WO2010099692A1 - 物体轮廓非线性多级放大装置及摄像方法 - Google Patents

物体轮廓非线性多级放大装置及摄像方法 Download PDF

Info

Publication number
WO2010099692A1
WO2010099692A1 PCT/CN2010/000138 CN2010000138W WO2010099692A1 WO 2010099692 A1 WO2010099692 A1 WO 2010099692A1 CN 2010000138 W CN2010000138 W CN 2010000138W WO 2010099692 A1 WO2010099692 A1 WO 2010099692A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
objective lens
lenses
stage
contour
Prior art date
Application number
PCT/CN2010/000138
Other languages
English (en)
French (fr)
Inventor
王晓明
Original Assignee
Wang Xiaoming
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Xiaoming filed Critical Wang Xiaoming
Publication of WO2010099692A1 publication Critical patent/WO2010099692A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives

Definitions

  • the present invention relates to the field of optical imaging technology, and in particular, to an object contour nonlinear multi-stage amplification device and an imaging method. Background technique
  • Optical imaging is the imaging of light emitted or reflected and refracted on an object by focusing on a plane or surface of a specific distance by using the principle of refraction of the lens. Microscopes and telescopes use two lenses to image tiny objects or distant objects onto a plane, thus making the image of the object larger.
  • microscopes Since the 16th century Dutch Zacharias, Jensen invented the microscope, the invention of the microscope has played an irreplaceable role in expanding people's understanding of the microcosm, especially the development of microbiology and cell biology.
  • manufacturing technology of microscopes is constantly evolving and developing, there are a variety of microscopes for various purposes, which are optical imaging principles using objective lenses and eyepiece lenses, which have been used in all optical imaging systems to date.
  • conventional microscopes and telescopes use only two-stage amplification, using the principle of linear imaging, that is, the optical path emitted by an object is linearly imaged through the optical center of the lens.
  • the object of the present invention is to provide an object contour nonlinear multi-stage amplifying device and an imaging method, which overcome the defects that the resolution and the magnification of the microscope cannot be further improved by the conventional linear imaging principle, and further realize the optical microscopic imaging of the object contour. Zooming in, especially for taking small objects with a clearly contoured structure, such as cells with cell membranes and nanoparticles.
  • an object contour nonlinear multi-stage amplifying device comprising: three or more lenses arranged vertically and concentrically arranged according to a lens diameter, and a lens The camera or camera closest to the lens with the largest diameter, wherein the lens with the smallest diameter is the first objective lens.
  • the lens is a convex lens, a four lens, a conical lens or a compound lens.
  • a first stage located on one side of the first objective lens is further included.
  • the method further includes a first light source located on a side of the first stage.
  • the three or more lenses are numbered as 1, ..., n, in which the n is the number of lenses, and the reflection between the lens 1 and the lens 2 is also included.
  • a mirror and a second objective lens directly above the mirror, the second objective lens having a diameter smaller than a diameter of the lens 2.
  • the method further includes a second stage located directly above the second objective lens.
  • the method further includes a second light source directly above the second stage.
  • the present invention also provides an imaging method using the above-described object contour nonlinear multi-stage amplifying device, comprising the following steps:
  • S1 selecting a lens having a certain magnification according to the size of the object to be photographed and the magnification required to be imaged, and determining the number of lenses; S2, sequentially adjusting the focal length from the lens n to the first objective lens or the second objective lens, and then adjusting the distance between the object and the first objective lens or the second objective lens to image each lens; here, if the object is located on the first objective lens, Adjusting the focal length of the first objective lens, and if the object is located on the second objective lens, adjusting the focal length of the second objective lens;
  • the step S3 further includes the following steps: S4: Adjust an incident angle of the first light source or the second light source so that a ratio of light transmitted from the object to the light reflected from the object is appropriate, so that the outline of the object is clear.
