WO2010100840A1 - Electrocoating composition and method for electrocoating - Google Patents

Electrocoating composition and method for electrocoating Download PDF

Info

Publication number
WO2010100840A1
WO2010100840A1 PCT/JP2010/000966 JP2010000966W WO2010100840A1 WO 2010100840 A1 WO2010100840 A1 WO 2010100840A1 JP 2010000966 W JP2010000966 W JP 2010000966W WO 2010100840 A1 WO2010100840 A1 WO 2010100840A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
parts
electrodeposition coating
composition
cationic
Prior art date
Application number
PCT/JP2010/000966
Other languages
French (fr)
Japanese (ja)
Inventor
屋部幸誠
川越亮助
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Priority to CN201080010020.7A priority Critical patent/CN102341468B/en
Publication of WO2010100840A1 publication Critical patent/WO2010100840A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • C25D3/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4419Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained otherwise than by polymerisation reactions only involving carbon-to-carbon unsaturated bonds
    • C09D5/443Polyepoxides
    • C09D5/4457Polyepoxides containing special additives, e.g. pigments, polymeric particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/448Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications characterised by the additives used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4488Cathodic paints

Definitions

  • the present invention relates to an electrodeposition coating composition and an electrodeposition coating method having excellent throwing power for metal materials, particularly metal structures having complicated shapes.
  • Electrodeposition coating consists of an anionic electrodeposition coating in which a coating is deposited by anodic electrolysis in an aqueous paint containing an anionic resin emulsion, and an aqueous coating containing a cationic resin emulsion. It can be roughly classified into cationic electrodeposition coating in which a coating film is deposited by cathodic electrolysis.
  • Anionic resin emulsion has dispersion stability on the alkali side and loses dispersion stability on the acid side.
  • the cationic resin emulsion has dispersion stability on the acid side and loses dispersion stability on the alkali side.
  • the resin is deposited by anodic electrolysis or cathodic electrolysis because of these properties. Therefore, the nonionic resin emulsion cannot be precipitated due to the reaction mechanism.
  • cationic electrodeposition coating that does not cause the base metal to elute into the paint during electrolytic treatment is advantageous, and the automobile body is a metal component mainly composed of ferrous materials.
  • Cationic electrodeposition coating is widely applied to automobile parts, home appliances, building materials and the like.
  • the coating throwing power As mentioned above, the greatest feature of electrodeposition coating is the coating throwing power, but in recent years, more advanced throwing power has been required for the purpose of reducing the amount of paint used and improving the corrosion resistance. Various studies have been made to improve the throwing power.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-294143 neutralizes an aqueous medium, a binder resin containing a cationic epoxy resin and a blocked isocyanate curing agent, or a cationic epoxy resin dispersed or dissolved in the aqueous medium.
  • the volatile organic content is 1% by weight or less
  • the metal ion concentration is 500 ppm or less
  • the neutralizing acid Is a lead-free cationic electrodeposition coating composition having an amount of 10 to 30 mg equivalent to 100 g of binder resin solid content
  • the metal catalyst is cerium ion, bismuth ion, copper ion, zinc ion, molybdenum ion,
  • the neutralizing acid is acetic acid, lactic acid, formic acid, sulfamic acid It is that it is preferably at least one selected from that group.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-285391
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-285392
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-294144
  • Patent Document 5 Japanese Patent Laid-Open No. 2002-294145
  • Patent Document 6 Japanese Patent Laid-Open No. 2002-294146
  • Patent Document 7 Japanese Patent Laid-Open No. 2002-294147
  • JP 2005-194389 specifies the base resin skeleton of the cationic epoxy resin, the film resistance, the curing agent and the glass transition temperature of the curing agent.
  • DOO is characterized by, Patent Document 9 (JP-2008-156655) is characterized in that also identifies the film resistance.
  • Resin emulsions used for cationic electrodeposition coating are often rendered cationic by the introduction of amine groups.
  • the cationic resin emulsion has dispersion stability on the acidic side and loses dispersion stability on the alkali side.
  • the pH at which the emulsion loses electric charge and forms a coating film due to actual cathode electrolysis reaches around 12. Is published in Document 1.
  • the pH at which the coating film is deposited varies depending on the properties of the resin emulsion, such as the molecular weight of the emulsion, the type of amine group to be introduced, and the introduction rate, but the deposition does not start unless the pH exceeds 10. Therefore, when the pH is increased by cathodic electrolysis, the pH of the coating composition, which is the starting pH, is advantageously as high as possible within the range where the resin emulsion is stabilized, which is advantageous for the deposition properties of the coating film. I can say that.
  • Patent Document 10 Japanese Patent Laid-Open No. 2007-314690
  • Patent Document 11 Japanese Patent Laid-Open No. 2008-538383
  • the pH of aqueous coating compositions is 5-7. It is preferable that it is preferably 5.5 to 6.5. An adverse effect when the pH is less than 5 is that electrodeposition coating efficiency and film appearance are reduced.
  • Patent Documents 1 to 9 although there is no specific description of pH, in order to improve the throwing power of the electrodeposition paint, the amount of the neutralizing acid contained in the paint composition is reduced and the cationic epoxy resin is used. It is said that it is preferable to keep the neutralization rate of the resin at a low level, that is, to maintain the pH as high as possible. In fact, since the amount of neutralizing acid is 10 to 30 mg equivalent to 100 g of binder resin solid content, it is clear that the pH is necessarily in the same range as in Patent Documents 10 and 11.
  • the present inventors examined reducing the coating film deposition pH with a flocculant as a new technique. And it discovered that Al was the most effective among various flocculants.
  • Patent Documents 1 to 9 indicate that it is preferable to contain aluminum ions as a metal catalyst, but in the actual electrodeposition coating composition for the above reason, a hydroxide is formed by instantaneous hydrolysis. Estimated. Although it has not been verified in the examples, it is considered that although the hydroxide maintains its action as a catalyst, the effect as a flocculant can no longer be expected.
  • the present inventors have lowered the pH near neutrality, which was common knowledge of electrodeposition coating compositions, to a range where Al can be continuously present in an ionic state, and evaluated the effect on the circulation property of Al ions. As a result, it has been found that very good throwing power can be obtained even though the pH of the composition is lowered.
  • the present invention includes the following (1) and (2).
  • An electrodeposition coating method comprising depositing a coating film of a metal material by a cathode electrolysis method using the composition of (1).
  • FIG. 1 is a diagram showing appropriate ranges of Al ion concentration and pH.
  • FIG. 2 is a model diagram of a “four-box with-around test jig” used in the in-around test.
  • FIG. 3 shows the electrodeposition coating state in the throwing power test.
  • the electrodeposition coating composition of the present invention contains a nonionic and / or cationic aqueous resin.
  • a nonionic resin nor a cationic resin is particularly limited. Whichever type of base resin is used, the effect of the present invention is not impaired, but epoxy, urethane, and acrylic are more preferable.
  • one feature of the present invention is based on a novel action mechanism (an action mechanism in which Al ions become a hydroxide colloid and aggregate as the pH rises, but the surrounding resin is involved at this time).
  • Nonionic resins that could not be analyzed can now be used. Since nonionic resins can be used in this way, the range of selection is widened, and various properties that could not be obtained can be imparted to the film.
  • electrodeposition at a lower pH than the conventional one is based on the above-mentioned novel action mechanism. Is possible.
  • the concentration of the resin emulsion is not particularly specified, but it is preferably 5 to 30% by weight based on the total weight of the electrodeposition coating composition. It is more preferably 7 to 25% by weight, and most preferably 10 to 20% by weight. If the resin content is too low, the amount of film deposition is insufficient, and if the content is too high, it is economically disadvantageous.
  • nonionic resin emulsion either or both of a method of introducing a nonionic functional group such as ethylene oxide into the base resin, that is, a self-emulsification method and a method of emulsification using a nonionic surfactant, that is, a forced emulsification method. It can be produced using a technique.
  • a method of introducing a cationic functional group such as an amine group into the base resin that is, a self-emulsification method and a method of emulsification using a cationic surfactant, that is, a forced emulsification method
  • a method of introducing a cationic functional group such as an amine group into the base resin that is, a self-emulsification method and a method of emulsification using a cationic surfactant, that is, a forced emulsification method. They can be used at the same time.
  • a nonionic surfactant can also be used as an emulsification aid.
  • the emulsion is no longer a particulate emulsion but a water-soluble resin, but even the water-soluble resin does not impair the effects of the present invention.
  • the water-based resin in the present invention is a general term for water-dispersed emulsions and water-soluble resins.
  • a curing agent such as a blocked polyisocyanate can be arbitrarily added to the water-based resin.
  • the electrodeposition coating composition of the present invention preferably contains 20 to 500 ppm of Al ions. More preferred is 50 to 400 ppm, and most preferred is 100 to 300 ppm. If the lower limit is not reached, the effect of improving the coating deposition of Al ions becomes insufficient, and if the upper limit is exceeded, the electrical conductivity of the composition becomes excessive, and the throwing power is reduced.
  • the Al ion concentration in the composition can be determined by solid-liquid separation of the composition using an ultracentrifuge and quantifying the liquid phase using high frequency inductively coupled plasma emission spectrometry (ICP) or atomic absorption spectrometry (AA). .
