WO2011159037A2 - Broadband antenna using metamaterials, and communication device including same - Google Patents

Broadband antenna using metamaterials, and communication device including same Download PDF

Info

Publication number
WO2011159037A2
WO2011159037A2 PCT/KR2011/003864 KR2011003864W WO2011159037A2 WO 2011159037 A2 WO2011159037 A2 WO 2011159037A2 KR 2011003864 W KR2011003864 W KR 2011003864W WO 2011159037 A2 WO2011159037 A2 WO 2011159037A2
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
ferrite
radiation patch
helical
handed
Prior art date
Application number
PCT/KR2011/003864
Other languages
French (fr)
Korean (ko)
Other versions
WO2011159037A3 (en
Inventor
류병훈
성원모
지정근
Original Assignee
주식회사 이엠따블유
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엠따블유 filed Critical 주식회사 이엠따블유
Publication of WO2011159037A2 publication Critical patent/WO2011159037A2/en
Publication of WO2011159037A3 publication Critical patent/WO2011159037A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • H01Q7/08Ferrite rod or like elongated core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna

Definitions

  • Embodiments of the present invention relate to an antenna and a communication device technology including the same that can extend the bandwidth of an antenna using a metamaterial.
  • antenna technology and antennas by various techniques such as a coaxial antenna, a rod antenna, a loop antenna, a beam antenna, and a super gain antenna are currently used.
  • the conductors of the antennas are in the form of helix or meander line.
  • An antenna constructed is proposed.
  • the proposed antenna does not deviate from the limit of size depending on the resonant frequency, and the smaller the size of the antenna, the more complicated the shape is to form an antenna of fixed length in a narrow space.
  • the proposed technique is an antenna technology using metamaterial.
  • the metamaterial refers to a material or an electromagnetic structure that is artificially designed to have special electromagnetic properties that are not generally found in nature.
  • the metamaterial has an advantageous property for miniaturization of the antenna size. .
  • Metamaterials applied to antennas are typical of the CRLH-TL (Composite Right / Left Handed Transmission Line) structure, which uses double negative (DNG), epsilon negative (ENG) and mu negative (Mu negative).
  • DNG double negative
  • ENG epsilon negative
  • Mu negative mu negative
  • ZOR zero-order resonator
  • Embodiments of the present invention to provide a technique that can extend the bandwidth of the CRLH-TL zero-order resonator antenna having the characteristics of the metamaterial.
  • a broadband antenna using a metamaterial is a transmission line having RH (Right-Handed) characteristics in a CRLH-TL (Composite Right / Left Handed Transmission Line) structure, and has a specific pattern according to a resonance frequency.
  • a radiation patch implemented to act as an antenna radiator;
  • a power supply line connected to one end of the radiation patch to supply power to the radiation patch;
  • a ground line connected to the other end of the radiation patch to ground the radiation patch to ground;
  • a ferrite helical loading unit formed on the ground line and serving as a first parallel inductor exhibiting left-handed (LH) characteristics in a CRLH-TL structure.
  • the ferrite helical loading unit three-dimensional ferrite core; And a helical line wound in a helical shape at a predetermined interval on the ferrite core surface.
  • the ferrite material of the ferrite helical loading portion is composed of one or more materials selected from the group consisting of a magnetic metal and an amorphous magnetic material, or based on Fe, and in addition to Fe, Ni, Mn, Co, Mg, Zn, Ba, and Sr It may be composed of a magnetic oxide further comprising one or more elements selected from the group consisting of.
  • the ferrite material of the ferrite helical loading unit may be made of a Co 2 Y hexagonal ferrite (Co 2 Y hexagonal ferrite) (Ba 2 Co 1 Zn 0.7 Cu 0.3 Fe 12 O 22 ) material.
  • the broadband antenna using the metamaterial may further include an inductor formed between the radiation patch and the feed line to serve as a second parallel inductor having left-handed (LH) characteristics in a CRLH-TL structure.
  • LH left-handed
  • a portion of the radiation patch may be spaced apart a predetermined interval to serve as a series capacitor showing the Left-Handed (LH) characteristics in the CRLH-TL structure.
  • LH Left-Handed
  • the characteristics of bandwidth extension can be obtained by applying a ferrite helical loading portion to a portion corresponding to parallel inductance at the end of the CRLH-TL antenna having the characteristics of the metamaterial.
  • FIG. 2 is a diagram illustrating the overall configuration of an ENG unit cell antenna according to the equivalent circuit diagram of FIG. 1B according to one embodiment of the present invention.
  • FIG. 3 illustrates an actual implementation of the ENG unit cell antenna of FIG. 2 in accordance with an embodiment of the present invention.
  • FIG. 4 is a graph illustrating a return loss S11 measured with respect to the ENG unit cell antenna of FIG. 3 according to an embodiment of the present invention.
  • 5 to 7 illustrate radiation patterns of the ENG unit cell antenna of FIG. 3 according to an embodiment of the present invention with respect to the x-y plane, the x-z plane, and the y-z plane, respectively.
  • FIG. 8 illustrates the radiation efficiency and the maximum gain of the ENG unit cell antenna of FIG. 3 according to an embodiment of the present invention.
  • FIG. 9 is a graph comparing the radiation efficiency of the ENG unit cell antenna of FIG. 3 according to an embodiment of the present invention.
  • metamaterial means a material or an electromagnetic structure that is artificially designed to have special electromagnetic properties that are not generally found in nature, and are generally referred to in the art and referred to as metamaterials in the present specification.
  • Such materials are also called double negative (DGN) materials in the sense of having two negative parameters.
  • DGN double negative
  • metamaterials have a negative reflection coefficient due to their negative dielectric constant and permeability, and thus are also called NRI (Negative Refractive Index) materials.
  • NRI Negative Refractive Index
  • metamaterials are sometimes referred to as left-handed materials (LHMs).
  • LHMs left-handed materials
  • the relationship between ⁇ (phase constant) and ⁇ (frequency) is not linear in the metamaterial, and the characteristic curve is also present in the left half of the coordinate plane. Due to such nonlinear characteristics, the metamaterial has a small phase difference according to frequency, so that a wideband circuit can be realized. Since the phase change is not proportional to the length of the transmission line, a small circuit can be realized.
  • FIG. 1A is an equivalent circuit diagram of a unit cell of a double negative (DNG) CRLH-TL structure.
  • the DNG unit cell of FIG. 1 (a) has two series impedances (C L ) and two parallel inductors exhibiting two characteristic impedances (Z 0 ) and left-handed (LH) characteristics. (2L L ) can be equivalent.
  • two characteristic impedances Z 0 may be represented by parallel capacitors and series inductor components, respectively, as transmission lines having a general RH structure.
  • FIG. 1B is an equivalent circuit diagram of a unit cell of an epsilon negative CRLH-TL structure.
  • the ENG unit cell of FIG. 1 (b) may be equivalent to include one characteristic impedance Z 0 representing the RH characteristic and two parallel inductors 2L L representing the LH characteristic.
  • the characteristic impedance Z 0 is a transmission line having a general RH structure and may be represented by a parallel capacitor and a series inductor component.
  • the parallel capacitor C R corresponding to the characteristic impedance Z 0 having the RH characteristic has a fixed value
  • the two parallel inductors 2L L having the LH characteristic have a fixed value.
  • FIG. 2 is a diagram illustrating the overall configuration of an ENG unit cell antenna according to the equivalent circuit diagram of FIG. 1B according to one embodiment of the present invention.
  • the ENG unit cell may be applied as a zero order resonator (ZOR) using metamaterials.
  • an ENG unit cell antenna 200 may include a radiation patch 210, a feed line 220, a ground line 230, an inductor 240, and a ferrite helical loading unit 250. It is configured to include).
  • the radiation patch 210 is a transmission line having a right-handed (RH) characteristic on a substrate, and is implemented as a specific pattern according to a resonance frequency to serve as an antenna radiator.
  • the radiation patch 210 may be formed on a three-dimensional carrier, not on a substrate.
  • the substrate or carrier may be a material having a predetermined permittivity ( ⁇ ), a predetermined permeability ( ⁇ ), or both a predetermined permittivity and permeability.
  • FR4 Frame Retardant Type4 having a dielectric constant of about 4.5 may be a substrate or carrier. It may be used as, but not limited to, various dielectric materials or magnetic materials may be used.
  • the radiation patch 210 corresponds to a characteristic impedance Z 0 of FIG.
  • the series inductor L R may be an inductance value formed in the longitudinal direction of the radiation patch 210
  • the parallel capacitor C R may be equivalent to a capacitance component generated between the radiation patch and the ground.
  • the feed line 220 is connected to one end of the radiation patch 210 to supply power to the radiation patch 210 to function as an antenna radiator.
  • the ground line 230 is connected to the other end of the radiation patch 210 serves to ground the radiation patch 210 to the ground.
  • An inductor 240 is formed between the radiation patch 210 and the feed line 220 so that the ENG unit cell antenna 200 exhibits LH characteristics.
  • the first parallel inductor 2L L of FIG. Plays a role.
  • a ferrite helical loading unit 250 is formed on a ground line 230 connected between the radiation patch 210 and the ground so that the ENG unit cell antenna 200 exhibits LH characteristics. It serves as the second parallel inductor 2L L of b).
  • the ferrite helical loading unit 250 may be formed such that a line is wound in a helical shape on a rectangular ferrite core.
  • the shape of the ferrite core is not only a rectangular column, but also a variety of shapes such as a cylinder, a cube, and the like, but is not limited to any particular shape.
  • the ferrite may not only use a Co 2 Y hexagonal ferrite (Co 2 Y hexagonal ferrite (Ba 2 Co 1 Zn 0.7 Cu 0.3 Fe 12 O 22 )) material as an experimental example as shown in FIG.
  • the materials representing are all possible and may be made of one or more materials selected from the group consisting of ferrite, magnetic metal and amorphous magnetic material.
  • the ferrite material includes Fe as a base, and may be made of a magnetic oxide further comprising at least one element selected from the group consisting of Ni, Mn, Co, Mg, Zn, Ba, and Sr in addition to Fe.
  • the ferrite material is not limited thereto, and various other materials may be used.
  • the ENG unit cell antenna 200 having such a configuration, since the radiation patch 210, the power supply line 220 and the ground line 230 is fixed to the above using the material properties
  • the values of the inductor 240 and the ferrite helical loading unit 250 it is possible to adjust the resonant frequency to implement a miniaturized antenna that does not depend on the length d of the entire antenna.
  • the use of a ferrite material can exhibit a high inductance value even with a small number of turns of the helical line, further miniaturizing the antenna.
  • the ENG unit having a narrow bandwidth has been a problem in the prior art
  • the bandwidth of the cell antenna 200 can be extended. This will be demonstrated by various measurements such as bandwidth, described below.
  • the antenna is configured according to the ENG unit cell equivalent circuit of FIG. 1 (b) as an embodiment.
  • the present invention is not limited to the ENG unit cell antenna.
  • the antenna may be configured according to the DNG unit cell equivalent circuit or the MNG unit cell equivalent circuit as shown in a). If the antenna is implemented according to the DNG unit cell equivalent circuit, a portion of the radiation patch 210 of FIG. 2 may be spaced apart to represent the series capacitor C L. In this case, the resonant frequency may be adjusted by adjusting the spacing of the separation space that functions as the series capacitor C L as well as the adjustment of the parallel inductor 2L L.
  • FIG. 3 illustrates an actual implementation of the ENG unit cell antenna of FIG. 2 in accordance with an embodiment of the present invention.
  • the antenna is fabricated on the FR4 substrate, the substrate size is 50mm x 100mm x 0.8mm, the ground portion is 50mm x 90mm.
  • the SMT chip inductor used as the parallel inductor 240 has a value of 27nH.
  • the ferrite helical loading unit 250 is a Co2 Y hexagonal ferrite core (Co 2 Y hexagonal ferrite (Ba 2 Co 1 Zn 0.7 Cu 0.3 Fe 12 O 22 ) core) was formed of a rectangular column of 3mm ⁇ 6mm ⁇ 3mm size, A 0.5 mm thick helical line is wound 0.5 mm apart on top of the ferrite core and is 60 mm long.
  • Specific implementation sizes of the other components are shown in detail in FIG. 2, and description thereof will be omitted.
  • the reference numerals for the respective components are the same as those in FIG. 2, and thus the display is omitted for simplicity of the drawings.
  • FIG. 4 is a graph illustrating a return loss S11 measured with respect to the ENG unit cell antenna of FIG. 3 according to an embodiment of the present invention.
  • an antenna having a ceramic helical loading unit is compared to determine the characteristics of the antenna according to an exemplary embodiment of the present invention having a ferrite helical loading unit, and a curve indicated by a vacant circle ( ⁇ ) is an antenna having a ceramic helical loading unit.
  • the curve indicated by the filled circle ( ⁇ ) represents the actual measurement result of the antenna having a ferrite helical loading unit according to an embodiment of the present invention.
  • an antenna having a ferrite helical loading unit has a resonance frequency at about 0.8 GHz, and a bandwidth (6 dB return loss) has 140 MHz (740 to 880 MHz). This corresponds to about 17.5% at resonance frequency.
  • the antenna with ceramic helical loading has a resonant frequency at about 0.8 GHz, and the bandwidth (6 dB return loss) has 90 MHz (760-850 MHz). This corresponds to about 11.2% at resonance frequency.
  • the antenna having the ferrite helical loading part according to the measured return loss (S11) has an increased bandwidth compared to the antenna having the ceramic helical loading part according to the embodiment of the present invention.
  • 5 to 7 illustrate radiation patterns of the ENG unit cell antenna of FIG. 3 according to an embodiment of the present invention with respect to the x-y plane, the x-z plane, and the y-z plane, respectively.
  • the antenna according to the embodiment of the present invention exhibits a radiation pattern having an omnidirectional direction. Therefore, the antenna according to the embodiment of the present invention is sufficient to be applied to the mobile terminal.
  • FIG. 8 illustrates the radiation efficiency and the maximum gain of the ENG unit cell antenna of FIG. 3 according to an embodiment of the present invention.
  • the radiation efficiency of the antenna according to an embodiment of the present invention is 29.6% ⁇ 39.3%
  • the gain has a -1.04dBi ⁇ 0.18 dBi
  • the maximum radiation efficiency and the maximum gain is 38.5 at 0.8GHz resonant frequency %
  • 0.05 dBi the radiation efficiency of the antenna according to an embodiment of the present invention
  • FIG. 9 is a graph comparing the radiation efficiency of the ENG unit cell antenna of FIG. 3 according to an embodiment of the present invention.
  • an antenna having a ceramic helical loading unit was compared to identify an antenna according to an embodiment of the present invention having a ferrite helical loading unit, and a curve indicated by a vacant circle ( ⁇ ) is an antenna having a ceramic helical loading unit.
  • the curve indicated by the filled circle ( ⁇ ) represents the actual measurement result of the antenna having a ferrite helical loading unit according to an embodiment of the present invention.
  • an antenna having a ferrite helical loading unit has improved radiation efficiency at a wider bandwidth than an antenna having a ceramic helical loading unit.
  • the metamaterial antenna according to the embodiment of the present invention is a method of arranging unit cells, the number of unit cells, the size of the radiation patch, the permittivity and size of the substrate, the size of the ferrite helical loading unit, the permittivity and permeability of the ferrite used, the helical line
  • the width and spacing of the feeder the shape of the feeder (the position of the feeder, the width of the feeder, the length of the feeder), and the type of grounding (the position of the grounding line, the width of the grounding line, the length of the grounding line) Will be able to adjust the characteristics of the desired wideband antenna.

