WO2010101009A1 - Lens unit, method for aligning lens unit and sensor, image pickup device, method for manufacturing image pickup device, and wafer lens unit - Google Patents

Lens unit, method for aligning lens unit and sensor, image pickup device, method for manufacturing image pickup device, and wafer lens unit Download PDF

Info

Publication number
WO2010101009A1
WO2010101009A1 PCT/JP2010/051946 JP2010051946W WO2010101009A1 WO 2010101009 A1 WO2010101009 A1 WO 2010101009A1 JP 2010051946 W JP2010051946 W JP 2010051946W WO 2010101009 A1 WO2010101009 A1 WO 2010101009A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens unit
wafer
optical axis
unit
Prior art date
Application number
PCT/JP2010/051946
Other languages
French (fr)
Japanese (ja)
Inventor
東吾 寺本
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2010101009A1 publication Critical patent/WO2010101009A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0085Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing wafer level optics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • the present invention relates to a lens unit, a method for aligning a lens unit and a sensor, an imaging device using the same, and a method for manufacturing the imaging device.
  • such a wafer lens is obtained by stacking and bonding a plurality of wafer lens arrays, cutting them into individual pieces, and attaching them to the sensor to make it small and high inclusive of sensors. Attention is also paid to the fact that imaging units with resolving power can be mass-produced.
  • alignment of such a wafer lens is a big problem. Especially when laminating multiple wafer lens arrays, the accuracy of optical axis alignment of micro lenses formed on each wafer and the accuracy of aligning wafer lens units that have already been laminated, bonded and cut with sensors are lenses. Since the device itself is very small, high alignment accuracy on the order of several ⁇ m is required.
  • a technique for optical axis alignment of a compound lens in which a resin lens is formed on a base lens as in Patent Document 1 is known.
  • a glass member optical lens
  • axial misalignment between the optical lens and the resin member is performed. It is intended to prevent and suppress transmission eccentricity based on axial deviation. (See paragraphs 0023, 0076, etc.).
  • the sensor and the lens which are particularly problematic in the wafer lens, are all the points to match the optical axis on the object side and the oblique body side of a single lens to be formed.
  • a general wafer lens is separated into pieces by cutting (dicing). Therefore, when such a cut lens is aligned with the optical axis of the sensor, the optical axes may be displaced due to the accuracy of dicing.
  • the technique of Patent Document 1 cannot be applied to the alignment between the wafer lens and the sensor.
  • the wafer lens when used as one part of an electronic device such as a digital camera, the wafer lens is used in combination with a light receiving sensor that receives transmitted light. Even if they match, it is difficult to form a desired image if the optical axis is deviated from the light receiving sensor. Therefore, when manufacturing a wafer lens for electronic equipment, alignment of the optical axis of the wafer lens and the light receiving sensor is also an important issue.
  • a main object of the present invention is to identify a decentering direction of a wafer lens, and to easily and surely match the optical axes of a wafer lens and a light receiving sensor, a lens unit, an imaging device, and a manufacturing method of the imaging device Is to provide.
  • a lens unit having a rectangular shape in a plan view in which a plurality of wafer lenses each having a lens part formed thereon are stacked on a glass substrate,
  • the optical axis of the lens unit is decentered with respect to the center of the glass substrate on a portion of the surface of the molding unit excluding the lens unit of at least one wafer lens of the plurality of wafer lenses.
  • a lens unit is provided, which is provided with an eccentricity identification mark for indicating the direction of the lens.
  • a resin molded part is formed on a glass substrate, and the optical axis of a rectangular lens unit in plan view in which a plurality of wafer lenses each having a lens part formed thereon are laminated, and the transmitted light of each wafer lens is transmitted.
  • a sign is formed,
  • An alignment method is provided.
  • a sensor unit including a light receiving sensor that receives incident light transmitted through the lens unit, and an imaging device comprising: The optical axis of the lens unit is decentered with respect to the center of the glass substrate on the surface of the molded part of the wafer lens located closest to the object side of the lens unit or the molded part of the wafer lens located closest to the imaging device.
  • Eccentric identification mark is provided to indicate the direction
  • an imaging apparatus characterized in that an optical axis of the lens unit and an optical axis of the light receiving sensor substantially coincide with each other.
  • a molded part made of resin is formed on the first glass substrate, a plurality of lens parts formed in a part thereof, and formed on the surface of the molded part, with respect to the center of the first glass substrate
  • a first wafer lens array provided with an eccentricity identification mark for indicating a direction in which the optical axis of the lens unit is eccentric, and a plurality of resin lens units on the second glass substrate.
  • a second wafer lens array provided, a stacking process of the first wafer lens array and the second wafer lens array, bonding, cutting, and generating a lens unit;
  • a plurality of resin molded parts are formed on a glass substrate, and a plurality of wafer lens arrays in which a plurality of lens parts are formed are laminated, and each lens having a rectangular shape in plan view is obtained by dicing.
  • the wafer lens unit used by cutting out into the unit At the time of dicing, in any of the glass substrates, at least two orthogonal cutting lines that can be confirmed from the outside are provided, and in an apparatus that cuts out individual lens units with a predetermined dimension based on the lines, In consideration of the amount of blade wear during dicing, the dimension between the reference side surface of each lens unit cut out and the reference line provided on the glass substrate is always constant.
  • a wafer lens unit is provided.
  • a resin molded part is formed on a glass substrate, and the optical axis of a rectangular lens unit in plan view in which a plurality of wafer lenses each having a lens part formed thereon are laminated, and the transmitted light of each wafer lens is transmitted.
  • a positioning method for matching with a predetermined position of a light receiving sensor for receiving light An identification mark is formed at a corner sandwiched between two reference side surfaces cut out of individual lens units on the surface of the molding portion of at least one wafer lens of the plurality of wafer lenses, A temporary fixing step of temporarily fixing the light receiving sensor; And a moving step of moving the light receiving sensor so as to coincide with a predetermined position while confirming two reference side surfaces of the lens unit with the identification mark while the light receiving sensor is temporarily fixed.
  • An alignment method is provided.
  • the surface of the molded part of the wafer lens is provided with an eccentricity identification mark for indicating the direction in which the optical axis of the lens part is eccentric with respect to the center of the glass substrate.
  • the eccentric direction of the optical axis of the lens unit can be easily identified, and the optical axis of the lens unit can be reliably and easily aligned with the optical axis of the eccentric sensor.
  • FIG. 6 is a diagram for explaining a subsequent process of FIG. 5.
  • 3 is a cross-sectional view for explaining a schematic configuration of a molded part of the wafer lens according to Example 1.
  • FIG. It is sectional drawing which shows the modification of FIG. (A) It is sectional drawing which shows schematic structure of the imaging device concerning preferable Example 2 of this invention, (b) It is a schematic top view of the sensor unit in the said imaging device.
  • 6 is a plan view illustrating a schematic configuration of a lens unit according to Embodiment 2.
  • FIG. FIG. 6 is a bottom view illustrating a schematic configuration of a lens unit according to Example 2.
  • FIG. 10 is a diagram for schematically explaining steps of an optical axis alignment method according to Example 2; 6 is a plan view showing a schematic configuration of a jig used in Example 2.
  • FIG. 10 is a diagram for schematically explaining steps of an optical axis alignment method according to Example 2; It is drawing for demonstrating the process of FIG. It is drawing for demonstrating the process of FIG. It is a top view which shows the wafer before the dicing process concerning Example 3.
  • FIG. 10 is a plan view showing a cut state of a wafer lens array according to Example 3.
  • FIG. 10 is a drawing for schematically explaining one step of an optical axis alignment method according to Example 3;
  • an imaging apparatus 1 is mainly composed of a lens unit 3, a sensor unit 5, and a spacer 7.
  • the lens unit 3 and the sensor unit 5 are composed of the lens unit 3, the sensor unit 5, and the spacer 7. It has a configuration of being interposed by a spacer 7.
  • the lens unit 3 includes wafer lenses 10 and 20 and a cover package 30, and the wafer lenses 10 and 20 are covered with the cover package 30 in a state where the wafer lens 10 is laminated and bonded onto the wafer lens 20. Yes.
  • the wafer lens 10 has a glass substrate 12 having a flat plate shape.
  • a molding part 14 is formed on the upper part of the glass substrate 12, and a molding part 16 is formed on the lower part of the glass substrate 12.
  • a convex lens portion 14a having a convex shape is formed at a substantially central portion of the molded portion 14, and the molded portion 14 has an inclined portion 14b inclined upward from the convex lens portion 14a toward the outer peripheral portion.
  • a concave lens portion 16a having a concave shape is formed at a substantially central portion of the molded portion 16.
  • a peripheral portion 16b of the concave lens portion 16a is substantially flat.
  • the wafer lens 20 also has a glass substrate 22 having a flat plate shape, and formed portions 24 and 26 are formed on the upper and lower portions of the glass substrate 22, respectively.
  • a concave lens portion 24a having a concave shape is formed at a substantially central portion of the molded portion 24.
  • a peripheral portion 24b of the concave lens portion 24a is substantially flat.
  • a convex lens portion 26a having a convex shape is formed at a substantially central portion of the molding portion 26.
  • a peripheral portion 26b of the convex lens portion 26a is substantially flat.
  • the molding parts 14, 16, 24, 26 are light transmissive at the part where the photocurable resin is molded, and in particular, convex lens parts in the molding parts 14, 16, 24, 26 14a, the concave lens portion 16a, the concave lens portion 24a, and the convex lens portion 26a are lens effective portions that exhibit a lens function (optical function).
  • the convex lens portion 14a, the concave lens portion 16a, the concave lens portion 24a, and the convex lens portion 26a are concentric as shown in FIG. These lens portions are stacked vertically so that their optical axes PA coincide with each other.
  • the lens unit 3 on which the wafer lenses 10 and 20 are laminated is a plurality of wafers in which the above-described plurality of convex lens portions 14a and 26a and concave lens portions 16a and 24a are formed on the front and back surfaces of a glass substrate. After the lens arrays are stacked and joined, they are cut and separated into a rectangular shape in plan view.
  • the optical axis PA of the lens portion 14 a is located with respect to the center 12 ⁇ / b> A of the glass substrate 12 on the surface of the molded portion 14 of the wafer lens 10 except for the lens portion 14 a.
  • An eccentricity identification mark 14c is provided for indicating an eccentric direction.
  • the center of the sensor 40 is generally arranged on the package 50 of the sensor unit 5 in an eccentric manner as viewed from the end surfaces 50a and 50b serving as the reference of the package 50.
  • a wafer lens array is laminated.
  • the cutting position may be cut at a slightly eccentric position in advance so as to correspond to the eccentric sensor 40 portion.
  • the eccentricity seen from the end face 50a and the end face 50b mentioned here means that, for example, when there is an end face 50a and an end face 50c opposite to the end face 50a, the center of the sensor 40 is on the 50a side with respect to the midline of these end faces 50a, 50c.
  • the center of the sensor 40 is biased toward the 50b side with respect to the midline of these end surfaces 50, 50d. Or the case where it is biased to the 50d side.
  • the optical axis 40A of the sensor 40 when the optical axis 40A of the sensor 40 is eccentric with respect to the center 50A of the package 50 (H1 ⁇ H2, V1 ⁇ V2), as shown in FIG.
  • the optical axis PA of the lens portion 14a is also decentered from the center 12A of the glass substrate 12 and cut (H11 ⁇ H12, V11 ⁇ V12).
  • the lens portion 14a since the lens portion 14a is small, it may be difficult to determine which side is decentered and cut.
  • by displaying the eccentricity identification mark 14c When installing, there is an advantage that it is possible to prevent the wrong installation direction.
  • the eccentricity identification mark 14c is provided on the surface of the corner 12c formed by two adjacent side surfaces 12a and 12b among the four side surfaces forming the glass substrate 12.
  • the two adjacent side surfaces 12a and 12b are surfaces corresponding to the end surfaces 50a and 50b, respectively, which serve as a reference for alignment of the package 50 of the sensor unit 5. Therefore, when the lens unit 3 is aligned with the sensor unit 5, the sensor unit 5 is aligned by aligning the side surfaces 12a and 12b and the end surfaces 50a and 50b in parallel with the eccentricity identification mark 14c interposed therebetween. And the eccentric direction of the lens unit 3 can be easily matched.
  • the eccentricity identification mark 14c is formed in a concave shape so as to be recessed with respect to the surface of the molded part 14.
  • the eccentric identification mark 14c is preferably formed simultaneously with the molding of the lens portion 14a.
  • a molding die in which a convex portion corresponding to the eccentricity identification mark 14c is formed at a predetermined position of the molding die for molding the lens portion 14a may be used.
  • the eccentricity identification mark 14c is formed in a concave shape, but may be formed in a convex shape so as to protrude from the surface of the molding portion 14.
  • the eccentric identification mark 14c has a circular shape in plan view, this shape can also be changed as appropriate.
  • the cover package 30 has a bottomless box shape (the lower part is opened), and is composed of one top plate portion 32 and four side plate portions 34 each having a square shape. ing.
  • a circular opening 32 a is formed at the center of the top plate 32.
  • an eccentricity identification mark 35 is formed in a concave shape like the eccentricity identification mark 14c of the lens unit 3.
  • the eccentricity identification mark 35 is formed by a corner (an adjacent two side surfaces 30a and 30a) where the eccentricity identification mark 35 and the eccentricity identification mark 14c correspond to each other. It is arranged at the corner 30b). Therefore, the position of the eccentricity identification mark 14 c of the lens unit 3 covered by covering the cover package 30 can be seen from the outside by the eccentricity identification mark 35 of the cover package 30.
  • the eccentricity identification mark 35 may be convex or formed by printing or the like.
  • three notches 34a are formed in two side plate portions 34 adjacent to each other among the four side plate portions 34 (the corresponding portions are not formed in the remaining two side plate portions 34).
  • the sensor unit 5 mainly includes a sensor 40, a package 50, and a cover glass 60.
  • the sensor 40 is a light receiving sensor that receives light transmitted through the lens unit 3 and can photoelectrically convert the received light to output an electrical signal to an external device (not shown).
  • the package 50 has a bottomed box shape and is open at the top. As shown in FIG. 1B, a sensor 40 is disposed at a substantially central portion of the package 50.
  • the cover glass 60 is provided as a lid on the top of the package 50, and the sensor 40 is sealed in a space surrounded by the package 50 and the cover glass 60.
  • the spacer 7 is interposed between the molding portion 26 of the lens unit 3 and the cover glass 60 of the sensor unit 5, and a certain distance is provided between the lens unit 3 and the sensor unit 5. Is granted.
  • the spacer 7 has a rectangular frame shape, and two sides adjacent to each other among the four sides and the projections 7a are formed on the corners thereof.
  • the protrusion 7a protrudes outside the cover package 30, and more specifically, protrudes (exposes) from the notch 34a.
  • An IR cut filter 70 is provided inside the spacer 7.
  • the IR cut filter 70 is disposed above the cover glass 60 and shields infrared rays that are to enter the sensor 40.
  • the spacer 7 on which the IR cut filter 70 is mounted in advance is placed on the flat base 100.
  • the spacer 7 is positioned at a predetermined position.
  • an L-shaped jig 110 (only a part thereof is illustrated in FIG. 5).
  • each protrusion 7 a of the spacer 7 is brought into contact with the jig 110, and the spacer 7 is placed on the base 100 corresponding to the jig 110. Temporarily fix to.
  • the lens unit 3 is aligned with the spacer 7 by using a positioning jig 120 and bonded and fixed.
  • the lens unit 3 is previously covered with the cover package 30 so that the eccentricity identification mark 14c of the lens unit 3 and the eccentricity identification mark 35 of the cover package 30 face each other.
  • the jig 120 has a tapered shape with a tapered tip, and the jig 120 has a tapered portion 120a.
  • a suction part 120 b suction hole capable of sucking the lens unit 3 is formed at the center of the jig 120.
  • the jig 120 is movable in the front-rear and left-right directions (on a two-dimensional plane) and in the up-down direction (see arrows in FIGS. 5 and 6).
  • the jig 120 is disposed opposite to the molding portion 14 of the lens unit 3 so that the tapered portion 120a and the inclined portion 14b are brought into contact with each other.
  • the jig 120 is moved in the front-rear and left-right directions and the vertical direction, and the inclined portion of the lens unit 3 is brought into contact with the position of the jig 120.
  • the lens unit 3 is moved to a predetermined position of the spacer 7 by the adjusting action due to the contact, and the lens unit 3 is adhered and fixed to the spacer 7 at the predetermined position.
  • the lens unit 3 is adjusted to an appropriate position (predetermined position) corresponding to the position of the jig 120 on the spacer 7.
  • the protrusion 7a of the spacer 7 since the notch 34a is formed in the cover package 30 of the lens unit 3, the protrusion 7a of the spacer 7 remains in contact with the jig 110 while being exposed (projected) from the notch 34a. Retained. As a result, the protrusion 7a of the spacer 7 becomes a reference for temporary fixing, and the temporary fixing position of the spacer 7 is maintained.
  • the lens unit 3 may be bonded and fixed to the spacer 7 with the cover package 30 removed.
  • the eccentricity identification mark 14 c of the lens unit 3 and the eccentricity identification mark 35 of the cover package 30 face each other, and the notch 34 a of the cover package 30 is attached to the spacer 7.
  • the cover package 30 may be covered from above the wafer lenses 10 and 20 so as to be fitted to the protrusion 7a.
  • the spacer 7 (with the lens unit 3 bonded and fixed) is bonded and fixed to the sensor unit 5 in the same manner as the lens unit 3 is bonded and fixed to the spacer 7.
  • the sensor unit 5 is mounted on the base 100.
  • the base 100 has an L-shaped jig 130 for positioning the sensor unit 5 at a predetermined position on the base when viewed from the object side.
  • the end surfaces of the package 50 of the sensor unit 5 (the two adjacent end surfaces 50a and 50b) are brought into contact with the jig 130 to fix the sensor unit 5 as shown in FIG. Temporarily fix at a predetermined position C on the base 100 corresponding to the tool 130.
  • the spacer 7 is aligned with the sensor unit 5 by using the alignment jig 120 again, and is bonded and fixed.
  • the jig 120 is moved back and forth, left and right, and up and down.
  • the lens unit 3 is moved to a predetermined position corresponding to the sensor unit 5 (sensor 40), and the spacer 7 is bonded and fixed to the sensor unit 5 at the predetermined position.
  • the eccentricity identification mark 35 provided on the cover package 30 is used as an index, and the corner 30b (two side faces 30a, The lens unit 3 is moved to a predetermined position by the jig 120 with 30a) facing the corner of the jig 130 (see FIG. 16).
  • the spacer 7 is gradually pressed against the cover glass 60 as the jig 120 is lowered.
  • 14b is finely moved so as to be completely fitted to the tapered portion 120a of the jig 120, and the lens unit 3 is positioned on the sensor unit 5 at an appropriate position (predetermined position) according to the arrangement position of the jig 120, Thereby, the optical axis PA of the wafer lenses 10 and 20 of the lens unit 3 and the optical axis 40A of the sensor 40 of the sensor unit 5 coincide.
  • the spacer 7 may be adhered and fixed to the sensor unit 5 with the cover package 30 removed from the lens unit 3.
  • the eccentricity identification mark 14c provided on the lens unit 3 is used as an index, and the corner 12c (two side surfaces) provided with the eccentricity identification mark 14c is used. 12a, 12b) is directed to the corner of the jig 130 (see FIG. 16), and the lens unit 3 is moved to a predetermined position by the jig 120.
  • the cover package 30 is placed above the wafer lenses 10 and 20 so that the notch 34 a of the cover package 30 is fitted to the protrusion 7 a of the spacer 7. Cover it.
  • the eccentricity identification mark 14c is provided on the surface of the molded part 14 of the wafer lens 10 except for the lens part 14a. However, as shown in FIG. It is good also as what provides the eccentric identification mark 27 in the part except the lens part 26a among the surfaces. In this case, since the position of the eccentricity identification mark 27 can be seen from the back side even when the cover package 30 is covered, it is not necessary to provide the eccentricity identification mark 35 on the cover package 30.
  • the optical axis PA of the wafer lenses 10 and 20 is not necessarily the light of the sensor 40. It is not limited to what is aligned with the shaft 40A. That is, depending on the specifications of the imaging apparatus, the optical axis PA of the wafer lenses 10 and 20 may be aligned with a predetermined position that is shifted from the optical axis 40A of the sensor 40.
  • the optical axis 40A of the sensor 40 refers to the diagonal center of the effective pixel area that can actually be used for photographing by the imaging device in the pixel area of the light receiving sensor.
  • a photo-curing resin adhesive is applied in advance between them, and when the lens unit 3 is positioned, it is directed toward the application site. Light irradiation.
  • the optical axis PA of the wafer lenses 10 and 20 of the lens unit 3 and the optical axis 40A of the sensor 40 of the sensor unit 5 can be aligned via the spacer 7.
  • the lens unit 3 and the sensor unit 5 are positioned using the jig 130 and the jig 120, they may be positioned by the following method instead.
  • the corners 12c (two adjacent side surfaces 12a and 12b) provided with the eccentricity identification mark 14c face the corners of the jig 130, and the protrusions 7a of the spacer 7 abut on the jig 130, respectively.
  • the lens unit 3 is moved to the position using the jig 120. Then, the jig 120 may be lowered at that position, and the spacer 7 may be bonded and fixed to the sensor unit 5.
  • the lens unit 3 and the sensor unit 5 are positioned using the jig 130.
  • the projection 7a of the spacer 7 is brought into contact with the jig 130.
  • the portion with which the spacer projection 7a comes into contact is constituted by a jig separate from the jig 130. You may do it.
  • the inclined portion for bringing the positioning jig 120 into contact with the molding portion 14 of the wafer lens 10 disposed on the most object side among the wafer lenses 10 and 20 of the lens unit 3. 14b is formed, and the arrangement position of the lens unit 3 is positioned while the jig 120 is brought into contact with the inclined portion 14b with reference to the inclined portion 14b. Therefore, unlike the case where the optical axis PA of the wafer lens 10, 20 and the optical axis 40 A of the sensor 40 are aligned with respect to the cut surface (side surface) of the wafer lens 10, 20, the wafer lens 10, 20 is manufactured.
  • the optical axis PA of the wafer lenses 10 and 20 and the optical axis 40A of the sensor 40 can be made to coincide with each other without depending on the dicing accuracy.
  • the cover package 30 is provided with an eccentricity identification mark 35 corresponding to the eccentricity identification mark 14 c of the lens unit 3, and when the lens unit 3 is moved while being sucked by the jig 120, the eccentricity identification of the cover package 30 is performed. Since the spacer 7 is adhered and fixed to the sensor unit 5 using the mark 35 as an index, the eccentric direction of the optical axis PA of the lens unit 3 can be easily identified. Then, the optical axis PA of the lens unit 3 can be reliably and easily aligned with the optical axis 40A of the sensor 40 provided eccentrically with respect to the center 50A of the package 50.
  • the inclined part 14b is inclined upward from the convex lens part 14a toward the outer peripheral part, and the top part of the inclined part 14b is higher than the convex lens part 14a.
  • a molded part 14 as shown in FIG. 8 may be formed.
  • the inclined part 14b is inclined downward from the convex lens part 14a toward the outer peripheral part, and the inclined part 14b is lower than the convex lens part 14a.
  • the height (thickness) of the resin of the molding part 14 is determined by the height of the inclined part 14b and the height of the convex lens part 14a, but in the molding part 14 of FIG.
  • the height (thickness) of the resin of the molded portion 14 is determined by either the height of the convex lens portion 14a.
  • the configuration of FIG. 7 is more advantageous in reducing the thickness of the resin of the molded portion 14, and if the thickness of the resin is reduced, the amount of cure shrinkage of the resin during molding can be reduced. It is possible to form a highly effective lens effective portion having excellent properties.
  • the convex lens portion 14a is exposed and protrudes on the same plane, the convex lens portion 14a is likely to be scratched or damaged during handling or the like.
  • the convex lens portion 14a can be included at a height of 14b, and it is possible to effectively prevent the convex lens portion 14a from being damaged or damaged during handling.
  • Example 2 The second embodiment is mainly different from the first embodiment in the following points, and is otherwise the same as the first embodiment.
  • the inclined portion 14 b and the spacer 7 (including the IR cut filter 70) in the molding portion 14 of the wafer lens 10 are not provided.
  • a spacer portion 26 c is formed in the molding portion 26 of the wafer lens 20.
  • the spacer portion 26c includes an inner inclined portion 26d, an adhesive portion 26e, and an outer inclined portion 26f, and is higher than the thickness of the convex lens portion 26a.
  • the inner inclined portion 26d is inclined downward from the convex lens portion 26a toward the outer periphery.
  • the bonding portion 26 e is flat and serves as a bonding surface that is bonded to the cover glass 60 of the sensor unit 5.
  • the outer inclined portion 26f is inclined upward from the adhesive portion 26e toward the outer periphery.
  • the end surfaces (two end surfaces 50a and 50b) of the package 50 of the sensor unit 5 are brought into contact with the jig 130, and the sensor unit 5 is temporarily fixed at a predetermined position C. To do.
  • the lens unit 3 is aligned with the sensor unit 5 by using the alignment jig 150, and is bonded and fixed.
  • the lens unit 3 is previously covered with the cover package 30 so that the eccentricity identification mark 14c of the lens unit 3 and the eccentricity identification mark 35 of the cover package 30 face each other.
  • the jig 150 is a member having a circular shape when viewed from the object side, as in FIG. 1B, and the side surface 150 a is in contact with the inclined portion 26 f in the molding portion 26 of the wafer lens 20. Inclined as possible.
  • the sensor unit 5 is temporarily fixed with the two side surfaces 30 a and 30 a forming the corner 30 b provided with the eccentricity identification mark 35 of the cover package 30 facing the jig 150.
  • the lens unit 3 is placed on the top. Then, the spacer portion 26c in the molding portion 26 of the lens unit 3 is pressed toward the jig 150, and the lens unit 3 is bonded and fixed to the sensor unit 5 at the predetermined position.
  • the lens unit 3 is positioned at an appropriate position (predetermined position) by the jig 150 on the sensor unit 5 while the inclined portion 26f of the spacer portion 26c and the side surface 150a of the jig 150 are in contact with each other.
  • the optical axes PA of the wafer lenses 10, 20 coincide with the optical axis 40 A of the sensor 40 of the sensor unit 5.
  • a photo-curing resin adhesive is applied in advance between the bonding portion 26e of the molding portion 26 and the cover glass 60, and the lens unit 3 When positioning is performed, light may be irradiated toward the application site.
  • the optical axis PA of the wafer lenses 10 and 20 of the lens unit 3 and the optical axis 40A of the sensor 40 of the sensor unit 5 can be matched.
  • the lens unit 3 may be bonded and fixed to the sensor unit 5 with the cover package 30 removed from the lens unit 3.
  • the eccentricity identification mark 14c provided on the lens unit 3 is used as an index
  • the corner 12c (two side surfaces 12a and 12b) provided with the eccentricity identification mark 14c is a jig.
  • the lens unit 3 is moved to a predetermined position while facing the 150 side (see FIG. 14).
  • the cover package 30 may be covered from above the wafer lenses 10 and 20.
  • the lens unit 3 and the sensor unit 5 are bonded and fixed in this manner and then finally covered with the cover package 30, it is not necessary to provide the eccentricity identifying mark 35 on the cover package 30.
  • the eccentricity identification mark 14c is provided on the surface of the molded part 14 of the wafer lens 10 except for the lens part 14a. However, as shown in FIG. It is good also as what provides the eccentric identification mark 27 in the part except the lens part 26a among the surfaces. In this case, since the position of the eccentricity identification mark 27 can be seen from the back side even when the cover package 30 is covered, it is not necessary to provide the eccentricity identification mark 35 on the cover package 30.
  • the cover package 30 is provided with the eccentricity identification mark 35 corresponding to the eccentricity identification mark 14c of the lens unit 3, and the lens unit 3 is used as the sensor unit 5 with the eccentricity identification mark 35 as an index. Since the direction of eccentricity of the optical axis PA of the lens unit 3 can be easily identified, the lens unit 3 is attached to the optical axis 40A of the sensor 40 provided eccentric to the center 50A of the package 50. The optical axis PA can be aligned with certainty and easily aligned.
  • the wafer lens 20 may be omitted and the lens unit 3 may be configured by the wafer lens 10 and the cover package 30.
  • the wafer lens 10 may be omitted.
  • the lens unit 3 may be constituted by the wafer lens 20 and the cover package 30.
  • the optical axis PA of the wafer lenses 10 and 20 is not necessarily limited. It is not limited to what is aligned with the optical axis 40A of the sensor 40. That is, depending on the specifications of the imaging apparatus, the optical axis PA of the wafer lenses 10 and 20 may be aligned with a predetermined position that is shifted from the optical axis 40A of the sensor 40. (Example 3) For high-precision alignment between the sensor and the lens, which is a particular problem with wafer lenses, the general wafer lens is divided into pieces by cutting (dicing).
  • the optical axes are misaligned depending on the dicing accuracy when the optical axes are matched with each other.
  • FIG. 17 shows the wafer lens array W before dicing according to the present invention.
  • Two orthogonal straight lines m1 and m2, which are processing references, are provided in advance on the glass substrate outside the range that becomes a single lens unit by cutting.
  • the cutting reference lines m1 and m2 are shown by two lines orthogonal at the periphery, but are shown by four straight lines n1 to n4 orthogonal at the center as shown in FIG. 17B. May be. In this way, the actual length of the straight line becomes longer, and it is possible to adjust the parallelism with the rotation axis of the blade of the dicing more accurately.
  • FIG. 18 is used to explain blade wear, which is one of the problems during dicing.
  • the blade thickness gradually becomes thinner with processing.
  • the blade width changes in order to scrape the surface and bring new abrasive grains to the surface each time. Therefore, if the processing is continued in the same manner from the beginning, the outer diameter of the lens of the cut piece is increased by the amount that the blade width is thin as shown in FIG. 18C (L1 ⁇ L2).
  • symbol B1 indicates an initial blade
  • symbol B2 indicates a worn blade
  • 18A shows a part of the wafer lens array before cutting
  • FIG. 18B shows the individual wafer lens when it is cut by the initial blade B1
  • FIG. 18C shows wear. An individual wafer lens when cut by the blade B2 is shown.
  • the adjacent two surfaces 12a and 12b serving as the reference are specified in advance for the individual lens, and the distance LWv from the cutting reference line of the glass substrate to 12a and 12b, A method is proposed in which LWh is always processed to be constant regardless of blade wear.
  • the side surface Ba on one side of the blade is always aligned with the positions of LWv and LWh which are the reference for cutting.
  • the coordinates are returned to the origin, and correction is made so that there is no deviation from the cutting reference line.
  • the optical axis when the individual piece is first viewed from the top surface, even if the optical axis is at the center of the ⁇ diagonal line (rectangular diagonal line), the optical axis gradually deviates from the diagonal center.
  • an identification mark 14c is provided in advance in the corner 12c sandwiched between the reference side surfaces 12a and 12b. Therefore, even after cutting into individual pieces, the reference side surface can be easily identified by looking at the identification mark 14c, and the position of the optical axis PA can be known.
  • FIG. 19 shows a method of bonding and fixing the lens unit 3 thus cut out to the sensor unit 5 with the optical axis aligned.
  • the jig 120 is moved back and forth, left and right, and up and down.
  • the lens unit 3 is moved to a predetermined position corresponding to the sensor unit 5 (sensor 40), and the spacer 7 (adhered and fixed to the lower surface of the lens unit 3 in advance by a predetermined means) is detected at the predetermined position. Glue and fix to unit 5.
  • the two side surfaces 12 a and 12 b of the lens unit 3 are positioned so that the identification mark 14 c comes to the corner of the jig 130 with the cover package 30 removed.
  • the lens unit 3 is moved to a predetermined position by the jig 120 so as to contact the reference surfaces 130a and 130b of the jig 130 (see FIG. 19A).
  • the means for fixing the sensor unit to the jig 130 is the same as in the first and second embodiments, and is omitted here.
  • the processing method at the time of dicing is devised, and the position from the end surface of the lens unit 3 to the optical axis is made constant regardless of blade wear, so that the alignment with the sensor 40 can be performed with high accuracy. I showed that I can do it.
  • the wafer lens array is laminated, and then the individual lens units 3 are formed by dicing.
  • the wafer lens array is diced into individual wafer lenses.
  • a plurality of objects may be incorporated into the lens barrel to form a lens unit.
  • the identification mark 14c shown in the third embodiment is put in each wafer lens in advance, so that even after the wafer is separated into a single wafer lens, the identification mark 14c is combined and incorporated so that the light is not decentered. It is possible to align the axes.

