WO2010101298A1 - 蛍光mriプローブ - Google Patents

蛍光mriプローブ Download PDF

Info

Publication number
WO2010101298A1
WO2010101298A1 PCT/JP2010/054069 JP2010054069W WO2010101298A1 WO 2010101298 A1 WO2010101298 A1 WO 2010101298A1 JP 2010054069 W JP2010054069 W JP 2010054069W WO 2010101298 A1 WO2010101298 A1 WO 2010101298A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
dota
gadolinium
fluorescent
substituent
Prior art date
Application number
PCT/JP2010/054069
Other languages
English (en)
French (fr)
Inventor
長野哲雄
花岡健二郎
山根健浩
村松泰明
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Priority to US13/254,523 priority Critical patent/US20120065384A1/en
Priority to JP2011502837A priority patent/JP5425181B2/ja
Publication of WO2010101298A1 publication Critical patent/WO2010101298A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/085Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier conjugated systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/0002General or multifunctional contrast agents, e.g. chelated agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0032Methine dyes, e.g. cyanine dyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings

Definitions

  • the present invention relates to a fluorescent MRI probe that is easily taken up into cells and can be observed by a fluorescence method and a nuclear magnetic resonance imaging method.
  • MRI Nuclear magnetic resonance imaging
  • gadolinium complexes and iron oxide fine particles are widely used as an MRI contrast agent.
  • anatomical information can be obtained with high resolution by using gadolinium complexes.
  • gadolinium complexes are metal ion complexes, they have a drawback that it is difficult to label and measure cells and tissues because they are very polar and hardly taken into cells.
  • a fluorescence method using a fluorescent reagent (fluorescent reagent) using a fluorescent dye as a probe can measure a fluorescent reagent taken into cells easily and with high sensitivity, and particularly, a tissue or an organ existing near the surface of a living body.
  • a fluorescent reagent fluorescent reagent
  • in vivo visualization combining MRI and fluorescence measurement has been attracting attention, but practical fluorescent MRI probes having dual characteristics that can be used in both fluorescence and MRI have been developed. The current situation is not.
  • a fluorescent MRI probe designed to be easily introduced into cells by combining a gadolinium complex and a fluorescent reagent has not been known at all.
  • PTIR267 (Acad.Radiol., 11, pp.1251-1259, 2004) is a compound in which a gadolinium complex and a cyanine compound having a fatty chain are combined, and has a property of being incorporated into LDL.
  • PTIR267 can be incorporated into cells by LDL receptor-mediated endocytosis using LDL labeled with PTIR267, PTIR267 itself is not incorporated into cells through the cell membrane. .
  • Gd (Rhoda-DOTA) (Bioconjugate Chem., 9, pp. 242-249, 1998) is a compound in which a gadolinium complex and rhodamine are bound. Even if this compound is used for in vivo imaging. No enhancement of MRI signal is observed. According to the study by the present inventors, this compound slightly migrates into the cell, but does not have such a property that the MRI signal can be enhanced. The reason for this is explained by the fact that Gd (Rhoda-DOTA) is distributed in the lipid tissue and the interaction with water molecules is reduced.
  • GRID gadolinium complex and rhodamine are bound to dextran.
  • An object of the present invention is to provide a probe that can be easily taken up into cells and can be observed by a fluorescence method and MRI. More specifically, it is a fluorescent MRI probe that can be measured by a fluorescence method and MRI by combining a fluorescent dye and a gadolinium complex, and has high intracellular migration without using means such as CPP or dextran. It is an object of the present invention to provide an MRI probe.
  • the present inventors have found that a compound in which a gadolinium complex and a specific fluorescent dye are bound is easily taken up and accumulated in the cell, and It was found that the compound can image cells and tissues with high sensitivity by both MRI and fluorescence methods. Further, it has been found that by using this compound as a fluorescent MRI probe, the deep part of the living body can be imaged in detail by MRI, and the shallow part of the living body and the surface of the living body can be imaged in detail by the fluorescence method. The present invention has been completed based on the above findings.
  • an optionally substituted gadolinium • 1,4,7,10-tetraazacyclododecane-N, N ′, N ′′, N ′ ′′-tetraacetic acid (Gd-DOTA ) Residues or substituents of gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) optionally having a substituent and the following general formula (I):
  • R 1 is a hydrogen atom or 1 to 4 substituents present at any position on the benzene ring (when two or more substituents are present, they may be the same or different).
  • R 2 , R 4 , R 5 , and R 7 each independently represent a hydrogen atom, a halogen atom, or an optionally substituted C 1-6 alkyl group
  • R 3 and R 6 are Each independently represents a hydrogen atom, a halogen atom, or a C 1-6 alkyl group which may have a substituent, or a group represented by the following general formula (II): [In the formula, R 11 is a hydrogen atom or 1 to 4 substituents present at any position on the benzene ring (when two or more substituents are present, they may be the same or different).
  • R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , and R 19 are each independently a hydrogen atom, a halogen atom, or an optionally substituted C 1- 6 represents an alkyl group; R 20 and R 21 each independently represents an optionally substituted C 1-18 alkyl group; Z 1 represents an oxygen atom, a sulfur atom, or —N (R 22 ) —.
  • R 22 represents a hydrogen atom or a C 1-6 alkyl group which may have a substituent
  • R 23 ⁇ R 24 represents each independently represent a C 1-6 alkyl group which may have a substituent
  • M - is a group represented by the pair showing ion] in a number required for neutralization of electric charge
  • an optionally substituted gadolinium ⁇ 1,4,7,10-tetraazacyclododecane-N, N ′, N ′′, N ′ ′′-tetraacetic acid The residue of gadolinium diethylenetriaminepentaacetic acid which may have a residue or a substituent is gadolinium having a p-thioureidobenzyl group.
  • 1,4,7,10-tetraazacyclododecane-N, N ′, N there is provided the above-mentioned fluorescent gadolinium complex compound which is a residue of ′, N ′′ ′-tetraacetic acid or an ester thereof or a residue of gadolinium diethylenetriaminepentaacetic acid or an ester thereof having a p-thioureidobenzyl group.
  • gadolinium • 1,4,7,10-tetraazacyclododecane-N, N ′, N ′′, N ′ ′′-tetra which may have a substituent.
  • the residue of acetic acid is the residue of gadolinium ⁇ 1,4,7,10-tetraazacyclododecane-N, N ′, N ′′, N ′ ′′-tetraacetic acid having a p-thioureidobenzyl group
  • a fluorescent gadolinium complex compound is provided.
  • R 1 is a hydrogen atom
  • R 2 , R 4 , R 5 , and R 7 are methyl groups
  • R 3 and R 6 is a hydrogen atom
  • R 11 is a hydrogen atom in the general formula (II)
  • R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , and R 19 are hydrogen.
  • An atom, R 20 and R 21 are a C 1-6 alkyl group
  • Z 1 is an oxygen atom
  • Y 1 and Y 2 are —C (R 23 ) (R 24 ) — (wherein R 23 And R 24 each independently represents a C 1-6 alkyl group).
  • the present invention provides a fluorescent MRI probe containing the fluorescent gadolinium complex compound as an active ingredient and a fluorescent MRI contrast agent containing the fluorescent gadolinium complex compound as an active ingredient. Further, the present invention provides a method for imaging a living body, the method comprising the step of administering the fluorescent gadolinium complex compound to the living body and performing imaging by a fluorescence method and / or MRI.
  • the residue of 1,4,7,10-tetraazacyclododecane-N, N ′, N ′′, N ′ ′′-tetraacetic acid which may have a substituent
  • a fluorescent gadolinium complex in which a residue of diethylenetriaminepentaacetic acid (DTPA) which may have a group or a substituent and a group represented by the above general formula (I) or the above general formula (II) is covalently bonded.
  • DTPA diethylenetriaminepentaacetic acid
  • a ligand compound is provided.
  • the living body imaging which combined the fluorescence method and MRI using the fluorescent gadolinium complex compound of this invention is attained.
  • the fluorescent gadolinium complex compound of the present invention has the property of being easily taken up into cells and accumulated in the cells, and imaging by fluorescence method and / or MRI is carried out in the state taken up into cells or tissues. Can do.
  • the deep part of the living body can be imaged by MRI and the shallow part of the living body or the surface of the living body or near the surface can be imaged by the fluorescence method, it can be suitably used in the clinical medicine field such as accurate diagnosis of various diseases. .
  • This photograph shows a confocal image ([Gd-DOTA-BDP] lens: x60, filter: NIBA, PMT: 475, Gain: 1.2; [Gd-DOTA-Cy] lens: x60, filter: Cy5, PMT : 800, Gain: 3.0) It is the figure which showed the result of having measured by MRI using Gd-DOTA-BDP (Example 1).
  • the left side shows PBS buffer
  • the right side shows Gd-DOTA-BDP in PBS buffer
  • a is under normal light
  • b is a fluorescent image
  • c is an MR image (T1-weighted)
  • d is an MR image (T2-weighted) ).
  • a shows an administered mouse
  • b shows a non-administered mouse
  • c shows an abdominal image
  • d shows an excised organ.
  • the fluorescence intensity with time when Gd-DOTA-Cy (Example 2) is administered to nude mice and fluorescence imaging is performed is shown. It is a figure which shows the result of having performed MRI imaging of the aorta by administering Gd-DOTA-BDP (Example 1) to the ApoE ⁇ / ⁇ mouse and the Wild-Type mouse which are arteriosclerosis model mice.
  • FIG. 5 shows the results of Gd-DOTA-BDP (Example 1) administered to ApoE ⁇ / ⁇ mice and Wild-Type mice, which are arteriosclerosis model mice, and the aorta is excised from the mice, opened, and subjected to fluorescence imaging and Sudan IV staining.
  • the upper part a shows the results of ApoE ⁇ / ⁇ mice, which are arteriosclerosis model mice
  • the lower part b shows the results of Wild-Type mice
  • the left side shows fluorescence images
  • the right side shows Sudan IV stained images.
  • the aorta where Gd-DOTA-BDP (Example 1) was administered to ApoE ⁇ / ⁇ mice and Wild-Type mice, which are atherosclerosis model mice, and the aorta where an increase in MRI signal was observed and the aorta where no signal change was observed
  • a in the upper row is the frozen section of the aortic region where the signal increase was observed in MRI
  • b in the lower row is the result of the frozen section of the aortic region where no signal change was observed in the MRI.
  • the right side shows an Oil red O stained image. It is a figure which shows the result of having introduce
  • the left side shows a transmission image
  • the right side shows a confocal fluorescence microscope image.
  • FIG. 10 It is a figure which shows the result of having carried out tail intravenous injection of Gd-DOTA-PEG-Cy (Example 10) to a nude mouse, and having observed the pharmacokinetics of Gd-DOTA-PEG-Cy by fluorescence imaging.
  • a shows the result of fluorescence imaging of a Gd-DOTA-PEG-Cy-administered mouse from outside the body
  • b shows the result of fluorescence imaging of an organ excised from the Gd-DOTA-PEG-Cy-administered mouse.
  • FIG. 10 It is a figure which shows the result of having carried out the tail vein injection of Gd-DOTA-PEG-Cy (Example 10) to the nude mouse, and performed the imaging in a mouse
  • the left side shows the MRI measurement results before administration of Gd-DOTA-PEG-Cy
  • the right side shows the MRI measurement results after administration of Gd-DOTA-PEG-Cy.
  • the left side shows a transmission image
  • the right side shows a confocal fluorescence microscope image.
  • Gadolinium 1,4,7,10-tetraazacyclododecane-N, N ′, N ′′, N ′′ ′-tetraacetic acid (Gd-DOTA) and gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) are both used. It is used as an MRI contrast agent and is easily available.
  • the fluorescent gadolinium complex compound of the present invention has a DOTA or DTPA residue as a partial structure.
  • the “residue” means the remaining structure in which one hydrogen atom is removed from DOTA or DOTA having a substituent or DTPA or DTPA having a substituent. This residue is directly bonded to any position on the benzene ring of the group represented by the general formula (I) or the general formula (II).
  • the residue may be a DOTA having a substituent or a residue of DTPA having a substituent.
  • a residue obtained by removing one hydrogen atom from the substituent can also be used.
  • DOTA having a thioureido group (NH 2 -CS-NH-DOTA) or DTPA having a thioureido group (NH 2 -CS-NH-DTPA: In these descriptions, DOTA and DTPA are represented as monovalent residues for convenience. It is also preferred to use a residue (-NH-CS-NH-DOTA or -NH-CS-NH-DTPA) obtained by removing the hydrogen atom of the terminal amino group of the thioureido group.
  • substitution position of the thioureido group is not particularly limited, it is preferable that DOTA is substituted on a carbon atom forming a tetraazacyclododecane ring structure, and DTPA is substituted on a carbon atom of an ethylene group.
  • substituent capable of forming a residue in this manner include a hydroxyl group, an amino group, a carboxyl group, an alkyl group, an alkoxy group, an alkoxycarbonyl group, an aralkyl group, an aryl group, a heteroaryl group, a sulfo group, and an alkyl group.
  • a sulfonate group, a ureido group, a carbamoyl group, and the like can be used, but are not limited thereto.
  • R 1 in the general formula (I) represents a hydrogen atom or 1 to 4 substituents present at any position on the benzene ring. When two or more substituents are present, they may be the same or different.
  • the type of the substituent represented by R 1 is not particularly limited.
  • a halogen atom any of a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom
  • a hydroxyl group an amino group (a mono- or di-substituted amino group)
  • Nitro group carboxyl group, alkyl group, alkoxy group, alkoxycarbonyl group, aralkyl group, aryl group, heteroaryl group, sulfo group, alkyl sulfonate group, and the like.
  • R 1 is preferably a hydrogen atom, but it is also preferred when R 1 represents one alkyl group (for example, a methyl group).
  • R 1 represents 1 to 4 substituents present at any position on the benzene ring
  • these 1 to 4 substituents are one or two of the 1 to 4 substituents