  • ICP inductively coupled plasma emission spectrometry
  • AA atomic absorption spectrometry
  • an aqueous medium is preferable, and water is more preferable.
  • the liquid medium may contain an aqueous solvent other than water (for example, water-soluble alcohols).
  • the pH of the electrodeposition coating composition of the present invention preferably satisfies the following formula when the Al ion concentration is A [ppm]. 3.5 ⁇ pH ⁇ ⁇ Log ((A ⁇ 1.93 ⁇ 10 ⁇ 15 ) 1/3 ) The following formula is more preferable. 3.6 ⁇ pH ⁇ ⁇ Log ((A ⁇ 1.93 ⁇ 10 ⁇ 15 ) 1/3 ) The following formula is most preferable. 3.7 ⁇ pH ⁇ ⁇ Log ((A ⁇ 1.93 ⁇ 10 ⁇ 15 ) 1/3 ) When the pH is lower than the lower limit, the deposition efficiency is lowered and the throwing power is also lowered. When the pH exceeds the upper limit, Al ions cause hydrolysis, which is not preferable.
  • ⁇ Log ((A ⁇ 1.93 ⁇ 10 ⁇ 15 ) 1/3 ) is obtained from the solubility product of Al hydroxide at 25 ° C .: 1.92 ⁇ 10 ⁇ 32 . That is, when the pH is exceeded, Al ions precipitate as hydroxides and can no longer be ions.
  • 25 ° C. is a typical temperature during storage and use of the composition.
  • the Al component of the present invention must be only ions in the composition.
  • Al ions can be stabilized by a specific chelating agent, but if stabilized, formation of hydroxide due to an increase in pH is also inhibited, which is not preferable.
  • organic acids such as acetic acid, formic acid, sulfamic acid, and lactic acid, which are usually blended in electrodeposition coating compositions, do not have a chelating ability to stabilize Al ions.
  • Al ions can be added using an Al compound.
  • the Al compound is not particularly limited, but can be added in the form of an inorganic acid salt such as nitrate or sulfate, or an organic acid salt such as lactate or acetate.
  • an inorganic acid salt such as nitrate or sulfate
  • an organic acid salt such as lactate or acetate.
  • the appropriate ranges of Al ion concentration and pH are shown in FIG.
  • a cathode electrolysis method is preferable. Coating deposition cannot be expected with electroless or anodic electrolysis.
  • Cathodic electrolysis conditions are not particularly defined, but it is preferable to apply a voltage of 50 to 400V. More preferably, it is 100 to 300V, and most preferably 150 to 250V. It is not always necessary to use a constant voltage, and a method of gradually increasing the voltage or a method such as two-stage energization is also applicable.
  • additives usually used in the paint field such as a pigment, a catalyst, an organic solvent, a pigment dispersant, and a surfactant can be further applied as necessary.
  • pigments include colored pigments such as titanium white and carbon black, extender pigments such as clay, talc, and barita, antirust pigments such as aluminum tripolyphosphate and zinc phosphate, and organic tin compounds such as dibutyltin oxide and dioctyltin oxide, Examples thereof include dialkyltin fatty acids such as dibutyltin laurate and dibutyltin dibenzoate, and tin compounds such as aromatic carboxylates.
  • the electrodeposition coating composition of the present invention is applied to various metal materials.
  • the metal material is not particularly limited, but steel materials such as cold-rolled steel plates, hot-rolled steel plates, casting materials, steel pipes, etc., and zinc-based plating treatment and / or aluminum-based plating are applied on those steel materials. Materials, aluminum alloy plates, aluminum castings, magnesium alloy plates, magnesium castings, and the like. Moreover, even if the zinc phosphate-based chemical conversion treatment or the zirconium-based chemical conversion treatment is performed in advance as a coating ground treatment, the effect of the present invention is not impaired. It is particularly suitable for use in metal structures having complicated shapes, for example, automobile bodies, automobile parts, home appliances, building materials, etc., which are metal structures mainly composed of iron-based materials.
  • reaction was continued for 30 minutes, and then 57 parts of ethylene glycol mono-2-ethylhexyl ether was dropped from the dropping funnel. Further, 42 parts of a bisphenol A-propylene oxide 5 mol adduct was added to the reaction mixture.
  • the reaction was mainly carried out in the range of 60 to 65 ° C. and continued until absorption based on the isocyanate group disappeared in the measurement of IR spectrum.
  • IPDI isophorone diisocyanate
  • a reaction vessel equipped with a stirrer, a cooling pipe, a nitrogen introduction pipe and a thermometer, and diluted with 39.1 parts of MIBK.
  • 0.2 part of hedibutyltin dilaurate was added.
  • the temperature was raised to 50 ° C., and 131.5 parts of 2-ethylhexanol was added dropwise with stirring in a dry nitrogen atmosphere over 2 hours.
  • the reaction temperature was maintained at 50 ° C. by cooling appropriately.
  • 2-ethylhexanol half-blocked IPDI (resin solid content: 90.0%) was obtained.
  • EPON 829 bisphenol A type epoxy resin manufactured by Shell Chemical Company, epoxy equivalent 193 to 203
  • 289.6 parts of bisphenol A were charged into a suitable reaction vessel, and the reaction was conducted under a nitrogen atmosphere. When heated to 150 to 160 ° C., an initial exothermic reaction occurred. The reaction mixture was reacted at 150-160 ° C. for about 1 hour, then cooled to 120 ° C., and 498.8 parts of the previously prepared 2-ethylhexanol half-blocked IPDI (MIBK solution) was added.
  • MIBK solution 2-ethylhexanol half-blocked IPDI
  • the reaction mixture is kept at 110-120 ° C. for about 1 hour, then 1390.2 parts of ethylene glycol monobutyl ether is added, the mixture is cooled to 85-95 ° C. and homogenized, and then the quaternizing agent 196 prepared above is used. 7 parts were added. After maintaining the reaction mixture at 85-95 ° C. until the acid value is 1, 37.0 parts of deionized water is added to terminate the quaternization in the epoxy-bisphenol A resin and have a quaternary ammonium salt moiety. A pigment dispersing resin was obtained (resin solid content 50%). This manufacturing method is based on Manufacturing Example 3 in the embodiment of Patent Document 1 (Japanese Patent Laid-Open No. 2002-294143).
  • pigment dispersion paste 120 parts of resin for pigment dispersion in sand grind mill, 2.0 parts of carbon black, 100.0 parts of kaolin, 80.0 parts of titanium dioxide, 18.0 parts of zinc phosphate tetrahydrate and ions 221.7 parts of exchange water was added and dispersed until the particle size became 10 ⁇ m or less to obtain a pigment dispersion paste (solid content 48%).
  • This production method is in accordance with Production Example 4 in the example of Patent Document 1 (Japanese Patent Laid-Open No. 2002-294143) except that zinc phosphate tetrahydrate is used instead of aluminum phosphomolybdate.
  • Cationic Epoxy Electrodeposition Coating Composition A cationic epoxy resin and a blocked isocyanate curing agent were mixed so as to be uniform at a solid content ratio of 70/30. Thereafter, ethylene glycol-2-ethylhexyl ether was added to 2 wt% based on the solid content. Glacial acetic acid was added so that the milligram equivalent (MEQ (A)) of the acid per 100 g of resin solids was 24, and ion-exchanged water was slowly added to dilute. By removing MIBK under reduced pressure, an emulsion having a solid content of 36% was obtained.
  • MEQ (A) milligram equivalent
  • Nonionic Urethane Electrodeposition Coating Composition Nonionic Urethane Resin “VONDIC2220” (solid content: 40%) manufactured by DIC was diluted with deionized water to adjust the solid content to 18% (hereinafter abbreviated “R3”). .
  • Al ions were added using aluminum nitrate nonahydrate, aluminum sulfate 14-18 hydrate, or aluminum lactate. Further, the pH of the composition was adjusted with nitric acid or ammonia as necessary. The composition of the composition is shown in Table 1.
  • test plate A cold rolled steel plate: SPCC (JIS 3141) 70 ⁇ 150 ⁇ 0.8 mm was used as a test plate, and its surface was previously used with a strong alkaline degreasing agent “FC-E2001” manufactured by Nihon Parkerizing Co., Ltd. for 120 seconds.
  • FC-E2001 a strong alkaline degreasing agent manufactured by Nihon Parkerizing Co., Ltd. for 120 seconds.
  • a degreasing treatment was performed by spraying. After the degreasing treatment, it was washed with spray water for 30 seconds, immersed in the compositions shown in Examples and Comparative Examples, and subjected to cathode electrolytic treatment.
  • the test plate after completion of electrolysis was immediately spray-washed with deionized water for 30 seconds and baked in an electric oven at 170 ° C. for 20 minutes.
  • the throwing power was evaluated by the “four-sheet box method”. As shown in FIG. 3, a “four-box testability jig with a box method” (see FIG. 2) in which holes of 8 mm in diameter were formed in the test plate and four steel plates were installed at 2 cm intervals was wired. Of the four steel plates shown in FIG. 3, the left side facing the leftmost steel plate is referred to as “A surface”, and the right side surface toward “B surface”. Similarly, the left and right surfaces of the second steel plate from the left are “C surface” and “D surface”, respectively, and the left and right surfaces of the third steel plate from the left are “E surface” and “F surface”, respectively.
  • the right and left surfaces of the rightmost steel sheet are the “G plane” and the “H plane”, respectively.
  • electrodeposition was applied at a coating bath temperature of 30 ° C., a distance between the A-side and the electrode of 10 cm, and a current-carrying time of 3 minutes, at a voltage of A-side film thickness of 20 ⁇ m.
  • the throwing power was evaluated by the film thickness on the G surface.
  • G-plane film thickness less than 5 ⁇ m x, 5 ⁇ m or more and less than 10 ⁇ m ⁇ , 10 ⁇ m or more as ⁇ .
  • R3 was not a four-sheet box method, and one test plate was subjected to cathodic electrolytic treatment at 200 V for 3 minutes, and the coating thickness after baking was evaluated. The evaluation results are also shown in Table 1.
  • Comparative Examples 1 to 3 which do not contain Al ions, which is the greatest feature of the present invention, have not only a sufficient throwing power but also no precipitation with respect to the nonionic resin emulsion.
  • Comparative Example 4 is under the lower limit of Al ion concentration
  • Comparative Example 5 is under the excessive Al ion concentration and lower pH limit.
  • Comparative Example 6 is a composition in which the pH of Example 4 was raised, and the throwing power was still insufficient, but this is a neutralization step for raising the pH, and most of Al ions are water. This is probably because the precipitates were deposited as oxides, and the effect of Al ions was no longer exhibited. In fact, it has been confirmed by liquid analysis after centrifugation that the Al ion concentration is 0 ppm.
  • the cathodic electrolysis treatment of a metal material using the composition of the present invention can provide excellent throwing power, which cannot be achieved by conventional cationic electrodeposition coating, and can be obtained by conventional electrolytic deposition. It can be seen that this is an epoch-making technique that enables electrolytic deposition of a nonionic resin emulsion that has been impossible.