Abstract

Provided is a lens unit wherein the direction of eccentricity of a wafer lens can be identified and the optical axis of the wafer lens and that of a light receiving sensor can be easily and reliably matched. An image pickup device, a method for manufacturing the image pickup device, and a wafer lens unit are also provided. A lens unit (3), which has a plurality of laminated wafer lenses (10) each of which has a resin mold section (14) formed on a glass substrate (12) and a lens section (14a) formed on a part of the mold section, and has a rectangular shape in the plane view, is provided with an eccentricity identifying indicator (14c), which indicates the direction wherein the optical axis (PA) of the lens section (14a) is eccentric with respect to the center of the glass substrate (12), on the surface of the mold section (14) of the wafer lens (10), excluding the lens section (14a).

Description

レンズユニット、レンズユニットとセンサーとの位置合わせ方法、撮像装置、撮像装置の製造方法及びウエハレンズユニットLens unit, method for aligning lens unit and sensor, imaging device, method for manufacturing imaging device, and wafer lens unit
 本発明は、レンズユニット、レンズユニットとセンサーとの位置合わせ方法及びそれを用いた撮像装置、撮像装置の製造方法に関する。 The present invention relates to a lens unit, a method for aligning a lens unit and a sensor, an imaging device using the same, and a method for manufacturing the imaging device.
 近年では、光学レンズを個々に成形して製造するだけではなく、例えば半導体の製造方法を応用した、ウエハと呼ばれるガラス製の基板上に微細なレンズ形状を樹脂で多数個同時にインプリント成形したウエハレンズアレイを個片化して形成された、いわゆる「ウエハレンズ」の開発が進んでいる。このような技術は、更なる小型化、大量生産が求められる携帯カメラ用レンズ等で特に有用である。 In recent years, not only individual optical lenses are molded and manufactured, but, for example, a wafer made by imprinting a large number of fine lens shapes with a resin on a glass substrate called a wafer using a semiconductor manufacturing method. A so-called “wafer lens” formed by dividing a lens array into individual pieces is being developed. Such a technique is particularly useful for portable camera lenses and the like that require further miniaturization and mass production.
 またこのようなウエハレンズは、更なる高解像力を得るため、複数のウエハレンズアレイを積層して接合した後、切断して個片化し、それらをセンサーに取り付けることでセンサーを含めた小型で高解像力を持つ撮像ユニットが大量生産できるという点でも注目されている。しかしながら、このようなウエハレンズは位置合わせが大きな課題である。特に複数のウエハレンズアレイを積層する場合の、各ウエハ上に形成された微少レンズの光軸合わせの精度や、既に積層、接合されて切断されたウエハレンズユニットをセンサーと位置合わせする精度はレンズ自体が微少となっているため、数μmオーダーの高い位置合わせ精度が求められる。 In addition, in order to obtain a higher resolution, such a wafer lens is obtained by stacking and bonding a plurality of wafer lens arrays, cutting them into individual pieces, and attaching them to the sensor to make it small and high inclusive of sensors. Attention is also paid to the fact that imaging units with resolving power can be mass-produced. However, alignment of such a wafer lens is a big problem. Especially when laminating multiple wafer lens arrays, the accuracy of optical axis alignment of micro lenses formed on each wafer and the accuracy of aligning wafer lens units that have already been laminated, bonded and cut with sensors are lenses. Since the device itself is very small, high alignment accuracy on the order of several μm is required.
 ここで光軸合わせについては、特許文献1のような基材レンズに樹脂レンズを形成した複合レンズの光軸合わせの技術が知られている。ここに開示されている方法は、ガラス製の部材(光学レンズ)に対し軸合わせ用の傾斜部を設けて芯合わせをおこない、その光学レンズと樹脂製の部材(樹脂レンズ)との軸ずれを防止し、軸ずれに基づく透過偏芯を抑えようとしているものである。(段落0023,0076など参照)。 Here, for optical axis alignment, a technique for optical axis alignment of a compound lens in which a resin lens is formed on a base lens as in Patent Document 1 is known. In the method disclosed herein, a glass member (optical lens) is provided with an inclined portion for axial alignment to perform center alignment, and axial misalignment between the optical lens and the resin member (resin lens) is performed. It is intended to prevent and suppress transmission eccentricity based on axial deviation. (See paragraphs 0023, 0076, etc.).
特開2008-158200号公報JP 2008-158200 A
 ところで、上記特許文献1のように、同心円状のフランジ部を有する円形状のレンズ同士を互いに接着する場合には問題ないが、ウエハレンズアレイを積層して接合した後、切断した四角い個片の中心に光軸中心が無く偏芯している場合には、センサーとの光軸を合わせる際に、偏芯の方向を識別して、偏芯方向を間違うことなくセンサーと光軸を合わせる必要がある。 By the way, there is no problem in the case where circular lenses having concentric circular flange portions are bonded to each other as in Patent Document 1 described above, but after the wafer lens arrays are stacked and joined, the cut square pieces are separated. If there is no center of the optical axis and it is eccentric, when aligning the optical axis with the sensor, it is necessary to identify the direction of eccentricity and align the sensor and optical axis without making a mistake in the eccentric direction. is there.
 しかも、特許文献1の光軸合わせの場合、あくまで形成される単一のレンズの物体側と被斜体側の光軸を合わせる点に終始しており、ウエハレンズで特に問題となる、センサーとレンズとの高精度の位置合わせについては開示されていない。特に一般的なウエハレンズは切断(ダイシング)によって個片化されているため、このような切断されたレンズをセンサーの光軸と一致させる場合、ダイシングの精度によってお互いの光軸にずれが生じる可能性が高いが、係る問題は何ら提示されていないため、特許文献1の技術をウエハレンズとセンサーとの位置合わせに適用する事はできない。 In addition, in the case of the optical axis alignment of Patent Document 1, the sensor and the lens, which are particularly problematic in the wafer lens, are all the points to match the optical axis on the object side and the oblique body side of a single lens to be formed. There is no disclosure of high-precision alignment. In particular, a general wafer lens is separated into pieces by cutting (dicing). Therefore, when such a cut lens is aligned with the optical axis of the sensor, the optical axes may be displaced due to the accuracy of dicing. However, since the problem is not presented at all, the technique of Patent Document 1 cannot be applied to the alignment between the wafer lens and the sensor.
 すなわち、ウエハレンズをデジタルカメラなどの電子機器の一部品として使用する場合、ウエハレンズは、透過光を受光する受光センサーと組み合わせられ使用されるものであるから、ウエハレンズにおいて各部材の光軸が一致していたとしても、受光センサーとの間で光軸がずれていれば、所望の画像を形成することは難しい。したがって、電子機器用のウエハレンズを製造する場合においては、ウエハレンズと受光センサーとの光軸合わせも重要な課題となる。 That is, when the wafer lens is used as one part of an electronic device such as a digital camera, the wafer lens is used in combination with a light receiving sensor that receives transmitted light. Even if they match, it is difficult to form a desired image if the optical axis is deviated from the light receiving sensor. Therefore, when manufacturing a wafer lens for electronic equipment, alignment of the optical axis of the wafer lens and the light receiving sensor is also an important issue.
 そこで、本発明の主な目的は、ウエハレンズの偏芯方向を識別でき、ウエハレンズと受光センサーとの光軸を容易かつ確実に一致させることができるレンズユニット、撮像装置及び撮像装置の製造方法を提供することにある。 Therefore, a main object of the present invention is to identify a decentering direction of a wafer lens, and to easily and surely match the optical axes of a wafer lens and a light receiving sensor, a lens unit, an imaging device, and a manufacturing method of the imaging device Is to provide.
 本発明の一態様によれば、
 ガラス基板上に樹脂製の成形部が形成され、その一部にレンズ部が形成された複数枚のウエハレンズを積層した平面視矩形状のレンズユニットであって、
 前記複数枚のウエハレンズの少なくとも一枚のウエハレンズの、前記成形部の表面のうち前記レンズ部を除く部分に、前記レンズ部の光軸が、前記ガラス基板の中心に対して偏芯している方向を示すための偏芯識別標識が設けられていることを特徴とするレンズユニットが提供される。
According to one aspect of the invention,
A lens unit having a rectangular shape in a plan view in which a plurality of wafer lenses each having a lens part formed thereon are stacked on a glass substrate,
The optical axis of the lens unit is decentered with respect to the center of the glass substrate on a portion of the surface of the molding unit excluding the lens unit of at least one wafer lens of the plurality of wafer lenses. A lens unit is provided, which is provided with an eccentricity identification mark for indicating the direction of the lens.
 本発明の他の態様によれば、
 ガラス基板上に樹脂製の成形部が形成され、その一部にレンズ部が形成された複数枚のウエハレンズを積層した平面視矩形状のレンズユニットの光軸を、各ウエハレンズの透過光を受光する受光センサーの所定位置に一致させるための位置合わせ方法であって、
 前記複数枚のウエハレンズの少なくとも一枚のウエハレンズの前記成形部の表面に、前記ガラス基板の中心に対して、前記レンズ部の光軸が偏芯している方向を示すための偏芯識別標識が形成されており、
 前記受光センサーを仮固定する仮固定工程と、
 前記受光センサーを仮固定した状態で、前記偏芯識別標識によって前記レンズユニットの光軸の偏芯方向を確認しながら、前記受光センサーの所定位置に一致させるように移動させる移動工程と、を有することを特徴とする位置合わせ方法が提供される。
According to another aspect of the invention,
A resin molded part is formed on a glass substrate, and the optical axis of a rectangular lens unit in plan view in which a plurality of wafer lenses each having a lens part formed thereon are laminated, and the transmitted light of each wafer lens is transmitted. A positioning method for matching with a predetermined position of a light receiving sensor for receiving light,
Eccentricity identification for indicating the direction in which the optical axis of the lens part is eccentric with respect to the center of the glass substrate on the surface of the molding part of at least one wafer lens of the plurality of wafer lenses A sign is formed,
A temporary fixing step of temporarily fixing the light receiving sensor;
A moving step of moving the light receiving sensor so as to coincide with a predetermined position while confirming the eccentric direction of the optical axis of the lens unit with the eccentricity identification mark while the light receiving sensor is temporarily fixed. An alignment method is provided.
 本発明の他の態様によれば、
 ガラス基板上に樹脂製の成形部が形成され、その一部にレンズ部が形成された複数枚のウエハレンズを積層した平面視矩形状のレンズユニットと、
 前記レンズ部を透過した入射光を受光する受光センサーを備えたセンサーユニットと、を備えた撮像装置であって、
 前記レンズユニットの最も物体側に位置するウエハレンズの成形部又は最も撮像装置側に位置するウエハレンズの成形部の表面に、前記ガラス基板の中心に対して、前記レンズ部の光軸が偏芯している方向を示すための偏芯識別標識が設けられ、
 前記レンズ部の光軸と前記受光センサーの光軸とが、ほぼ一致していることを特徴とする撮像装置が提供される。
According to another aspect of the invention,
A lens unit having a rectangular shape in a plan view in which a plurality of wafer lenses each having a lens part formed thereon are stacked on a glass substrate,
A sensor unit including a light receiving sensor that receives incident light transmitted through the lens unit, and an imaging device comprising:
The optical axis of the lens unit is decentered with respect to the center of the glass substrate on the surface of the molded part of the wafer lens located closest to the object side of the lens unit or the molded part of the wafer lens located closest to the imaging device. Eccentric identification mark is provided to indicate the direction
There is provided an imaging apparatus characterized in that an optical axis of the lens unit and an optical axis of the light receiving sensor substantially coincide with each other.
 本発明の他の態様によれば、
 ガラス基板上に樹脂製の成形部が形成され、その一部にレンズ部が形成された複数枚のウエハレンズを積層した平面視矩形状のレンズユニットと、
 前記レンズ部を透過した入射光を受光する受光センサーを備えたセンサーユニットと、を備えた撮像装置の製造方法であって、
 第1のガラス基板上に樹脂製の成形部が形成され、その一部に形成された複数のレンズ部と、前記成形部の表面に形成されて、前記第1のガラス基板の中心に対して、前記レンズ部の光軸が偏芯している方向を示すための偏芯識別標識と、を備えた第1のウエハレンズアレイと、第2のガラス基板上に樹脂製の複数のレンズ部を備えた第2のウエハレンズアレイとを準備し、前記第1のウエハレンズアレイと前記第2のウエハレンズアレイとを積層した後接合し、切断してレンズユニットを生成する生成工程と、
 前記受光センサーを仮固定する仮固定工程と、
 前記受光センサーを仮固定した状態で、前記偏芯識別標識によって前記レンズユニットの光軸の偏芯方向を確認しながら、前記受光センサーの所定位置に一致させるように移動させる移動工程と、を有することを特徴とする撮像装置の製造方法が提供される。
According to another aspect of the invention,
A lens unit having a rectangular shape in a plan view in which a plurality of wafer lenses each having a lens part formed thereon are stacked on a glass substrate,
A sensor unit including a light receiving sensor that receives incident light transmitted through the lens unit, and a manufacturing method of an imaging device,
A molded part made of resin is formed on the first glass substrate, a plurality of lens parts formed in a part thereof, and formed on the surface of the molded part, with respect to the center of the first glass substrate A first wafer lens array provided with an eccentricity identification mark for indicating a direction in which the optical axis of the lens unit is eccentric, and a plurality of resin lens units on the second glass substrate. A second wafer lens array provided, a stacking process of the first wafer lens array and the second wafer lens array, bonding, cutting, and generating a lens unit;
A temporary fixing step of temporarily fixing the light receiving sensor;
A moving step of moving the light receiving sensor so as to coincide with a predetermined position while confirming the eccentric direction of the optical axis of the lens unit with the eccentricity identification mark while the light receiving sensor is temporarily fixed. An image pickup apparatus manufacturing method is provided.
 本発明の他の態様によれば、
 ガラス基板上に樹脂製の複数の成形部が形成され、その一部に複数のレンズ部が形成された複数枚のウエハレンズアレイを積層したものを、ダイシングにより、個々の平面視矩形状のレンズユニットに切り出して使用するウエハレンズユニットにおいて、
 ダイシング時に、何れかのガラス基板に、外部から確認可能な少なくとも2本の直交する、切断の為のラインを設け、ラインを基準として所定の寸法で、個々のレンズユニットを切り出していく装置において、ダイシング時のブレードの磨耗量を考慮して、個々のレンズユニットの切り出される基準の側面と前記ガラス基板に設けた基準ラインとの間の寸法が、常に一定となるようにしたことを特徴とするウエハレンズユニットが提供される。
According to another aspect of the invention,
A plurality of resin molded parts are formed on a glass substrate, and a plurality of wafer lens arrays in which a plurality of lens parts are formed are laminated, and each lens having a rectangular shape in plan view is obtained by dicing. In the wafer lens unit used by cutting out into the unit,
At the time of dicing, in any of the glass substrates, at least two orthogonal cutting lines that can be confirmed from the outside are provided, and in an apparatus that cuts out individual lens units with a predetermined dimension based on the lines, In consideration of the amount of blade wear during dicing, the dimension between the reference side surface of each lens unit cut out and the reference line provided on the glass substrate is always constant. A wafer lens unit is provided.
 本発明の他の態様によれば、
 ガラス基板上に樹脂製の成形部が形成され、その一部にレンズ部が形成された複数枚のウエハレンズを積層した平面視矩形状のレンズユニットの光軸を、各ウエハレンズの透過光を受光する受光センサーの所定位置に一致させるための位置合わせ方法であって、
 前記複数枚のウエハレンズの少なくとも一枚のウエハレンズの前記成形部の表面の個々のレンズユニットの切り出される基準の2つの側面で挟まれるコーナーに識別標識が形成されており、
 前記受光センサーを仮固定する仮固定工程と、
 前記受光センサーを仮固定した状態で、前記識別標識によって前記レンズユニットの2箇所の基準側面を確認しながら、前記受光センサーの所定位置に一致させるように移動させる移動工程と、を有することを特徴とする位置合わせ方法が提供される。
According to another aspect of the invention,
