properties of the metamaterial and at the same time adjust the resonant frequency and achieve multi-band and wideband.
  • An antenna is an essential component of a wireless communication device for transmitting or receiving electromagnetic waves, and is configured to resonate with electromagnetic waves of a specific frequency and to transmit or receive electromagnetic waves of that frequency.
  • the resonance generally means that the impedance of the circuit is imaginary at a specific frequency, and in practice, refers to a phenomenon in which the S11 parameter, which is the reflection coefficient of the circuit, increases rapidly at a specific frequency.
  • the conventional antenna has a resonance structure of the primary mode. That is, the conventional antenna has an electrical length of ⁇ / 2 with respect to the wavelength ⁇ corresponding to the desired frequency, and is composed of a conductor (transmission line) whose one end is open or shorted. As a result, electromagnetic waves guided along the conductive wire form a standing wave in the conductive wire, and resonance occurs.
  • the antenna having such a first mode resonant structure is determined by the electrical length of the antenna entirely dependent on the resonant frequency, so that the size of the antenna varies with the resonant frequency, and in particular, the antenna becomes larger as the desired resonant frequency is lowered.
  • a monopole antenna having an electrical length of ⁇ / 4 is proposed by forming the antenna on the ground plane, and in order to further reduce the size of the monopole antenna, a complex such as a helix form and a meander form have been proposed.
  • An antenna having a shape has been proposed.
  • the proposed antennas still have to overcome the limit of their size depending on the resonant frequency, and as the antenna becomes smaller, its shape is more complicated to form a fixed length antenna with an electrical length of ⁇ / 4 in a narrow space. There is a problem.
  • the shape of the antenna becomes more complicated, there is a difficulty in maintaining the performance of the antenna, such as the influence of coupling between the conductors formed increases.
  • the multi-band and wideband antenna including two or more metamaterial cells using the properties of the metamaterial is further miniaturized, the antenna and the communication device comprising the same easy to adjust the resonance frequency
  • the purpose is to provide.
  • the feeder is formed on a part of the carrier; And two or more metamaterial cells formed on the carrier and powered by the feed line, and having two or more CRLH-TL (Composite Right / Left Handed Transmission Line) structures.
  • the at least two metamaterial cells are fed by the feed line and resonate in a first frequency band and resonate in a second frequency band that is fed by the feed line and is fed by the feed line and is in a different frequency band from the first frequency band. It may include a second metamaterial cell.
  • a first metamaterial cell is connected to one side of the first radiation patch and one side of the first radiation patch, which is spaced apart from one side of the feed line by a first interval, and functions as an antenna radiator, and the other end is mounted with the multi-band and broadband antenna.
  • a first stub connected to a ground plane on the substrate, wherein the second material cell is spaced apart from the other side of the feed line by a second distance to a second radiation patch and one side of the second radiation patch to function as an antenna radiator.
  • One end may be connected, and the other end may include a second stub connected to the ground plane.
  • the first metamaterial cell further includes a first open stub connected to one end of the first radiation patch, wherein the first open stub is spaced apart from one side of the feed line by the first interval.
  • the second metamaterial cell further includes a second open stub connected to one end of the second radiation patch, wherein the second open stub is spaced apart from the other side of the feed line by the second interval.
  • a load inductor may be further inserted between at least one of the feed line and the ground plane, between the first stub and the ground plane, and between the second stub and the ground plane.
  • the multi-band and wideband antennas may combine a zero-order resonance of the first metamaterial cell and a first-order resonance of the second metamaterial cell to exhibit broadband characteristics.
  • a communication device including the multi-band and broadband antenna.
  • the multiband and the broadband do not depend on the length of the antenna.
  • the antenna can be implemented.
  • an antenna can be miniaturized and at the same time, an antenna having multiple bands and a wide bandwidth thereof and a communication device including the same can be obtained.
  • FIG. 1 illustrates a multiband and wideband antenna according to an embodiment of the present invention
  • FIG. 2 is a view showing in detail the first interval and the second interval according to an embodiment of the present invention
  • FIG. 4 is an equivalent circuit diagram of a multiband and wideband antenna according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a dispersion diagram for a first metamaterial cell and a second metamaterial cell according to an embodiment of the present invention
  • FIG. 6 is a view showing a simulation result of the return loss for the multi-band and broadband antenna according to an embodiment of the present invention
  • FIG. 7 is a diagram showing simulation results and actual measurement results of a multi-band and broadband antenna according to an embodiment of the present invention.
  • FIGS. 8 to 10 are views showing radiation patterns of a multi-band and broadband antenna according to an embodiment of the present invention with respect to the x-y plane, the x-z plane, and the y-z plane, respectively;
  • FIG. 11 is a diagram illustrating antenna efficiency and maximum gain of multiband and wideband antennas measured in GSM900 / 1800/1900, WCDMA, and WiBro bands according to an embodiment of the present invention.
  • FIG. 1 is a diagram illustrating a multiband and wideband antenna according to an embodiment of the present invention.
  • the multiband and wideband antenna 100 includes a carrier 110, a feed line 120, a first meta material cell 130, and a second meta material 140.
  • the metamaterial refers to a material or an electromagnetic structure artificially designed to have special electromagnetic properties not generally found in nature.
  • the metamaterial is a dielectric material. It means a substance or such an electromagnetic structure that is both negative in permeability and permeability.
  • Such materials are also called double negative (DGN) materials in the sense of having two negative parameters.
  • DGN double negative
  • metamaterials have a negative reflection coefficient due to their negative dielectric constant and permeability, and thus are also called NRI (Negative Refractive Index) materials.
  • NRI Negative Refractive Index
  • metamaterials are sometimes referred to as left-handed materials (LHMs).
  • LHMs left-handed materials
  • the relationship between ⁇ (phase constant) and ⁇ (frequency) is not linear in the metamaterial, and the characteristic curve is also present in the left half of the coordinate plane. Due to the nonlinear characteristics, the metamaterial has a small phase difference according to frequency, so that a wideband circuit can be realized. Since the phase change is not proportional to the length of the transmission line, a small circuit can be realized.
  • such a metamaterial structure generally includes a series capacitance and a parallel inductance, which will be described with reference to FIG. 3.
  • a typical transmission line is equivalent to a T network comprising a series inductance (L R ) by the transmission line itself and a parallel capacitance (C R ) induced between the transmission line and the ground plane.
  • the metamaterial structure includes a series capacitance C L and a parallel inductance L L instead of or in addition to the general transmission line structure.
  • the left-handed (LH) characteristic of the metamaterial is introduced into the circuit, and zero-order resonance occurs.
  • This zero-order resonance has a different mechanism from that of a conventional antenna (i.e., primary resonance) and its resonance frequency is determined by the values of capacitance (C R , C L ) and inductance (L R , L L ). do. Therefore, the resonant frequency can be freely determined irrespective of the electrical length of the antenna, and the resonance can be generated in the low frequency band without increasing the size of the antenna.
  • the multi-band and broadband antenna of the present invention may include two or more metamaterial cells using the above-described metamaterial, that is, a composite right / left handed transmission line (CRLH-TL) structure.
  • the number of metamaterial cells can be configured as any number if two or more, but for the sake of convenience of explanation, the following description will be given by taking an example in which the number of metamaterial cells is two.
  • first metamaterial cell 130 and a second metamaterial cell 140 both of the first metamaterial cell 130 and the second metamaterial cell 140 may be a zero order resonator using metamaterials.
  • the carrier 110 may be a dielectric material having a predetermined dielectric constant ⁇ .
  • a flame retardant type 4 (FR4) having a dielectric constant of about 4.5 may be used as the carrier 110.
  • the carrier 110 is preferably a rectangular parallelepiped, but is not necessarily limited thereto.
  • the feeder line 120 is formed on a portion of the carrier 110 and is connected to a feeder (not shown) formed on the substrate to form one or more metamaterial cells, that is, the first metamaterial cell 130 and the second metamaterial 140. To feed).
  • the feed line 120 is formed on at least two surfaces of both sides and the upper surface of the carrier 110, that is, at least two surfaces of the carrier 110, and one at a predetermined distance from the one or more metamaterial cells. Coupling and feeding are electromagnetically connected with the above metamaterial cells.
  • One or more metamaterial cells are formed in the carrier 110, are fed by the feed line 120, and have a CRLH-TL structure.
  • the first meta material cell 130 is fed by the feed line 120 to resonate in the first frequency band
  • the second meta material cell 140 is fed by the feed line 120 to feed the first frequency.
  • Resonance occurs in a second frequency band, which is a different frequency band from the band.
  • the first frequency band is defined as a high frequency band larger than the second frequency band
  • the second frequency band is defined as a low frequency band smaller than the first frequency band.
  • the first material material 130 is spaced apart (see FIG. 2) from one side of the feed line 120 by a first distance G1 (see FIG. 2) to function as an antenna radiator and a first radiation patch 132.
  • One end is connected to one side and the other end comprises a first stub 134 connected to the ground plane on the substrate (a substrate on which the multi-band and broadband antenna is mounted)
  • the second material cell 140 is a feed line ( One end is connected to one side of the second radiation patch 142 and the second radiation patch 142 which is spaced apart from the other side of the 120 by a second interval G2 (see FIG. 2) to function as an antenna radiator, and the other end is a substrate.
  • a second stub 144 connected to the ground plane of the phase.
  • the first radiation patch 132 and the second radiation patch 142 are preferably formed on one surface (eg, the upper surface) of the carrier 110.
  • the first stub 132 and the second stub 142 are preferably formed on at least one surface of the carrier 110.
  • the first meta material cell 130 additionally connects the first opening stub 136 to one end of the first radiation patch 132, so as to be spaced apart from one side of the feed line 120 by a first distance.
  • the second meta material cell 140 is further connected to one end of the second radiation patch 142 by connecting the second open stub 146 to be spaced apart from the other side of the feed line 120 by a second interval. Impedance matching in the first frequency band and impedance matching in the second frequency band may be favored.
  • a load inductor (not shown) is additionally inserted between at least one of the feed line 120 and the ground plane, between the first stub 132 and the ground plane, and between the second stub 142 and the ground plane.
  • the resonant frequencies of the multiband and wideband antenna 100 may be adjusted.
  • FIG. 4 is an equivalent circuit diagram of a multiband and wideband antenna according to an embodiment of the present invention.
  • the multiband and broadband antenna 100 including the first metamaterial cell 130 and the second metamaterial cell 140 as described above has two CRLH-TL structures, that is, serial capacitance connected in series to the series inductance and the series inductance.
  • the circuit can be equivalent to a circuit containing two CRLH-TL structures, each containing a parallel capacitance and a parallel inductance connected in parallel to the parallel capacitance.
  • the inductance of the first radiation patch 132 and the inductance of the feed line 120 included in the first metamaterial cell 130 are equivalent to the first series inductance 410, and
  • the capacitance formed in the first gap G1 which is the interval of the first radiation patch 132, is equivalent to the first series capacitance 420, and the capacitance between the ground plane on the substrate and the first radiation patch is the first parallel capacitance.
  • the inductance of the first stub 134 is equivalent to the first parallel inductance 440.
  • the inductance of the second radiation patch 142 and the inductance of the feed line 120 included in the second material cell 140 are equivalent to the second series inductance 450, and the feed line 120 and the second radiation
  • the capacitance formed in the second gap G2, which is the spacing of the patches 142, is equivalent to the second series capacitance 460, and the capacitance between the ground plane on the substrate and the first radiating patch is the second parallel capacitance 470.
  • the inductance of the second stub 144 is equivalent to the second parallel inductance 480.
  • the first parallel inductance 440 may be adjusted by adjusting the length of the first stub 134, thereby adjusting the zero-order resonant frequency in the first frequency band, and adjusting the length of the second stub 144.
  • the second parallel inductance 480 can be adjusted, thereby adjusting the zero-order resonant frequency in the second frequency band.
  • the first resonance frequency in the first frequency band can be adjusted by changing the connection position of the first radiation patch 132 and the first stub 134, and the second radiation patch 142 and the second stub 144 can be adjusted. It is possible to adjust the primary resonant frequency in the second frequency band by changing the connection position of.
  • the first radiation patch 132 is further connected to one end of the 132, but is connected to one side of the feeder line 120 by a first interval so as to have a first frequency than when the first open stub 136 is not added. Impedance matching in the band may be good.
  • the second radiation patch is further connected to one end of the 142, but is connected to be spaced apart from the other side of the feed line 120 by a second interval than the second frequency than when the second open stub 146 is not added. Impedance matching in the band may be good.
  • load inductors are respectively provided between at least one of the feed line 120 and the ground plane on the substrate, between the first stub 134 and the ground plane on the substrate, and between the second stub 144 and the ground plane on the substrate.
  • One or more of the resonant frequency (zero-order resonant frequency or primary resonant frequency) in the first frequency band and the resonant frequency (zero-order resonant frequency or primary resonant frequency) in the second frequency band may be adjusted.
  • the multi-band and broadband antenna 100 includes a carrier 110 having a dielectric constant of 3.55 and a size of 35 mm ⁇ 5 mm ⁇ 3 mm, a feed line 120 having a width of 1 mm, and a first radiation patch 132 having a size of 8.8 mm ⁇ 5 mm. ),
  • the second radial patch 142 having a size of 24.8 mm x 5 mm, the first gap G1 and the second gap G2 are 0.2 mm, respectively, the first stub 134 and the second stub 144.
  • the multiband and broadband antennas 100 according to the present invention have multiband characteristics and wideband characteristics.
  • FIG. 5 is a diagram illustrating a dispersion diagram for a first metamaterial cell and a second metamaterial cell according to an embodiment of the present invention.
  • the curve indicated by a white circle ( ⁇ ) is a dispersion diagram for the first metamaterial cell 130 (high frequency band), and the curve indicated by a black circle ( ⁇ ) is a second metamaterial cell ( 140) (dispersion diagram for low frequency band).
  • the zeroth order resonance occurs at about 1.7 GHz in the first metamaterial cell 130, and the zeroth order resonance occurs at about 0.9 GHz in the second metamaterial cell 140.
  • the second metamaterial cell 140 may know that the first resonance occurs at a value adjacent to 1.7 GHz where the zero order resonance of the first metamaterial cell 130 occurs.
  • the zero-order resonant frequency of the first metamaterial cell 130 and the first-order resonant frequency of the second metamaterial cell 140 are adjacent to each other, these two resonant frequency bands are synthesized to form a wide band in the overall antenna system. It is possible to function as a normalized high frequency band operating frequency, the zero-order resonant frequency of the second material material 140 may be the low frequency band operating frequency of the entire antenna system.
  • the first resonance frequency in the second frequency band is adjusted by changing the connection position of the second radiation patch 142 and the second stub 144, thereby adjusting the wideband high frequency band operating frequency. do.
  • FIG. 6 is a diagram illustrating a result of simulating return loss for a multiband and wideband antenna according to an exemplary embodiment of the present invention.
  • the curve indicated by the white circle ( ⁇ ) is a result of simulating the reflection loss when only the first material cell 130 is operated, that is, only the high frequency band is operated, and the curve represented by the triangle ( ⁇ ) is zero. It is the result of simulating the return loss when only the 2 material cells 140 are operated, that is, only the low frequency band is operated, and the curve represented by the black circle ( ⁇ ) corresponds to the 0th order resonant frequency of the 1st material cell 130. This is a result of simulating the reflection loss when the first resonance frequency of the second material cell 140 is synthesized and operated, that is, when the multiband and the wideband antenna 100 operate in the wideband high frequency band.
  • the multi band and wide band antenna 100 has a multi band characteristic including a low frequency band and a high frequency band as well as a wide band characteristic.
  • FIG. 7 is a diagram illustrating simulation results and actual measurement results of a multi-band and broadband antenna according to an exemplary embodiment of the present invention.
  • the curve indicated by a white circle ( ⁇ ) represents a simulation result
  • the curve represented by a black circle ( ⁇ ) represents an actual measurement result
  • the entire antenna system that is, about 0.9 GHz
  • low frequency resonance is shown in the frequency band
  • high frequency resonance is shown in the frequency band of about 1.7 GHz to about 2.4 GHz.
  • the resonant frequency of about 0.9 GHz is realized by the zero-order resonance of the second material cell 140, and the zero-order resonance of about 1.7 GHz of the first material cell 130 and the zeroth order are implemented.
  • the first resonance of the two material cells 140 is synthesized to realize a wideband high frequency resonance.
  • FIGS. 8 to 10 are diagrams illustrating radiation patterns of a multi-band and broadband antenna according to an exemplary embodiment of the present invention with respect to the x-y plane, the x-z plane, and the y-z plane, respectively.
  • the antenna system of the present invention shows a radiation pattern having omni-directionality. Therefore, the antenna system of the present invention is sufficient to be applied to a mobile terminal.
  • FIG. 11 is a diagram illustrating antenna efficiency and maximum gain of multiband and wideband antennas measured in GSM900 / 1800/1900, WCDMA, and WiBro bands according to an embodiment of the present invention.
  • the antenna of the present invention operates as a multi-band antenna having a low band and a high band resonant frequency, and particularly shows a wide band characteristic at the high band resonant frequency. Can be.
  • the multi-band and broadband antenna 100 of the present invention has a spacing between the first radiation patch 132 and the feed line 120, a spacing between the second radiation patch 142 and the feed line 120, and a first stub.
  • the resonance frequency characteristics of the first material cell 130 and the second material cell 140 may be adjusted by adjusting the connection position and the length of the 134 and the second stub 144.
  • the present invention is not limited thereto, and if the inductance or capacitance of the first metamaterial cell 130 and the second metamaterial cell 140, that is, two or more metamaterial cells, can be adjusted, other configurations than the above configuration
  • the resonance frequency may be adjusted by adjusting the shape of all components included in the antenna system such as the dielectric constant of the carrier, the size of the carrier, the shape of the carrier, the number of unit cells, and the like.