Abstract

Provided is an electrocoating composition with a further improved throwing power. Specifically provided is an electrocoating composition which comprises a water-borne nonionic and/or cationic resin and 20 to 500 ppm of Al ions, characterized in that the pH satisfies the relationship: 3.5 ≤ pH ≤ -Log((A × 1.93 × 10-15)1/3) [wherein A represents the Al ion concentration [ppm]].

Description

電着塗料組成物および電着塗装方法Electrodeposition coating composition and electrodeposition coating method
 本発明は金属材料、特に形状が複雑な金属構成体に対し、優れた付き廻り性を有する電着塗料組成物および電着塗装方法に関するものである。 The present invention relates to an electrodeposition coating composition and an electrodeposition coating method having excellent throwing power for metal materials, particularly metal structures having complicated shapes.
 従来、各種金属材料、特に形状が複雑な金属構成体に対して優れた耐食性を付与するための手法としては、複雑な形状の隅々に均一に塗膜を析出させることが可能な電着塗装が一般的に用いられてきた。 Conventionally, as a method for imparting excellent corrosion resistance to various metal materials, especially metal structures with complicated shapes, electrodeposition coating that can deposit a coating film uniformly on the corners of complicated shapes Has been commonly used.
 電着塗装は、アニオン性樹脂エマルジョンを含有する水性塗料中で被塗物をアノード電解することによって塗膜を析出させるアニオン電着塗装と、カチオン樹脂エマルジョンを含有する水性塗料中で被塗物をカソード電解することによって塗膜を析出させるカチオン電着塗装とに大別できる。 Electrodeposition coating consists of an anionic electrodeposition coating in which a coating is deposited by anodic electrolysis in an aqueous paint containing an anionic resin emulsion, and an aqueous coating containing a cationic resin emulsion. It can be roughly classified into cationic electrodeposition coating in which a coating film is deposited by cathodic electrolysis.
 アニオン性樹脂エマルジョンはアルカリサイドで分散安定性があり、酸性サイドで分散安定性を失う。カチオン性樹脂エマルジョンは反対に酸性サイドで分散安定性があり、アルカリサイドで分散安定性を失う。アノード電解またはカソード電解で樹脂が析出するのは、こうした性質を利用したものである。よって、反応機構上ノニオン性樹脂エマルジョンは析出不可能である。 Anionic resin emulsion has dispersion stability on the alkali side and loses dispersion stability on the acid side. On the contrary, the cationic resin emulsion has dispersion stability on the acid side and loses dispersion stability on the alkali side. The resin is deposited by anodic electrolysis or cathodic electrolysis because of these properties. Therefore, the nonionic resin emulsion cannot be precipitated due to the reaction mechanism.
 鉄系金属材料の耐食性向上に対しては、電解処理中に素地金属が塗料中に溶出する心配の無いカチオン電着塗装が有利であり、鉄系材料を主とする金属構成体である自動車車体、自動車部品、家電製品、建築材料等に対してはカチオン電着塗装が広く適用されている。 In order to improve the corrosion resistance of ferrous metal materials, cationic electrodeposition coating that does not cause the base metal to elute into the paint during electrolytic treatment is advantageous, and the automobile body is a metal component mainly composed of ferrous materials. Cationic electrodeposition coating is widely applied to automobile parts, home appliances, building materials and the like.
 前述の如く、電着塗装の最大の特徴は塗装の付き廻り性であるが、近年塗料の使用量低減や耐食性の向上を目的に、より高度な付き廻り性が求められるようになってきた。そして、付き廻り性向上のために種々の検討がされてきた。 As mentioned above, the greatest feature of electrodeposition coating is the coating throwing power, but in recent years, more advanced throwing power has been required for the purpose of reducing the amount of paint used and improving the corrosion resistance. Various studies have been made to improve the throwing power.
 例えば特許文献1(特開2002-294143)には、水性媒体、水性媒体中に分散するか又は溶解した、カチオン性エポキシ樹脂及びブロックイソシアネート硬化剤を含むバインダー樹脂、カチオン性エポキシ樹脂を中和するための中和酸、有機溶媒、金属触媒を含有する無鉛性カチオン電着塗料組成物において、揮発性有機分含有量が1重量%以下であり、金属イオン濃度が500ppm以下であり、中和酸の量がバインダー樹脂固形分100gに対して10~30mg当量である無鉛性カチオン電着塗料組成物、が開示されており、金属触媒はセリウムイオン、ビスマスイオン、銅イオン、亜鉛イオン、モリブデンイオン、アルミニウムイオンからなる群から選択される一種以上、中和酸は酢酸、乳酸、蟻酸、スルファミン酸からなる群から選択される一種以上であることが好ましいとされている。 For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2002-294143) neutralizes an aqueous medium, a binder resin containing a cationic epoxy resin and a blocked isocyanate curing agent, or a cationic epoxy resin dispersed or dissolved in the aqueous medium. In the lead-free cationic electrodeposition coating composition containing a neutralizing acid, an organic solvent, and a metal catalyst, the volatile organic content is 1% by weight or less, the metal ion concentration is 500 ppm or less, and the neutralizing acid Is a lead-free cationic electrodeposition coating composition having an amount of 10 to 30 mg equivalent to 100 g of binder resin solid content, and the metal catalyst is cerium ion, bismuth ion, copper ion, zinc ion, molybdenum ion, One or more selected from the group consisting of aluminum ions, the neutralizing acid is acetic acid, lactic acid, formic acid, sulfamic acid It is that it is preferably at least one selected from that group.
 また、この電着塗料組成物に類似した組成物を用いて付き廻り性を向上させる技術も多々開示されている。
 特許文献2(特開2002-285391)は電着浴の温度制御を特徴としており、特許文献3(特開2002-285392)は塗膜のガラス転移温度の異なる2種の電着工程を有することを特徴としており、特許文献4(特開2002-294144)は不揮発固形分を特定することを特徴としており、特許文献5(特開2002-294145)および特許文献6(特開2002-294146)はカチオン性エポキシ樹脂のガラス転移温度と分子量を特定することを特徴としており、特許文献7(特開2002-294147)は塗膜の最低造膜温度を特定することを特徴としており、特許文献8(特開2005-194389)はカチオン性エポキシ樹脂の基体樹脂骨格、膜抵抗、硬化剤および硬化剤のガラス転移温度を特定することを特徴としており、特許文献9(特開2008-156655)はやはり膜抵抗を特定することを特徴としている。
In addition, many techniques for improving the throwing power using a composition similar to this electrodeposition coating composition have been disclosed.
Patent Document 2 (Japanese Patent Application Laid-Open No. 2002-285391) is characterized by temperature control of the electrodeposition bath, and Patent Document 3 (Japanese Patent Application Laid-Open No. 2002-285392) has two types of electrodeposition processes having different glass transition temperatures of the coating film. Patent Document 4 (Japanese Patent Laid-Open No. 2002-294144) is characterized by specifying a non-volatile solid content, and Patent Document 5 (Japanese Patent Laid-Open No. 2002-294145) and Patent Document 6 (Japanese Patent Laid-Open No. 2002-294146) are characterized. It is characterized by specifying the glass transition temperature and molecular weight of the cationic epoxy resin, and Patent Document 7 (Japanese Patent Laid-Open No. 2002-294147) is characterized by specifying the minimum film-forming temperature of the coating film. JP 2005-194389) specifies the base resin skeleton of the cationic epoxy resin, the film resistance, the curing agent and the glass transition temperature of the curing agent. DOO is characterized by, Patent Document 9 (JP-2008-156655) is characterized in that also identifies the film resistance.
特開2002-294143号公報JP 2002-294143 A 特開2002-285391号公報JP 2002-285391 A 特開2002-285392号公報JP 2002-285392 A 特開2002-294144号公報JP 2002-294144 A 特開2002-294145号公報JP 2002-294145 A 特開2002-294146号公報JP 2002-294146 A 特開2002-294147号公報JP 2002-294147 A 特開2005-194389号公報JP 2005-194389 A 特開2008-156655号公報JP 2008-156655 A 特開2007-314690号公報JP 2007-314690 A 特開2008-538383号公報JP 2008-538383 A
 上記従来技術は、確かに付き廻り性に対する効果を有するが、市場ニーズは更なる付き廻り性の向上を求めていることも確かである。そこで本発明者らは、カチオン電着塗装の析出メカニズムそのものを再考することとした。 The above prior art certainly has an effect on circulation, but it is certain that the market needs further improvement of circulation. Therefore, the present inventors have reconsidered the deposition mechanism itself of the cationic electrodeposition coating.
 カチオン電着塗装に使用される樹脂エマルジョンは多くの場合アミン基の導入によりカチオン性を付与している。カチオン性樹脂エマルジョンは酸性サイドで分散安定性があり、アルカリサイドで分散安定性を失うわけであるが、実際のカソード電解によりエマルジョンが電荷を失って塗膜を形成するpHは12前後に達することが文献1に掲載されている。 Resin emulsions used for cationic electrodeposition coating are often rendered cationic by the introduction of amine groups. The cationic resin emulsion has dispersion stability on the acidic side and loses dispersion stability on the alkali side. However, the pH at which the emulsion loses electric charge and forms a coating film due to actual cathode electrolysis reaches around 12. Is published in Document 1.