  • the above can be a substituent that has the ability to detect a target object by interacting with the target object.
  • substituents may be collectively referred to as “detection substituents”.
  • the target object includes a target substance and a target environment, examples of the target substance include reactive oxygen species and protons, and examples of the target environment include an acidic environment and a low oxygen environment. .
  • substituents having the ability to detect the target object by interacting with the target object by itself can be used as the single substituent.
  • Substituents that can detect a target object by interacting with the object and causing structural changes such as modification and elimination can be listed.
  • substituents having the ability to detect a target object by two or more of the 1 to 4 substituents cooperating with the target object the two or more substituents are bonded to each other.
  • a substituent that can detect a target object by forming a ring structure can be mentioned.
  • the two or more substituents are bonded to each other in advance to form a ring structure, and the ring structure interacts with the target object (the substituent substituted on the ring structure interacts with the target object.
  • Substituents that can detect the target object by causing a structural change can be mentioned.
  • detection substituents are (1) (a) Before interacting with the target object, the compound represented by formula (I) is substantially bonded to the benzene ring to which the detection substituent is bonded so that the compound is substantially non-fluorescent. (B) After interaction with the target object, the compound after the interaction derived from the compound represented by the formula (I) has substantially high fluorescence. , Which substantially lowers the electron density of the benzene ring to which the detection substituent is bonded, Or (2) (a) substantially before the interaction with the target object, the benzene ring to which the detection substituent is attached so that the compound of formula (I) is substantially non-fluorescent.
  • the compound after the interaction derived from the compound represented by formula (I) becomes substantially highly fluorescent. Substantially increasing the electron density of the benzene ring to which the detection substituent is bonded, You can choose from. By such selection, a so-called targeting function can be imparted to the compound of the general formula (I), which emits light only when there is an interaction with the target object.
  • the type of the detection substituent is not limited and can be appropriately selected (for the method for selecting the detection substituent, International Publication WO2004). / 005917 pamphlet).
  • some suitable substituents for detection are exemplified.
  • R 1 represents two amino groups substituted at adjacent positions on the benzene ring (one of the amino groups is a C 1-6 alkyl-substituted amino group substituted with one C 1-6 alkyl).
  • a group that forms a triazole ring by interaction with nitric oxide see JP-A-10-226688 and the like for the substituent).
  • R 1 is a group represented by the following formula (A) in which two substituents substituted at adjacent positions on the benzene ring are bonded to each other to form a ring (wherein R 31 and R 32 are Each independently represents a C 1-4 alkyl group or a phenyl group) (see the International Publication WO99 / 51586 pamphlet for the substituent).
  • R 1 is a group represented by the following formula (B) (see the international application PCT / JP2009 / 054017 and the like for the substituent).
  • R 1 represents an amino group which may be substituted with one or two alkyl groups (the alkyl group may be substituted with a substituent other than an amino group), such as an unsubstituted amino group, dimethyl An amino group, a diethylamino group, an N-ethyl-N-methylamino group, etc. (refer to international publication WO2008 / 059910 pamphlet etc. about this substituent).
  • the target environment is a hypoxic environment
  • R 1 is a group represented by the following formulas (C) to (G) (see Japanese Patent Application Nos. 2008-225389 and 2008-129025 for the substituents).
  • examples of the substituent for detection of the present invention include, for example, Chapter 2 (thiol reaction probe), Chapter 20 of the catalog of Molecular Probes (Handbook of Fluorescent Probes and Research Chemicals, Tenthedition, 2005). Substituents described in literatures relating to (pH indicator) and conventionally known fluorescence measurement methods described later can be appropriately selected and used.
  • R 2 , R 4 , R 5 , and R 7 each independently represent a hydrogen atom, a halogen atom, or an optionally substituted C 1-6 alkyl group
  • R 3 and R 6 are each independently hydrogen atom, a halogen atom, or optionally substituted C 1-6 alkyl group.
  • the alkyl group may be linear, branched, cyclic, or a combination thereof. The same applies to the alkyl part of other substituents having an alkyl part (such as an alkoxy group).
  • the type, number and substitution position of the substituent are not particularly limited, but for example, a halogen atom (fluorine atom) Any of chlorine atom, bromine atom and iodine atom), hydroxyl group, amino group (may be mono- or di-substituted amino group), nitro group, carboxyl group, alkyl group, alkoxy group, alkoxycarbonyl group, aralkyl Group, aryl group, heteroaryl group, sulfo group, alkyl sulfonate group, ureido group, thioureido group, carbamoyl group and the like may be substituted.
  • a halogen atom fluorine atom
  • R 2 , R 4 , R 5 , and R 7 are preferably each independently an unsubstituted C 1-6 alkyl group, and R 2 , R 4 , R 5 , and R 7 are each a methyl group. Further preferred. R 3 and R 6 are each independently preferably a hydrogen atom, a carboxy-substituted C 1-6 alkyl group or a C 1-6 alkoxy-substituted C 1-6 alkyl group, and more preferably a hydrogen atom.
  • R 1 is exemplified as a substituent for detection when the target environment is an acidic environment, and R 1 is one or two alkyl groups (the alkyl group may be substituted with a substituent other than an amino group).
  • R 3 and R 6 are each independently preferably a monocarboxy C 1-4 alkyl group among the optionally substituted C 1-6 alkyl groups. .
  • a person skilled in the art can naturally understand preferable combinations of R 1 , R 3 and R 6 by referring to the international publication WO2008 / 059910 pamphlet and the like.
  • one or more fluorine atoms bonded to the boron atom present in the indacene skeleton have a C 1-6 alkoxy group which may have a substituent or a substituent. It may be an aryloxy group.
  • One or more fluorine atoms bonded to a boron atom can be substituted with a C 1-6 alkoxy group which may have a substituent or an aryloxy group which may have a substituent.
  • the detection substituent is (A) Before interacting with a target object, the fluorescence is quenched by a photo-induced electron transfer (PeT) mechanism from the indacene skeleton, which is the fluorescent mother nucleus, to the detection substituent or from the detection substituent to the indacene skeleton, and (b ) After interacting with the target object, quenching by the PeT mechanism from the indacene skeleton that is the fluorescent mother nucleus to the detection substituent or from the detection substituent to the indacene skeleton is substantially eliminated. It can be appropriately selected from those.
  • PeT photo-induced electron transfer
  • R 11 in the general formula (II) represents a hydrogen atom or 1 to 4 substituents present at any position on the benzene ring. When two or more substituents are present, they may be the same or different.
  • the type of the substituent represented by R 11 is not particularly limited.
  • a halogen atom any of a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom
  • a hydroxyl group an amino group (a mono- or di-substituted amino group)
  • Nitro group carboxyl group, alkyl group, alkoxy group, alkoxycarbonyl group, aralkyl group, aryl group, heteroaryl group, sulfo group, alkyl sulfonate group, and the like.
  • R 11 is preferably a hydrogen atom, but it is also preferable when R 11 represents one alkyl group (for example, a methyl group).
  • R 11 represents 1 to 4 substituents present at any position on the benzene ring, these 1 to 4 substituents are one or two of the 1 to 4 substituents
  • the above can be a substituent (detection substituent) having the ability to detect the target object by interacting with the target object in cooperation.
  • R 11 is a substituent for detection, preferred embodiments of R 11 are the same as those described for R 1 of the compound of the general formula (I).
  • R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , and R 19 are each independently a C 1-6 alkyl group optionally having a hydrogen atom, a halogen atom, or a substituent. Indicates.
  • R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , and R 19 each independently represent a hydrogen atom, a halogen atom, or an unsubstituted C 1-6 alkyl group, More preferably, R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , and R 19 are hydrogen atoms.
  • R 20 and R 21 each independently represent a C 1-18 alkyl group which may have a substituent, but preferably each independently represents a C 1-6 alkyl group which may have a substituent. And more preferably an unsubstituted C 1-6 alkyl group.
  • an ethyl group, n-propyl group, n-butyl group and the like are preferably used.
  • Z 1 represents an oxygen atom, a sulfur atom, or —N (R 22 ) — (wherein R 22 represents a hydrogen atom or an optionally substituted C 1-6 alkyl group), preferably Represents an oxygen atom.
  • Y 1 and Y 2 are each independently —C ( ⁇ O) —, —C ( ⁇ S) —, or —C (R 23 ) (R 24 ) — (wherein R 23 and R 24 are each independently Represents a C 1-6 alkyl group which may have a substituent, and preferably represents —C (R 23 ) (R 24 ) —.
  • R 23 and R 24 are preferably unsubstituted C 1-6 alkyl groups.
  • both R 23 and R 24 are methyl groups.
  • M ⁇ indicates the number of counter ions necessary for charge neutralization, but usually when M ⁇ is not present because the charge is neutralized by the carboxylate anion present in the residue of Gd-DOTA or Gd-DTPA. There is. When M ⁇ is present, iodine ions, chlorine ions, or the like can be used.
  • the fluorescent gadolinium complex compound of the present invention generally has an amino group, a hydroxyl group, a carboxyl group, a thiol at any position on the benzene ring in the group represented by the general formula (I) or the general formula (II). Fluorescence by reacting a reactive DOTA derivative or reactive DTPA derivative with a reactive functional group for introducing a reactive DOTA derivative or reactive DTPA derivative such as an isocyanate group, an isothiocyanate group, etc. After producing a gadolinium ligand compound, it can be easily produced by reacting the ligand compound with a gadolinium salt.
  • the above-mentioned fluorescent gadolinium ligand compound used as an intermediate for production is also a compound included in the scope of the present invention.
  • a reactive DOTA derivative or a reactive DTPA derivative is introduced onto the benzene ring in the group represented by the general formula (I) or the general formula (II).
  • a compound having an isothiocyanate group bonded thereto is used, a compound having an amino group as a reactive DOTA derivative or a reactive DTPA derivative, for example, DOTA having a p-aminobenzyl group as a substituent or p-amino as a substituent What is necessary is just to make DTPA which has a benzyl group react.
  • the following compounds are commercially available as DOTA or DTPA having a p-aminobenzyl group (Macrocyclics: http://www.macrocycles.com), and these reactive DOTA derivatives or reactive DTPA derivatives are preferably used. can do.
  • a compound having an amino group bonded to a benzene ring for introducing a reactive DOTA derivative or a reactive DTPA derivative in the group represented by the general formula (I) or the general formula (II) is used.
  • a compound having an activated carboxyl group for example, DOTA or DTPA having a succinimidyloxycarbonylmethyl group as a substituent, DTPA anhydride having DTPA as an acid anhydride, or the like can be used.
  • DOTA or DTPA having a succinimidyloxycarbonylmethyl group as a substituent DTPA anhydride having DTPA as an acid anhydride, or the like
  • DTPA anhydride having DTPA as an acid anhydride or the like
  • the following commercially available compounds can be used, but are not limited thereto.
  • the reaction between the fluorescent gadolinium ligand compound and the gadolinium salt can be carried out by methods well known to those skilled in the art.
  • the gadolinium salt for example, GdCl 3 ⁇ 6H 2 O can be used, but it is not limited to this specific gadolinium salt.
  • Those skilled in the art can perform the above reaction by appropriately selecting an appropriate gadolinium salt and reaction conditions.
  • the fluorescent gadolinium complex compound of the present invention can be easily produced by appropriately changing starting materials and reaction reagents as necessary.
  • the fluorescent gadolinium ligand compound or fluorescent gadolinium complex compound of the present invention may have one or more asymmetric carbons, but optically based on one or more asymmetric carbons. Any optical isomer in pure form, any mixture of optical isomers, racemate, diastereoisomer in pure form, mixture of diastereoisomers and the like are all included in the scope of the present invention. Moreover, although the fluorescent gadolinium ligand compound or fluorescent gadolinium complex compound of the present invention may exist as a hydrate or a solvate, it goes without saying that these substances are also included in the scope of the present invention. .
  • the fluorescent gadolinium ligand compound or fluorescent gadolinium complex compound of the present invention may form a salt.
  • the kind of salt is not particularly limited, and may be either an acid addition salt or a base addition salt.
  • the acid addition salt include mineral acid salts such as hydrochloride, sulfate, and nitrate, or organic acid salts such as acetate, methanesulfonate, citrate, p-toluenesulfonate, and oxalate.
  • the base addition salt include metal salts such as sodium salt, potassium salt and calcium salt, ammonium salts, and organic amine salts such as methylamine salt and triethylamine salt.
  • it may form a salt of an amino acid such as glycine.
  • the salt of the fluorescent gadolinium ligand compound or fluorescent gadolinium complex compound of the present invention is not limited to these specific examples.
  • fluorescent gadolinium complex compound of the present invention as, for example, a probe or a contrast agent
  • fluorescent MRI probe or “fluorescent MRI contrast agent” means that it can be used as a probe or a contrast agent in both the fluorescence method and the MRI method.