Abstract

The present invention relates to a multiband and broadband antenna, and to a communication apparatus comprising same. The present invention provides a multiband and broadband antenna, comprising: a feeder line formed in a portion of a carrier; and two or more metamaterial cells which are formed in the carrier, fed by the feeder line, and have a composite right- / left- handed transmission line (CRLH-TL) structure. According to the present invention, two or more metamaterial cells are formed, and one or more of the inductance component and the capacitance component of said two or more metamaterial cells are adjusted, thereby obtaining a multiband and broadband antenna, the length of which is determined regardless of a resonance frequency.

Description

다중 대역 및 광대역 안테나 및 이를 포함하는 통신 장치Multiband and Wideband Antennas and Communication Devices Comprising the Same
본 발명은 다중 대역 및 광대역 안테나 및 이를 포함하는 통신 장치에 관한 것이다. 더욱 상세하게는 메타머티리얼의 특성을 이용하여 안테나 크기를 더욱 소형화함과 동시에 공진 주파수 조절이 용이하며, 다중 대역 및 광대역화를 달성할 수 있도록 하는 안테나 및 이를 포함하는 통신장치에 관한 것이다.The present invention relates to a multiband and wideband antenna and a communication device including the same. More specifically, the present invention relates to an antenna and a communication apparatus including the same, which can further reduce the size of the antenna by using the properties of the metamaterial and at the same time adjust the resonant frequency and achieve multi-band and wideband.
안테나는 전자기파를 송신 또는 수신하기 위한 무선 통신 장치의 필수 구성 요소로서, 특정 주파수의 전자기파에 대해 공진하여 그 주파수의 전자기파를 송신 또는 수신하도록 구성된다. 여기서, 공진(Resonance)이란, 일반적으로 특정 주파수에서 회로의 임피던스가 허수가 됨을 의미하며, 실제적으로는 특정 주파수에서 회로의 반사계수인 S11 파라미터가 급격히 증가하는 현상을 지칭한다.An antenna is an essential component of a wireless communication device for transmitting or receiving electromagnetic waves, and is configured to resonate with electromagnetic waves of a specific frequency and to transmit or receive electromagnetic waves of that frequency. Here, the resonance generally means that the impedance of the circuit is imaginary at a specific frequency, and in practice, refers to a phenomenon in which the S11 parameter, which is the reflection coefficient of the circuit, increases rapidly at a specific frequency.
한편, 종래의 안테나는 1차 모드의 공진 구조를 가진다. 즉, 종래의 안테나는 희망 주파수에 대응하는 파장 λ에 대해 λ/2의 전기적 길이를 갖고 일단이 개방(Open)되거나 단락(Short)된 도선(전송 선로)으로 구성된다. 이에 의해, 도선을 따라 도파되는 전자기파는 도선 내에서 정상파(Standing Wave)를 형성하고, 공진이 발생하게 된다. 이러한 1차 모드 공진 구조를 갖는 안테나는 안테나의 전기적 길이가 전적으로 공진 주파수에 의존하여 결정되므로, 안테나의 크기가 공진 주파수에 따라 변화하고 특히, 희망 공진 주파수가 낮아질수록 안테나가 커지는 단점이 있다.On the other hand, the conventional antenna has a resonance structure of the primary mode. That is, the conventional antenna has an electrical length of λ / 2 with respect to the wavelength λ corresponding to the desired frequency, and is composed of a conductor (transmission line) whose one end is open or shorted. As a result, electromagnetic waves guided along the conductive wire form a standing wave in the conductive wire, and resonance occurs. The antenna having such a first mode resonant structure is determined by the electrical length of the antenna entirely dependent on the resonant frequency, so that the size of the antenna varies with the resonant frequency, and in particular, the antenna becomes larger as the desired resonant frequency is lowered.
이러한 단점을 해결하기 위해, 안테나를 접지면 위에 형성하여 λ/4의 전기적 길이를 갖는 모노폴 안테나가 제안되었고, 모노폴 안테나의 크기를 더욱 줄이기 위해 헬릭스 (helix) 형태, 미앤더 (meander) 형태 등 복잡한 형상을 갖는 안테나가 제안되었다. 그러나 제안된 안테나들 역시 여전히 공진 주파수에 의존하여 크기가 결정되는 한계를 벗어나지 못하였으며, 안테나가 소형화될수록 좁은 공간에 λ/4의 전기적 길이로 고정된 길이의 안테나를 형성하기 위해 그 형태가 더욱 복잡해지는 문제가 있다. 또한, 안테나의 형태가 복잡해 질수록 형성된 도선 사이의 커플링에 의한 영향이 증가하는 등 안테나의 성능을 유지하는데도 어려움이 있다.In order to solve this disadvantage, a monopole antenna having an electrical length of λ / 4 is proposed by forming the antenna on the ground plane, and in order to further reduce the size of the monopole antenna, a complex such as a helix form and a meander form have been proposed. An antenna having a shape has been proposed. However, the proposed antennas still have to overcome the limit of their size depending on the resonant frequency, and as the antenna becomes smaller, its shape is more complicated to form a fixed length antenna with an electrical length of λ / 4 in a narrow space. There is a problem. In addition, as the shape of the antenna becomes more complicated, there is a difficulty in maintaining the performance of the antenna, such as the influence of coupling between the conductors formed increases.
이와 같은 문제점을 해결하기 위해 고유전율의 유전체를 부가하여 안테나의 유효 전기적 길이를 증가시키는 방안이 제안되었으나, 이는 유전체 제조 및 부가를 위한 추가적 비용을 요구하므로 바람직하지 못하다.In order to solve this problem, a method of increasing the effective electrical length of an antenna by adding a dielectric having a high dielectric constant has been proposed, but this is not preferable because it requires an additional cost for manufacturing and adding a dielectric.
전술한 문제점을 해결하기 위해 본 발명은, 메타머티리얼의 특성을 이용한 두 개 이상의 메타머티리얼 셀을 포함하는 다중 대역 및 광대역 안테나로서 더욱 소형화되고, 공진 주파수의 조절이 용이한 안테나 및 이를 포함하는 통신장치를 제공하는 데 그 목적이 있다.In order to solve the above-described problems, the present invention, the multi-band and wideband antenna including two or more metamaterial cells using the properties of the metamaterial is further miniaturized, the antenna and the communication device comprising the same easy to adjust the resonance frequency The purpose is to provide.
상기한 목적을 달성하기 위해 본 발명은, 캐리어의 일부에 형성되는 급전선; 및 상기 캐리어에 형성되고 상기 급전선에 의해 급전되며, CRLH-TL(Composite Right/Left Handed Transmission Line) 구조를 가지는 두 개 이상의 메타머티리얼 셀을 포함하는 것을 특징으로 하는 다중 대역 및 광대역 안테나를 제공한다.In order to achieve the above object, the present invention, the feeder is formed on a part of the carrier; And two or more metamaterial cells formed on the carrier and powered by the feed line, and having two or more CRLH-TL (Composite Right / Left Handed Transmission Line) structures.
상기 두 개 이상의 메타머티리얼 셀은 상기 급전선에 의해 급전되어 제 1 주파수 대역에서 공진하는 제 1 메타머티리얼 셀 및 상기 급전선에 의해 급전되어 상기 제 1 주파수 대역과 상이한 주파수 대역인 제 2 주파수 대역에서 공진하는 제 2 메타머티리얼 셀을 포함할 수 있다.The at least two metamaterial cells are fed by the feed line and resonate in a first frequency band and resonate in a second frequency band that is fed by the feed line and is fed by the feed line and is in a different frequency band from the first frequency band. It may include a second metamaterial cell.
제 1 메타머티리얼 셀은 상기 급전선의 일측과 제 1 간격만큼 이격되어 안테나 방사체로서 기능하는 제 1 방사 패치 및 상기 제 1 방사 패치의 일측에 일단이 연결되고, 타단이 상기 다중 대역 및 광대역 안테나가 실장되는 기판상의 접지면과 연결된 제 1 스터브를 포함하고, 상기 제 2 메타머티리얼 셀은 상기 급전선의 타측과 제 2 간격만큼 이격되어 안테나 방사체로서 기능하는 제 2 방사 패치 및 상기 제 2 방사 패치의 일측에 일단이 연결되고, 타단이 상기 접지면과 연결된 제 2 스터브를 포함할 수 있다.A first metamaterial cell is connected to one side of the first radiation patch and one side of the first radiation patch, which is spaced apart from one side of the feed line by a first interval, and functions as an antenna radiator, and the other end is mounted with the multi-band and broadband antenna. And a first stub connected to a ground plane on the substrate, wherein the second material cell is spaced apart from the other side of the feed line by a second distance to a second radiation patch and one side of the second radiation patch to function as an antenna radiator. One end may be connected, and the other end may include a second stub connected to the ground plane.
상기 제 1 메타머티리얼 셀은 상기 제 1 방사 패치의 일단에 연결되는 제 1 개방 스터브를 추가로 포함하되, 상기 제 1 개방 스터브는 상기 급전선의 일측과 상기 제 1 간격만큼 이격되는 것이 바람직하다.The first metamaterial cell further includes a first open stub connected to one end of the first radiation patch, wherein the first open stub is spaced apart from one side of the feed line by the first interval.
상기 제 2 메타머티리얼 셀은 상기 제 2 방사 패치의 일단에 연결되는 제 2 개방 스터브를 추가로 포함하되, 상기 제 2 개방 스터브는 상기 급전선의 타측과 상기 제 2 간격만큼 이격되는 것이 바람직하다.The second metamaterial cell further includes a second open stub connected to one end of the second radiation patch, wherein the second open stub is spaced apart from the other side of the feed line by the second interval.
상기 급전선과 상기 접지면 사이, 상기 제 1 스터브와 상기 접지면 사이 및 상기 제 2 스터브와 상기 접지면 사이 중 하나 이상에 로드 인덕터를 추가로 삽입할 수 있다.A load inductor may be further inserted between at least one of the feed line and the ground plane, between the first stub and the ground plane, and between the second stub and the ground plane.