 もちろん塗膜が析出するpHは樹脂エマルジョンの性状、例えばエマルジョン分子量、導入するアミン基の種類や導入率によって変化するが、少なくともpH10を超える領域にならないと析出は開始しない。よって、カソード電解によるpH上昇の際、出発pHである塗料組成物のpHは、樹脂エマルジョンが安定化している範囲でできるだけ高いpHであることが、塗膜の析出性に対して有利であると言える。 Of course, the pH at which the coating film is deposited varies depending on the properties of the resin emulsion, such as the molecular weight of the emulsion, the type of amine group to be introduced, and the introduction rate, but the deposition does not start unless the pH exceeds 10. Therefore, when the pH is increased by cathodic electrolysis, the pH of the coating composition, which is the starting pH, is advantageously as high as possible within the range where the resin emulsion is stabilized, which is advantageous for the deposition properties of the coating film. I can say that.
 従来技術である特許文献10(特開2007-314690)および特許文献11(特開2008-538383)は、やはり電着塗料組成物に関するものであるが、水性塗料組成物のpHは、5~7であることが好ましく、5.5~6.5であることが更に好ましいとされている。pHが5未満の場合の弊害は、電着塗装効率や膜外観が低下することを挙げている。 Patent Document 10 (Japanese Patent Laid-Open No. 2007-314690) and Patent Document 11 (Japanese Patent Laid-Open No. 2008-538383), which are prior arts, also relate to electrodeposition coating compositions, but the pH of aqueous coating compositions is 5-7. It is preferable that it is preferably 5.5 to 6.5. An adverse effect when the pH is less than 5 is that electrodeposition coating efficiency and film appearance are reduced.
 特許文献1~9については、具体的なpHの記述は無いものの、電着塗料の付き廻り性を改良するためには、塗料組成物に含有させる中和酸の量を減らしてカチオン性エポキシ樹脂の中和率を低レベルに抑えること、すなわちできる限りpHを高く保持することが好ましいとしている。事実、中和酸の量がバインダー樹脂固形分100gに対して10~30mg当量であることから、pHは必然的に特許文献10および11と同様の範囲になることは明らかである。 In Patent Documents 1 to 9, although there is no specific description of pH, in order to improve the throwing power of the electrodeposition paint, the amount of the neutralizing acid contained in the paint composition is reduced and the cationic epoxy resin is used. It is said that it is preferable to keep the neutralization rate of the resin at a low level, that is, to maintain the pH as high as possible. In fact, since the amount of neutralizing acid is 10 to 30 mg equivalent to 100 g of binder resin solid content, it is clear that the pH is necessarily in the same range as in Patent Documents 10 and 11.
 つまり、電着塗料組成物そのもののpHを高くすることも、樹脂エマルジョンの改質によって析出pHを低下することも、もはや限界にきており、それ以外の手法を用いないと付き廻り性の改善は望めないのである。 In other words, increasing the pH of the electrodeposition coating composition itself and lowering the precipitation pH by modifying the resin emulsion are already at the limits. Cannot be expected.
 そこで本発明者らは、新たな手法として凝集剤によって塗膜析出pHを低下させることを検討した。そして、種々の凝集剤の中でもAlが最も効果的であることを見出した。 Therefore, the present inventors examined reducing the coating film deposition pH with a flocculant as a new technique. And it discovered that Al was the most effective among various flocculants.
 しかし、Al化合物を従来の電着塗料組成物中に添加しても、瞬時に加水分解によって水酸化物に変化してしまい、かつ水酸化物は経時によって凝集していってしまうため、凝集剤としての効果を失ってしまう。 However, even when an Al compound is added to a conventional electrodeposition coating composition, it is instantly changed into a hydroxide by hydrolysis, and the hydroxide aggregates over time. Will lose its effect.
 特許文献1~9には、金属触媒としてアルミニウムイオンを含むことが好ましいとしているが、上記の理由で実際の電着塗料組成物の中では、瞬時に加水分解し水酸化物が形成されているものと推定される。実施例での検証はなされていないが、水酸化物は触媒としての作用は維持するものの、凝集剤としての効果はもはや望めないものと考えられる。 Patent Documents 1 to 9 indicate that it is preferable to contain aluminum ions as a metal catalyst, but in the actual electrodeposition coating composition for the above reason, a hydroxide is formed by instantaneous hydrolysis. Estimated. Although it has not been verified in the examples, it is considered that although the hydroxide maintains its action as a catalyst, the effect as a flocculant can no longer be expected.
 そこで本発明者らは、電着塗料組成物の常識であった中性付近のpHを、Alが継続的にイオン状態で存在できる範囲まであえて低下させ、Alイオンの付き廻り性に対する効果を評価した結果、組成物のpHを低下させたにもかかわらず、極めて良好な付き廻り性が得られることを発見した。 Therefore, the present inventors have lowered the pH near neutrality, which was common knowledge of electrodeposition coating compositions, to a range where Al can be continuously present in an ionic state, and evaluated the effect on the circulation property of Al ions. As a result, it has been found that very good throwing power can be obtained even though the pH of the composition is lowered.
 そして、このAlイオンの効果は、電解析出不可能だったノニオン性樹脂エマルジョンに対しても有効であり、同じくカソード電解によって析出可能になることを発見し、本発明の完成に至った。 And the effect of this Al ion was found to be effective even for nonionic resin emulsions that could not be electrolytically deposited, and could be deposited by cathodic electrolysis, leading to the completion of the present invention.
 すなわち、本発明は次に示す(1)および(2)である。
(1) ノニオン性および/またはカチオン性の水系樹脂およびAlイオン20~500ppmを含有し、pHがAlイオン濃度をA[ppm]としたとき次の計算式を満足することを特徴とする電着塗料組成物。
 3.5≦pH≦-Log(A×1.93×10-151/3
(2) 前記(1)の組成物を用いて金属材料をカソード電解法にて塗膜を析出せしめることを特徴とする電着塗装方法。
That is, the present invention includes the following (1) and (2).
(1) Electrodeposition containing a nonionic and / or cationic water-based resin and Al ions of 20 to 500 ppm, and the pH satisfies the following formula when the Al ion concentration is A [ppm] Paint composition.
3.5 ≦ pH ≦ −Log (A × 1.93 × 10 −15 ) 1/3
(2) An electrodeposition coating method comprising depositing a coating film of a metal material by a cathode electrolysis method using the composition of (1).
第1図は、Alイオン濃度およびpHの適正範囲を示した図である。FIG. 1 is a diagram showing appropriate ranges of Al ion concentration and pH. 第2図は、付き廻り性試験に用いる「4枚ボックス付き廻り性試験用治具」のモデル図である。FIG. 2 is a model diagram of a “four-box with-around test jig” used in the in-around test. 第3図は、付き廻り性試験における電着塗装状態を示す。FIG. 3 shows the electrodeposition coating state in the throwing power test.
1.直径8mmの穴
2.4枚ボックス法の付き廻り性試験用治具における外板(A面)
3.4枚ボックス法の付き廻り性試験用治具における内板(G面)
4.電着塗料浴
1. Outer plate (surface A) in a jig for testing the throwing power of a 2.4-sheet box method with an 8 mm diameter hole
3. Inner plate for G
4). Electrodeposition paint bath
 本発明の電着塗料組成物にはノニオン性および/またはカチオン性の水系樹脂が含有されている。ここで、ノニオン性樹脂及びカチオン性樹脂のいずれも特に限定されるものではない。基体樹脂はいずれのタイプを用いても、本発明の効果を損なうものではないが、エポキシ、ウレタン、アクリルがより好ましい。ここで、本発明の一特徴が、新規作用機序(pH上昇に伴ってAlイオンが水酸化コロイドとなり凝集するが、この際に回りの樹脂を巻き込むという作用機序)に基づき、従来は電解析出不能であったノニオン性樹脂もが使用可能となった点である。このようにノニオン系樹脂も使用可能となったことにより選択の幅が広がり、これまで持たせることができなかった各種性質を皮膜に付与することが可能となる。更に、カチオン性樹脂を使用した場合についても、pH上昇に伴って樹脂自体が分散安定性を失う公知作用機序に加え、前述した新規作用機序に基づき、従来よりも低いpHでの電析が可能となる。 The electrodeposition coating composition of the present invention contains a nonionic and / or cationic aqueous resin. Here, neither a nonionic resin nor a cationic resin is particularly limited. Whichever type of base resin is used, the effect of the present invention is not impaired, but epoxy, urethane, and acrylic are more preferable. Here, one feature of the present invention is based on a novel action mechanism (an action mechanism in which Al ions become a hydroxide colloid and aggregate as the pH rises, but the surrounding resin is involved at this time). Nonionic resins that could not be analyzed can now be used. Since nonionic resins can be used in this way, the range of selection is widened, and various properties that could not be obtained can be imparted to the film. Furthermore, in the case of using a cationic resin, in addition to the known action mechanism in which the resin itself loses dispersion stability as the pH increases, electrodeposition at a lower pH than the conventional one is based on the above-mentioned novel action mechanism. Is possible.
 樹脂エマルジョンの濃度も特に規定されないが、電着塗料組成物の全重量を基準として、5~30重量%含有することが好ましい。7~25重量%が更に好ましく、10~20重量%が最も好ましい。樹脂含有量が低過ぎると皮膜析出量が不足し、含有量が高過ぎると経済的に不利である。 The concentration of the resin emulsion is not particularly specified, but it is preferably 5 to 30% by weight based on the total weight of the electrodeposition coating composition. It is more preferably 7 to 25% by weight, and most preferably 10 to 20% by weight. If the resin content is too low, the amount of film deposition is insufficient, and if the content is too high, it is economically disadvantageous.