Abstract

Disclosed are a broadband antenna using metamaterials and a communication device including same. The broadband antenna using metamaterials according to an embodiment of the present invention comprises: a radiating patch which is a transmission line having right-handed (RH) characteristics in a composite right/left handed transmission line (CRLH-TL) structure, and is particularly patterned according to a resonating frequency to act as a radiating element of the antenna; a feed line connected to one end of the radiating path for supplying power to the radiating patch; a ground line connected to the other end of the radiating path for grounding the radiating patch; and a ferritic helical loading unit which is formed on the ground line and acts as a first parallel inductor having left-handed (LH) characteristics in the CRLH-TL structure. Therefore, the bandwidth of the metamaterial antenna can be extended.

Description

메타머티리얼을 이용한 광대역 안테나 및 이를 포함하는 통신장치Broadband Antenna Using Metamaterial and Communication Device Comprising the Same
본 발명의 실시예들은 메타머티리얼을 이용한 안테나의 대역폭을 확장할 수 있도록 하는 안테나 및 이를 포함하는 통신장치 기술에 관한 것이다.Embodiments of the present invention relate to an antenna and a communication device technology including the same that can extend the bandwidth of an antenna using a metamaterial.
전자산업의 진보와 더불어 통신기술, 특히 무선 통신기술이 발달함에 따라 언제, 어디서나, 누구와도 음성 및 데이터 통신을 수행할 수 있는 다양한 무선통신 단말기가 개발되어 보편화되고 있다.With the advance of the electronics industry, communication technologies, in particular, wireless communication technologies have been developed, and various wireless communication terminals capable of performing voice and data communication with anyone, anytime, anywhere, have been developed and are becoming common.
또한, 무선통신 단말기의 휴대성을 향상시키기 위하여 무선통신 단말기의 소형화를 위한 다양한 기술, 예를 들어 고밀도 집적회로 소자의 개발, 전자 회로보드의 소형화 방법 등이 연구되고 있으며, 무선통신 단말기를 사용하고자 하는 목적 또한 다양해짐에 따라 내비게이션용 단말기, 인터넷용 단말기 등 다양한 기능을 수행하는 단말기들이 개발되고 있다.In addition, in order to improve the portability of the wireless communication terminal, various technologies for miniaturizing the wireless communication terminal, for example, the development of a high density integrated circuit device and the miniaturization method of the electronic circuit board have been studied. As the purpose is also diversified, terminals for performing various functions such as navigation terminals and terminals for the Internet are being developed.
한편, 무선 통신기술에서 중요한 기술 중 하나는 안테나에 관한 기술이며, 현재 동축 안테나, 로드 안테나, 루프 안테나, 빔 안테나, 슈퍼게인 안테나 등 다양한 기법에 의한 안테나들이 사용되고 있다.Meanwhile, one of the important technologies in the wireless communication technology is an antenna technology, and antennas by various techniques such as a coaxial antenna, a rod antenna, a loop antenna, a beam antenna, and a super gain antenna are currently used.
특히, 최근 무선통신 단말기의 휴대화 또는 소형화 추세가 더욱 높아짐에 따라 안테나를 소형화하는 기술적 필요성이 더욱 커지고 있으며, 이에 따라 안테나의 도선이 헬릭스(helix)형태나 미앤더라인(meander line)형태 등으로 구성되는 안테나가 제안되고 있다.In particular, with the recent trend toward more portable or miniaturized wireless communication terminals, the technical necessity for miniaturizing antennas is increasing. Accordingly, the conductors of the antennas are in the form of helix or meander line. An antenna constructed is proposed.
그러나, 상기 제안된 안테나는 공진 주파수에 의존하여 크기가 결정되는 한계를 벗어나지 못하며 안테나가 소형화될수록 좁은 공간에 고정된 길이의 안테나를 형성하기 위해 그 형태가 더욱 복잡해지는 등의 문제가 있다.However, the proposed antenna does not deviate from the limit of size depending on the resonant frequency, and the smaller the size of the antenna, the more complicated the shape is to form an antenna of fixed length in a narrow space.
이러한 문제를 해결하기 위하여 제안된 기술이 메타머티리얼(Metamaterial)을 이용한 안테나 기술이다. 여기서, 메타머티리얼이란 자연에서 일반적으로 찾을 수 없는 특수한 전자기적 특성을 갖도록 인공적으로 설계된 물질 또는 전자기적 구조를 의미하는 것으로서, 상기 메타머티리얼의 특성을 안테나에 응용할 경우 안테나 크기의 소형화에 유리한 특성을 지닌다.In order to solve this problem, the proposed technique is an antenna technology using metamaterial. Here, the metamaterial refers to a material or an electromagnetic structure that is artificially designed to have special electromagnetic properties that are not generally found in nature. When the material of the metamaterial is applied to an antenna, the metamaterial has an advantageous property for miniaturization of the antenna size. .
안테나에 응용되는 메타머티리얼은 CRLH-TL(Composite Right/Left Handed Transmission Line) 구조가 대표적인데, 이를 이용하여 더블 네거티브(Double negative, DNG), 엡실론 네거티브(Epsilon negative, ENG) 및 뮤 네거티브(Mu negative, MNG) 0차 공진기(Zeroth-order resonator, ZOR) 안테나를 구현할 수 있다.Metamaterials applied to antennas are typical of the CRLH-TL (Composite Right / Left Handed Transmission Line) structure, which uses double negative (DNG), epsilon negative (ENG) and mu negative (Mu negative). (MNG) zero-order resonator (ZOR) antenna can be implemented.
그러나, 이와 같은 메타머티리얼 특성을 이용한 안테나는 전형적으로 대역폭이 좁다라는 문제점이 대두되어 왔다. 이에, 메타머티리얼을 이용한 안테나의 대역폭을 확장하기 위한 다양한 연구가 진행되고 있는 실정이다.However, there has been a problem that an antenna using such a metamaterial characteristic is typically a narrow bandwidth. Accordingly, various researches are being conducted to expand the bandwidth of an antenna using metamaterials.
본 발명의 실시예들은 메타머티리얼의 특성을 갖는 CRLH-TL 0차 공진기 안테나의 대역폭을 확장할 수 있는 기술을 제공하자 한다.Embodiments of the present invention to provide a technique that can extend the bandwidth of the CRLH-TL zero-order resonator antenna having the characteristics of the metamaterial.
본 발명의 실시예들에 의한 다른 기술적 해결 과제는 하기의 설명에 의해 이해될 수 있으며, 이는 특허청구범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있다.Other technical problems by the embodiments of the present invention can be understood by the following description, which can be realized by the means and combinations thereof shown in the claims.
본 발명의 일 실시예에 따른 메타머티리얼을 이용한 광대역 안테나는, CRLH-TL(Composite Right/Left Handed Transmission Line) 구조에서 RH(Right-Handed) 특성을 나타내는 전송선로로서, 공진주파수에 따라 특정 패턴으로 구현되어 안테나 방사체로서 역할을 하는 방사패치; 상기 방사패치의 일단에 연결되어 상기 방사패치로 전력을 공급하는 급전라인; 상기 방사패치의 타단에 연결되어 상기 방사패치를 그라운드에 접지시키는 접지라인; 및 상기 접지라인 상부에 형성되어 CRLH-TL 구조에서 LH(Left-Handed) 특성을 나타내는 제 1 병렬 인덕터의 역할을 하는 페라이트 헬리컬 로딩부(Ferrite Helical Loading);를 포함한다.A broadband antenna using a metamaterial according to an embodiment of the present invention is a transmission line having RH (Right-Handed) characteristics in a CRLH-TL (Composite Right / Left Handed Transmission Line) structure, and has a specific pattern according to a resonance frequency. A radiation patch implemented to act as an antenna radiator; A power supply line connected to one end of the radiation patch to supply power to the radiation patch; A ground line connected to the other end of the radiation patch to ground the radiation patch to ground; And a ferrite helical loading unit formed on the ground line and serving as a first parallel inductor exhibiting left-handed (LH) characteristics in a CRLH-TL structure.
상기 페라이트 헬리컬 로딩부는, 입체 형상의 페라이트 코어; 및 상기 페라이트 코어 표면에 일정간격을 두고 헬리컬 형상으로 감겨지는 헬리컬 라인;을 포함한다.The ferrite helical loading unit, three-dimensional ferrite core; And a helical line wound in a helical shape at a predetermined interval on the ferrite core surface.