  • MRI is suitable for imaging of a deep part of a living body
  • a fluorescence method is suitable for imaging of a shallow part of a living body, near the surface of a living body, or the surface of a living body.
  • a living body can be imaged by appropriately selecting either the fluorescence method or MRI, or combining them appropriately.
  • the probe or contrast agent of the present invention since the probe or contrast agent of the present invention has the property of being easily taken up and accumulated in cells, it is characterized by giving a strong signal in imaging of the deep part of a living body by MRI and obtaining a very clear image. is there.
  • the use of the probe or contrast agent of the present invention is not limited to imaging of a living body, and it is used for an object other than a living body, for example, a tissue or organ separated from a living body, a cultured cell population, or regenerative medicine. In addition, it is possible to perform imaging of organs and tissues created in vitro.
  • the measurement of fluorescence can be performed according to a conventionally known fluorescence measurement method (for example, Wiersma, JH, Anal. Lett., 3, pp. 123-132, 1970; Sawicki, CR, Anal.Lett., 4, pp. 761-775, 1971; Damiani, P. and Burini, G., Talanta, 8, pp. 649-652, 1986; Misko, TP, Anal. Kojima, H., Nakatsubo, N., Kikuchi, K., Kawahara, S., Kirino Y., Nagashi, H., Hirata, Y. and Nagano, T., Anal. Chem., 70, pp. 2446-2453, 199.
  • a conventionally known fluorescence measurement method for example, Wiersma, JH, Anal. Lett., 3, pp. 123-132, 1970; Sawicki, CR, Anal.Lett., 4, pp. 761-7
  • the probe or contrast agent represented by the general formula (I) is preferably irradiated with light having a wavelength of around 500 nm as excitation light, It is preferable to measure fluorescence around 510 nm.
  • the probe or contrast agent represented by the general formula (II) it is preferable to irradiate light having a wavelength near 770 nm as excitation light and measure fluorescence at around 790 nm.
  • excitation light is irradiated with light having a wavelength of about 650 to 900 nm, preferably around 780 nm, and about 650 to 900 nm. It is preferable to measure fluorescence around 820 nm.
  • excitation light having such a wavelength the excitation light passes through the living tissue without being attenuated and reaches the deep tissue, so that highly sensitive measurement can be performed at the site.
  • MRI can be performed according to a known method of imaging with a gadolinium contrast agent using a medical MRI apparatus using a proton signal.
  • a T1-weighted image or a T2-weighted image can be obtained as necessary, and an appropriate retention time (TR) and echo time (TE) can be selected and adjusted to increase the contrast in the target tissue or cell. it can.
  • TR 300 to 500 milliseconds and TE can be about 10 milliseconds for a T1-weighted image
  • the method of using the probe or contrast agent of the present invention is not particularly limited, and can be used in the same manner as conventionally known MRI contrast agents or fluorescent contrast agents.
  • the fluorescent gadolinium complex compound is added to an aqueous medium such as physiological saline or a buffer, or a mixture of an aqueous medium such as ethanol, acetone, ethylene glycol, dimethyl sulfoxide, dimethylformamide and an aqueous medium.
  • the fluorescence spectrum and the nuclear magnetic resonance spectrum may be measured by dissolving and intravenously administering to a living body, or adding this solution in an appropriate buffer containing cells and tissues.
  • the probe or contrast agent of the present invention may be used in the form of a composition in combination with appropriate additives. For example, it can be combined with additives such as a buffer, a solubilizing agent and a pH adjuster.
  • the obtained brown solid was dissolved in toluene (200 mL), triethylamine (4.2 mL, 30 mmol) and boron trifluoride-diethyl ether complex (5.0 mL, 40 mmol) were added, and the mixture was stirred at room temperature for 2 hours.
  • the reaction solution was washed successively with 2N HCl, saturated aqueous sodium hydrogen carbonate, and brine, the organic layer was dried over anhydrous magnesium sulfate, and the solid was removed by filtration.
  • FIG. 1 shows an optical and fluorescence microscopic image after HeLa cells were treated with a probe for 2 hours
  • FIG. 2 shows a confocal image. It was confirmed from the fluorescence microscope image that both Gd-DOTA-BDP and Gd-DOTA-Cy were introduced into the cells. From the confocal image, it is considered that both Gd-DOTA-BDP and Gd-DOTA-Cy are accumulated in the organelle near the nucleus. In both probes, the cells after introduction were alive and were not considered to be greatly cytotoxic.
  • Example 4 A PBS buffer solution of Gd-DOTA-BDP obtained in Example 1 was prepared and subjected to MRI. 3, the left side shows PBS buffer, the right side shows Gd-DOTA-BDP in PBS buffer, a is under normal light, b is a fluorescent image, c is an MR image (T1-weighted), and d is an MR image. (T2-weighted). As shown in FIG. 3a, Gd-DOTA-BDP significantly shortens T1, and can enhance the signal in the T1-weighted image of the MR image.
  • Example 5 Gd-DOTA-BDP (Example 1), Gd-DOTA-Cy (Example 2), and “Magnevist (registered trademark)” were added to HeLa cell culture medium (DMEM) to a concentration of 100 ⁇ M, and the cells were incubated for 2 hours. MRI was performed after introduction.
  • DMEM HeLa cell culture medium
  • a represents a normal light beam
  • Mag is a commercially available MRI contrast agent Magnevist (registered trademark)
  • BDP is Gd-DOTA-BDP (Example 1)
  • Cy is the result of Gd-DOTA-Cy (Example 2).
  • Magnevist registered trademark
  • the signal intensity is Gd-DOTA-BDP, Gd-DOTA-Cy, and “Magnevist (registered trademark)”. It was comparable with the control produced without adding. On the other hand, a stronger signal was observed in Gd-DOTA-BDP and Gd-DOTA-Cy than in “Magnevist (registered trademark)”.
  • Example 6 Gd-DOTA-Cy (Example 2) (100 ⁇ M in 100 ⁇ L physiological saline) was intravenously injected from the tail of a nude mouse, and in vivo fluorescence imaging was performed at an excitation wavelength of 670-750 nm and a fluorescence wavelength of 820 nm.
  • a is a photograph obtained by fluorescence imaging of the administered mouse from outside the body
  • b is a photograph obtained by fluorescence imaging of the non-administered mouse from outside the body
  • c is a photograph obtained by fluorescence imaging the opened abdomen
  • d is a photograph obtained by fluorescence imaging the removed organ. It is.
  • Example 7 Using Gd-DOTA-BDP (Example 1), MRI imaging of the aorta of ApoE ⁇ / ⁇ mice and Wild-Type mice, which are atherosclerosis model mice, was performed. MRI imaging was performed by anesthetizing a mouse with isoflurane and administering 100 ⁇ L of Gd-DOTA-BDP (5 mM) dissolved in physiological saline from the orbital vein, and additionally 150 ⁇ L after 2 hours. MRI measurement was performed before administration of Gd-DOTA-BDP and 1 hour after each administration of Gd-DOTA-BDP (measurement conditions: TR; 500 ms, TE; 13.2 ms, TI; 250 ms, Black Blood sequence).
  • FIG. 7 The results are shown in FIG. In FIG. 7, the upper “a” indicates ApoE ⁇ / ⁇ mice that are atherosclerosis model mice, and the lower “b” indicates before administration (left), after administration (center), and after additional administration (right) of Wild-Type mice. The results are shown.
  • FIG. 7a in ApoE ⁇ / ⁇ mouse, which is an arteriosclerosis model mouse, Gd-DOTA-BDP penetrates the coating covering the arteriosclerotic lesion and accumulates in the arteriosclerotic lesion indicated by the arrow. It was confirmed that the MRI signal was increased.
  • FIG. 7a indicates ApoE ⁇ / ⁇ mice that are atherosclerosis model mice
  • the lower “b” indicates before administration (left), after administration (center), and after additional administration (right) of Wild-Type mice.
  • FIG. 7a in ApoE ⁇ / ⁇ mouse, which is an arteriosclerosis model mouse, Gd-DOTA-BDP penetrates the coating covering the arterio
  • Example 8 After completion of the MRI experiment of Example 7, the aorta was excised from the mouse and opened, and fluorescence imaging was performed with a fluorescence imaging apparatus (Maestro (registered trademark)) (measurement conditions: excitation wavelength; 445-490 nm, fluorescence wavelength: 520-800 nm). ). After acquiring the fluorescence image, arteriosclerotic lesion staining was further performed with Sudan IV. Sudan IV is a dye that is commonly used to stain the arteriosclerotic lesions of the isolated aorta. The results are shown in FIG. In FIG.
  • Example 9 After completion of the MRI experiment in Example 7, a frozen section of an aortic site where a signal increase was observed in MRI and an aortic site where no signal change was observed was prepared, and fluorescence imaging was performed using a fluorescence microscope (measurement conditions: excitation wavelength; 500 nm, fluorescence wavelength; 505-600 nm). After acquiring the fluorescent image, further, arteriosclerotic lesion staining was performed with Oil red O. Oil red O is a dye that is commonly used to stain arteriosclerotic lesions of aortic sections. The results are shown in FIG. In FIG.
  • the upper part a shows the result of the frozen section of the aortic region where the signal increase was observed in MRI
  • the lower part b shows the result of the frozen section of the aortic region where no signal change was observed in the MRI
  • the left side shows the fluorescence.
  • Image, right side shows Oil red O stained image.
  • Gd-DOTA-BDP fluorescence and Oil red O-stained images were selectively observed in a frozen section at a site where a signal increase was observed by MRI.
  • FIG. 9b neither arteriosclerotic lesion nor Gd-DOTA-BDP fluorescence was observed in the frozen section of the site where no signal change was observed in MRI.
  • Gd-DOTA-BDP can detect arteriosclerotic lesions by MRI and can selectively detect arteriosclerotic lesions by fluorescence.
  • Example 11 Gd-DOTA-PEG-Cy obtained in Example 10 was introduced into HeLa cells, and fluorescence imaging was performed.
  • FIG. 10 shows the results of observation with an optical and confocal fluorescence microscope after HeLa cells were treated with 10 ⁇ M Gd-DOTA-PEG-Cy.
  • the left side shows a transmission image
  • the right side shows a confocal fluorescence microscope image (measurement conditions: excitation wavelength: 670 nm, fluorescence wavelength: 700-800 nm). From the confocal fluorescence microscope image, it was confirmed that Gd-DOTA-PEG-Cy was introduced into the cells.
  • Gd-DOTA-PEG-Cy becomes more water-soluble than Gd-DOTA-Cy by introducing a PEG chain, making it easier to prepare an aqueous Gd-DOTA-Cy solution, and compared to Gd-DOTA-Cy. It showed higher intracellular transmissibility. Moreover, the cells after introduction of Gd-DOTA-PEG-Cy were alive and were considered not to have great cytotoxicity.
  • Example 12 Gd-DOTA-PEG-Cy (Example 10) was intravenously injected into nude mice, and the pharmacokinetics of Gd-DOTA-PEG-Cy was observed by fluorescence imaging.
  • Nembutal (30 ⁇ L) was intraperitoneally injected into nude mice (8 weeks old, male), and 100 ⁇ L of Gd-DOTA-PEG-Cy (100 ⁇ M) dissolved in physiological saline was administered from the tail vein. I went.
  • Results of fluorescence imaging from outside the body with a fluorescence imaging apparatus (Maestro (registered trademark)) and results of extinction with CO 2 1 hour after Gd-DOTA-PEG-Cy administration, laparotomy, excision of the organ, and observation of fluorescence Is shown in FIG. 11 (measurement conditions: excitation wavelength; 670-750 nm, fluorescence wavelength: 780-900 nm).
  • a is a result of fluorescence imaging of a Gd-DOTA-PEG-Cy-administered mouse from outside the body
  • b is a result of fluorescence imaging of an organ extracted from the Gd-DOTA-PEG-Cy-administered mouse.
  • Example 13 Gd-DOTA-PEG-Cy (Example 10) was intravenously injected into a nude mouse, and the mouse body was imaged by MRI. MRI imaging was performed by anesthetizing mice with isoflurane (1.5-2%) and administering 100 ⁇ L of Gd-DOTA-PEG-Cy (5 mM) dissolved in physiological saline from the orbital vein.
  • MRI measurement was performed before and after administration of Gd-DOTA-PEG-Cy (measurement conditions: TR; 7000, 2000, 1000, 600, 300, 200, 150, 100 ms, TE; 9.8 ms, flip angle (FA), 131 band; effective bandwidth, 100 kHz; slice thickness, 1 mm; field of view (FOV), 80x50 mm 2 ; in-plane resolution, 0.39 mm; matrix size, 128 ⁇ 128; .).
  • the results are shown in FIG.
  • the left side shows the MRI measurement results before administration of Gd-DOTA-PEG-Cy
  • the right side shows the MRI measurement results after administration of Gd-DOTA-PEG-Cy.
  • FIG. 12 the left side shows the MRI measurement results before administration of Gd-DOTA-PEG-Cy
  • the right side shows the MRI measurement results after administration of Gd-DOTA-PEG-Cy.
  • Example 14 Gd-DOTA-PEG-Cy (Example 10) was orally injected into nude mice, and then the liver was excised from the mouse body to prepare a frozen section, and fluorescence imaging was performed with a confocal microscope. Fluorescence imaging using a confocal microscope was as follows: 1) Nembutal (30 ⁇ L) was intraperitoneally injected into nude mice (8 weeks old, male) and 2) Gd-DOTA-PEG-Cy (5 mM) dissolved in physiological saline. 3) Gd-DOTA-PEG-Cy 30 minutes after administration of Gd-DOTA-PEG-Cy, the mice were killed with CO 2 , and blood was drawn from the heart.
  • the extracted liver was washed 3 times with PBS and frozen to prepare a section (10 ⁇ m).
  • the prepared section was placed on a slide glass and covered with a cover glass (measurement condition: excitation wavelength; 670 nm). , Fluorescence wavelength: 700-800 nm).
  • the results are shown in FIG.
  • the left side shows a transmission image
  • the right side shows a confocal fluorescence microscope image.
  • near-infrared fluorescence derived from Gd-DOTA-PEG-Cy is observed from the hepatocyte slice with sufficient intensity, and Gd-DOTA-PEG-Cy is incorporated into hepatocytes. It was confirmed that
  • Example 11 The results obtained in Example 11, Example 12, Example 13 and Example 14 show that Gd-DOTA-PEG-Cy is efficiently taken up by hepatocytes in liver tissue in vivo, by MRI and fluorescence. It shows that visualization of the state in the liver is possible in vivo.
  • the fluorescent MRI probe of the present invention in which the specific fluorescent dye represented by the general formula (I) or the general formula (II) and the gadolinium complex are combined can be used without using means such as CPP or dextran. It was confirmed to have a high intracellular translocation property. It was confirmed that double imaging by fluorescence method and MRI was possible after being easily taken up into cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