 ノニオン性樹脂エマルジョンについては基体樹脂にエチレンオキサイドのようなノニオン性官能基を導入させる方法、すなわち自己乳化法、およびノニオン界面活性剤を用いて乳化させる方法、すなわち強制乳化法のいずれかまたは双方の手法を用いて作製することができる。カチオン性樹脂エマルジョンについては基体樹脂にアミン基のようなカチオン性官能基を導入させる方法、すなわち自己乳化法、およびカチオン界面活性剤を用いて乳化させる方法、すなわち強制乳化法のいずれかまたは双方を同時に用いて作製することができる。更に、カチオン性官能基を導入後、ノニオン界面活性剤を乳化助剤として用いることもできる。また、自己乳化エマルジョンの分子量が小さい場合は、もはや粒子状のエマルジョンではなく水溶性樹脂となるが、水溶性樹脂であっても本発明の効果が損なわれるものではない。本発明における水系樹脂とは、水分散するエマルジョンと水溶性樹脂の総称である。 For the nonionic resin emulsion, either or both of a method of introducing a nonionic functional group such as ethylene oxide into the base resin, that is, a self-emulsification method and a method of emulsification using a nonionic surfactant, that is, a forced emulsification method. It can be produced using a technique. For the cationic resin emulsion, either or both of a method of introducing a cationic functional group such as an amine group into the base resin, that is, a self-emulsification method and a method of emulsification using a cationic surfactant, that is, a forced emulsification method, are used. They can be used at the same time. Furthermore, after introducing a cationic functional group, a nonionic surfactant can also be used as an emulsification aid. Moreover, when the molecular weight of the self-emulsifying emulsion is small, the emulsion is no longer a particulate emulsion but a water-soluble resin, but even the water-soluble resin does not impair the effects of the present invention. The water-based resin in the present invention is a general term for water-dispersed emulsions and water-soluble resins.
 また、水系樹脂には、ブロック化ポリイソシアネートをはじめとする硬化剤を任意に配合することもできる。 In addition, a curing agent such as a blocked polyisocyanate can be arbitrarily added to the water-based resin.
 本発明の電着塗料組成物にはAlイオンを20~500ppm含有することが好ましい。50~400ppmが更に好ましく、100~300ppmが最も好ましい。下限を下回るとAlイオンの塗膜析出向上効果が不充分となり、上限を上回ると組成物の電気伝導度が過剰となり、かえって付き廻り性を低下させる。 The electrodeposition coating composition of the present invention preferably contains 20 to 500 ppm of Al ions. More preferred is 50 to 400 ppm, and most preferred is 100 to 300 ppm. If the lower limit is not reached, the effect of improving the coating deposition of Al ions becomes insufficient, and if the upper limit is exceeded, the electrical conductivity of the composition becomes excessive, and the throwing power is reduced.
 組成物中のAlイオン濃度は、超遠心機により組成物を固液分離し、液相を高周波誘導結合プラズマ発光分光分析(ICP)もしくは原子吸光分光分析(AA)を用いて定量することができる。 The Al ion concentration in the composition can be determined by solid-liquid separation of the composition using an ultracentrifuge and quantifying the liquid phase using high frequency inductively coupled plasma emission spectrometry (ICP) or atomic absorption spectrometry (AA). .
 本発明に係る電着組成物の液体媒体としては、水性媒体が好適であり、水がより好適である。尚、液体媒体が水である場合、液体媒体として水以外の他の水系溶媒(例えば、水溶性のアルコール類)を含有していてもよい。 As the liquid medium of the electrodeposition composition according to the present invention, an aqueous medium is preferable, and water is more preferable. When the liquid medium is water, the liquid medium may contain an aqueous solvent other than water (for example, water-soluble alcohols).
 本発明の電着塗料組成物のpHはAlイオン濃度をA[ppm]としたとき次の計算式を満足することが好ましい。
 3.5≦pH≦-Log((A×1.93×10-151/3
 下記式であることが更に好ましい。
 3.6≦pH≦-Log((A×1.93×10-151/3
 下記式であることが最も好ましい。
 3.7≦pH≦-Log((A×1.93×10-151/3
 pHが下限を下回ると、析出効率が低下し付き廻り性も低下していく。pHが上限を上回ると、Alイオンが加水分解を起こしてしまうため、好ましくない。
The pH of the electrodeposition coating composition of the present invention preferably satisfies the following formula when the Al ion concentration is A [ppm].
3.5 ≦ pH ≦ −Log ((A × 1.93 × 10 −15 ) 1/3 )
The following formula is more preferable.
3.6 ≦ pH ≦ −Log ((A × 1.93 × 10 −15 ) 1/3 )
The following formula is most preferable.
3.7 ≦ pH ≦ −Log ((A × 1.93 × 10 −15 ) 1/3 )
When the pH is lower than the lower limit, the deposition efficiency is lowered and the throwing power is also lowered. When the pH exceeds the upper limit, Al ions cause hydrolysis, which is not preferable.
 -Log((A×1.93×10-151/3)の項は、水酸化Alの25℃における溶解度積:1.92×10-32から求められる。つまり、このpH以上になるとAlイオンは水酸化物として沈殿析出してしまい、もはやイオンではいられなくなる。ここで、25℃は、組成物の保存時及び使用時の典型的な温度である。 The term −Log ((A × 1.93 × 10 −15 ) 1/3 ) is obtained from the solubility product of Al hydroxide at 25 ° C .: 1.92 × 10 −32 . That is, when the pH is exceeded, Al ions precipitate as hydroxides and can no longer be ions. Here, 25 ° C. is a typical temperature during storage and use of the composition.
 本発明におけるAlイオンの作用効果は以下の通りである。つまり、イオン状のAlがカソード電解による金属表面pH上昇により微細な水酸化物コロイドになり、それがpH9前後でゼータ電荷を完全に失い急激に凝集を始める際、周りの樹脂エマルジョンをも巻き込んで析出するものと推定される。 The effects of Al ions in the present invention are as follows. In other words, when ionic Al becomes a fine hydroxide colloid due to the increase in pH of the metal surface due to cathodic electrolysis, when it completely loses the zeta charge at around pH 9 and begins to agglomerate rapidly, the surrounding resin emulsion is also involved. Presumed to be deposited.
 カソード電解によってAlイオンから水酸化物コロイドの電荷の消失にいたる一連の反応は瞬時に完了する必要がある。あらかじめ水酸化物になっていては、経時で凝集が始まってしまい、pH9前後での凝集能力が極端に減退する。よって、本発明のAl成分は、組成物中ではあくまでイオンでいなければならないのである。 It is necessary to complete a series of reactions from the cathode ion to the disappearance of the charge of the hydroxide colloid instantaneously. If it has become a hydroxide in advance, aggregation starts over time, and the aggregation ability around pH 9 is extremely reduced. Therefore, the Al component of the present invention must be only ions in the composition.
 また、Alイオンは特定のキレート剤によって安定化できるが、安定化させてしまっては、pH上昇による水酸化物の生成も阻害されるため、好ましくない。なお、電着塗料組成物に通常配合されている、酢酸、蟻酸、スルファミン酸、乳酸等の有機酸には、Alイオンを安定化させるほどのキレート能力はない。 Moreover, Al ions can be stabilized by a specific chelating agent, but if stabilized, formation of hydroxide due to an increase in pH is also inhibited, which is not preferable. Note that organic acids such as acetic acid, formic acid, sulfamic acid, and lactic acid, which are usually blended in electrodeposition coating compositions, do not have a chelating ability to stabilize Al ions.
 AlイオンはAl化合物を用いて添加することができる。Al化合物は特に限定されないが、硝酸塩、硫酸塩と言った無機酸塩または乳酸塩、酢酸塩と言った有機酸塩の形で添加することが可能である。
 参考のため、Alイオン濃度およびpHの適正範囲を第1図に示す。
Al ions can be added using an Al compound. The Al compound is not particularly limited, but can be added in the form of an inorganic acid salt such as nitrate or sulfate, or an organic acid salt such as lactate or acetate.
For reference, the appropriate ranges of Al ion concentration and pH are shown in FIG.
 本発明の電着塗料組成物を用いて金属材料表面に塗膜を形成させる方法としては、カソード電解法が好ましい。無電解もしくはアノード電解では塗膜析出は望めない。
 カソード電解条件は特に規定されるものではないが、50~400Vの電圧を印加することが好ましい。100~300Vであることが更に好ましく、150~250Vであることが最も好ましい。なお、必ずしも定電圧である必要は無く、徐々に電圧を増加させていく方法や、2段通電等の方法も適用可能である。
As a method of forming a coating film on the surface of a metal material using the electrodeposition coating composition of the present invention, a cathode electrolysis method is preferable. Coating deposition cannot be expected with electroless or anodic electrolysis.
Cathodic electrolysis conditions are not particularly defined, but it is preferable to apply a voltage of 50 to 400V. More preferably, it is 100 to 300V, and most preferably 150 to 250V. It is not always necessary to use a constant voltage, and a method of gradually increasing the voltage or a method such as two-stage energization is also applicable.
 本発明の組成物には、更に必要に応じて顔料、触媒、有機溶剤、顔料分散剤、界面活性剤等、塗料分野で通常使用されている添加剤を適用することもできる。顔料としては、チタン白、カーボンブラック等の着色顔料、クレー、タルク、バリタ等の体質顔料、トリポリリン酸アルミニウム、リン酸亜鉛等の防錆顔料、ジブチル錫オキサイド、ジオクチル錫オキサイド等の有機錫化合物、ジブチル錫ラウレート、ジブチル錫ジベンゾエートなどのジアルキル錫の脂肪酸もしくは芳香族カルボン酸塩などの錫化合物が挙げられる。 In the composition of the present invention, additives usually used in the paint field such as a pigment, a catalyst, an organic solvent, a pigment dispersant, and a surfactant can be further applied as necessary. Examples of pigments include colored pigments such as titanium white and carbon black, extender pigments such as clay, talc, and barita, antirust pigments such as aluminum tripolyphosphate and zinc phosphate, and organic tin compounds such as dibutyltin oxide and dioctyltin oxide, Examples thereof include dialkyltin fatty acids such as dibutyltin laurate and dibutyltin dibenzoate, and tin compounds such as aromatic carboxylates.