  • the above technical solution has the following advantages: By zooming in on a small object by three or more lenses arranged concentrically in accordance with the diameter of the lens, the resolution and magnification of the microscope can not be further overcome by the conventional linear imaging principle.
  • the improved defect enables further magnification of the optical microscopic imaging of the contour of the object, and is particularly suitable for photographing tiny objects with a clearly contoured structure, such as cell membrane cells and nanoparticles.
  • Figure 1 is a schematic diagram of the principle of light propagation and focusing of a concave lens
  • FIG. 2 is a schematic diagram of the principle of light propagation and focusing of a convex lens, wherein the object is within the focal length F1;
  • FIG. 3 is a schematic diagram of the principle of light propagation and focusing of a convex lens, wherein the object is between a focal length F1 and a focal length F1;
  • FIG. 5 is an optical path diagram of four convex lenses in a device according to another embodiment of the present invention
  • FIG. 6 is an optical path diagram of five convex lenses in a device according to another embodiment of the present invention
  • FIG. 7 is another embodiment of the present invention. 6 convex lens imaging optical path diagrams in the device
  • FIG. 8 is a concave lens 2 convex lens imaging light in a device according to still another embodiment of the present invention Road map
  • FIG. 9 is an optical path diagram of three convex lenses of one concave lens in a device according to another embodiment of the present invention.
  • FIG. 10 is a schematic structural view of an object contour nonlinear multi-stage amplifying device according to still another embodiment of the present invention.
  • Figure 11 is a diagram showing the sugar chain of starch observed by the apparatus and imaging method of the embodiment of the present invention, wherein black is an ⁇ -helical structure of a glucose chain of starch;
  • Figure 13 is a view showing the structure of globular protein in milk observed by the apparatus and imaging method of the embodiment of the present invention.
  • Figure 14 is a view showing a partial molecular structure of a fish egg cell observed by the apparatus and the image capturing method of the embodiment of the present invention, wherein the resolution is at a single molecule level;
  • Figure 15 is a diagram showing still another partial molecular structure of fish eggs observed by the apparatus and imaging method of the embodiment of the present invention, wherein the resolution is at a single molecule level;
  • Figure 16 is a view showing another partial molecular structure of fish eggs observed by the apparatus and imaging method of the embodiment of the present invention, wherein the resolution is at a single molecule level;
  • Fig. 17 is a view showing still another partial molecular structure of fish eggs observed by the apparatus and imaging method of the embodiment of the present invention, wherein the resolution is at a single molecule level.
  • the main idea of the present invention is to use three or more lenses from small to large diameters to perform simultaneous magnification imaging between the object and the optical path of the imaging detecting device, using light rays that are emitted, reflected, refracted, and diffracted from the contour of the object. Imaging in a lens that is not linearly propagated. Adjusting the multi-level imaging focal length by separately adjusting the distance between the object and the objective lens, between the plurality of lenses, between the lens and the detecting image device (which may be, for example, a camera or a camera), A magnified imaging of the contour image of the object is obtained after the plurality of lenses.
  • the invention analyzes the propagation paths of various light rays of the convex lens and the concave lens according to the law of refraction of light. As shown in FIGS. 1 to 3, we find that the convex lens has the imaging light focus passing through the optical center of the lens, and the optical light that does not pass through the optical center of the lens. Imaging light focus; the four lenses do not have a real image light focus through the optical center of the lens, so a real image cannot be obtained, but there is also an imaging light focus that does not pass through the optical center of the lens.
  • the size/position of the image focused by the optical axis of the convex lens is a simple ratio to the size of the object/distance from the object, the light emitted from any point on the same plane perpendicular to the optical axis can be focused by the optical center of the convex lens.