상기 다중 대역 및 광대역 안테나는 상기 제 1 메타머티리얼 셀의 0차 공진 및 상기 제 2 메타머티리얼 셀의 1차 공진이 합성되어 광대역 특성을 나타낼 수 있다.The multi-band and wideband antennas may combine a zero-order resonance of the first metamaterial cell and a first-order resonance of the second metamaterial cell to exhibit broadband characteristics.
상술한 목적을 달성하기 위한 본 발명의 다른 실시예에 따르면, 상기 다중 대역 및 광대역 안테나를 포함하는 통신장치가 제공될 수 있다.According to another embodiment of the present invention for achieving the above object, there can be provided a communication device including the multi-band and broadband antenna.
이상에서 설명한 바와 같이 본 발명에 의하면, 두 개 이상의 메타머티리얼 셀을 구성하고, 이러한 두 개 이상의 메타머티리얼 셀의 인덕턴스 성분 및 커패시턴스 성분 중 하나 이상을 조정함으로써 안테나의 길이에 의존하지 않는 다중 대역 및 광대역 안테나를 구현할 수 있게 된다.As described above, according to the present invention, by configuring two or more metamaterial cells and adjusting one or more of the inductance component and the capacitance component of the two or more metamaterial cells, the multiband and the broadband do not depend on the length of the antenna. The antenna can be implemented.
따라서, 본 발명에 따르면, 안테나의 소형화를 이룰 수 있음과 동시에 다중 대역을 갖으며 그 대역폭이 넓은 안테나 및 이를 포함하는 통신장치가 얻어질 수 있다.Therefore, according to the present invention, an antenna can be miniaturized and at the same time, an antenna having multiple bands and a wide bandwidth thereof and a communication device including the same can be obtained.
도 1은 본 발명의 실시예에 따른 다중대역 및 광대역 안테나를 도시한 도면,1 illustrates a multiband and wideband antenna according to an embodiment of the present invention;
도 2는 본 발명의 실시예에 따른 제 1 간격 및 제 2 간격을 자세하게 나타낸 도면,2 is a view showing in detail the first interval and the second interval according to an embodiment of the present invention,
도 3은 메타머티리얼을 설명하기 위한 도면,3 is a view for explaining a metamaterial,
도 4는 본 발명의 실시예에 따른 다중대역 및 광대역 안테나의 등가 회로도,4 is an equivalent circuit diagram of a multiband and wideband antenna according to an embodiment of the present invention;
도 5는 본 발명의 실시예에 따른 제 1 메타머티리얼 셀과 제 2 메타머티리얼 셀에 대한 디스퍼젼 다이어그램(Dispersion Diagram)을 나타내는 도면,5 is a diagram illustrating a dispersion diagram for a first metamaterial cell and a second metamaterial cell according to an embodiment of the present invention;
도 6은 본 발명의 실시예에 따른 다중대역 및 광대역 안테나에 대한 반사 손실을 시뮬레이션한 결과를 나타낸 도면,6 is a view showing a simulation result of the return loss for the multi-band and broadband antenna according to an embodiment of the present invention,
도 7은 본 발명의 실시예에 따른 다중 대역 및 광대역 안테나의 시뮬레이션 결과 및 실제 측정 결과를 나타낸 도면,7 is a diagram showing simulation results and actual measurement results of a multi-band and broadband antenna according to an embodiment of the present invention;
도 8 내지 도 10은 본 발명의 실시예에 따른 다중 대역 및 광대역 안테나의 방사 패턴을 각각 x-y 평면, x-z 평면 및 y-z 평면에 대해 나타낸 도면,8 to 10 are views showing radiation patterns of a multi-band and broadband antenna according to an embodiment of the present invention with respect to the x-y plane, the x-z plane, and the y-z plane, respectively;
도 11은 본 발명의 실시예에 따른 다중 대역 및 광대역 안테나를 GSM900/1800/1900, WCDMA, WiBro 대역에서 각각 측정한 안테나 효율 및 최대 이득을 나타낸 도면이다.FIG. 11 is a diagram illustrating antenna efficiency and maximum gain of multiband and wideband antennas measured in GSM900 / 1800/1900, WCDMA, and WiBro bands according to an embodiment of the present invention.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. First of all, in adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used as much as possible even if displayed on different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
도 1은 본 발명의 실시예에 따른 다중대역 및 광대역 안테나를 도시한 도면이다.1 is a diagram illustrating a multiband and wideband antenna according to an embodiment of the present invention.
본 발명의 실시예에 따른 다중대역 및 광대역 안테나(100)는 캐리어(110), 급전선(120), 제 1 메타머티리얼 셀(Cell)(130) 및 제 2 메타머티리얼(140)을 포함한다.The multiband and wideband antenna 100 according to the embodiment of the present invention includes a carrier 110, a feed line 120, a first meta material cell 130, and a second meta material 140.
본 발명에서 메타머티리얼이란 자연에서 일반적으로 찾을 수 없는 특수한 전자기적 특성을 갖도록 인공적으로 설계된 물질 또는 전자기적 구조를 의미하는 것으로서, 본 기술 분야에서 일반적으로, 그리고 본 명세서에 있어서 메타머티리얼이라 함은 유전율(Permittivity)과 투자율(Permeability)이 모두 음수인 물질 또는 그러한 전자기적 구조를 의미한다.In the present invention, the metamaterial refers to a material or an electromagnetic structure artificially designed to have special electromagnetic properties not generally found in nature. In the technical field, the metamaterial is a dielectric material. It means a substance or such an electromagnetic structure that is both negative in permeability and permeability.
이러한 물질(또는 구조)는 두 개의 음수 파라미터를 가진다는 의미에서 더블 네거티브(Double Negative; DGN) 물질이라 불리기도 한다. 또한, 메타머티리얼은 음의 유전율 및 투자율에 의하여 음의 반사계수를 가지며, 그에 따라 NRI(Negative Refractive Index) 물질이라고도 불린다. 메타머티리얼은 1967년 소련의 물리학자 베젤라고(V.Veselago)에 의해 처음 연구되었으나, 그 후 30여 년이 지난 최근에 구체적 구현 방법이 연구되어 응용이 시도되고 있다.Such materials (or structures) are also called double negative (DGN) materials in the sense of having two negative parameters. In addition, metamaterials have a negative reflection coefficient due to their negative dielectric constant and permeability, and thus are also called NRI (Negative Refractive Index) materials. Metamaterial was first researched by Soviet physicist V. Veselago in 1967, but more than 30 years later, a concrete implementation method has been studied and its application has been attempted.
위와 같은 특성에 의하여, 메타머티리얼 내에서 전자기파는 플레밍의 오른손 법칙을 따르지 않고 왼손 법칙에 의해 전달된다. 즉, 전자기파의 위상 전파 방향(위상 속도(phase velocity) 방향)과 에너지 전파 방향(군 속도(group velocity) 방향)이 반대가 되어, 메타머티리얼을 통과하는 신호는 음의 위상 지연을 갖게 된다. 이에 따라, 메타머티리얼을 LHM(Left-handed Material)이라고도 한다. 또한, 메타머티리얼에서는 β(위상 상수)와 ω(주파수)의 관계가 비선형일 뿐만 아니라, 그 특성 곡선이 좌표 평면의 좌반면에도 존재하는 특성을 보인다. 이러한 비선형 특성에 의하여 메타머티리얼에서는 주파수에 따른 위상차가 작아 광대역 회로의 구현이 가능하며, 위상 변화가 전송 선로의 길이에 비례하지 않으므로 소형의 회로를 구현할 수 있다.Due to these characteristics, electromagnetic waves in metamaterials are transmitted by the left-hand rule rather than following Fleming's right-hand rule. That is, the phase propagation direction (phase velocity direction) and the energy propagation direction (group velocity direction) of the electromagnetic wave are reversed, and the signal passing through the metamaterial has a negative phase delay. Accordingly, metamaterials are sometimes referred to as left-handed materials (LHMs). In addition, the relationship between β (phase constant) and ω (frequency) is not linear in the metamaterial, and the characteristic curve is also present in the left half of the coordinate plane. Due to the nonlinear characteristics, the metamaterial has a small phase difference according to frequency, so that a wideband circuit can be realized. Since the phase change is not proportional to the length of the transmission line, a small circuit can be realized.
또한, 이러한 메타머티리얼 구조는 직렬 커패시턴스와 병렬 인덕턴스를 포함하는 것이 일반적이며, 이를 도 3을 참조하여 설명한다. 일반적인 전송 선로는 전송 선로 자체에 의한 직렬 인덕턴스(LR)와 전송 선로와 접지면 사이에서 유도되는 병렬 커패시턴스(CR)를 포함하는 T 네트워크로 등가화된다. 반면, 메타머티리얼 구조는, 일반적 전송선로 구조 대신, 또는 일반적 전송 선로 구조에 추가하여 직렬 커패시턴스(CL)와 병렬 인덕턴스(LL)를 포함한다. In addition, such a metamaterial structure generally includes a series capacitance and a parallel inductance, which will be described with reference to FIG. 3. A typical transmission line is equivalent to a T network comprising a series inductance (L R ) by the transmission line itself and a parallel capacitance (C R ) induced between the transmission line and the ground plane. On the other hand, the metamaterial structure includes a series capacitance C L and a parallel inductance L L instead of or in addition to the general transmission line structure.
이러한 직렬 커패시턴스(CL)와 병렬 인덕턴스(LL)를 통해, 메타머티리얼의 LH(Left-handed) 특성이 회로에 도입되고, 0차 공진이 발생하게 된다. 이러한 0차 공진은 종래의 안테나에서 일어나는 공진(즉, 1차 공진)과는 상이한 메커니즘을 가지며 그 공진 주파수가 커패시턴스(CR, CL)와 인덕턴스(LR, LL)의 값에 의해 결정된다. 그러므로 공진 주파수는 안테나의 전기적 길이와 상관없이 자유롭게 결정될 수 있으며, 안테나를 대형화하지 않고도 저주파 대역에서 공진을 발생시킬 수 있게 된다.Through such series capacitance C L and parallel inductance L L , the left-handed (LH) characteristic of the metamaterial is introduced into the circuit, and zero-order resonance occurs. This zero-order resonance has a different mechanism from that of a conventional antenna (i.e., primary resonance) and its resonance frequency is determined by the values of capacitance (C R , C L ) and inductance (L R , L L ). do. Therefore, the resonant frequency can be freely determined irrespective of the electrical length of the antenna, and the resonance can be generated in the low frequency band without increasing the size of the antenna.
