WO2010099674A1 - 一种多天线实现公共信道覆盖的方法及装置 - Google Patents

一种多天线实现公共信道覆盖的方法及装置 Download PDF

Info

Publication number
WO2010099674A1
WO2010099674A1 PCT/CN2009/072141 CN2009072141W WO2010099674A1 WO 2010099674 A1 WO2010099674 A1 WO 2010099674A1 CN 2009072141 W CN2009072141 W CN 2009072141W WO 2010099674 A1 WO2010099674 A1 WO 2010099674A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
frequency resource
weight vector
time
phase
Prior art date
Application number
PCT/CN2009/072141
Other languages
English (en)
French (fr)
Inventor
杨学志
蒋伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2010/070892 priority Critical patent/WO2010099756A1/zh
Priority to US12/782,279 priority patent/US8537785B2/en
Publication of WO2010099674A1 publication Critical patent/WO2010099674A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a method and an apparatus for implementing common channel coverage by multiple antennas.
  • MAS multi-antenna systems
  • SAs Smart Antennas
  • AAS Antenna Array Systems
  • MIMO Multiple Input Multiple Output
  • Foschini theoretically proves the great potential of this technology to improve spectrum utilization. Its channel capacity increases linearly with the number of antennas (proportional The minimum number of antennas on the transceiver side).
  • Multi-antenna system Combined with Space Time Coding (STC), the effect of spatial diversity can reduce the bit error rate and improve the reliability of the system.
  • the multi-antenna system can also adopt a layered space time structure (BLAST, Bell Labs Layered Space Time) to form multiple parallel subchannels, and improve channel capacity in the form of spatial multiplexing to achieve high transmission rate communication.
  • MIMO technology can also be regarded as a kind of smart antenna. The main difference is that the antenna element spacing is different, and the MIMO system antenna should generally remain uncorrelated.
  • a base station allocates a dedicated channel (Dedicated Channel) for each active user in a cell/sector to carry voice, data or video services.
  • Dedicated Channel Dedicated Channel
  • Multi-antenna based base station Techniques such as beamforming or precoding can be applied to the dedicated channel to transmit signals for specific users and to reduce interference to other users.
  • a common channel (Public Channel) is required in addition to a dedicated channel in a cell/sector; a common channel carries common information required by all mobile terminals in a cell/sector, such as in a broadcast channel. System information, reference signals in the synchronization channel, pilots, paging and common control messages in the Forward Access Channel (FACH), and so on.
  • FACH Forward Access Channel
  • the requirement of the common channel to cover the base station system is very different from that of the dedicated channel. All mobile terminals in the cell/sector need to receive signals at the same time, so the base station needs a good full cell/fan for the entire cell/sector. Area coverage.
  • antenna array full cell/sector coverage which divides the transmission time of a common channel signal into time slots, selects a set of complementary weight vectors of the pattern, and alternates in consecutive time slots.
  • a complementary antenna weight vector is used to achieve full antenna/sector coverage based on smart antennas.
  • Embodiments of the present invention provide a method and apparatus for implementing common channel coverage by multiple antennas, which can achieve consistent signal quality in all directions in a whole cell/sector.
  • a method for implementing common channel coverage by multiple antennas includes: dividing a time-frequency resource used for transmitting a common channel signal into N time-frequency resource blocks, where N is a positive integer greater than 1. Generating N weight vectors, each weight vector consisting of M weight coefficients, the M corresponding to the number of antennas, and the average direction pattern of the N weight vectors in all directions of the whole cell/sector The difference in gain is less than a preset value; one of the N weight vectors is selected for each time-frequency resource block in the N time-frequency resource blocks, and the weight vector of different time-frequency resource blocks is selected. Differentiating the common channel signals of the corresponding M antennas by using M weight coefficients in the selected weight vector, and transmitting the weighted public through the M antennas Co-channel signal.
  • the apparatus for implementing common channel coverage by multiple antennas includes: a dividing unit, configured to divide a time-frequency resource used for transmitting a common channel signal into N time-frequency resource blocks, where the N is a positive integer greater than 1; a generating unit, configured to generate N weight vectors, each weight vector consisting of M weight coefficients, the M corresponding to the number of antennas, and an average direction pattern of the N weight vectors The gain difference in each direction of the whole cell/sector is smaller than a preset value; a weight vector selecting unit is configured to separately select the N for each of the N time-frequency resource blocks One of the weight vectors, the weight vectors of the different time-frequency resource blocks are different; the weighting unit is configured to respectively perform the common channel signals of the corresponding M antennas by using the M weight coefficients in the selected weight vector And a sending unit, configured to send the weighted common channel signal by using the M antennas.
  • the embodiments of the present invention have the following beneficial effects:
  • different time-frequency resource blocks are selected to convert different base weight vectors, and the beam direction map is continuously changed. So that the antenna gain changes randomly in a specified direction, so the average value of the gain exhibits isotropic, so that the signal quality received in all directions in the whole cell/sector is consistent;
  • the embodiments of the present invention are not limited to the smart antenna system, and are also applicable to the MIMO system, and the embodiments of the present invention are applicable not only to the linear antenna array but also to the circular array, the square matrix and other shape antennas. Array.
  • FIG. 1 is a flowchart of a method for implementing common channel coverage by multiple antennas according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an apparatus for implementing common channel coverage by multiple antennas according to an embodiment of the present invention
  • FIG. 4 is another schematic diagram of an apparatus for implementing common channel coverage by multiple antennas according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a simulation experiment of a linear antenna array according to an embodiment of the present invention.
  • FIG. 7 is a beam pattern of a linear antenna array according to an embodiment of the present invention.
  • FIG. 8 is another beam pattern of a linear antenna array according to an embodiment of the present invention.
  • FIG. 9 is a beam pattern of a square antenna array according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a simulation experiment of a square antenna array in an example of the present invention.
  • Embodiments of the present invention provide a method and apparatus for implementing common channel coverage by multiple antennas, which can achieve consistent signal quality in all directions in a whole cell/sector.
  • the common channel when it is required to transmit a common channel signal through multiple antennas, the common channel is first referred to as one frame, and then the time-frequency resources used for transmitting common information in each frame are divided into N time-frequency resources.
  • N is a positive integer greater than one.
  • N weight vectors are generated, and the process of generating the weight vector is described in the following embodiments, which is not limited herein.
  • the generated N weight vectors need to conform to a certain rule, that is, the average direction pattern of the N weight vectors is smaller than the preset difference in all directions of the whole cell/sector. The value.
  • weight vectors can be selected for different time-frequency resource blocks, and the specific selection manner can be sequentially selected or randomly selected, and the selection process will be described in detail in the following embodiments. .
  • the common channel signals of the corresponding M antennas are respectively weighted by using the M weight coefficients in the weight vector, and the weighted public is transmitted through the M antennas.
  • Channel signal since the average direction pattern of the generated N weight vectors has a difference in gain in each direction of the whole cell/sector less than a preset value, the average value of the gain exhibits an isotropic property, thereby The signal quality received in all directions in the whole cell/sector is consistent.
  • the method for implementing common channel coverage by multiple antennas in the embodiments of the present invention includes:
  • the common channel when it is required to transmit a common channel signal through multiple antennas, the common channel is first referred to as one frame, and then the time-frequency resources used for transmitting common information in each frame are divided into N time-frequency resources.
  • N is a positive integer greater than one.
  • the transposition of c is indicated, for example, the matrix w 2 ... represents the transposition of the matrix [ ⁇ w 2 ... w M ].
  • the coverage angle of the beam generated by the weight vector beamforming should reach a preset threshold, the beam flatness should reach a preset threshold, and the peak-to-average ratio should also be lower than a preset threshold, that is, the beam should have a wide coverage angle, The beam is flat and the peak-to-average ratio is low.
  • the transmit power of each antenna can be required to be equal, that is, the modulus of each weight coefficient in the corresponding weight vector is equal,
  • N different phases are obtained, which respectively correspond to N time-frequency resource blocks of the current frame, and specifically, N phases can be selected from [0, 2; ⁇ ] according to a certain criterion, and the selected phase transformations are selected.