A resin molded part is formed on a glass substrate, and the optical axis of a rectangular lens unit in plan view in which a plurality of wafer lenses each having a lens part formed thereon are laminated, and the transmitted light of each wafer lens is transmitted. A positioning method for matching with a predetermined position of a light receiving sensor for receiving light,
An identification mark is formed at a corner sandwiched between two reference side surfaces cut out of individual lens units on the surface of the molding portion of at least one wafer lens of the plurality of wafer lenses,
A temporary fixing step of temporarily fixing the light receiving sensor;
And a moving step of moving the light receiving sensor so as to coincide with a predetermined position while confirming two reference side surfaces of the lens unit with the identification mark while the light receiving sensor is temporarily fixed. An alignment method is provided.
 本発明によれば、ウエハレンズの成形部の表面に、レンズ部の光軸が、ガラス基板の中心に対して偏芯している方向を示すための偏芯識別標識が設けられているので、レンズユニットの光軸の偏芯方向を容易に識別でき、偏芯したセンサーの光軸にレンズユニットの光軸を確実かつ容易に一致させて位置合わせすることができる。 According to the present invention, the surface of the molded part of the wafer lens is provided with an eccentricity identification mark for indicating the direction in which the optical axis of the lens part is eccentric with respect to the center of the glass substrate. The eccentric direction of the optical axis of the lens unit can be easily identified, and the optical axis of the lens unit can be reliably and easily aligned with the optical axis of the eccentric sensor.
(a)本発明の好ましい実施例1にかかる撮像装置の概略構成を示す断面図であり、(b)当該撮像装置中のセンサーユニットの概略的な平面図である。(A) It is sectional drawing which shows schematic structure of the imaging device concerning the preferable Example 1 of this invention, (b) It is a schematic top view of the sensor unit in the said imaging device. 実施例1にかかる撮像装置の平面図であってパッケージを外した状態を示す図面である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view of an image pickup apparatus according to a first embodiment, illustrating a state where a package is removed. 実施例1にかかるパッケージの概略構成を示す斜視図である。1 is a perspective view illustrating a schematic configuration of a package according to Example 1. FIG. 実施例1にかかる撮像装置の平面図であってパッケージを装着した状態を示す図面である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view of an image pickup apparatus according to a first embodiment, illustrating a state where a package is mounted. 実施例1にかかる光軸合わせ方法の一工程を概略的に説明するための図面である。1 is a drawing for schematically explaining one step of an optical axis alignment method according to Example 1; 図5の後続の工程を説明するための図面である。FIG. 6 is a diagram for explaining a subsequent process of FIG. 5. 実施例1にかかるウエハレンズの成形部の概略構成を説明するための断面図である。3 is a cross-sectional view for explaining a schematic configuration of a molded part of the wafer lens according to Example 1. FIG. 図7の変形例を示す断面図である。It is sectional drawing which shows the modification of FIG. (a)本発明の好ましい実施例2にかかる撮像装置の概略構成を示す断面図であり、(b)当該撮像装置中のセンサーユニットの概略的な平面図である。(A) It is sectional drawing which shows schematic structure of the imaging device concerning preferable Example 2 of this invention, (b) It is a schematic top view of the sensor unit in the said imaging device. 実施例2にかかるレンズユニットの概略構成を示す平面図である。6 is a plan view illustrating a schematic configuration of a lens unit according to Embodiment 2. FIG. 実施例2にかかるレンズユニットの概略構成を示す底面図である。FIG. 6 is a bottom view illustrating a schematic configuration of a lens unit according to Example 2. 実施例2にかかる光軸合わせ方法の工程を概略的に説明するための図面である。10 is a diagram for schematically explaining steps of an optical axis alignment method according to Example 2; 実施例2で使用される治具の概略構成を示す平面図である。6 is a plan view showing a schematic configuration of a jig used in Example 2. FIG. 実施例2にかかる光軸合わせ方法の工程を概略的に説明するための図面である。10 is a diagram for schematically explaining steps of an optical axis alignment method according to Example 2; 図5の工程を説明するための図面である。It is drawing for demonstrating the process of FIG. 図6の工程を説明するための図面である。It is drawing for demonstrating the process of FIG. 実施例3にかかるダイシング加工前のウエハを示す平面図である。It is a top view which shows the wafer before the dicing process concerning Example 3. FIG. 実施例3にかかるウエハレンズアレイの切断状態を示す平面図である。10 is a plan view showing a cut state of a wafer lens array according to Example 3. FIG. 実施例3にかかる光軸合わせ方法の一工程を概略的に説明するための図面である。10 is a drawing for schematically explaining one step of an optical axis alignment method according to Example 3;
 以下、図面を参照しながら本発明の好ましい実施例について説明する。
(実施例1)
 図1(a)に示す通り、本発明の好ましい実施例1にかかる撮像装置1は主にはレンズユニット3,センサーユニット5,スペーサ7で構成されており、レンズユニット3とセンサーユニット5とがスペーサ7で介在された構成を有している。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
Example 1
As shown in FIG. 1A, an imaging apparatus 1 according to a first preferred embodiment of the present invention is mainly composed of a lens unit 3, a sensor unit 5, and a spacer 7. The lens unit 3 and the sensor unit 5 are composed of the lens unit 3, the sensor unit 5, and the spacer 7. It has a configuration of being interposed by a spacer 7.
 レンズユニット3は、ウエハレンズ10,20とカバーパッケージ30とを有しており、ウエハレンズ10がウエハレンズ20上に積層・接着された状態でウエハレンズ10,20がカバーパッケージ30に覆われている。 The lens unit 3 includes wafer lenses 10 and 20 and a cover package 30, and the wafer lenses 10 and 20 are covered with the cover package 30 in a state where the wafer lens 10 is laminated and bonded onto the wafer lens 20. Yes.
 ウエハレンズ10は平板状を呈したガラス基板12を有している。ガラス基板12の上部には成形部14が形成されており、ガラス基板12の下部には成形部16が形成されている。 The wafer lens 10 has a glass substrate 12 having a flat plate shape. A molding part 14 is formed on the upper part of the glass substrate 12, and a molding part 16 is formed on the lower part of the glass substrate 12.
 成形部14の略中央部には凸状を呈した凸レンズ部14aが形成されており、成形部14では凸レンズ部14aから外周部に向けて上方に傾斜した傾斜部14bが形成されている。 A convex lens portion 14a having a convex shape is formed at a substantially central portion of the molded portion 14, and the molded portion 14 has an inclined portion 14b inclined upward from the convex lens portion 14a toward the outer peripheral portion.
 成形部16の略中央部には凹状を呈した凹レンズ部16aが形成されており、成形部16では凹レンズ部16aの周辺部16bは略平坦となっている。 A concave lens portion 16a having a concave shape is formed at a substantially central portion of the molded portion 16. In the molded portion 16, a peripheral portion 16b of the concave lens portion 16a is substantially flat.
 ウエハレンズ20も平板状を呈したガラス基板22を有しており、ガラス基板22の上部と下部とに成形部24,26がそれぞれ形成されている。 The wafer lens 20 also has a glass substrate 22 having a flat plate shape, and formed portions 24 and 26 are formed on the upper and lower portions of the glass substrate 22, respectively.
 成形部24の略中央部には凹状を呈した凹レンズ部24aが形成されており、成形部24では凹レンズ部24aの周辺部24bは略平坦となっている。 A concave lens portion 24a having a concave shape is formed at a substantially central portion of the molded portion 24. In the molded portion 24, a peripheral portion 24b of the concave lens portion 24a is substantially flat.
 成形部26の略中央部には凸状を呈した凸レンズ部26aが形成されており、成形部26では凸レンズ部26aの周辺部26bは略平坦となっている。 A convex lens portion 26a having a convex shape is formed at a substantially central portion of the molding portion 26. In the molding portion 26, a peripheral portion 26b of the convex lens portion 26a is substantially flat.
 ウエハレンズ10,20において、成形部14,16,24,26は光硬化性樹脂を成形した部位で光透過性を有しており、特に、成形部14,16,24,26中の凸レンズ部14a,凹レンズ部16a,凹レンズ部24a,凸レンズ部26aはレンズ機能(光学機能)を発揮するレンズ有効部となっている。 In the wafer lenses 10, 20, the molding parts 14, 16, 24, 26 are light transmissive at the part where the photocurable resin is molded, and in particular, convex lens parts in the molding parts 14, 16, 24, 26 14a, the concave lens portion 16a, the concave lens portion 24a, and the convex lens portion 26a are lens effective portions that exhibit a lens function (optical function).
 以上のウエハレンズ10,20においてこれらを物体側(図1の凸レンズ14a側)から見た場合には、図2に示す通り、凸レンズ部14a,凹レンズ部16a,凹レンズ部24a,凸レンズ部26aは同心円状に配置されており、これらレンズ部同士で光軸PAが互いに一致するように上下に積層されている。 When these are viewed from the object side (the convex lens 14a side in FIG. 1) in the wafer lenses 10 and 20, the convex lens portion 14a, the concave lens portion 16a, the concave lens portion 24a, and the convex lens portion 26a are concentric as shown in FIG. These lens portions are stacked vertically so that their optical axes PA coincide with each other.
 このようなウエハレンズ10,20が積層されたレンズユニット3は、図示しないが、ガラス基板の表裏面に、上述した複数の凸レンズ部14a,26aや凹レンズ部16a、24aが形成された複数のウエハレンズアレイを積層して接合後、切断して平面視矩形状に個片化して形成されるものである。 Although not shown, the lens unit 3 on which the wafer lenses 10 and 20 are laminated is a plurality of wafers in which the above-described plurality of convex lens portions 14a and 26a and concave lens portions 16a and 24a are formed on the front and back surfaces of a glass substrate. After the lens arrays are stacked and joined, they are cut and separated into a rectangular shape in plan view.
 図1(a),図2に示す通り、ウエハレンズ10の成形部14の表面のうちレンズ部14aを除く部分には、レンズ部14aの光軸PAが、ガラス基板12の中心12Aに対して偏芯している方向を示すための偏芯識別標識14cが設けられている。 As shown in FIGS. 1A and 2, the optical axis PA of the lens portion 14 a is located with respect to the center 12 </ b> A of the glass substrate 12 on the surface of the molded portion 14 of the wafer lens 10 except for the lens portion 14 a. An eccentricity identification mark 14c is provided for indicating an eccentric direction.
 センサーユニット5のパッケージ50上にセンサー40のセンターが一般的には、パッケージ50の基準となる端面50a,50bからみて偏芯して配置されている場合が多くその場合、ウエハレンズアレイを積層して接合後、個片化するために切断する際に、偏芯して配置されたセンサー40部分に対応するよう、切断位置を予め僅かながら偏芯した位置で切断する場合がありうる。なお、ここでいう端面50aや端面50bからみて偏芯とは、例えば端面50aとそれに対向する端面50cがあるとき、これらの端面50a,50cの中線に対してセンサー40のセンターが50a側に偏っている、もしくは50c側に偏っている場合や、端面50bとそれに対向する端面50dがあるとき、これらの端面50,50dの中線に対してセンサー40のセンターが50b側に偏っている、もしくは50d側に偏っている場合をいう。 The center of the sensor 40 is generally arranged on the package 50 of the sensor unit 5 in an eccentric manner as viewed from the end surfaces 50a and 50b serving as the reference of the package 50. In this case, a wafer lens array is laminated. Then, when cutting for separation after joining, the cutting position may be cut at a slightly eccentric position in advance so as to correspond to the eccentric sensor 40 portion. The eccentricity seen from the end face 50a and the end face 50b mentioned here means that, for example, when there is an end face 50a and an end face 50c opposite to the end face 50a, the center of the sensor 40 is on the 50a side with respect to the midline of these end faces 50a, 50c. When it is biased or biased toward the 50c side, or when there is an end surface 50b and an end surface 50d facing it, the center of the sensor 40 is biased toward the 50b side with respect to the midline of these end surfaces 50, 50d. Or the case where it is biased to the 50d side.
 本実施形態では、図1(b)に示す通り、センサー40の光軸40Aがパッケージ50の中心50Aに対して偏芯している(H1<H2、V1<V2)場合、図2に示す通り、レンズ部14aの光軸PAもガラス基板12の中心12Aに対して偏芯させて切断する(H11<H12、V11<V12)。このような場合に、レンズ部14aは微少なため、どちら側に偏芯して切断されたかが判別しにくいことがあるが、偏芯識別標識14cを表示しておくことにより、センサーユニット5への組み込みの際、組み込み方向を誤って組み込むことを防止できる、という利点がある。 In the present embodiment, as shown in FIG. 1B, when the optical axis 40A of the sensor 40 is eccentric with respect to the center 50A of the package 50 (H1 <H2, V1 <V2), as shown in FIG. The optical axis PA of the lens portion 14a is also decentered from the center 12A of the glass substrate 12 and cut (H11 <H12, V11 <V12). In such a case, since the lens portion 14a is small, it may be difficult to determine which side is decentered and cut. However, by displaying the eccentricity identification mark 14c, When installing, there is an advantage that it is possible to prevent the wrong installation direction.
 偏芯識別標識14cは、ガラス基板12を形成する四つの側面のうち、隣り合う二つの側面12a,12bによって形成されるコーナー12cの表面に設けられている。この隣り合う二つの側面12a,12bは、センサーユニット5のパッケージ50の位置あわせの基準となる端面50a,50bにそれぞれ対応する面である。従って、レンズユニット3をセンサーユニット5に対して位置合わせを行う際に、偏芯識別標識14cを中に挟んで両側面12a,12bと端面50a,50bをそれぞれ並行に合わせることで、センサーユニット5とレンズユニット3の偏芯方向を容易に合わせることができる。 The eccentricity identification mark 14c is provided on the surface of the corner 12c formed by two adjacent side surfaces 12a and 12b among the four side surfaces forming the glass substrate 12. The two adjacent side surfaces 12a and 12b are surfaces corresponding to the end surfaces 50a and 50b, respectively, which serve as a reference for alignment of the package 50 of the sensor unit 5. Therefore, when the lens unit 3 is aligned with the sensor unit 5, the sensor unit 5 is aligned by aligning the side surfaces 12a and 12b and the end surfaces 50a and 50b in parallel with the eccentricity identification mark 14c interposed therebetween. And the eccentric direction of the lens unit 3 can be easily matched.
 また、偏芯識別標識14cは、成形部14の表面に対して窪むように凹状に形成されている。 Further, the eccentricity identification mark 14c is formed in a concave shape so as to be recessed with respect to the surface of the molded part 14.
 偏芯識別標識14cは、レンズ部14aの成形と同時に形成することが好ましい。例えば、レンズ部14aを成形する成形型の所定位置に、偏芯識別標識14cに対応する凸状部が形成された成形型を使用すれば良い。偏芯識別標識14cをレンズ部14aの成形と同時に形成することによって、別途、印刷等の後処理を行うことなく、製造の簡略化を図れ、生産性が向上する。なお、図2では偏芯識別標識14cを凹状に形成しているが、成形部14の表面に対して突出するように凸状に形成しても良い。さらに、偏芯識別標識14cは平面視円形状としているが、この形状も適宜変更可能である。 The eccentric identification mark 14c is preferably formed simultaneously with the molding of the lens portion 14a. For example, a molding die in which a convex portion corresponding to the eccentricity identification mark 14c is formed at a predetermined position of the molding die for molding the lens portion 14a may be used. By forming the eccentricity identification mark 14c simultaneously with the molding of the lens portion 14a, manufacturing can be simplified and productivity can be improved without performing post-processing such as printing. In FIG. 2, the eccentricity identification mark 14 c is formed in a concave shape, but may be formed in a convex shape so as to protrude from the surface of the molding portion 14. Furthermore, although the eccentric identification mark 14c has a circular shape in plan view, this shape can also be changed as appropriate.
 図3に示す通り、カバーパッケージ30は無底箱状を呈しており(下方が開放されており)、四角状を呈した1枚の天板部32と4枚の側板部34とから構成されている。 As shown in FIG. 3, the cover package 30 has a bottomless box shape (the lower part is opened), and is composed of one top plate portion 32 and four side plate portions 34 each having a square shape. ing.