  • the imaging is on the same imaging plane, the depth of focus is very long, and the focus position of the image is easy to find. Without the imaging light focus of the lens center, the depth of focus is small, and the spots on the same plane perpendicular to the optical axis cannot be focused on the same plane.
  • the two rays will eventually focus on a plane or a curved surface of a certain distance, thereby Can be imaged. Therefore, no matter how small the object is, as long as its outer contour can emit light, reflected light or refracted light, it can be used by a combination of three or more lenses, adjusting objects and lenses, lenses and lenses, and lens and imaging detection.
  • the distance between the devices so that there are two rays coming from two different directions in a certain number of rays emitted from a certain point on the contour of the object, and finally can be focused by a combination of three or more lenses.
  • the non-linearly propagating imaging optical path that does not pass through the optical center of the lens is focused and imaged by a group of three or more lenses of increasing diameter.
  • the light travels farther and farther away from the optical axis, so the imaging will be Zoom in step by step.
  • Light from other points on the contour to other directions cannot be completely focused on the same plane, and the light at other points on the same object plane perpendicular to the optical axis cannot be completely focused on the same focal plane. Therefore, as long as the object has a strong emitted light, reflected light, diffracted or refracted light, it is possible to obtain a clearer contour image of the object, focusing on a hemispherical surface of a certain distance.
  • the imaging optical path diagrams of the various lens combinations in the apparatus of this embodiment are shown in Figs. 4 to 9.
  • the difference in the number of lenses used is that the resulting images are different, three lenses are normal, four lenses are inverted, five lenses are normal, six lenses are inverted, and so on. The more lenses there are, the larger the magnification of the image.
  • the lenses used may be a variety of free combinations of convex, concave, conical and composite lenses.
  • FIG. 10 A complete structural schematic diagram of an object contour nonlinear multi-stage amplifying device according to still another embodiment of the present invention is shown in FIG. 10, wherein the first light source, the first stage, the lens group having a small diameter to a large size, and the cameras are mounted on the base. In a straight line, you can slide back and forth on the base to adjust the imaging focal length.
  • stage parallel to the base direction, a second objective lens and a mirror for imaging observation of objects placed horizontally.
  • a method of performing imaging using the above device is as follows:
  • the number of lenses used is different, and the positions adjusted by the lens are different.
  • the lens is adjusted around the focal length and the focal length of the lens. The lens position is different depending on the number of amplification stages. Adjust the positive focal length, and some negative focal length. The more lenses are magnified, the higher the image magnification, but the smaller the focal depth of the adjusted imaging mirror, the object's The smaller the field of view, the more precise the focus is. The edge of the appropriate size is the clearest in the same field of view. Particles of different sizes are on different imaging focal planes.
  • the invention is particularly suitable for photographing tiny objects having a clearly contoured structure (such as cells having a cell membrane, which are clearly visible), objects having a membrane structure inside the cells, and also for photographing nanoparticles.
  • 11 to 17 are experimental photographs of various cell structure diagrams observed by the apparatus and imaging method of the embodiment of the present invention. As can be seen from the figure, the outlines of the outer contours and internal tissues of various cells are clearly visible.
  • the present invention overcomes the obstacle that the resolution and magnification of the microscope which conventionally utilizes the principle of linear imaging cannot be further improved, and further enlarges the optical microscopic imaging of the contour of the object.
  • This technical principle can be applied to all optical path systems that require the contour imaging of objects. It has great scientific significance and economic value for broadening people's understanding of the microscopic material world, especially the development of cell biology.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)
  • Studio Devices (AREA)