상기 페라이트 헬리컬 로딩부의 페라이트 물질은, 자성 금속 및 비정질 자성 재료로 구성된 그룹으로부터 선택된 하나 이상의 물질로 구성되거나, Fe을 기본으로 포함하며, Fe 이외에 Ni, Mn, Co, Mg, Zn, Ba, 및 Sr 등으로 구성된 그룹으로부터 선택된 하나 이상의 원소를 더 포함하는 자성 산화물로 구성될 수 있다.The ferrite material of the ferrite helical loading portion is composed of one or more materials selected from the group consisting of a magnetic metal and an amorphous magnetic material, or based on Fe, and in addition to Fe, Ni, Mn, Co, Mg, Zn, Ba, and Sr It may be composed of a magnetic oxide further comprising one or more elements selected from the group consisting of.
또한, 상기 페라이트 헬리컬 로딩부의 페라이트 물질은, Co2 Y 헥사고날 페라이트(Co2 Y hexagonal ferrite)(Ba2Co1Zn0.7Cu0.3Fe12O22) 물질로 구성될 수 있다.In addition, the ferrite material of the ferrite helical loading unit may be made of a Co 2 Y hexagonal ferrite (Co 2 Y hexagonal ferrite) (Ba 2 Co 1 Zn 0.7 Cu 0.3 Fe 12 O 22 ) material.
나아가, 메타머티리얼을 이용한 광대역 안테나는, CRLH-TL 구조에서에서 LH(Left-Handed) 특성을 나타내는 제 2 병렬 인덕터의 역할을 하도록 상기 방사패치와 상기 급전라인 사이에 형성되는 인덕터를 더 포함할 수 있다.Furthermore, the broadband antenna using the metamaterial may further include an inductor formed between the radiation patch and the feed line to serve as a second parallel inductor having left-handed (LH) characteristics in a CRLH-TL structure. have.
또한, 상기 방사패치는, CRLH-TL 구조에서 LH(Left-Handed) 특성을 나타내는 직렬 커패시터의 역할을 하도록 상기 방사패치 일부가 일정간격 이격될 수 있다.In addition, the radiation patch, a portion of the radiation patch may be spaced apart a predetermined interval to serve as a series capacitor showing the Left-Handed (LH) characteristics in the CRLH-TL structure.
본 발명의 실시예들에 의하면, 메타머티리얼의 특성을 갖는 CRLH-TL 안테나의 종단에 병렬 인덕턴스에 해당하는 부분에 페라이트 헬리컬 로딩부(Ferrite Helical Loading)를 적용함으로써 대역폭 확장의 특성을 얻을 수 있다.According to embodiments of the present invention, the characteristics of bandwidth extension can be obtained by applying a ferrite helical loading portion to a portion corresponding to parallel inductance at the end of the CRLH-TL antenna having the characteristics of the metamaterial.
도 1은 본 발명의 실시예에 따른 메타머티리얼 특성을 갖는 CRLH-TL 구조 중 (a)더블 네거티브(Double negative, DNG) 유닛 셀과 (b)엡실론 네거티브(Epsilon negative, ENG) 유닛 셀 각각의 등가회로도이다.1 is an equivalent of each of (a) a double negative (DNG) unit cell and (b) an Epsilon negative (ENG) unit cell in a CRLH-TL structure having metamaterial properties according to an embodiment of the present invention. It is a circuit diagram.
도 2는 본 발명의 일 실시예로 도 1(b)의 등가회로도에 따라 ENG 유닛 셀 안테나의 전체 구성을 도시하는 도면이다.FIG. 2 is a diagram illustrating the overall configuration of an ENG unit cell antenna according to the equivalent circuit diagram of FIG. 1B according to one embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 도 2의 ENG 유닛 셀 안테나의 실제 구현예를 나타낸 것이다.3 illustrates an actual implementation of the ENG unit cell antenna of FIG. 2 in accordance with an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 도 3의 ENG 유닛 셀 안테나에 대해 측정한 반사손실(S11)을 나타내는 그래프이다.4 is a graph illustrating a return loss S11 measured with respect to the ENG unit cell antenna of FIG. 3 according to an embodiment of the present invention.
도 5 내지 도 7은 본 발명의 일실시예에 따른 도 3의 ENG 유닛 셀 안테나의 방사 패턴을 각각 x-y 평면, x-z 평면 및 y-z 평면에 대해 나타낸 도면이다.5 to 7 illustrate radiation patterns of the ENG unit cell antenna of FIG. 3 according to an embodiment of the present invention with respect to the x-y plane, the x-z plane, and the y-z plane, respectively.
도 8은 본 발명의 일실시예에 따른 도 3의 ENG 유닛 셀 안테나의 방사효율 및 최대 이득을 나타낸다.8 illustrates the radiation efficiency and the maximum gain of the ENG unit cell antenna of FIG. 3 according to an embodiment of the present invention.
도 9는 본 발명의 일실시예에 따른 도 3의 ENG 유닛 셀 안테나의 방사효율을 비교한 그래프이다.9 is a graph comparing the radiation efficiency of the ENG unit cell antenna of FIG. 3 according to an embodiment of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명의 일 실시예에 대해 구체적으로 설명하기로 한다. 그러나 이는 예시적 실시예에 불과하며 본 발명은 이에 제한되지 않는다.Hereinafter, with reference to the accompanying drawings will be described in detail an embodiment of the present invention. However, this is only an exemplary embodiment and the present invention is not limited thereto.
본 발명을 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 본 발명의 기술적 사상은 청구범위에 의해 결정되며, 이하 실시예는 진보적인 본 발명의 기술적 사상을 본 발명이 속하는 기술분야에서 통상의 지식을 가진자에게 효율적으로 설명하기 위한 일 수단일 뿐이다. 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다. In describing the present invention, when it is determined that the detailed description of the known technology related to the present invention may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, terms to be described below are terms defined in consideration of functions in the present invention, which may vary according to the intention or custom of a user or an operator. Therefore, the definition should be made based on the contents throughout the specification. The technical spirit of the present invention is determined by the claims, and the following embodiments are merely means for effectively explaining the technical spirit of the present invention to those skilled in the art to which the present invention pertains. Particular shapes, structures, and characteristics described herein may be embodied in other embodiments without departing from the spirit and scope of the invention with respect to one embodiment. In addition, it is to be understood that the location or arrangement of individual components within each disclosed embodiment may be changed without departing from the spirit and scope of the invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention, if properly described, is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled. Like reference numerals in the drawings refer to the same or similar functions throughout the several aspects.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다. DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily implement the present invention.
메타머티리얼 특성을 갖는 CRLH-TL 구조의 등가회로도Equivalent circuit diagram of CRLH-TL structure with metamaterial characteristics
도 1은 본 발명의 실시예에 따른 메타머티리얼 특성을 갖는 CRLH-TL 구조 중 (a)더블 네거티브(Double negative, DNG) 유닛 셀과 (b)엡실론 네거티브(Epsilon negative, ENG) 유닛 셀 각각의 등가회로도이다.1 is an equivalent of each of (a) a double negative (DNG) unit cell and (b) an Epsilon negative (ENG) unit cell in a CRLH-TL structure having metamaterial properties according to an embodiment of the present invention. It is a circuit diagram.
먼저, 메타머티리얼(Metamaterial)이란 자연에서 일반적으로 찾을 수 없는 특수한 전자기적 특성을 갖도록 인공적으로 설계된 물질 또는 전자기적 구조를 의미하는 것으로서, 본 기술 분야에서 일반적으로, 그리고 본 명세서에 있어서 메타머티리얼이라 함은 유전율(permittivity) 또는 투자율(permeability)이 음수인 물질 또는 그러한 전자기적 구조를 의미한다.First, metamaterial means a material or an electromagnetic structure that is artificially designed to have special electromagnetic properties that are not generally found in nature, and are generally referred to in the art and referred to as metamaterials in the present specification. Means a material or such electromagnetic structure that has a negative permittivity or permeability.
