WO2010101148A1 - Rotary engine - Google Patents

Rotary engine Download PDF

Info

Publication number
WO2010101148A1
WO2010101148A1 PCT/JP2010/053344 JP2010053344W WO2010101148A1 WO 2010101148 A1 WO2010101148 A1 WO 2010101148A1 JP 2010053344 W JP2010053344 W JP 2010053344W WO 2010101148 A1 WO2010101148 A1 WO 2010101148A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotary engine
blade
cooling water
exhaust
Prior art date
Application number
PCT/JP2010/053344
Other languages
French (fr)
Japanese (ja)
Inventor
金井勝男
Original Assignee
Kanai Katuo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanai Katuo filed Critical Kanai Katuo
Publication of WO2010101148A1 publication Critical patent/WO2010101148A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/04Charge admission or combustion-gas discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/082Details specially related to intermeshing engagement type machines or engines
    • F01C1/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/12Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type
    • F01C1/14Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F01C1/18Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/04Lubrication
    • F01C21/045Control systems for the circulation of the lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/06Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/20Flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a rotary engine, and more particularly to a rotary engine having two rotors having a plurality of blade portions in a casing and capable of performing a compression explosion by rotation of the rotor.
  • a rotary engine has a so-called saddle-shaped casing having an inner peripheral contour based on a trochoidal curve, and a generally rice ball-shaped rotor whose outer contour is an envelope inside a trochoidal curve, while rotating in planetary motion while sliding in contact with the casing.
  • a rotary engine has a so-called saddle-shaped casing having an inner peripheral contour based on a trochoidal curve, and a generally rice ball-shaped rotor whose outer contour is an envelope inside a trochoidal curve, while rotating in planetary motion while sliding in contact with the casing.
  • intake, compression, explosion, and exhaust are repeated.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-45534
  • Patent Document 2 Japanese Patent Application Laid-Open No. 70776
  • Patent Document 3 JP-A-2005-315205
  • Patent Document 1 As described above, there are some rotary engines that use a rotor having a plurality of blade shapes instead of a substantially rice ball-shaped rotor having a trochoidal curve inner envelope as an outer peripheral contour.
  • Patent Document 1 an involute curve is used, but this has a curved surface portion formed when the tip portion is notched, and there is a high risk of breakage in the blade edge portion.
  • Patent Document 2 and Patent Document 3 are proposed as using three rotors.
  • Patent Document 4 is extremely innovative and useful, but it requires four half-rotors, and the development of a rotary engine that is more compact, more efficient, and more fuel efficient. Is also desired. As described above, it is required to provide some kind of rotary engine that can further improve fuel efficiency, and it is also necessary to provide a rotary engine that enables more efficient combustion and high output and high rotation speed. Therefore, an object of the present invention is to provide an invention that solves such a problem.
  • the invention according to claim 1 includes two rotating rotors A and B each having at least 5 blades each having an involute curve in the casing, and the blades of the rotors A and B respectively.
  • the rotor is composed of a casing having an inner diameter along the rotation of the blade portion, and the two rotors A and B are arranged so that the blade portions are engaged with each other in the casing.
  • the vaporized fuel is compressed between the blades and the rotor base as the blades rotate.
  • the rotor A and the rotor B are engaged and rotated.
  • the rotor After the compression explosion is performed by the blade portion of the rotor A and the blade portion of the rotor B in the base portion direction of the rotor A, the rotor is rotated in the base portion direction of the rotor B by the rotation of the rotor. And it performs compression explosion by the blade portion of the blade part and the rotor A of motor B.
  • the said subject can be solved by the invention which concerns.
  • the invention according to claim 2 is a rotary engine including two rotors of rotor A and rotor B each having six blade portions each having an involute curve, and may be the invention.
  • the rotary engine which is a rotor which has the blade
  • the casing has an intake portion and an exhaust portion, and the exhaust portion has a primary exhaust portion and a secondary exhaust portion.
  • a rotary engine that performs primary exhaust, secondary exhaust, and intake by one rotation may be used.
  • an airflow plate may be arranged in the intake portion to generate turbulent airflow in the intake portion, and the air and fuel mixing efficiency may be increased.
  • the rotor has an oil conducting path as in the invention according to claim 6, and the rotary engine that guides oil to the surface of the rotor, or the oil conducting path as in the invention according to claim 7, You may use the rotary engine provided in the side surface of the blade
  • a cooling water conduction path is provided in the blade portion of the rotor from the rotor base toward the tip, and the cooling water passes through the conduction path.
  • a rotary engine for cooling the rotor may be used, and cooling water is supplied from the cooling water intake through the shaft portion of the rotor and guided in the rotor blade portion as in the invention according to claim 9.
  • the cooling water is guided from the rotor base to the tip through the conduction path and further from the tip to the rotor base by the cooling conduction path, and the cooling water is led out from the inside of the rotor through the cooling water outlet. It may be for cooling.
  • the cooling air may be used instead of the cooling water as in the invention according to claim 10, or the cooling oil may be used instead of the cooling water as in the invention according to claim 11.
  • a flywheel is provided as in the invention according to claim 12 and the flywheel is rotated by the rotational power of the rotor.
  • the invention according to claims 1 to 3 can provide a rotary engine having a configuration different from that of a conventional rotary engine. This is because the blades provided on the two rotors can be repeatedly narrowed and widened with the rotation of the rotor. In the blade portion, the compression and explosion can be performed twice on the front and back surfaces. Therefore, it is possible to provide an efficient and high-rotation rotary engine.
  • the exhaust smoke that is exhausted can be burnt cleanly with increased combustion efficiency. From this, it becomes possible to use not only various fuels, that is, gasoline, but also light oil and heavy oil. Further, the invention according to claim 2 or claim 3 makes it possible to perform the rotation of the two rotors more efficiently and reliably, and to make the explosive force of each continuous rotation constant. . Next, with the invention according to claim 4, the exhaust efficiency can be further increased, and the rotation efficiency and the combustion efficiency can be improved.
  • the invention according to claim 5 can increase the mixing efficiency, and the intake efficiency can be improved.
  • lubricating oil can be infiltrated during the rotation of the rotor, so that the rotational efficiency and the combustion efficiency can be improved.
  • oil can be guided toward the blade tip, and can be infiltrated into the entire rotor by centrifugal force, capillary action, etc. as the rotor rotates.
  • the cooling water can be guided into the rotor, and the rotor can be cooled.
  • the cooling water can be circulated through the shaft portion of the rotor, and after the cooling effect is obtained in the rotor, it can be recooled outside through the shaft portion. It is possible to provide cooling water. According to the tenth aspect of the present invention, it is possible to determine whether the rotor is a British customer by using cooling air. According to the eleventh aspect, the rotor can be cooled using the cooling oil. Further, according to the invention of claim 12, the compressed high-pressure intake can be performed, the rotational force of the rotor is increased and the high rotation is enabled, and the high output can be generated.
  • the figure which shows an example of the outline of the basic composition of the rotary engine which concerns on this invention The figure which shows an example of the outline of the process of performing a compression explosion by engagement with the blade
  • the figure which shows an example of the airflow board of the rotary engine which concerns on this invention The figure which showed an example of the oil conduction path of the rotary engine which concerns on this invention, a connection part, a cooling water intake, and a cooling water extraction port
  • FIG. 1 is a diagram showing an example of a schematic configuration of a rotary engine according to the present invention.
  • a rotor 2 having blade-shaped blade portions 21 each having an involute curve in a base portion 20 of the rotor is disposed at two locations in the casing 1.
  • the base portion 20 of the rotor 2 has a total of six blade portions 21, and each rotor 2 is disposed two in the vertical direction so that the blade portions 21 are engaged with each other. is there.
  • the rotor 2 is disposed in the casing 1 having an inner diameter along with the rotation of the blade portion 21 on the extension of each blade portion 21 of the base portion 20, and the rotor 2 is rotatably supported by the rotor 2. Is.
  • each has an intake portion I and exhaust portions O1 and O2, and an ignition portion for ignition (not shown). Further, in the intake portion I, vaporized fuel is ejected into the casing 1 by injection. Therefore, the total of the two rotors 2 rotate and repeat the necessary intake, ejection of vaporized fuel, compression, explosion by ignition, and exhaust.
  • the intake part I and the exhaust parts O1 and O2 are shown, this does not show a specific place and shape, but shows that it should just have this mechanism in this vicinity.
  • an air-fuel mixture pressurized by a turbine is sent (not shown).
  • the rotary engine using two rotors can be rotated efficiently and reliably.