 天板部32の中央部には円形状の開口部32aが形成されている。 A circular opening 32 a is formed at the center of the top plate 32.
 また、天板部32の一つのコーナーには、レンズユニット3の偏芯識別標識14cと同様に凹状に偏芯識別標識35が形成されている。この偏芯識別標識35は、カバーパッケージ30をレンズユニット3に被せる場合に、偏芯識別標識35と偏芯識別標識14cとが互いに対応するコーナー(隣り合う2つの側面30a,30aにより形成されるコーナー30b)に配置されている。したがって、カバーパッケージ30を被せることで覆われたレンズユニット3の偏芯識別標識14cの位置が、カバーパッケージ30の偏芯識別標識35によって外側からでもわかるようになっている。なお、偏芯識別標識35は、凸状であっても良いし、印刷等で形成しても良い。 Further, at one corner of the top plate 32, an eccentricity identification mark 35 is formed in a concave shape like the eccentricity identification mark 14c of the lens unit 3. When the cover package 30 is put on the lens unit 3, the eccentricity identification mark 35 is formed by a corner (an adjacent two side surfaces 30a and 30a) where the eccentricity identification mark 35 and the eccentricity identification mark 14c correspond to each other. It is arranged at the corner 30b). Therefore, the position of the eccentricity identification mark 14 c of the lens unit 3 covered by covering the cover package 30 can be seen from the outside by the eccentricity identification mark 35 of the cover package 30. The eccentricity identification mark 35 may be convex or formed by printing or the like.
 さらに、4つの側板部34のうち互いに隣り合う2つの側板部34には切欠部34aが3箇所形成されている(残りの2つの側板部34には当該部位は形成されていない。)。 Furthermore, three notches 34a are formed in two side plate portions 34 adjacent to each other among the four side plate portions 34 (the corresponding portions are not formed in the remaining two side plate portions 34).
 図1(a),(b)に示す通り、センサーユニット5は主にはセンサー40,パッケージ50,カバーガラス60から構成されている。 As shown in FIGS. 1A and 1B, the sensor unit 5 mainly includes a sensor 40, a package 50, and a cover glass 60.
 センサー40はレンズユニット3を透過した光を受光する受光センサーであって、受光した光を光電変換して電気信号を外部機器(図示略)に出力可能となっている。 The sensor 40 is a light receiving sensor that receives light transmitted through the lens unit 3 and can photoelectrically convert the received light to output an electrical signal to an external device (not shown).
 パッケージ50は有底箱状を呈しており、上方が開放されている。図1(b)に示す通り、パッケージ50の略中央部にはセンサー40が配置されている。 The package 50 has a bottomed box shape and is open at the top. As shown in FIG. 1B, a sensor 40 is disposed at a substantially central portion of the package 50.
 カバーガラス60はパッケージ50の上部に蓋体として設けられており、センサー40はパッケージ50とカバーガラス60とに囲まれた空間中に密閉されている。 The cover glass 60 is provided as a lid on the top of the package 50, and the sensor 40 is sealed in a space surrounded by the package 50 and the cover glass 60.
 図1(b)に示す通り、スペーサ7はレンズユニット3の成形部26とセンサーユニット5のカバーガラス60との間に介在しており、レンズユニット3とセンサーユニット5との間に一定の間隔を付与している。 As shown in FIG. 1B, the spacer 7 is interposed between the molding portion 26 of the lens unit 3 and the cover glass 60 of the sensor unit 5, and a certain distance is provided between the lens unit 3 and the sensor unit 5. Is granted.
 図2,図4に示す通り、スペーサ7は四角枠状を呈しており、4辺のうち互いに隣り合う2辺及びそのコーナー部に突起部7aが形成されている。突起部7aはカバーパッケージ30の外側に突出しており、詳しくは切欠部34aから突出(露出)している。 As shown in FIG. 2 and FIG. 4, the spacer 7 has a rectangular frame shape, and two sides adjacent to each other among the four sides and the projections 7a are formed on the corners thereof. The protrusion 7a protrudes outside the cover package 30, and more specifically, protrudes (exposes) from the notch 34a.
 スペーサ7の内側にはIRカットフィルタ70が設けられている。IRカットフィルタ70はカバーガラス60の上方に配置され、センサー40に入射しようとする赤外線を遮光するようになっている。 An IR cut filter 70 is provided inside the spacer 7. The IR cut filter 70 is disposed above the cover glass 60 and shields infrared rays that are to enter the sensor 40.
 続いて、レンズユニット3とセンサーユニット5との光軸合わせ方法であって、詳しくはウエハレンズ10,20とセンサー40との光軸合わせ方法について説明する。 Subsequently, an optical axis alignment method between the lens unit 3 and the sensor unit 5, specifically, an optical axis alignment method between the wafer lenses 10 and 20 and the sensor 40 will be described.
 はじめに、図5に示す通り、平坦状のベース100に対し、IRカットフィルタ70を事前に装着したスペーサ7を載置する。 First, as shown in FIG. 5, the spacer 7 on which the IR cut filter 70 is mounted in advance is placed on the flat base 100.
 ベース100にはスペーサ7を所定位置に位置決めする、物体側から見た場合(図5でいうと治具挿入側から見た場合)、L字型の治具110(図5ではその一部のみが表示されている)が立設・固定されており、図15に示す通り、スペーサ7の各突起部7aを治具110にそれぞれ当接させ、スペーサ7を治具110に対応するベース100上に仮固定する。 In the base 100, the spacer 7 is positioned at a predetermined position. When viewed from the object side (when viewed from the jig insertion side in FIG. 5), an L-shaped jig 110 (only a part thereof is illustrated in FIG. 5). As shown in FIG. 15, each protrusion 7 a of the spacer 7 is brought into contact with the jig 110, and the spacer 7 is placed on the base 100 corresponding to the jig 110. Temporarily fix to.
 その後、位置合わせ用の治具120を用いて、レンズユニット3をスペーサ7に対し位置合わせして接着・固定する。一方、予めレンズユニット3の偏芯識別標識14cとカバーパッケージ30の偏芯識別標識35とが互いに対向するように、レンズユニット3にカバーパッケージ30を被せておく。 Thereafter, the lens unit 3 is aligned with the spacer 7 by using a positioning jig 120 and bonded and fixed. On the other hand, the lens unit 3 is previously covered with the cover package 30 so that the eccentricity identification mark 14c of the lens unit 3 and the eccentricity identification mark 35 of the cover package 30 face each other.
 治具120は先端が先細のテーパ状を呈しており、治具120にはテーパ部120aが形成されている。治具120の中央部にはレンズユニット3を吸引可能な吸引部120b(吸引孔)が形成されている。治具120は前後左右方向(2次元平面上)と上下方向とに移動可能となっている(図5,図6中矢印参照)。 The jig 120 has a tapered shape with a tapered tip, and the jig 120 has a tapered portion 120a. A suction part 120 b (suction hole) capable of sucking the lens unit 3 is formed at the center of the jig 120. The jig 120 is movable in the front-rear and left-right directions (on a two-dimensional plane) and in the up-down direction (see arrows in FIGS. 5 and 6).
 そして、治具120をレンズユニット3の成形部14に対向配置してテーパ部120aと傾斜部14bとを当接させる。 Then, the jig 120 is disposed opposite to the molding portion 14 of the lens unit 3 so that the tapered portion 120a and the inclined portion 14b are brought into contact with each other.
 この状態において、吸引部120bを介してレンズユニット3を治具120で吸引しながら、治具120を前後左右方向及び上下方向に移動させ、治具120の位置にレンズユニット3の傾斜部が当接している事による調整作用によりレンズユニット3をスペーサ7の所定位置に移動させ、その所定位置でレンズユニット3をスペーサ7に接着・固定する。 In this state, while the lens unit 3 is sucked by the jig 120 through the suction portion 120b, the jig 120 is moved in the front-rear and left-right directions and the vertical direction, and the inclined portion of the lens unit 3 is brought into contact with the position of the jig 120. The lens unit 3 is moved to a predetermined position of the spacer 7 by the adjusting action due to the contact, and the lens unit 3 is adhered and fixed to the spacer 7 at the predetermined position.
 つまり、治具120の下降に伴いレンズユニットの成形部26がスペーサ7に対し徐々に押圧されるが、これとともに、成形部14の傾斜部14bが治具120のテーパ部120aに完全に嵌合するように微小移動し、レンズユニット3がスペーサ7上において治具120の配置位置に応じた適切な位置(所定位置)に位置調整される。 In other words, as the jig 120 is lowered, the molded part 26 of the lens unit is gradually pressed against the spacer 7, and at the same time, the inclined part 14b of the molded part 14 is completely fitted to the tapered part 120a of the jig 120. Thus, the lens unit 3 is adjusted to an appropriate position (predetermined position) corresponding to the position of the jig 120 on the spacer 7.
 また、この場合、レンズユニット3のカバーパッケージ30には切欠部34aが形成されているから、スペーサ7の突起部7aが切欠部34aから露出(突出)した状態で治具110に当接したまま保持される。その結果、スペーサ7の突起部7aが仮固定の基準となって、スペーサ7の仮固定位置は維持される。 Further, in this case, since the notch 34a is formed in the cover package 30 of the lens unit 3, the protrusion 7a of the spacer 7 remains in contact with the jig 110 while being exposed (projected) from the notch 34a. Retained. As a result, the protrusion 7a of the spacer 7 becomes a reference for temporary fixing, and the temporary fixing position of the spacer 7 is maintained.
 なお、レンズユニット3をスペーサ7に接着・固定する場合には、その間に光硬化性樹脂製の接着剤を事前に塗布しておき、レンズユニット3の位置決めがされたら、その塗布部位に向けて光照射すれば良い。 In addition, when the lens unit 3 is bonded and fixed to the spacer 7, an adhesive made of a photo-curing resin is applied in advance, and when the lens unit 3 is positioned, the lens unit 3 is directed toward the application site. What is necessary is just to irradiate light.
 さらに、この工程では、カバーパッケージ30を外した状態でレンズユニット3をスペーサ7に接着・固定しても良い。レンズユニット3をスペーサ7に接着・固定したら、レンズユニット3の偏芯識別標識14cとカバーパッケージ30の偏芯識別標識35とが互いに対向し、かつ、カバーパッケージ30の切欠部34aをスペーサ7の突起部7aに嵌合させるように、カバーパッケージ30をウエハレンズ10,20の上方から覆えば良い。 Furthermore, in this step, the lens unit 3 may be bonded and fixed to the spacer 7 with the cover package 30 removed. When the lens unit 3 is bonded and fixed to the spacer 7, the eccentricity identification mark 14 c of the lens unit 3 and the eccentricity identification mark 35 of the cover package 30 face each other, and the notch 34 a of the cover package 30 is attached to the spacer 7. The cover package 30 may be covered from above the wafer lenses 10 and 20 so as to be fitted to the protrusion 7a.
 その後、レンズユニット3をスペーサ7に接着・固定したのと同様に、(レンズユニット3を接着・固定済みの)スペーサ7をセンサーユニット5に接着・固定する。 Thereafter, the spacer 7 (with the lens unit 3 bonded and fixed) is bonded and fixed to the sensor unit 5 in the same manner as the lens unit 3 is bonded and fixed to the spacer 7.
 詳しくは、図6に示す通り、ベース100に対し、センサーユニット5を載置する。 Specifically, as shown in FIG. 6, the sensor unit 5 is mounted on the base 100.
 ベース100には図1(b)同様に物体側から見た場合に、センサーユニット5をベース上の所定位置に位置決めするためのL字型の治具130(図6では一部のみ表示されている)が立設・固定されており、図16に示す通り、センサーユニット5のパッケージ50の端面(隣り合う2つの端面50a,50b)を治具130にそれぞれ当接させ、センサーユニット5を治具130に対応するベース100上の所定位置Cに仮固定する。 As shown in FIG. 1B, the base 100 has an L-shaped jig 130 for positioning the sensor unit 5 at a predetermined position on the base when viewed from the object side. As shown in FIG. 16, the end surfaces of the package 50 of the sensor unit 5 (the two adjacent end surfaces 50a and 50b) are brought into contact with the jig 130 to fix the sensor unit 5 as shown in FIG. Temporarily fix at a predetermined position C on the base 100 corresponding to the tool 130.
 この状態において、再度、位置合わせ用の治具120を用いて、スペーサ7をセンサーユニット5に対し位置合わせして接着・固定する。 In this state, the spacer 7 is aligned with the sensor unit 5 by using the alignment jig 120 again, and is bonded and fixed.
 ここでは、治具120のテーパ部120aと傾斜部14bとを当接させたまま、吸引部120bを介してレンズユニット3を治具120で吸引しながら、治具120を前後左右方向及び上下方向に移動させ、レンズユニット3をセンサーユニット5(センサー40)に対応する所定位置に移動させ、その所定位置でスペーサ7をセンサーユニット5に接着・固定する。治具120で吸引しながらレンズユニット3を移動させる際には、カバーパッケージ30に設けられた偏芯識別標識35を指標とし、偏芯識別標識35が設けられたコーナー30b(2つの側面30a,30a)が治具130のコーナーを向く状態にして(図16参照)、治具120によってレンズユニット3を所定位置に移動させる。 Here, while the lens unit 3 is sucked by the jig 120 via the suction part 120b while the taper part 120a and the inclined part 14b of the jig 120 are in contact with each other, the jig 120 is moved back and forth, left and right, and up and down. The lens unit 3 is moved to a predetermined position corresponding to the sensor unit 5 (sensor 40), and the spacer 7 is bonded and fixed to the sensor unit 5 at the predetermined position. When the lens unit 3 is moved while sucking with the jig 120, the eccentricity identification mark 35 provided on the cover package 30 is used as an index, and the corner 30b (two side faces 30a, The lens unit 3 is moved to a predetermined position by the jig 120 with 30a) facing the corner of the jig 130 (see FIG. 16).
 この場合も先に説明したレンズユニット3とスペーサ7との位置合わせ同様、治具120の下降に伴いスペーサ7がカバーガラス60に対し徐々に押圧されるが、これとともに、成形部14の傾斜部14bが治具120のテーパ部120aに完全に嵌合するように微小移動し、レンズユニット3がセンサーユニット5上において治具120の配置位置に応じた適切な位置(所定位置)に位置決めされ、これによりレンズユニット3のウエハレンズ10,20の光軸PAとセンサーユニット5のセンサー40の光軸40Aとが一致する。 Also in this case, as in the alignment of the lens unit 3 and the spacer 7 described above, the spacer 7 is gradually pressed against the cover glass 60 as the jig 120 is lowered. 14b is finely moved so as to be completely fitted to the tapered portion 120a of the jig 120, and the lens unit 3 is positioned on the sensor unit 5 at an appropriate position (predetermined position) according to the arrangement position of the jig 120, Thereby, the optical axis PA of the wafer lenses 10 and 20 of the lens unit 3 and the optical axis 40A of the sensor 40 of the sensor unit 5 coincide.
 さらに、この工程でも、カバーパッケージ30をレンズユニット3から外した状態で、スペーサ7をセンサーユニット5に接着・固定しても良い。この場合、治具120で吸引しながらレンズユニット3を移動させる際に、レンズユニット3に設けられた偏芯識別標識14cを指標とし、偏芯識別標識14cが設けられたコーナー12c(2つの側面12a,12b)が治具130のコーナーを向く状態にして(図16参照)、治具120によってレンズユニット3を所定位置に移動させる。そして、レンズユニット3及びスペーサ7をセンサーユニット5に接着・固定したら、カバーパッケージ30の切欠部34aをスペーサ7の突起部7aに嵌合させるように、カバーパッケージ30をウエハレンズ10,20の上方から覆えば良い。 Furthermore, in this process, the spacer 7 may be adhered and fixed to the sensor unit 5 with the cover package 30 removed from the lens unit 3. In this case, when the lens unit 3 is moved while being sucked by the jig 120, the eccentricity identification mark 14c provided on the lens unit 3 is used as an index, and the corner 12c (two side surfaces) provided with the eccentricity identification mark 14c is used. 12a, 12b) is directed to the corner of the jig 130 (see FIG. 16), and the lens unit 3 is moved to a predetermined position by the jig 120. When the lens unit 3 and the spacer 7 are bonded and fixed to the sensor unit 5, the cover package 30 is placed above the wafer lenses 10 and 20 so that the notch 34 a of the cover package 30 is fitted to the protrusion 7 a of the spacer 7. Cover it.
 このようにレンズユニット3、スペーサ7及びセンサーユニット5の全てを接着・固定した後、最後にカバーパッケージ30で覆う場合には、カバーパッケージ30には上述した偏芯識別標識35を設ける必要が無い。 When the lens unit 3, the spacer 7, and the sensor unit 5 are all bonded and fixed as described above, and finally covered with the cover package 30, it is not necessary to provide the above-described eccentricity identification mark 35 on the cover package 30. .