이러한 물질(또는 구조)는 두 개의 음수 파라미터를 가진다는 의미에서 더블 네거티브(Double Negative; DGN) 물질이라 불리기도 한다. 또한, 메타머티리얼은 음의 유전율 및 투자율에 의하여 음의 반사계수를 가지며, 그에 따라 NRI(Negative Refractive Index) 물질이라고도 불린다. 메타머티리얼은 1967년 소련의 물리학자 베젤라고(V.Veselago)에 의해 처음 연구되었으나, 그 후 30 여 년이 지난 최근에 구체적 구현 방법이 연구되어 응용이 시도되고 있다.Such materials (or structures) are also called double negative (DGN) materials in the sense of having two negative parameters. In addition, metamaterials have a negative reflection coefficient due to their negative dielectric constant and permeability, and thus are also called NRI (Negative Refractive Index) materials. Metamaterial was first studied by Soviet physicist V.Veselago in 1967, but more than 30 years later, a concrete implementation method has been studied and application has been attempted.
위와 같은 특성에 의하여, 메타머티리얼 내에서 전자기파는 플레밍의 오른손 법칙을 따르지 않고 왼손 법칙에 의해 전달된다. 즉, 전자기파의 위상 전파 방향(위상 속도(phase velocity) 방향)과 에너지 전파 방향(군 속도(group velocity) 방향)이 반대가 되어, 메타머티리얼을 통과하는 신호는 음의 위상 지연을 갖게 된다. 이에 따라, 메타머티리얼을 LHM(Left-handed Material)이라고도 한다. 또한, 메타머티리얼에서는 β(위상 상수)와 ω(주파수)의 관계가 비선형일 뿐만 아니라, 그 특성 곡선이 좌표 평면의 좌반면에도 존재하는 특성을 보인다. 이러한 비선형 특성에 의하여 메타머티리얼에서는 주파수에 따른 위상차가 작아 광대역 회로의 구현이 가능하며, 위상 변화가 전송 선로의 길이에 비례하지 않으므로 소형의 회로를 구현할 수 있다.Due to these characteristics, electromagnetic waves in metamaterials are transmitted by the left-hand rule rather than following Fleming's right-hand rule. That is, the phase propagation direction (phase velocity direction) and the energy propagation direction (group velocity direction) of the electromagnetic wave are reversed, and the signal passing through the metamaterial has a negative phase delay. Accordingly, metamaterials are sometimes referred to as left-handed materials (LHMs). In addition, the relationship between β (phase constant) and ω (frequency) is not linear in the metamaterial, and the characteristic curve is also present in the left half of the coordinate plane. Due to such nonlinear characteristics, the metamaterial has a small phase difference according to frequency, so that a wideband circuit can be realized. Since the phase change is not proportional to the length of the transmission line, a small circuit can be realized.
도 1의 (a)는 더블 네거티브(Double negative, DNG) CRLH-TL 구조의 유닛 셀에 대한 등가회로도이다. 도 1(a)의 DNG 유닛 셀은 RH(Right-Handed) 특성을 나타내는 2개의 특성 임피던스(Z0)와 LH(Left-Handed) 특성을 나타내는 하나의 직렬 커패시터(CL)와 2개의 병렬 인덕터(2LL)를 포함하는 것으로 등가화될 수 있다. 여기서, 2개의 특성 임피던스(Z0)는 각각 일반적인 RH 구조의 전송선로로서 병렬 커패시터와 직렬 인덕터 성분으로 표현될 수 있다. FIG. 1A is an equivalent circuit diagram of a unit cell of a double negative (DNG) CRLH-TL structure. The DNG unit cell of FIG. 1 (a) has two series impedances (C L ) and two parallel inductors exhibiting two characteristic impedances (Z 0 ) and left-handed (LH) characteristics. (2L L ) can be equivalent. Here, two characteristic impedances Z 0 may be represented by parallel capacitors and series inductor components, respectively, as transmission lines having a general RH structure.
또한, 도 1의 (b)는 엡실론 네거티브(Double negative, ENG) CRLH-TL 구조의 유닛 셀에 대한 등가회로도이다. 도 1(b)의 ENG 유닛 셀은 RH 특성을 나타내는 하나의 특성 임피던스(Z0)와 LH 특성을 나타내는 2개의 병렬 인덕터(2LL)를 포함하는 것으로 등가화될 수 있다. 여기서, 특성 임피던스(Z0)는 일반적인 RH 구조의 전송선로로서 병렬 커패시터와 직렬 인덕터 성분으로 표현될 수 있다.FIG. 1B is an equivalent circuit diagram of a unit cell of an epsilon negative CRLH-TL structure. The ENG unit cell of FIG. 1 (b) may be equivalent to include one characteristic impedance Z 0 representing the RH characteristic and two parallel inductors 2L L representing the LH characteristic. Here, the characteristic impedance Z 0 is a transmission line having a general RH structure and may be represented by a parallel capacitor and a series inductor component.
특히, ENG 유닛 셀이 적용되는 안테나의 경우 RH 특성을 나타내는 특성 임피던스(Z0)에 해당하는 병렬 커패시터(CR)가 고정된 값을 가지기 때문에 LH 특성을 나타내는 2개의 병렬 인덕터(2LL)의 값을 조절함으로써 공진 주파수 조절 및 대역폭을 확장시킬 수 있을 것이다.In particular, in the case of the antenna to which the ENG unit cell is applied, since the parallel capacitor C R corresponding to the characteristic impedance Z 0 having the RH characteristic has a fixed value, the two parallel inductors 2L L having the LH characteristic have a fixed value. By adjusting the value, the resonant frequency control and bandwidth may be extended.
이하, 본 발명의 일 실시예로 도 1(b)의 등가회로도에 따라 설계된 ENG 유닛 셀 안테나에 대하여 자세히 살펴보기로 한다.Hereinafter, an ENG unit cell antenna designed according to the equivalent circuit diagram of FIG. 1 (b) will be described in detail as an embodiment of the present invention.
ENG 유닛 셀 안테나의 구성Configuration of the ENG Unit Cell Antenna
도 2는 본 발명의 일 실시예로 도 1(b)의 등가회로도에 따라 ENG 유닛 셀 안테나의 전체 구성을 도시하는 도면이다. 여기서, ENG 유닛 셀은 메타머티리얼을 이용한 0차 공진기(Zeroth Order Resonator, ZOR)로 적용될 수 있다. FIG. 2 is a diagram illustrating the overall configuration of an ENG unit cell antenna according to the equivalent circuit diagram of FIG. 1B according to one embodiment of the present invention. Here, the ENG unit cell may be applied as a zero order resonator (ZOR) using metamaterials.
도 2를 참조하면, 본 발명의 일 실시예인 ENG 유닛 셀 안테나(200)는 방사패치(210), 급전라인(220), 접지라인(230), 인덕터(240) 및 페라이터 헬리컬 로딩부(250)를 포함하여 구성된다.2, an ENG unit cell antenna 200 according to an embodiment of the present invention may include a radiation patch 210, a feed line 220, a ground line 230, an inductor 240, and a ferrite helical loading unit 250. It is configured to include).
상기 방사패치(210)는 기판 상에 RH(Right-Handed) 특성을 가지는 전송선로로서, 공진주파수에 따라 특정 패턴으로 구현되어 안테나 방사체로서 역할을 한다. 또한, 방사패치(210)는 기판 상이 아닌 입체형상의 캐리어에 형성될 수도 있을 것이다. 상기 기판 또는 캐리어는 소정의 유전율(ρ), 소정의 투자율(μ) 또는 소정의 유전율과 투자율을 모두 갖는 물질일 수 있으며, 일례로서, 유전율이 약 4.5인 FR4(Flame Retardant Type4)가 기판 또는 캐리어로서 이용될 수 있으나 이에 제한되는 것은 아니며, 다양한 유전 물질 또는 자성체 등이 이용될 수 있다. 상기 방사패치(210)는 일반적인 RH 특성을 나타내는 전송선로로서 도 1 (b)의 특성 임피던스(Z0)에 해당하며, 직렬 인덕터(LR)과 병렬 커패시터(CR) 성분으로 나타낼 수 있다. 구체적으로, 직렬 인덕터(LR) 성분은 방사패치(210)의 길이 방향으로 형성되는 인덕턴스 값이고, 병렬 커패시터(CR) 성분은 방사패치와 그라운드 사이에서 발생하는 커패시턴스 성분으로 등가 될 수 있다.The radiation patch 210 is a transmission line having a right-handed (RH) characteristic on a substrate, and is implemented as a specific pattern according to a resonance frequency to serve as an antenna radiator. In addition, the radiation patch 210 may be formed on a three-dimensional carrier, not on a substrate. The substrate or carrier may be a material having a predetermined permittivity (ρ), a predetermined permeability (μ), or both a predetermined permittivity and permeability. For example, FR4 (Flame Retardant Type4) having a dielectric constant of about 4.5 may be a substrate or carrier. It may be used as, but not limited to, various dielectric materials or magnetic materials may be used. The radiation patch 210 corresponds to a characteristic impedance Z 0 of FIG. 1B as a transmission line showing general RH characteristics, and may be represented by a series inductor L R and a parallel capacitor C R. In detail, the series inductor L R may be an inductance value formed in the longitudinal direction of the radiation patch 210, and the parallel capacitor C R may be equivalent to a capacitance component generated between the radiation patch and the ground.