  • the pressurized air-fuel mixture at the time of intake in the intake section may be, for example, a structure in which the turbine is rotated by using exhaust exhausted from the exhaust section, thereby increasing the pressure of the intake air.
  • It is a so-called turbocharger and desirably has this configuration. Thereby, intake can be performed efficiently.
  • a so-called supercharger that directly uses the output of the engine may be used.
  • the heat of the exhaust can be efficiently given to the intake during the intake, and for example, it can be efficiently exchanged with the intake by making it possible to exchange heat in a turbine using the exhaust. Heat can be applied.
  • fuel is ejected by injection in the carburetor.
  • a mechanical type or an electronically controlled type may be used.
  • the air-fuel mixture supplied from the air intake section may generate turbulence in the air intake itself in order to further improve the air and fuel mixing efficiency.
  • an airflow plate may be arranged in the intake pipe to generate turbulence in the pipe.
  • the rotation of the rotor 2 when the rotation of the rotor 2 is viewed, it first comprises the rotor A and the rotor B.
  • the rotor A is inhaled at the first point of engagement with the blade portion 21 of the rotor B, and further the rotor A and the rotor B With the rotation, the gap between the blades narrows and compression explosion occurs. Further, a gap generated between the blades with the further rotation of the rotor A and the rotor B due to the explosive force and the like is widened, and the air is exhausted at an arbitrary position. Further, in order to further improve the exhaust efficiency, exhaust is performed from the secondary exhaust port. As described above, the rotation can be given extremely efficiently. In this case, since the combustion state after the explosion is maintained in the casing 1 for about one-fourth rotation, complete combustion of the gas can be achieved.
  • a flywheel may be provided on the power take-out side to provide rotational power.
  • a flywheel may be provided on the output shaft, and inertia by the flywheel may be given to the rotation of the output shaft.
  • what has a flywheel function may be used for the gears for maintaining rotation of an output shaft.
  • it may have a flywheel on the opposite side of the output shaft, and for example, the flywheel may use a gear flywheel. This imparts uniform rotation.
  • FIG. 2 is a diagram illustrating an example of a process of performing a compression explosion by meshing the blade portion 21 of the rotor A and the blade portion 21 of the rotor B, and is a diagram illustrating an example of the compression and explosion process of both shown in FIG. .
  • FIG. 2A first, the blade A-2 of the rotor A and the blade B-1 of the rotor B are engaged with each other, and a compression explosion occurs in a gap portion between the base 20 of the rotor A. Further, when the rotor 2 is rotated and the blades 21 are further rotated, the blade B-1 of the rotor B and the blade A-1 of the rotor A are engaged with each other as shown in this figure, and the distance between the two is reduced. Thus, a compression explosion occurs in a gap portion with the base 20 of the rotor B.
  • the shape of the rotor base 20 and blade 21 in FIGS. 1 and 2 is a conceptual diagram of the state of rotation. For example, even in the shape as shown in these figures, FIG. 5.
  • the base of the blade which is a continuous portion of the rotor blade and the rotor base, is formed by a concave arcuate shape with the curved shape of the base of the blade.
  • the tip of one blade portion may be configured to have a shape that can be smoothly rotated in a state in which the interval between the base portions of the other blade portions is narrowed with rotation.
  • FIG. 3 shows an example of an airflow plate 3 for generating turbulent airflow during intake.
  • the airflow plate 3 in this figure by forming a substantially wave-shaped cross section, it is possible to generate turbulent airflow in the intake pipe and increase the mixing efficiency.
  • the present invention can perform intake, compression, explosion, and exhaust with high efficiency.
  • a rotor having another number of blade portions may be used, and an arbitrary number of at least about 5 to 12 sheets may be used.
  • the rotor 2 having a plurality of blade portions 21 may be used, or if the blade portion 21 is of a substantially gear-shaped form with a small protrusion, a rotor having more than 12 blade portions 21 may be used.
  • the rotor 2 having such a configuration may be used.
  • the two rotors 2 basically have the same number and the same shape of blades, but the present invention is not limited to this, and a rotor having a different number of blades enabling this meshing configuration or a deformed rotor is used. You can rely on things.
  • a gear that has gears on the output shaft of the rotor and the gears of the rotors may be used.
  • a weight may be provided in the outer peripheral direction of the engagement gear, and smooth rotation may be achieved by utilizing the inertia of the rotation when the gear is rotated.
  • FIG. 4 is a diagram showing a configuration of an example of a rotor that further increases the rotation efficiency and exhibits the cooling effect of the engine.
  • the side surface of the blade portion 21 of the rotor 2 has an oil conduction path 25 on its surface, and the lubricating oil is supplied to the oil conduction path 25 from the connecting portion 24 of the oil reservoir.
  • lubricating oil is supplied from the casing side, but with the rotation of the blade part, the centrifugal force and capillary action fill the gap between the blade part and the casing.
  • each blade portion 21 further includes an oil conduction path 25 and a connecting portion 24 for supplying oil.
  • the casing 1 of the connecting portion 24 has a supply portion for supplying oil, and may be provided on both sides in addition to the one provided on one side. For example, you may use what penetrates the inside of a blade
  • an oil pan may be provided on one casing side surface, and oil may be supplied to both sides of the rotor therefrom.
  • the rotor 2 has a cooling water passage 27 for cooling the rotor, and also has a cooling water inlet 28 and a cooling water outlet 29.
  • the rotor 2 is exposed to a high temperature, and cooling water can be used to cool the rotor 2.
  • the cooling water is supplied to the cooling water intake port 28, the cooling water is pulled up in the direction of the tip of the rotor by the centrifugal force accompanying the rotation of the rotor 2.
  • cooling water is sequentially supplied and circulates in the cooling water conduction path 27.
  • the cooling water is discharged from the cooling water take-out port 29, cools the cooling water that has reached a higher temperature, and supplies the cooled cooling water from the cooling water intake port 28.
  • the circulation may be forcibly supplied together with the centrifugal force using, for example, a turbine or a supply member, that is, the circulation may be used in addition to or instead of the centrifugal force.
  • FIG. 5 is a view showing an example of the oil conduction path 25 of the rotor, and has an oil conduction path 25 for supplying lubricating oil from the rotor base 20 toward the distal end on the casing side surface of the rotor 2. This is provided on both sides of the blade portion 21 of the rotor 2.
  • the connecting portion 24 may be configured to communicate with the inside of the rotor, or may have an oil supply portion on both sides to supply oil from an oil reservoir or the like, and supply oil to both sides of the rotor. Each may have a part. You may use what has only one side as needed.
  • FIG. 6 is a diagram illustrating an example in which the oil supply unit 15 is provided in the vicinity of the shaft portion 4 of the rotor and the oil is supplied through the connecting portion 24.
  • it is a figure shown as a conceptual diagram of the grade which can understand easily that an oil supply part is required instead of a specific supply state. Accordingly, any configuration that allows the most efficient and effective oil circulation can be used.
  • FIG. 7 is a diagram illustrating an example of the cooling water intake port 28 and the cooling water outlet port 29 of the blade portion 21 of the rotor 2 and the cooling water conduction path 27 configured in the blade portion 21.
  • the cooling water circulates inside the rotor 2, and the rotor can be cooled. Note that the configuration shown in the figure is an example, and other configurations may of course be used.
  • FIG. 8 is a diagram showing an example of the cooling water conduction path 27, and the cooling water is supplied from the cooling water intake port 28 of the rotor through the inside of the shaft portion 4 of the rotor, which is first the center of the blade portion 21 of the rotor 2.
  • the cooling water conduction path 27 that passes through the portion leads to the tip of the blade portion 21, further branches in both directions, and further returns to the rotor base 20 direction through the cooling water conduction path 27.
  • the cooling water conducting paths 27 branched in both directions are guided in both directions in the direction of the rotor base, respectively, and are guided in the directions of the cooling water outlets 29 on both sides, respectively. Discharge.
  • various general cooling mechanisms for cooling the high-temperature cooling water are provided outside, and the cooled cooling water is led to the cooling water intake port.
  • FIG. 9 shows that the cooling water is taken in from the cooling water intake port 28, guided from the base 20 of the rotor 2 toward the tip of the blade portion 21 by the cooling water conduction path 27, and further guided toward the base 20 of the rotor 2. It is a figure which shows the other example taken out from the cooling-water taking-out opening 29 by. Also in this case, the rotor 2 is cooled using the cooling water, and the taken-up high-temperature cooling water is cooled and returned to the inside of the rotor 2 so that the inside of the rotor 2 is appropriately cooled by the cooling water.
  • the cooling water in the present invention may be either one using cooling air or one using cooling oil. Regarding the configuration using these, the cooling water is used.
  • Cooling water passage, cooling water outlet, and cooling water inlet are all cooling air passage, cooling air outlet, cooling air inlet, cooling oil passage, cooling oil outlet, cooling A cooling air or a cooling oil may be used as the oil intake for the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Abstract