 また、偏芯識別標識14cは、ウエハレンズ10の成形部14の表面のうちレンズ部14aを除く部分に設けるものとしたが、図1(a)に示す通り、ウエハレンズ20の成形部26の表面のうちレンズ部26aを除く部分に偏芯識別標識27を設けるものとしても良い。この場合、カバーパッケージ30を被せた状態でも偏芯識別標識27の位置が裏側から見てわかるので、カバーパッケージ30に上述の偏芯識別標識35を設ける必要が無くなる。 The eccentricity identification mark 14c is provided on the surface of the molded part 14 of the wafer lens 10 except for the lens part 14a. However, as shown in FIG. It is good also as what provides the eccentric identification mark 27 in the part except the lens part 26a among the surfaces. In this case, since the position of the eccentricity identification mark 27 can be seen from the back side even when the cover package 30 is covered, it is not necessary to provide the eccentricity identification mark 35 on the cover package 30.
 なお、ここではセンサー40の光軸40Aとレンズユニット3のウエハレンズ10,20の光軸PAとの光軸合わせを示しているが、必ずしもウエハレンズ10,20の光軸PAはセンサー40の光軸40Aと位置合わせするものには限定されない。つまり、撮像装置の仕様によっては、センサー40の光軸40Aからずれた所定位置に対してウエハレンズ10,20の光軸PAを位置合わせするものであっても良い。 Although the optical axis alignment of the optical axis 40A of the sensor 40 and the optical axis PA of the wafer lenses 10 and 20 of the lens unit 3 is shown here, the optical axis PA of the wafer lenses 10 and 20 is not necessarily the light of the sensor 40. It is not limited to what is aligned with the shaft 40A. That is, depending on the specifications of the imaging apparatus, the optical axis PA of the wafer lenses 10 and 20 may be aligned with a predetermined position that is shifted from the optical axis 40A of the sensor 40.
 なおここで、「センサー40の光軸40A」とは受光センサーの画素エリアの内、実際に撮像装置で撮影のために使用可能な有効画素エリアの対角中心をいうものとする。 Here, “the optical axis 40A of the sensor 40” refers to the diagonal center of the effective pixel area that can actually be used for photographing by the imaging device in the pixel area of the light receiving sensor.
 この場合(スペーサ7とセンサーユニット5とを接着する場合)にも、その間に光硬化性樹脂製の接着剤を事前に塗布しておき、レンズユニット3の位置決めがされたら、その塗布部位に向けて光照射すれば良い。 Also in this case (when the spacer 7 and the sensor unit 5 are bonded), a photo-curing resin adhesive is applied in advance between them, and when the lens unit 3 is positioned, it is directed toward the application site. Light irradiation.
 その結果、スペーサ7を介して、レンズユニット3のウエハレンズ10,20の光軸PAと、センサーユニット5のセンサー40の光軸40Aとを、位置合わせすることができる。 As a result, the optical axis PA of the wafer lenses 10 and 20 of the lens unit 3 and the optical axis 40A of the sensor 40 of the sensor unit 5 can be aligned via the spacer 7.
 なお、ここでは、治具130と治具120とを用いてレンズユニット3とセンサーユニット5とを位置決めしたが、これに代えて下記の方法で位置決めしても良い。 Here, although the lens unit 3 and the sensor unit 5 are positioned using the jig 130 and the jig 120, they may be positioned by the following method instead.
 すなわち、偏芯識別標識14cが設けられたコーナー12c(隣り合う2つの側面12a,12b)が治具130のコーナーを向く状態にして、治具130に対しスペーサ7の突起部7aがそれぞれ当接する位置に、治具120を用いてレンズユニット3を移動させる。そして、その位置で治具120を下降させてセンサーユニット5に対しスペーサ7を接着・固定しても良い。 That is, the corners 12c (two adjacent side surfaces 12a and 12b) provided with the eccentricity identification mark 14c face the corners of the jig 130, and the protrusions 7a of the spacer 7 abut on the jig 130, respectively. The lens unit 3 is moved to the position using the jig 120. Then, the jig 120 may be lowered at that position, and the spacer 7 may be bonded and fixed to the sensor unit 5.
 この場合は、治具130を用いてレンズユニット3とセンサーユニット5とを位置決めしていることになる。 In this case, the lens unit 3 and the sensor unit 5 are positioned using the jig 130.
 また、上記実施例1では治具130に対してスペーサ7の突起部7aが当接させる例を示したが、スペーサ突起部7aが当接する部分は治具130とは別体の治具で構成しても良い。 In the first embodiment, the projection 7a of the spacer 7 is brought into contact with the jig 130. However, the portion with which the spacer projection 7a comes into contact is constituted by a jig separate from the jig 130. You may do it.
 以上の実施例1では、レンズユニット3のウエハレンズ10,20のうち最も物体側に配置されたウエハレンズ10の成形部14に対し、位置合わせ用の治具120を当接させるための傾斜部14bが形成され、傾斜部14bを基準として、傾斜部14bに治具120を当接させながらレンズユニット3の配置位置を位置決めしている。そのため、ウエハレンズ10,20の切断面(側面)を基準として、ウエハレンズ10,20の光軸PAとセンサー40の光軸40Aとを一致させるのとは異なり、ウエハレンズ10,20の製造時におけるダイシングの精度に依らずに、ウエハレンズ10,20の光軸PAとセンサー40との光軸40Aを一致させることができる。 In the first embodiment described above, the inclined portion for bringing the positioning jig 120 into contact with the molding portion 14 of the wafer lens 10 disposed on the most object side among the wafer lenses 10 and 20 of the lens unit 3. 14b is formed, and the arrangement position of the lens unit 3 is positioned while the jig 120 is brought into contact with the inclined portion 14b with reference to the inclined portion 14b. Therefore, unlike the case where the optical axis PA of the wafer lens 10, 20 and the optical axis 40 A of the sensor 40 are aligned with respect to the cut surface (side surface) of the wafer lens 10, 20, the wafer lens 10, 20 is manufactured. The optical axis PA of the wafer lenses 10 and 20 and the optical axis 40A of the sensor 40 can be made to coincide with each other without depending on the dicing accuracy.
 また、カバーパッケージ30にレンズユニット3の偏芯識別標識14cに対応する偏芯識別標識35が設けられ、治具120で吸引しながらレンズユニット3を移動させる際に、カバーパッケージ30の偏芯識別標識35を指標として、スペーサ7をセンサーユニット5に接着・固定するので、レンズユニット3の光軸PAの偏芯方向を容易に識別できる。そして、パッケージ50の中心50Aに対して偏芯して設けられたセンサー40の光軸40Aに、レンズユニット3の光軸PAを確実かつ容易に一致させて位置合わせすることができる。 Further, the cover package 30 is provided with an eccentricity identification mark 35 corresponding to the eccentricity identification mark 14 c of the lens unit 3, and when the lens unit 3 is moved while being sucked by the jig 120, the eccentricity identification of the cover package 30 is performed. Since the spacer 7 is adhered and fixed to the sensor unit 5 using the mark 35 as an index, the eccentric direction of the optical axis PA of the lens unit 3 can be easily identified. Then, the optical axis PA of the lens unit 3 can be reliably and easily aligned with the optical axis 40A of the sensor 40 provided eccentrically with respect to the center 50A of the package 50.
 なお、本実施例1にかかる成形部14では、図7に示す通り、傾斜部14bが凸レンズ部14aから外周部に向けて上方に傾斜し、傾斜部14bの最頂部が凸レンズ部14aよりも高くなっているが、これに代えて、図8のような成形部14を形成しても良い。図8の成形部14では、傾斜部14bが凸レンズ部14aから外周部に向けて下方に傾斜し、傾斜部14bが凸レンズ部14aより低くなっている。 In the molding part 14 according to the first example, as shown in FIG. 7, the inclined part 14b is inclined upward from the convex lens part 14a toward the outer peripheral part, and the top part of the inclined part 14b is higher than the convex lens part 14a. However, instead of this, a molded part 14 as shown in FIG. 8 may be formed. In the molding part 14 of FIG. 8, the inclined part 14b is inclined downward from the convex lens part 14a toward the outer peripheral part, and the inclined part 14b is lower than the convex lens part 14a.
 ただ、図7と図8との各構成を比較すると、図7の構成を採用するのが好ましい。図8の成形部14では、傾斜部14bの高さと凸レンズ部14aの高さとで成形部14の樹脂の高さ(厚さ)が決まるが、図7の成形部14では、傾斜部14bの高さと凸レンズ部14aの高さとのいずれかで成形部14の樹脂の高さ(厚さ)が決まる。 However, when the configurations of FIG. 7 and FIG. 8 are compared, it is preferable to adopt the configuration of FIG. In the molding part 14 of FIG. 8, the height (thickness) of the resin of the molding part 14 is determined by the height of the inclined part 14b and the height of the convex lens part 14a, but in the molding part 14 of FIG. The height (thickness) of the resin of the molded portion 14 is determined by either the height of the convex lens portion 14a.
 そのため、図7の構成のほうが成形部14の樹脂の厚さを薄くする上では有利であり、樹脂の厚さを薄くすれば成形時の樹脂の硬化収縮量を低減することができ、ひいては成型性に優れた高精度のレンズ有効部を形成することができる。 Therefore, the configuration of FIG. 7 is more advantageous in reducing the thickness of the resin of the molded portion 14, and if the thickness of the resin is reduced, the amount of cure shrinkage of the resin during molding can be reduced. It is possible to form a highly effective lens effective portion having excellent properties.
 さらには、図8の構成では、凸レンズ部14aが同一平面上で露出・突出しているから、取扱い時などにおいて凸レンズ部14aに傷や損傷などが発生しやすいが、図7の構成では、傾斜部14bの高さで凸レンズ部14aを内包することが可能であり、取扱い時などにおいて凸レンズ部14aに傷や損傷などが発生するのを有効に防止することもできる。
(実施例2)
 本実施例2は主には下記の点で実施例1と異なっており、それ以外は実施例1と同様となっている。
Furthermore, in the configuration of FIG. 8, since the convex lens portion 14a is exposed and protrudes on the same plane, the convex lens portion 14a is likely to be scratched or damaged during handling or the like. However, in the configuration of FIG. The convex lens portion 14a can be included at a height of 14b, and it is possible to effectively prevent the convex lens portion 14a from being damaged or damaged during handling.
(Example 2)
The second embodiment is mainly different from the first embodiment in the following points, and is otherwise the same as the first embodiment.
 図9,図10に示す通り、本実施例2にかかる撮像装置2では、ウエハレンズ10の成形部14における傾斜部14bやスペーサ7(IRカットフィルタ70を含む。)が設けられておらず、これらに代わる構成として、ウエハレンズ20の成形部26においてスペーサ部26cが形成されている。 As shown in FIGS. 9 and 10, in the imaging apparatus 2 according to the second embodiment, the inclined portion 14 b and the spacer 7 (including the IR cut filter 70) in the molding portion 14 of the wafer lens 10 are not provided. As an alternative configuration, a spacer portion 26 c is formed in the molding portion 26 of the wafer lens 20.
 図9,図11に示す通り、スペーサ部26cは内傾斜部26d,接着部26e,外傾斜部26fから構成されており、凸レンズ部26aの厚みより高くなっている。 As shown in FIGS. 9 and 11, the spacer portion 26c includes an inner inclined portion 26d, an adhesive portion 26e, and an outer inclined portion 26f, and is higher than the thickness of the convex lens portion 26a.
 内傾斜部26dは凸レンズ部26aから外周に向かって下方に傾斜している。接着部26eは平坦であり、センサーユニット5のカバーガラス60と接着される接着面となっている。外傾斜部26fは接着部26eから外周に向かって上方に傾斜している。 The inner inclined portion 26d is inclined downward from the convex lens portion 26a toward the outer periphery. The bonding portion 26 e is flat and serves as a bonding surface that is bonded to the cover glass 60 of the sensor unit 5. The outer inclined portion 26f is inclined upward from the adhesive portion 26e toward the outer periphery.
 続いて、本実施例2にかかるレンズユニット3とセンサーユニット5との光軸合わせ方法について説明する。 Subsequently, an optical axis alignment method between the lens unit 3 and the sensor unit 5 according to the second embodiment will be described.
 まずは実施例1と同様に、図12に示す通り、センサーユニット5のパッケージ50の端面(2つの端面50a,50b)を治具130にそれぞれ当接させ、センサーユニット5を所定位置Cで仮固定する。 First, as in the first embodiment, as shown in FIG. 12, the end surfaces (two end surfaces 50a and 50b) of the package 50 of the sensor unit 5 are brought into contact with the jig 130, and the sensor unit 5 is temporarily fixed at a predetermined position C. To do.
 この状態において、位置合わせ用の治具150を用いて、レンズユニット3をセンサーユニット5に対し位置合わせして接着・固定する。一方、予めレンズユニット3の偏芯識別標識14cとカバーパッケージ30の偏芯識別標識35とが互いに対向するように、レンズユニット3にカバーパッケージ30を被せておく。 In this state, the lens unit 3 is aligned with the sensor unit 5 by using the alignment jig 150, and is bonded and fixed. On the other hand, the lens unit 3 is previously covered with the cover package 30 so that the eccentricity identification mark 14c of the lens unit 3 and the eccentricity identification mark 35 of the cover package 30 face each other.
 図13に示す通り、治具150は図1(b)同様、物体側から見た場合に円形状を呈した部材であり、側面150aがウエハレンズ20の成形部26における傾斜部26fと当接可能に傾斜している。 As shown in FIG. 13, the jig 150 is a member having a circular shape when viewed from the object side, as in FIG. 1B, and the side surface 150 a is in contact with the inclined portion 26 f in the molding portion 26 of the wafer lens 20. Inclined as possible.
 次いで、図14に示す通り、カバーパッケージ30の偏芯識別標識35が設けられたコーナー30bを形成する2つの側面30a,30aが治具150側を向く状態にして、仮固定されたセンサーユニット5上にレンズユニット3を載置する。そして、レンズユニット3の成形部26におけるスペーサ部26cを治具150に向けて押圧し、その所定位置でレンズユニット3をセンサーユニット5に接着・固定する。 Next, as shown in FIG. 14, the sensor unit 5 is temporarily fixed with the two side surfaces 30 a and 30 a forming the corner 30 b provided with the eccentricity identification mark 35 of the cover package 30 facing the jig 150. The lens unit 3 is placed on the top. Then, the spacer portion 26c in the molding portion 26 of the lens unit 3 is pressed toward the jig 150, and the lens unit 3 is bonded and fixed to the sensor unit 5 at the predetermined position.
 この場合、スペーサ部26cの傾斜部26fと治具150の側面150aとが当接しながら、レンズユニット3がセンサーユニット5上において治具150により適切な位置(所定位置)に位置決めされ、レンズユニット3のウエハレンズ10,20の光軸PAとセンサーユニット5のセンサー40の光軸40Aとが一致する。 In this case, the lens unit 3 is positioned at an appropriate position (predetermined position) by the jig 150 on the sensor unit 5 while the inclined portion 26f of the spacer portion 26c and the side surface 150a of the jig 150 are in contact with each other. The optical axes PA of the wafer lenses 10, 20 coincide with the optical axis 40 A of the sensor 40 of the sensor unit 5.
 レンズユニット3とセンサーユニット5とを接着する場合には、成形部26の接着部26eとカバーガラス60との間に光硬化性樹脂製の接着剤を事前に塗布しておき、レンズユニット3の位置決めがされたら、その塗布部位に向けて光照射すれば良い。 When the lens unit 3 and the sensor unit 5 are bonded, a photo-curing resin adhesive is applied in advance between the bonding portion 26e of the molding portion 26 and the cover glass 60, and the lens unit 3 When positioning is performed, light may be irradiated toward the application site.
 その結果、レンズユニット3のウエハレンズ10,20の光軸PAと、センサーユニット5のセンサー40の光軸40Aとを、一致させることができる。 As a result, the optical axis PA of the wafer lenses 10 and 20 of the lens unit 3 and the optical axis 40A of the sensor 40 of the sensor unit 5 can be matched.
 さらに、この工程では、カバーパッケージ30をレンズユニット3から外した状態で、レンズユニット3をセンサーユニット5に接着・固定しても良い。この場合、レンズユニット3を移動させる際に、レンズユニット3に設けられた偏芯識別標識14cを指標とし、偏芯識別標識14cが設けられたコーナー12c(2つの側面12a,12b)が治具150側を向く状態にして(図14参照)、レンズユニット3を所定位置に移動させる。そして、レンズユニット3をセンサーユニット5に接着・固定したら、カバーパッケージ30をウエハレンズ10,20の上方から覆えば良い。このようにレンズユニット3及びセンサーユニット5を接着・固定した後、最後にカバーパッケージ30で覆う場合には、カバーパッケージ30には偏芯識別標識35を設ける必要が無い。 Further, in this step, the lens unit 3 may be bonded and fixed to the sensor unit 5 with the cover package 30 removed from the lens unit 3. In this case, when the lens unit 3 is moved, the eccentricity identification mark 14c provided on the lens unit 3 is used as an index, and the corner 12c (two side surfaces 12a and 12b) provided with the eccentricity identification mark 14c is a jig. The lens unit 3 is moved to a predetermined position while facing the 150 side (see FIG. 14). When the lens unit 3 is bonded and fixed to the sensor unit 5, the cover package 30 may be covered from above the wafer lenses 10 and 20. When the lens unit 3 and the sensor unit 5 are bonded and fixed in this manner and then finally covered with the cover package 30, it is not necessary to provide the eccentricity identifying mark 35 on the cover package 30.