Description

物体轮廓非线性多级放大装置及摄像方法
技术领域
本发明涉及光学成像技术领域,特别涉及一种物体轮廓非线性多 级放大装置及摄像方法。 背景技术
光线从一种介质斜射入另一种介质时, 传播方向一般会发生变 化,这种现象叫光的折射。荷兰数学家 W.斯涅耳通过实验精确确定了 入射角与折射角的余割之比为一常数的规律,即 cscei/cscet-常数,这是 光的折射定律。光学成像是将物体上发出或反射与折射的光通过利用 透镜的折射原理, 聚焦到一个特定距离的平面上或曲面上实现成像。 显微镜和望远镜是利用两个透镜, 将微小的物体或远处的物体, 成像 到某个平面上, 从而实现物体的图像变大。 依据阿贝 (Abb6)定律, D= λ /2Ν.Α, D为分辨率, λ为光波波长, Ν.Α为物镜的数值孔径, 由于 数值孔径最大值为 1.4, 可见光波长一般 400nm至 800nm, 所以, 光学 显微镜物理分辨极限为 200纳米。 然而, 阿贝定律是依据光的波动理 论推导而得到的。其推导的成像分辨率公式都是光线直线通过透镜光 心传播成像的原理的,因而只适用于光路直线通过透镜光心传播成像 的原理的而设计的光学设备和仪器。
自从十六世纪荷兰人扎恰里亚斯,詹森发明显微镜以来, 显微镜 的发明, 对于扩大人们对微观世界的认识, 特别是对微生物学和细胞 生物学的发展, 起着不可替代的巨大作用。 虽然显微镜的制造技术在 不断进步和发展, 出现了各式各样各种用途的显微镜, 其都是使用物 镜透镜和目镜透镜的光学成像原理,这种原理一直沿用至今日的所有 光学成像系统中。 然而, 传统的显微镜和望远镜只使用两级放大, 使 用的是线性成像原理, 即物体发出的光路直线通过透镜的光心而成 像。 由于受光波干涉理论的思想限制, 一般认为显微镜的分辨率不能 超过 200纳米, 光学显微镜的放大倍数小于 2000, 即阿贝障碍。 因而 也大大限制了显微镜放大倍数和分辨率的提高设计和制造。 发明内容
(一) 要解决的技术问题
本发明的目的是提供一种物体轮廓非线性多级放大装置及摄像 方法,其克服了传统线性成像原理显微镜的分辨率和放大倍数不能进 一步提高的缺陷, 实现了物体轮廓光学显微成像的进一步放大, 尤其 适用于拍摄有明显轮廓结构的微小物体,例如有细胞膜的细胞以及纳 米微粒。
(二)技术方案
为达到上述目的, 提供一种物体轮廓非线性多级放大装置, 所述 装置包括: 按照透镜直径从小到大排列的、 竖直且同心同轴放置的3 个或 3个以上透镜, 以及离透镜直径最大的透镜最近的摄像机或者照 相机, 其中, 直径最小的透镜为第一物镜。
其中, 所述透镜为凸透镜、 四透镜、 锥形透镜或者复合透镜。 其中, 还包括位于所述第一物镜一侧的第一载物台。
其中, 还包括位于所述第一载物台一侧的第一光源。
其中,按照透镜直径从小到大的顺序将所述 3个或 3个以上透镜 编号为 1, ……, n, 其中, η为透镜的个数, 还包括位于透镜 1与透 镜 2之间的反射镜, 以及位于所述反射镜正上方的第二物镜, 所述第 二物镜的直径小于所述透镜 2的直径。
其中, 还包括位于所述第二物镜正上方的第二载物台。
其中, 还包括位于所述第二载物台正上方的第二光源。
本发明还提供了一种利用上述物体轮廓非线性多级放大装置的 摄像方法, 包括以下步骤:
S1,根据拍摄的物体的尺寸和需要成像的放大倍率选择具有一定 放大率的透镜, 并确定透镜的个数; S2,依次从透镜 n至第一物镜或第二物镜调焦距, 然后调整物体 与第一物镜或第二物镜之间的距离, 使每个透镜成像; 此处, 若物体 位于第一物镜上, 则对第一物镜调焦距, 若物体位于第二物镜上, 则 对第二物镜调焦距;
S3 , 从所述第一物镜或第二物镜开始, 依次调整物体与物镜、 物 镜与其它透镜、 各透镜之间, 以及透镜 n与摄像机或照相机之间的距 离, 使观测到的物体的轮廓清晰。