Provided is an efficient rotary engine which can use various types of fuels including gasoline, light oil, and heavy oil, and achieves improvement of combustion efficiency and cleaning of exhaust gas, and which can perform compression/explosion, exhaust, and suction by one rotation of a rotor and perform compression/explosion at multiple positions within a casing. The rotary engine comprises within a casing two rotors each comprising at least five blades each configured from an involute curve, the rotors being disposed side by side in the casing such that the blades mesh with each other, and the rotary engine explodes vaporized fuel by the blades of the two rotors compressing the vaporized fuel between the blades and between the blades and rotor bases during the rotation of respective blades.

Description

ロータリーエンジンRotary engine
 本発明は、ロータリーエンジンに関し、より詳細には複数の羽根部を有するロータを2つケーシング内に有し、該ロータの回転によって圧縮爆発を行えるロータリーエンジンに関する。 The present invention relates to a rotary engine, and more particularly to a rotary engine having two rotors having a plurality of blade portions in a casing and capable of performing a compression explosion by rotation of the rotor.
 従来より、ロータリーエンジンはトロコイド曲線に基づく内周輪郭を有するいわゆる繭形をしたケーシング内に、トロコイド曲線内包絡線を外周輪郭とした略おむすび形のロータが該ケーシング内部に摺接しながら遊星回転運動し、ケーシング内面とロータ面とで形成される空間の容積の変化に伴って、吸気・圧縮・爆発・排気を繰り返すものであった。 Conventionally, a rotary engine has a so-called saddle-shaped casing having an inner peripheral contour based on a trochoidal curve, and a generally rice ball-shaped rotor whose outer contour is an envelope inside a trochoidal curve, while rotating in planetary motion while sliding in contact with the casing. However, as the volume of the space formed by the casing inner surface and the rotor surface changes, intake, compression, explosion, and exhaust are repeated.
 この他、トロコイド曲線内包絡線を外周輪郭とした略おむすび形のロータではなく複数の羽根形状を有するロータを用いたロータリーエンジンとして特開2008-45534号(特許文献1)と、特開2006-70776号(特許文献2)、特開2005-315205号(特許文献3)が存在する。
 また、本件発明の発明者による特開2009-24694号も存在する。
In addition, as a rotary engine using a rotor having a plurality of blade shapes instead of a substantially rice ball-shaped rotor having an envelope in a trochoid curve as an outer peripheral contour, Japanese Patent Application Laid-Open No. 2008-45534 (Patent Document 1) No. 70776 (Patent Document 2) and JP-A-2005-315205 (Patent Document 3) exist.
There is also JP 2009-24694 by the inventor of the present invention.
特開2008-45534号JP 2008-45534 A 特開2006-70776号JP 2006-70776 A 特開2005-315205号JP-A-2005-315205 特開2009-24694号JP 2009-24694 A
 以上の様に、従来よりロータリーエンジンはトロコイド曲線内包絡線を外周輪郭とした略おむすび形のロータではない複数の羽根形状を有するロータを用いたエンジンも存在しているものである。
 係る場合、まず特許文献1に示す構造においてはインボリュート曲線を用いたものであるが、これは先端部が切り欠くときにできる曲面部を有するものであり、刃先部分における破損などのおそれが高く、又燃料効率をより高められる他の方法が求められる。
 又、特許文献2及び特許文献3に関しては、3つのロータを用いるものとして提唱されている。
As described above, there are some rotary engines that use a rotor having a plurality of blade shapes instead of a substantially rice ball-shaped rotor having a trochoidal curve inner envelope as an outer peripheral contour.
In such a case, first, in the structure shown in Patent Document 1, an involute curve is used, but this has a curved surface portion formed when the tip portion is notched, and there is a high risk of breakage in the blade edge portion. There is also a need for other methods that can increase fuel efficiency.
Further, Patent Document 2 and Patent Document 3 are proposed as using three rotors.
 さらに特許文献4に関しては極めて画期的で有用ではあるが、半面ロータを4つ必要とするものであり、これよりもよりコンパクトで効率を高められ、また燃料効率をより高めたロータリーエンジンの開発も望まれているものである。
 以上のように、より燃料効率を高められる何らかのロータリーエンジンの提供が要求されているものであると共に、更に効率のよい燃焼を可能とし、高出力及び高回転を可能とするロータリーエンジンの提供が要求されているものであり、係る課題を解決する発明の提供を課題とするものである。
Furthermore, Patent Document 4 is extremely innovative and useful, but it requires four half-rotors, and the development of a rotary engine that is more compact, more efficient, and more fuel efficient. Is also desired.
As described above, it is required to provide some kind of rotary engine that can further improve fuel efficiency, and it is also necessary to provide a rotary engine that enables more efficient combustion and high output and high rotation speed. Therefore, an object of the present invention is to provide an invention that solves such a problem.
 係るために請求項1の発明は、ケーシング内にインボリュート曲線からなるそれぞれ少なくとも5枚以上の羽根部を有する回転する2つのロータA・ロータBと、該ロータA・ロータBの夫々の羽根部の延長上であって羽根部の回転に沿った内径を有するケーシングからなり、2つのロータA・ロータBはケーシング内で羽根部同士がかみ合うように配置されて2つのロータA・ロータBの夫々の羽根部同士が回転に伴って羽根部同士とロータ基部との間で気化燃料を圧縮することによって夫々のロータ基部方向で順次爆発するものであり、ロータAとロータBとがかみ合って回転するに従い、ロータAの基部方向でロータAの羽根部とロータBの羽根部とによって圧縮爆発を行った後に、そのロータの回転によりロータBの基部方向でロータBの羽根部とロータAの羽根部とによって圧縮爆発を行うものである。 Therefore, the invention according to claim 1 includes two rotating rotors A and B each having at least 5 blades each having an involute curve in the casing, and the blades of the rotors A and B respectively. The rotor is composed of a casing having an inner diameter along the rotation of the blade portion, and the two rotors A and B are arranged so that the blade portions are engaged with each other in the casing. As the blades rotate, the vaporized fuel is compressed between the blades and the rotor base as the blades rotate. As a result, the rotor A and the rotor B are engaged and rotated. After the compression explosion is performed by the blade portion of the rotor A and the blade portion of the rotor B in the base portion direction of the rotor A, the rotor is rotated in the base portion direction of the rotor B by the rotation of the rotor. And it performs compression explosion by the blade portion of the blade part and the rotor A of motor B.
 更に、これらのそれぞれロータ基部方向で順次交互に圧縮爆発を繰り返して圧縮爆発を行うロータリーエンジンであり、羽根部同士及びロータ基部による圧縮・ロータ基部方向での爆発・排気部の通過に伴う排気・吸気部の通過に伴う吸気をロータの一回転で順次行うロータリーエンジンであり、更に、排気部からの排気を用いたタービンを回転させることにより吸気部からの吸気を強制的に行うロータリーエンジンからなるものである。
 係る発明によって前記課題を解決できる。
Furthermore, these are rotary engines that perform compression explosion by alternately repeating compression explosions in the direction of the rotor base, respectively, and compression by the blades and the rotor base, explosion in the direction of the rotor base, exhaust gas accompanying passage of the exhaust part, It consists of a rotary engine that sequentially performs the intake air accompanying the passage of the intake portion by one rotation of the rotor, and further includes a rotary engine that forcibly intakes air from the intake portion by rotating a turbine that uses exhaust from the exhaust portion. Is.
The said subject can be solved by the invention which concerns.
 又請求項2に係る発明は、インボリュート曲線からなるそれぞれ6枚の羽根部を有するロータAとロータBの2つのロータよりなるロータリーエンジンであり、係る発明でもよい。 Further, the invention according to claim 2 is a rotary engine including two rotors of rotor A and rotor B each having six blade portions each having an involute curve, and may be the invention.
或いは、請求項3に係る発明のようにロータAとロータBともに同一数の羽根部を有するロータであるロータリーエンジンを用いてもよい。
 これらの場合、請求項4に係る発明のようにケーシングには吸気部と排気部を有すると共に排気部は一次排気部と二次排気部を有し、一のロータの羽根部で圧縮・爆発・一次排気・二次排気・吸気を一回転で行うロータリーエンジンでもよい。
Or you may use the rotary engine which is a rotor which has the blade | wing part of the same number for both the rotor A and the rotor B like the invention which concerns on Claim 3.
In these cases, as in the invention according to claim 4, the casing has an intake portion and an exhaust portion, and the exhaust portion has a primary exhaust portion and a secondary exhaust portion. A rotary engine that performs primary exhaust, secondary exhaust, and intake by one rotation may be used.
 この場合、請求項5に係る発明のように吸気部内に気流板を配置して吸気部内で乱気流を発生させ、空気と燃料の混合効率を高めるものを用いてもよい。
 更に、請求項 6に係る発明のようにロータにはオイル導通路を有しており、ロータの表面にオイルを導くロータリーエンジンでも、或いは請求項7に係る発明のようにオイル導通路はロータの羽根部の側面であってロータ基部から先端部方向に向かって設けたロータリーエンジンを用いてもよい。
In this case, as in the invention according to claim 5, an airflow plate may be arranged in the intake portion to generate turbulent airflow in the intake portion, and the air and fuel mixing efficiency may be increased.
Further, the rotor has an oil conducting path as in the invention according to claim 6, and the rotary engine that guides oil to the surface of the rotor, or the oil conducting path as in the invention according to claim 7, You may use the rotary engine provided in the side surface of the blade | wing part toward the front-end | tip part direction from the rotor base.
 これらのほか、請求項8に係る発明のようにロータの羽根部の内部であってロータ基部から先端部方向に向かって冷却水導通路を有しており、該導通路内を冷却水が通ることによってロータの冷却を図るロータリーエンジンを用いてもよく、請求項9に係る発明のようにロータの軸部内を通って冷却水を冷却水取り入れ口から供給し、ロータの羽根部内を導く冷却水導通路を通ってロータ基部から先端部方向に導くと共に更に先端部からロータ基部に向かって冷却用導通路によって冷却水を導き、更に冷却水取り出し口よりロータ内部から冷却水を導き出すことによりロータの冷却を図るものであってもよい。 In addition to these, as in the invention according to claim 8, a cooling water conduction path is provided in the blade portion of the rotor from the rotor base toward the tip, and the cooling water passes through the conduction path. A rotary engine for cooling the rotor may be used, and cooling water is supplied from the cooling water intake through the shaft portion of the rotor and guided in the rotor blade portion as in the invention according to claim 9. The cooling water is guided from the rotor base to the tip through the conduction path and further from the tip to the rotor base by the cooling conduction path, and the cooling water is led out from the inside of the rotor through the cooling water outlet. It may be for cooling.