 本発明の電着塗料組成物は各種金属材料に対して適用される。金属材料は、特に限定されるものではないが、冷延鋼板、熱延鋼板、鋳物材、鋼管等の鉄鋼材料、それらの鉄鋼材料の上に亜鉛系めっき処理および/またはアルミニウム系めっきが施された材料、アルミニウム合金板、アルミニウム系鋳物材、マグネシウム合金版、マグネシウム系鋳物材等が挙げられる。また、あらかじめ塗装下地処理としてリン酸亜鉛系化成処理やジルコニウム系化成処理が施されていても、本発明の効果を損なうものではない。特に形状が複雑な金属構成体、例えば、鉄系材料を主とする金属構成体である自動車車体、自動車部品、家電製品、建築材料等への使用に適している。 The electrodeposition coating composition of the present invention is applied to various metal materials. The metal material is not particularly limited, but steel materials such as cold-rolled steel plates, hot-rolled steel plates, casting materials, steel pipes, etc., and zinc-based plating treatment and / or aluminum-based plating are applied on those steel materials. Materials, aluminum alloy plates, aluminum castings, magnesium alloy plates, magnesium castings, and the like. Moreover, even if the zinc phosphate-based chemical conversion treatment or the zirconium-based chemical conversion treatment is performed in advance as a coating ground treatment, the effect of the present invention is not impaired. It is particularly suitable for use in metal structures having complicated shapes, for example, automobile bodies, automobile parts, home appliances, building materials, etc., which are metal structures mainly composed of iron-based materials.
 以下に実施例および比較例を挙げて本発明の内容を具体的に説明する。
 実施例中、「部」および「%」は、ことわりのない限り、重量基準による。
The contents of the present invention will be specifically described below with reference to examples and comparative examples.
In the examples, “parts” and “%” are based on weight unless otherwise specified.
カチオン性エポキシ樹脂の合成
 攪拌機、冷却管、窒素導入管、温度計および滴下漏斗を装備したフラスコに、2,4-/2,6-トリレンジイソシアネート(重量比=8/2)92部、メチルイソブチルケトン(以下、MIBKと略す)95部およびジブチル錫ジラウレート0.5部を仕込んだ。反応混合物を攪拌下、メタノール21部を滴下した。反応は、室温から始め、発熱により60℃まで昇温した。
Synthesis of cationic epoxy resin, flask equipped with stirrer, condenser, nitrogen inlet, thermometer and dropping funnel, 92 parts of 2,4- / 2,6-tolylene diisocyanate (weight ratio = 8/2), methyl 95 parts of isobutyl ketone (hereinafter abbreviated as MIBK) and 0.5 part of dibutyltin dilaurate were charged. While stirring the reaction mixture, 21 parts of methanol was added dropwise. The reaction was started from room temperature and heated to 60 ° C. due to heat generation.
 その後、30分間反応を継続した後、エチレングリコールモノ-2-エチルヘキシルエーテル57部を滴下漏斗より滴下した。更に、反応混合物に、ビスフェノールA-プロピレンオキシド5モル付加体42部を添加した。反応は主に、60~65℃の範囲で行い、IRスペクトルの測定において、イソシアネート基に基づく吸収が消失するまで継続した。 Thereafter, the reaction was continued for 30 minutes, and then 57 parts of ethylene glycol mono-2-ethylhexyl ether was dropped from the dropping funnel. Further, 42 parts of a bisphenol A-propylene oxide 5 mol adduct was added to the reaction mixture. The reaction was mainly carried out in the range of 60 to 65 ° C. and continued until absorption based on the isocyanate group disappeared in the measurement of IR spectrum.
 次に、ビスフェノールAとエピクロルヒドリンから既知の方法で合成したエポキシ当量188のエポキシ樹脂365部を反応混合物に加えて、125℃まで昇温した。その後、ベンジルジメチルアミン1.0部を添加し、エポキシ当量410になるまで130℃で反応させた。 Next, 365 parts of epoxy resin having an epoxy equivalent of 188 synthesized from bisphenol A and epichlorohydrin by a known method was added to the reaction mixture, and the temperature was raised to 125 ° C. Thereafter, 1.0 part of benzyldimethylamine was added and reacted at 130 ° C. until the epoxy equivalent was 410.
 続いて、ビスフェノールA87部を加えて120℃で反応させたところ、エポキシ当量は1190となった。その後、反応混合物を冷却し、ジエタノールアミン11部、N-エチルエタノールアミン24部およびアミノエチルエタノールアミンのケチミン化物の79重量%MIBK溶液25部を加え、110℃で2時間反応させた。その後、MIBKで不揮発分80%となるまで希釈し、ガラス転移温度が22℃のアミン変性エポキシ樹脂(樹脂固形分80%)を得た。なお、この製造方法は特許文献1(特開2002-294143)の実施例における製造例1に準ずる。 Subsequently, when 87 parts of bisphenol A was added and reacted at 120 ° C., the epoxy equivalent was 1190. Thereafter, the reaction mixture was cooled, 11 parts of diethanolamine, 24 parts of N-ethylethanolamine and 25 parts of 79 wt% MIBK solution of ketimine product of aminoethylethanolamine were added and reacted at 110 ° C. for 2 hours. Then, it diluted with MIBK until it became 80% of non volatile matters, and obtained the amine modified epoxy resin (resin solid content 80%) whose glass transition temperature is 22 degreeC. This manufacturing method is based on Manufacturing Example 1 in the example of Patent Document 1 (Japanese Patent Laid-Open No. 2002-294143).
ブロックイソシアネート硬化剤の製造
 ジフェニルメタンジイソシアナート1250部およびMIBK266.4部を反応容器に仕込み、これを80℃まで加熱した後、ジブチル錫ジラウレート2.5部を加えた。ここに、ε-カプロラクタム226部をブチルセロソルブ944部に溶解させたものを80℃で2時間かけて滴下した。さらに100℃で4時間加熱した後、IRスペクトルの測定において、イソシアネート基に基づく吸収が消失したことを確認し、放冷後、MIBK336.1部を加えてブロックイソシアネート硬化剤を得た。なお、この製造方法は特許文献1(特開2002-294143)の実施例における製造例2に準ずる。
Production of blocked isocyanate curing agent 1250 parts of diphenylmethane diisocyanate and 266.4 parts of MIBK were charged into a reaction vessel, which was heated to 80 ° C., and then 2.5 parts of dibutyltin dilaurate was added. A solution prepared by dissolving 226 parts of ε-caprolactam in 944 parts of butyl cellosolve was added dropwise at 80 ° C. over 2 hours. Furthermore, after heating at 100 degreeC for 4 hours, in the measurement of IR spectrum, it confirmed that the absorption based on an isocyanate group disappeared, and after standing to cool, MIBK 336.1 parts was added and the block isocyanate hardening | curing agent was obtained. This manufacturing method is based on Manufacturing Example 2 in the embodiment of Patent Document 1 (Japanese Patent Laid-Open No. 2002-294143).
顔料分散樹脂の製造
 まず、攪拌装置、冷却管、窒素導入管および温度計を装備した反応容器に、イソホロンジイソシアネート(以下、IPDIと略す)222.0部を入れ、MIBK39.1部で希釈した後、ここヘジブチル錫ジラウレート0.2部を加えた。その後、これを50℃に昇温した後、2-エチルヘキサノール131.5部を攪拌下、乾燥窒素雰囲気中で2時間かけて滴下した。適宜、冷却することにより、反応温度を50℃に維持した。その結果、2-エチルヘキサノールハーフブロック化IPDI(樹脂固形分90.0%)が得られた。
Production of pigment dispersion resin First, 222.0 parts of isophorone diisocyanate (hereinafter abbreviated as IPDI) was placed in a reaction vessel equipped with a stirrer, a cooling pipe, a nitrogen introduction pipe and a thermometer, and diluted with 39.1 parts of MIBK. Here, 0.2 part of hedibutyltin dilaurate was added. Thereafter, the temperature was raised to 50 ° C., and 131.5 parts of 2-ethylhexanol was added dropwise with stirring in a dry nitrogen atmosphere over 2 hours. The reaction temperature was maintained at 50 ° C. by cooling appropriately. As a result, 2-ethylhexanol half-blocked IPDI (resin solid content: 90.0%) was obtained.
 次いで、適当な反応容器に、ジメチルエタノールアミン87.2部、75%乳酸水溶液117.6部およびエチレングリコールモノブチルエーテル39.2部を順に加え、65℃で約半時間攪拌して、4級化剤を調製した。 Next, 87.2 parts of dimethylethanolamine, 117.6 parts of 75% aqueous lactic acid solution, and 39.2 parts of ethylene glycol monobutyl ether are added to a suitable reaction vessel in this order, and the mixture is stirred at 65 ° C. for about half an hour to form quaternization. An agent was prepared.
 次に、エポン(EPON)829(シェル・ケミカル・カンパニー社製ビスフェノールA型エポキシ樹脂、エポキシ当量193~203)710.0部とビスフェノールA289.6部とを適当な反応容器に仕込み、窒素雰囲気下、150~160℃に加熱したところ、初期発熱反応が生じた。反応混合物を150~160℃で約1時間反応させ、次いで、120℃に冷却した後、先に調製した2-エチルヘキサノールハーフブロック化IPDI(MIBK溶液)498.8部を加えた。 Next, 710.0 parts of EPON 829 (bisphenol A type epoxy resin manufactured by Shell Chemical Company, epoxy equivalent 193 to 203) and 289.6 parts of bisphenol A were charged into a suitable reaction vessel, and the reaction was conducted under a nitrogen atmosphere. When heated to 150 to 160 ° C., an initial exothermic reaction occurred. The reaction mixture was reacted at 150-160 ° C. for about 1 hour, then cooled to 120 ° C., and 498.8 parts of the previously prepared 2-ethylhexanol half-blocked IPDI (MIBK solution) was added.
 反応混合物を110~120℃に約1時間保ち、次いで、エチレングリコールモノブチルエーテル1390.2部を加え、混合物を85~95℃に冷却し、均一化した後、先に調製した4級化剤196.7部を添加した。酸価が1となるまで反応混合物を85~95℃に保持した後、脱イオン水37.0部を加えて、エポキシ-ビスフェノールA樹脂において4級化を終了させ、4級アンモニウム塩部分を有する顔料分散用樹脂を得た(樹脂固形分50%)。なお、この製造方法は特許文献1(特開2002-294143)の実施例における製造例3に準ずる。 The reaction mixture is kept at 110-120 ° C. for about 1 hour, then 1390.2 parts of ethylene glycol monobutyl ether is added, the mixture is cooled to 85-95 ° C. and homogenized, and then the quaternizing agent 196 prepared above is used. 7 parts were added. After maintaining the reaction mixture at 85-95 ° C. until the acid value is 1, 37.0 parts of deionized water is added to terminate the quaternization in the epoxy-bisphenol A resin and have a quaternary ammonium salt moiety. A pigment dispersing resin was obtained (resin solid content 50%). This manufacturing method is based on Manufacturing Example 3 in the embodiment of Patent Document 1 (Japanese Patent Laid-Open No. 2002-294143).
顔料分散ペーストの製造
 サンドグラインドミルに顔料分散用樹脂を120部、カーボンブラック2.0部、カオリン100.0部、二酸化チタン80.0部、リン酸亜鉛4水和物18.0部およびイオン交換水221.7部を入れ、粒度10μm以下になるまで分散して、顔料分散ペーストを得た(固形分48%)。なお、この製造方法はリンモリブデン酸アルミニウムの替わりにリン酸亜鉛4水和物を用いた他は、特許文献1(特開2002-294143)の実施例における製造例4に準ずる。