본 발명의 다중 대역 및 광대역 안테나는 도 1에 도시되는 바와 같이, 상기와 같은 메타머티리얼, 즉 CRLH-TL(Composite Right/Left Handed Transmission Line) 구조를 이용한 두 개 이상의 메타머티리얼 셀을 포함할 수 있다. 여기서, 메타머티리얼 셀의 개수는 두 개 이상이면 어떠한 수로도 구성가능하나, 이하에서는 설명의 편의를 위해 메타머티리얼 셀의 개수가 두 개인 경우를 예로 들어 설명하기로 한다.As shown in FIG. 1, the multi-band and broadband antenna of the present invention may include two or more metamaterial cells using the above-described metamaterial, that is, a composite right / left handed transmission line (CRLH-TL) structure. . Here, the number of metamaterial cells can be configured as any number if two or more, but for the sake of convenience of explanation, the following description will be given by taking an example in which the number of metamaterial cells is two.
도 1에서 이러한 메타머티리얼 셀을 각각 제 1 메타머티리얼 셀(130)과 제 2 메타머티리얼 셀(140)로 지칭하기로 한다. 여기서, 제 1 메타머티리얼 셀(130)과 제 2 메타머티리얼 셀(140)은 모두 메타머티리얼을 이용한 0차 공진기(Zeroth Order Resonator)일 수 있다.In FIG. 1, these metamaterial cells will be referred to as a first metamaterial cell 130 and a second metamaterial cell 140, respectively. Here, both of the first metamaterial cell 130 and the second metamaterial cell 140 may be a zero order resonator using metamaterials.
캐리어(110)는 소정의 유전율(ρ)을 갖는 유전 물질일 수 있으며, 일례로서, 유전율이 약 4.5인 FR4(Flame Retardant Type4)이 상기 캐리어(110)로서 이용될 수 있다.The carrier 110 may be a dielectric material having a predetermined dielectric constant ρ. For example, a flame retardant type 4 (FR4) having a dielectric constant of about 4.5 may be used as the carrier 110.
본 발명에서 캐리어(110)는 직육면체인 것이 바람직하나, 반드시 이에 한정되는 것은 아니다.In the present invention, the carrier 110 is preferably a rectangular parallelepiped, but is not necessarily limited thereto.
급전선(120)은 캐리어(110)의 일부분에 형성되고, 기판상에 형성된 급전부(미도시)와 접속하여 하나 이상의 메타머티리얼 셀, 즉 제 1 메타머티리얼 셀(130) 및 제 2 메타머티리얼(140)에 급전한다.The feeder line 120 is formed on a portion of the carrier 110 and is connected to a feeder (not shown) formed on the substrate to form one or more metamaterial cells, that is, the first metamaterial cell 130 and the second metamaterial 140. To feed).
더욱 자세히 설명하면, 급전선(120)은 캐리어(110)의 양 측면 및 상면 중 2면 이상, 즉 캐리어(110)의 적어도 2면에 형성되고, 하나 이상의 메타머티리얼 셀과 일정 간격 이격된 상태에서 하나 이상의 메타머티리얼 셀과 전자기적으로 연결되어 커플링 급전한다.In more detail, the feed line 120 is formed on at least two surfaces of both sides and the upper surface of the carrier 110, that is, at least two surfaces of the carrier 110, and one at a predetermined distance from the one or more metamaterial cells. Coupling and feeding are electromagnetically connected with the above metamaterial cells.
하나 이상의 메타머티리얼 셀은 캐리어(110)에 형성되고, 급전선(120)에 의해 급전되며, CRLH-TL 구조를 가진다.One or more metamaterial cells are formed in the carrier 110, are fed by the feed line 120, and have a CRLH-TL structure.
더욱 자세히 설명하면, 제 1 메타머티리얼 셀(130)은 급전선(120)에 의해 급전되어 제 1 주파수 대역에서 공진하고, 제 2 메타머티리얼 셀(140)은 급전선(120)에 의해 급전되어 제 1 주파수 대역과 상이한 주파수 대역인 제 2 주파수 대역에서 공진한다. 본 발명에서는 설명의 편의상 제 1 주파수 대역을 제 2 주파수 대역보다 큰 고주파 대역이라 규정하고, 제 2 주파수 대역을 제 1 주파수 대역보다 작은 저주파 대역이라 규정한다. In more detail, the first meta material cell 130 is fed by the feed line 120 to resonate in the first frequency band, and the second meta material cell 140 is fed by the feed line 120 to feed the first frequency. Resonance occurs in a second frequency band, which is a different frequency band from the band. In the present invention, for convenience of description, the first frequency band is defined as a high frequency band larger than the second frequency band, and the second frequency band is defined as a low frequency band smaller than the first frequency band.
이러한 제 1 메타머티리얼 셀(130)은 급전선(120)의 일측과 제 1 간격(G1)만큼 이격(도 2 참조)되어 안테나 방사체로서 기능하는 제 1 방사 패치(132) 및 제 1 방사 패치(132)의 일측에 일단이 연결되고 타단이 기판(다중 대역 및 광대역 안테나가 실장되는 기판) 상의 접지면과 연결된 제 1 스터브(134)를 포함하여 구성되고, 제 2 메타머티리얼 셀(140)은 급전선(120)의 타측과 제 2 간격(G2)만큼 이격(도 2 참조)되어 안테나 방사체로서 기능하는 제 2 방사 패치(142) 및 제 2 방사 패치(142)의 일측에 일단이 연결되고, 타단이 기판상의 접지면과 연결된 제 2 스터브(144)를 포함하여 구성된다. 여기서, 캐리어(110)가 통상적인 직육면체 형상으로 형성되는 경우, 제 1 방사 패치(132) 및 제 2 방사 패치(142)는 캐리어(110)의 일면(예를 들어, 상면)에 형성되는 것이 바람직하고, 제 1 스터브(132) 및 제 2 스터브(142)는 캐리어(110)의 일면 이상에 형성되는 것이 바람직하다.The first material material 130 is spaced apart (see FIG. 2) from one side of the feed line 120 by a first distance G1 (see FIG. 2) to function as an antenna radiator and a first radiation patch 132. One end is connected to one side and the other end comprises a first stub 134 connected to the ground plane on the substrate (a substrate on which the multi-band and broadband antenna is mounted), the second material cell 140 is a feed line ( One end is connected to one side of the second radiation patch 142 and the second radiation patch 142 which is spaced apart from the other side of the 120 by a second interval G2 (see FIG. 2) to function as an antenna radiator, and the other end is a substrate. And a second stub 144 connected to the ground plane of the phase. Here, when the carrier 110 is formed in a conventional rectangular parallelepiped shape, the first radiation patch 132 and the second radiation patch 142 are preferably formed on one surface (eg, the upper surface) of the carrier 110. The first stub 132 and the second stub 142 are preferably formed on at least one surface of the carrier 110.
한편, 본 발명에서 제 1 메타머티리얼 셀(130)은 제 1 방사 패치(132)의 일단에 제 1 개방 스터브(136)를 추가로 연결하되, 급전선(120)의 일측과 제 1 간격만큼 이격되도록 연결하고, 제 2 메타머티리얼 셀(140) 또한 제 2 방사 패치(142)의 일단에 제 2 개방 스터브(146)를 추가로 연결하되, 급전선(120)의 타측과 제 2 간격만큼 이격되도록 연결하여 제 1 주파수 대역에서의 임피던스 매칭 및 제 2 주파수 대역에서의 임피던스 매칭을 양호하게 할 수도 있다.Meanwhile, in the present invention, the first meta material cell 130 additionally connects the first opening stub 136 to one end of the first radiation patch 132, so as to be spaced apart from one side of the feed line 120 by a first distance. The second meta material cell 140 is further connected to one end of the second radiation patch 142 by connecting the second open stub 146 to be spaced apart from the other side of the feed line 120 by a second interval. Impedance matching in the first frequency band and impedance matching in the second frequency band may be favored.
또한, 본 발명에서 급전선(120)과 접지면 사이, 제 1 스터브(132)와 접지면 사이 및 제 2 스터브(142)와 접지면 사이 중 하나 이상에 로드 인덕터(미도시)를 추가로 삽입하여 다중 대역 및 광대역 안테나(100)의 공진 주파수를 조정할 수도 있다. Further, in the present invention, a load inductor (not shown) is additionally inserted between at least one of the feed line 120 and the ground plane, between the first stub 132 and the ground plane, and between the second stub 142 and the ground plane. The resonant frequencies of the multiband and wideband antenna 100 may be adjusted.
도 4는 본 발명의 실시예에 따른 다중대역 및 광대역 안테나의 등가 회로도이다.4 is an equivalent circuit diagram of a multiband and wideband antenna according to an embodiment of the present invention.
상기와 같은 제 1 메타머티리얼 셀(130) 및 제 2 메타머티리얼 셀(140)을 포함한 다중 대역 및 광대역 안테나(100)는 두 개의 CRLH-TL 구조, 즉 직렬 인덕턴스, 직렬 인덕턴스에 직렬로 연결된 직렬 커패시턴스, 병렬 커패시턴스 및 병렬 커패시턴스에 병렬로 연결된 병렬 인덕턴스를 각각 포함한 두 개의 CRLH-TL 구조를 포함한 회로로 등가화될 수 있다.The multiband and broadband antenna 100 including the first metamaterial cell 130 and the second metamaterial cell 140 as described above has two CRLH-TL structures, that is, serial capacitance connected in series to the series inductance and the series inductance. The circuit can be equivalent to a circuit containing two CRLH-TL structures, each containing a parallel capacitance and a parallel inductance connected in parallel to the parallel capacitance.