 細胞内に容易に取り込まれ、蛍光法及びMRIにより観察可能なプローブとして有用なガドリニウム・1,4,7,10-テトラアザシクロドデカン-N,N',N'',N'''-テトラ酢酸の残基又はガドリニウム・ジエチレントリアミンペンタ酢酸の残基と下記の一般式(I)(R1は水素原子又は置換基を示し;R2、R4、R5、及びR7は水素原子、ハロゲン原子、又はC1-6アルキル基を示し、R3及びR6は水素原子、ハロゲン原子、又はC1-6アルキル基を示す)で表される基とが共有結合した蛍光ガドリニウム錯体化合物。

Description

蛍光MRIプローブ
 本発明は、細胞内に容易に取り込まれ、蛍光法及び核磁気共鳴画像法により観察可能な蛍光MRIプローブに関する。
 核磁気共鳴画像法(MRI)は生体深部の断層画像を非侵襲的に撮影する方法として医療現場でさまざまな疾患の診断に汎用されている。MRI造影剤としてはガドリニウム錯体や酸化鉄微粒子が汎用されており、特にガドリニウム錯体を用いることにより高い分解能で解剖学的な情報が得られる。しかしながら、ガドリニウム錯体は金属イオン錯体であることから、極性が非常に高く細胞内にはほとんど取り込まれないので、細胞や組織を標識して測定することが困難であるという欠点を有している。
 一方、蛍光色素をプローブとする蛍光試薬(蛍光試薬)を利用する蛍光法は、細胞内に取り込まれた蛍光試薬を簡便かつ高感度に測定でき、特に生体の体表面付近に存在する組織や臓器を蛍光標識して高感度に測定できるという利点を有しているが、生体深部で発生した蛍光を検出して撮影することができないという欠点がある。このような観点から、MRIと蛍光法による測定を組み合わせた生体内可視化が注目されているが、蛍光法とMRIの両者で利用可能な二重特性を有する実用的な蛍光MRIプローブはほとんど開発されていないのが現状である。特に、ガドリニウム錯体と蛍光試薬とを組み合わせて細胞内に容易に導入されるように設計された蛍光MRIプローブは従来全く知られていない。
 ガドリウニム錯体を細胞内に導入する試みとしては、ポリアルギニン、Tatペプチドなどの細胞膜透過性ペプチド(cell−permeable peptide or cell−penetrating peptide,CPP)を利用する方法がいくつか報告されている(Chem.Biol.,11,pp.301−307,2004;Contrast Media Mol.Imaging,2,pp.42−49,2007)。これらCPPを利用する手段によりガドリニウム錯体を細胞内に導入するとMRIシグナルは増強されるが、CPPを用いたガドリニウム錯体の細胞内導入法は使用条件によって細胞内への導入量が変わりやすく、またCPPで修飾されたガドリニウム錯体の分子量も大きくなるという問題がある。このため、ガドリニウム錯体を細胞内に導入するにあたりCPPを用いることは望ましくない。
 蛍光色素とガドリニウム錯体とを結合させた化合物がいくつか報告されている。PTIR267(Acad.Radiol.,11,pp.1251−1259,2004)はガドリニウム錯体と脂肪鎖を有するシアニン化合物とを結合させた化合物であり、LDLに取り込まれる性質を有している。PTIR267で標識したLDLを利用し、LDL受容体を介したエンドサイトーシスによりPTIR267を細胞内に取り込ませることができるが、PTIR267それ自体が細胞膜を透過して細胞内に取り込まれているのではない。
 また、Gd(Rhoda−DOTA)(Bioconjugate Chem.,9,pp.242−249,1998)はガドリニウム錯体とローダミンとを結合させた化合物であるが、この化合物をイン・ビボのイメージングに用いてもMRIシグナルの増強は認められない。本発明者らの研究によれば、この化合物は細胞内に若干移行するが、MRIシグナルを増強できる程度の細胞内移行性は有していない。この理由はGd(Rhoda−DOTA)が脂質組織に分布し、水分子との相互作用が減少したためであると説明されている。
 この問題を解決するためにガドリニウム錯体とローダミンとをデキストランに結合させた化合物(GRID)も提案されている。該GRIDをアフリカツメガエル(Xenopus laevis)の胚にインジェクトすることにより分化の様子をMRI及び蛍光で観察することができる。GRIDは細胞内移行性を有することが明らかにされているが(NMR Biomed.,20,pp.77−89,2007)、Gd(Rhoda−DOTA)自体は細胞内にほとんど取り込まれないことから、GRIDの細胞内移行性はデキストラン部分に由来するものと考えられる。また、イン・ビボの実験において、GRIDがリソソームに局在してしまい、十分なMRI造影能を発揮できないことが明らかにされていることから、蛍光色素とガドリニウム錯体とを組み合わせた複合体の細胞内移行性を高めるためにデキストランを使用することは望ましくない。
Acad.Radiol.,11,pp.1251−1259,2004 Bioconjugate Chem.,9,pp.242−249,1998 NMR Biomed.,20,pp.77−89,2007
 本発明の課題は、細胞内に容易に取り込まれ、蛍光法及びMRIにより観察可能なプローブを提供することにある。より具体的には、蛍光色素とガドリニウム錯体とを組み合わせることにより蛍光法及びMRIにより測定可能な蛍光MRIプローブであって、CPPやデキストランなどの手段を用いることなく、高い細胞内移行性を有する蛍光MRIプローブを提供することが本発明の課題である。
 本発明者らは上記の課題を解決すべく鋭意研究を行なった結果、ガドリニウム錯体と特定の蛍光色素とを結合させた化合物が細胞内に容易に取り込まれて細胞内に集積すること、及び該化合物がMRI及び蛍光法のいずれによっても細胞や組織を高感度にイメージングできることを見出した。また、この化合物を蛍光MRIプローブとして使用することにより、生体の深部をMRIにより、生体の浅部や生体表面を蛍光法により詳細にイメージングできることを見出した。本発明は上記の知見を基にして完成されたものである。
 すなわち、本発明により、置換基を有していてもよいガドリニウム・1,4,7,10−テトラアザシクロドデカン−N,N’,N’’,N’’’−テトラ酢酸(Gd−DOTA)の残基又は置換基を有していてもよいガドリニウム・ジエチレントリアミンペンタ酢酸(Gd−DTPA)の残基と、下記の一般式(I):
Figure JPOXMLDOC01-appb-C000003
(式中、Rは水素原子又はベンゼン環上の任意の位置に存在する1ないし4個の置換基(置換基が2個以上存在する場合には、それらは同一でも異なっていてもよい)を示し;R、R、R、及びRはそれぞれ独立に水素原子、ハロゲン原子、又は置換基を有していてもよいC1−6アルキル基を示し、R及びRはそれぞれ独立に水素原子、ハロゲン原子、又は置換基を有していてもよいC1−6アルキル基を示す)で表される基、又は下記の一般式(II):
Figure JPOXMLDOC01-appb-C000004
〔式中、R11は水素原子又はベンゼン環上の任意の位置に存在する1ないし4個の置換基(置換基が2個以上存在する場合には、それらは同一でも異なっていてもよい)を示し;R12、R13、R14、R15、R16、R17、R18、及びR19はそれぞれ独立に水素原子、ハロゲン原子、又は置換基を有していてもよいC1−6アルキル基を示し;R20及びR21はそれぞれ独立に置換基を有していてもよいC1−18アルキル基を示し;Zは酸素原子、硫黄原子、又は−N(R22)−(式中、R22は水素原子又は置換基を有していてもよいC1−6アルキル基を示す)を示し;Y及びYはそれぞれ独立に−C(=O)−、−C(=S)−、又は−C(R23)(R24)−(式中、R23及びR24はそれぞれ独立に置換基を有していてもよいC1−6アルキル基を示す)を示し;Mは電荷の中和に必要な個数の対イオンを示す〕で表される基とが共有結合した蛍光ガドリニウム錯体化合物が提供される。
 上記発明の好ましい態様によれば、置換基を有していてもよいガドリニウム・1,4,7,10−テトラアザシクロドデカン−N,N’,N’’,N’’’−テトラ酢酸の残基又は置換基を有していてもよいガドリニウム・ジエチレントリアミンペンタ酢酸の残基がp−チオウレイドベンジル基を有するガドリニウム・1,4,7,10−テトラアザシクロドデカン−N,N’,N’’,N’’’−テトラ酢酸若しくはそのエステルの残基又はp−チオウレイドベンジル基を有するガドリニウム・ジエチレントリアミンペンタ酢酸若しくはそのエステルの残基である上記の蛍光ガドリニウム錯体化合物が提供される。また上記発明のさらに好ましい態様によれば、置換基を有していてもよいガドリニウム・1,4,7,10−テトラアザシクロドデカン−N,N’,N’’,N’’’−テトラ酢酸の残基がp−チオウレイドベンジル基を有するガドリニウム・1,4,7,10−テトラアザシクロドデカン−N,N’,N’’,N’’’−テトラ酢酸の残基である上記の蛍光ガドリニウム錯体化合物が提供される。
 また、上記発明の別の好ましい態様によれば、上記一般式(I)においてRが水素原子であり、R、R、R、及びRがメチル基であり、R及びRが水素原子である基、又は上記一般式(II)においてR11が水素原子であり、R12、R13、R14、R15、R16、R17、R18、及びR19が水素原子であり、R20及びR21がC1−6アルキル基であり、Zが酸素原子であり、Y及びYが−C(R23)(R24)−(式中、R23及びR24はそれぞれ独立にC1−6アルキル基である)である基が共有結合した上記の蛍光ガドリニウム錯体化合物が提供される。
 別の観点からは、本発明により、上記の蛍光ガドリニウム錯体化合物を有効成分として含む蛍光MRIプローブ、及び上記の蛍光ガドリニウム錯体化合物を有効成分として含む蛍光MRI造影剤が提供される。また、生体のイメージングを行う方法であって、上記の蛍光ガドリニウム錯体化合物を生体に投与して蛍光法及び/又はMRIによりイメージングを行う工程を含む方法が本発明により提供される。
 さらに別の観点からは、置換基を有していてもよい1,4,7,10−テトラアザシクロドデカン−N,N’,N’’,N’’’−テトラ酢酸(DOTA)の残基又は置換基を有していてもよいジエチレントリアミンペンタ酢酸(DTPA)の残基と、上記の一般式(I)又は上記の一般式(II)で表される基とが共有結合した蛍光ガドリニウム配位子化合物が提供される。
 本発明の蛍光ガドリニウム錯体化合物を用いて蛍光法とMRIとを組み合わせた生体イメージングが可能になる。本発明の蛍光ガドリニウム錯体化合物は細胞内に容易に取り込まれて細胞内に蓄積される性質を有しており、細胞内や組織に取り込まれた状態で蛍光法及び/又はMRIによるイメージングを行うことができる。例えば、生体深部をMRIによりイメージングし、かつ生体浅部や生体の表面又は表面付近を蛍光法によりイメージングすることができるので、各種疾病の正確な診断など臨床医学分野において好適に使用することができる。
Gd−DOTA−BDP(例1)及びGd−DOTA−Cy(例2)をHeLa細胞に導入して蛍光イメージングを行なった結果を示した図である。左側は光学顕微鏡像、右側は蛍光顕微鏡像を示す(Lens:x40,exposure time:100ms)。 Gd−DOTA−BDP(例1)及びGd−DOTA−Cy(例2)をHeLa細胞に導入して蛍光イメージングを行なった結果を示した図である。この写真は共焦点画像を示す([Gd−DOTA−BDP]lens:x60,filter:NIBA,PMT:475,Gain:1.2;[Gd−DOTA−Cy]lens:x60,filter:Cy5,PMT:800,Gain:3.0) Gd−DOTA−BDP(例1)を用いてMRIにより測定を行なった結果を示した図である。各写真において左側はPBSバッファー、右側はPBSバッファー中のGd−DOTA−BDPを示し、aは通常光線下、bは蛍光像、cはMR像(T1強調)、及びdはMR像(T2強調)を示す。 プローブを導入したHeLa細胞のMR像を示した図である。aは通常光線下、bはMR像(T1強調:T/T=600ms/14ms)を示す。Magは市販のMRI造影剤であるMagnevist(登録商標)、BDPはGd−DOTA−BDP(例1)、CyはGd−DOTA−Cy(例2)の結果を示す。 ヌードマウスにGd−DOTA−Cy(例2)を投与して蛍光イメージングを行なった結果を示した図である。aは投与マウス、bは非投与マウスを示し、cは腹部像、dは摘出臓器を示す。 ヌードマウスにGd−DOTA−Cy(例2)を投与して蛍光イメージングを行なった場合の経時的蛍光強度を示す。 動脈硬化モデルマウスであるApoE−/−マウス及びWild−TypeマウスにGd−DOTA−BDP(例1)を投与して大動脈のMRIイメージングを行った結果を示す図である。aは動脈硬化モデルマウスであるApoE−/−マウス、bはWild−Typeマウスの投与前(左)、投与後(中央)及び追加投与後(右)の結果を示す。 動脈硬化モデルマウスであるApoE−/−マウス及びWild−TypeマウスにGd−DOTA−BDP(例1)を投与して、マウスから大動脈を摘出して切り開き蛍光イメージング及びSudanIV染色を行った結果を示す図である。図中、上段のaは、動脈硬化モデルマウスであるApoE−/−マウスの結果、下段のbは、Wild−Typeマウスの結果であり、左側は蛍光画像、右側はSudanIV染色像を示す。 動脈硬化モデルマウスであるApoE−/−マウス及びWild−TypeマウスにGd−DOTA−BDP(例1)を投与して、MRIのシグナル上昇が見られた大動脈部位とシグナル変化が見られなかった大動脈部位の凍結切片を作製し、蛍光顕微鏡により蛍光イメージング及びOil red O染色を行った結果を示す図である。図中、上段のaは、MRIにおいてシグナル上昇が見られた大動脈部位の凍結切片、下段のbは、MRIにおいてシグナル変化が見られなかった大動脈部位の凍結切片の結果であり、左側は蛍光画像、右側はOil red O染色像を示す。 Gd−DOTA−PEG−Cy(例10)をHeLa細胞に導入して蛍光イメージングを行なった結果を示す図である。左側は透過像を示し、右側は共焦点蛍光顕微鏡像を示す。 Gd−DOTA−PEG−Cy(例10)をヌードマウスに尾静注し、蛍光イメージングにてGd−DOTA−PEG−Cyの体内動態の観察を行った結果を示す図である。図中、aはGd−DOTA−PEG−Cy投与マウスを体外から蛍光イメージングした結果、bはGd−DOTA−PEG−Cy投与マウスから摘出した臓器を蛍光イメージングした結果を示す。 Gd−DOTA−PEG−Cy(例10)をヌードマウスに尾静注し、MRIにてマウス体内のイメージングを行った結果を示す図である。図中、左側はGd−DOTA−PEG−Cyの投与前のMRI測定結果、右側はGd−DOTA−PEG−Cyの投与後のMRI測定結果を示す。 Gd−DOTA−PEG−Cy(例10)をヌードマウスに眼窩静注し、その後マウス体内から肝臓を摘出し凍結切片を作製し共焦点顕微鏡にて蛍光イメージングを行った結果を示す図である。左側は透過像を示し、右側は共焦点蛍光顕微鏡像を示す。
 ガドリニウム・1,4,7,10−テトラアザシクロドデカン−N,N’,N’’,N’’’−テトラ酢酸(Gd−DOTA)及びガドリニウム・ジエチレントリアミンペンタ酢酸(Gd−DTPA)はいずれもMRI造影剤として使用されており容易に入手可能である。本発明の蛍光ガドリニウム錯体化合物は、DOTA又はDTPAの残基を部分構造として有している。本明細書において「残基」とは、DOTA若しくは置換基を有するDOTA又はDTPA若しくは置換基を有するDTPAから1個の水素原子を除去した残りの構造を意味する。この残基は、一般式(I)又は一般式(II)で表される基のベンゼン環上の任意の位置に直接結合する。