Manufacture of pigment dispersion paste 120 parts of resin for pigment dispersion in sand grind mill, 2.0 parts of carbon black, 100.0 parts of kaolin, 80.0 parts of titanium dioxide, 18.0 parts of zinc phosphate tetrahydrate and ions 221.7 parts of exchange water was added and dispersed until the particle size became 10 μm or less to obtain a pigment dispersion paste (solid content 48%). This production method is in accordance with Production Example 4 in the example of Patent Document 1 (Japanese Patent Laid-Open No. 2002-294143) except that zinc phosphate tetrahydrate is used instead of aluminum phosphomolybdate.
カチオン性エポキシ電着塗料組成物の製造
 カチオン性エポキシ樹脂とブロックイソシアネート硬化剤とを固形分比で70/30で均一になるよう混合した。その後、エチレングリコール-2-エチルヘキシルエーテルを固形分に対して2重量%になるよう添加した。これに樹脂固形分100g当たり酸のミリグラム当量(MEQ(A))が24になるよう氷酢酸を添加し、さらにイオン交換水をゆっくりと加えて希釈した。減圧下でMIBKを除去することにより、固形分が36%のエマルションを得た。
Production of Cationic Epoxy Electrodeposition Coating Composition A cationic epoxy resin and a blocked isocyanate curing agent were mixed so as to be uniform at a solid content ratio of 70/30. Thereafter, ethylene glycol-2-ethylhexyl ether was added to 2 wt% based on the solid content. Glacial acetic acid was added so that the milligram equivalent (MEQ (A)) of the acid per 100 g of resin solids was 24, and ion-exchanged water was slowly added to dilute. By removing MIBK under reduced pressure, an emulsion having a solid content of 36% was obtained.
 このエマルション1960部および顔料分散ペースト197部とジブチル錫オキサイド14.5部とイオン交換水1843部とを混合して、固形分20重量%の電着塗料組成物(以下略号「R1」)を得た。なお、この製造方法は10%酢酸セリウム水溶液を混合しなかったことを除いて特許文献1(特開2002-294143)の実施例における実施例1に準ずる。 1960 parts of this emulsion, 197 parts of pigment dispersion paste, 14.5 parts of dibutyltin oxide and 1843 parts of ion-exchanged water were mixed to obtain an electrodeposition coating composition having a solid content of 20% by weight (hereinafter abbreviated as “R1”). It was. This manufacturing method is in accordance with Example 1 in the example of Patent Document 1 (Japanese Patent Laid-Open No. 2002-294143) except that a 10% cerium acetate aqueous solution was not mixed.
カチオン性アクリル電着塗料組成物の製造
 神東塗料製カチオン性アクリル樹脂「サクセード#1000」(固形分:65%)を脱イオン水で希釈し、固形分を18%に調整した(以下略号「R2」)。
Production of Cationic Acrylic Electrodeposition Coating Composition Cationic acrylic resin “Saxade # 1000” (solid content: 65%) manufactured by Shinto Paint was diluted with deionized water to adjust the solid content to 18% (hereinafter abbreviated as “Abbreviation“ R2 ").
ノニオン性ウレタン電着塗料組成物の製造
 DIC社製ノニオン性ウレタン樹脂「VONDIC2220」(固形分:40%)を脱イオン水で希釈し、固形分を18%に調整した(以下略号「R3」)。
Production of Nonionic Urethane Electrodeposition Coating Composition Nonionic Urethane Resin “VONDIC2220” (solid content: 40%) manufactured by DIC was diluted with deionized water to adjust the solid content to 18% (hereinafter abbreviated “R3”). .
 実施例および比較例にてAlイオンを添加する水準については、Alイオンは硝酸アルミニウム9水和物、硫酸アルミニウム14~18水和物または乳酸アルミニウムを用いて添加した。また、必要に応じて組成物のpHを硝酸またはアンモニアを用いて調整した。組成物の組成を第1表に示す。 In the examples and comparative examples, Al ions were added using aluminum nitrate nonahydrate, aluminum sulfate 14-18 hydrate, or aluminum lactate. Further, the pH of the composition was adjusted with nitric acid or ammonia as necessary. The composition of the composition is shown in Table 1.
試験板の作製
 試験板として、冷延鋼板:SPCC(JIS3141)70×150×0.8mmを用い、あらかじめその表面を日本パーカライジング社製強アルカリ脱脂剤「FC-E2001」を使用して、120秒間スプレー処理することにより脱脂処理した。脱脂処理後は30秒間スプレー水洗し、実施例および比較例に示す組成物に浸漬させ、カソード電解処理を実施した。電解終了後の試験板は直ちに脱イオン水にて30秒間スプレー水洗し、電気オーブン中で170℃にて20分間焼付けを行った。
Preparation of test plate A cold rolled steel plate: SPCC (JIS 3141) 70 × 150 × 0.8 mm was used as a test plate, and its surface was previously used with a strong alkaline degreasing agent “FC-E2001” manufactured by Nihon Parkerizing Co., Ltd. for 120 seconds. A degreasing treatment was performed by spraying. After the degreasing treatment, it was washed with spray water for 30 seconds, immersed in the compositions shown in Examples and Comparative Examples, and subjected to cathode electrolytic treatment. The test plate after completion of electrolysis was immediately spray-washed with deionized water for 30 seconds and baked in an electric oven at 170 ° C. for 20 minutes.
付き廻り性評価
 「4枚ボックス法」にて付き廻り性を評価した。試験板に直径8mmの穴を空け、4枚の鋼板を2cm間隔で設置した「4枚ボックス法付き廻り性試験の治具」(第2図参照)を、第3図のように配線した。第3図の4枚の鋼板のうち、最も左側の鋼板に向かって左側の面を「A面」、向かって右側の面を「B面」とする。同様に、左から2番目の鋼板の左右の面を、それぞれ、「C面」及び「D面」、左から3番目の鋼板の左右の面を、それぞれ、「E面」及び「F面」、そして最も右側の鋼板の左右の面が、それぞれ、「G面」と「H面」となる。第2図の装置において、塗装浴温30℃、A面と電極との極間距離10cm、通電時間3分間にて、A面膜厚20μmとなる電圧にて電着塗装した。
Evaluation of throwing power The throwing power was evaluated by the “four-sheet box method”. As shown in FIG. 3, a “four-box testability jig with a box method” (see FIG. 2) in which holes of 8 mm in diameter were formed in the test plate and four steel plates were installed at 2 cm intervals was wired. Of the four steel plates shown in FIG. 3, the left side facing the leftmost steel plate is referred to as “A surface”, and the right side surface toward “B surface”. Similarly, the left and right surfaces of the second steel plate from the left are “C surface” and “D surface”, respectively, and the left and right surfaces of the third steel plate from the left are “E surface” and “F surface”, respectively. The right and left surfaces of the rightmost steel sheet are the “G plane” and the “H plane”, respectively. In the apparatus shown in FIG. 2, electrodeposition was applied at a coating bath temperature of 30 ° C., a distance between the A-side and the electrode of 10 cm, and a current-carrying time of 3 minutes, at a voltage of A-side film thickness of 20 μm.
 付き廻り性は、G面の膜厚にて評価した。G面膜厚:5μm未満を×、5μm以上10μm未満を○、10μm以上を◎とした。
 但し、R3については4枚ボックス法ではなく、試験板1枚を200Vにて3分間カソード電解処理し、焼付け後の塗膜厚を評価した。評価結果を第1表に併記する。
The throwing power was evaluated by the film thickness on the G surface. G-plane film thickness: less than 5 μm x, 5 μm or more and less than 10 μm ◯, 10 μm or more as ◎.
However, R3 was not a four-sheet box method, and one test plate was subjected to cathodic electrolytic treatment at 200 V for 3 minutes, and the coating thickness after baking was evaluated. The evaluation results are also shown in Table 1.
 第1表の実施例1~6より、本発明の電着塗料組成物を用いたことによって、金属材料に対して良好な付き廻り性が得られていることがわかる。 From Examples 1 to 6 in Table 1, it can be seen that by using the electrodeposition coating composition of the present invention, good throwing power is obtained for the metal material.
 これに対し、本発明の最大の特徴であるAlイオンを配合しない比較例1~3は、付き廻り性が不充分であるばかりか、ノニオン性樹脂エマルジョンに関しては析出すらしていない。 On the other hand, Comparative Examples 1 to 3, which do not contain Al ions, which is the greatest feature of the present invention, have not only a sufficient throwing power but also no precipitation with respect to the nonionic resin emulsion.
 また、比較例4はAlイオン濃度下限下であり、比較例5はAlイオン濃度過剰およびpH下限下であり、いずれも付き廻り性は不充分となっている。 Further, Comparative Example 4 is under the lower limit of Al ion concentration, and Comparative Example 5 is under the excessive Al ion concentration and lower pH limit.
 更に、比較例6は実施例4のpHを上昇させた組成物であり、やはり付き廻り性は不充分であったが、これはpHを上昇させる中和工程にて、Alイオンのほとんどが水酸化物として沈殿析出してしまい、もはやAlイオンの効果が発揮されなかったためと考えられる。事実、遠心分離後の液分析にてAlイオン濃度は0ppmであることが確認されている。 Further, Comparative Example 6 is a composition in which the pH of Example 4 was raised, and the throwing power was still insufficient, but this is a neutralization step for raising the pH, and most of Al ions are water. This is probably because the precipitates were deposited as oxides, and the effect of Al ions was no longer exhibited. In fact, it has been confirmed by liquid analysis after centrifugation that the Al ion concentration is 0 ppm.
 このように、本発明の組成物を用いた、金属材料のカソード電解処理は、従来のカチオン電着塗装では成し得なかった、優れた付き廻り性を得ることができ、かつ従来電解析出不可能であったノニオン性樹脂エマルジョンの電解析出をも可能にする画期的な技術であることがわかる。
Figure JPOXMLDOC01-appb-T000001
As described above, the cathodic electrolysis treatment of a metal material using the composition of the present invention can provide excellent throwing power, which cannot be achieved by conventional cationic electrodeposition coating, and can be obtained by conventional electrolytic deposition. It can be seen that this is an epoch-making technique that enables electrolytic deposition of a nonionic resin emulsion that has been impossible.
Figure JPOXMLDOC01-appb-T000001