급전라인(220)은 상기 방사패치(210)의 일단에 연결되어 상기 방사패치(210)로 전력을 공급하여 안테나 방사체로서 기능을 할 수 있도록 한다.The feed line 220 is connected to one end of the radiation patch 210 to supply power to the radiation patch 210 to function as an antenna radiator.
접지라인(230)은 상기 방사패치(210)의 타단에 연결되어 상기 방사패치(210)를 그라운드에 접지시키는 역할을 한다.The ground line 230 is connected to the other end of the radiation patch 210 serves to ground the radiation patch 210 to the ground.
인덕터(240)는 상기 방사패치(210)와 상기 급전라인(220) 사이에 형성되어 상기 ENG 유닛 셀 안테나(200)가 LH 특성을 나타내도록 도 1 (b)의 제 1 병렬 인덕터(2LL)의 역할을 한다.An inductor 240 is formed between the radiation patch 210 and the feed line 220 so that the ENG unit cell antenna 200 exhibits LH characteristics. The first parallel inductor 2L L of FIG. Plays a role.
페라이트 헬리컬 로딩부(Ferrite Helical Loding, 250)는 상기 방사패치(210)와 상기 그라운드 사이에 연결된 접지라인(230) 상에 형성되어 상기 ENG 유닛 셀 안테나(200)가 LH 특성을 나타내도록 도 1 (b)의 제 2 병렬 인덕터(2LL)의 역할을 한다. 상기 페라이트 헬리컬 로딩부(250)는 직사각기둥 형상의 페라이트 코어에 헬리컬 형상으로 라인이 감겨지도록 형성할 수 있다. 상기 페라이트 코어의 형상은 직사각기둥뿐만 아니라, 원기둥, 정육면체 등 다양한 형상으로도 가능하며 어느 특정 형상에 한정되는 것은 아니다. 여기서, 상기 페라이트는 후술할 도 3과 같은 실험예로 Co2 Y 헥사고날 페라이트(Co2 Y hexagonal ferrite(Ba2Co1Zn0.7Cu0.3Fe12O22)) 물질을 사용할 수도 있을뿐만 아니라, 자성체 특성을 나타내는 물질은 모두 가능하며, 페라이트, 자성 금속 및 비정질 자성 재료로 구성된 그룹으로부터 선택된 하나 이상의 재료로 이루어질 수 있다. 또한, 상기 페라이트 물질은 Fe을 기본으로 포함하며, Fe 이외에 Ni, Mn, Co, Mg, Zn, Ba, 및 Sr 등으로 구성된 그룹으로부터 선택된 하나 이상의 원소를 더 포함하는 자성 산화물로 이루어 질 수 있다. 그러나 상기 페라이트 물질은 이에 한정되는 것은 아니며, 그 이외의 다양한 물질을 사용할 수 있다. A ferrite helical loading unit 250 is formed on a ground line 230 connected between the radiation patch 210 and the ground so that the ENG unit cell antenna 200 exhibits LH characteristics. It serves as the second parallel inductor 2L L of b). The ferrite helical loading unit 250 may be formed such that a line is wound in a helical shape on a rectangular ferrite core. The shape of the ferrite core is not only a rectangular column, but also a variety of shapes such as a cylinder, a cube, and the like, but is not limited to any particular shape. Here, the ferrite may not only use a Co 2 Y hexagonal ferrite (Co 2 Y hexagonal ferrite (Ba 2 Co 1 Zn 0.7 Cu 0.3 Fe 12 O 22 )) material as an experimental example as shown in FIG. The materials representing are all possible and may be made of one or more materials selected from the group consisting of ferrite, magnetic metal and amorphous magnetic material. In addition, the ferrite material includes Fe as a base, and may be made of a magnetic oxide further comprising at least one element selected from the group consisting of Ni, Mn, Co, Mg, Zn, Ba, and Sr in addition to Fe. However, the ferrite material is not limited thereto, and various other materials may be used.
이와 같은 구성의 본 발명의 실시예에 따른 ENG 유닛 셀 안테나(200)의 경우, 상기 방사패치(210), 급전라인(220) 및 접지라인(230)은 고정되어 있기 때문에 메타머티리얼 특성을 이용한 상기 인덕터(240)와 페라이트 헬리컬 로딩부(250)의 값을 조절함으로써, 공진주파수를 조절할 수 있게 되어 전체 안테나의 길이(d)에 의존하지 않는 소형화된 안테나가 구현될 수 있다.In the case of the ENG unit cell antenna 200 according to the embodiment of the present invention having such a configuration, since the radiation patch 210, the power supply line 220 and the ground line 230 is fixed to the above using the material properties By adjusting the values of the inductor 240 and the ferrite helical loading unit 250, it is possible to adjust the resonant frequency to implement a miniaturized antenna that does not depend on the length d of the entire antenna.
또한, 페라이트 물질을 사용하기 때문에 적은 헬리컬 라인의 턴수로도 높은 인덕턴스 값을 나타낼 수 있기 때문에 더욱더 안테나의 소형화가 가능하게 된다.In addition, the use of a ferrite material can exhibit a high inductance value even with a small number of turns of the helical line, further miniaturizing the antenna.
또한, 본 발명의 실시예에 따르면, 페라이트 코어 상에 헬리컬 형상의 라인으로 감겨진 페라이트 헬리컬 로딩부(250)를 접지라인(230) 상에 형성함으로써, 종래에 문제시되어 왔던 협대역폭을 가지는 ENG 유닛 셀 안테나(200)의 대역폭을 확장할 수 있게 된다. 이는 후술하는 대역폭 등의 다양한 측정값에 의하여 증명될 것이다. In addition, according to an embodiment of the present invention, by forming a ferrite helical loading portion 250 wound on a ferrite core in a helical shape on the ground line 230, the ENG unit having a narrow bandwidth has been a problem in the prior art The bandwidth of the cell antenna 200 can be extended. This will be demonstrated by various measurements such as bandwidth, described below.
도 2에서는 일 실시예로 도 1 (b)의 ENG 유닛 셀 등가회로에 따라 안테나를 구성하였지만, 본 발명은 ENG 유닛 셀 안테나에 한정되지 않으며, 접지라인 상에 페라이트 헬리컬 로딩부를 형성한다면 도1 (a)와 같은 DNG 유닛 셀 등가회로 또는 MNG 유닛 셀 등가회로에 따라 안테나를 구성할 수도 있다. 만약, DNG 유닛 셀 등가회로에 따라 안테나를 구현할 경우 상기 도 2의 방사패치(210)의 일정부분을 이격시켜 직렬 커패시터(CL) 성분을 나타내도록 하면 될 것이다. 이 경우, 병렬 인덕터(2LL) 성분의 조절뿐만 아니라 직렬 커패시터(CL) 성분으로서 기능하게 되는 이격 공간의 간격 조절을 통해 공진 주파수 조절이 가능해질 수 있게 될 것이다.In FIG. 2, the antenna is configured according to the ENG unit cell equivalent circuit of FIG. 1 (b) as an embodiment. However, the present invention is not limited to the ENG unit cell antenna. The antenna may be configured according to the DNG unit cell equivalent circuit or the MNG unit cell equivalent circuit as shown in a). If the antenna is implemented according to the DNG unit cell equivalent circuit, a portion of the radiation patch 210 of FIG. 2 may be spaced apart to represent the series capacitor C L. In this case, the resonant frequency may be adjusted by adjusting the spacing of the separation space that functions as the series capacitor C L as well as the adjustment of the parallel inductor 2L L.
실제 안테나 구현예 및 반사손실(S11) 비교 그래프Actual antenna implementation and return loss (S11) comparison graph
도 3은 본 발명의 일 실시예에 따른 도 2의 ENG 유닛 셀 안테나의 실제 구현예를 나타낸 것이다. 3 illustrates an actual implementation of the ENG unit cell antenna of FIG. 2 in accordance with an embodiment of the present invention.
도 3을 참조하면, 안테나는 FR4 기판상에 제작하였으며, 기판 사이즈는 50mm×100mm×0.8mm이고, 그라운드부분은 50mm×90mm이다. 병렬 인덕터(240)로 사용되는 SMT 칩 인덕터는 27nH의 값을 가진다. 페라이트 헬리컬 로딩부(250)는 Co2 Y 헥사고날 페라이트 코어(Co2 Y hexagonal ferrite(Ba2Co1Zn0.7Cu0.3Fe12O22) core)는 3mm×6mm×3mm 사이즈의 직사각기둥으로 형성하였으며, 0.5mm 두께의 헬리컬 라인이 페라이트 코어의 상부에 0.5mm 간격으로 감겨져 있으며, 전체 길이는 60mm이다. 이 밖의 각 구성요소에 대한 구체적인 구현 크기는 도 2에 상세히 도시되어 있는 바, 이에 대해서는 설명을 생략하기로 한다. 또한, 각 구성요소에 대한 도면 참조부호는 도 2에서와 동일하므로 도면의 간략화를 위해 그 표시를 생략한다. Referring to Figure 3, the antenna is fabricated on the FR4 substrate, the substrate size is 50mm x 100mm x 0.8mm, the ground portion is 50mm x 90mm. The SMT chip inductor used as the parallel inductor 240 has a value of 27nH. The ferrite helical loading unit 250 is a Co2 Y hexagonal ferrite core (Co 2 Y hexagonal ferrite (Ba 2 Co 1 Zn 0.7 Cu 0.3 Fe 12 O 22 ) core) was formed of a rectangular column of 3mm × 6mm × 3mm size, A 0.5 mm thick helical line is wound 0.5 mm apart on top of the ferrite core and is 60 mm long. Specific implementation sizes of the other components are shown in detail in FIG. 2, and description thereof will be omitted. In addition, the reference numerals for the respective components are the same as those in FIG. 2, and thus the display is omitted for simplicity of the drawings.