 残基としては、置換基を有するDOTA又は置換基を有するDTPAの残基であってもよい。この置換基部分における水素原子を1個除去した残基を利用することもできる。例えば、チオウレイド基を有するDOTA(NH−CS−NH−DOTA)又はチオウレイド基を有するDTPA(NH−CS−NH−DTPA:これらの記述においては便宜上DOTA及びDTPAを一価の残基として表示した)においてチオウレイド基の末端アミノ基の水素原子を除去して得られる残基(−NH−CS−NH−DOTA又は−NH−CS−NH−DTPA)を利用することも好ましい。チオウレイド基の置換位置は特に限定されないが、DOTAについてはテトラアザシクロドデカンの環構造を形成する炭素原子上、DTPAについてはエチレン基の炭素原子上に置換することが好ましい。また、このように残基を形成可能な置換基としては、例えば、水酸基、アミノ基、カルボキシル基、アルキル基、アルコキシ基、アルコキシカルボニル基、アラルキル基、アリール基、ヘテロアリール基、スルホ基、アルキルスルホネート基、ウレイド基、カルバモイル基なども利用できるが、これらに限定されることはない。
 一般式(I)におけるRは水素原子又はベンゼン環上の任意の位置に存在する1ないし4個の置換基を示す。置換基が2個以上存在する場合には、それらは同一でも異なっていてもよい。Rが示す置換基の種類は特に限定されないが、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子のいずれでもよい)、水酸基、アミノ基(モノ又はジ置換アミノ基であってもよい)、ニトロ基、カルボキシル基、アルキル基、アルコキシ基、アルコキシカルボニル基、アラルキル基、アリール基、ヘテロアリール基、スルホ基、アルキルスルホネート基などを挙げることができる。Rが水素原子であることが好ましいが、Rが1個のアルキル基(例えばメチル基)を示す場合も好ましい。
がベンゼン環上の任意の位置に存在する1ないし4個の置換基を示す場合、それら1ないし4個の置換基は、1個で、又は当該1ないし4個の置換基の2個以上が協働して、標的対象と相互作用することにより標的対象を検出する能力を有する置換基であることができる。以下、このような置換基を総称して「検出用置換基」ということがある。
前記標的対象には、標的物質や標的環境が含まれ、標的物質としては、活性酸素種、プロトンなどを例示することができ、標的環境としては酸性環境、低酸素環境などを例示することができる。
当該1ないし4個の置換基の1個の置換基が、それ単独で標的対象と相互作用することで標的対象を検出する能力を有する置換基としては、当該1個の置換基が単独で標的対象と相互作用して修飾、脱離といった構造変化を起こすことにより標的対象を検出可能にする置換基をあげることができる。また、当該1ないし4個の置換基の2個以上が協働して標的対象と相互作用することで標的対象を検出する能力を有する置換基としては、当該2個以上の置換基が互いに結合して環構造を形成することにより標的対象を検出可能にする置換基をあげることができる。また当該2個以上の置換基があらかじめ互いに結合して環構造を形成しており、該環構造が標的対象と相互作用して(該環構造に置換している置換基が標的対象との相互作用に関与する場合を含む)構造変化を起こすことにより標的対象を検出可能にする置換基をあげることができる。
これら検出用置換基は、
(1)(a)標的対象と相互作用する前には、式(I)で表される化合物が実質的に無蛍光性になるように、検出用置換基が結合するベンゼン環に実質的に高い電子密度を与えるものであり、かつ
(b)標的対象と相互作用した後には、式(I)で表される化合物に由来する相互作用後の化合物が実質的に高い蛍光性になるように、検出用置換基が結合するベンゼン環の電子密度を実質的に低下させるもの、
又は
(2)(a)標的対象と相互作用する前には、式(I)で表される化合物が実質的に無蛍光性になるように、検出用置換基が結合するベンゼン環に実質的に低い電子密度を与えるものであり、かつ
(b)標的対象と相互作用した後には、式(I)で表される化合物に由来する相互作用後の化合物が実質的に高い蛍光性になるように、検出用置換基が結合するベンゼン環の電子密度を実質的に上昇させるもの、
から選択することができる。このような選択により一般式(I)の化合物に対して、標的対象との相互作用があった場合にのみ発光する、いわゆるターゲティング機能を付与することができる。前記した検出用置換基の条件(1)又は(2)を満たす限りにおいて、検出用置換基の種類に制限はなく適宜に選択可能である(検出用置換基の選択方法については、国際公開WO2004/005917パンフレットなどを参照)。以下、好適な検出用置換基のいくつかを例示する。
 標的物質が、活性酸素種のうち、一酸化窒素である場合;
は、ベンゼン環上の隣接する位置に置換する2個のアミノ基(該アミノ基のうち一方のアミノ基は一つのC1−6アルキルで置換されたC1−6アルキル置換アミノ基であってもよい)の組み合わせであって一酸化窒素との相互作用によりトリアゾール環を形成する基(該置換基については、特開平10−226688号公報などを参照)。
 標的物質が、活性酸素種のうち、一重項酸素である場合;
は、ベンゼン環上の隣接する位置に置換する2個の置換基が互いに結合して環を形成している下記式(A)で表される基(式中、R31及びR32はそれぞれ独立にC1−4アルキル基又はフェニル基を示す)(該置換基については、国際公開WO99/51586パンフレットなどを参照)。
Figure JPOXMLDOC01-appb-C000005
 標的物質が、活性酸素種のうち、過酸化水素である場合;、
は、下記式(B)で表される基(該置換基については、国際出願PCT/JP2009/054017号明細書などを参照)。
Figure JPOXMLDOC01-appb-C000006
 標的環境が、酸性環境である場合;
は、1個又は2個のアルキル基(該アルキル基はアミノ基以外の置換基により置換されていてもよい)により置換されていてもよいアミノ基、例えば、無置換のアミノ基、ジメチルアミノ基、ジエチルアミノ基、N−エチル−N−メチルアミノ基など(該置換基については、国際公開WO2008/059910パンフレットなどを参照)。
標的環境が低酸素環境である場合;
は、下記式(C)ないし(G)で表される基(該置換基については、特願2008−225389、特願2008−129025などを参照)。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
上記の例以外にも本発明の検出用置換基として、例えば、モレキュラープローブス社のカタログ(Handbook of Fluorescent Probes and Research Chemicals,Tenthedition、2005年)の第2章(チオール反応プローブ)、第20章(pHインディケーター)や後記する従来公知の蛍光測定方法に関する文献に記載された置換基などを適宜選択して使用することもできる。
 R、R、R、及びRはそれぞれ独立に水素原子、ハロゲン原子、又は置換基を有していてもよいC1−6アルキル基を示し、R及びRはそれぞれ独立に水素原子、ハロゲン原子、又は置換基を有していてもよいC1−6アルキル基を示す。本明細書において、特に言及しない場合にはアルキル基は直鎖状、分枝鎖状、環状、又はそれらの組み合わせのいずれでもよい。アルキル部分を有する他の置換基(アルコキシ基など)のアルキル部分についても同様である。また、本明細書において、ある官能基について「置換基を有していてもよい」と言う場合には、置換基の種類、個数、置換位置は特に限定されないが、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子のいずれでもよい)、水酸基、アミノ基(モノ又はジ置換アミノ基であってもよい)、ニトロ基、カルボキシル基、アルキル基、アルコキシ基、アルコキシカルボニル基、アラルキル基、アリール基、ヘテロアリール基、スルホ基、アルキルスルホネート基、ウレイド基、チオウレイド基、カルバモイル基などを置換基として有していてもよい。R、R、R、及びRがそれぞれ独立に無置換のC1−6アルキル基であることが好ましく、R、R、R、及びRがメチル基であることがさらに好ましい。R及びRはそれぞれ独立に水素原子、カルボキシ置換C1−6アルキル基又はC1−6アルコキシ置換C1−6アルキル基であることが好ましく、水素原子であることがより好ましい。
なお前記した検出用置換基の種類それぞれに好適なRないしRの組み合わせは、各検出用置換基の説明欄に記載した文献などを参照することで適宜選択することができる。
例えば、標的環境が酸性環境である場合の検出用置換基として例示した、Rが1個又は2個のアルキル基(該アルキル基はアミノ基以外の置換基により置換されていてもよい)により置換されていてもよいアミノ基である場合、R及びRは、それぞれ独立に、置換基を有していてもよいC1−6アルキル基のうちモノカルボキシC1−4アルキル基が好ましい。当業者は、国際公開WO2008/059910パンフレットなどを参照することで、該RとR及びRの好ましい組み合わせについても、当然に理解することができる。
また一般式(I)の化合物中、インダセン骨格に存在するホウ素原子に結合しているフッ素原子の1個以上が、置換基を有していてもよいC1−6アルコキシ基又は置換基を有していてもよいアリールオキシ基であってもよい。ホウ素原子に結合しているフッ素原子の1個以上が、置換基を有していてもよいC1−6アルコキシ基又は置換基を有していてもよいアリールオキシ基に代わることにより、該置換基を有していてもよいC1−6アルコキシ基又は置換基を有していてもよいアリールオキシ基に前記した検出用置換基を導入して、標的対象との相互作用があった場合にのみ発光する、いわゆるターゲティング機能を付与することもできる。
このような場合の検出用置換基は、
(a)標的対象との相互作用する前は蛍光母核であるインダセン骨格から検出用置換基又は検出用置換基からインダセン骨格へのPhoto−induced electron Transfer(PeT)機構によって消光し、かつ
(b)標的対象と相互作用した後には、蛍光母核であるインダセン骨格から検出用置換基又は検出用置換基からインダセン骨格へのPeT機構による消光が実質的になくなる、
ものから適宜選択することができる。
 一般式(II)におけるR11は水素原子又はベンゼン環上の任意の位置に存在する1ないし4個の置換基を示す。置換基が2個以上存在する場合には、それらは同一でも異なっていてもよい。R11が示す置換基の種類は特に限定されないが、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子のいずれでもよい)、水酸基、アミノ基(モノ又はジ置換アミノ基であってもよい)、ニトロ基、カルボキシル基、アルキル基、アルコキシ基、アルコキシカルボニル基、アラルキル基、アリール基、ヘテロアリール基、スルホ基、アルキルスルホネート基などを挙げることができる。R11が水素原子であることが好ましいが、R11が1個のアルキル基(例えばメチル基)を示す場合も好ましい。
11がベンゼン環上の任意の位置に存在する1ないし4個の置換基を示す場合、それら1ないし4個の置換基は、1個で、又は当該1ないし4個の置換基の2個以上が協働して、標的対象と相互作用することにより標的対象を検出する能力を有する置換基(検出用置換基)であることができる。R11が検出用置換基である場合、R11の好ましい態様は前記した一般式(I)の化合物のRに関する記載と同様である。
 R12、R13、R14、R15、R16、R17、R18、及びR19はそれぞれ独立に水素原子、ハロゲン原子、又は置換基を有していてもよいC1−6アルキル基を示す。好ましくは、R12、R13、R14、R15、R16、R17、R18、及びR19はそれぞれ独立に水素原子、ハロゲン原子、又は無置換C1−6アルキル基を示すが、R12、R13、R14、R15、R16、R17、R18、及びR19が水素原子であることがより好ましい。R20及びR21はそれぞれ独立に置換基を有していてもよいC1−18アルキル基を示すが、好ましくはそれぞれ独立に置換基を有していてもよいC1−6アルキル基を示し、さらに好ましくは無置換C1−6アルキル基を示す。例えば、エチル基、n−プロピル基、n−ブチル基などが好ましく用いられる。
 Zは酸素原子、硫黄原子、又は−N(R22)−(式中、R22は水素原子又は置換基を有していてもよいC1−6アルキル基を示す)を示すが、好ましくは酸素原子を示す。Y及びYはそれぞれ独立に−C(=O)−、−C(=S)−、又は−C(R23)(R24)−(式中、R23及びR24はそれぞれ独立に置換基を有していてもよいC1−6アルキル基を示す)を示すが、好ましくは−C(R23)(R24)−を示す。R23及びR24としては無置換C1−6アルキル基が好ましく、例えばR23及びR24がともにメチル基であることが好ましい。Mは電荷の中和に必要な個数の対イオンを示すが、通常はGd−DOTA又はGd−DTPAの残基に存在するカルボキシレートアニオンにより電荷が中和されるのでMが存在しない場合がある。Mが存在する場合にはヨウ素イオンや塩素イオンなどを用いることができる。
 本発明の蛍光ガドリニウム錯体化合物は、一般的には、上記一般式(I)又は上記一般式(II)で表される基においてベンゼン環上の任意の位置にアミノ基、水酸基、カルボキシル基、チオール基、イソシアネート基、イソチオシアネート基などの反応性DOTA誘導体又は反応性DTPA誘導体を導入するための反応性官能基が結合した化合物と、反応性DOTA誘導体又は反応性DTPA誘導体とを反応させることにより蛍光ガドリニウム配位子化合物を製造した後、該配位子化合物にガドリニウム塩を反応させることにより容易に製造することができる。製造用中間体として用いられる上記の蛍光ガドリニウム配位子化合物も本発明の範囲に包含される化合物である。
 本発明の蛍光ガドリニウム配位子化合物は、例えば、上記の上記一般式(I)又は上記一般式(II)で表される基においてベンゼン環上に反応性DOTA誘導体又は反応性DTPA誘導体を導入するためのイソチオシアネート基が結合した化合物を用いる場合には、反応性DOTA誘導体又は反応性DTPA誘導体としてアミノ基を有する化合物、例えば置換基としてp−アミノベンジル基を有するDOTA又は置換基としてp−アミノベンジル基を有するDTPAを反応させればよい。例えば、p−アミノベンジル基を有するDOTA又はDTPAとして下記の化合物が市販されており(Macrocyclics:http://www.macrocyclics.com)、これらの反応性DOTA誘導体又は反応性DTPA誘導体を好適に使用することができる。
Figure JPOXMLDOC01-appb-C000012
 また、上記一般式(I)又は上記一般式(II)で表される基において、ベンゼン環上に反応性DOTA誘導体又は反応性DTPA誘導体を導入するためのアミノ基が結合した化合物を用いる場合には、反応性DOTA誘導体又は反応性DTPA誘導体としてカルボキシル基又はイソチオシアネート基などを有する化合物、例えば置換基としてp−イソチオシアネートベンジル基を有するDOTA又はDTPAや、スクシンイミジル基又はp−ニトロフェニルオキシ基で活性化されたカルボキシル基を有する化合物、例えば置換基としてスクシンイミジルオキシカルボニルメチル基を有するDOTA又はDTPAや、DTPAを酸無水物としたDTPA anhydrideなどを用いることができる。例えば、市販の下記化合物を用いることができるが、これらに限定されることはない。