 また、偏芯識別標識14cは、ウエハレンズ10の成形部14の表面のうちレンズ部14aを除く部分に設けるものとしたが、図9(a)に示す通り、ウエハレンズ20の成形部26の表面のうちレンズ部26aを除く部分に偏芯識別標識27を設けるものとしても良い。この場合、カバーパッケージ30を被せた状態でも偏芯識別標識27の位置が裏側から見てわかるので、カバーパッケージ30に、上述の偏芯識別標識35を設ける必要が無くなる。 Further, the eccentricity identification mark 14c is provided on the surface of the molded part 14 of the wafer lens 10 except for the lens part 14a. However, as shown in FIG. It is good also as what provides the eccentric identification mark 27 in the part except the lens part 26a among the surfaces. In this case, since the position of the eccentricity identification mark 27 can be seen from the back side even when the cover package 30 is covered, it is not necessary to provide the eccentricity identification mark 35 on the cover package 30.
 以上の本実施例2では、カバーパッケージ30にレンズユニット3の偏芯識別標識14cに対応する偏芯識別標識35が設けられ、偏芯識別標識35を指標にして、レンズユニット3をセンサーユニット5に接着・固定するので、レンズユニット3の光軸PAの偏芯方向を容易に識別でき、パッケージ50の中心50Aに対して偏芯して設けられたセンサー40の光軸40Aに、レンズユニット3の光軸PAを確実かつ容易に一致させて位置合わせすることができる。 In the second embodiment described above, the cover package 30 is provided with the eccentricity identification mark 35 corresponding to the eccentricity identification mark 14c of the lens unit 3, and the lens unit 3 is used as the sensor unit 5 with the eccentricity identification mark 35 as an index. Since the direction of eccentricity of the optical axis PA of the lens unit 3 can be easily identified, the lens unit 3 is attached to the optical axis 40A of the sensor 40 provided eccentric to the center 50A of the package 50. The optical axis PA can be aligned with certainty and easily aligned.
 なお、実施例1のレンズユニット3ではウエハレンズ20を省略してウエハレンズ10とカバーパッケージ30とでレンズユニット3を構成しても良いし、実施例2のレンズユニット3ではウエハレンズ10を省略してウエハレンズ20とカバーパッケージ30とでレンズユニット3を構成しても良い。 In the lens unit 3 of the first embodiment, the wafer lens 20 may be omitted and the lens unit 3 may be configured by the wafer lens 10 and the cover package 30. In the lens unit 3 of the second embodiment, the wafer lens 10 may be omitted. Then, the lens unit 3 may be constituted by the wafer lens 20 and the cover package 30.
 なお、実施例2においても、センサー40の光軸40Aとレンズユニット3のウエハレンズ10,20の光軸PAとの光軸合わせを示しているが、必ずしもウエハレンズ10,20の光軸PAはセンサー40の光軸40Aと位置合わせするものには限定されない。つまり、撮像装置の仕様によっては、センサー40の光軸40Aからずれた所定位置に対してウエハレンズ10,20の光軸PAを位置合わせするものであっても良い。
(実施例3)
 ウエハレンズで特に問題となる、センサーとレンズとの高精度の位置合わせについては、特に一般的なウエハレンズは切断(ダイシング)によって個片化されているため、このような切断されたレンズをセンサーの光軸と一致させる場合、ダイシングの精度によってお互いの光軸にずれが生じる可能性が高いことはすでに述べたとおりで、そうしたダイシングの加工精度に依存しない方法を以上実施例1、2で示したが、一方、ダイシング加工に対しても、適当な手段を講じることにより、より精度よくセンサーとの光軸を合わせることは可能である。
Although the optical axis alignment of the optical axis 40A of the sensor 40 and the optical axis PA of the wafer lenses 10 and 20 of the lens unit 3 is also shown in the second embodiment, the optical axis PA of the wafer lenses 10 and 20 is not necessarily limited. It is not limited to what is aligned with the optical axis 40A of the sensor 40. That is, depending on the specifications of the imaging apparatus, the optical axis PA of the wafer lenses 10 and 20 may be aligned with a predetermined position that is shifted from the optical axis 40A of the sensor 40.
(Example 3)
For high-precision alignment between the sensor and the lens, which is a particular problem with wafer lenses, the general wafer lens is divided into pieces by cutting (dicing). As described above, it is highly possible that the optical axes are misaligned depending on the dicing accuracy when the optical axes are matched with each other. However, on the other hand, it is possible to align the optical axis with the sensor more accurately by taking appropriate measures for dicing.
 以下、第3の実施例で説明を行う。 Hereinafter, description will be given in the third embodiment.
 図17に本発明によるダイシング加工前のウエハレンズアレイWを示す。切断により個片のレンズユニットになる範囲の外側に、加工基準となる、直交する2本の直線m1,m2を予めガラス基板に設けている。 FIG. 17 shows the wafer lens array W before dicing according to the present invention. Two orthogonal straight lines m1 and m2, which are processing references, are provided in advance on the glass substrate outside the range that becomes a single lens unit by cutting.
 その作成方法としては、絞りをガラス基板に作成するクロムのエッチング加工を行う前に、エッチングマスクの中に作成する方法がある。こうして作成した基準線m1,m2から、個々のレンズユニットの基準の側面12a(12b)までの寸法LWv,LWhが加工時の寸法となる。図17(a)では、切断基準線m1,m2は、周辺で直交する2本の線で示したが、図17(b)に示すように中心で直交する4本の直線n1~n4で示しても良い。この方が直線の実質長さが長くなり、ダイシングのブレードの回転軸との平行をより精度良く合わせることが可能である。 As its creation method, there is a method in which an aperture is created in an etching mask before performing a chromium etching process for creating a diaphragm on a glass substrate. The dimensions LWv and LWh from the reference lines m1 and m2 thus created to the reference side surface 12a (12b) of each lens unit are the dimensions at the time of processing. In FIG. 17A, the cutting reference lines m1 and m2 are shown by two lines orthogonal at the periphery, but are shown by four straight lines n1 to n4 orthogonal at the center as shown in FIG. 17B. May be. In this way, the actual length of the straight line becomes longer, and it is possible to adjust the parallelism with the rotation axis of the blade of the dicing more accurately.
 図18を用いて、ダイシング加工時の問題のひとつである、ブレードの摩耗について説明を行う。ブレードの厚さは加工に伴い、刃幅が次第にやせていく。また、定期的に、目詰したブレードの再生を行う目的でドレスをすると、その都度表面を削り新しい砥粒を表面に出すために、刃幅が変化する。従って最初から同じように加工を続けていると、図18(c)に示すように刃幅がやせた分だけ、切り出された個片のレンズの外径が大きくなっていく(L1<L2)。 FIG. 18 is used to explain blade wear, which is one of the problems during dicing. The blade thickness gradually becomes thinner with processing. In addition, when dressing for the purpose of periodically regenerating a clogged blade, the blade width changes in order to scrape the surface and bring new abrasive grains to the surface each time. Therefore, if the processing is continued in the same manner from the beginning, the outer diameter of the lens of the cut piece is increased by the amount that the blade width is thin as shown in FIG. 18C (L1 <L2).
 なお、図18(a)中、符号B1は初期のブレードを示し、符号B2は摩耗したブレードを示す。また、図18(a)は切断する前のウエハレンズアレイの一部を示しており、図18(b)は初期ブレードB1で切断した場合の個片のウエハレンズ、図18(c)は摩耗ブレードB2で切断した場合の個片のウエハレンズを示している。 In FIG. 18 (a), symbol B1 indicates an initial blade, and symbol B2 indicates a worn blade. 18A shows a part of the wafer lens array before cutting, FIG. 18B shows the individual wafer lens when it is cut by the initial blade B1, and FIG. 18C shows wear. An individual wafer lens when cut by the blade B2 is shown.
 このように外径サイズが変化すると、外径を基準としてレンズの光軸を合わせているとずれを生じることになる。 When the outer diameter size changes in this way, a deviation occurs when the optical axes of the lenses are aligned with the outer diameter as a reference.
 そこで、図17(a)に示すように、予め個片のレンズに基準となる隣り合う2面12a,12bを指定しておき、ガラス基板の切断基準線から、12a,12bまでの距離LWv,LWhを、ブレードの摩耗によらずに常に一定に加工する方法を提案する。 Therefore, as shown in FIG. 17A, the adjacent two surfaces 12a and 12b serving as the reference are specified in advance for the individual lens, and the distance LWv from the cutting reference line of the glass substrate to 12a and 12b, A method is proposed in which LWh is always processed to be constant regardless of blade wear.
 図18(a)に示すように、ブレードの片側の側面Baを切断の基準となるLWv,LWhの位置に常に合わせるようにする。これを実現するには、所定の加工量が過ぎた時点で、座標を原点に戻して、切断基準線とのズレがなくなるように補正をすればよい。 As shown in FIG. 18 (a), the side surface Ba on one side of the blade is always aligned with the positions of LWv and LWh which are the reference for cutting. In order to realize this, when a predetermined processing amount has passed, the coordinates are returned to the origin, and correction is made so that there is no deviation from the cutting reference line.
 その結果、図18(b)に示すように、切り出された個片の側面12a,12bから、光軸PAまでの距離Hv,HLは常に一定となる。一方個片のサイズ□L(図18(b)、(c)に示すL1やL2)はブレードの摩耗に伴い次第に大きくなっていく。 As a result, as shown in FIG. 18 (b), the distances Hv and HL from the cut out side surfaces 12a and 12b to the optical axis PA are always constant. On the other hand, the size □ L of each piece (L1 and L2 shown in FIGS. 18B and 18C) gradually increases as the blade wears.
 従って、最初は個片を上面からみた時に、□の対角線(四角形状の対角線)の中心に光軸がある場合でも、次第に対角線中心から光軸が離れて偏芯していく。 Therefore, when the individual piece is first viewed from the top surface, even if the optical axis is at the center of the □ diagonal line (rectangular diagonal line), the optical axis gradually deviates from the diagonal center.
 一方、基準の側面12a,12bで挟まれるコーナー12cには14cで示す識別標識を予め設けている。従って個片に切り出した後でも、識別標識14cを見れば基準の側面が容易に判別可能で、光軸PAの位置を知ることが可能である。 On the other hand, an identification mark 14c is provided in advance in the corner 12c sandwiched between the reference side surfaces 12a and 12b. Therefore, even after cutting into individual pieces, the reference side surface can be easily identified by looking at the identification mark 14c, and the position of the optical axis PA can be known.
 図19に、こうして切り出したレンズユニット3をセンサーユニット5に光軸を合わせて接着固定する方法を示している。 FIG. 19 shows a method of bonding and fixing the lens unit 3 thus cut out to the sensor unit 5 with the optical axis aligned.
 ここでは、治具120のテーパ部120aと傾斜部14bとを当接させたまま、吸引部120bを介してレンズユニット3を治具120で吸引しながら、治具120を前後左右方向及び上下方向に移動させ、レンズユニット3をセンサーユニット5(センサー40)に対応する所定位置に移動させ、その所定位置でスペーサ7(予め所定の手段でレンズユニット3の下面に接着固定されている)をセンサーユニット5に接着・固定する。 Here, while the lens unit 3 is sucked by the jig 120 via the suction part 120b while the taper part 120a and the inclined part 14b of the jig 120 are in contact with each other, the jig 120 is moved back and forth, left and right, and up and down. The lens unit 3 is moved to a predetermined position corresponding to the sensor unit 5 (sensor 40), and the spacer 7 (adhered and fixed to the lower surface of the lens unit 3 in advance by a predetermined means) is detected at the predetermined position. Glue and fix to unit 5.
 治具120で吸引しながらレンズユニット3を移動させる際には、カバーパッケージ30を外した状態で、識別標識14cが治具130のコーナーに来るようにレンズユニット3の2つの側面12a,12bが治具130の基準面130a,130bと当接するようにして、(図19(a)参照)、治具120によってレンズユニット3を所定位置に移動させる。 When moving the lens unit 3 while sucking with the jig 120, the two side surfaces 12 a and 12 b of the lens unit 3 are positioned so that the identification mark 14 c comes to the corner of the jig 130 with the cover package 30 removed. The lens unit 3 is moved to a predetermined position by the jig 120 so as to contact the reference surfaces 130a and 130b of the jig 130 (see FIG. 19A).
 センサーユニットを治具130へ固定する手段はすでに述べた実施例1,2と同じであり、ここでは省略する。 The means for fixing the sensor unit to the jig 130 is the same as in the first and second embodiments, and is omitted here.
 センサー40へのレンズユニット3の接着固定後に、カバーパッケージ30を被せて、固定する。 After fixing the lens unit 3 to the sensor 40, cover the cover package 30 and fix it.
 以上述べたように、ダイシング時の加工方法を工夫して、ブレードの摩耗によらず、レンズユニット3の端面から光軸までの位置を一定にすることで、センサー40との位置合わせを精度良く行えることを示した。また、個片のレンズのどこが加工の基準面かも、識別標識14cを入れることで容易に判別可能としたので、ダイシング後の個々のレンズの取り外し時にも方向について特に注意を払う必要がなくなり、生産性が向上した。 As described above, the processing method at the time of dicing is devised, and the position from the end surface of the lens unit 3 to the optical axis is made constant regardless of blade wear, so that the alignment with the sensor 40 can be performed with high accuracy. I showed that I can do it. In addition, it is possible to easily identify where the individual lens is the reference plane of processing by inserting the identification mark 14c, so that it is not necessary to pay special attention to the direction when removing the individual lenses after dicing. Improved.
 なお、本実施例では、ウエハレンズアレイを積層した後に、ダイシング加工により、個々のレンズユニット3にする例を示したが、ウエハレンズアレイ単体でダイシング加工して、個々の単体のウエハレンズにしたものを複数枚、それぞれ鏡胴に組み込んでレンズユニットとしても良い。その場合、個々のウエハレンズの相互の光軸を合わせる必要が生じる。その場合でも個々のウエハレンズに実施例3で示す識別標識14cを予め入れておくことで、単体のウエハレンズに切り離した後でも、識別標識14cを合わして組み込むことで偏芯することなく、光軸をあわせることが可能となる。 In this embodiment, the wafer lens array is laminated, and then the individual lens units 3 are formed by dicing. However, the wafer lens array is diced into individual wafer lenses. A plurality of objects may be incorporated into the lens barrel to form a lens unit. In that case, it is necessary to align the optical axes of the individual wafer lenses. Even in such a case, the identification mark 14c shown in the third embodiment is put in each wafer lens in advance, so that even after the wafer is separated into a single wafer lens, the identification mark 14c is combined and incorporated so that the light is not decentered. It is possible to align the axes.
 1,2 撮像装置
 3 レンズユニット
 5 センサーユニット
 7 スペーサ
  7a 突起部
 10 ウエハレンズ
 12 ガラス基板
  12a,12b 側面
  12c コーナー
 14,16 成形部
  14a 凸レンズ部
  14b 傾斜部
  14c 偏芯識別標識
  16a 凹レンズ部
  16b 周辺部
 20 ウエハレンズ
 22 ガラス基板
 24,26 成形部
  24a 凹レンズ部
  24b 周辺部
  26a 凸レンズ部
  26b 周辺部
  26c スペーサ部
  26d 内傾斜部
  26e 接着部
  26f 外傾斜部
 27 偏芯識別標識
 30 パッケージ
  30a 側面
  30b コーナー
 32 天板部
  32a 開口部
 34 側板部
  34a 切欠部
 35 偏芯識別標識
 40 センサー
 50 パッケージ
  50a,50b,50c,50d 端面
 60 カバーガラス
 70 IRカットフィルタ
 100 ベース
 110,130 治具
 120 (位置合わせ用)治具
  120a テーパ部
  120b 吸引部
 150 (位置合わせ用)治具
  150a 側面
 PA,40A 光軸
 B1,B2 ブレード
 m1,m2 切断基準線
 n1,n2,n3,n4 切断基準線
 W ウエハレンズアレイ
DESCRIPTION OF SYMBOLS 1, 2 Image pick-up device 3 Lens unit 5 Sensor unit 7 Spacer 7a Protrusion part 10 Wafer lens 12 Glass substrate 12a, 12b Side surface 12c Corner 14, 16 Molding part 14a Convex lens part 14b Inclination part 14c Eccentric identification mark 16a Concave lens part 16b Peripheral part DESCRIPTION OF SYMBOLS 20 Wafer lens 22 Glass substrate 24,26 Molding part 24a Concave lens part 24b Peripheral part 26a Convex lens part 26b Peripheral part 26c Spacer part 26d Inner inclination part 26e Adhesion part 26f Outer inclination part 27 Eccentric identification mark 30 Package 30a Side face 30b Corner 32 Top Plate part 32a Opening part 34 Side plate part 34a Notch part 35 Eccentric identification mark 40 Sensor 50 Package 50a, 50b, 50c, 50d End face 60 Cover glass 70 IR cut filter 100 110, 130 Jig 120 (for alignment) Jig 120a Taper 120b Suction part 150 (for alignment) Jig 150a Side surface PA, 40A Optical axis B1, B2 Blade m1, m2 Cutting reference line n1, n2, n3 , N4 Cutting reference line W Wafer lens array