더욱 자세히 설명하면, 제 1 메타머티리얼 셀(130)에 포함된 제 1 방사 패치(132)의 인덕턴스 및 급전선(120)의 인덕턴스는 제 1 직렬 인덕턴스(410)로 등가화되고, 급전선(120)과 제 1 방사 패치(132)의 간격인 제 1 간격(G1)에 형성되는 커패시턴스는 제 1 직렬 커패시턴스(420)로 등가화되며, 기판상의 접지면과 제 1 방사 패치 사이의 커패시턴스는 제 1 병렬 커패시턴스(430)로 등가화되고, 제 1 스터브(134)의 인덕턴스는 제 1 병렬 인덕턴스(440)로 등가화된다.In more detail, the inductance of the first radiation patch 132 and the inductance of the feed line 120 included in the first metamaterial cell 130 are equivalent to the first series inductance 410, and The capacitance formed in the first gap G1, which is the interval of the first radiation patch 132, is equivalent to the first series capacitance 420, and the capacitance between the ground plane on the substrate and the first radiation patch is the first parallel capacitance. Equivalent to 430, the inductance of the first stub 134 is equivalent to the first parallel inductance 440.
또한, 제 2 메타머티리얼 셀(140)에 포함된 제 2 방사 패치(142)의 인덕턴스 및 급전선(120)의 인덕턴스는 제 2 직렬 인덕턴스(450)로 등가화되고, 급전선(120)과 제 2 방사 패치(142)의 간격인 제 2 간격(G2)에 형성되는 커패시턴스는 제 2 직렬 커패시턴스(460)로 등가화되며, 기판상의 접지면과 제 1 방사 패치 사이의 커패시턴스는 제 2 병렬 커패시턴스(470)로 등가화되고, 제 2 스터브(144)의 인덕턴스는 제 2 병렬 인덕턴스(480)로 등가화된다.In addition, the inductance of the second radiation patch 142 and the inductance of the feed line 120 included in the second material cell 140 are equivalent to the second series inductance 450, and the feed line 120 and the second radiation The capacitance formed in the second gap G2, which is the spacing of the patches 142, is equivalent to the second series capacitance 460, and the capacitance between the ground plane on the substrate and the first radiating patch is the second parallel capacitance 470. Equivalent to, the inductance of the second stub 144 is equivalent to the second parallel inductance 480.
여기서, 제 1 스터브(134)의 길이를 조정함으로써 제 1 병렬 인덕턴스(440)를 조정할 수 있고 이를 통해 제 1 주파수 대역에서의 0차 공진 주파수를 조정할 수 있으며, 제 2 스터브(144)의 길이를 조정함으로써 제 2 병렬 인덕턴스(480)를 조정할 수 있고 이를 통해 제 2 주파수 대역에서의 0차 공진 주파수를 조정할 수 있다.Here, the first parallel inductance 440 may be adjusted by adjusting the length of the first stub 134, thereby adjusting the zero-order resonant frequency in the first frequency band, and adjusting the length of the second stub 144. By adjusting, the second parallel inductance 480 can be adjusted, thereby adjusting the zero-order resonant frequency in the second frequency band.
또한, 제 1 방사 패치(132)와 제 1 스터브(134)의 연결 위치를 변경함으로써 제 1 주파수 대역에서의 1차 공진 주파수를 조정할 수 있고, 제 2 방사 패치(142)와 제 2 스터브(144)의 연결 위치를 변경함으로써 제 2 주파수 대역에서의 1차 공진 주파수를 조정할 수 있다.In addition, the first resonance frequency in the first frequency band can be adjusted by changing the connection position of the first radiation patch 132 and the first stub 134, and the second radiation patch 142 and the second stub 144 can be adjusted. It is possible to adjust the primary resonant frequency in the second frequency band by changing the connection position of.
또한, 급전선(120)과 제 1 방사 패치(132)의 간격을 조정함으로써, 제 1 직렬 커패시턴스(420)를 조정할 수 있고 이를 통해 제 1 주파수 대역에서의 임피던스 매칭을 할 수 있으며, 제 1 방사 패치(132)의 일단에 제 1 개방 스터브(136)를 추가로 연결하되, 급전선(120)의 일측과 제 1 간격만큼 이격되도록 연결하여 제 1 개방 스터브(136)를 추가하지 않았을 때보다 제 1 주파수 대역에서의 임피던스 매칭을 양호하게 할 수도 있다.In addition, by adjusting the distance between the feed line 120 and the first radiation patch 132, it is possible to adjust the first series capacitance 420, thereby enabling impedance matching in the first frequency band, the first radiation patch The first open stub 136 is further connected to one end of the 132, but is connected to one side of the feeder line 120 by a first interval so as to have a first frequency than when the first open stub 136 is not added. Impedance matching in the band may be good.
또한, 급전선(120)과 제 2 방사 패치(142)의 간격을 조정함으로써, 제 2 직렬 커패시턴스(460)를 조정할 수 있고 이를 통해 제 2 주파수 대역에서의 임피던스 매칭을 할 수 있으며, 제 2 방사 패치(142)의 일단에 제 2 개방 스터브(146)를 추가로 연결하되, 급전선(120)의 타측과 제 2 간격만큼 이격되도록 연결하여 제 2 개방 스터브(146)를 추가하지 않았을 때보다 제 2 주파수 대역에서의 임피던스 매칭을 양호하게 할 수도 있다.In addition, by adjusting the distance between the feed line 120 and the second radiation patch 142, it is possible to adjust the second series capacitance 460, thereby enabling impedance matching in the second frequency band, the second radiation patch The second open stub 146 is further connected to one end of the 142, but is connected to be spaced apart from the other side of the feed line 120 by a second interval than the second frequency than when the second open stub 146 is not added. Impedance matching in the band may be good.
또한, 급전선(120)과 기판상의 접지면 사이, 제 1 스터브(134)와 기판상의 접지면 사이 및 제 2 스터브(144)와 기판상의 접지면 사이 중 하나 이상에 로드 인덕터(미도시)를 각각 삽입하여 제 1 주파수 대역에서의 공진 주파수(0차 공진 주파수 또는 1차 공진 주파수) 및 제 2 주파수 대역에서의 공진 주파수(0차 공진 주파수 또는 1차 공진 주파수) 중 하나 이상을 조정할 수도 있다.Also, load inductors (not shown) are respectively provided between at least one of the feed line 120 and the ground plane on the substrate, between the first stub 134 and the ground plane on the substrate, and between the second stub 144 and the ground plane on the substrate. One or more of the resonant frequency (zero-order resonant frequency or primary resonant frequency) in the first frequency band and the resonant frequency (zero-order resonant frequency or primary resonant frequency) in the second frequency band may be adjusted.
이하에서는 다중 대역 및 광대역 안테나(100)가 유전율이 3.55이고 크기가 35mm×5mm×3mm인 캐리어(110), 폭이 1mm인 급전선(120)과 크기가 8.8mm×5mm인 제 1 방사 패치(132), 크기가 24.8mm×5mm인 제 2 방사 패치(142)를 포함하고 제 1 간격(G1) 및 제 2 간격(G2)이 각각 0.2mm이며, 제 1 스터브(134) 및 제 2 스터브(144)의 폭이 각각 1mm인 조건을 가질 때에 측정된 결과를 통해 본 발명에서의 다중 대역 및 광대역 안테나(100)가 다중 대역 특성 및 광대역 특성이 있다는 것을 설명하도록 한다.Hereinafter, the multi-band and broadband antenna 100 includes a carrier 110 having a dielectric constant of 3.55 and a size of 35 mm × 5 mm × 3 mm, a feed line 120 having a width of 1 mm, and a first radiation patch 132 having a size of 8.8 mm × 5 mm. ), The second radial patch 142 having a size of 24.8 mm x 5 mm, the first gap G1 and the second gap G2 are 0.2 mm, respectively, the first stub 134 and the second stub 144. In the present invention, the multiband and broadband antennas 100 according to the present invention have multiband characteristics and wideband characteristics.
도 5는 본 발명의 실시예에 따른 제 1 메타머티리얼 셀과 제 2 메타머티리얼 셀에 대한 디스퍼젼 다이어그램(Dispersion Diagram)을 나타내는 도면이다.5 is a diagram illustrating a dispersion diagram for a first metamaterial cell and a second metamaterial cell according to an embodiment of the present invention.
도 5의 다이어그램에서 백색 원(○)으로 표시되는 곡선은 제 1 메타머티리얼 셀(130)(고주파 대역)에 대한 디스퍼젼 다이어그램이며, 흑색 원(●)으로 표시되는 곡선은 제 2 메타머티리얼 셀(140)(저주파 대역)에 대한 디스퍼젼 다이어그램이다.In the diagram of FIG. 5, the curve indicated by a white circle (○) is a dispersion diagram for the first metamaterial cell 130 (high frequency band), and the curve indicated by a black circle (●) is a second metamaterial cell ( 140) (dispersion diagram for low frequency band).
도 5를 참조하면, 제 1 메타머티리얼 셀(130)은 대략 1.7GHz 근처에서 0차 공진이 발생하고, 제 2 메타머티리얼 셀(140)은 대략 0.9GHz 근처에서 0차 공진이 발생한다. 또한, 제 2 메타머티리얼 셀(140)은 제 1 메타머티리얼 셀(130)의 0차 공진이 발생하는 1.7GHz에 인접한 값에서 1차 공진이 발생하는 것을 알 수 있다.Referring to FIG. 5, the zeroth order resonance occurs at about 1.7 GHz in the first metamaterial cell 130, and the zeroth order resonance occurs at about 0.9 GHz in the second metamaterial cell 140. In addition, the second metamaterial cell 140 may know that the first resonance occurs at a value adjacent to 1.7 GHz where the zero order resonance of the first metamaterial cell 130 occurs.
여기서, 제 1 메타머티리얼 셀(130)의 0차 공진 주파수와 제 2 메타머티리얼 셀(140)의 1차 공진 주파수가 인접하고 있기 때문에, 이 두 개의 공진 주파수 대역이 합성되어 전체적인 안테나 시스템에 있어서는 광대역화된 고주파 대역 동작 주파수로서 기능할 수 있게 되고, 제 2 메타머티리얼 셀(140)의 0차 공진 주파수는 전체 안테나 시스템의 저주파 대역 동작 주파수가 될 수 있다. Here, since the zero-order resonant frequency of the first metamaterial cell 130 and the first-order resonant frequency of the second metamaterial cell 140 are adjacent to each other, these two resonant frequency bands are synthesized to form a wide band in the overall antenna system. It is possible to function as a normalized high frequency band operating frequency, the zero-order resonant frequency of the second material material 140 may be the low frequency band operating frequency of the entire antenna system.
이러한 경우, 제 2 방사 패치(142)와 제 2 스터브(144)의 연결 위치를 변경하여 제 2 주파수 대역에서의 1차 공진 주파수를 조정하고, 이를 통해 광대역화된 고주파 대역 동작 주파수를 조정할 수 있게 된다.In this case, the first resonance frequency in the second frequency band is adjusted by changing the connection position of the second radiation patch 142 and the second stub 144, thereby adjusting the wideband high frequency band operating frequency. do.