其中, 在步骤 S3之后还包括如下步骤: S4, 调整第一光源或第 二光源的入射角度,使得从物体透射的光线与从物体反射的光线比例 适当, 从而使得物体的轮廓清晰。
(三)有益效果
上述技术方案具有如下优点: 通过按照透镜直径从小到大排列 的、 同心同轴放置的 3个或 3个以上透镜对微小物体进行放大, 克服 了传统线性成像原理显微镜的分辨率和放大倍数不能进一步提高的 缺陷, 实现了物体轮廓光学显微成像的进一步放大, 尤其适用于拍摄 有明显轮廓结构的微小物体, 例如细胞膜的细胞及纳米微粒。
附图说明
图 1是凹透镜的光线传播和聚焦原理示意图;
图 2是凸透镜的光线传播和聚焦原理示意图, 其中物体在焦距 F1 之内;
图 3是凸透镜的光线传播和聚焦原理示意图, 其中物体在焦距 F1 与 2倍焦距 F1之间;
图 4是本发明实施例的装置中的 3个凸透镜成像光路图;
图 5是本发明另一实施例的装置中的 4个凸透镜成像光路图; 图 6是本发明又一实施例的装置中的 5个凸透镜成像光路图; 图 7是本发明另一实施例的装置中的 6个凸透镜成像光路图; 图 8是本发明又一实施例的装置中的 1个凹透镜 2个凸透镜成像光 路图;
图 9是本发明另一实施例的装置中的 1个凹透镜 3个凸透镜成像光 路图;
图 10是本发明又一实施例的物体轮廓非线性多级放大装置结构 示意图;
图 11是利用本发明实施例的装置及摄像方法观测到的淀粉的糖 链图, 其中黑色为淀粉的葡萄糖链的 α螺旋结构;
图 12是利用本发明实施例的装置及摄像方法观测到的蔗糖中五 元、 六元单糖环结构;
图 13是利用本发明实施例的装置及摄像方法观测到的牛奶中球 状蛋白结构;
图 14是利用本发明实施例的装置及摄像方法观测到的鱼卵细胞 的局部分子结构图, 其中, 分辨率在单分子水平;
图 15是利用本发明实施例的装置及摄像方法观测到的鱼卵细胞 的又一局部分子结构图, 其中, 分辨率在单分子水平;
图 16是利用本发明实施例的装置及摄像方法观测到的鱼卵细胞 的另一局部分子结构图, 其中, 分辨率在单分子水平;
图 17是利用本发明实施例的装置及摄像方法观测到的鱼卵细胞 的又一局部分子结构图, 其中, 分辨率在单分子水平。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细 描述。 以下实施例用于说明本发明, 但不用来限制本发明的范围。
本发明的主要思路是在物体和成像检测设备光路之间使用 3个和 3个以上的直径从小到大的透镜进行连级放大成像, 利用从物体轮廓 发射、 反射、 折射和衍射的光线在多个透镜中非直线性传播而成像。 通过分别调节物体和物镜、 多个透镜之间、 透镜和检测图像设备(可 以为, 例如摄像机或者照相机)之间的距离, 即调节多级成像焦距, 在多个透镜后得到物体轮廓图像的放大成像。
本发明依据光的折射定律对凸透镜和凹透镜各种光线的传播途 径进行分析, 如图 1~3所示, 我们发现, 凸透镜有通过透镜光心的成 像光焦点, 还有不通过透镜光心的成像光焦点; 四透镜没有能通过透 镜光心的成实像光焦点, 因而不能得到实像, 但是也有不通过透镜光 心的成像光焦点。 由于通过凸透镜光心聚焦的成像的大小 /位置与物 体的大小 /离物体的距离成简单的比例, 从同一个垂直于光轴的平面 上的任何一点发出的光线都可以通过凸透镜的光心聚焦成像在同一 成像平面上, 焦点深度很长, 成像的焦点位置容易找到。 而不通过透 镜光心的成像光焦点, 焦点深度很小, 并且同一个垂直于光轴的平面 上的光点都不能聚焦成像在同一平面上。