Figure JPOXMLDOC01-appb-C000013
1)Macrocyclics:http://www.macrocyclics.com/
2)Sigma Aldrich:http://www.sigmaaldrich.com/sigma−aldrich/home.html
3)TCI:http://www.tokyokasei.co.jp/
 蛍光ガドリニウム配位子化合物とガドリニウム塩との反応は当業者に周知の方法で行なうことができる。ガドリニウム塩としては、例えば、GdCl・6HOなどを用いることができるが、この特定のガドリニウム塩に限定されることはない。当業者は適宜のガドリニウム塩及び反応条件を適宜選択して上記反応を行なうことが可能である。
 蛍光ガドリニウム配位子化合物及び蛍光ガドリニウム錯体化合物の具体的製造方法を本明細書の実施例に具体的に示したので、当業者は上記の一般的説明及び実施例の具体的説明を参照しつつ、必要に応じて出発原料や反応試薬を適宜変更することにより、本発明の蛍光ガドリニウム錯体化合物を容易に製造することが可能である。
 本発明の蛍光ガドリニウム配位子化合物又は蛍光ガドリニウム錯体化合物は1個又は2個以上の不斉炭素を有している場合があるが、1個または2個以上の不斉炭素に基づく光学的に純粋な形態の任意の光学異性体、光学異性体の任意の混合物、ラセミ体、純粋な形態のジアステレオ異性体、ジアステレオ異性体の混合物などはいずれも本発明の範囲に包含される。また、本発明の蛍光ガドリニウム配位子化合物又は蛍光ガドリニウム錯体化合物は水和物や溶媒和物として存在する場合もあるが、これらの物質も本発明の範囲に包含されることはいうまでもない。
 本発明の蛍光ガドリニウム配位子化合物又は蛍光ガドリニウム錯体化合物は塩を形成する場合もある。塩の種類は特に限定されず、酸付加塩又は塩基付加塩のいずれであってもよい。酸付加塩としては、例えば、塩酸塩、硫酸塩、硝酸塩などの鉱酸塩、又は酢酸塩、メタンスルホン酸塩、クエン酸塩、p−トルエンスルホン酸塩、シュウ酸塩などの有機酸塩を挙げることができる。また、塩基付加塩としては、ナトリウム塩、カリウム塩、カルシウム塩などの金属塩、アンモニウム塩、又はメチルアミン塩、トリエチルアミン塩などの有機アミン塩を挙げることができる。さらに、グリシンなどのアミノ酸の塩を形成する場合もある。もっとも、本発明の蛍光ガドリニウム配位子化合物又は蛍光ガドリニウム錯体化合物の塩はこれらの具体例に限定されることはない。
 本発明の蛍光ガドリニウム錯体化合物を例えばプローブ又は造影剤として用い、蛍光法及びMRIにより生体の組織や臓器をイメージングすることができる。本明細書において「蛍光MRIプローブ」又は「蛍光MRI造影剤」という用語は、蛍光法及びMRIのいずれの方法においてもプローブ又は造影剤として使用可能であることを意味している。通常は生体の深部のイメージングにはMRIが適しており、生体の浅部や表面付近又は生体表面のイメージングには蛍光法が適しているので、当業者は本発明のプローブ又は造影剤を用いて蛍光法又はMRIのいずれかを適宜選択し、あるいはそれらを適宜組み合わせて生体のイメージングを行なうことができる。
 特に本発明のプローブ又は造影剤は細胞内に容易に取り込まれて蓄積する性質を有していることから、MRIによる生体深部のイメージングにおいて強いシグナルを与え、極めて明瞭な画像が得られるという特徴がある。もっとも、本発明のプローブ又は造影剤の用途は生体のイメージングに限定されることはなく、生体以外の対象物、例えば生体から分離された組織や臓器のほか、培養細胞集団や再生医療に用いるために生体外で作成した臓器や組織のイメージングを行なうこともできる。
 蛍光の測定は、従来公知の蛍光測定方法に準じて行うことができる(例えば、Wiersma,J.H.,Anal.Lett.,3,pp.123−132,1970;Sawicki,C.R.,Anal.Lett.,4,pp.761−775,1971;Damiani,P.and Burini,G.,Talanta,8,pp.649−652,1986;Misko,T.P.,Anal.Biochem.,214,pp.11−16,1993;Kojima,H.,Nakatsubo,N.,Kikuchi,K.,Kawahara,S.,Kirino Y.,Nagoshi,H.,Hirata,Y.and Nagano,T.,Anal.Chem.,70,pp.2446−2453,1998;Hirano,T.,Kikuchi,K.,Urano,Y.,Higuchi,T.and Nagano,T.,J.Am.Chem.Soc.,122,pp.12399−12400,2000;Bremer,C.,Tung,C.−H.and Weissleder,R.Nat.Med.,7,pp.743−748,2001;Sasaki,E.,Kojima,H.,Nishimatsu,H.,Urano,Y.,Kikuchi,K.,Hirata,Y.and Nagano,T.,J.Am.Chem.Soc.,127,pp.3684−3685,2005などの刊行物を参照)。本発明のプローブ又は造影剤を用いた細胞イメージングには、例えば、一般式(I)で表されるプローブ又は造影剤を用いた場合、好ましくは励起光として500nm付近の波長の光を照射し、510nm付近の蛍光を測定することが好ましい。一般式(II)で表されるプローブ又は造影剤を用いた場合、好ましくは励起光として770nm付近の波長の光を照射し、790nm付近の蛍光を測定することが好ましい。
本発明の一般式(II)で表されるプローブ又は造影剤を用いた生体イメージングには、例えば、励起光として650~900nm程度、好ましくは780nm付近の波長の光を照射し、650~900nm程度、好ましくは820nm付近の蛍光を測定することが好ましい。このような波長の励起光を用いると、励起光が生体組織を減衰せずに透過して深部組織に到達し、その部位において高感度な測定が可能になる。
 MRIはプロトン信号を利用した医療用MRI装置を用い、ガドリニウム造影剤により画像化する周知の方法に従って行なうことができる。必要に応じてT1強調画像又はT2強調画像を得ることもでき、適宜のリテンションタイム(TR)とエコータイム(TE)とを選択して目的の組織や細胞においてコントラストを高めるように調節することができる。例えば、T1強調画像ではTR=300~500ミリ秒、TEを10ミリ秒程度とし、T2強調画像ではTR=3~5秒、TE=80~100ミリ秒とすることができる。ガドリニウム造影剤にはT1短縮作用があるため、造影剤投与後のコントラストはT1強調画像で明瞭化しやすいことが知られており、T1強調画像を撮像することは容易である。
 本発明のプローブ又は造影剤の使用方法は特に限定されず、従来公知のMRI造影剤又は蛍光造影剤と同様に用いることが可能である。通常は、生理食塩水や緩衝液などの水性媒体、又はエタノール、アセトン、エチレングリコール、ジメチルスルホキシド、ジメチルホルムアミドなどの水混合性の有機溶媒と水性媒体との混合物などに上記の蛍光ガドリニウム錯体化合物を溶解し、生体に静脈内投与するか、細胞や組織を含む適切な緩衝液中にこの溶液を添加して、蛍光スペクトル及び核磁気共鳴スペクトルを測定すればよい。本発明のプローブ又は造影剤は適切な添加物と組み合わせて組成物の形態で用いてもよい。例えば、緩衝剤、溶解補助剤、pH調節剤などの添加物と組み合わせることができる。
 以下、本発明を実施例によりさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。
例1:Gd−DOTA−BDPの合成
Figure JPOXMLDOC01-appb-C000014
 4−ニトロベンズアルデヒド(1.5g,10mmol)、2,4−ジメチルピロール(2.1mL,20mmol)をジクロルメタン(1L)に溶解させ、トリフルオロ酢酸を数滴加えてアルゴン雰囲気下に室温で9時間撹拌した。反応溶液にクロラニル(2.5g,10mmol)を加えて室温でさらに30分撹拌した。溶媒を留去した後、シリカゲルカラムクロマトグラフィー(NH silica,ジクロルメタン/n−ヘキサン,1:1→ジクロルメタン)で精製し、褐色個体を得た。得られた褐色個体をトルエン(200mL)に溶解させ、トリエチルアミン(4.2mL,30mmol),ボロントリフルオリド・ジエチルエーテルコンプレックス(5.0mL,40mmol)を加えて室温で2時間撹拌した。反応溶液を2N HCl、飽和重曹水、食塩水で順次洗浄し、有機層を無水硫酸マグネシウム乾燥後、固体をろ去した。溶媒を留去し、シリカゲルカラムクロマトグラフィー(silicagel 60,ジクロルメタン/n−ヘキサン,1:1)で精製して化合物1を橙色固体(842mg,23%)として得た。
H−NMR(300MHz,CDCl):δ 1.37(s,6H),2.57(s,6H),6.02(s,2H),7.54(d,J=8.6Hz,2H),8.39(d,J=8.6Hz,2H)
LRMS(ESI−):368(M−H)
 化合物1(842mg,2.3mmol)をジクロルメタン(50mL)に溶解し、メタノール(50mL)、10%Pd/C(50mg)の順に加えて水素雰囲気下に室温で5時間撹拌した。固体をろ去し、溶媒を留去した後、シリカゲルカラムクロマトグラフィー(silicagel 60,ジクロルメタン/n−ヘキサン,1:1→2:1)で精製して化合物2を橙色固体(568mg,73%)として得た。
H−NMR(300MHz,CDCl):δ 1.49(s,6H),2.54(s,6H),3.83(br s,2H),5.97(s,2H),6.77(d,J=8.1Hz,2H),7.01(d,J=8.1Hz,2H)
LRMS(ESI+):340(M+H),320(M−F)
 化合物2(50mg,0.15mmol)をジメチルホルムアミド(DMF,3mL)に溶解し、p−SCN−Bn−DOTA(101mg,0.15mmol)のDMF溶液(2mL)、N,N−ジイソプロピルエチルアミン(51μL,0.29mmol)を加え、室温で16時間撹拌した。溶媒を留去した後、HPLC(ODS−18)で精製して化合物3を橙色固体(103mg,79%)として得た。
H−NMR(300MHz,CDOD):δ 1.49(s,6H),2.48(s,6H),3.00−4.20(m,25H),6.06(s,2H),7.30(d,J=8.4Hz,2H),7.31(d,J=8.2Hz,2H),7.49(d,J=8.2Hz,2H),7.72(d,J=8.4Hz,2H)
LRMS(ESI+):891(M+H)
 化合物3(50mg,56μmol)を1M HEPES buffer(pH7.4,3mL)に溶解し、GdCl・6HO(23mg,62μmol)を加えて室温で1晩撹拌した。遠心分離してGd(OH)を沈降させた後、溶液をHPLC(ODS−18)で精製してGd−DOTA−BDPを橙色固体(22mg,34%)として得た。
LRMS(ESI−):1044(M)
例2:Gd−DOTA−Cyの合成
Figure JPOXMLDOC01-appb-C000015
 4−アミノフェノール(327mg,3.0mmol)をメタノール(15mL)に溶解し、二炭酸ジ−t−ブチル(786mg,3.6mmol),トリエチルアミン(625μL,4.5mmol)を加えて室温で4時間撹拌した。溶媒を留去した後、シリカゲルカラムクロマトグラフィー(silica gel 60,ジクロルメタン/メタノール,19:1)で精製し化合物4を白色固体(615mg,98%)として得た。
H−NMR(300MHz,CDCl):δ 1.51(s,9H),5.54(s,1H),6.36(br s,1H),6.75(d,J=8.8Hz,2H),7.18(d,J=8.8Hz,2H)
 化合物4(126mg,0.60mmol)をDMF(15mL)に溶解し、水素化ナトリウム(60% in oil,24mg,0.60mmol)を加えてアルゴン雰囲気下に室温で10分撹拌した。IR−780 iodide(200mg,0.30mmol)をDMF(15mL)に溶解させて反応溶液に加え、さらに室温で16時間撹拌した。溶媒を留去した後、シリカゲルカラムクロマトグラフィー(NH silica,ジクロルメタン/メタノール,19:1)で精製し、化合物5を緑色固体(184mg,73%)として得た。
H−NMR(300MHz,CDCl):δ 1.05(t,J=7.4Hz,6H),1.36(s,12H),1.50(s,9H),1.87(sex,J=7.4Hz,4H),2.05(t,J=5.5Hz,2H),2.72(t,J=5.5Hz,4H),4.05(t,J=7.4Hz,4H),6.05(d,J=14.3Hz,2H),6.80(br s,1H),6.99(d,J=9.0Hz,2H),7.09(d,J=7.7Hz,2H),7.20(d,J=7.7Hz,2H),7.27(d,J=6.8Hz,2H),7.34(d,J=6.8Hz,2H),7.47(d,J=9.0Hz,2H),7.91(d,J=14.3Hz,2H)
LRMS(ESI):m/z 712(M−I)
 化合物5(118mg,0.14mmol)をジクロルメタン(2.5mL)に溶解し、トリフルオロ酢酸(0.5mL)を加え、室温で2時間撹拌した。溶媒を留去した後、トルエンを加えてトリフルオロ酢酸を共沸により除去した。シリカゲルカラムクロマトグラフィー(NH silica,CHCl/MeOH,9:1)で精製し、化合物6を深紅色固体(99mg,95%)として得た。
H−NMR(300MHz,CDCl):δ 1.03(t,J=7.4Hz,6H),1.38(s,12H),1.86(sex,J=7.4Hz,4H),2.02(t,J=5.8Hz,2H),2.67(t,J=5.8Hz,4H),4.00(t,J=7.4Hz,4H),6.01(d,J=14.3Hz,2H),6.70(d,J=8.8Hz,2H),6.85(d,J=8.8Hz,2H),7.06(d,J=7.6Hz,2H),7.19(d,J=7.6Hz,2H),7.27(d,J=6.4Hz,2H),7.34(td,J=7.6,1.2Hz,2H),7.96(d,J=14.3Hz,2H)
LRMS(ESI):m/z 612(M−I)
 化合物6(42mg,57μmol)をDMF(15mL)に溶解し、炭酸ナトリウム(60mg,570μmol)を加え、アルゴン雰囲気下に0℃に冷却した。チオホスゲン(43μL,570μmol)をシリンジでゆっくり滴下し、室温に戻して1時間撹拌した。溶媒を留去した後、シリカゲルカラムクロマトグラフィー(Silica gel 60,ジクロルメタン/メタノール,9:1)で精製し、化合物7を深紅色固体(34mg,75%)として得た。
H−NMR(300MHz,CDCl):δ 1.04(t,J=7.4Hz,6H),1.35(s,12H),1.86(sex,J=7.4Hz,4H),2.04(t,J=5.8Hz,2H),2.72(t,J=5.8Hz,4H),4.07(t,J=7.4Hz,4H),6.13(d,J=14.3Hz,2H),7.06(d,J=8.8Hz,2H),7.09(d,J=8.8Hz,2H),7.17−7.28(m,6H),7.36(t,J=7.6Hz,2H),7.79(d,J=14.3Hz,2H)
LRMS(ESI):m/z 654(M−I)
 化合物7(20mg,25μmol)をメタノール(2mL)に溶解し、トリエチルアミン(33μL,240μmol),p−NH−Bn−DOTA(12mg,24μmol)を加え、室温で21時間撹拌した。溶媒を留去した後、HPLC(ODS−18)で精製し、化合物8を緑色固体(11mg,36%)として得た。