도 4는 본 발명의 일실시예에 따른 도 3의 ENG 유닛 셀 안테나에 대해 측정한 반사손실(S11)을 나타내는 그래프이다. 도 4의 그래프에서는 페라이트 헬리컬 로딩부를 가지는 본 발명의 실시예에 따른 안테나의 특성을 확인하고자 세라믹 헬리컬 로딩부를 가지는 안테나를 비교대상으로 하였으며, 빈원(○)으로 지시되는 곡선은 세라믹 헬리컬 로딩부를 가지는 안테나에 대한 결과이며, 채워진원(●)으로 지시되는 곡선은 본 발명의 일실시예에 따른 페라이트 헬리컬 로딩부를 가지는 안테나의 실제 측정 결과를 나타낸다. 4 is a graph illustrating a return loss S11 measured with respect to the ENG unit cell antenna of FIG. 3 according to an embodiment of the present invention. In the graph of FIG. 4, an antenna having a ceramic helical loading unit is compared to determine the characteristics of the antenna according to an exemplary embodiment of the present invention having a ferrite helical loading unit, and a curve indicated by a vacant circle (○) is an antenna having a ceramic helical loading unit. The curve indicated by the filled circle (●) represents the actual measurement result of the antenna having a ferrite helical loading unit according to an embodiment of the present invention.
도 4를 참조하면, 본 발명의 일실시예에 따른 페라이트 헬리컬 로딩부를 가지는 안테나는 약 0.8GHz에서 공진 주파수를 가지며, 대역폭(6dB 반사손실)은 140MHz(740-880MHz)를 가진다. 이는 공진 주파수에서 약 17.5%에 해당한다. 반면에, 세라믹 헬리컬 로딩부를 가지는 안테나는 약 0.8GHz에서 공진 주파수를 가지며, 대역폭(6dB 반사손실)은 90MHz(760-850MHz)를 가진다. 이는 공진 주파수에서 약 11.2%에 해당한다.Referring to FIG. 4, an antenna having a ferrite helical loading unit according to an embodiment of the present invention has a resonance frequency at about 0.8 GHz, and a bandwidth (6 dB return loss) has 140 MHz (740 to 880 MHz). This corresponds to about 17.5% at resonance frequency. On the other hand, the antenna with ceramic helical loading has a resonant frequency at about 0.8 GHz, and the bandwidth (6 dB return loss) has 90 MHz (760-850 MHz). This corresponds to about 11.2% at resonance frequency.
이와 같은 반사손실(S11) 측정값에 따라 본 발명의 일실시예에 따른 페라이트 헬리컬 로딩부를 가지는 안테나가 세라믹 헬리컬 로딩부를 가지는 안테나에 비하여 대역폭이 확장됨을 알 수 있다. It can be seen that the antenna having the ferrite helical loading part according to the measured return loss (S11) has an increased bandwidth compared to the antenna having the ceramic helical loading part according to the embodiment of the present invention.
방사 패턴 측정 결과Radiation pattern measurement result
도 5 내지 도 7은 본 발명의 일실시예에 따른 도 3의 ENG 유닛 셀 안테나의 방사 패턴을 각각 x-y 평면, x-z 평면 및 y-z 평면에 대해 나타낸 도면이다.5 to 7 illustrate radiation patterns of the ENG unit cell antenna of FIG. 3 according to an embodiment of the present invention with respect to the x-y plane, the x-z plane, and the y-z plane, respectively.
도 5 내지 도 7을 참조하면, 본 발명의 실시예에 따른 안테나는 전방향성(omindirectional)을 갖는 방사 패턴을 보임을 알 수 있다. 따라서, 본 발명의 실시예에 따른 안테나는 이동식 단말기에 적용하기에 충분하다.5 to 7, it can be seen that the antenna according to the embodiment of the present invention exhibits a radiation pattern having an omnidirectional direction. Therefore, the antenna according to the embodiment of the present invention is sufficient to be applied to the mobile terminal.
안테나 방사효율 및 이득Antenna Radiation Efficiency and Gain
도 8은 본 발명의 일실시예에 따른 도 3의 ENG 유닛 셀 안테나의 방사효율 및 최대 이득을 나타낸다.8 illustrates the radiation efficiency and the maximum gain of the ENG unit cell antenna of FIG. 3 according to an embodiment of the present invention.
도 8을 참조하면, 본 발명의 실시예에 따른 안테나의 방사효율은 29.6% ~ 39.3%이고, 이득은 -1.04dBi ~ 0.18 dBi를 가지며, 최대방사효율 및 최대 이득은 공진주파수인 0.8GHz에서 38.5%와 0.05dBi를 나타내었다.Referring to Figure 8, the radiation efficiency of the antenna according to an embodiment of the present invention is 29.6% ~ 39.3%, the gain has a -1.04dBi ~ 0.18 dBi, the maximum radiation efficiency and the maximum gain is 38.5 at 0.8GHz resonant frequency % And 0.05 dBi.
도 9는 본 발명의 일실시예에 따른 도 3의 ENG 유닛 셀 안테나의 방사효율을 비교한 그래프이다.9 is a graph comparing the radiation efficiency of the ENG unit cell antenna of FIG. 3 according to an embodiment of the present invention.
도 9의 그래프에서는 페라이트 헬리컬 로딩부를 가지는 본 발명의 실시예에 따른 안테나의 특성을 확인하고자 세라믹 헬리컬 로딩부를 가지는 안테나를 비교대상으로 하였으며, 빈원(○)으로 지시되는 곡선은 세라믹 헬리컬 로딩부를 가지는 안테나에 대한 결과이며, 채워진원(●)으로 지시되는 곡선은 본 발명의 일실시예에 따른 페라이트 헬리컬 로딩부를 가지는 안테나의 실제 측정 결과를 나타낸다. In the graph of FIG. 9, an antenna having a ceramic helical loading unit was compared to identify an antenna according to an embodiment of the present invention having a ferrite helical loading unit, and a curve indicated by a vacant circle (○) is an antenna having a ceramic helical loading unit. The curve indicated by the filled circle (●) represents the actual measurement result of the antenna having a ferrite helical loading unit according to an embodiment of the present invention.
도 9를 참조하면, 본 발명의 일실시예에 따른 페라이트 헬리컬 로딩부를 가지는 안테나가 세라믹 헬리컬 로딩부를 가지는 안테나에 비하여 넓은 대역폭에서 향상된 방사효율을 가짐을 알 수 있다. Referring to FIG. 9, it can be seen that an antenna having a ferrite helical loading unit according to an embodiment of the present invention has improved radiation efficiency at a wider bandwidth than an antenna having a ceramic helical loading unit.
이와 같이, 도 4 내지 도 9에서의 측정 그래프를 살펴본 결과, 본 발명의 실시예에 따른 페라이트 헬리컬 로딩부를 가지는 메타머티리얼 안테나를 통하여 광대역 특성을 보이는 것을 알 수 있다.As described above, as a result of examining the measurement graph in FIGS. 4 to 9, it can be seen that the broadband characteristics are exhibited through the metamaterial antenna having the ferrite helical loading unit according to the embodiment of the present invention.
이처럼 본 발명의 실시예에 따른 메타머티리얼 안테나는 유닛 셀의 배치 방법, 유닛 셀의 수, 방사패치의 크기, 기판의 유전율 및 크기, 페라이트 헬리컬 로딩부의 크기 및 사용된 페라이트의 유전율과 투자율, 헬리컬 라인의 폭과 간격, 급전부의 형태(급전 선로의 위치, 급전 선로의 폭, 급전 선로의 길이), 접지부의 형태(접지 선로의 위치, 접지 선로의 폭, 접지 선로의 길이) 등을 조절함으로써 사용자가 원하는 광대역 안테나의 특성을 조절할 수 있을 것이다. As described above, the metamaterial antenna according to the embodiment of the present invention is a method of arranging unit cells, the number of unit cells, the size of the radiation patch, the permittivity and size of the substrate, the size of the ferrite helical loading unit, the permittivity and permeability of the ferrite used, the helical line By adjusting the width and spacing of the feeder, the shape of the feeder (the position of the feeder, the width of the feeder, the length of the feeder), and the type of grounding (the position of the grounding line, the width of the grounding line, the length of the grounding line) Will be able to adjust the characteristics of the desired wideband antenna.
이상에서 대표적인 실시 예를 통하여 본 발명에 대하여 상세하게 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 상술한 실시 예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리범위는 설명된 실시 예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다. Although the present invention has been described in detail with reference to exemplary embodiments above, those skilled in the art to which the present invention pertains can make various modifications without departing from the scope of the present invention. Will understand. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the claims below and equivalents thereof.