도 6은 본 발명의 실시예에 따른 다중대역 및 광대역 안테나에 대한 반사 손실을 시뮬레이션한 결과를 나타낸 도면이다.FIG. 6 is a diagram illustrating a result of simulating return loss for a multiband and wideband antenna according to an exemplary embodiment of the present invention.
도 6에서 백색 원(○)으로 표시되는 곡선은 제 1 메타머티리얼 셀(130)만 동작, 즉 고주파 대역만 동작한 경우의 반사 손실을 시뮬레이션한 결과이고, 삼각형(△)으로 표시되는 곡선은 제 2 메타머티리얼 셀(140)만 동작, 즉 저주파 대역만 동작한 경우의 반사 손실을 시뮬레이션한 결과이며, 흑색 원(●)으로 표시되는 곡선은 제 1 메타머티리얼 셀(130)의 0차 공진 주파수와 제 2 메타머티리얼 셀(140)의 1차 공진 주파수가 합성되어 동작한 경우, 즉, 다중 대역 및 광대역 안테나(100)가 광대역화된 고주파 대역에서 동작한 경우의 반사 손실을 시뮬레이션한 결과이다.In FIG. 6, the curve indicated by the white circle (○) is a result of simulating the reflection loss when only the first material cell 130 is operated, that is, only the high frequency band is operated, and the curve represented by the triangle (Δ) is zero. It is the result of simulating the return loss when only the 2 material cells 140 are operated, that is, only the low frequency band is operated, and the curve represented by the black circle (●) corresponds to the 0th order resonant frequency of the 1st material cell 130. This is a result of simulating the reflection loss when the first resonance frequency of the second material cell 140 is synthesized and operated, that is, when the multiband and the wideband antenna 100 operate in the wideband high frequency band.
이를 통해 본 발명에서 다중 대역 및 광대역 안테나(100)가 광대역 특성은 물론, 저주파 대역 및 고주파 대역을 포함하는 다중 대역 특성이 있다는 것을 알 수 있다.Through this, it can be seen that in the present invention, the multi band and wide band antenna 100 has a multi band characteristic including a low frequency band and a high frequency band as well as a wide band characteristic.
도 7은 본 발명의 실시예에 따른 다중 대역 및 광대역 안테나의 시뮬레이션 결과 및 실제 측정 결과를 나타낸 도면이다.7 is a diagram illustrating simulation results and actual measurement results of a multi-band and broadband antenna according to an exemplary embodiment of the present invention.
도 7의 그래프에서 백색 원(○)으로 표시되는 곡선은 시뮬레이션 결과이며, 흑색 원(●)으로 표시되는 곡선은 실제 측정 결과를 나타낸다. In the graph of FIG. 7, the curve indicated by a white circle (○) represents a simulation result, and the curve represented by a black circle (●) represents an actual measurement result.
도 7을 참조하면, 전체 안테나 시스템, 즉 제 1 메타머티리얼 셀(130)의 0차 공진 주파수와 제 2 메타머티리얼 셀(140)의 1차 공진 주파수가 합성되어 동작한 경우, 약 0.9GHz 근처의 주파수 대역에서 저주파 공진을 나타내며, 약 1.7GHz 내지 약 2.4GHz 의 주파수 대역에서 고주파 공진을 나타낸다는 것을 알 수 있다.  구체적으로는, 제 2 메타머티리얼 셀(140)의 0차 공진에 의해 약 0.9GHz 근처에서의 공진 주파수가 구현되며, 제 1 메타머티리얼 셀(130)의 약 1.7GHz 근처에서의 0차 공진과 제 2 메타머티리얼 셀(140)의 1차 공진이 합성되어 전체적으로 광대역화된 고주파 공진이 구현된다는 것을 알 수 있다.Referring to FIG. 7, when the zero-order resonant frequency of the first antenna material 130 and the first-order resonant frequency of the second metamaterial cell 140 are combined and operated, the entire antenna system, that is, about 0.9 GHz It can be seen that low frequency resonance is shown in the frequency band, and high frequency resonance is shown in the frequency band of about 1.7 GHz to about 2.4 GHz. Specifically, the resonant frequency of about 0.9 GHz is realized by the zero-order resonance of the second material cell 140, and the zero-order resonance of about 1.7 GHz of the first material cell 130 and the zeroth order are implemented. It can be seen that the first resonance of the two material cells 140 is synthesized to realize a wideband high frequency resonance.
도 8 내지 도 10은 본 발명의 실시예에 따른 다중 대역 및 광대역 안테나의 방사 패턴을 각각 x-y 평면, x-z 평면 및 y-z 평면에 대해 나타낸 도면이다.8 to 10 are diagrams illustrating radiation patterns of a multi-band and broadband antenna according to an exemplary embodiment of the present invention with respect to the x-y plane, the x-z plane, and the y-z plane, respectively.
도 8 내지 도 10을 참조하면, 본 발명의 안테나 시스템은 전 방향성을 갖는 방사 패턴을 보임을 알 수 있다. 따라서, 본 발명의 안테나 시스템은 이동식 단말기에 적용하기에 충분하다.8 to 10, it can be seen that the antenna system of the present invention shows a radiation pattern having omni-directionality. Therefore, the antenna system of the present invention is sufficient to be applied to a mobile terminal.
도 11은 본 발명의 실시예에 따른 다중 대역 및 광대역 안테나를 GSM900/1800/1900, WCDMA, WiBro 대역에서 각각 측정한 안테나 효율 및 최대 이득을 나타낸 도면이다. FIG. 11 is a diagram illustrating antenna efficiency and maximum gain of multiband and wideband antennas measured in GSM900 / 1800/1900, WCDMA, and WiBro bands according to an embodiment of the present invention.
이전의 설명 및 도 11에서 알 수 있는 바와 같이, 본 발명의 안테나는 저대역 및 고대역 공진 주파수를 갖는 다중 대역 안테나로서 동작한다는 것을 알 수 있으며, 특히 고대역 공진 주파수에서는 광대역 특성을 보이는 것을 알 수 있다. As can be seen from the previous description and FIG. 11, it can be seen that the antenna of the present invention operates as a multi-band antenna having a low band and a high band resonant frequency, and particularly shows a wide band characteristic at the high band resonant frequency. Can be.
이처럼 본 발명의 다중 대역 및 광대역 안테나(100)는 제 1 방사 패치(132)와 급전선(120) 사이의 이격 간격, 제 2 방사 패치(142)와 급전선(120) 사이의 이격 간격, 제 1 스터브(134) 및 제 2 스터브(144)의 연결 위치 및 길이 등을 조절함으로써 제 1 메타머티리얼 셀(130)과 제 2 메타머티리얼 셀(140)의 공진 주파수 특성을 조절할 수 있다.  그러나, 본 발명은 이에 제한되는 것은 아니며, 제 1 메타머티리얼 셀(130)과 제 2 메타머티리얼 셀(140), 즉 두 개 이상의 메타머티리얼 셀의 인덕턴스 또는 커패시턴스를 조절할 수 있다면, 상기 구성 외의 다른 구성, 예를 들면, 캐리어의 유전율, 캐리어의 크기, 캐리어의 모양, 유닛 셀의 개수 등 안테나 시스템에 포함되는 모든 구성 요소의 형태를 조절함으로써 공진 주파수를 조절할 수 있다.As described above, the multi-band and broadband antenna 100 of the present invention has a spacing between the first radiation patch 132 and the feed line 120, a spacing between the second radiation patch 142 and the feed line 120, and a first stub. The resonance frequency characteristics of the first material cell 130 and the second material cell 140 may be adjusted by adjusting the connection position and the length of the 134 and the second stub 144. However, the present invention is not limited thereto, and if the inductance or capacitance of the first metamaterial cell 130 and the second metamaterial cell 140, that is, two or more metamaterial cells, can be adjusted, other configurations than the above configuration For example, the resonance frequency may be adjusted by adjusting the shape of all components included in the antenna system such as the dielectric constant of the carrier, the size of the carrier, the shape of the carrier, the number of unit cells, and the like.
이상 본 발명의 구체적 실시형태들을 참조하여 본 발명을 설명하였으나, 이는 예시에 불과하며 본 발명의 범위를 제한하는 것이 아니다. 당업자는 본 발명의 범위를 벗어나지 않는 범위 내에서 설명된 실시형태들을 변경 또는 변형할 수 있다. 본 명세서에서 설명된 각 기능 블록들 또는 수단들은 전자 회로, 집적 회로, ASIC (Application Specific Integrated Circuit) 등 공지된 다양한 소자들로 구현될 수 있으며, 각각 별개로 구현되거나 2 이상이 하나로 통합되어 구현될 수 있다. 본 명세서 및 청구범위에서 별개인 것으로 설명된 수단 등의 구성요소는 단순히 기능상 구별된 것으로 물리적으로는 하나의 수단으로 구현될 수 있으며, 단일한 것으로 설명된 수단 등의 구성요소도 수개의 구성요소의 결합으로 이루어질 수 있다. 또한 본 명세서에서 설명된 각 방법 단계들은 본 발명의 범위를 벗어나지 않고 그 순서가 변경될 수 있고, 다른 단계가 부가될 수 있다. 뿐만 아니라, 본 명세서에서 설명된 다양한 실시형태들은 각각 독립하여서뿐만 아니라 적절하게 결합되어 구현될 수도 있다. 따라서 본 발명의 범위는 설명된 실시형태가 아니라 첨부된 청구범위 및 그 균등물에 의해 정해져야 한다.The present invention has been described above with reference to specific embodiments of the present invention, but this is only illustrative and does not limit the scope of the present invention. Those skilled in the art can change or modify the described embodiments without departing from the scope of the present invention. Each of the functional blocks or means described herein may be implemented by various well-known elements such as an electronic circuit, an integrated circuit, an application specific integrated circuit (ASIC), and the like. Can be. Components such as means described as separate in the specification and claims may be simply functionally distinct and may be physically implemented as one means, and components such as means described as a single element may be It can be made in combination. In addition, each method step described herein may be changed in order without departing from the scope of the present invention, and other steps may be added. In addition, the various embodiments described herein may be implemented independently as well as each other as appropriate. Therefore, the scope of the invention should be defined by the appended claims and their equivalents, rather than by the described embodiments.