H−NMR(300MHz,CDCl):δ 1.01(t,J=7.4Hz,6H),1.39(s,12H),1.83(sex,J=7.4Hz,4H),2.05(t,J=5.8Hz,2H),2.60−4.30(m,25H),2.74(t,J=5.8Hz,4H),4.07(t,J=7.4Hz,4H),6.16(d,J=14.3Hz,2H),7.12(d,J=8.8Hz,2H),7.20(t,J=7.6Hz,2H),7.24−7.49(m,12H),8.01(d,J=14.3Hz,2H)
LRMS(ESI):m/z 1163(M−CFCOO)
 化合物8(11mg,8.5μmol)を1M HEPESバッファー(pH7.4,2mL)に溶解し、GdCl・6HO(3.8mg,10μmol)を加えて室温で18時間撹拌した。反応溶液をHPLC(ODS−18)で精製し、緑色固体(7.0mg,62%)を得た。
HRMS(ESI):Calcd for[M+CFCOO],1430.47821;found,1430.48668(+8.48mmu).
例3
 例1及び例2で得られたGd−DOTA−BDP及びGd−DOTA−CyをHeLa細胞に導入して蛍光イメージングを行なった。図1にはHeLa細胞をプローブで2時間処理した後の光学及び蛍光顕微鏡像を示し、図2には共焦点画像を示す。蛍光顕微鏡像からGd−DOTA−BDP及びGd−DOTA−Cyはいずれも細胞内に導入されていることが確認できた。共焦点画像から、Gd−DOTA−BDP,Gd−DOTA−Cyはいずれも核付近のオルガネラに集積していると考えられる。また、どちらのプローブの場合にも導入後の細胞は生存しており、大きな細胞毒性はないと考えられた。
例4
 例1で得られたGd−DOTA−BDPのPBSバッファー溶液を調製し、MRIを行った。図3の各写真において左側はPBSバッファー、右側はPBSバッファー中のGd−DOTA−BDPを示し、aは通常光線下、bは蛍光像、cはMR像(T1強調)、及びdはMR像(T2強調)を示す。図3aに示すように、Gd−DOTA−BDPはT1を顕著に短縮し、MR像のうちT1強調画像においてシグナルを強調することができる。
例5
 Gd−DOTA−BDP(例1)、Gd−DOTA−Cy(例2)及び「Magnevist(登録商標)」をHeLa細胞培養液(DMEM)にそれぞれ100μMとなるように加え、2時間インキュベートして細胞に導入した後、MRIを行った。図4の写真においてaは通常光線下、bはMR像(T1強調:T/T=600ms/14ms)を示す。各チューブ中Magは市販のMRI造影剤であるMagnevist(登録商標)、BDPはGd−DOTA−BDP(例1)、CyはGd−DOTA−Cy(例2)の結果を示す。現在、MRI造影剤として臨床で用いられている「Magnevist(登録商標)」は細胞内部に取り込まれないためにシグナル強度はGd−DOTA−BDP、Gd−DOTA−Cy及び「Magnevist(登録商標)」を加えずに作製したコントロールと同程度であった。一方、Gd−DOTA−BDP及びGd−DOTA−Cyでは「Magnevist(登録商標)」に比べて強いシグナルが観察された。
例6
 Gd−DOTA−Cy(例2)(100μL生理食塩水中100μM)をヌードマウスの尾から静注してイン・ビボの蛍光イメージングを励起波長670−750nm、蛍光波長820nmで行った。図5の写真においてaは投与マウスを体外から蛍光イメージングした写真、bは非投与マウスを体外から蛍光イメージングした写真、cは開腹した腹部を蛍光イメージングした写真、dは摘出臓器を蛍光イメージングした写真である。
 図5aに示すようにGd−DOTA−Cyは近赤外領域に吸収を有するため、体外からでも蛍光イメージングが可能であった。開腹した腹部の蛍光イメージング像(図5c)及び摘出臓器の蛍光イメージング像(図5d)より、Gd−DOTA−Cyは投与後速やかに肝臓に集積することが確認された。また体外からの蛍光イメージング(図5a)における蛍光強度の経時変化を観察したところ十分な時間蛍光イメージングが可能な蛍光強度を保っていることが確認された(図6)。
例7
 Gd−DOTA−BDP(例1)を用い動脈硬化モデルマウスであるApoE−/−マウス及びWild−Typeマウスの大動脈のMRIイメージングを行った。MRIイメージングは、マウスをイソフルランにより麻酔し、生理食塩水に溶かしたGd−DOTA−BDP(5mM)を眼窩静脈より100μL、さらに2時間後に150μLを追加投与して行った。MRI測定はGd−DOTA−BDPの投与前及びGd−DOTA−BDPの各投与の1時間後に行った(測定条件:TR;500ms,TE;13.2ms,TI;250ms,Black Blood sequence)。結果を図7に示す。図7中、上段のaは、動脈硬化モデルマウスであるApoE−/−マウスの、下段のbは、Wild−Typeマウスの投与前(左)、投与後(中央)及び追加投与後(右)の結果を示す。図7aに示すように、動脈硬化モデルマウスであるApoE−/−マウスにおいて、Gd−DOTA−BDPが動脈硬化巣を覆う被膜を透過して矢印の部分の動脈硬化巣に集積し、動脈硬化巣のMRIシグナルを上昇させることが確認された。一方、図7bに示すように、コントロールとして行った動脈硬化巣を持たないwild−typeマウスの同様の実験では、MRIシグナルの上昇は観測されなかった。蛍光色素Boron Dipyrromethene(BDP)は、その疎水性から白色脂肪細胞中の脂肪滴選択的に集積することが知られている。以上の結果は、脂肪滴と動脈硬化の構成成分が類似しているため、BDP部位を持つGd−DOTA−BDPが動脈硬化に集積して、MRIシグナルを上昇させたことを示しており、Gd−DOTA−BDPを用いたMRIで動脈硬化巣の検出が可能であることが確認された。
例8
 例7のMRI実験終了後、マウスから大動脈を摘出して切り開き、蛍光イメージング装置(Maestro(登録商標))により蛍光イメージングを行った(測定条件:励起波長;445−490nm、蛍光波長;520−800nm)。蛍光画像取得後、さらに、SudanIVにより動脈硬化巣染色を行った。SudanIVは摘出した大動脈の動脈硬化巣を染色する際に一般的に用いられる色素である。結果を図8に示す。図8中、上段のaは、動脈硬化モデルマウスであるApoE−/−マウスの結果、下段のbは、Wild−Typeマウスの結果であり、左側は蛍光画像、右側はSudanIV染色像を示す。図8aに示すように、動脈硬化モデルマウスであるApoE−/−マウスにおいて、Gd−DOTA−BDPがSudanIVによって染色された動脈硬化巣に集積し、動脈硬化巣選択的な蛍光が観察された。一方、図8bに示すように、コントロールとして行ったwild−typeマウスの同様の実験では、動脈硬化巣もGd−DOTA−BDPの蛍光も観測されなかった。
例9
 例7のMRI実験終了後、MRIにおいてシグナル上昇が見られた大動脈部位とシグナル変化が見られなかった大動脈部位の凍結切片を作製し、蛍光顕微鏡により蛍光イメージングを行った(測定条件:励起波長;500nm、蛍光波長;505−600nm)。蛍光画像取得後、さらに、Oil red Oにより動脈硬化巣染色を行った。Oil red Oは大動脈切片の動脈硬化巣を染色する際に一般的に用いられる色素である。結果を図9に示す。図9中、上段のaは、MRIにおいてシグナル上昇が見られた大動脈部位の凍結切片、下段のbは、MRIにおいてシグナル変化が見られなかった大動脈部位の凍結切片の結果であり、左側は蛍光画像、右側はOil red O染色像を示す。図9aに示すように、MRIでシグナル上昇が見られた部位の凍結切片において、Gd−DOTA−BDPの蛍光及びOil red O染色像が動脈硬化巣選択的に観測された。一方、図9bに示すように、MRIにおいてシグナル変化が見られなかった部位の凍結切片においては、動脈硬化巣もGd−DOTA−BDPの蛍光も観測されなかった。
 例8、例9の結果から、Gd−DOTA−BDPはMRIによる動脈硬化巣の検出が可能であることに加え、蛍光でも動脈硬化巣の選択的検出が可能であることが示された。
例10:Gd−DOTA−PEG−Cyの合成
Figure JPOXMLDOC01-appb-C000016
O−(2−アミノエチル)−O′−[2−(Boc−アミノ)エチル]デカエチレングリコール(161mg,0.25mmol)をDMF(4.5mL)に溶解し、N,N−ジイソプロピルエチルアミン(435μL,2.5mmol),p−SCN−Bn−DOTA(154mg,0.28mmol)を加えて室温で50時間撹拌した。溶媒を留去した後、HPLC(ODS−18)で精製し、化合物9を白色固体(281mg,94%)として得た。
MS(ESI):m/z 1196(M+H)
 化合物9(276mg,0.23mmol)をジクロルメタン(4mL)に溶解し、トリフルオロ酢酸(7mL)を加えて室温で5時間撹拌した。溶媒を留去した後、HPLC(ODS−18)で精製し、化合物10を白色固体(227mg,90%)として得た。
MS(ESI):m/z 1096(M+H)
 化合物7(118mg,0.11mmol)をDMF(4mL)に溶解し、N,N−ジイソプロピルエチルアミン(174μL,1.0mmol),化合物10(110mg,0.10mmol)を加えて室温で一晩撹拌した。溶媒を留去した後、HPLC(ODS−18)で精製し、化合物11を緑色固体(54mg,31%)として得た。
H−NMR(300MHz,CDCl):δ 0.92(t,J=7.5Hz,6H),1.30(s,12H),1.74(sex,J=7.5Hz,4H),1.95(s,2H),2.51−4.19(m,6H),6.07(d,J=13.9Hz,2H),7.03(d,J=9.2Hz,2H),7.12(t,J=7.5Hz,2H),7.18(t,J=7.7Hz,4H),7.26−7.35(m,8H),7.91(d,J=13.9Hz,4H);MS(ESI):m/z 1749(M)
 化合物11(10mg,5.9μmol)を1M HEPESバッファー(pH7.4,2mL)に溶解し、GdCl・6HO(3.3mg,8.8μmol)を加えて室温で24時間撹拌した。反応溶液にアセトニトリルを加えて上層を抽出し、濃縮した後HPLC(ODS−18)で精製し、Gd−DOTA−PEG−Cyを緑色固体(6.9mg,62%)として得た。
HRMS(ESI):Calcd for[M+H],1904.81452;found,1904.81110(−3.43mmu).
例11
 例10で得られたGd−DOTA−PEG−CyをHeLa細胞に導入して蛍光イメージングを行なった。図10にはHeLa細胞を10μMのGd−DOTA−PEG−Cyで処理した後に、光学及び共焦点蛍光顕微鏡で観察を行った結果を示す。左側は透過像を示し、右側は共焦点蛍光顕微鏡像(測定条件:励起波長;670nm、蛍光波長;700−800nm)を示す。共焦点蛍光顕微鏡像から、Gd−DOTA−PEG−Cyが細胞内に導入されていることが確認できた。Gd−DOTA−PEG−Cyは、PEG鎖を導入することでGd−DOTA−Cyよりも水溶性が高まってGd−DOTA−Cy水溶液の調整が容易になる上、Gd−DOTA−Cyに比べてより高い細胞内導入性を示した。また、Gd−DOTA−PEG−Cyを導入後の細胞は生存しており、大きな細胞毒性はないと考えられた。
例12
 Gd−DOTA−PEG−Cy(例10)をヌードマウスに尾静注し、蛍光イメージングにてGd−DOTA−PEG−Cyの体内動態の観察を行った。蛍光イメージングは、ネンブタール(30μL)をヌードマウス(8週齢、オス)に腹腔内注射して麻酔し、生理食塩水に溶かしたGd−DOTA−PEG−Cy(100μM)を尾静脈より100μL投与して行った。蛍光イメージング装置(Maestro(登録商標))により、体外から蛍光イメージングを行った結果及びGd−DOTA−PEG−Cy投与1時間後にCOで絶命させ、開腹して臓器を摘出し蛍光を観察した結果を図11に示す(測定条件:励起波長;670−750nm、蛍光波長;780−900nm)。図11の写真において、aはGd−DOTA−PEG−Cy投与マウスを体外から蛍光イメージングした結果、bはGd−DOTA−PEG−Cy投与マウスから摘出した臓器を蛍光イメージングした結果である。Gd−DOTA−PEG−Cyは投与後速やかに肝臓に集積することが確認された(図11b)。また体外からの蛍光イメージング(図11a)における蛍光強度は、蛍光イメージングが可能な蛍光強度を十分に保っていることが確認された。
例13
 Gd−DOTA−PEG−Cy(例10)をヌードマウスに尾静注し、MRIにてマウス体内のイメージングを行った。MRIイメージングは、マウスをイソフルラン(1.5~2%)により麻酔し、生理食塩水に溶かしたGd−DOTA−PEG−Cy(5mM)を眼窩静脈より100μL投与して行った。MRI測定はGd−DOTA−PEG−Cyの投与前後に行った(測定条件:TR;7000,2000,1000,600,300,200,150,100ms,TE;9.8ms,flip angle(FA),131degrees;effective bandwidth,100kHz;slice thickness,1mm;field of view(FOV),80x50mm;in−plane resolution,0.39mm;matrix size,128×128;number of signal averages,1;number of segment,1.)。結果を図12に示す。図12中、左側はGd−DOTA−PEG−Cyの投与前のMRI測定結果、右側はGd−DOTA−PEG−Cyの投与後のMRI測定結果を示す。図12において、点線の枠で囲った部分でGd−DOTA−PEG−Cyの投与後にT1マップにおいて、縦緩和時間T1の大きな短縮が観察された。これは、肝臓に集積したGd−DOTA−PEG−Cyによるものであり、Gd−DOTA−PEG−Cyを用いたMRIで肝臓の変化を高感度に可視化できることが示された。
例14
 Gd−DOTA−PEG−Cy(例10)をヌードマウスに眼窩静注し、その後、マウス体内から肝臓を摘出して凍結切片を作製し、共焦点顕微鏡にて蛍光イメージングを行った。共焦点顕微鏡による蛍光イメージングは、1)ネンブタール(30μL)をヌードマウス(8週齢、オス)に腹腔内注射して麻酔、2)生理食塩水に溶かしたGd−DOTA−PEG−Cy(5mM)を眼窩静脈より100μL投与、3)Gd−DOTA−PEG−Cy投与後30分にCOでマウスを絶命させ、心臓から血液を抜いた後、生食を心臓から打ち込んで血液を洗い流し、肝臓を摘出、4)摘出した肝臓をPBSで3回洗浄し、凍結させて切片(10μm)を作成、5)作成した切片をスライドグラス上に載せ、カバーガラスを掛けて測定(測定条件:励起波長;670nm、蛍光波長;700−800nm)の手順で行った。結果を図13に示す。左側は透過像を示し、右側は共焦点蛍光顕微鏡像を示す。図13の右図において、肝細胞スライスからGd−DOTA−PEG−Cyに由来する近赤外蛍光が十分な強度で観察されており、肝細胞内にGd−DOTA−PEG−Cyが取り込まれていることが確認された。
 例11、例12、例13及び例14で得られた結果は、Gd−DOTA−PEG−Cyがイン・ビボにおいて肝臓組織における肝細胞に効率良く取り込まれることを示しており、MRI及び蛍光によって肝臓内の状態の可視化がイン・ビボで可能であることを示している。
以上のように、一般式(I)又は一般式(II)で表される特定の蛍光色素とガドリニウム錯体とを組み合わせた本発明の蛍光MRIプローブは、CPPやデキストランなどの手段を用いることなしに高い細胞内移行性を有していることが確認された。そして細胞内に容易に取り込まれた後、蛍光法及びMRIによる二重イメージングが可能であることが確認された。