因此, 从理论上讲, 只要物体轮廓的一个点上存在有任意两个从 不同角度发出的光线, 根据透镜的折射原理, 这两个光线最终会聚焦 在特定距离的平面上或曲面上, 从而可以成像。 因此, 无论物体尺寸 多么微小, 只要其外轮廓可以发射光、 反射光或折射光, 就可以通过 3个或 3个以上透镜的组合使用, 调节物体与透镜、 透镜与透镜, 以及 透镜与成像检测设备之间的距离,从而使得从物体轮廓上某一个点上 发出的无数条光线中存在某两个向两种不同方向传出的光线,最终能 够被 3个或 3个以上透镜的组合而聚焦在特定距离的平面上或曲面上。 同时, 这种不通过透镜光心的非直线传播的成像光路, 通过一组 3个 或 3个以上不断增大直径的透镜而聚焦成像, 光线传播距离光轴愈来 愈远, 因而其成像会逐级放大。 而从轮廓上的某一个点上向其他方向 发出的光线不能完全聚焦同一平面,在同一个垂直于光轴的物体平面 上的其他位置点的光线也不能完全聚焦在同一个焦点平面。 因此, 只 要物体轮廓上具有较强的发射光、 反射光、 衍射或折射光, 就一定能 得到较清晰的物体轮廓图像, 聚焦在特定距离的半球曲面上。
本实施例装置中的各种透镜组合的成像光路图如图 4〜9所示。 由 于使用透镜的数目不同, 得到的图像正倒不同, 3个透镜成正像、 4 个透镜成倒像、 5个透镜成正像, 6透镜成倒像, 如此类推。透镜愈多, 成像的放大倍数越大。 使用的透镜可以是凸透镜、 凹透镜、 锥形透镜 和复合透镜的多种自由组合。
本发明又一实施例的物体轮廓非线性多级放大装置的完整结构 示意图如图 10所示, 其中第一光源, 第一载物台, 直径从小到大的透 镜组,摄像机都安装在底座上成一条直线,且可以在底座上前后滑动, 用来调节成像焦距。
还可以设计平行于底座方向的一个载物台 (第二载物台), 第二 物镜和反射镜, 用于适合水平放置的物体的成像观测。
利用上述装置进行摄像的方法实施例如下:
S1,根据拍摄的物体的尺寸和需要成像的放大倍率选择具有一定 放大率的透镜, 并确定透镜的个数;
52,依次从透镜 n至第一物镜或第二物镜调焦距, 然后调整物体 与第一物镜或第二物镜之间的距离, 使每个透镜成像; 此处, 若物体 位于第一物镜上, 则对第一物镜调焦距, 若物体位于第二物镜上, 则 对第二物镜调焦距;
53 , 从所述第一物镜或第二物镜开始, 依次调整物体与物镜、 物 镜与其它透镜、各透镜之间, 以及透镜 n与摄像机或照相机之间的距 离, 使观测到的物体的轮廓清晰。
S4, 调整第一光源或第二光源的入射角度, 使得从物体透射的光 线与从物体反射的光线比例适当, 从而使得物体的轮廓清晰。 ■ 在上述各实施例中, 使用的透镜个数不同, 透镜调节的位点也不 同, 一般在透镜的一倍焦距和二倍焦距点附近调整, 依据放大级数不 同, 透镜位置也不同, 有的调节正焦距, 有的负焦距。 放大级数的透 镜愈多, 图像放大倍数愈高, 但是调节的成像镜深焦距愈小, 物体的 视野也愈小, 调焦愈需精密细致。 同一视野下, 适当大小的颗粒边缘 最清晰。 不同大小的颗粒在不同的成像聚焦面上。
本发明特别适合拍摄有明显轮廓结构的微小物体(如拥有细胞膜 的细胞, 拍摄清晰明显)、 细胞的内部有膜结构的物体, 也可用于拍 摄纳米颗粒。 图 11~17是利用本发明实施例的装置及摄像方法观测到 的各种细胞结构图的实验照片, 从图中可以看出, 各种细胞的外部轮 廓及内部组织的轮廓清晰可见。
以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领 域的普通技术人员来说, 在不脱离本发明技术原理的前提下, 还可以 做出若干改进和变型, 这些改进和变型也应视为本发明的保护范围。 工业实用性
本发明克服了传统利用线性成像原理的显微镜的分辨率和放大 倍数不能进一步提高的障碍,实现了物体轮廓光学显微成像的进一步 放大。该项技术原理可用于所有需要物体轮廓放大成像的光路系统之 中, 对于开阔人们对微观物质世界的认识视野, 特别是促进细胞生物 学的发展, 有着十分重大的科学意义和经济价值。