Claims (8)

  1. 캐리어의 일부에 형성되는 급전선; 및A feed line formed in a part of the carrier; And
    상기 캐리어에 형성되고 상기 급전선에 의해 급전되며, CRLH-TL(Composite Right/Left Handed Transmission Line) 구조를 가지는 두 개 이상의 메타머티리얼 셀을 포함하는 것을 특징으로 하는 다중 대역 및 광대역 안테나.And at least two metamaterial cells formed in the carrier and fed by the feed line and having a Composite Right / Left Handed Transmission Line (CRLH-TL) structure.
  2. 제 1 항에 있어서, 상기 두 개 이상의 메타머티리얼 셀은 The method of claim 1, wherein the at least two metamaterial cells
    상기 급전선에 의해 급전되어 제 1 주파수 대역에서 공진하는 제 1 메타머티리얼 셀; 및A first material cell fed by the feed line and resonating in a first frequency band; And
    상기 급전선에 의해 급전되어 상기 제 1 주파수 대역과 상이한 주파수 대역인 제 2 주파수 대역에서 공진하는 제 2 메타머티리얼 셀을 포함하는 것을 특징으로 하는 다중 대역 및 광대역 안테나.And a second material cell that is fed by the feed line and resonates in a second frequency band, which is a frequency band different from the first frequency band.
  3. 제 2 항에 있어서, The method of claim 2,
    상기 제 1 메타머티리얼 셀은 상기 급전선의 일측과 제 1 간격만큼 이격되어 안테나 방사체로서 기능하는 제 1 방사 패치 및 상기 제 1 방사 패치의 일측에 일단이 연결되고, 타단이 상기 다중 대역 및 광대역 안테나가 실장되는 기판상의 접지면과 연결된 제 1 스터브를 포함하고,The first metamaterial cell is spaced apart from one side of the feed line by a first interval and is connected to one side of a first radiation patch and one side of the first radiation patch, and the other end of the multi-band and broadband antenna A first stub connected to a ground plane on the substrate to be mounted,
    상기 제 2 메타머티리얼 셀은 상기 급전선의 타측과 제 2 간격만큼 이격되어 안테나 방사체로서 기능하는 제 2 방사 패치 및 상기 제 2 방사 패치의 일측에 일단이 연결되고, 타단이 상기 접지면과 연결된 제 2 스터브를 포함하는 것을 특징으로 하는 다중 대역 및 광대역 안테나.The second metamaterial cell is spaced apart from the other side of the feed line by a second interval and is connected to one side of the second radiation patch and one side of the second radiation patch which functions as an antenna radiator, and the other end is connected to the ground plane. Multi-band and wideband antenna, characterized in that it comprises a stub.
  4. 제 3 항에 있어서, 상기 제 1 메타머티리얼 셀은4. The method of claim 3, wherein the first metamaterial cell
    상기 제 1 방사 패치의 일단에 연결되는 제 1 개방 스터브A first opening stub connected to one end of the first spinning patch
    를 추가로 포함하되,Include additional
    상기 제 1 개방 스터브는 상기 급전선의 일측과 상기 제 1 간격만큼 이격되는 것을 특징으로 하는 다중 대역 및 광대역 안테나.The first open stub is a multi-band and broadband antenna, characterized in that spaced apart from one side of the feed line by the first interval.
  5. 제 3 항에 있어서, 상기 제 2 메타머티리얼 셀은The method of claim 3, wherein the second metamaterial cell
    상기 제 2 방사 패치의 일단에 연결되는 제 2 개방 스터브A second open stub connected to one end of the second spinning patch
    를 추가로 포함하되,Include additional
    상기 제 2 개방 스터브는 상기 급전선의 타측과 상기 제 2 간격만큼 이격되는 것을 특징으로 하는 다중 대역 및 광대역 안테나.The second open stub is a multi-band and broadband antenna, characterized in that spaced apart from the other side of the feed line by the second interval.
  6. 제 3 항에 있어서, The method of claim 3, wherein
    상기 급전선과 상기 접지면 사이, 상기 제 1 스터브와 상기 접지면 사이 및 상기 제 2 스터브와 상기 접지면 사이 중 하나 이상에 로드 인덕터를 추가로 삽입하는 것을 특징으로 하는 다중 대역 및 광대역 안테나.And a load inductor is further inserted between at least one of the feed line and the ground plane, between the first stub and the ground plane and between the second stub and the ground plane.
  7. 제 3 항에 있어서,The method of claim 3, wherein
    상기 제 1 메타머티리얼 셀의 0차 공진 및 상기 제 2 메타머티리얼 셀의 1차 공진이 합성되어 광대역 특성을 나타내는 것을 특징으로 하는 다중 대역 및 광대역 안테나.And a zero-order resonance of the first metamaterial cell and a first-order resonance of the second metamaterial cell are combined to exhibit wideband characteristics.
  8. 제 1 항 내지 제 7 항 중 어느 한 항의 다중 대역 및 광대역 안테나를 포함하는 통신 장치.A communication device comprising the multi-band and broadband antenna of any one of claims 1 to 7.
PCT/KR2010/001220 2009-03-02 2010-02-26 Multiband and broadband antenna, and communication apparatus comprising same WO2010101373A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0017728 2009-03-02
KR1020090017728A KR101118038B1 (en) 2009-03-02 2009-03-02 Multiband and broadband antenna using metamaterial and communication apparatus comprising the same