Claims (8)

  1. CRLH-TL(Composite Right/Left Handed Transmission Line) 구조에서 RH(Right-Handed) 특성을 나타내는 전송선로로서, 공진주파수에 따라 특정 패턴으로 구현되어 안테나 방사체로서 역할을 하는 방사패치;A radiation line having a right-handed (RH) characteristic in a composite right / left handed transmission line (CRLH-TL) structure, the radiation patch being implemented in a specific pattern according to a resonance frequency to serve as an antenna radiator;
    상기 방사패치의 일단에 연결되어 상기 방사패치로 전력을 공급하는 급전라인;A power supply line connected to one end of the radiation patch to supply power to the radiation patch;
    상기 방사패치의 타단에 연결되어 상기 방사패치를 그라운드에 접지시키는 접지라인; 및A ground line connected to the other end of the radiation patch to ground the radiation patch to ground; And
    상기 접지라인 상부에 형성되어 CRLH-TL 구조에서 LH(Left-Handed) 특성을 나타내는 제 1 병렬 인덕터의 역할을 하는 페라이트 헬리컬 로딩부(Ferrite Helical Loading);를 포함하는, 메타머티리얼을 이용한 광대역 안테나.And a ferrite helical loading unit formed on the ground line and serving as a first parallel inductor exhibiting left-handed (LH) characteristics in a CRLH-TL structure.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 페라이트 헬리컬 로딩부는,The ferrite helical loading unit,
    입체 형상의 페라이트 코어; 및 Three-dimensional ferrite core; And
    상기 페라이트 코어 표면에 일정간격을 두고 헬리컬 형상으로 감겨지는 헬리컬 라인;을 포함하는 메타머티리얼을 이용한 광대역 안테나.And a helical line wound in a helical shape at a predetermined interval on the surface of the ferrite core.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 페라이트 헬리컬 로딩부의 페라이트 물질은, Ferrite material of the ferrite helical loading portion,
    자성 금속 및 비정질 자성 재료로 구성된 그룹으로부터 선택된 하나 이상의 물질로 구성되는, 메타머티리얼을 이용한 광대역 안테나.A wideband antenna using metamaterials, consisting of one or more materials selected from the group consisting of magnetic metals and amorphous magnetic materials.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 페라이트 헬리컬 로딩부의 페라이트 물질은,Ferrite material of the ferrite helical loading portion,
    Fe을 기본으로 포함하며, Fe 이외에 Ni, Mn, Co, Mg, Zn, Ba, 및 Sr 등으로 구성된 그룹으로부터 선택된 하나 이상의 원소를 더 포함하는 자성 산화물로 구성되는, 메타머티리얼을 이용한 광대역 안테나.A broadband antenna using a metamaterial including Fe as a base and comprising a magnetic oxide further comprising at least one element selected from the group consisting of Ni, Mn, Co, Mg, Zn, Ba, and Sr in addition to Fe.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 페라이트 헬리컬 로딩부의 페라이트 물질은,Ferrite material of the ferrite helical loading portion,
    Co2 Y 헥사고날 페라이트(Co2 Y hexagonal ferrite)(Ba2Co1Zn0.7Cu0.3Fe12O22) 물질로 구성되는, 메타머티리얼을 이용한 광대역 안테나.A broadband antenna using a metamaterial composed of a Co 2 Y hexagonal ferrite (Ba 2 Co 1 Zn 0.7 Cu 0.3 Fe 12 O 22 ) material.
  6. 제 1 항에 있어서,The method of claim 1,
    CRLH-TL 구조에서에서 LH(Left-Handed) 특성을 나타내는 제 2 병렬 인덕터의 역할을 하도록 상기 방사패치와 상기 급전라인 사이에 형성되는 인덕터를 더 포함하는, 메타머티리얼을 이용한 광대역 안테나.And a inductor formed between the radiation patch and the feed line to serve as a second parallel inductor exhibiting left-handed (LH) characteristics in a CRLH-TL structure.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 방사패치는, The radiation patch,
    CRLH-TL 구조에서 LH(Left-Handed) 특성을 나타내는 직렬 커패시터의 역할을 하도록 상기 방사패치 일부가 일정간격 이격되는, 메타머티리얼을 이용한 광대역 안테나.In the CRLH-TL structure, a part of the radiation patch is spaced apart by a certain distance so as to act as a series capacitor exhibiting the Left-Handed (LH) characteristics, broadband antenna using a metamaterial.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 기재된 메타머티리얼을 이용한 광대역 안테나를 포함하는 통신장치.A communication apparatus comprising a wideband antenna using the metamaterial according to any one of claims 1 to 7.
PCT/KR2011/003864 2010-06-16 2011-05-26 Broadband antenna using metamaterials, and communication device including same WO2011159037A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0056867 2010-06-16
KR1020100056867A KR101074331B1 (en) 2010-06-16 2010-06-16 Broadband antenna using metamaterial and communication apparatus comprising the same