 或いは請求項10に係る発明のように冷却水に代えて冷却空気を用いても、或いは請求項11に係る発明のよう冷却水に代えて冷却用オイルを用いるものでもいずれでもよい。
 更には請求項 12に係る発明のようにフライホイールを有しており、ロータの回転動力によりフライホイールを回転させるものを用いてももちろんよい。
Alternatively, the cooling air may be used instead of the cooling water as in the invention according to claim 10, or the cooling oil may be used instead of the cooling water as in the invention according to claim 11.
Furthermore, it is a matter of course that a flywheel is provided as in the invention according to claim 12 and the flywheel is rotated by the rotational power of the rotor.
 以上のように構成したことから以下のような効果を発揮するものである。
 まず請求項1乃至請求項3に係る発明により、従来のロータリーエンジンとは異なる構成のロータリーエンジンの提供が行なえるものである。
 これは、2つのロータに設けた羽根部同士がロータの回転に伴ってその間隔を狭め、又、広げることを繰り返すことができるものであり、ロータの一回の回転で基本的には一の羽根部において表裏面での2回の圧縮・爆発を行なうことができるものとなる。
 従って、効率の良いかつ高回転のロータリーエンジンの提供を可能とするものである。
Since it is configured as described above, the following effects are exhibited.
First, the invention according to claims 1 to 3 can provide a rotary engine having a configuration different from that of a conventional rotary engine.
This is because the blades provided on the two rotors can be repeatedly narrowed and widened with the rotation of the rotor. In the blade portion, the compression and explosion can be performed twice on the front and back surfaces.
Therefore, it is possible to provide an efficient and high-rotation rotary engine.
 更に、燃焼の効率を高め排出される排気煙をきれいに燃焼させることができる。
 このことより、各種燃料即ちガソリンのみならず軽油や重油等を用いることが可能となる。
 更に請求項2又は請求項3に係る発明により、2つのロータの回転をより効率よく確実に行うことを可能とするものであり、連続する回転のそれぞれの爆発力の一定化が図れるものとなる。
 次に請求項4に係る発明により、排気効率をより高めることができ、回転効率及び燃焼効率の向上が図れるものである。
Further, the exhaust smoke that is exhausted can be burnt cleanly with increased combustion efficiency.
From this, it becomes possible to use not only various fuels, that is, gasoline, but also light oil and heavy oil.
Further, the invention according to claim 2 or claim 3 makes it possible to perform the rotation of the two rotors more efficiently and reliably, and to make the explosive force of each continuous rotation constant. .
Next, with the invention according to claim 4, the exhaust efficiency can be further increased, and the rotation efficiency and the combustion efficiency can be improved.
 更に請求項5に係る発明により混合効率を高めることができるものであり、吸気効率の向上を図れる。
 次に請求項6に係る発明によりロータの回転に際して潤滑オイルを浸潤させることができ、回転効率の向上や燃焼効率の向上等が図れる。
 又請求項7に係る発明により、羽根部先端方向にオイルを導くことができるものであり、ロータの回転に伴って遠心力や毛細管現象などによってロータ全体に浸潤可能とできる。
 又請求項8に係る発明により、ロータ内に冷却水を導くことができるものであり、ロータの冷却を図れる。
Furthermore, the invention according to claim 5 can increase the mixing efficiency, and the intake efficiency can be improved.
Next, according to the sixth aspect of the present invention, lubricating oil can be infiltrated during the rotation of the rotor, so that the rotational efficiency and the combustion efficiency can be improved.
According to the seventh aspect of the present invention, oil can be guided toward the blade tip, and can be infiltrated into the entire rotor by centrifugal force, capillary action, etc. as the rotor rotates.
Further, according to the eighth aspect of the invention, the cooling water can be guided into the rotor, and the rotor can be cooled.
 請求項9に係る発明により冷却水の循環をロータの軸部を介して行えるものであり、ロータ内で冷却効果を喫したのちに軸部を通って外部で再冷却化を図れるものとなり、循環した冷却水の提供を可能とする。
 請求項10に係る発明により冷却空気を用いてロータの英客かを図れるものであり、請求項11に係る発明により冷却用オイルを用いたロータの冷却を可能とする。
 更に、請求項12に係る発明によって、より圧縮した高圧の吸気を行えるものでありロータの回転力を高めるとともに高回転を可能とするものであり、高出力の発生を可能とする。 
According to the invention according to claim 9, the cooling water can be circulated through the shaft portion of the rotor, and after the cooling effect is obtained in the rotor, it can be recooled outside through the shaft portion. It is possible to provide cooling water.
According to the tenth aspect of the present invention, it is possible to determine whether the rotor is a British customer by using cooling air. According to the eleventh aspect, the rotor can be cooled using the cooling oil.
Further, according to the invention of claim 12, the compressed high-pressure intake can be performed, the rotational force of the rotor is increased and the high rotation is enabled, and the high output can be generated.
本発明に係るロータリーエンジンの基本的構成の概略の一例を示す図The figure which shows an example of the outline of the basic composition of the rotary engine which concerns on this invention 本発明に係るロータの羽根部とロータの羽根部とのかみ合いによって圧縮爆発を行なう工程の概略の一例を示す図The figure which shows an example of the outline of the process of performing a compression explosion by engagement with the blade | wing part of the rotor which concerns on this invention, and the blade | wing part of a rotor. 本発明に係るロータリーエンジンの気流板の一例を示す図The figure which shows an example of the airflow board of the rotary engine which concerns on this invention 本発明に係るロータリーエンジンのオイル導通路、連結部、冷却水取り入れ口、冷却水取り出し口の一例を示した図The figure which showed an example of the oil conduction path of the rotary engine which concerns on this invention, a connection part, a cooling water intake, and a cooling water extraction port 本発明に係るロータリーエンジンのロータの羽根部に形成したオイル導通路、連結部の一例を示す図The figure which shows an example of the oil conduction path formed in the blade | wing part of the rotor of the rotary engine which concerns on this invention, and a connection part. 本発明に係るロータリーエンジンの一例の断面図を示す図The figure which shows sectional drawing of an example of the rotary engine which concerns on this invention 本発明に係るロータリーエンジンの一例の断面図を示す図The figure which shows sectional drawing of an example of the rotary engine which concerns on this invention 本発明に係るロータリーエンジンのロータの羽根部に形成した冷却水導通路、冷却水取り入れ口、冷却水取り出し口の一例を示した図The figure which showed an example of the cooling water conduction path formed in the blade | wing part of the rotor of the rotary engine which concerns on this invention, a cooling water intake, and a cooling water extraction port 本発明に係るロータリーエンジンの一例の断面図を示す図The figure which shows sectional drawing of an example of the rotary engine which concerns on this invention
 図1は、本発明に係るロータリーエンジンの基本的構成の概略の一例を示す図である。
 本図に示す通り、ケーシング1内において2箇所にインボリュート曲線からなる羽根形状の羽根部21をロータの基部20に有するロータ2が配設されている。
 該ロータ2の基部20には計6枚の羽根部21を有するものであり、夫々のロータ2が上下方向に2つ配設され、羽根部21同士がかみ合うように配設されているものである。
 該ロータ2は、該基部20の夫々の羽根部21の延長上に羽根部21の回転に添った内径を有するケーシング1内に配置されており、ロータ2は夫々回転自在に軸支されているものである。
FIG. 1 is a diagram showing an example of a schematic configuration of a rotary engine according to the present invention.
As shown in the figure, a rotor 2 having blade-shaped blade portions 21 each having an involute curve in a base portion 20 of the rotor is disposed at two locations in the casing 1.
The base portion 20 of the rotor 2 has a total of six blade portions 21, and each rotor 2 is disposed two in the vertical direction so that the blade portions 21 are engaged with each other. is there.
The rotor 2 is disposed in the casing 1 having an inner diameter along with the rotation of the blade portion 21 on the extension of each blade portion 21 of the base portion 20, and the rotor 2 is rotatably supported by the rotor 2. Is.
 更に夫々吸気部Iと排気部O1、O2を有していると共に図示しないが点火用の点火部を有する。
 また、吸気部Iでは気化燃料をインジェクションによってケーシング1内に噴出するものである。
 したがって計2つのロータ2は、夫々回転を行うと共に必要な吸気、気化燃料の噴出、圧縮、点火による爆発、排気を繰り返すこととなる。
 本図において、吸気部Iと排気部O1、O2を示すがこれは、具体的な場所や形状を示すものではなく、ほぼこのあたりに該機構を有すればよいものとして示すものである。
Further, each has an intake portion I and exhaust portions O1 and O2, and an ignition portion for ignition (not shown).
Further, in the intake portion I, vaporized fuel is ejected into the casing 1 by injection.
Therefore, the total of the two rotors 2 rotate and repeat the necessary intake, ejection of vaporized fuel, compression, explosion by ignition, and exhaust.
In this figure, although the intake part I and the exhaust parts O1 and O2 are shown, this does not show a specific place and shape, but shows that it should just have this mechanism in this vicinity.
 なお、各々のロータ2の羽根部21同士によって圧縮、爆発工程を行うが、点火ポイント等に関しては、的確に点火可能な任意位置に設けているものであればよい。
 従って図示の箇所より外れて異なる場所に吸気部I排気部O1、O2を有し、さらに任意位置に点火ポイントがあるものであっても、もちろん本発明に含まれるものであり、本図における該設置個所は単に概略的な構造を示すに過ぎないものである。
 排気部O1、O2に関しては、二か所に排気部を有するものであり、まず排気部O1は一次排気部O1であり、ここでまず排気を行うが、更に排気部O2を設け二次排気部O2として羽根部21間の排気残による高圧状態を解消し、次の工程における吸気部Iからの吸気をしやすくするものである。
In addition, although compression and an explosion process are performed by the blade | wing parts 21 of each rotor 2, regarding the ignition point etc., what is necessary is just to provide in the arbitrary positions which can be ignited exactly.
Accordingly, even if the intake portion I exhaust portions O1 and O2 are provided at different locations away from the illustrated location and the ignition point is at an arbitrary position, it is of course included in the present invention. The installation location is merely a schematic structure.
The exhaust parts O1 and O2 have exhaust parts at two locations. The exhaust part O1 is a primary exhaust part O1, and exhaust is first performed here, but an exhaust part O2 is further provided to provide a secondary exhaust part. O2 eliminates the high-pressure state due to the exhaust remaining between the blade portions 21, and facilitates intake from the intake portion I in the next step.
 吸気部Iにおいては、図示しないがタービンにより加圧された混合気を送るものである。 In the intake section I, an air-fuel mixture pressurized by a turbine is sent (not shown).
これにより2つのロータを用いたロータリーエンジンながら効率よく確実に回転を行うことができるものである。
 なお、この吸気部における吸気に際しての加圧された混合気は、例えば排気部により排気される排気を用いてタービンを回転させ、これによって吸気を高圧化するものであってもよい。