Publications (2)

Publication Number Publication Date
WO2010101373A2 true WO2010101373A2 (en) 2010-09-10
WO2010101373A3 WO2010101373A3 (en) 2010-11-25

Family

ID=42710089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001220 WO2010101373A2 (en) 2009-03-02 2010-02-26 Multiband and broadband antenna, and communication apparatus comprising same

Country Status (2)

Country Link
KR (1) KR101118038B1 (en)
WO (1) WO2010101373A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11431088B2 (en) * 2014-02-12 2022-08-30 Huawei Device Co., Ltd. Antenna and mobile terminal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109088168B (en) * 2018-06-26 2020-09-25 中兴通讯股份有限公司 Mobile terminal antenna and mobile terminal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209733A (en) * 1996-11-21 1998-08-07 Murata Mfg Co Ltd Surface-mounted type antenna and antenna system using the same
US20080048917A1 (en) * 2006-08-25 2008-02-28 Rayspan Corporation Antennas Based on Metamaterial Structures
US20080258993A1 (en) * 2007-03-16 2008-10-23 Rayspan Corporation Metamaterial Antenna Arrays with Radiation Pattern Shaping and Beam Switching

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446712B2 (en) * 2005-12-21 2008-11-04 The Regents Of The University Of California Composite right/left-handed transmission line based compact resonant antenna for RF module integration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209733A (en) * 1996-11-21 1998-08-07 Murata Mfg Co Ltd Surface-mounted type antenna and antenna system using the same
US20080048917A1 (en) * 2006-08-25 2008-02-28 Rayspan Corporation Antennas Based on Metamaterial Structures
US20080258993A1 (en) * 2007-03-16 2008-10-23 Rayspan Corporation Metamaterial Antenna Arrays with Radiation Pattern Shaping and Beam Switching

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LAI, ANTHONY ET AL.: 'Infinite Wavelength Resonator Antennas With Monopolar Radiation Pattern Based on Periodic Structures' IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION vol. 55, no. 3, March 2007, pages 868 - 876 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11431088B2 (en) * 2014-02-12 2022-08-30 Huawei Device Co., Ltd. Antenna and mobile terminal
US20220368010A1 (en) * 2014-02-12 2022-11-17 Huawei Device Co., Ltd. Antenna and Mobile Terminal
US11855343B2 (en) 2014-02-12 2023-12-26 Beijing Kunshi Intellectual Property Management Co., Ltd. Antenna and mobile terminal

Also Published As

Publication number Publication date
KR101118038B1 (en) 2012-02-24
KR20100098985A (en) 2010-09-10
WO2010101373A3 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
WO2009134013A2 (en) Broadband internal antenna using slow-wave structure
WO2009088231A2 (en) Multi-band internal antenna
WO2009145437A2 (en) Built-in antenna for supporting impedance matching for multiband
US20090135087A1 (en) Metamaterial Structures with Multilayer Metallization and Via
WO2010119998A1 (en) Wideband antenna using coupling matching
EP2509158B1 (en) Communication electronic device and antenna structure thereof
WO2010076982A2 (en) Infinite wavelength antenna device
KR20050008451A (en) Apparatus for Reducing Ground Effects in a Folder-Type Communication Handset Device
WO2014148708A1 (en) Substrate-integrated waveguide antenna
EP1704619A1 (en) A dual band diversity wlan antenna system for laptop computers, printers and similar devices
WO2010107211A2 (en) Multi-band antenna device and a communications device employing the same
WO2010101379A2 (en) Multiband and broadband antenna using metamaterials, and communication apparatus comprising same
WO2012026635A1 (en) Antenna having capacitive element
CN213753059U (en) Multi-frequency low-SAR antenna and electronic equipment
WO2010038929A1 (en) Multilayer antenna
WO2010117177A2 (en) Multiband antenna using a metamaterial, and communication apparatus including same
WO2010101378A2 (en) Multiband and broadband antenna using metamaterials, and communication apparatus comprising same
EP2840652B1 (en) Antenna
WO2010093129A2 (en) Spiral loaded metamaterial antenna and communication device using the antenna
WO2010098564A2 (en) Open-ended folded-slot antenna
CN212648490U (en) Dual-band antenna and IOT equipment
WO2010101373A2 (en) Multiband and broadband antenna, and communication apparatus comprising same
Lee et al. Compact metamaterial high isolation MIMO antenna subsystem
WO2010093131A2 (en) Multiband antenna using a crlh-tl structure and communication device using the antenna
WO2011159037A2 (en) Broadband antenna using metamaterials, and communication device including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748915

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10748915

Country of ref document: EP

Kind code of ref document: A2