Claims

权 利 要 求 书
1、 一种物体轮廓非线性多级放大装置, 其特征在于, 所述装置 包括: 按照透镜直径从小到大排列的、 竖直且同心同轴放置的 3个或 3个以上透镜,以及离透镜直径最大的透镜最近的摄像机或者照相机, 其中, 直径最小的透镜为第一物镜。
2、 如权利要求 1所述的物体轮廓非线性多级放大装置, 其特征 在于, 所述透镜为凸透镜、 凹透镜、 锥形透镜或者复合透镜。
3、 如权利要求 1所述的物体轮廓非线性多级放大装置, 其特征 在于, 还包括位于所述第一物镜一侧的第一载物台。
4、 如权利要求 3所述的物体轮廓非线性多级放大装置, 其特征 在于, 还包括位于所述第一载物台一侧的第一光源。
5、 如权利要求 3所述的物体轮廓非线性多级放大装置, 其特征 在于,按照透镜直径从小到大的顺序将所述 3个或 3个以上透镜编号 为 1, ……, n, 其中, n为透镜的个数, 还包括位于透镜 1与透镜 2 之间的反射镜, 以及位于所述反射镜正上方的第二物镜, 所述第二物 镜的直径小于所述透镜 2的直径。
6、 如权利要求 5所述的物体轮廓非线性多级放大装置, 其特征 在于, 还包括位于所述第二物镜正上方的第二载物台。
7、 如权利要求 6所述的物体轮廓非线性多级放大装置, 其特征 在于, 还包括位于所述第二载物台正上方的第二光源。
8、 一种利用权利要求 1~7之任一项所述的物体轮廓非线性多级 放大装置的摄像方法, 其特征在于, 包括以下步骤:
S1,根据拍摄的物体的尺寸和需要成像的放大倍率选择具有一定 放大率的透镜, 并确定透镜的个数;
S2,依次从透镜 n至第一物镜或第二物镜调焦距, 然后调整物体 与第一物镜或第二物镜之间的距离, 使每个透镜成像; 此处, 若物体 位于第一物镜上, 则对第一物镜调焦距, 若物体位于第二物镜上, 则 对第二物镜调焦距;
S3 , 从所述第一物镜或第二物镜开始, 依次调整物体与物镜、 物 镜与其它透镜、 各透镜之间, 以及透镜 n与摄像机或照相机之间的距 离, 使观测到的物体的轮廓清晰。 ,
9、 如权利要求 8所述的摄像方法, 其特征在于, 在步骤 S3之后 还包括如下步骤: S4, 调整第一光源或第二光源的入射角度, 使得从 物体透射的光线与从物体反射的光线比例适当,从而使得物体的轮廓 清晰。
PCT/CN2010/000138 2009-03-04 2010-02-01 物体轮廓非线性多级放大装置及摄像方法 WO2010099692A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910060951.7 2009-03-04
CN200910060951.7A CN101694547B (zh) 2009-03-04 2009-03-04 一种物体外轮廓非线性多级放大光学成像技术原理、装置和摄像方法

Publications (1)

Publication Number Publication Date
WO2010099692A1 true WO2010099692A1 (zh) 2010-09-10

Family

ID=42093524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000138 WO2010099692A1 (zh) 2009-03-04 2010-02-01 物体轮廓非线性多级放大装置及摄像方法

Country Status (2)

Country Link
CN (1) CN101694547B (zh)
WO (1) WO2010099692A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3902791A (en) * 1974-04-26 1975-09-02 American Optical Corp 40{33 {0 Microscope objective
US5808807A (en) * 1996-12-04 1998-09-15 Nikon Corporation Microscope objective lens with cemented biconvex triplet
CN2400808Y (zh) * 1999-12-16 2000-10-11 中国科学院上海光学精密机械研究所 大视场平场消色差显微镜物镜
WO2003019265A1 (en) * 2001-08-21 2003-03-06 Becton Dickinson And Company Flow cytometry lens system
CN1576943A (zh) * 2003-07-07 2005-02-09 莱卡股份有限公司 用于高倍放大显微物镜的光学装置
CN1851520A (zh) * 2006-05-30 2006-10-25 南开大学 用于快速生物芯片检测的成像镜头
CN101099104A (zh) * 2004-11-24 2008-01-02 巴特尔纪念研究所 用于细胞成像的光学系统
CN101256263A (zh) * 2007-01-30 2008-09-03 富士能株式会社 摄像透镜
CN101271191A (zh) * 2007-03-23 2008-09-24 卡尔蔡司微成像有限责任公司 显微镜物镜

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2653906B1 (fr) * 1989-10-31 1992-05-22 Ardt Spectroscopie discriminante du profil optique d'un objet transparent, obtenu par microscopie optique a balayage en champ evanescent frustre, et microscopes de ce type mettant en óoeuvre ledit procede.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3902791A (en) * 1974-04-26 1975-09-02 American Optical Corp 40{33 {0 Microscope objective
US5808807A (en) * 1996-12-04 1998-09-15 Nikon Corporation Microscope objective lens with cemented biconvex triplet
CN2400808Y (zh) * 1999-12-16 2000-10-11 中国科学院上海光学精密机械研究所 大视场平场消色差显微镜物镜
WO2003019265A1 (en) * 2001-08-21 2003-03-06 Becton Dickinson And Company Flow cytometry lens system
CN1576943A (zh) * 2003-07-07 2005-02-09 莱卡股份有限公司 用于高倍放大显微物镜的光学装置
CN101099104A (zh) * 2004-11-24 2008-01-02 巴特尔纪念研究所 用于细胞成像的光学系统
CN1851520A (zh) * 2006-05-30 2006-10-25 南开大学 用于快速生物芯片检测的成像镜头
CN101256263A (zh) * 2007-01-30 2008-09-03 富士能株式会社 摄像透镜
CN101271191A (zh) * 2007-03-23 2008-09-24 卡尔蔡司微成像有限责任公司 显微镜物镜

Also Published As

Publication number Publication date
CN101694547A (zh) 2010-04-14
CN101694547B (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
CN105807412B (zh) 一种基于自由曲面整形的全内反射显微方法与装置
WO2022017199A1 (zh) 一种基于超构透镜阵列的大视场集成显微成像装置
CN107783206B (zh) 双层微透镜阵列光学元件
TWI828256B (zh) 光學成像系統
TW200538223A (en) Laser processing device
JP2004056362A5 (zh)
TW200538758A (en) Laser-light-concentrating optical system
JP2011133739A5 (zh)
JP2006301345A (ja) レンズ及び光学系
CN112005100A (zh) 用于荧光显微镜的光盘显微术
JP2008015475A (ja) ファインダー光学系及びそれを用いた撮像装置
WO2010099692A1 (zh) 物体轮廓非线性多级放大装置及摄像方法
CN107367829B (zh) 单镜头分光变倍显微镜系统
TWM642445U (zh) 光學成像系統
CN207096556U (zh) 单镜头分光变倍显微镜系统
TWI789759B (zh) 光學成像系統
CN115840264A (zh) 一种微球透镜组、全微球光学纳米显微镜
JPH08307904A (ja) 立体撮影用光学系
JP2002267936A (ja) 撮影光学系および鏡筒
CN106980176A (zh) 双变径式椭球面反射镜全内反射荧光显微成像装置
TW200819782A (en) Macro imaging system utilizing catadioptric telescope method
Mignard-Debise Tools for the paraxial optical design of light field imaging systems
Bakas et al. A miniaturised light-sheet microscopy system using MEMS micromirror control
CN115639663B (zh) 双远心镜头
US8773759B2 (en) Microscope having an adjustment device for the focus range

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10748282

Country of ref document: EP

Kind code of ref document: A1