  • the generated weight vector beam pattern should be complementary, and the average antenna gain in different directions in the whole cell/sector should be equal as much as possible.
  • the computer can search or test multiple times to find the phase that meets the requirements, for example. You can use MATLAB and other software to select the desired phase from 0 to 2 ⁇ . 104. Transform the basis weight vector according to each phase to obtain N weight vectors;
  • the base weight vector may be transformed according to each phase to obtain N weight vectors corresponding to N time-frequency resource blocks, specifically:
  • t any time-frequency resource block, denoted as t, and select the phase to transform the basis weight vector according to the following formula to generate a new weight vector.
  • the vector obtained by increasing the phase angle described above is taken as a weight vector
  • phase can be used to transform the weight vector to obtain a weight vector.
  • the specific manner is not limited herein.
  • the steps 101 to 104 describe the process of acquiring N weight vectors according to the phase and the basis weight vector. It should be noted that, in practical applications, the weight vector can also be obtained in other manners, as long as The average direction of the pattern of the N weight vectors may be smaller than the preset value in the direction of the entire cell/sector. The specific manner is not limited herein.
  • N weight vectors can be calculated according to the N phases and the basis weight vector, and the N weight vectors are different, and corresponding to N time-frequency resource blocks, for a certain time-frequency resource block, One of the N weight vectors is selected, and the specific selection method may be:
  • one of the N weight vectors is selected in order, for example, the first time-frequency resource block selects the first weight vector, and the second time-frequency resource block selects the second one. Weight vector, and so on.
  • the same can be randomly selected.
  • one of the N weight vectors is randomly selected, but the selection needs to comply with certain criteria: Each weight vector can only be selected. Once, and each weight vector needs to be selected.
  • (represents the direction vector of the antenna array, the vector is the column vector of the dimension, S represents the direction angle of the signal and the antenna array, w (0 H represents the conjugate transpose of the vector w (0).
  • denotes the conjugate transpose of the vector
  • ⁇ ( denotes the direction vector of the antenna array
  • the vector is the column vector of the dimension
  • S represents the direction angle of the signal and the antenna array
  • M represents the number of antennas
  • ( ) represents the weight coefficient of the tth time-frequency resource block on the mth antenna, indicating ( ) Conjugated
  • the beam pattern can still maintain the characteristics of wide coverage angle, flat beam, and low peak-to-average ratio. Only the beam pattern is rotated. It should be noted that the rotation described here, It does not mean that the beam pattern is rotated by a certain angle, but the shape of the beam pattern is changed by the rotation of the weight vector phase.
  • the beam generated by the weight vector satisfies the requirements of wide coverage angle, flat beam, and low peak-to-average ratio.
  • the beam pattern of the basis weight vector has lower gains around 30°, 150°, 210°, and 330°, and high gains around 15°, 165°, 225°, and 315°.
  • the beam pattern of the new weight vector is shown by the dotted line 202 in Fig. 2; the beam generated by the new weight vector still satisfies the wide coverage angle, beam flatness, and peak The characteristics are lower than the average.
  • the beam pattern generated by the new weight vector is 30°, 150°, 210°, 330°
  • the nearby has a high gain, while the gain is lower near 15°, 165°, 225°, and 315°. It can be seen that the two beam patterns are complementary. For a given direction, the high and low gains of the antenna array alternately appear.
  • the common channel/sector coverage of the common channel can be achieved.
  • the weighted common channel signal is transmitted through the M antennas, and the common channel signals of the N time-frequency resource blocks in the current frame are sequentially transmitted in a certain order.
  • the antenna element and the low power amplifier group existing in the multi-antenna system are fully utilized, and a basis weight vector is selected to generate a beam with a wide coverage angle, a flat beam, and a low peak-to-average ratio, with a random phase pair.
  • the basis weight vector is transformed to continuously change the beam pattern. In the specified direction, the antenna gain varies randomly, so the average of the gains exhibits isotropic.
  • a common channel signal of one frame can be transmitted, and full channel/sector coverage of the common channel is implemented, but if the common channel signal is more than one frame, the common channel signal of the next frame needs to be continuously transmitted. Since the number of weight vectors is larger, the antenna gain average isotropic is stronger. Therefore, in order to further improve the isotropic nature of the antenna gain average, different weight vectors can be used in different frames instead of being repeated. Use the weight vector of the previous frame.
  • an "interframe increment phase value" may be selected first, and N different weight vectors of the current frame may be updated by using the phase value to obtain N different second weight vectors, which may be used in the next frame.
  • N second weight vectors may be respectively added to the N phase values of the current frame to obtain N second phase values, and the N second phase values are used to transform the basis weight vector according to formula (1) to generate N second values.
  • Weight vector may be selected first, and N different weight vectors of the current frame may be updated by using the phase value to obtain N different second weight vectors, which may be used in the next frame.
  • N second weight vectors may be respectively added to the N phase values of the current frame to obtain N second phase values, and the N second phase values are used to transform the basis weight vector according to formula (1) to generate N second values.
  • the common channel signal is often more than one frame, and the following is the case for multiple frames in the embodiment of the present invention.
  • a method for implementing common channel coverage by multiple antennas is described:
  • the transmission time of the cell/sector common channel signal based on the multi-antenna system is divided into consecutive time frames, and the time-frequency resources for transmitting common information of each frame are divided into N time-frequency resource blocks, each resource block Includes L modulation symbols.
  • the nth time of the kth frame - the frequency resource block is denoted as skillet. To facilitate channel estimation and demodulation, it is assumed that the channel fading experienced by all L symbols in each time-frequency resource block is correlated.
  • the transposition of c is indicated, for example, the matrix w 2 ... represents the transposition of the matrix [ ⁇ w 2 ... w M ].
  • the beam generated by the weight vector beamforming should have a wide coverage angle, a flat beam, and a peak-to-average ratio.
  • diag[xl...xn] indicates that each element of xl to xn in parentheses constitutes a diagonal matrix.
  • the weight vector beam pattern generated after the transformation of the selected N phase values should be complementary. As much as possible, the average antenna gains in different directions in the whole cell/sector are equal, and can be searched by computer search or multiple experiments. Satisfying the required phase ⁇ ( Brass).
  • the frequency resource block t n selects a weight vector; each time-frequency resource block can also randomly select a weight vector from it, but ensure that each weight vector must be used and can only be used once.
  • One of the full cells/sectors Specifying the direction, if the antenna gain in a time-frequency resource block is 4 ⁇ , then the gain will be higher in some other time-frequency resource blocks in the same frame, and the low gain of the beam pattern will be in the BER performance. Equivalent to the deep fading of the channel, the effects can be eliminated by channel coding and interleaving techniques.
  • Each time-frequency resource block of the +1 frame is selected in the same manner as the above-mentioned k-th frame.
  • the phase value is then transformed and shaped using the new weight vector beam produced by the transform.
  • the antenna element and the low power amplifier group existing in the multi-antenna system are fully utilized, and a basis weight vector is selected to generate a beam with a wide coverage angle, a flat beam, and a low peak-to-average ratio, with a random phase pair.
  • the basis weight vector is transformed to continuously change the beam pattern, so in the specified direction, the antenna gain changes randomly, so the average value of the gain exhibits isotropic;
  • the modes constituting each weight coefficient in the basis weight vector can be equal, so that the use of a high power amplifier can be avoided, thereby reducing the system cost;
  • the sequential selection method or the random selection method may be adopted, so that the flexibility of the solution in this embodiment can be improved;
  • the phase may be updated by using the inter-frame incremental phase value, so that the phase used by each frame is different, so that the N weight vectors used by different frames are not The same, it is possible to further improve the isotropic nature of the antenna gain average.
  • the device for implementing the common channel coverage of the multiple antennas in the embodiment of the present invention may be located in the base station. Referring to FIG. 3, an apparatus for implementing common channel coverage by multiple antennas in the embodiment of the present invention is implemented. Examples include:
  • the dividing unit 301 is configured to divide the time-frequency resource used in the frame for transmitting the common channel signal into N time-frequency resource blocks, where N is a positive integer greater than 1.
  • the generating unit 302 is configured to generate N weight vectors, each weight vector is composed of M weight coefficients, the M corresponds to the number of antennas, and the average direction pattern of the N weight vectors is in the whole cell/fan The difference in gain in each direction of the zone is less than the preset value;
  • the weight vector selection unit 303 is configured to select one of the N weight vectors for each time-frequency resource block in the N time-frequency resource blocks, and the weight vectors of different time-frequency resource blocks are respectively Not the same;
  • the weighting unit 304 is configured to separately weight common channel signals in the corresponding M antennas by using M weight coefficients in the selected weight vector;
  • the sending unit 305 is configured to send the weighted common channel signal by using the M antennas.
  • the apparatus for implementing common channel coverage by multiple antennas in the embodiments of the present invention is described in detail below. Referring to FIG. 4, a device for implementing common channel coverage by multiple antennas in the embodiment of the present invention is provided. Another embodiment includes:
  • the dividing unit 401 is configured to divide the time-frequency resource used in the frame for transmitting the common channel signal into N time-frequency resource blocks, where N is a positive integer greater than 1.
  • the generating unit 402 is configured to generate N weight vectors, each weight vector is composed of M weight coefficients, the M corresponds to the number of antennas, and the average direction pattern of the N weight vectors is in the whole cell/fan The difference in gain in each direction of the zone is less than the preset value;
  • the weight vector selection unit 403 is configured to select one of the N weight vectors for each time-frequency resource block in the N time-frequency resource blocks, and the weight vectors of different time-frequency resource blocks are respectively Not the same;
  • the weighting unit 404 is configured to separately weight common channel signals in the corresponding M antennas by using M weight coefficients in the selected weight vector;
  • the sending unit 405 is configured to send the weighted common channel signal by using the M antennas.
  • the generating unit 402 includes:
  • the base weight vector obtaining unit 4021 is configured to obtain a base weight vector, where the base weight vector is composed of M weight coefficients, and the M corresponds to the number of antennas;
  • phase acquisition unit 4022 configured to acquire N different phases
  • the transform unit 4023 is configured to transform the basis weight vector acquired by the basis weight vector obtaining unit 4021 according to each phase acquired by the phase acquiring unit 4022 to obtain N weight vectors, where the N weight vectors are different.
  • the N weight vectors each include M weight coefficients.
  • the apparatus in this embodiment may further include:
  • An incremental acquisition unit 406, configured to acquire a preset inter-frame incremental phase value
  • the phase updating unit 407 is configured to update the N phases acquired by the phase acquiring unit 4022 according to the inter-frame increasing phase value acquired by the incremental acquiring unit 406.
  • the weight vector selection unit 403 in this embodiment may further include:
  • the sequence selecting unit 4031 is configured to sequentially select corresponding weight vectors of the N weight vectors according to the order of the N time-frequency resource blocks;
  • Random selection unit 4032 randomly for the N time-frequency resource blocks from the N weight vectors A weight vector is selected, and the weight vectors selected by different time-frequency resource blocks are different.
  • the basis weight vector obtaining unit 4021 selects a basis weight vector to generate a beam having a wide coverage angle, a flat beam, and a low peak-to-average ratio
  • the phase acquiring unit 4022 acquires the phase, and the phase is obtained by the transform unit 4023 with a random phase.
  • the weight vector is transformed to continuously change the beam pattern. In the specified direction, the antenna gain varies randomly, so the average of the gains exhibits isotropic. This embodiment achieves antenna gain isotropic of multiple antennas to full cell/sector coverage.
  • the beam direction of the basis weight vector can be obtained.
  • the beam direction of the basis weight vector covers most of the angles. The beam is flat and the peak-to-average ratio is low.
  • FIG. 5 is a transceiver system according to an embodiment of the present invention. After the common channel signal passes through the code modulation unit 501, a symbol partition is obtained, and each block includes N modulation symbols, represented by a quantity d.
  • the framing is performed by the framing unit 502, and then the beamforming unit is entered.
  • OFDM modulation unit 504 performs beamforming, and may also perform OFDM (Orthogonal Frequency Division Multiple) modulation by OFDM modulation unit 503, and then transmit through channel 505, and demodulate by OFDM demodulation unit 506 to the receiving end. And enter the receiver 507.
  • OFDM Orthogonal Frequency Division Multiple
  • the received signal can be expressed as:
  • is the channel response matrix, if the channel is a single-tap channel, such as a narrowband signal in a Time Division Multiple Access (TDMA) system, Or Orthogonal Frequency Division Multiple Access (OFDMA) system, at this time, the channel
  • the response matrix is a diagonal matrix:
  • the beam shaping gain matrix is denoted as G and is determined by the beam pattern in the specified direction.
  • &, ,... are the beam shaping antenna gains of the N weight vectors used in the N time-frequency resource blocks, respectively, which can be calculated by the following formula:
  • the matrix A is used to represent the product of the matrix G and H, and A is also a diagonal matrix.
  • the transmitted data symbols can be demodulated by a typical minimum mean square error (MMSE) algorithm, and the specific demodulation algorithm is as follows:
  • the multi-antenna based full cell/sector coverage method proposed in the embodiment of the present invention is simulated in the MATLAB/Simulink platform.
  • the selected simulation parameters are all adopted in the actual communication system or As defined in the standard, see the table below.
  • curve 601 is a performance curve when a multi-antenna omnidirectional beam adopts a convolutional code
  • curve 602 is a performance curve when a single antenna adopts a convolutional code
  • curve 603 is a performance curve when a multi-antenna omnidirectional beam adopts an LDPC code
  • a curve 604 is a performance curve when a single antenna adopts an LDPC code.
  • the BER performance of the multi-antenna omnidirectional beam is only 1 to 2 dB of received signal power signal-to-noise ratio (SNR) loss relative to a single antenna.
  • SNR signal-to-noise ratio
  • the received signal SNR loss is about 2 dB compared to the reliability of a single antenna.
  • LDPC code stronger coding
  • the antenna spacing selected by the above simulation is half a wavelength.
  • the corresponding multi-antenna system is specifically a smart antenna. It can be seen that embodiments of the present invention can provide good full cell/sector coverage for smart antenna systems.
  • the antenna spacing increases, the correlation between the array elements decreases, and the corresponding multi-antenna is specifically a chirp system.
  • the antenna direction vector changes, and the beam pattern of the base weight vector also changes, as shown in Figure 7 and Figure 8.
  • a curve 701 in Fig. 7 indicates a beam pattern of a linear antenna array in which the antennas are spaced by 2 wavelengths;
  • a curve pattern 801 in Fig. 8 indicates a beam pattern corresponding to an interval of 10 wavelengths.
  • the antenna is only re-simulated after changing the interval of the antenna.
  • the simulation results show that the change of the antenna spacing has no effect on the simulation results. Therefore, the simulation curve with antenna spacing of 2 and 10 wavelengths is still represented by the curve in Figure 6.
  • the above-described simulated multi-antenna system is a uniform linear array, but the method and apparatus of the embodiments of the present invention are equally applicable to antenna arrays of other shapes.
  • the weight vector beam pattern is shown by a curve 901 in Fig. 9, which satisfies the requirements of the coverage area width and the beam peak-to-average ratio.
  • curve 1001 is a performance curve when a square matrix adopts a convolutional code
  • curve 1002 is a performance curve when a single antenna adopts a convolutional code
  • curve 1003 is a performance curve when a square matrix adopts an LDPC code
  • curve 1004 is a single antenna adopting LDPC The performance curve of the code.
  • the simulation experiment a plurality of different receiving angles of the cell/sector are randomly selected.
  • the simulation results show that the received signal quality in different directions in the cell/sector is completely consistent, which proves that the whole cell/sector in the square matrix in the embodiment of the present invention is proved. Covered isotropic.
  • the BER performance of the multi-antenna omnidirectional beam is only about 2 dB of the received signal power signal-to-noise ratio (SNR) loss with respect to a single antenna.
  • SNR received signal-to-noise ratio
  • the received signal SNR loss is about 2 dB compared to the single antenna.
  • the signal-to-noise ratio difference between the single-antenna and square-array multi-antenna omnidirectional beams is only 1.5 dB.
  • the square matrix has a signal-to-noise ratio loss of about 0.5 decibels. This is because only one suboptimal basis weight vector is selected in this simulation, and the optimal base weight corresponding to the square matrix can be reselected. Vector improves performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