Claims (15)

  1.  ガラス基板上に樹脂製の成形部が形成され、その一部にレンズ部が形成された複数枚のウエハレンズを積層した平面視矩形状のレンズユニットであって、
     前記複数枚のウエハレンズの少なくとも一枚のウエハレンズの、前記成形部の表面のうち前記レンズ部を除く部分に、前記レンズ部の光軸が、前記ガラス基板の中心に対して偏芯している方向を示すための偏芯識別標識が設けられていることを特徴とするレンズユニット。
    A lens unit having a rectangular shape in a plan view in which a plurality of wafer lenses each having a lens part formed thereon are stacked on a glass substrate,
    The optical axis of the lens unit is decentered with respect to the center of the glass substrate on a portion of the surface of the molding unit excluding the lens unit of at least one wafer lens of the plurality of wafer lenses. A lens unit provided with an eccentricity identification mark for indicating a direction in which the lens is present.
  2.  前記偏芯識別標識は、前記レンズ部の成形と同時に形成することを特徴とする請求項1に記載のレンズユニット。 The lens unit according to claim 1, wherein the eccentricity identification mark is formed simultaneously with the molding of the lens portion.
  3.  前記偏芯識別標識は、前記ガラス基板を形成する四つの側面のうち、隣り合う二つの側面によって形成されるコーナーの前記成形部の表面に設けられていることを特徴とする請求項1又は2に記載のレンズユニット。 The eccentricity identification mark is provided on the surface of the molding portion at a corner formed by two adjacent side surfaces among the four side surfaces forming the glass substrate. The lens unit described in 1.
  4.  前記偏芯識別標識は、前記複数枚のウエハレンズのうち、最も外側又は最も内側に位置するウエハレンズに設けられていることを特徴とする請求項1~3のいずれか一項に記載のレンズユニット。 The lens according to any one of claims 1 to 3, wherein the eccentricity identification mark is provided on an outermost or innermost wafer lens among the plurality of wafer lenses. unit.
  5.  前記ガラス基板上に複数のレンズ部が形成された複数のウエハレンズアレイを積層して接合後、切断して個片化されたものであることを特徴とする請求項1~4のいずれか一項に記載のレンズユニット。 A plurality of wafer lens arrays each having a plurality of lens portions formed on the glass substrate are laminated, joined, cut, and separated into individual pieces. The lens unit according to item.
  6.  ガラス基板上に樹脂製の成形部が形成され、その一部にレンズ部が形成された複数枚のウエハレンズを積層した平面視矩形状のレンズユニットの光軸を、各ウエハレンズの透過光を受光する受光センサーの所定位置に一致させるための位置合わせ方法であって、
     前記複数枚のウエハレンズの少なくとも一枚のウエハレンズの前記成形部の表面に、前記ガラス基板の中心に対して、前記レンズ部の光軸が偏芯している方向を示すための偏芯識別標識が形成されており、
     前記受光センサーを仮固定する仮固定工程と、
     前記受光センサーを仮固定した状態で、前記偏芯識別標識によって前記レンズユニットの光軸の偏芯方向を確認しながら、前記受光センサーの所定位置に一致させるように移動させる移動工程と、を有することを特徴とする位置合わせ方法。
    A resin molded part is formed on a glass substrate, and the optical axis of a rectangular lens unit in plan view in which a plurality of wafer lenses each having a lens part formed thereon are laminated, and the transmitted light of each wafer lens is transmitted. A positioning method for matching with a predetermined position of a light receiving sensor for receiving light,
    Eccentricity identification for indicating the direction in which the optical axis of the lens part is eccentric with respect to the center of the glass substrate on the surface of the molding part of at least one wafer lens of the plurality of wafer lenses A sign is formed,
    A temporary fixing step of temporarily fixing the light receiving sensor;
    A moving step of moving the light receiving sensor so as to coincide with a predetermined position while confirming the eccentric direction of the optical axis of the lens unit with the eccentricity identification mark while the light receiving sensor is temporarily fixed. An alignment method characterized by that.
  7.  前記レンズユニットは、ガラス基板上に複数の成形部が形成された複数枚のウエハレンズアレイを積層して接合後、切断して個片化されたものであることを特徴とする請求項6に記載の位置合わせ方法。 7. The lens unit according to claim 6, wherein a plurality of wafer lens arrays each having a plurality of molded portions formed on a glass substrate are laminated and joined, and then cut into individual pieces. The alignment method described.
  8.  前記レンズユニットの光軸は、前記受光センサーの光軸と一致するように位置合わせすることを特徴とする請求項6又は7に記載の位置合わせ方法。 The alignment method according to claim 6 or 7, wherein alignment is performed so that an optical axis of the lens unit coincides with an optical axis of the light receiving sensor.
  9.  ガラス基板上に樹脂製の成形部が形成され、その一部にレンズ部が形成された複数枚のウエハレンズを積層した平面視矩形状のレンズユニットと、
     前記レンズ部を透過した入射光を受光する受光センサーを備えたセンサーユニットと、を備えた撮像装置であって、
     前記レンズユニットの最も物体側に位置するウエハレンズの成形部又は最も撮像装置側に位置するウエハレンズの成形部の表面に、前記ガラス基板の中心に対して、前記レンズ部の光軸が偏芯している方向を示すための偏芯識別標識が設けられ、
     前記レンズ部の光軸と前記受光センサーの光軸とが、ほぼ一致していることを特徴とする撮像装置。
    A lens unit having a rectangular shape in a plan view in which a plurality of wafer lenses each having a lens part formed thereon are stacked on a glass substrate,
    A sensor unit including a light receiving sensor that receives incident light transmitted through the lens unit, and an imaging device comprising:
    The optical axis of the lens unit is decentered with respect to the center of the glass substrate on the surface of the molded part of the wafer lens located closest to the object side of the lens unit or the molded part of the wafer lens located closest to the imaging device. Eccentric identification mark is provided to indicate the direction
    An imaging apparatus, wherein an optical axis of the lens unit and an optical axis of the light receiving sensor are substantially coincident.
  10.  前記撮像装置は、前記レンズユニットと前記センサーユニットとの間を所定間隔に維持するスペーサが配置されていることを特徴とする請求項9に記載の撮像装置。 10. The imaging apparatus according to claim 9, wherein the imaging apparatus includes a spacer that maintains a predetermined distance between the lens unit and the sensor unit.
  11.  ガラス基板上に樹脂製の成形部が形成され、その一部にレンズ部が形成された複数枚のウエハレンズを積層した平面視矩形状のレンズユニットと、
     前記レンズ部を透過した入射光を受光する受光センサーを備えたセンサーユニットと、を備えた撮像装置の製造方法であって、
     第1のガラス基板上に樹脂製の成形部が形成され、その一部に形成された複数のレンズ部と、前記成形部の表面に形成されて、前記第1のガラス基板の中心に対して、前記レンズ部の光軸が偏芯している方向を示すための偏芯識別標識と、を備えた第1のウエハレンズアレイと、第2のガラス基板上に樹脂製の複数のレンズ部を備えた第2のウエハレンズアレイとを準備し、前記第1のウエハレンズアレイと前記第2のウエハレンズアレイとを積層した後接合し、切断してレンズユニットを生成する生成工程と、
     前記受光センサーを仮固定する仮固定工程と、
     前記受光センサーを仮固定した状態で、前記偏芯識別標識によって前記レンズユニットの光軸の偏芯方向を確認しながら、前記受光センサーの所定位置に一致させるように移動させる移動工程と、を有することを特徴とする撮像装置の製造方法。
    A lens unit having a rectangular shape in a plan view in which a plurality of wafer lenses each having a lens part formed thereon are stacked on a glass substrate,
    A sensor unit including a light receiving sensor that receives incident light transmitted through the lens unit, and a manufacturing method of an imaging device,
    A molded part made of resin is formed on the first glass substrate, a plurality of lens parts formed in a part thereof, and formed on the surface of the molded part, with respect to the center of the first glass substrate A first wafer lens array provided with an eccentricity identification mark for indicating a direction in which the optical axis of the lens unit is eccentric, and a plurality of resin lens units on the second glass substrate. A second wafer lens array provided, a stacking process of the first wafer lens array and the second wafer lens array, bonding, cutting, and generating a lens unit;
    A temporary fixing step of temporarily fixing the light receiving sensor;
    A moving step of moving the light receiving sensor so as to coincide with a predetermined position while confirming the eccentric direction of the optical axis of the lens unit with the eccentricity identification mark while the light receiving sensor is temporarily fixed. A method for manufacturing an imaging device.
  12.  前記生成工程では、前記偏芯識別標識は、前記レンズ部の成形と同時に形成することを特徴とする請求項11に記載の撮像装置の製造方法。 12. The method of manufacturing an imaging apparatus according to claim 11, wherein, in the generation step, the eccentricity identification mark is formed simultaneously with the molding of the lens unit.
  13.  ガラス基板上に樹脂製の複数の成形部が形成され、その一部に複数のレンズ部が形成された複数枚のウエハレンズアレイを積層したものを、ダイシングにより、個々の平面視矩形状のレンズユニットに切り出して使用するウエハレンズユニットにおいて、
     ダイシング時に、何れかのガラス基板に、外部から確認可能な少なくとも2本の直交する、切断の為のラインを設け、ラインを基準として所定の寸法で、個々のレンズユニットを切り出していく装置において、ダイシング時のブレードの磨耗量を考慮して、個々のレンズユニットの切り出される基準の側面と前記ガラス基板に設けた基準ラインとの間の寸法が、常に一定となるようにしたことを特徴とするウエハレンズユニット。
    A plurality of resin molded parts are formed on a glass substrate, and a plurality of wafer lens arrays in which a plurality of lens parts are formed are laminated, and each lens having a rectangular shape in plan view is obtained by dicing. In the wafer lens unit used by cutting out into the unit,
    At the time of dicing, in any of the glass substrates, at least two orthogonal cutting lines that can be confirmed from the outside are provided, and in an apparatus that cuts out individual lens units with a predetermined dimension based on the lines, In consideration of the amount of blade wear during dicing, the dimension between the reference side surface of each lens unit cut out and the reference line provided on the glass substrate is always constant. Wafer lens unit.
  14.  個々のレンズユニットの切り出される基準の2つの側面で挟まれるコーナーに、識別標識を設けたことを特徴とする請求項13に記載のウエハレンズユニット。 14. The wafer lens unit according to claim 13, wherein an identification mark is provided at a corner sandwiched between two reference side surfaces to be cut out of each lens unit.
  15.  ガラス基板上に樹脂製の成形部が形成され、その一部にレンズ部が形成された複数枚のウエハレンズを積層した平面視矩形状のレンズユニットの光軸を、各ウエハレンズの透過光を受光する受光センサーの所定位置に一致させるための位置合わせ方法であって、
     前記複数枚のウエハレンズの少なくとも一枚のウエハレンズの前記成形部の表面の個々のレンズユニットの切り出される基準の2つの側面で挟まれるコーナーに識別標識が形成されており、
     前記受光センサーを仮固定する仮固定工程と、
     前記受光センサーを仮固定した状態で、前記識別標識によって前記レンズユニットの2箇所の基準側面を確認しながら、前記受光センサーの所定位置に一致させるように移動させる移動工程と、を有することを特徴とする位置合わせ方法。
    A resin molded part is formed on a glass substrate, and the optical axis of a rectangular lens unit in plan view in which a plurality of wafer lenses each having a lens part formed thereon are laminated, and the transmitted light of each wafer lens is transmitted. A positioning method for matching with a predetermined position of a light receiving sensor for receiving light,
    An identification mark is formed at a corner sandwiched between two reference side surfaces cut out of individual lens units on the surface of the molding portion of at least one wafer lens of the plurality of wafer lenses,
    A temporary fixing step of temporarily fixing the light receiving sensor;
    And a moving step of moving the light receiving sensor so as to coincide with a predetermined position while confirming two reference side surfaces of the lens unit with the identification mark while the light receiving sensor is temporarily fixed. The alignment method.
PCT/JP2010/051946 2009-03-02 2010-02-10 Lens unit, method for aligning lens unit and sensor, image pickup device, method for manufacturing image pickup device, and wafer lens unit WO2010101009A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-047836 2009-03-02
JP2009047836 2009-03-02