Claims (2)

  1.  ノニオン性および/またはカチオン性の水系樹脂およびAlイオン20~500ppmを含有し、pHがAlイオン濃度をA[ppm]としたとき次の計算式を満足することを特徴とする電着塗料組成物。
     3.5≦pH≦-Log((A×1.93×10-151/3
    An electrodeposition coating composition comprising a nonionic and / or cationic water-based resin and Al ions of 20 to 500 ppm, wherein the pH satisfies the following formula when the Al ion concentration is A [ppm] .
    3.5 ≦ pH ≦ −Log ((A × 1.93 × 10 −15 ) 1/3 )
  2.  請求項1の組成物を用いて金属材料をカソード電解法にて塗膜を析出せしめることを特徴とする電着塗装方法。
     
     
    An electrodeposition coating method comprising depositing a coating film of a metal material by a cathode electrolysis method using the composition of claim 1.

PCT/JP2010/000966 2009-03-02 2010-02-17 Electrocoating composition and method for electrocoating WO2010100840A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080010020.7A CN102341468B (en) 2009-03-02 2010-02-17 Electrocoating composition and method for electrocoating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-048475 2009-03-02
JP2009048475A JP5249819B2 (en) 2009-03-02 2009-03-02 Electrodeposition coating composition and electrodeposition coating method

Publications (1)

Publication Number Publication Date
WO2010100840A1 true WO2010100840A1 (en) 2010-09-10

Family

ID=42709412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000966 WO2010100840A1 (en) 2009-03-02 2010-02-17 Electrocoating composition and method for electrocoating

Country Status (4)

Country Link
JP (1) JP5249819B2 (en)
CN (1) CN102341468B (en)
TW (1) TW201038689A (en)
WO (1) WO2010100840A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181212A (en) * 2011-01-28 2011-09-14 谢金庚 Radiating material and preparation method of radiating material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5550580B2 (en) * 2011-02-10 2014-07-16 日本パーカライジング株式会社 Metal surface treatment composition
JP5996338B2 (en) * 2011-09-07 2016-09-21 日本ペイント・オートモーティブコーティングス株式会社 Electrodeposition coating composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070435A (en) * 1973-10-23 1975-06-11
JPH05214266A (en) * 1992-01-31 1993-08-24 Nippon Parkerizing Co Ltd Self-depositing water-based coating composition
JP3168381B2 (en) * 1994-08-11 2001-05-21 日本ペイント株式会社 Cathodic electrodeposition coating composition containing cerium
JP2002356647A (en) * 2001-03-28 2002-12-13 Nippon Paint Co Ltd Lead-less cationic-electrodeposition paint composition and painting process
JP2004107654A (en) * 2002-08-22 2004-04-08 Nippon Paint Co Ltd Cationic electrodeposition coating composition for galvanized steel sheet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2763875B2 (en) * 1986-12-23 1998-06-11 関西ペイント株式会社 Resin composition for water-based paint
US5646211A (en) * 1992-01-31 1997-07-08 Henkel Corporation Autodeposition coating composition
KR0168710B1 (en) * 1994-08-11 1999-01-15 후지이 히로시 Anticorrosive cathodic electrodeposition paint
JP2002285388A (en) * 2001-03-28 2002-10-03 Nippon Paint Co Ltd Method for forming multiply layered coating film
JP2005194389A (en) * 2004-01-07 2005-07-21 Nippon Paint Co Ltd Lead-free cationic electrodeposition coating composition
JP2005325401A (en) * 2004-05-13 2005-11-24 Nippon Paint Co Ltd Surface treatment method for zinc or zinc alloy coated steel
JP4975378B2 (en) * 2006-06-07 2012-07-11 日本パーカライジング株式会社 Metal surface treatment liquid, surface treatment method, surface treatment material
US7906002B2 (en) * 2006-08-04 2011-03-15 Kansai Paint Co., Ltd. Method for forming surface-treating film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070435A (en) * 1973-10-23 1975-06-11
JPH05214266A (en) * 1992-01-31 1993-08-24 Nippon Parkerizing Co Ltd Self-depositing water-based coating composition
JP3168381B2 (en) * 1994-08-11 2001-05-21 日本ペイント株式会社 Cathodic electrodeposition coating composition containing cerium
JP2002356647A (en) * 2001-03-28 2002-12-13 Nippon Paint Co Ltd Lead-less cationic-electrodeposition paint composition and painting process
JP2004107654A (en) * 2002-08-22 2004-04-08 Nippon Paint Co Ltd Cationic electrodeposition coating composition for galvanized steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102181212A (en) * 2011-01-28 2011-09-14 谢金庚 Radiating material and preparation method of radiating material

Also Published As

Publication number Publication date
CN102341468A (en) 2012-02-01
CN102341468B (en) 2014-05-07
JP2010202740A (en) 2010-09-16
JP5249819B2 (en) 2013-07-31
TW201038689A (en) 2010-11-01

Similar Documents

Publication Publication Date Title
JP5462561B2 (en) Metal surface treatment composition, metal surface treatment method using the same, and metal surface treatment film using the same
JP6933645B2 (en) Cationic electrodeposition coating composition
JP2008538383A (en) Multi-layer coating formation method
WO2010100839A1 (en) Composition for treating surface of metal, method for treating surface of metal using the composition, and coating film for treating surface of metal utilizing the composition and the method
JP6441126B2 (en) Method for preparing cationic electrodeposition coating composition
JP2018159032A (en) Epoxy viscous agent and cationic electrodeposition coating material composition
JP5448440B2 (en) Method for producing metal substrate having multilayer film, metal substrate having multilayer film obtained by the production method, and coated article
JP2008184620A (en) Method for forming bilayer paint film
JP2009280884A (en) Film formation method
JP2008195925A (en) Method for forming electrodeposition coating film
JP5249819B2 (en) Electrodeposition coating composition and electrodeposition coating method
JP7064291B2 (en) Cationic electrodeposition coating composition
JP2007314689A (en) Aqueous coating composition
JP2010037481A (en) Cationic electrodeposition paint composition and cationic electrodeposition coating method
JP5550580B2 (en) Metal surface treatment composition
WO2013011790A1 (en) Aqueous composition for metal surface treatment, method for metal surface treatment using composition, and method for producing metal material having film, as well as metal surface treatment film using same
JP2015187199A (en) electrodeposition coating composition
JP6406848B2 (en) Electrodeposition coating composition
JP2008231452A (en) Method for depositing multilayer coating film
JP2000309899A (en) Cationic electro-deposition coating method
JP6615552B2 (en) Cationic electrodeposition coating composition
JP7333198B2 (en) Method for preparing cationic electrodeposition coating composition
WO2023120540A1 (en) Cationic electrodeposition coating composition, electrodeposition coated product, and method for producing electrodeposition coated product
JP2021055166A (en) Method of improving coverage of electro-deposition coating film
JP2015187197A (en) cationic electrodeposition coating composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080010020.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748443

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 6233/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10748443

Country of ref document: EP

Kind code of ref document: A1