Publications (2)

Publication Number Publication Date
WO2011159037A2 true WO2011159037A2 (en) 2011-12-22
WO2011159037A3 WO2011159037A3 (en) 2012-02-16

Family

ID=45032940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/003864 WO2011159037A2 (en) 2010-06-16 2011-05-26 Broadband antenna using metamaterials, and communication device including same

Country Status (2)

Country Link
KR (1) KR101074331B1 (en)
WO (1) WO2011159037A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2615683A1 (en) * 2012-01-16 2013-07-17 Acer Incorporated Communication device and antenna structure therein
EP2846402A4 (en) * 2012-06-01 2016-01-06 Emw Co Ltd Antenna and communication device comprising same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104641506B (en) * 2012-09-17 2017-03-22 株式会社Emw Metamaterial antenna
ES2657405T3 (en) 2013-08-09 2018-03-05 Huawei Device (Dongguan) Co., Ltd. Antenna and terminal of printed circuit board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070101121A (en) * 2006-04-10 2007-10-16 히타치 긴조쿠 가부시키가이샤 Antenna device and wireless communication apparatus using same
KR100779407B1 (en) * 2006-09-04 2007-11-26 주식회사 이엠따블유안테나 Micromini dual band antenna using meta-material
KR100782301B1 (en) * 2006-09-21 2007-12-06 주식회사 이엠따블유안테나 Antenna with adjustable resonant frequency using metamaterial and device comprising the same
KR20090049115A (en) * 2007-11-13 2009-05-18 주식회사 이엠따블유안테나 Antenna employing lh transmission line

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070101121A (en) * 2006-04-10 2007-10-16 히타치 긴조쿠 가부시키가이샤 Antenna device and wireless communication apparatus using same
KR100779407B1 (en) * 2006-09-04 2007-11-26 주식회사 이엠따블유안테나 Micromini dual band antenna using meta-material
KR100782301B1 (en) * 2006-09-21 2007-12-06 주식회사 이엠따블유안테나 Antenna with adjustable resonant frequency using metamaterial and device comprising the same
KR20090049115A (en) * 2007-11-13 2009-05-18 주식회사 이엠따블유안테나 Antenna employing lh transmission line

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2615683A1 (en) * 2012-01-16 2013-07-17 Acer Incorporated Communication device and antenna structure therein
US8823595B2 (en) 2012-01-16 2014-09-02 Acer Incorporated Communication device and antenna structure therein
EP2846402A4 (en) * 2012-06-01 2016-01-06 Emw Co Ltd Antenna and communication device comprising same
US9660343B2 (en) 2012-06-01 2017-05-23 Emw Co., Ltd. Antenna and communication device comprising same

Also Published As

Publication number Publication date
WO2011159037A3 (en) 2012-02-16
KR101074331B1 (en) 2011-10-17

Similar Documents

Publication Publication Date Title
KR100621335B1 (en) Apparatus for Reducing Ground Effects in a Folder-Type Communication Handset Device
CN106415929B (en) Multiple antennas and the wireless device for having the multiple antennas
US20090135087A1 (en) Metamaterial Structures with Multilayer Metallization and Via
WO2009134013A2 (en) Broadband internal antenna using slow-wave structure
WO2010101379A2 (en) Multiband and broadband antenna using metamaterials, and communication apparatus comprising same
WO2009081803A1 (en) Antenna device and wireless communication device using the same
WO2010076982A2 (en) Infinite wavelength antenna device
SK112000A3 (en) Dual multitriangular antennas for gsm and dcs cellular telephony
KR101644908B1 (en) Mimo antenna apparatus
WO2010117177A2 (en) Multiband antenna using a metamaterial, and communication apparatus including same
WO2010101378A2 (en) Multiband and broadband antenna using metamaterials, and communication apparatus comprising same
WO2010107211A2 (en) Multi-band antenna device and a communications device employing the same
KR20100042704A (en) Mimo antenna apparatus
WO2011159037A2 (en) Broadband antenna using metamaterials, and communication device including same
CN101378144B (en) Radio apparatus and antenna thereof
WO2010093129A2 (en) Spiral loaded metamaterial antenna and communication device using the antenna
WO2010093131A2 (en) Multiband antenna using a crlh-tl structure and communication device using the antenna
CA2373768A1 (en) Flat-plate monopole antennae
WO2011078584A2 (en) Multi-band antenna using metamaterials, and communication apparatus comprising same
WO2010147326A2 (en) Antenna
WO2010101373A2 (en) Multiband and broadband antenna, and communication apparatus comprising same
WO2010068002A2 (en) Antenna using meta-material transmission line, and communication device using the antenna
CN109088168A (en) A kind of mobile terminal antenna and mobile terminal
WO2019216672A1 (en) Small dipole antenna
WO2010095816A2 (en) Multiband antenna having a crlh-tl periodic structure constituted by multilayer unit cells, and communication apparatus using the antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11795903

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11795903

Country of ref document: EP

Kind code of ref document: A2