 いわゆるターボチャージャーであり、該構成を有することが望ましい。
 これにより効率的に吸気を行えることになる。
 もとよりエンジンの出力を直接用いるいわゆるスーパーチャージャーを用いるものであってももちろん良い。
Thus, the rotary engine using two rotors can be rotated efficiently and reliably.
Note that the pressurized air-fuel mixture at the time of intake in the intake section may be, for example, a structure in which the turbine is rotated by using exhaust exhausted from the exhaust section, thereby increasing the pressure of the intake air.
It is a so-called turbocharger and desirably has this configuration.
Thereby, intake can be performed efficiently.
Of course, a so-called supercharger that directly uses the output of the engine may be used.
 さらに吸気に際して排気の熱を効率的に吸気に付与できるように熱交換器を装備するものであってもよく、例えば排気を用いたタービンにおいて熱交換可能なものとすることにより効率的に吸気に熱を付与できるものである。
 次にキャブレターにおいてインジェクションによって燃料を噴出するが、この噴出に際しては機械式を用いても電子制御式を用いてもよい。
 更に吸気部より供給する混合気は、より空気と燃料の混合効率を高めるために吸気自体に乱気流を生じさせることであってもよい。
 例えば吸気用の管内に気流板を配置して管内で乱気流を発生させるものであってもよい。
Further, it may be equipped with a heat exchanger so that the heat of the exhaust can be efficiently given to the intake during the intake, and for example, it can be efficiently exchanged with the intake by making it possible to exchange heat in a turbine using the exhaust. Heat can be applied.
Next, fuel is ejected by injection in the carburetor. For this ejection, a mechanical type or an electronically controlled type may be used.
Furthermore, the air-fuel mixture supplied from the air intake section may generate turbulence in the air intake itself in order to further improve the air and fuel mixing efficiency.
For example, an airflow plate may be arranged in the intake pipe to generate turbulence in the pipe.
 次に、ロータ2の回転をみると、先ずロータAとロータBとからなり、ロータAは、ロータBの羽根部21とのかみ合いの最初の時点において吸気がなされ、更にロータA及びロータBの回転に伴って両羽根間に生じる隙間が狭まり圧縮爆発を行なう。
 更に該爆発力などによりロータA及びロータBの更なる回転に伴って両羽根間に生じる隙間が広がり、任意位置において排気される。
 また、より排気効率を高めるために二次排気口より排気がなされるものとなる。
 以上のように、極めて効率的に回転を与えることができるものである。
 この場合、ケーシング1内に爆発後の燃焼状態を四分の一回転程度維持することから、ガスの完全燃焼が図れる。
Next, when the rotation of the rotor 2 is viewed, it first comprises the rotor A and the rotor B. The rotor A is inhaled at the first point of engagement with the blade portion 21 of the rotor B, and further the rotor A and the rotor B With the rotation, the gap between the blades narrows and compression explosion occurs.
Further, a gap generated between the blades with the further rotation of the rotor A and the rotor B due to the explosive force and the like is widened, and the air is exhausted at an arbitrary position.
Further, in order to further improve the exhaust efficiency, exhaust is performed from the secondary exhaust port.
As described above, the rotation can be given extremely efficiently.
In this case, since the combustion state after the explosion is maintained in the casing 1 for about one-fourth rotation, complete combustion of the gas can be achieved.
 次に本図では明示しないが、動力の取り出し側にフライホイールを有し、回転動力を付与するものであってもよい。
 例えば出力軸にフライホイールを有し、この出力軸の回転にフライホイールによる慣性を与えるものであってもよい。
 或いは出力軸の回転を維持するためのギア類にフライホイール機能を有するものを用いてもよい。
 もちろん出力軸の反対側にフライホイールを有するものであってもよく、更には例えばフライホイールはギアフライホイールを用いるものであってもよい。
 これにより均等な回転を付与するものとなる。
Next, although not explicitly shown in the figure, a flywheel may be provided on the power take-out side to provide rotational power.
For example, a flywheel may be provided on the output shaft, and inertia by the flywheel may be given to the rotation of the output shaft.
Or what has a flywheel function may be used for the gears for maintaining rotation of an output shaft.
Of course, it may have a flywheel on the opposite side of the output shaft, and for example, the flywheel may use a gear flywheel.
This imparts uniform rotation.
 図2は、ロータAの羽根部21とロータBの羽根部21とのかみ合いによって圧縮爆発を行なう工程の一例を示す図であり、図1に示す両者の圧縮爆発行程の一例を示す図である。
 図2(a)に示す通り、まず、ロータAの羽根部A-2とロータBの羽根部B‐1とがかみ合い、ロータAの基部20との隙間部分で圧縮爆発が起こる。
 更に、ロータ2の回転が行われてより両羽根部21が回転すると、本図のようにロータBの羽根部B‐1とロータAの羽根部A-1とがかみ合い、両者の間隔が狭まってロータBの基部20との隙間部分で圧縮爆発が起こる。
FIG. 2 is a diagram illustrating an example of a process of performing a compression explosion by meshing the blade portion 21 of the rotor A and the blade portion 21 of the rotor B, and is a diagram illustrating an example of the compression and explosion process of both shown in FIG. .
As shown in FIG. 2A, first, the blade A-2 of the rotor A and the blade B-1 of the rotor B are engaged with each other, and a compression explosion occurs in a gap portion between the base 20 of the rotor A.
Further, when the rotor 2 is rotated and the blades 21 are further rotated, the blade B-1 of the rotor B and the blade A-1 of the rotor A are engaged with each other as shown in this figure, and the distance between the two is reduced. Thus, a compression explosion occurs in a gap portion with the base 20 of the rotor B.
 次に図2(b)に示す通り、更に、ロータ2の回転が行われより両羽根部21が回転すると、ロータAの羽根部A-1とロータBの羽根部B‐6とがかみ合い、さらに回転によって両者の間隔が狭まることによって圧縮され、ロータAの基部20との隙間部分で圧縮爆発が起こる。
 更に、図2(c)に示す通りロータ2の回転が行われより両羽根部21が回転すると、ロータBの羽根部B‐6とロータAの羽根部A-6とがかみ合い、さらに回転によって両者の間隔が狭まることによって圧縮され、ロータBの基部20との隙間部分で圧縮爆発が起こる。
 このように連続して爆発を発生させられることから極めて高出力を得られると共に効率のよい燃焼を可能とする。
Next, as shown in FIG. 2B, when the rotor 2 is further rotated and both the blade portions 21 are rotated, the blade portion A-1 of the rotor A and the blade portion B-6 of the rotor B are engaged, Further, the compression is caused by the narrowing of the distance between the two due to the rotation, and the compression explosion occurs in the gap portion with the base 20 of the rotor A.
Further, as shown in FIG. 2 (c), when the rotor 2 is rotated and both the blade portions 21 are rotated, the blade portion B-6 of the rotor B and the blade portion A-6 of the rotor A are engaged with each other. When the distance between the two is narrowed, the air is compressed, and a compression explosion occurs in a gap between the rotor B and the base 20.
Since explosions are continuously generated in this way, extremely high output can be obtained and efficient combustion can be performed.
 更に、連続する燃焼を与えられるが、吸気に際して高圧の混合気をタービンなどにより強制的に送り込むことによって、よりスムーズで高回転を維持できるものとなる。
 尚、図1及び図2のロータの基部20と羽根部21の形状については回転の状態の概念図を示すものであり、例えばこれらの図のような形状であっても、或いは図4、図5、図8に示すようにロータの羽根部とロータ基部の連設部分である羽根部の付け根は基部が該羽根部の付け根の湾曲形状に伴って、へこんだ弧状形状によって形成され、ロータの回転に伴って一の羽根部の先端が他の羽根部の付け根部分の間隔を狭めた状態でスムーズに回転可能となる形状によって構成されるものであってももちろんよい。
Furthermore, although continuous combustion is given, a high-pressure air-fuel mixture is forcibly sent by a turbine or the like at the time of intake air, so that smoother and higher rotation can be maintained.
The shape of the rotor base 20 and blade 21 in FIGS. 1 and 2 is a conceptual diagram of the state of rotation. For example, even in the shape as shown in these figures, FIG. 5. As shown in FIG. 8, the base of the blade, which is a continuous portion of the rotor blade and the rotor base, is formed by a concave arcuate shape with the curved shape of the base of the blade. As a matter of course, the tip of one blade portion may be configured to have a shape that can be smoothly rotated in a state in which the interval between the base portions of the other blade portions is narrowed with rotation.
 図3は、吸気に際する乱気流発生用の気流板3の一例を示す。
 本図の気流板3に示すように断面略波状に形成することにより吸気用の管内で乱気流の発生を可能とし混合効率を高めることができるものである。
 以上のように本発明は、極めて効率的に吸気・圧縮・爆発・排気を効率よく行えるものである。
 尚、前記までに示した6枚の羽根部21を有するロータ2に代えて、他の枚数の羽根部を有するロータを用いてもよく、少なくとも5枚程度から12枚程度のまでの任意の枚数の羽根部21を有するロータ2を用いてもよく、或いは羽根部21の突出が小さい略ギア形の形態のものであれば12枚以上の枚数のより多くの羽根部21を有するものを用いることもでき、係る構成を有するロータ2を用いるものであってもよい。
FIG. 3 shows an example of an airflow plate 3 for generating turbulent airflow during intake.
As shown in the airflow plate 3 in this figure, by forming a substantially wave-shaped cross section, it is possible to generate turbulent airflow in the intake pipe and increase the mixing efficiency.
As described above, the present invention can perform intake, compression, explosion, and exhaust with high efficiency.
In addition, instead of the rotor 2 having the six blade portions 21 shown above, a rotor having another number of blade portions may be used, and an arbitrary number of at least about 5 to 12 sheets may be used. The rotor 2 having a plurality of blade portions 21 may be used, or if the blade portion 21 is of a substantially gear-shaped form with a small protrusion, a rotor having more than 12 blade portions 21 may be used. The rotor 2 having such a configuration may be used.
 但し2つのロータを2個用いて、それぞれの羽根部がかみ合うように構成されて、圧縮爆発が可能な羽根部であることが必要である。
 従って、二つのロータ2は基本的には同数で同形の羽根部が最良であるがこれに限らず、このかみ合い構成を可能とする異なる数の羽根部を有するロータでも或いは異形のロータを用いたもので当てもよい。
 ケーシング内で二つのロータをきっちりと定置させ気密性を保つためには、例えばロータの出力軸等にそれぞれギャ等を有し、それぞれのロータのギャをかみ合わせるものを用いてもよい。
 例えばこのかみ合わせ用のギャの外周方向に重りを有し、該ギャの回転に際して回転の慣性を利用して、スムーズな回転などを図れるものであってもよい。
However, it is necessary that the two rotors are used so that the respective blade portions are engaged with each other, and the blade portions are capable of compression explosion.
Therefore, the two rotors 2 basically have the same number and the same shape of blades, but the present invention is not limited to this, and a rotor having a different number of blades enabling this meshing configuration or a deformed rotor is used. You can rely on things.
In order to place the two rotors firmly in the casing and maintain airtightness, for example, a gear that has gears on the output shaft of the rotor and the gears of the rotors may be used.
For example, a weight may be provided in the outer peripheral direction of the engagement gear, and smooth rotation may be achieved by utilizing the inertia of the rotation when the gear is rotated.
 図4は、更に回転効率を上げ、又エンジンの冷却効果を発揮するロータの一例の構成を示す図である。
 まず、ロータ2の羽根部21の側面にはその表面にオイル導通路25を有しており、オイル溜りの連結部24より該オイル導通路25に潤滑オイルを供給するものである。
 これにより密着性の向上や回転の円滑化等を図れるものである。
 特にケーシング側より潤滑オイルを供給するが、羽根部の回転に伴い、この遠心力及び毛細管現象にて羽根部とケーシングの間隙を埋めるものである。
FIG. 4 is a diagram showing a configuration of an example of a rotor that further increases the rotation efficiency and exhibits the cooling effect of the engine.
First, the side surface of the blade portion 21 of the rotor 2 has an oil conduction path 25 on its surface, and the lubricating oil is supplied to the oil conduction path 25 from the connecting portion 24 of the oil reservoir.
As a result, it is possible to improve adhesion and smooth rotation.
In particular, lubricating oil is supplied from the casing side, but with the rotation of the blade part, the centrifugal force and capillary action fill the gap between the blade part and the casing.
 更に羽根部間にまで達した際に例えば排気ガスと共に排気部O1、O2から排出されるが、該オイルを更にオイルパンにためてオイル溜りに導いて繰り返し供給するものである。
 従って、羽根部21毎に更にオイル導通路25とオイルを供給する連結部24とを有している。
 この場合連結部24のケーシング1にはオイルを供給する供給部を有しているものであり、一側面に有するもののほか両側面に有するものであってもよい。
 例えば羽根部内部を貫通して反対側から供給するものを用いてもよい。
Further, when it reaches between the blade parts, it is discharged from the exhaust parts O1 and O2 together with the exhaust gas, for example, and the oil is further supplied to the oil reservoir for the oil pan and repeatedly supplied.
Therefore, each blade portion 21 further includes an oil conduction path 25 and a connecting portion 24 for supplying oil.
In this case, the casing 1 of the connecting portion 24 has a supply portion for supplying oil, and may be provided on both sides in addition to the one provided on one side.
For example, you may use what penetrates the inside of a blade | wing part and supplies from an other side.
 即ちオイルパンを一のケーシング側面側に有しており、そこからロータの両側にオイルを供給するものであってよい。
 更にロータ2にはロータの冷却用の冷却水導通路27を有していると共に冷却水取り入れ口28と冷却水取り出し口29を有している。
 ロータ2は高温にさらされるものであるが、これを冷却するために冷却水を用いることが可能となる。
 冷却水取り入れ口28に冷却水を供給するとロータ2の回転に伴う遠心力によって冷却水がロータの先端方向に引き上げられる。
That is, an oil pan may be provided on one casing side surface, and oil may be supplied to both sides of the rotor therefrom.
Further, the rotor 2 has a cooling water passage 27 for cooling the rotor, and also has a cooling water inlet 28 and a cooling water outlet 29.
The rotor 2 is exposed to a high temperature, and cooling water can be used to cool the rotor 2.
When the cooling water is supplied to the cooling water intake port 28, the cooling water is pulled up in the direction of the tip of the rotor by the centrifugal force accompanying the rotation of the rotor 2.
 更にこのロータ2の回転が続くと順次冷却水が供給され、冷却水導通路27内を循環するものとなる。
 この場合冷却水は冷却水取り出し口29より排出され、更に高温となった冷却水を冷却し、これを冷却水取り入れ口28より冷却された冷却水を供給する。
 例えばこの循環を遠心力と共に例えばタービンや供給部材などを用いて強制的に供給するものであっても、即ち遠心力に付加して、或いはこれに代えて用いるものであってもよい。
Further, when the rotation of the rotor 2 continues, cooling water is sequentially supplied and circulates in the cooling water conduction path 27.
In this case, the cooling water is discharged from the cooling water take-out port 29, cools the cooling water that has reached a higher temperature, and supplies the cooled cooling water from the cooling water intake port 28.
For example, the circulation may be forcibly supplied together with the centrifugal force using, for example, a turbine or a supply member, that is, the circulation may be used in addition to or instead of the centrifugal force.
 図5は、ロータのオイル導通路25の一例を示す図であり、ロータ2のケーシング側側面にロータ基部20からに先端方向に向かって潤滑オイルを供給するオイル導通路25を有している。
 これはロータ2の羽根部21の両側に設けられているものであり、一例としてロータ基部内部を連結部24で連結して両側方向にオイルの供給をする一例を示す。
 もとより連結部24は、ロータ内部を連通して構成するもののほか、両側方向にオイル供給部を有してオイル溜り等からオイルの供給をするものであってもよく、ロータの両側方向にオイル供給部をそれぞれ有するものであってもよい。
 必要に応じて片側のみ有するものを用いてもよい。
FIG. 5 is a view showing an example of the oil conduction path 25 of the rotor, and has an oil conduction path 25 for supplying lubricating oil from the rotor base 20 toward the distal end on the casing side surface of the rotor 2.
This is provided on both sides of the blade portion 21 of the rotor 2. As an example, an example in which the inside of the rotor base is connected by a connecting portion 24 and oil is supplied in both directions is shown.
Of course, the connecting portion 24 may be configured to communicate with the inside of the rotor, or may have an oil supply portion on both sides to supply oil from an oil reservoir or the like, and supply oil to both sides of the rotor. Each may have a part.
You may use what has only one side as needed.
 図6は、ロータの軸部4近傍にオイル供給部15を有しており、連結部24を介してオイルを供給する一例を示す図である。
 尚、具体的な供給状態ではなくオイル供給部を要することが簡単に理解される程度の概念図として示す図である。
 従って、最も効率的にかつ効果的にオイルの循環を可能とする各種構成を用いるものであればよい。
FIG. 6 is a diagram illustrating an example in which the oil supply unit 15 is provided in the vicinity of the shaft portion 4 of the rotor and the oil is supplied through the connecting portion 24.
In addition, it is a figure shown as a conceptual diagram of the grade which can understand easily that an oil supply part is required instead of a specific supply state.
Accordingly, any configuration that allows the most efficient and effective oil circulation can be used.
 図7は、ロータ2の羽根部21の冷却水取り入れ口28と冷却水取り出し口29と更に羽根部21内に構成した冷却水導通路27の一例を示す図である。
 本図のように構成することによりロータ2内部を冷却水が循環することとなり、ロータの冷却を可能とする。
 尚、本図構成は一例を示す図であり、他の構成をとるものであってももちろんよい。
FIG. 7 is a diagram illustrating an example of the cooling water intake port 28 and the cooling water outlet port 29 of the blade portion 21 of the rotor 2 and the cooling water conduction path 27 configured in the blade portion 21.
With the configuration as shown in this figure, the cooling water circulates inside the rotor 2, and the rotor can be cooled.
Note that the configuration shown in the figure is an example, and other configurations may of course be used.
 図8は、冷却水導通路27の一例を示す図であり、冷却水がロータの軸部4内部を通ってロータの冷却水取り入れ口28より供給され、これがまずロータ2の羽根部21の中央部分を通る冷却水導通路27を通って羽根部21先端部方向に導き、更に両側方向に分岐して更にロータ基部20方向に冷却水導通路27を通って戻ってくる。
 更にこの両側方向に分岐した冷却水導通路27はロータ基部方向でそれぞれ両側方向に導き、これをそれぞれ両側の冷却水取り出し口29方向に導き、更にこの冷却水は軸部4を通って外部に排出する。
 この場合外部には高温化した冷却水を冷却する各種一般的な冷却機構を有しているものであって、冷却化した冷却水をまた冷却水取り入れ口に導くものとなる。
FIG. 8 is a diagram showing an example of the cooling water conduction path 27, and the cooling water is supplied from the cooling water intake port 28 of the rotor through the inside of the shaft portion 4 of the rotor, which is first the center of the blade portion 21 of the rotor 2. The cooling water conduction path 27 that passes through the portion leads to the tip of the blade portion 21, further branches in both directions, and further returns to the rotor base 20 direction through the cooling water conduction path 27.
Further, the cooling water conducting paths 27 branched in both directions are guided in both directions in the direction of the rotor base, respectively, and are guided in the directions of the cooling water outlets 29 on both sides, respectively. Discharge.
In this case, various general cooling mechanisms for cooling the high-temperature cooling water are provided outside, and the cooled cooling water is led to the cooling water intake port.
 図9は、冷却水を冷却水取り入れ口28から取り入れ、これをロータ2の基部20から羽根部21の先端方向に冷却水導通路27で導いたのち更にロータ2の基部20方向に導いたうえで冷却水取り出し口29から取り出す他の例を示す図である。
 この場合においても、冷却水を用いてロータ2を冷却し、更に取り出した高温化した冷却水を冷却してロータ2内部に戻すことにより冷却水によりロータ2内部を適宜冷却するものである。
FIG. 9 shows that the cooling water is taken in from the cooling water intake port 28, guided from the base 20 of the rotor 2 toward the tip of the blade portion 21 by the cooling water conduction path 27, and further guided toward the base 20 of the rotor 2. It is a figure which shows the other example taken out from the cooling-water taking-out opening 29 by.
Also in this case, the rotor 2 is cooled using the cooling water, and the taken-up high-temperature cooling water is cooled and returned to the inside of the rotor 2 so that the inside of the rotor 2 is appropriately cooled by the cooling water.
 尚、本発明に関しての冷却水は、冷却用空気を用いるものであっても、或いは冷却用オイルを用いるものであってもいずれでもよく、これらを用いた構成に関しては、冷却水に用いる際の冷却水導通路、冷却水取り出し口、冷却水取り入れ口は、いずれも冷却用空気導通路、冷却用空気取り出し口、冷却用空気取り入れ口、或いは冷却用オイル導通路、冷却用オイル取り出し口、冷却用オイル取り入れ口としてそれぞれ冷却用空気や冷却用オイルを用いるものであってもよい。 Incidentally, the cooling water in the present invention may be either one using cooling air or one using cooling oil. Regarding the configuration using these, the cooling water is used. Cooling water passage, cooling water outlet, and cooling water inlet are all cooling air passage, cooling air outlet, cooling air inlet, cooling oil passage, cooling oil outlet, cooling A cooling air or a cooling oil may be used as the oil intake for the vehicle.
   1   ケーシング
   15  オイル供給部
   2   ロータ
   20  基部
   21  羽根部
   24  連結部
   25  オイル導通路
   27  冷却水導通路
   28  冷却水取り入れ口
   29  冷却水取り出し口
   3   気流板
   4   軸部
   I   吸気部
   O1  一次排気部
   O2  二次排気部
DESCRIPTION OF SYMBOLS 1 Casing 15 Oil supply part 2 Rotor 20 Base 21 Blade | blade part 24 Connection part 25 Oil conduction path 27 Cooling water conduction path 28 Cooling water intake port 29 Cooling water take-out port 3 Airflow plate 4 Shaft part I Intake part O1 Primary exhaust part O2 Two Next exhaust part