Claims (6)

  1.  置換基を有していてもよいガドリニウム・1,4,7,10−テトラアザシクロドデカン−N,N’,N’’,N’’’−テトラ酢酸の残基又は置換基を有していてもよいガドリニウム・ジエチレントリアミンペンタ酢酸の残基と、下記の一般式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素原子又はベンゼン環上の任意の位置に存在する1ないし4個の置換基(置換基が2個以上存在する場合には、それらは同一でも異なっていてもよい)を示し;R、R、R、及びRはそれぞれ独立に水素原子、ハロゲン原子、又は置換基を有していてもよいC1−6アルキル基を示し、R及びRはそれぞれ独立に水素原子、ハロゲン原子、又は置換基を有していてもよいC1−6アルキル基を示す)で表される基、又は下記の一般式(II):
    Figure JPOXMLDOC01-appb-C000002
    〔式中、R11は水素原子又はベンゼン環上の任意の位置に存在する1ないし4個の置換基(置換基が2個以上存在する場合には、それらは同一でも異なっていてもよい)を示し;R12、R13、R14、R15、R16、R17、R18、及びR19はそれぞれ独立に水素原子、ハロゲン原子、又は置換基を有していてもよいC1−6アルキル基を示し;R20及びR21はそれぞれ独立に置換基を有していてもよいC1−18アルキル基を示し;Zは酸素原子、硫黄原子、又は−N(R22)−(式中、R22は水素原子又は置換基を有していてもよいC1−6アルキル基を示す)を示し;Y及びYはそれぞれ独立に−C(=O)−、−C(=S)−、又は−C(R23)(R24)−(式中、R23及びR24はそれぞれ独立に置換基を有していてもよいC1−6アルキル基を示す)を示し;Mは電荷の中和に必要な個数の対イオンを示す〕で表される基とが共有結合した蛍光ガドリニウム錯体化合物。
  2.  置換基を有していてもよいガドリニウム・1,4,7,10−テトラアザシクロドデカン−N,N’,N’’,N’’’−テトラ酢酸の残基又は置換基を有していてもよいガドリニウム・ジエチレントリアミンペンタ酢酸の残基がp−チオウレイドベンジル基を有するガドリニウム・1,4,7,10−テトラアザシクロドデカン−N,N’,N’’,N’’’−テトラ酢酸若しくはそのエステルの残基又はp−チオウレイドベンジル基を有するガドリニウム・ジエチレントリアミンペンタ酢酸若しくはそのエステルの残基である請求項1に記載の蛍光ガドリニウム錯体化合物。
  3.  上記一般式(I)においてRが水素原子であり、R、R、R、及びRがメチル基であり、R及びRが水素原子である基、又は上記一般式(II)においてR11が水素原子であり、R12、R13、R14、R15、R16、R17、R18、及びR19が水素原子であり、R20及びR21がC1−6アルキル基であり、Zが酸素原子であり、Y及びYが−C(R23)(R24)−(式中、R23及びR24はそれぞれ独立にC1−6アルキル基である)である基が共有結合した請求項1又は2に記載の蛍光ガドリニウム錯体化合物。
  4.  請求項1ないし3のいずれか1項に記載の蛍光ガドリニウム錯体化合物を有効成分として含む蛍光MRIプローブ。
  5.  請求項1ないし3のいずれか1項に記載の蛍光ガドリニウム錯体化合物を有効成分として含む蛍光MRI造影剤。
  6.  置換基を有していてもよい1,4,7,10−テトラアザシクロドデカン−N,N’,N’’,N’’’−テトラ酢酸の残基又は置換基を有していてもよいジエチレントリアミンペンタ酢酸の残基と、請求項1に記載の一般式(I)又は上記の一般式(II)で表される基とが共有結合した蛍光ガドリニウム配位子化合物。
PCT/JP2010/054069 2009-03-04 2010-03-04 蛍光mriプローブ WO2010101298A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/254,523 US20120065384A1 (en) 2009-03-04 2010-03-04 Fluorescent mri probe
JP2011502837A JP5425181B2 (ja) 2009-03-04 2010-03-04 蛍光mriプローブ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009050203 2009-03-04
JP2009-050203 2009-03-04

Publications (1)

Publication Number Publication Date
WO2010101298A1 true WO2010101298A1 (ja) 2010-09-10

Family

ID=42709837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054069 WO2010101298A1 (ja) 2009-03-04 2010-03-04 蛍光mriプローブ

Country Status (3)

Country Link
US (1) US20120065384A1 (ja)
JP (1) JP5425181B2 (ja)
WO (1) WO2010101298A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016531086A (ja) * 2013-05-30 2016-10-06 ブラッコ・イメージング・ソシエタ・ペル・アチオニBracco Imaging S.P.A. 蛍光固形脂質ナノ粒子組成物およびその製法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2863957B1 (en) 2012-07-20 2018-11-28 Canon Kabushiki Kaisha Compound and photoacoustic imaging contrast medium containing the compound
US20170072072A1 (en) * 2014-03-18 2017-03-16 The Methodist Hospital System Ph sensitive fluorescent compounds and methods for tumor detection
TWI650137B (zh) * 2017-09-01 2019-02-11 行政院原子能委員會核能硏究所 多功能探針及其用途
US20230302159A1 (en) * 2020-08-14 2023-09-28 Cornell University Compounds and compositions for tumor detection and surgical guidance
CN114656447A (zh) * 2022-03-03 2022-06-24 华东理工大学 一类基于高时空分辨率的近红外荧光、磁共振Aβ双模式成像探针及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277385A (ja) * 2002-03-22 2003-10-02 Tetsuo Nagano 蛍光プローブ
WO2005080331A1 (ja) * 2004-02-23 2005-09-01 Tetsuo Nagano 蛍光プローブ
WO2007088129A2 (en) * 2006-02-01 2007-08-09 Dkfz Deutsches Krebsforschungszentrum Cyanine dye compounds linked to metal chelator for bi-modal diagnostic imaging

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2018163A4 (en) * 2006-05-12 2009-07-15 Univ Texas ILLUSTRATIVE APPARATUS AND METHOD
EP2149567A1 (en) * 2008-07-18 2010-02-03 Bayer Schering Pharma Aktiengesellschaft Cyclic polyamines for binding phosphatidylserine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277385A (ja) * 2002-03-22 2003-10-02 Tetsuo Nagano 蛍光プローブ
WO2005080331A1 (ja) * 2004-02-23 2005-09-01 Tetsuo Nagano 蛍光プローブ
WO2007088129A2 (en) * 2006-02-01 2007-08-09 Dkfz Deutsches Krebsforschungszentrum Cyanine dye compounds linked to metal chelator for bi-modal diagnostic imaging

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUBER, M. M.: "Fluorescently detectable magnetic resonance imaging agents", BIOCONJUG CHEM, vol. 9, no. 2, 1998, pages 242 - 9 *
LI, H., ET AL.: "MR and fluorescent imaging of low-density lipoprotein receptors", ACAD RADIOL, vol. 11, no. 11, 2004, pages 1251 - 9 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016531086A (ja) * 2013-05-30 2016-10-06 ブラッコ・イメージング・ソシエタ・ペル・アチオニBracco Imaging S.P.A. 蛍光固形脂質ナノ粒子組成物およびその製法

Also Published As

Publication number Publication date
JPWO2010101298A1 (ja) 2012-09-10
JP5425181B2 (ja) 2014-02-26
US20120065384A1 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
JP5425181B2 (ja) 蛍光mriプローブ
Song et al. Synthesis and characterization of new porphyrazine-Gd (III) conjugates as multimodal MR contrast agents
CN108368067B (zh) 二聚造影剂
US7947256B2 (en) Biocompatible fluorescent imaging agents
ES2670852T3 (es) Colorantes con policiclo y uso de los mismos
ES2618361T3 (es) Marcadores colorantes fluorescentes que contienen sulfonamida N,N-disustituida biocompatible
JP2011519348A (ja) インテグリン標的化剤およびそれらを用いるinvivoおよびinvitroでの画像化方法
CN114042171A (zh) 细菌成像剂及其使用方法
Wang et al. Synergistic enhancement of fluorescence and magnetic resonance signals assisted by albumin aggregate for dual-modal imaging
AU2013303233A1 (en) Prostate specific antigen agents and methods of using same for prostate cancer imaging
JP5897461B2 (ja) ミエリン塩基性タンパク質のイメージング
KR20190091441A (ko) 다이머 조영제
US9463254B2 (en) Molecular design toward dual-modality probes for radioisotope-based imaging (PET or SPECT) and MRI
Ramogida et al. Novel “bi-modal” H2dedpa derivatives for radio-and fluorescence imaging
KR101493935B1 (ko) 아밀로이드 베타 플라크에 특이적인 이광자 형광 프로브, 이의 제조방법, 및 이를 이용한 생체 내 아밀로이드 베타 플라크의 영상화 방법
US8617515B2 (en) Imaging of myelin basic protein
US11761894B2 (en) Silicon-rhodamine fluorescent probe containing hydrophobic group and use thereof
WO2010125907A1 (ja) コンフォメーション病診断用組成物
Wang et al. 3D dynamic tracking Aβ plaques in live brains using vinyl-bridged dyes with two-photon excitation/NIR emission and large Stokes shifts
WO2021155151A1 (en) Multivalent ligands targeting cell surface receptors and force measurement platform for making the same
Sathiyajith et al. Synthesis, photophysical characterization, relaxometric studies and molecular docking studies of gadolinium-free contrast agents for dual modal imaging
JP2021520424A (ja) アザシアニン色素及びその使用
JP2023537627A (ja) 腫瘍検出及びサージカルガイダンスのための化合物及び組成物
AU2010256533B2 (en) Imaging of myelin basic protein
AU2023200964A1 (en) Theranostic agents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748887

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011502837

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13254523

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10748887

Country of ref document: EP

Kind code of ref document: A1