一种多天线实现公共信 盖的方法及装置
本申请要求于 2009 年 3 月 5 日提交中国专利局、 申请号为 PCT/CN2009/070647,发明名称为 "一种实现公共信道全面覆盖的方法及装置" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通讯领域,尤其涉及一种多天线实现公共信道覆盖的方 法及装置。
背景技术
二十世纪九十年代以来, 无线通信产业经历了爆炸式增长, 随着语音、 数 据、视频等业务开始逐步移动化,对无线通信系统带宽的需求越来越高。但是, 可用的频带资源日益紧张, 因此,如何提高频谱利用率成为无线通信研究的一 个关键问题。
能有效提高频谱利用率的技术包括: 多址接入、 信号检测、 调制和信道编 码等等, 其中, 潜力巨大的多天线系统(MAS, Multiple Antennas System )在 无线通信中的地位日益重要。
智能天线( SA, Smart Antennas ),又称为天线阵列系统( AAS , Antenna Array System ), 是多天线系统的一种, 智能天线的阵元间距一般小于信道的相关距 离。 利用天线阵元间的信号相关性, 可以实现波束赋型, 自适应地把高增益的 窄波束指向通信中的移动终端, 同时调整零陷对准干扰方向。
多输入多输出 ( MIMO , Multiple Input Multiple Output )是多天线系统的 另一种形式, Foschini从理论上证明了该技术提高频谱利用率的巨大潜力, 其 信道容量随着天线的数量线性增长(正比于收发端最小天线数)。 多天线系统 结合空时编码(STC, Space Time Coding ), 产生空间分集的效果, 可以降低 误码率, 提高系统的可靠性。 多天线系统也可采用分层空时结构 (BLAST, Bell Labs Layered Space Time ), 形成多路并行的子信道, 以空间复用的形式提 高信道容量,实现高传输速率的通信。 MIMO技术也可以看成是一种智能天线, 其主要区别在于天线阵元间距不同, MIMO系统天线间一般应保持不相关性。
蜂窝移动通信系统中, 基站为蜂窝小区 /扇区中的每个活动用户分配专用 信道(Dedicated Channel )来承载语音、 数据或视频业务。基于多天线的基站, 可以在专用信道上应用波束赋型或预编码等技术手段, 为特定用户发射信号, 并且降低对其他用户的干扰。
在实际的移动通信系统中, 蜂窝小区 /扇区中除了专用信道外, 还需要公 共信道 (Public Channel); 公共信道承载小区 /扇区中所有移动终端都需要的公 共信息, 如广播信道中的系统信息, 同步信道中的参考信号, 前向接入信道 ( FACH, Forward Access Channel ) 中的导频、 寻呼和公共控制消息等等。 公 共信道对基站系统覆盖的要求与专用信道有很大的差异, 需要小区 /扇区中所 有的移动终端都能同时接收到信号, 所以基站对整个小区 /扇区需要有良好的 全小区 /扇区覆盖。
现有技术中, 有一种天线阵列全小区 /扇区覆盖的解决方案, 该方案将公 共信道信号的发射时间划分成时隙,选择一组方向图互补的权向量,在连续的 时隙中交替使用互补的权向量, 从而实现了基于智能天线的全小区 /扇区覆盖。
上述的技术中, 虽然交替使用了多个互补的权向量,但是由于权向量的数 量有限,且每个权向量对应的方向图是固定的, 因此多个方向图的天线增益平 均值在不同方向并不是完全相等, 而只具有近似的等向性,从而导致各方向误 比特率(BER, Bit Error Rate )性能差异比较大;
另外, 上述技术仅仅针对线性阵列的智能天线系统, 没有包括其它多天线 系统, 如 MIMO系统, 也不包括其它形式的天线阵列, 如方阵、 圆阵等。 发明内容
本发明实施例提供了一种多天线实现公共信道覆盖的方法及装置,能够实 现全小区 /扇区中各方向接收到的信号质量一致。
本发明实施例提供的多天线实现公共信道覆盖的方法, 包括: 将帧中用于 发送公共信道信号的时间-频率资源划分成 N个时间 -频率资源块,所述 N为大 于 1的正整数; 生成 N个权向量, 每个权向量由 M个权系数构成, 所述 M与 天线的数目对应, 所述 N个权向量的方向图的平均方向图在全小区 /扇区的各 个方向上的增益差异小于预置的数值; 为所述 N个时间-频率资源块中的每个 时间 -频率资源块分别选取所述 N个权向量中的一个,不同的时间 -频率资源块 的权向量各不相同; 利用选择的权向量中的 M个权系数, 分别对对应的 M个 天线中的公共信道信号进行加权, 并通过所述 M个天线发送所述加权后的公 共信道信号。
本发明实施例提供的多天线实现公共信道覆盖的装置, 包括: 划分单元, 用于将帧中用于发送公共信道信号的时间-频率资源划分成 N 个时间-频率资 源块, 所述 N为大于 1的正整数; 生成单元, 用于生成 N个权向量, 每个权 向量由 M个权系数构成, 所述 M与天线的数目对应, 所述 N个权向量的方向 图的平均方向图在全小区 /扇区的各个方向上的增益差异小于预置的数值; 权 向量选择单元,用于对于所述 N个时间 -频率资源块中的每个时间 -频率资源块 分别选取所述 N个权向量中的一个, 不同的时间-频率资源块的权向量各不相 同; 加权单元, 用于利用选择的权向量中的 M个权系数分别对对应的 M个天 线中的公共信道信号进行加权; 发送单元, 用于通过所述 M个天线发送所述 加权后的公共信道信号。
从上述技术方案中可以看出, 本发明实施例具有以下的有益效果: 本发明实施例中, 由于不同的时间-频率资源块选择不同的相位对基权向 量进行变换,不断改变波束方向图,使得在指定的方向上,天线增益随机变化, 因此增益的平均值表现出等向性, 从而实现全小区 /扇区中各方向接收到的信 号质量一致;
其次, 通过仿真实验证明, 本发明实施例不仅限于智能天线系统, 同时也 适用于 MIMO系统, 并且, 本发明的实施例不仅适用于线性天线阵列, 也适 用于圆阵、 方阵及其它形状天线阵列。
附图说明
图 1为本发明实施例中多天线实现公共信道覆盖的方法流程图;
图 2为本发明实施例中波束方向图;
图 3为本发明实施例中多天线实现公共信道覆盖的装置一个示意图; 图 4为本发明实施例中多天线实现公共信道覆盖的装置另一示意图; 图 5为本发明实施例中收发系统图;
图 6为本发明实施例中线性天线阵列仿真实验示意图;
图 7为本发明实施例中线性天线阵列一个波束方向图;
图 8为本发明实施例中线性天线阵列另一波束方向图;
图 9为本发明实施例中方形天线阵列波束方向图; 图 10为本发明实例中方形天线阵列仿真实验示意图。
具体实施方式
本发明实施例提供了一种多天线实现公共信道覆盖的方法及装置,能够实 现全小区 /扇区中各方向接收到的信号质量一致。
本发明实施例中的多天线实现公共信道覆盖的方法包括:
1 )将帧中用于发送公共信道信号的时间-频率资源划分成 N个时间 -频率 资源块, N为大于 1的正整数;
本实施例中, 当需要通过多天线发送公共信道信号时, 首先将公共信道信 为一帧 ),之后再将每帧当中用于传输公共信息的时间-频率资源划分成 N个时 间-频率资源块, N为大于 1的正整数。
2 )生成 N个权向量, 每个权向量由 M个权系数构成, 所述 M与天线的 数目对应, 所述 N个权向量的方向图的平均方向图在全小区 /扇区的各个方向 上的增益差异小于预置的数值;
当对时间 -频率资源进行划分之后, 即可生成 N个权向量, 具体生成权向 量的过程将在后续实施例中进行描述, 此处不作限定。
需要说明的是, 本实施例中, 生成的 N个权向量需要符合一定的规则, 即 N个权向量的方向图的平均方向图在全小区 /扇区的各个方向上的增益差异 小于预置的数值。
3 )对于所述 N个时间-频率资源块中的每个时间-频率资源块分别选取所 述 N个权向量中的一个, 不同的时间 -频率资源块的权向量各不相同;
当生成了 N个权向量之后, 即可为不同的时间 -频率资源块分别选择不同 的权向量, 具体选择的方式可以有顺序选择或随机选择,选择过程将在后续的 实施例中进行详细描述。
4 )利用选择的权向量中的 M个权系数分别对对应的 M个天线中的公共 信道信号进行加权, 并通过所述 M个天线发送所述加权后的公共信道信号。
当选择了对应的权向量之后, 即可使用该权向量中的 M个权系数分别对 对应的 M个天线中的公共信道信号进行加权, 并通过所述 M个天线发送所述 加权后的公共信道信号。 本实施例中, 由于生成的 N个权向量的方向图的平均方向图在全小区 /扇 区的各个方向上的增益差异小于预置的数值, 所以增益的平均值表现出等向 性, 从而实现全小区 /扇区中各方向接收到的信号质量一致。
为便于理解,下面结合附图对本发明实施例中的多天线实现公共信道覆盖 的方法进行详细描述, 请参阅图 1 , 本发明实施例中多天线实现公共信道覆盖 的方法包括:
101、 时间-频率资源的划分
本实施例中, 当需要通过多天线发送公共信道信号时, 首先将公共信道信 为一帧 ),之后再将每帧当中用于传输公共信息的时间-频率资源划分成 N个时 间-频率资源块, N为大于 1的正整数。
102、 获取基权向量;
本实施例中, 首先设计一个基权向量^ = [^ w2 ... wM ] T , 该基权向量由 M个加权系数构成, 加权系数记为 wm, m = \, ...,M , Μ个加权系数对应 Μ个发 射通道, Μ个发射通道对应 Μ个天线, Μ是大于 1的正整数。
这里 表示 c的转置,例如矩阵 w2 ... 表示矩阵[^ w2 ... wM ] 的转置。
该基权向量波束赋型所产生波束的覆盖角度应当达到预置门限,波束平坦 度应达到预置门限,峰均比也应低于预置门限,也就是说该波束应具有覆盖角 度宽、 波束平坦, 峰均比低的特征。
为降低成本, 避免使用高功率放大器, 可要求每个天线的发射功率相等, 即对应基权向量中的每个权系数的模相等, | = |w2| = ... = |wM |。
103、 获取 N个不同的相位;
本实施例中, 获取 N个不同的相位, 分别对应当前帧的 N个时间-频率资 源块, 具体可以按照一定的准则从 [0, 2;τ]选取 N个相位, 选取的 Ν个相位变 换后产生的权向量波束方向图应具有互补性, 并尽可能使全小区 /扇区中不同 方向的天线增益平均值相等,可以用计算机搜索或多次试验的方法来寻找满足 要求的相位, 例如可以使用 MATLAB等软件从 0到 2 π中选取符合要求的相 位。 104、 根据每个相位对基权向量进行变换得到 N个权向量;
当获取到基权向量以及 N个相位之后, 则可以根据每个相位对基权向量 进行变换得到 N个权向量, 对应 N个时间-频率资源块, 具体的:
假设有任一时间-频率资源块, 记为 t, 选取相位 对基权向量按照下 式进行变换, 产生一个新的权向量
w(t) = diag[\ ejm ej2 . .. ej{M - i)m } - w (1 )
其中, w表示基权向量, = Λ/1! , diag[xl ...xn]表示由括号中 xl至 xn的各 元素构成对角阵。
需要说明的是, 除了采用上述式(1 ) 的方式计算权向量之外, 还可以采 用其他的方式计算权向量, 例如:
从所述 N个不同的相位中选取一个相位;
在所述基权向量的第 m个权系数的相角上增加与 m倍的所选相位成正比 的相位, m的取值从 1到 M;
将进行了上述的相角增加后的向量作为一个权向量;
重复上述选取相位以及进行相角增加的过程直至得到 N个权向量。
可以理解的是,在实际应用中,还可以采用更多的方式使用相位对基权向 量进行变换得到权向量, 具体方式此处不作限定。
本实施例中, 步骤 101至 104所描述的是根据相位以及基权向量获取 N 个权向量的过程, 需要说明的是, 在实际应用中, 同样还可以采用其他的方式 获取权向量, 只要使得 N个权向量的方向图的平均方向图在全小区 /扇区的各 个方向上的增益差异小于预置的数值即可, 具体方式此处不作限定。
105、 对于 N个时间-频率资源块中的任意一个, 选择 N个权向量中的任 意一个;
上述步骤 104中可以根据 N个相位以及基权向量计算得到 N个权向量, 这 N个权向量各不相同,且对应 N个时间-频率资源块,对于某个时间-频率资 源块, 可以从这 N个权向量中选取一个, 具体的选取方法可以为:
一、 顺序选取:
按照时间-频率资源块的排序, 按顺序选取 N个权向量中的一个, 例如第 一个时间 -频率资源块选取第一个权向量, 第二个时间 -频率资源块选取第二个 权向量, 以此类推。
二、 随机选取:
除了上述描述的顺序选取之外, 同样可以随机选取, 对于某个时间 -频率 资源块, 随机地从 N个权向量中选取一个, 但选取需要遵照一定的标准: 每 个权向量只能被选取一次, 且每个权向量都需要被选择到。
106、 利用选择的权向量中的 M个权系数分别对其对应的 M个天线中的 公共信道信号进行力口权;
当某一时间 -频率资源块确定了选取的权向量之后, 对公共信道信号进行 加权, 按照该权向量进行波束赋型, 因此该时间-频率资源块的波束方向图是: g(0, t) = w(t)H a(0)
其中 α( 表示天线阵列的方向矢量, 该矢量是 Μ维的列向量, S表示信 号与天线阵列的方向角, w(0H表示向量 w(0的共轭转置。
举例说明, 如果系统为线性天线阵列时, 上式可以具体表示为:
、 ,、 、 、
g(0, t) = w(t)H a(0) = j wm (t)e " (2 ) 其中, ^^ 表示向量 的共轭转置, α( 表示天线阵列的方向矢量, 该 矢量是 Μ维的列向量, S表示信号与天线阵列的方向角, M表示天线的个数, ( )表示第 t个时间-频率资源块在第 m个天线上的权系数, 表示 ( )的 共轭, d表示阵元的间距, = >Π。
基权向量按式(1 )进行变换后, 其波束方向图仍可以保持覆盖角度宽、 波束平坦、 峰均比低的特点, 仅波束方向图旋转了 需要说明的是, 此处 所描述的旋转, 并不是指筒单的将波束图旋转一定角度, 而是通过权向量相位 的旋转, 使波束图的形状发生变化。
假设基权向量的波束方向图如图 2中实线 201所示,该权向量产生的波束 满足覆盖角度宽、 波束平坦、 峰均比低的要求。 基权向量的波束方向图在 30°、 150°、 210°、 330°附近的增益较低, 而在 15°、 165°、 225°、 315°附近具有高增益。
选取 ) = 45° , 按照式( 1 )对基权向量进行变换, 新权向量 的波束方 向图如图 2中虚线 202所示; 新权向量产生的波束仍然满足覆盖角度宽、 波束 平坦、 峰均比低的特点。 新权向量产生的波束方向图在 30°、 150°、 210°、 330° 附近的具有高增益, 而在 15°、 165°、 225°、 315°附近增益较低。 可见, 两个波 束方向图互补, 对于一个指定方向, 天线阵列的高低增益交替出现, 通过信道 编码和交织技术, 可以实现公共信道全小区 /扇区覆盖的目的。
107、 通过 M个天线发送加权后的公共信道信号。
当对公共信道信号加权完成后, 通过 M个天线发送加权后的公共信道信 号,按照一定顺序依次发送当前帧内的 N个时间-频率资源块的公共信道信号。
本实施例中, 充分利用了多天线系统中已有的天线阵元和低功率放大器 组, 选取一个基权向量产生具有覆盖角度宽、 波束平坦、 峰均比低的波束, 以 随机的相位对基权向量进行变换, 不断改变波束方向图。 在指定的方向上, 天 线增益随机变化, 因此增益的平均值表现出等向性。
需要说明的是,通过上述的步骤可以发送一帧的公共信道信号, 并实现公 共信道全小区 /扇区覆盖, 但如果公共信道信号不止一帧, 则需要继续发送下 一帧的公共信道信号, 由于权向量的数量越多, 天线增益平均值等向性越强, 因此, 为进一步提高天线增益平均值的等向性, 可以在不同帧中, 使用不同的 权向量, 而不是筒单地重复使用上一帧的权向量。
本实施例中, 可以首先选择一个 "帧间递增相位值 " , 利用相位值 对当 前帧的 N个权向量进行更新即可得到 N个不同的第二权向量, 则可以在下一 帧中使用这 N个第二权向量。 具体的可以将相位值 分别与当前帧的 N个相 位值相加得到 N个第二相位值, 利用 N个第二相位值, 按照公式( 1 )对基权 向量进行变换, 产生 N个第二权向量。
上面对某一帧中的 N个时间-频率资源块的发送过程进行了详细的描述, 在实际应用中,公共信道信号往往不止一帧, 下面针对多个帧的情况对本发明 实施例中的多天线实现公共信道覆盖的方法进行描述:
基于多天线系统的小区 /扇区公共信道信号的发射时间划分成连续的时间 帧, 每帧的用于传输公共信息的时间 -频率资源被划分成 N 个时间-频率资源 块, 每个资源块包括 L个调制符号。 第 k帧的第 n时间 -频率资源块记为 „。 为了方便信道估计和解调, 假设每个时间-频率资源块中的所有 L个符号经历 的信道衰落是相关的。
首先确定基权向量 w = [Wl w2 ... wM ] T , 该基权向量由 Μ个加权系数构 成, 加权系数记为 wm, m = l,...,M , Μ个加权系数对应 Μ个发射通道, Μ个发 射通道对应 Μ个天线, Μ是大于 1的正整数。
这里 表示 c的转置,例如矩阵 w2 ... 表示矩阵[^ w2 ... wM] 的转置。
通过该基权向量波束赋型所产生的波束应具有覆盖角度宽、 波束平坦,峰 均比氏的特征。
按照一定的准则从 [0, 2π]中选取 Ν个相位值 φ{ΐ η ), n = l,...,N , 顺序地或随 机地(随机选取方式要保证每个相位值被选取且只能被选取一次 )从 中 选择一个相位, 按照式(1)对基权向量进行变换, Ν次变换后产生 Ν个权向 量 o = i,...,N:
w(tkn) = diag[i em^ ej2^ ... ej(M-i '^]-w, n = \,...,N 其中, w表示基权向量, = Λ/1! , diag[xl...xn]表示由括号中 xl至 xn的各 元素构成对角阵。
选取的 N个相位值变换后产生的权向量波束方向图应具有互补性, 尽可 能使全小区 /扇区中不同方向的天线增益平均值相等, 可以用计算机搜索或多 次试验的方法来寻找满足要求的相位^( „)。 第 k帧的每个时间-频率资源块顺 序地选择 W( J, M = 1,...,N中的一个的权向量进行波束赋型,即时间 -频率资源块 t n选择权向量 ; 每个时间 -频率资源块也可以随机从 中选择一个权 向量, 但要保证每个权向量必须被使用而且只能被使用一次。 全小区 /扇区中 的一个指定方向, 如果在某个时间 -频率资源块中的天线增益 4艮低, 那么在同 一帧中另外的一些时间-频率资源块中增益会较高, 经历波束方向图的低增益 在 BER性能上等同于受到了信道的深衰落, 可以通过信道编码和交织技术来 消除影响。
由于权向量的数量越多, 天线增益平均值等向性越强, 因此, 为进一步提 高天线增益平均值的等向性, 可以在不同的帧中使用不同的 N个权向量, 而 不是筒单地重复使用上一帧的权向量。本实施例中的处理方式为:选取一个"帧 间递增相位值 δ " , 按照如下公式产生第; t + 1帧的相位
Figure imgf000011_0001
n = l,...,N :
+ d, n = l,...,N
第 + 1帧的每个时间-频率资源块按照上述第 k帧同样的方法,各选取一个 相位值, 然后进行变换, 并用变换产生的新权向量波束赋型。
本实施例中, 充分利用了多天线系统中已有的天线阵元和低功率放大器 组, 选取一个基权向量产生具有覆盖角度宽、 波束平坦、 峰均比低的波束, 以 随机的相位对基权向量进行变换,不断改变波束方向图,所以在指定的方向上, 天线增益随机变化, 因此增益的平均值表现出等向性;
其次, 本实施例中, 构成基权向量中的每个权系数的模可以相等, 所以可 以避免使用高功率放大器, 从而降低系统成本;
再次, 本实施例中, 在为每个时间-频率资源块选择对应的权向量时, 既 可采用顺序选取的方式,也可以采用随机选取的方式,所以能够提高本实施例 方案的灵活性;
更进一步, 本实施例中, 对于不同的帧, 可以使用帧间递增相位值对相位 进行更新, 使得每一帧所使用的相位都不相同, 从而使得不同帧所使用的 N 个权向量也不相同, 所以能够进一步提高天线增益平均值的等向性。
下面对本发明实施例中的多天线实现公共信道覆盖的装置,具体在实际应 用中, 该装置可以位于基站中, 请参阅图 3 , 本发明实施例中的多天线实现公 共信道覆盖的装置一个实施例包括:
划分单元 301 ,用于将帧中用于发送公共信道信号的时间-频率资源划分成 N个时间-频率资源块, N为大于 1的正整数;
生成单元 302, 用于生成 N个权向量, 每个权向量由 M个权系数构成, 所述 M与天线的数目对应,所述 N个权向量的方向图的平均方向图在全小区 / 扇区的各个方向上的增益差异小于预置的数值;
权向量选择单元 303 , 用于对于所述 N个时间-频率资源块中的每个时间- 频率资源块分别选取所述 N个权向量中的一个, 不同的时间-频率资源块的权 向量各不相同;
加权单元 304, 用于利用选择的权向量中的 M个权系数分别对对应的 M 个天线中的公共信道信号进行加权;
发送单元 305, 用于通过所述 M个天线发送所述加权后的公共信道信号。 为便于理解,下面对本发明实施例中的多天线实现公共信道覆盖的装置进 行详细描述, 请参阅图 4, 本发明实施例中的多天线实现公共信道覆盖的装置 另一实施例包括:
划分单元 401 ,用于将帧中用于发送公共信道信号的时间 -频率资源划分成 N个时间-频率资源块, N为大于 1的正整数;
生成单元 402, 用于生成 N个权向量, 每个权向量由 M个权系数构成, 所述 M与天线的数目对应,所述 N个权向量的方向图的平均方向图在全小区 / 扇区的各个方向上的增益差异小于预置的数值;
权向量选择单元 403 , 用于对于所述 N个时间-频率资源块中的每个时间- 频率资源块分别选取所述 N个权向量中的一个, 不同的时间-频率资源块的权 向量各不相同;
加权单元 404, 用于利用选择的权向量中的 M个权系数分别对对应的 M 个天线中的公共信道信号进行加权;
发送单元 405, 用于通过所述 M个天线发送所述加权后的公共信道信号。 其中, 生成单元 402包括:
基权向量获取单元 4021 , 用于获取基权向量, 所述基权向量由 M个权系 数构成, 所述 M与天线的数目对应;
相位获取单元 4022, 用于获取 N个不同的相位;
变换单元 4023 , 用于根据相位获取单元 4022获取到的每个相位对所述基 权向量获取单元 4021获取到的基权向量进行变换得到 N个权向量,所述 N个 权向量各不相同, 所述 N个权向量各自包含 M个权系数。
若发送的公共信道信号不止一帧, 则本实施例中的装置还可以进一步包 括:
递增获取单元 406 , 用于获取预置的帧间递增相位值;
相位更新单元 407, 用于根据所述递增获取单元 406获取到的帧间递增相 位值对所述相位获取单元 4022获取到的 N个相位进行更新。
本实施例中的权向量选择单元 403还可以进一步包括:
顺序选取单元 4031 , 用于按照 N个时间-频率资源块的排序, 顺序选择所 述 N个权向量中对应的权向量;
或,
随机选取单元 4032,对于 N个时间-频率资源块, 随机从所述 N个权向量 中选择一个权向量, 不同时间 -频率资源块选择的权向量各不相同。 本实施例中, 基权向量获取单元 4021选取一个基权向量产生具有覆盖角 度宽、 波束平坦、 峰均比低的波束, 相位获取单元 4022获取相位, 且由变换 单元 4023以随机的相位对基权向量进行变换, 不断改变波束方向图。 在指定 的方向上, 天线增益随机变化, 因此增益的平均值表现出等向性。 本实施例实 现了多天线对全小区 /扇区覆盖的天线增益等向性。
下面结合本实施例中的收发系统,以一个具体实例对数据收发过程进行描 述:
假设一个 8阵元的线性天线阵列, 选择如下基权向量:
w = [l 1 1 -1 1 -1 -1 ι]τ
设天线阵元的间距为半个波长 d = /2, 根据公式(2) 可以获得基权向量 的波束方向图, 具体可以参见图 2, 基权向量的波束方向图覆盖了大部分的角 度、 波束平坦、 峰均比低。
请参阅图 5, 图 5为本发明实施例中的收发系统, 在发射端, 公共信道信 号经过编码调制单元 501之后得到符号分块, 每块包括 N个调制符号, 以向 量 d表示。
d = [d{ d2 ... dN] T
设接收信号表示为; c:
X = ¾ … XN ]
得到的符号分块后, 通过组帧单元 502 进行组帧, 再进入波束赋型单元
504进行波束赋型, 此外还可以通过 OFDM调制单元 503进行正交频分复用 (OFDM, Orthogonal Frequency Division Multiple )调制, 之后通过信道 505 进行传输, 到达接收端由 OFDM解调单元 506进行解调, 并进入接收机 507。
需要说明的是, 经过波束赋型、 多径信道衰落和加性白噪声 (AWGN)作 用后, 接收信号可以表示为:
X = j_ H -G-d + n = j_ A -d + n 上式中的 Η 为信道响应矩阵, 如果信道为单抽头信道, 例如时分多址 (TDMA, Time Division Multiple Access ) 系统中的窄带信号, 或正交频分多 址 ( OFDMA, Orthogonal Frequency Division Multiple Access )系统, 此时信道 响应矩阵是对角矩阵:
H = diag [ h2 ... hN ] T
其中, 分别是每帧中 N个时间-频率资源块的信道响应系数。 波 束赋型增益矩阵表示为 G, 由指定方向的波束方向图确定。
G = diag [g, g2 ... gN ] T
其中, &, ,…, 分别是 N个时间-频率资源块中使用的 N个权向量的波 束赋型天线增益, 可以由如下公式计算出:
S„=∑wme λ , η = \, ... , Ν 表示第 m个天线上的权系数, 表示 的共轭, d表示阵元的间距, j = d , 表示信号与天线阵列的方向角, 表示波长, 表示第 k帧的相 位。
为了筒化标记, 用矩阵 A表示矩阵 G和 H的乘积, A也是对角阵。
A = H G
最后,在译码解调单元 508中,传输数据符号可以用典型的最小均方误差 ( MMSE )算法解调, 具体解调算法如下所示:
dMMSE = (AHA + 2iylAHx
上述介绍了公共信道信号的传输过程, 其中,在波束赋型单元 504中执行 的操作即如前述方法实施例中描述的多天线实现公共信道覆盖的方法,具体过 程此处不再赘述。
为了验证上述的方案能够达到预期效果,下面介绍本发明实施例中的仿真 一险证过程:
本发明实施例提出的基于多天线的全小区 /扇区覆盖方法在 MATLAB/Simulink平台中进行仿真, 为了充分验证本发明实施例的实用性, 选取的仿真参数皆为实际通信系统中已采用或标准中已定义的, 见下表。
表 1 仿真参数表
仿真参数 参雌
伯努力 (Bernoulli )二进制信源、 0和 1等概分布、 输 信源
出比特率 1 Mbps、 仿真帧长 288比特
信道编码 WiMAX ( IEEE802.16e )标准中定义的 LDPC码, 码
Figure imgf000016_0001
3GPP VA信道参数表 信道 A
Tap 延迟 功率
(nsec) (dB)
1 0 0
2 310 -1.0
3 710 -9.0
4 1090 -10.0
5 1730 -15.0 6 2510 -20.0 参考图 6中仿真结果曲线,单天线和多天线全向波束两种方案进行了仿真 对比, 每个方案分别采用 LDPC码和卷积码, 共四组仿真。
其中, 曲线 601 为多天线全向波束采用卷积码时的性能曲线, 曲线 602 为单天线采用卷积码时的性能曲线,曲线 603为多天线全向波束采用 LDPC码 时的性能曲线, 曲线 604为单天线采用 LDPC码时的性能曲线。
仿真实验中随机选取了蜂窝小区 /扇区多个不同的接收角度, 仿真结果表 明, 小区 /扇区中不同方向接收信号质量完全一致, 证明了本发明实施例中的 多天线阵列全小区 /扇区覆盖的等向性。 如图 6所示, 多天线全向波束的 BER 性能相对于单天线仅有 1 ~ 2分贝的接收信号功率信噪比(SNR )损失。 较弱 编码情况下(卷积码), 与单天线的可靠性相比接收信号信噪比损失约 2分贝。 较强编码(LDPC码)情况下,单天线与多天线全向波束的信噪比差仅 1分贝。
通过仿真证明, 本发明实施例中提出的多天线系统中的全向波束赋型算 法, 可以提供良好的全小区 /扇区覆盖。
上述仿真选取的天线间隔是半个波长,
Figure imgf000017_0001
对应的多天线系统具体为 智能天线。 可以看出, 本发明实施例可以为智能天线系统提供良好的全小区 / 扇区覆盖。 当天线间隔增加时, 阵元间相关性随之减弱, 对应的多天线具体为 ΜΙΜΟ系统。 天线间距增加后, 天线方向矢量随之变化, 基权向量的波束方向 图也会发生变化, 如图 7以及图 8所示。 图 7中的曲线 701表示天线间隔 2 个波长的线性天线阵列的波束图;图 8中的曲线 801表示的波束图对应间隔为 10波长。 按照表 1 的参数, 仅改变天线的间隔后进行重新仿真, 仿真结果表 明, 天线间隔的改变对仿真结果没有任何影响。 所以, 天线间隔为 2个和 10 个波长的仿真曲线仍然由图 6中曲线表示。
上述仿真的多天线系统为均匀线性阵,但本发明实施例所述方法和装置同 样适用于其它形状的天线阵列。下面以方阵为例进行仿真,设有 8阵元的方阵, 按照 2排, 每排 4阵元等间隔排列, 每排间距和阵元间隔都设为一个波长, 则 方阵的方向矢量为:
}\ _ Γ i 可以选择如下基权向量: w = [l 1 1 1 1 -1 -1 ι] τ
该基权向量波束方向图如图 9中的曲线 901所示, 满足覆盖面宽、 波束峰均比 低的要求。
按照表 1 中的参数, 仅将线阵改为上述方阵进行仿真, 仿真结果如图 10 所示。 其中, 曲线 1001为方阵采用卷积码时的性能曲线, 曲线 1002为单天线 采用卷积码时的性能曲线, 曲线 1003为方阵采用 LDPC码时的性能曲线, 曲 线 1004为单天线采用 LDPC码时的性能曲线。
仿真实验中随机选取了蜂窝小区 /扇区多个不同的接收角度, 仿真结果表 明, 小区 /扇区中不同方向接收信号质量完全一致, 证明了本发明实施例在方 阵中全小区 /扇区覆盖的等向性。 如图 10所示, 多天线全向波束的 BER性能 相对于单天线仅有 2分贝左右的接收信号功率信噪比( SNR )损失。 较弱编码 情况下 (卷积码), 与单天线的相比接收信号信噪比损失约 2分贝。 较强编码 ( LDPC码) 情况下, 此时单天线与方阵多天线全向波束的信噪比差仅 1.5分 贝。 相对于图 6中线阵的仿真曲线, 方阵约有 0.5分贝的信噪比损失, 这是由 于本次仿真中仅选择了一个次优基权向量,可以重新选择方阵对应的最优基权 向量提高性能。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可 读存储介质中, 所述存储介质可以是只读存储器, 磁盘或光盘等。
以上对本发明实施例所提供的一种多天线实现公共信道覆盖的方法及装 置进行了详细介绍, 对于本领域的一般技术人员, 依据本发明实施例的思想, 在具体实施方式及应用范围上均会有改变之处, 综上所述, 本说明书内容不应 理解为对本发明的限制。

Claims

权 利 要 求
1、 一种多天线实现公共信道覆盖的方法, 其特征在于, 包括:
将帧中用于发送公共信道信号的时间-频率资源划分成 N 个时间-频率资 源块, 所述 N为大于 1的正整数;
生成 N个权向量,每个权向量由 M个权系数构成, 所述 M与天线的数目 对应, 所述 N个权向量的方向图的平均方向图在全小区 /扇区的各个方向上的 增益差异小于预置的数值;
为所述 N个时间 -频率资源块中的每个时间 -频率资源块分别选取所述 N 个权向量中的一个, 不同的时间 -频率资源块的权向量各不相同;
利用选择的权向量中的 M个权系数, 分别对对应的 M个天线中的公共信 道信号进行加权, 并通过所述 M个天线发送所述加权后的公共信道信号。
2、 根据权利要求 1所述的方法, 其特征在于, 所述生成 N个权向量的步 骤包括:
获取基权向量, 所述基权向量由 M个权系数构成;
对于当前帧, 获取 N个不同的相位, 根据 N个不同的相位对所述基权向 量进行变换得到 N个权向量, 所述 N个权向量各不相同, 所述 N个权向量各 自包含 M个权系数。
3、 根据权利要求 2所述的方法, 其特征在于, 所述根据每个相位对所述 基权向量进行变换得到 N个权向量的步骤包括:
通过如下公式得到 N个权向量:
w(t) = diag [l em) e … M -誦]
其中, w为基权向量, 对于某一时间 -频率资源块 t, 相位为 j为虚数 单位, 尸 = -1 , ·ί¾[ 1... «]表示由括号中 xl至 xn的各元素构成对角阵, w(t) 为权向量, t的取值从 1到 N。
4、 根据权利要求 2所述的方法, 其特征在于, 所述根据 N个不同的相位 对所述基权向量进行变换得到 N个权向量的步骤包括:
从所述 N个不同的相位中选取一个相位;
在所述基权向量的第 m个权系数的相角上增加与 m倍的所选相位成正比 的相位, m的取值从 1到 M; 将进行了上述的相角增加后的向量作为一个权向量;
重复上述选取相位以及进行相角增加的过程直至得到 N个权向量。
5、 根据权利要求 2至 4中任一项所述的方法, 其特征在于, 所述通过所 述 M个天线发送所述加权后的公共信道信号的步骤之后包括:
获取预置的帧间递增相位值;
根据所述帧间递增相位值对所述 N个相位进行更新。
6、 根据权利要求 2至 4中任一项所述的方法, 其特征在于,
所述基权向量中的 M个权系数的模相等。
7、 根据权利要求 2至 4中任一项所述的方法, 其特征在于, 所述获取基 权向量的步骤包括:
选择基权向量,使得通过该基权向量波束赋型后的波束的覆盖角度达到预 置门限, 且在角度维上波束平坦度高于预置门限, 即峰均比低于预置门限。
8、 根据权利要求 2至 4中任一项所述的方法, 其特征在于, 所述获取 N 个不同的相位的步骤包括:
按照预置的算法从 0至 2π的范围内选取 Ν个不同的相位。
9、 根据权利要求 1至 4中任一项所述的方法, 其特征在于, 所述对于 Ν 个时间 -频率资源块中的每个时间 -频率资源块分别选取所述 Ν 个权向量中的 一个的步骤包括:
按照 Ν个时间-频率资源块中的排序, 顺序选择所述 Ν个权向量中对应的 权向量;
或,
随机从所述 Ν个权向量中选择一个权向量, 不同时间 -频率资源块所选择 的权向量各不相同。
10、 一种多天线实现公共信道覆盖的装置, 其特征在于, 包括: 划分单元, 用于将帧中用于发送公共信道信号的时间 -频率资源划分成 Ν 个时间-频率资源块, 所述 Ν为大于 1的正整数;
生成单元, 用于生成 Ν个权向量, 每个权向量由 Μ个权系数构成, 所述 Μ与天线的数目对应, 所述 Ν个权向量的方向图的平均方向图在全小区 /扇区 的各个方向上的增益差异小于预置的数值; 权向量选择单元,用于对于所述 N个时间 -频率资源块中的每个时间 -频率 资源块分别选取所述 N个权向量中的一个, 不同的时间-频率资源块的权向量 各不相同;
加权单元, 用于利用选择的权向量中的 M个权系数分别对对应的 M个天 线中的公共信道信号进行加权;
发送单元, 用于通过所述 M个天线发送所述加权后的公共信道信号。
11、 根据权利要求 10所述的多天线实现公共信道覆盖的装置, 其特征在 于, 所述生成单元包括:
基权向量获取单元, 用于获取基权向量, 所述基权向量由 M个权系数构 成, 所述 M与天线的数目对应;
相位获取单元, 用于获取 N个不同的相位;
变换单元,用于根据相位获取单元获取到的每个相位对所述基权向量获取 单元获取到的基权向量进行变换得到 N个权向量,所述 N个权向量各不相同, 所述 N个权向量各自包含 M个权系数。
12、根据权利要求 10或 11所述的多天线实现公共信道覆盖的装置, 其特 征在于, 所述多天线实现公共信道覆盖的装置还包括:
递增获取单元, 用于获取预置的帧间递增相位值;
相位更新单元,用于根据所述递增获取单元获取到的帧间递增相位值对所 述相位获取单元获取到的 N个相位进行更新。
13、根据权利要求 10或 11所述的多天线实现公共信道覆盖的装置, 其特 征在于, 所述权向量选择单元包括以下单元中的至少一个:
顺序选择单元, 用于按照 N个时间-频率资源块中的排序, 顺序选择所述 N个权向量中对应的权向量;
随机选择单元, 用于随机从所述 N个权向量中选择一个权向量, 不同时 间 -频率资源块所选择的权向量各不相同。
PCT/CN2009/072141 2009-03-05 2009-06-05 一种多天线实现公共信道覆盖的方法及装置 WO2010099674A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2010/070892 WO2010099756A1 (zh) 2009-03-05 2010-03-05 一种多天线实现公共信道覆盖的方法及装置
US12/782,279 US8537785B2 (en) 2009-03-05 2010-05-18 Method and apparatus for cell/sector coverage of a public channel through multiple antennas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2009/070647 WO2010099660A1 (zh) 2009-03-05 2009-03-05 一种实现公共信道全面覆盖的方法及装置
CNPCT/CN2009/070647 2009-03-05

Publications (1)

Publication Number Publication Date
WO2010099674A1 true WO2010099674A1 (zh) 2010-09-10

Family

ID=42709204

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2009/070647 WO2010099660A1 (zh) 2009-03-05 2009-03-05 一种实现公共信道全面覆盖的方法及装置
PCT/CN2009/072141 WO2010099674A1 (zh) 2009-03-05 2009-06-05 一种多天线实现公共信道覆盖的方法及装置
PCT/CN2010/070892 WO2010099756A1 (zh) 2009-03-05 2010-03-05 一种多天线实现公共信道覆盖的方法及装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070647 WO2010099660A1 (zh) 2009-03-05 2009-03-05 一种实现公共信道全面覆盖的方法及装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070892 WO2010099756A1 (zh) 2009-03-05 2010-03-05 一种多天线实现公共信道覆盖的方法及装置

Country Status (1)

Country Link
WO (3) WO2010099660A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1127871C (zh) * 1997-12-10 2003-11-12 埃瑞康姆公司 利用所确定的一个或多个加权矢量来实现所需辐射方向图的下行链路发送
CN1622490A (zh) * 2003-11-28 2005-06-01 华为技术有限公司 阵列天线实现全向覆盖的方法与装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9106296B2 (en) * 2006-12-19 2015-08-11 Qualcomm Incorporated Beam space time coding and transmit diversity
CN101335553B (zh) * 2007-06-26 2012-05-23 中兴通讯股份有限公司 一种天线阵列实现广播信道覆盖的方法及装置
CN101304278B (zh) * 2008-06-30 2013-04-03 中国移动通信集团设计院有限公司 一种采用多阵元天线的基站小区覆盖方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1127871C (zh) * 1997-12-10 2003-11-12 埃瑞康姆公司 利用所确定的一个或多个加权矢量来实现所需辐射方向图的下行链路发送
CN1622490A (zh) * 2003-11-28 2005-06-01 华为技术有限公司 阵列天线实现全向覆盖的方法与装置

Also Published As

Publication number Publication date
WO2010099660A1 (zh) 2010-09-10
WO2010099756A1 (zh) 2010-09-10

Similar Documents

Publication Publication Date Title
US20130076566A1 (en) Method and Apparatus for Transmitting Broadcast Signal
JP4587004B2 (ja) マルチアンテナを用いた無線通信方法、無線通信システムおよび無線通信装置
KR101749845B1 (ko) 다중 안테나 빔 형성 셀룰러 네트워크의 성능 향상
US8593976B2 (en) Wireless base station and terminal equipment
JP5291050B2 (ja) 多重アンテナシステム内の送信信号のための方法および装置
US20050281221A1 (en) System and method for allocating an adaptive modulation and coding subchannel in an orthogonal frequency division multiple access communication system with multiple antennas
KR20170004183A (ko) 무선 통신시스템의 빔 선택 장치 및 방법
KR102508858B1 (ko) 송신 다이버시티를 위한 방법 및 장치
WO2017219389A1 (zh) 大规模mimo系统中实现完美全向预编码的同步信号和信号的发送与接收方法
CN107113124B (zh) 用于大规模mimo系统的全向传输方法与装置
US8537785B2 (en) Method and apparatus for cell/sector coverage of a public channel through multiple antennas
CN111713054B (zh) 通信方法、通信装置和系统
WO2014181444A1 (ja) 移動局及び報告方法
WO2012055131A1 (zh) 一种频分双工系统下行多用户多径波束赋形方法及装置
JP2003258770A (ja) 送信装置
CN105308894A (zh) 一种数据传输方法,及发射装置
JP4402098B2 (ja) 送信装置及び送信指向性制御方法
Raoof et al. Advanced MIMO techniques: Polarization diversity and antenna selection
WO2010099674A1 (zh) 一种多天线实现公共信道覆盖的方法及装置
CN102017456A (zh) 一种多天线实现公共信道覆盖的方法及装置
Hong Research Article Performance Analysis of Dual-Polarized Massive MIMO System with Human-Care IoT Devices for Cellular Networks
Song et al. Beam selection methods for massive MIMO systems with hybrid radio frequency and baseband precoding
Ibn Azad Multiple Antenna Technique (MIMO)
KR20160056286A (ko) 가상 안테나를 물리 안테나에 맵핑하는 방법 및 장치
JP2012257190A (ja) 通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09841007

Country of ref document: EP

Kind code of ref document: A1