Claims (12)

  1. ケーシング1内にインボリュート曲線からなるそれぞれ少なくとも5枚以上の羽根部21を有する回転する2つのロータA・ロータBと、該ロータA・ロータBの夫々の羽根部21の延長上であって羽根部21の回転に沿った内径を有するケーシングからなり、
    2つのロータA・ロータBはケーシング1内で羽根部21同士がかみ合うように配置されて2つのロータA・ロータBの夫々の羽根部21同士が回転に伴って羽根部21同士とロータ基部20との間で気化燃料を圧縮することによって夫々のロータ基部20方向で順次爆発するものであり、
    ロータAとロータBとがかみ合って回転するに従い、ロータAの基部方向でロータAの羽根部とロータBの羽根部とによって圧縮爆発を行った後に、そのロータの回転によりロータBの基部方向でロータBの羽根部とロータAの羽根部とによって圧縮爆発を行い、これらのそれぞれロータ基部20方向で順次交互に圧縮爆発を繰り返して圧縮爆発を行うロータリーエンジンであり、
    羽根部同士及びロータ基部による圧縮・ロータ基部方向での爆発・排気部の通過に伴う排気・吸気部の通過に伴う吸気をロータの一回転で順次行うロータリーエンジンであり、
    更に、排気部からの排気を用いたタービンを回転させることにより吸気部からの吸気を強制的に行うことを特徴とするロータリーエンジン。
    Two rotating rotors A and B each having at least five blade parts 21 each having an involute curve in the casing 1, and the blade parts on the extension of the respective blade parts 21 of the rotor A and rotor B Consisting of a casing having an inner diameter along the rotation of 21;
    The two rotors A and B are arranged in the casing 1 so that the blades 21 are engaged with each other, and the blades 21 of the two rotors A and B are rotated and the blades 21 and the rotor base 20 are rotated. By compressing the vaporized fuel between the two and the rotor base 20 in the direction of the explosion,
    As the rotor A and the rotor B are engaged with each other and rotated, a compression explosion is performed by the blade portion of the rotor A and the blade portion of the rotor B in the base portion direction of the rotor A, and then the rotation of the rotor causes the base portion of the rotor B to rotate. A rotary engine that performs compression explosion by the blade portion of the rotor B and the blade portion of the rotor A, and performs compression explosion by repeating the compression explosion alternately in the direction of the rotor base 20 respectively.
    It is a rotary engine that sequentially performs intake by the rotation of the rotor by one rotation of the rotor, compression between the blade parts and the rotor base, explosion in the direction of the rotor base, exhaust accompanying the passage of the exhaust part, passage of the exhaust part,
    Further, the rotary engine is characterized in that intake air from the intake portion is forcibly performed by rotating a turbine using exhaust from the exhaust portion.
  2. インボリュート曲線からなるそれぞれ6枚の羽根部21を有するロータAとロータBの2つのロータよりなることを特徴とする請求項1記載のロータリーエンジン。 The rotary engine according to claim 1, comprising two rotors, rotor A and rotor B, each having six blade portions 21 each having an involute curve.
  3. ロータAとロータBともに同一数の羽根部21を有するロータ2であることを特徴とする請求項1又は2のいずれかに記載のロータリーエンジン。 The rotary engine according to claim 1, wherein both the rotor A and the rotor B are rotors 2 having the same number of blade portions 21.
  4. ケーシング1には吸気部Iと排気部Oを有すると共に排気部Oは一次排気部O1と二次排気部O2を有し、一のロータの羽根部で圧縮・爆発・一次排気・二次排気・吸気を一回転で行うことを特徴とする請求項1乃至3のいずれかに記載のロータリーエンジン。 The casing 1 has an intake part I and an exhaust part O, and the exhaust part O has a primary exhaust part O1 and a secondary exhaust part O2, and compression, explosion, primary exhaust, secondary exhaust, The rotary engine according to any one of claims 1 to 3, wherein the intake is performed in one rotation.
  5. 吸気部O内に気流板3を配置して吸気部O内で乱気流を発生させ、空気と燃料の混合効率を高めることを特徴とする請求項1乃至4のいずれかに記載のロータリーエンジン。 The rotary engine according to any one of claims 1 to 4, wherein an airflow plate (3) is arranged in the intake portion (O) to generate turbulent airflow in the intake portion (O), thereby improving the mixing efficiency of air and fuel.
  6. ロータ2にはオイル導通路25を有しており、ロータ2の表面にオイルを導くことを特徴とする請求項1乃至5のいずれかに記載のロータリーエンジン。 The rotary engine according to any one of claims 1 to 5, wherein the rotor (2) has an oil conduction path (25) and guides oil to the surface of the rotor (2).
  7. オイル導通路25はロータ2の羽根部21の側面であってロータ基部20から羽根部21先端部方向に向かって設けたことを特徴とする請求項6に記載のロータリーエンジン。 The rotary engine according to claim 6, wherein the oil conduction path 25 is provided on a side surface of the blade portion 21 of the rotor 2 toward the tip of the blade portion 21 from the rotor base 20.
  8. ロータ2の羽根部21の内部であってロータ基部20から羽根部21の先端部方向に向かって冷却水導通路27を有しており、該導通路27内を冷却水が通ることによってロータ2の冷却を図ることを特徴とする請求項1乃至7のいずれかに記載のロータリーエンジン。 A cooling water conduction path 27 is provided inside the blade part 21 of the rotor 2 from the rotor base 20 toward the tip of the blade part 21, and the cooling water passes through the conduction path 27, thereby the rotor 2. The rotary engine according to claim 1, wherein the rotary engine is cooled.
  9. ロータ2の軸部4内を通って冷却水を冷却水取り入れ口28から供給し、ロータ2の羽根部21内を導く冷却水導通路27を通ってロータ基部20から羽根部21の先端部方向に導くと共に更に先端部からロータ基部20に向かって冷却用導通路27によって冷却水を導き、冷却水取り出し口29よりロータ内部から冷却水を導き出すことによりロータの冷却を図ることを特徴とする請求項8に記載のロータリーエンジン。 The cooling water is supplied from the cooling water intake port 28 through the shaft portion 4 of the rotor 2 and passes through the cooling water conduction path 27 that guides the inside of the blade portion 21 of the rotor 2 to the tip portion of the blade portion 21 from the rotor base 20. Further, the cooling water is led from the tip part toward the rotor base part 20 by the cooling conduction path 27, and the cooling water is led out from the inside of the rotor through the cooling water outlet 29, thereby cooling the rotor. Item 9. The rotary engine according to Item 8.
  10. 冷却水に代えて冷却空気を用いることを特徴とする請求項8又は9のいずれかに記載のロータリーエンジン。 The rotary engine according to claim 8, wherein cooling air is used in place of the cooling water.
  11. 冷却水に代えて冷却用オイルを用いることを特徴とする請求項8又は9のいずれかに記載のロータリーエンジン。 The rotary engine according to claim 8, wherein cooling oil is used in place of the cooling water.
  12. フライホイールを有しており、ロータの回転動力によりフライホイールを回転させることを特徴とする請求項1乃至11のいずれかに記載のロータリーエンジン。 The rotary engine according to any one of claims 1 to 11, further comprising a flywheel, wherein the flywheel is rotated by the rotational power of the rotor.
PCT/JP2010/053344 2009-03-04 2010-03-02 Rotary engine WO2010101148A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009050416A JP4389236B2 (en) 2009-03-04 2009-03-04 Rotary engine
JP2009-050416 2009-03-04

Publications (1)

Publication Number Publication Date
WO2010101148A1 true WO2010101148A1 (en) 2010-09-10

Family

ID=41069278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053344 WO2010101148A1 (en) 2009-03-04 2010-03-02 Rotary engine

Country Status (2)

Country Link
JP (1) JP4389236B2 (en)
WO (1) WO2010101148A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU196106U1 (en) * 2019-02-13 2020-02-17 Олег Вилориевич Пак DETONATION GEAR ENGINE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860304A (en) * 1971-11-30 1973-08-24
JPS6354823U (en) * 1986-09-30 1988-04-13
WO2003089766A1 (en) * 2002-04-19 2003-10-30 Matsushita Electric Industrial Co., Ltd. Vane rotary expansion engine
JP2007512476A (en) * 2003-11-26 2007-05-17 ニール ロケット, Dual rotor internal combustion engine
JP2009024694A (en) * 2008-05-16 2009-02-05 Katsuo Kanai Rotary engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860304A (en) * 1971-11-30 1973-08-24
JPS6354823U (en) * 1986-09-30 1988-04-13
WO2003089766A1 (en) * 2002-04-19 2003-10-30 Matsushita Electric Industrial Co., Ltd. Vane rotary expansion engine
JP2007512476A (en) * 2003-11-26 2007-05-17 ニール ロケット, Dual rotor internal combustion engine
JP2009024694A (en) * 2008-05-16 2009-02-05 Katsuo Kanai Rotary engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU196106U1 (en) * 2019-02-13 2020-02-17 Олег Вилориевич Пак DETONATION GEAR ENGINE

Also Published As

Publication number Publication date
JP2009185822A (en) 2009-08-20
JP4389236B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
US10920662B2 (en) Compound cycle engine
US10968824B2 (en) Compound cycle engine
US9856789B2 (en) Compound cycle engine
CA2938105C (en) Turboprop engine assembly with combined engine and cooling exhaust
US9926843B2 (en) Compound cycle engine
JP4445548B2 (en) Concentric internal combustion rotary engine
EP2252783B1 (en) Rotary piston internal combustion engine power unit
JP2010502892A (en) Open cycle internal combustion engine
US11970967B1 (en) Rotary engine
WO2010101148A1 (en) Rotary engine
CN216240936U (en) Engine
WO2021043082A1 (en) Rotor engine
WO2016201568A1 (en) Compound cycle engine
JP4775803B2 (en) Rotary engine
RU2171906C2 (en) Propulsion system and rotary engine
RU2212550C2 (en) Internal combustion engine
CN113513403A (en) Engine
JPS5831455B2 (en) Turbine internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/02/2012)

122 Ep: pct application non-entry in european phase

Ref document number: 10748743

Country of ref document: EP

Kind code of ref document: A1