Publications (1)

Publication Number Publication Date
WO2010101009A1 true WO2010101009A1 (en) 2010-09-10

Family

ID=42709571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051946 WO2010101009A1 (en) 2009-03-02 2010-02-10 Lens unit, method for aligning lens unit and sensor, image pickup device, method for manufacturing image pickup device, and wafer lens unit

Country Status (1)

Country Link
WO (1) WO2010101009A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012123025A (en) * 2010-12-06 2012-06-28 Sony Corp Electronic camera
JP2013231879A (en) * 2012-04-28 2013-11-14 Nidec Sankyo Corp Manufacturing method of lens driving device and lens driving device
CN105301732A (en) * 2014-06-20 2016-02-03 宁波舜宇光电信息有限公司 Eccentric adjusting method and apparatus for monitor module
WO2019207739A1 (en) * 2018-04-26 2019-10-31 オリンパス株式会社 Imaging device, endoscope, and method for manufacturing imaging device
EP3851882A4 (en) * 2018-10-24 2021-11-03 Ningbo Sunny Opotech Co., Ltd. Optical lens, camera module, method for assembling same, and corresponding terminal device
EP4044576A4 (en) * 2019-10-29 2022-12-14 Ningbo Sunny Opotech Co., Ltd. Camera module, lens with mark and manufacturing method thereof, and assembly method of extra-wide-angle camera module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441220A (en) * 1990-06-06 1992-02-12 Daihatsu Motor Co Ltd Press molding equipment
JPH0547047A (en) * 1991-08-12 1993-02-26 Canon Inc Stamper for production of substrate for optical recording medium
JP2006309121A (en) * 2005-03-30 2006-11-09 Fujinon Corp Positioning structure
JP2007158751A (en) * 2005-12-06 2007-06-21 Hitachi Maxell Ltd Imaging apparatus and its manufacturing method
WO2008153102A1 (en) * 2007-06-14 2008-12-18 Aji Co., Ltd. Method of molding, process for producing lens, molding apparatus, process for producing stamper, master production apparatus, stamper production system and stamper production apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0441220A (en) * 1990-06-06 1992-02-12 Daihatsu Motor Co Ltd Press molding equipment
JPH0547047A (en) * 1991-08-12 1993-02-26 Canon Inc Stamper for production of substrate for optical recording medium
JP2006309121A (en) * 2005-03-30 2006-11-09 Fujinon Corp Positioning structure
JP2007158751A (en) * 2005-12-06 2007-06-21 Hitachi Maxell Ltd Imaging apparatus and its manufacturing method
WO2008153102A1 (en) * 2007-06-14 2008-12-18 Aji Co., Ltd. Method of molding, process for producing lens, molding apparatus, process for producing stamper, master production apparatus, stamper production system and stamper production apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012123025A (en) * 2010-12-06 2012-06-28 Sony Corp Electronic camera
JP2013231879A (en) * 2012-04-28 2013-11-14 Nidec Sankyo Corp Manufacturing method of lens driving device and lens driving device
CN105301732A (en) * 2014-06-20 2016-02-03 宁波舜宇光电信息有限公司 Eccentric adjusting method and apparatus for monitor module
WO2019207739A1 (en) * 2018-04-26 2019-10-31 オリンパス株式会社 Imaging device, endoscope, and method for manufacturing imaging device
US11412113B2 (en) 2018-04-26 2022-08-09 Olympus Corporation Image pickup apparatus, endoscope, and manufacturing method of image pickup apparatus
EP3851882A4 (en) * 2018-10-24 2021-11-03 Ningbo Sunny Opotech Co., Ltd. Optical lens, camera module, method for assembling same, and corresponding terminal device
EP4044576A4 (en) * 2019-10-29 2022-12-14 Ningbo Sunny Opotech Co., Ltd. Camera module, lens with mark and manufacturing method thereof, and assembly method of extra-wide-angle camera module

Similar Documents

Publication Publication Date Title
JP5464502B2 (en) LENS UNIT, IMAGING DEVICE, AND LENS UNIT MANUFACTURING METHOD
WO2010101009A1 (en) Lens unit, method for aligning lens unit and sensor, image pickup device, method for manufacturing image pickup device, and wafer lens unit
US7564496B2 (en) Camera device, method of manufacturing a camera device, wafer scale package
TWI691747B (en) Cover-glass-free array camera with individually light-shielded cameras
TWI567956B (en) Wafer-level fabrication of optical devices, in particular of modules for computational cameras
JP2011128355A (en) Imaging lens, camera module using imaging lens, manufacturing method of imaging lens, and manufacturing method of camera module
KR101713135B1 (en) Focus compensation for optical elements and applications thereof
US8000041B1 (en) Lens modules and fabrication methods thereof
US10742856B2 (en) Optical unit for endoscope, endoscope and method for manufacturing optical unit for endoscope
US20110037887A1 (en) Wafer-level lens module and image pickup device including the same
US20110096213A1 (en) Wafer-shaped optical apparatus and manufacturing method thereof, electronic element wafer module, sensor wafer module, electronic element module,sensor module, and electronic information device
WO2016009972A1 (en) Solid state imaging device and manufacturing method therefor
TWI625541B (en) Trenched-substrate based lens manufacturing methods, and associated lens systems
CN101852908A (en) Wafer-level lens module array
KR20130138127A (en) Manufacturing method of apodizer and optical module
CN109564335B (en) Laminated lens structure, camera module, and method for manufacturing laminated lens structure
US20190189860A1 (en) Electronic circuit package cover
JP2013174784A (en) Camera module, assembling method of the same, manufacturing method of lens array and mold
US20130037976A1 (en) Lens Array Production Method and Laminated Lens Array Production Method
CN113228610A (en) Method for manufacturing endoscopic imaging device, and endoscope
JP2011043605A (en) Wafer lens, wafer lens laminate, method for manufacturing wafer lens, imaging lens and method for manufacturing imaging lens
JP5345455B2 (en) Multilayer lens, laminated wafer lens, and manufacturing method thereof
JP2012215655A (en) Spacer manufacturing method and lens module manufacturing method
US9261629B2 (en) Lens module and manufacturing method thereof
JP3553475B2 (en) Image display device and its manufacturing method, and microlens array substrate and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10748606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP