WO2010098505A1 - Process for producing novel optically active mandelic acid and derivative thereof - Google Patents

Process for producing novel optically active mandelic acid and derivative thereof Download PDF

Info

Publication number
WO2010098505A1
WO2010098505A1 PCT/JP2010/053597 JP2010053597W WO2010098505A1 WO 2010098505 A1 WO2010098505 A1 WO 2010098505A1 JP 2010053597 W JP2010053597 W JP 2010053597W WO 2010098505 A1 WO2010098505 A1 WO 2010098505A1
Authority
WO
WIPO (PCT)
Prior art keywords
mandelic acid
derivative
dehydrogenase
optically active
mandelate
Prior art date
Application number
PCT/JP2010/053597
Other languages
French (fr)
Japanese (ja)
Inventor
宮本憲二
Original Assignee
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾 filed Critical 学校法人慶應義塾
Priority to JP2011501698A priority Critical patent/JPWO2010098505A1/en
Publication of WO2010098505A1 publication Critical patent/WO2010098505A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/002Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by oxidation/reduction reactions

Definitions

  • the present invention relates to a method for producing optically active mandelic acid and its derivatives important as pharmaceuticals, and a method for producing optically active mandelic acid and its derivatives using a microorganism into which a gene involved in the production of optically active mandelic acid and its derivatives is introduced. About.
  • Optically active substances are becoming more important year by year, mainly for pharmaceuticals.
  • optically active raw materials chiral pools
  • synthesizing racemates and optically resolving them asymmetric synthesis. It is used properly by making use of.
  • Recently, the number of drugs with complicated chemical structures has increased, and there are not only one asymmetric center, and many have 4 to 5 or more. Therefore, in order to synthesize these compounds, the synthesis is not carried out sequentially from one starting material to the final product, but the final compound is divided into several components, each synthesized separately, and finally combined into a product. It is efficient to adopt the method. As a result, the demand for optically active pharmaceutical intermediates is increasing worldwide.
  • biocatalysts that perform synthetic reactions using biochemical reactions are collectively referred to as biocatalysts.
  • biocatalysts have been used as catalysts for synthesizing optically active substances.
  • a single enzyme to a plurality of enzyme systems, microorganism cells, animal and plant cultured cells, and the like are used as biocatalysts.
  • many new biocatalysts have recently appeared. Enzymes that could only be obtained by isolation from various organisms have recently been genetically modified.
  • An oxidoreductase that requires recycling of the coenzyme is not an isolated enzyme, but if a microbial cell is used, it can be regenerated by an enzyme system in the microbial cell and is practical. However, since there are many enzymes in the cells, stereoselectivity often deteriorates. In such a case, the yield and stereoselectivity can be improved by introducing genes of enzymes of other bacterial cells and expressing them in large quantities. If the coenzyme regeneration system is weak, the enzyme can also be introduced to increase the reaction rate.
  • Optically active mandelic acid derivatives are useful as pharmaceutical intermediates. For example, the R form of mandelic acid is used as a side chain modifier of the cephalosporin antibiotic “cefamandol”.
  • the R form of o-chloromandelic acid is a raw material for the antiplatelet agent “clopidogrel” and antifungal agents.
  • a method for producing an optically active mandelic acid derivative the following method is known.
  • A Optical resolution method by fractionated crystal of racemic body (see Patent Document 1)
  • B Chromatographic optical resolution method (see Non-Patent Document 1)
  • C A method of obtaining an optically active substance by oxidizing one of the racemates (see Patent Document 2)
  • D Method using nitrilase (see Patent Documents 3 and 4)
  • E Method using hydroxyl nitrile lyase (see Patent Document 5)
  • F Reduction method of benzoylformic acid derivative (see Patent Documents 6 and 7)
  • G Method using microorganisms (see Patent Document 8) While the above methods (a), (b) and (c) recover the target enantiomer, the unnecessary enantiomer cannot be used, resulting in the loss of half of the raw material.
  • the method (d) above requires a mandelonitrile derivative as a raw material.
  • Sodium cyanide is required for the synthesis of the mandelonitrile derivative, and the sodium cyanide inhibits nitrilase, so that it is necessary to control the sodium cyanide concentration, and is not suitable for industrial production.
  • the method (e) uses benzaldehyde and hydrogen cyanide as raw materials. Since hydrogen cyanide is highly toxic to humans and highly toxic to enzymes, it is not suitable for industrial production.
  • the method (f) is a process that does not costly because the benzoylformic acid derivative is unstable and more expensive than the optically active mandelic acid derivative, although the mandelic acid derivative can be obtained with high optical purity and yield. . Furthermore, in the method (g), one kind of naturally-derived microorganism is used, which requires long-term culture, and a high-concentration substrate cannot be used from the viewpoint of enzyme activity. A large amount of optically active mandelic acid could not be produced efficiently. Furthermore, 100% optically active purity could not be achieved. Thus, each of the conventional techniques has problems.
  • JP 2001-72644 A JP-A-6-165695 Japanese Patent Laid-Open No. 4-99496 JP-A-6-237789 JP 2001-354616 A JP 2004-65049 A JP 2003-199595 A JP-A-6-7196
  • An object of the present invention is to provide a deracemization reaction of a mandelic acid derivative using a biocatalyst as a method for producing an optically active mandelic acid derivative.
  • the present inventors have intensively studied to solve the problems of the conventional methods for producing optically active mandelic acid and its derivatives and to develop new methods for producing optically active mandelic acid and its derivatives.
  • the present inventors have combined the three enzyme reactions using Escherichia coli in which three enzyme genes involved in the synthesis of optically active mandelic acid and its derivatives have been introduced and co-expressed as biocatalysts.
  • mandelic acid and its derivatives could be deracemized by a hydration reaction (a reaction that converts a racemate into one enantiomer in 100% yield).
  • a hydration reaction a reaction that converts a racemate into one enantiomer in 100% yield.
  • MOX mandelate oxidase
  • (R) -mandelate dehydrogenase ((R) -MDH) that produces only the R form of the mandelic acid derivative and glucose dehydrogenase that oxidizes glucose to produce gluconic acid and regenerates the coenzyme NADH ( GDH) and other coenzyme regeneration system enzymes were used to perform deracemization of mandelic acid and its derivatives efficiently by using recombinant Escherichia coli that had been studied and introduced genes encoding the above three types of enzymes. It has been found that optically active mandelic acid and its derivatives can be produced. The inventors of the present invention introduced and co-expressed E.
  • a deracemization factory was constructed by combining the above oxidation factory and reduction factory, and the present invention was completed. That is, the present invention is as follows.
  • a method for producing optically active mandelic acid or a derivative thereof by deracemizing racemic mandelic acid or a derivative thereof, which encodes mandelate oxidase, (R) -mandelate dehydrogenase and a coenzyme regeneration system enzyme An optically active mandelic acid or a derivative thereof, comprising detransformation of a transformed microorganism into which a gene has been introduced by acting on a racemic mandelic acid or a derivative thereof in the presence of a substrate of a coenzyme regeneration system enzyme and an oxidized coenzyme
  • a transformed microorganism in which mandelic acid or a derivative thereof is represented by the following formula (I):
  • X represents a hydrogen atom or an alkali or alkaline earth metal
  • R means that one or a plurality of ortho, meta or para positions are substituted
  • the substituent is a hydrogen atom, a halogen atom, A hydroxyl group, an alkyl group having 1 to 3
  • [3] Two types of expression vectors including an expression vector into which a transformed microorganism has inserted a gene encoding mandelate oxidase and a 2-gene expression vector into which a gene encoding (R) -mandelate dehydrogenase and a coenzyme regeneration system enzyme has been inserted
  • a method for producing the optically active mandelic acid or derivative thereof according to any one of [1] to [3], wherein the mandelate oxidase, (R) -mandelate dehydrogenase and the coenzyme regeneration system enzyme are derived from a microorganism.
  • [5] A method for producing the optically active mandelic acid or derivative thereof according to any one of [1] to [4], wherein the coenzyme regeneration system enzyme is glucose dehydrogenase.
  • the coenzyme regeneration system enzyme is glucose dehydrogenase.
  • Mandelate oxidase is derived from Pseudomonas microorganisms
  • (R) -Mandelate dehydrogenase is derived from Enterococcus microorganisms
  • a coenzyme regeneration system enzyme is derived from Bacillus microorganisms
  • [7] A method for producing the optically active mandelic acid or derivative thereof according to any one of [1] to [6], wherein the transformed microorganism is Escherichia coli.
  • [8] A gene encoding mandelate oxidase, (R) -mandelate dehydrogenase and a coenzyme regeneration system enzyme for producing optically active mandelic acid or a derivative thereof by deracemizing racemic mandelic acid or a derivative thereof.
  • coenzyme regeneration system enzyme is selected from the group consisting of glucose dehydrogenase, hydrogenase, formate dehydrogenase, alcohol dehydrogenase, aldehyde dehydrogenase and glucose-6-phosphate dehydrogenase.
  • Two types of expression vectors an expression vector into which a transformed microorganism has inserted a gene encoding mandelate oxidase and a 2-gene expression vector into which a gene encoding (R) -mandelate dehydrogenase and a coenzyme regeneration system enzyme has been inserted
  • Transformed microorganisms [12] The transformed microorganism of any one of [8] to [11] for producing optically active mandelic acid or a derivative thereof, wherein the coenzyme regeneration system enzyme is glucose dehydrogenase.
  • Mandelate oxidase is derived from Pseudomonas microorganisms
  • (R) -Mandelate dehydrogenase is derived from Enterococcus microorganisms
  • a coenzyme regeneration system enzyme is derived from Bacillus microorganisms
  • FIG. 1 is a diagram showing a deracemization reaction of a mandelic acid derivative by a deracemization factory.
  • FIG. 2 is a diagram showing a reaction in an oxidation factory.
  • FIG. 3 is a diagram showing a reaction in a reduction factory.
  • FIG. 4 is a diagram showing the MOX reaction.
  • FIG. 5 is a diagram showing a reaction of (R) -MDH.
  • FIG. 6 is a diagram showing the reaction of GDH.
  • FIG. 7 shows the structure of pASA1 containing the mox gene.
  • FIG. 8 is a diagram showing the expression of MOX in E. coli transformed with pASA1.
  • FIG. 9 is a diagram showing a product from an oxidation factory.
  • FIG. 9 is a diagram showing a product from an oxidation factory.
  • FIG. 10 is a diagram showing the structure of pET3aRMDH containing the (R) -mdh gene.
  • FIG. 11 is a figure which shows the result of colony PCR of pET3aRMDH.
  • FIG. 12 is a diagram showing codon correction in the (R) -mdh gene.
  • FIG. 13 shows (R) -MDH expression in E. coli transformed with pET3aRMDH.
  • FIG. 14 is a diagram showing the structure of pACYCGDH containing the gdh gene.
  • FIG. 15 shows the results of pACYCGDH colony PCR.
  • FIG. 16 shows the expression of (R) -MDH in E. coli transformed with pACYCGDH.
  • FIG. 17 is a diagram showing two types of co-expression of (R) -MDH and GDH.
  • FIG. 17A is a diagram showing co-expression with two types of expression plasmids
  • FIG. 17B is a diagram showing co-expression with one type of expression plasmid.
  • FIG. 18 shows the results of co-expression with two types of expression plasmids.
  • FIG. 19 shows the structure of pACYCCMG containing the (R) -mdh and gdh genes.
  • FIG. 20 is a diagram showing the base sequence of the deletion mutation introduction site.
  • FIG. 21 is a diagram showing the results of colony PCR of pACYCCMG.
  • FIG. 22 shows the results of co-expression with one type of expression plasmid.
  • FIG. 23 is a diagram showing a reaction by CFE.
  • FIG. 24 is a diagram showing a product produced by a reduction factory.
  • FIG. 25 is a diagram showing the co-expression of MOX, (r) -MDH and GDH.
  • FIG. 26 is a diagram showing the results of co-expression of MOX, (r) -MDH and GDH.
  • FIG. 27 is a diagram showing a product produced by a deracemization factory.
  • FIG. 28 is a diagram showing the change over time of the mandelic acid deracemization reaction (0.5 g wet cell, 10 mM substrate concentration).
  • FIG. 29 is a diagram showing the change over time of the mandelic acid deracemization reaction (0.5 g wet cell, 50 mM substrate concentration).
  • FIG. 30 is a diagram showing the change over time of the mandelic acid deracemization reaction (0.5 g wet cells, substrate concentration 100 mM).
  • FIG. 31 is a diagram showing the results of confirmation of MOX solubilization.
  • FIG. 32 is a diagram showing the time course of mandelic acid deracemization reaction (wet bacterial cell 0.5 g, substrate concentration 500 mM).
  • FIG. 33 is a diagram showing the time course of mandelic acid deracemization reaction (2.5 g wet cells, substrate concentration 500 mM).
  • FIG. 34 is a diagram showing the change over time of the mandelic acid deracemization reaction (5 g wet cells, substrate concentration 500 mM).
  • FIG. 35 is a diagram showing the change over time of the mandelic acid deracemization reaction (10 g of wet cells, substrate concentration of 385 mM).
  • FIG. 36 is a diagram showing the change over time in the deracemization reaction of o-chloromandelic acid (0.5 g wet cell, 10 mM substrate concentration).
  • FIG. 37 is a diagram showing the change over time in the deracemization reaction of o-chloromandelic acid (0.5 g wet cells, substrate concentration 100 mM).
  • FIG. 38 is a diagram showing a change with time of the enantiomeric excess in the deracemization reaction.
  • the object of the deracemization reaction is mandelic acid or a derivative thereof.
  • Mandelic acid derivatives include compounds of the following formula I: (In the formula, X represents a hydrogen atom or an alkali or alkaline earth metal, R means that one or a plurality of ortho, meta or para positions are substituted, and the substituent is a hydrogen atom, a halogen atom, A hydroxyl group, an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a thioalkyl group, an amino group, a nitro group, a mercapto group, a phenyl group, or a phenoxy group)
  • a compound in which R at the ortho position is H is mandelic acid
  • a compound in which R at the ortho position is Cl is 0-chloromandelic acid.
  • optically active mandelic acid or a derivative thereof refers to a mandelic acid derivative in which a certain optical isomer is contained more than another optical isomer.
  • a preferable optically active mandelic acid derivative has an optical purity of 50% ee or higher, preferably 80% ee or higher, more preferably 90% ee or higher, still more preferably 95% ee or higher, particularly preferably 97% ee or higher. (Enantiomericexcess; ee).
  • the optical purity of the optically active mandelic acid or its derivative can be confirmed using, for example, an optical resolution column.
  • the “optical isomer” of the present invention may be generally referred to as “optically active form” and “enantiomer”.
  • genes encoding three types of enzymes involved in deracemization of mandelic acid or its derivatives are introduced into microorganisms, and the three types of enzymes are co-expressed.
  • the three types of enzymes used are mandelate oxidase (MOX), (R) -mandelate dehydrogenase, and a coenzyme regeneration system enzyme.
  • MOX mandelate oxidase
  • R R
  • coenzyme regeneration system enzyme a coenzyme regeneration system enzyme.
  • Mandelic acid oxidase stereoselectively oxidizes racemic mandelic acid or its derivative S form to produce a benzoylformic acid derivative (FIG. 2).
  • the benzoylformic acid derivative is represented by the following formula (II) with respect to mandelic acid represented by the above formula (I) or a derivative thereof.
  • X represents a hydrogen atom or an alkali or alkaline earth metal
  • R means that one or more of ortho, meta or para positions are substituted, and the substituent is hydrogen, halogen atom, hydroxyl, Group, an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a thioalkyl group, an amino group, a nitro group, a mercapto group, a phenyl group, or a phenoxy group
  • Mandelic acid oxidase may be derived from microorganisms such as Pseudomonas genus, Candida genus, Saccharomyces genus, Enterococcus genus, Rhodococcus genus, Corynebacterium, Cornebactrium, Enterobacter, Lactobacillus, Micrococc
  • those derived from Pseudomonas microorganisms are used, and those derived from Pseudomonas putida are used.
  • those derived from Pseudomonas putida ATCC 12633 can be used.
  • For the mandelate oxidase derived from Pseudomonas putida ATCC12633 see Asterian R. et al. et al. , Biochemistry, 2004, 43, 183-1890, Isabelle E. et al. Lehoux et al, Biochemistry, 1999, 38, 5836-5848, Amy Y. et al.
  • Mandelic acid oxidase activity is caused by, for example, reacting a reaction solution containing 50 mM Tris-HCl buffer pH 7.5, 1 mM DCPIP (oxidized type), 1 mM mandelic acid and enzyme, and increasing the absorbance at 600 nm due to an increase in DCPIP (reduced type).
  • Mandelic acid oxidase is the amount of enzyme that converts 1 ⁇ mol of mandelic acid into a benzoylformic acid derivative per minute.
  • R Mandelic acid dehydrogenase sterically oxidizes a benzoylformic acid derivative using the coenzyme NADH to produce only the R form of mandelic acid or a mandelic acid derivative (FIG. 3).
  • Mandelic acid oxidase may be derived from microorganisms, for example, Enterococcus, Pseudomonas, Candida, Saccharomyces, Rhodococcus, Cornebactrium, Enterobacter, Lactobacillus, Micrococcus, Cryptococcus, Hansenula, i, Ogataa, Ogataa Rhodosporidium (Rhodosporid um), Rhodotorula genus, Trichosporon genus, Yamadazyma genus, Amycolatopsis genus, Alcaligenes genus, Althrobacter genus Examples include microorganisms belonging to the genus, the genus Comamonas, the genus Leuconostoc, the genus Microbacterium, the genus Proteus and the like.
  • those derived from microorganisms of the genus Enterococcus are used, and those derived from Enterococcus faesalis are used.
  • those derived from Enterococcus faesalis IAM10071 can be used.
  • (R) -Mandelate dehydrogenase activity is, for example, 50 mM Tris-HCl buffer pH 7.5, 1 mM NAD + It can be measured by reacting a reaction solution containing 1 mM mandelic acid and an enzyme and measuring an increase in absorbance at 340 nm due to an increase in NADH. 1 U is defined as the amount of enzyme that converts 1 ⁇ mol of mandelic acid into a benzoylformic acid derivative per minute.
  • a coenzyme regeneration system enzyme is an NAD that is converted to an oxidized form as the enzyme reaction progresses in an enzyme reaction that requires a reduced coenzyme such as NADH or HADPH.
  • coenzyme regeneration ability An enzyme having the ability to convert a coenzyme such as NADP into a reduced form (referred to as coenzyme regeneration ability).
  • coenzyme regeneration system enzyme examples include glucose dehydrogenase (GDH) (FIG. 3), hydrogenase, formate dehydrogenase, alcohol dehydrogenase, aldehyde dehydrogenase, glucose-6-phosphate dehydrogenase, and the like.
  • GDH glucose dehydrogenase
  • hydrogenase formate dehydrogenase
  • alcohol dehydrogenase aldehyde dehydrogenase
  • glucose-6-phosphate dehydrogenase and the like.
  • glucose dehydrogenase is preferably used.
  • those derived from microorganisms can be used, for example, Bacillus genus, Thiobacillus genus, Pseudomonas genus, Candida genus, Kloeckera genus, Pichia.
  • Examples include microorganisms belonging to the genus (Pichia), the genus Lipomyces, the genus Moraxella, the genus Hyphomicrobium, the genus Paracoccus, the Ancylobacter, and the like.
  • those derived from microorganisms belonging to the genus Bacillus are used, and those derived from Bacillus megaterium are used.
  • glucose dehydrogenase derived from Bacillus megaterium IAM13481 can be used.
  • glucose dehydrogenase derived from Bacillus megaterium IAM13481 see S. et al. -H. Baik et al. , Appl. Microbiol. Biotechnol. , 2003, 61, 329-335, Tadashi Ema et al. Tetrahedron: Asymmetry, 2005, 16, 1075-1078, Tadashi Ema et al. , Tetrahedron, 2006, 62, 6143-6149, and the like.
  • Glucose dehydrogenase activity is, for example, 50 mM Tris-HCl buffer pH 7.5, 1 mM NAD + It can be measured by reacting a reaction solution containing 1 mM D-glucose and an enzyme and measuring an increase in absorbance at 340 nm due to an increase in NADH. 1 U is defined as the amount of enzyme that converts 1 ⁇ mol of glucose into gluconic acid per minute.
  • the coenzyme regeneration ability can be enhanced by adding sugars such as glucose and sucrose, organic acids, or alcohols such as ethanol and isopropanol to the reaction system.
  • Genes encoding these enzymes can be prepared based on known sequence information from the above-mentioned microorganisms using known methods such as a method using amplification means such as PCR, a method of chemically synthesizing, and the like.
  • the sequence and amino acid sequence of DNA encoding mandelate oxidase derived from Pseudomonas putida ATCC12633 are respectively represented by SEQ ID NOs: 14 and 15, and the sequence and amino acid sequence of DNA encoding (R) -mandelate dehydrogenase derived from Enterococcus faesalis IAM10071 are sequenced, respectively. Nos.
  • 16 and 17 show the DNA sequence and amino acid sequence encoding glucose dehydrogenase derived from Bacillus megaterium IAM13481, respectively, in SEQ ID Nos. 18 and 19, respectively.
  • it encodes a protein having a mandelate oxidase activity, which is capable of hybridizing with a DNA comprising a sequence complementary to the DNA comprising the nucleotide sequence represented by SEQ ID NO: 14 under the following stringent conditions: (R) -mandelate dehydrogenase activity which is capable of hybridizing with DNA comprising a sequence complementary to the DNA comprising the base sequence represented by SEQ ID NO: 16 under the following stringent conditions
  • Glucose dehydrogenase activity which is capable of hybridizing under the following stringent conditions with a DNA encoding a protein having a DNA and a DNA complementary to the DNA consisting of the base sequence represented by SEQ ID NO: 18 DNA encoding a protein having It is possible to have.
  • hybridization was performed at 68 ° C. in the presence of 0.7 to 1.0 M NaCl using a filter on which DNA was immobilized, and then a 0.1 to 2 fold concentration of SSC solution (with 1 fold concentration of SSC) was obtained. Is a condition that can be identified by washing at 68 ° C. using 150 mM NaCl and 15 mM sodium citrate).
  • hybridization buffer [50% formamide, 4 ⁇ SSC, 50 mM HEPES (pH 7.0), 10 ⁇ Denhardt's solution, 100 ⁇ g / ml salmon sperm DNA]
  • the base sequence represented by SEQ ID NO: 14 is at least 85% or more, preferably 90% or more, more preferably 95 At least 85%, preferably 90% or more of the DNA encoding the protein having mandelate oxidase activity and the base sequence represented by SEQ ID NO: 16.
  • More preferably 95% or more, particularly preferably 97% or more of the homologous DNA encoding a protein having (R) -mandelate dehydrogenase activity and at least the base sequence represented by SEQ ID NO: 18 85% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 97 Has a higher homology can be used also DNA encoding a protein having a glucose dehydrogenase activity.
  • the genes encoding the above three types of enzymes are introduced into one type of microorganism to produce a recombinant microorganism containing the genes encoding the three types of enzymes.
  • a recombinant microorganism may be obtained by inserting a gene encoding the above enzyme into an expression vector and transforming the microorganism using the expression vector.
  • Combinations for inserting genes encoding three types of enzymes into expression vectors include the following combinations, and any combination can be taken. (1) Each of the genes encoding the three types of enzymes is separately inserted into three expression vectors. (2) Of the genes encoding the three types of enzymes, two types of genes are simultaneously inserted into one expression vector (two gene expression vectors), and the remaining one type of gene is inserted into another expression vector.
  • the combination of two types of genes inserted simultaneously into one expression vector can be a combination of (R) -mdh gene and gdh gene, mox gene and gdh gene, and (R) -mdh gene and mox gene. . It is desirable that the activity of (R) -MDH, which requires a coenzyme, and GDH to regenerate the coenzyme are approximately equal. Therefore, preferably, the (R) -mdh gene and the gdh gene that regenerates the coenzyme are co-expressed in one expression vector, and inserted into one expression vector. (3) A gene encoding three kinds of enzymes is inserted into one expression vector (three gene expression vector).
  • the expression When inserting a plurality of genes into one expression vector, the expression may be controlled by separate promoters, or a plurality of genes may be linked downstream of one promoter and a plurality of genes may be expressed by controlling one promoter. You may let them. Preferably, the expression of each gene is controlled by different promoters. At this time, an expression vector containing a plurality of multiple cloning sites may be used.
  • the expression vector for inserting the gene encoding the enzyme is not particularly limited as long as it can replicate in the host, and examples thereof include plasmid DNA and phage DNA. Plasmid DNA includes plasmids derived from E.
  • coli for example, pUC vectors such as pUC19, pUC18, pUC118, and pUC119, pET vectors such as pET3a to 3d, pET9a to 9d, pET11a to 11d, and pETpBR322, pBR vectors such as pACYC vector and pBR325) ), Plasmids derived from Bacillus subtilis (eg, pUB110, pTP5, etc.), plasmids derived from yeast (eg, YEp13, YEp24, YCp50, etc.), and the like.
  • Bacillus subtilis eg, pUB110, pTP5, etc.
  • yeast eg, YEp13, YEp24, YCp50, etc.
  • Phage DNA includes ⁇ phage (Charon4A, Charon21A, EMBL3, EMBL4, ⁇ gt10, ⁇ gt11, ⁇ ZAP, etc.). Furthermore, DNA viruses or RNA viruses such as detoxified retroviruses, adenoviruses, adeno-associated viruses, herpes viruses, vaccinia viruses, poxviruses, polioviruses, synbisviruses, Sendai viruses, SV40, immunodeficiency viruses (HIV), etc. Insect virus vectors such as animal viruses such as pCI-neo, pcDNA3, and pZeoSV, and baculovirus can also be used.
  • DNA viruses or RNA viruses such as detoxified retroviruses, adenoviruses, adeno-associated viruses, herpes viruses, vaccinia viruses, poxviruses, polioviruses, synbisviruses, Sendai viruses, SV40, immunodeficiency viruses
  • an enzyme-encoding gene into an expression vector, first, the purified DNA is cleaved with an appropriate restriction enzyme, inserted into a restriction enzyme site or a multicloning site of an appropriate vector DNA, and ligated to the expression vector. Method is adopted.
  • an expression vector containing a plurality of multiple cloning sites may be used. Examples of the expression vector containing a plurality of multicloning sites include pACYC Duet-1.
  • a gene encoding an enzyme needs to be incorporated into an expression vector so that the function of the gene is exhibited.
  • the expression vector to be used includes a promoter, a gene encoding the above enzyme, a cis element such as an enhancer, a splice donor site present on the 5 ′ end side of the intron, and a splice present on the 3 ′ end side of the intron.
  • a splicing signal consisting of a receptor site, a poly A addition signal, a selection marker, a ribosome binding sequence (SD sequence) and the like can be operably linked.
  • the selection marker include dihydrofolate reductase gene, ampicillin resistance gene, neomycin resistance gene and the like.
  • a transformant can be obtained by introducing a recombinant vector into which a gene encoding an enzyme is inserted into a host so that the target gene can be expressed.
  • the host is not particularly limited as long as it can express the DNA of the present invention.
  • bacteria belonging to the genus Escherichia such as Escherichia coli, the genus Bacillus such as Bacillus subtilis, and the genus Pseudomonas such as Pseudomonas putida, and Saccharomyces c.
  • yeast such as Schizosaccharomyces pombe
  • animal cells such as COS cells and CHO cells
  • insect cells such as S121.
  • the recombinant vector of the present invention is capable of autonomous replication in the bacterium, and at the same time is composed of a promoter, a ribosome binding sequence, a gene of the present invention, and a transcription termination sequence. Is preferred. Moreover, the gene which controls a promoter may be contained. Examples of Escherichia coli include Escherichia coli DH1 and BL21. Examples of Bacillus subtilis include, but are not limited to, Bacillus subtilis. Any promoter can be used as long as it can be expressed in a host such as Escherichia coli.
  • trp promoter lac promoter, P L Promoter, P R A promoter derived from E. coli or phage, such as a promoter
  • An artificially designed and modified promoter such as a tac promoter may be used.
  • the method for introducing a recombinant vector into bacteria is not particularly limited as long as it is a method for introducing DNA into bacteria.
  • a method using calcium ions [Cohen, S .; N. et al. : Proc. Natl. Acad. Sci. USA, 69: 2110 (1972)], electroporation method and the like.
  • yeast When yeast is used as a host, for example, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia pastoris and the like are used.
  • the promoter is not particularly limited as long as it can be expressed in yeast.
  • gal1 promoter, gal10 promoter, heat shock protein promoter, MF ⁇ 1 promoter, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, AOX1 promoter and the like Can be used.
  • the method for introducing a recombinant vector into yeast is not particularly limited as long as it is a method for introducing DNA into yeast.
  • the electroporation method [Becker, D. et al. M.M. et al.
  • SR ⁇ promoter As the promoter, SR ⁇ promoter, SV40 promoter, LTR promoter, CMV promoter and the like may be used, and human cytomegalovirus early gene promoter and the like may be used.
  • methods for introducing a recombinant vector into animal cells include an electroporation method, a calcium phosphate method, and a lipofection method.
  • insect cells are used as hosts, S121 cells and the like are used.
  • the method for introducing a recombinant vector into insect cells include the calcium phosphate method, lipofection method, electroporation method and the like.
  • bacteria such as E. coli are used as a host, the codons may be corrected in consideration of the codon usage frequency and GC content of the bacteria.
  • a substrate of a coenzyme regeneration system enzyme and a coenzyme may be added, or when culturing a host containing a gene encoding the enzyme, mandel An acid or a derivative thereof, a substrate of a coenzyme regeneration system enzyme, and a coenzyme may be added to cause the enzyme expression and the enzyme reaction to be performed simultaneously.
  • a method for culturing a transformant host containing a gene encoding an enzyme is performed according to a usual method used for culturing a host.
  • a medium for culturing transformants obtained using microorganisms such as E.
  • the medium contains a carbon source, nitrogen source, inorganic salts, etc. that can be assimilated by the microorganisms, and the transformants are efficiently cultured.
  • a natural medium or a synthetic medium may be used.
  • the carbon source include carbohydrates such as glucose, fructose, sucrose, and starch, organic acids such as acetic acid and propionic acid, and alcohols such as ethanol and propanol.
  • Examples of the nitrogen source include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium salts of organic acids such as ammonium phosphate or other nitrogen-containing compounds, peptone, meat extract, corn steep liquor, and the like.
  • Examples of the inorganic substance include monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, and calcium carbonate.
  • a microorganism transformed with an expression vector using the Lac promoter when cultivating a microorganism transformed with an expression vector using the Lac promoter, a microorganism transformed with isopropyl- ⁇ -D-thiogalactopyranoside (IPTG) or the like with an expression vector using the trp promoter is cultured. Sometimes indole acetic acid (IAA) or the like may be added to the medium.
  • IAA indole acetic acid
  • a medium for culturing a transformant obtained using animal cells as a host a generally used RPMI 1640 medium, DMEM medium, a medium obtained by adding fetal calf serum or the like to these mediums, or the like is used.
  • optically active mandelic acid and its derivatives can be produced by reacting a culture of a transformant host containing three kinds of enzymes with a substrate.
  • the “culture” means either a culture supernatant, a cultured cell or a disrupted cell. Cultivation and enzyme reaction are usually carried out at a temperature of 20 to 40 ° C. and a pH of 6.0 to 9.0 for several hours to several days under aerobic conditions such as shaking culture or aeration stirring culture.
  • the pH of the medium may be adjusted using an inorganic or organic acid, an alkaline solution, or the like.
  • antibiotics such as kanamycin and penicillin may be added to the medium as necessary.
  • an optically active mandelic acid or derivative thereof having an optical purity of 99% ee or higher can be obtained in a yield of 100%.
  • a person skilled in the art can determine the addition amount of the microorganism and the substrate as appropriate, and produce optically active mandelic acid at a desired scale.
  • an optically active mandelic acid can be produced by immobilizing microorganisms and performing a deracemization reaction.
  • immobilization Usually, holding a biocatalyst such as an enzyme, a microorganism, or an animal or plant cell on a suitable insoluble carrier is called immobilization, and the immobilized one is called an immobilized biocatalyst.
  • immobilization usually, holding a biocatalyst such as an enzyme, a microorganism, or an animal or plant cell on a suitable insoluble carrier is called immobilization, and the immobilized one is called an immobilized biocatalyst.
  • the reaction is completed in 3 to 22 hours of culture, for example, 3 hours when the substrate concentration is 50 mM, 18 hours when the substrate concentration is 100 mM, and 22 hours when the substrate concentration is 385 mM.
  • an optically active mandelic acid or derivative thereof having an optical purity of 99% ee or higher can be obtained in a yield of 100%.
  • the reaction at a high concentration of 385 mM is possible, and a yield: 99% and an optical purity: 100% can be realized.
  • the immobilization of microorganisms is roughly classified into a case where a stationary microorganism without growth is immobilized, and a case where a microorganism showing proliferation in a living state is immobilized. They are referred to as an immobilized resting cell and an immobilized growing cell, respectively. Immobilized static cells are applied when a specific intracellular enzyme is used.
  • immobilized stationary cells are often used. This is because, when an enzyme is used, not only a complicated operation of crushing and removing the microbial cells is required, but also the stability of the enzyme is reduced by taking it out from the microbial cells.
  • the carrier binding method and the entrapment method are used for immobilization of stationary cells.
  • the carrier binding method a method of holding the carrier directly or via a prepolymer or polymer has been proposed.
  • a method of holding in a polymer gel is used.
  • the produced optically active mandelic acid or derivative thereof can be isolated from the reaction solution by a general separation and purification method.
  • insoluble substances such as host cells are removed from the reaction solution by centrifugation, the pH of the reaction solution is adjusted to acidity, extracted with a solvent such as ethyl acetate, dehydrated, vacuum-dried or recrystallized. It can be isolated and purified by performing.
  • a solvent such as ethyl acetate
  • the enzymes used in the following examples are shown in Table 1.
  • Primer Table 2 shows the base sequences of primers used for PCR in the following examples.
  • E. coli transformation In the following examples, E. coli BL21-Gold (DE3) was transformed by the heat shock method, and E. coli JM109 was transformed by the electroporation method.
  • MOX activity measurement 1 U was defined as the amount of enzyme that converted 1 ⁇ mol of mandelic acid or o-chloromandelic acid into a benzoylformic acid derivative per minute.
  • the supernatant was again removed, suspended in 50 mM Tris-HCl buffer (pH 7.5) so that the wet cell mass was 10%, and sonicated twice for 5 minutes. Then, the crushed liquid was centrifuged at 12,000 rpm for 30 minutes to obtain a soluble fraction (CFE: cell-free extract) as a supernatant and an insoluble fraction as a precipitate. These samples and the crushing liquid were used for SDS-PAGE. Moreover, the sample of the soluble fraction was used for the enzyme activity measurement of (R) -MDH and GDH.
  • the precipitate obtained as an insoluble fraction was suspended in 50 mM Tris-HCl buffer (pH 7.5) and washed by centrifugation at 12,000 rpm for 10 minutes. The supernatant was removed, and the precipitate obtained as an insoluble fraction was solubilized by suspending in a solubilization buffer so that the precipitate was 10%. And the insoluble matter was removed by centrifuging the suspension at 12,000 rpm for 30 minutes to obtain a solubilized fraction. This sample was used for measuring the enzyme activity of MOX.
  • the oxidation factory refers to E. coli into which the MOX gene has been introduced and expressed.
  • An oxidation factory was constructed as the first stage of deracemization factory construction, and an S selective oxidation reaction of mandelic acid was attempted (FIG. 2).
  • the Pseudomonas putida ATCC12633-derived mox gene was cloned into the EcoR I site of the vector pUC19 to construct pASA1 (FIG. 7), a plasmid for MOX expression.
  • Escherichia coli JM109 was transformed with this pASA1, and the expression of MOX was induced by culturing with the addition of IPTG.
  • the same experiment was conducted using the vector pUC19 as a control.
  • protein expression was confirmed by SDS-PAGE, and the activity of MOX against mandelic acid was measured by the above method.
  • MOX is an insoluble membrane protein
  • the fraction obtained by solubilizing the insoluble fraction with a surfactant was used for the activity measurement.
  • about 40 kDa MOX was expressed in the insoluble fraction by pASA1 (FIG. 8), and the enzyme activity was 24 U / g wet cell (control: 0 U).
  • the oxidation factory refers to E. coli that has induced the expression of MOX under the above-described conditions.
  • the reduction factory in this example refers to Escherichia coli in which (R) -MDH and GDH genes have been introduced and co-expressed.
  • a reduction factory was constructed as the second stage of deracemization factory construction, and an R-selective reduction reaction of benzoylformic acid was attempted (FIG. 3).
  • (1) Construction of pET3aRMDH pET3aRMDH (FIG. 10) was constructed as a plasmid for expression of (R) -MDH.
  • pET3aRMDH was constructed by cloning the (R) -mdh gene region derived from Enterococcus faecalis IAM 10071 into the Nde I and Bam HI sites of the vector pET-3a.
  • PCR was performed under the conditions shown in Table 3 to amplify from the 5 ′ end of the (R) -mdh gene to 120 bases downstream of the 3 ′ end.
  • primer1 is obtained by adding an adapter sequence containing a restriction enzyme NdeI site to a sequence specific to the 5 ′ end of the (R) -mdh gene with a corrected codon.
  • Primer 2 is obtained by adding an adapter sequence containing a restriction enzyme BamHI site to a sequence specific to the downstream region at the 3 ′ end of the (R) -mdh gene.
  • the obtained PCR product (insert) and vector pET-3a were digested with restriction enzymes Nde I and BamH I under the conditions shown in Table 4.
  • a ligation reaction was performed on the obtained two kinds of DNA fragments under the conditions shown in Table 5.
  • E. coli TOP10 was transformed using the reaction solution, and colony PCR was performed on the grown colonies as follows. First, a colony on a plate was suspended in 30 ⁇ l of sterile distilled water using a toothpick, heated at 98 ° C. for 5 minutes, and centrifuged at 12,000 rpm for 1 minute to obtain a template DNA solution. Next, PCR was performed under the conditions shown in Table 6 using this template DNA solution. Then, a plasmid was extracted from a colony (FIG.
  • pACYCGDH (FIG. 14) was constructed as a GDH expression plasmid. pACYCGDH was constructed by cloning the Bacillus megaterium IAM 13418-derived gdh gene into the Nde I and Kpn I sites of MCS (Multiple Cloning Sites) 2 of the vector pACYCDuet-1.
  • PCR was performed under the conditions shown in Table 7 to amplify from the 5 ′ end to the 3 ′ end of the gdh gene.
  • Primer 3 is obtained by adding an adapter sequence containing a restriction enzyme Nde I site to a sequence specific to the 5 ′ end of the gdh gene.
  • Primer 4 is obtained by adding an adapter sequence containing a restriction enzyme Kpn I site to a sequence specific to the 3 ′ end of the gdh gene.
  • the obtained PCR product (insert) and the vector pACYCDuet-1 were digested with the restriction enzymes NdeI and then KpnI under the conditions shown in Table 8.
  • a ligation reaction was performed on the obtained two types of DNA fragments under the conditions shown in Table 9.
  • E. coli TOP10 was transformed using the reaction solution, and colony PCR was performed on the grown colonies as follows. First, a template DNA solution was prepared as in the previous section. Next, PCR was performed using this template DNA solution under the conditions shown in Table 10. Then, a plasmid was extracted from a colony (FIG. 15) in which a DNA fragment of the desired size was amplified, and the nucleotide sequence was analyzed by sequencing. In sequencing, a DuetUP2 primer or a T7 terminator primer specific for MCS2 of the vector pACYCDuet-1 was used.
  • pACYCGDH was constructed by cloning the (R) -mdh gene region into the Nco I and Not I sites of MCS1 of the vector pACYCDuet-1 and the gdh gene into the Nde I and Kpn I sites of MCS2.
  • the plasmid pACYCMG for co-expression of (R) -MDH and GDH was constructed as follows. First, PCR was performed under the conditions shown in Table 11 to amplify from the 5 ′ end of the (R) -mdh gene to 120 bases downstream of the 3 ′ end.
  • primer5 is obtained by adding an adapter sequence containing a restriction enzyme NcoI site to a sequence specific to the 5 ′ end of the (R) -mdh gene with a corrected codon.
  • Primer 6 is obtained by adding an adapter sequence containing a restriction enzyme Not I site to a sequence specific to the downstream region at the 3 ′ end of the (R) -mdh gene.
  • the obtained PCR product (insert) and the GDH expression plasmid pACYCGDH (vector) constructed in the previous section were digested with the restriction enzymes Nco I and Not I under the conditions shown in Table 12. Subsequently, a ligation reaction was performed on the obtained two kinds of DNA fragments under the conditions shown in Table 13.
  • E. coli TOP10 was transformed using the reaction solution, and colony PCR was performed on the grown colonies as follows. First, a template DNA solution was prepared as in the previous section. Next, PCR was performed using this template DNA solution under the conditions shown in Table 14. Then, a plasmid was extracted from a colony (FIG. 19) in which a DNA fragment of the desired size was amplified, and the nucleotide sequence was analyzed by sequencing. In sequencing, an ACYCDuetUP1 primer or DuetDOWN1 primer specific for MCS1 of the vector pACYCDuet-1 was used.
  • the translation start position from mRNA to protein is not the start codon (ATG) of the (R) -mdh gene but the start codon contained in the Nco I site. , The frame of the codon will shift. Therefore, a 4-base deletion mutation was introduced by the method shown in FIG. First, the entire plasmid was amplified with the reaction solution composition and reaction conditions shown in Table 15, and a deletion mutation was introduced. In addition, primer7 is obtained by adding 11 bases before and 23 bases after the deletion mutation at the center. Primer8 is a complementary strand of primer7. Successful construction of the plasmid was confirmed by colony PCR (FIG. 21) and sequencing.
  • restriction enzyme Dpn I was added to the reaction solution and incubated at 37 ° C. for 1 hour to cleave the template DNA.
  • Dpn I is a restriction enzyme that recognizes and cleaves the 4-base sequence GATC in which A is methylated.
  • the template DNA grows in E. coli and is cleaved because it is methylated, but the PCR product is not cleaved because it is not methylated.
  • E. coli TOP10 was transformed, a plasmid was extracted from the grown colonies, and the nucleotide sequence was analyzed by sequencing. In the sequencing, the ACYCDuetUP1 primer or DuetDOWN1 primer was used as described above.
  • the reduction factory refers to E. coli in which the co-expression of (R) -MDH and GDH is induced under the above conditions by using one type of expression plasmid pACYCMG.
  • the difference in the expression level will be considered.
  • Reaction by reduction factory 10 mM benzoylformic acid, 20 mM D-glucose, 0.1 mM NADH, wet cell (reduction factory) 0.5 g, 50 mM Tris-HCl buffer (pH 7.5) and distilled water, The mixture was mixed to a total volume of 50 ml, placed in a 500-ml Erlenmeyer flask, and swirled at 30 ° C. and 180 rpm to attempt R-selective reduction of benzoylformic acid. At this time, the reaction is considered to proceed by NADH in Escherichia coli.
  • the deracemization factory refers to E. coli that has been introduced and co-expressed with MOX, (R) -MDH, and GDH genes.
  • a deracemization factory was constructed by combining an oxidation factory and a reduction factory, and a deracemization reaction of mandelic acid was attempted (Fig. 1).
  • (1) Co-expression of MOX with (R) -MDH and GDH MOX was successfully expressed with the expression plasmid pASA1.
  • (R) -MDH and GDH were successfully co-expressed with the co-expression plasmid pACYCMG.
  • E. coli BL21-Gold (DE3) was transformed with the MOX expression plasmid pASA1 constructed so far and the (R) -MDH and GDH co-expression plasmid pACYCMG, and IPTG was added to the MOX ( R) -MDH and GDH co-expression was induced.
  • similar experiments were performed using vectors pET-3a and pACYCDuet-1 as controls. After completion of the culture, protein expression was confirmed by SDS-PAGE, and the activities of MOX, (R) -MDH, and GDH were measured by the above methods.
  • the product was found to be 100% ee (control: 0% ee) (R) -mandelic acid. That is, all (S) -mandelic acid in (RS) -mandelic acid was converted to (R) -mandelic acid. In this way, the deracemization plant succeeded in proceeding the deracemization reaction of the target mandelic acid.
  • (3) Time-dependent change of reaction by deracemization factory The time-dependent change of the deracemization reaction of mandelic acid by the deracemization factory was measured.
  • the reaction solution having the composition shown in Table 17 was placed in a 500-ml Erlenmeyer flask and swirled at 30 ° C. and 180 rpm.
  • the reaction was attempted using 0.5 g of wet cells at substrate concentrations of 10 mM, 50 mM, and 100 mM, and the yield of mandelic acid and benzoylformic acid during the reaction and the optical purity of mandelic acid were measured by HPLC (FIGS. 28 to 30). ).
  • 1 g of wet cells corresponds to 200 ml culture. 28 to 30, the reaction was completed in about 3 hours at substrate concentrations of 10 mM and 50 mM, and about 18 hours at 100 mM, and the yield of mandelic acid reached 99% or more and the optical purity reached 100% ee at all substrate concentrations.
  • the reduction reaction is a rate-limiting step.
  • the activity of MOX related to the oxidation reaction is higher than the activities of (R) -MDH and GDH related to the reduction reaction in the wet cells.
  • the enzyme activity per 1 g of wet cells in the deracemization plant is 9.9 U for MOX, 290 U for (R) -MDH, and 100 U for GDH, which seems to contradict this idea.
  • MOX which is a membrane protein
  • the activity may be lower than that in wet cells for two reasons.
  • the first reason is a decrease in the amount of enzyme.
  • the solubilization of MOX was confirmed by SDS-PAGE, it was found that it was contained not only in the solubilized fraction but also in the precipitate, and not all was solubilized (FIG. 31).
  • the second reason is a decrease in enzyme activity. Since MOX solubilization was performed by denaturation using a surfactant, it is possible that not only the membrane binding site but also the conformation of the active site was changed to reduce the activity.
  • (R) -MDH and GDH which are cytoplasmic proteins, are considered to have almost the same activity as in wet cells because samples of the soluble fraction were used. From these facts, it is highly likely that the activity of MOX related to the oxidation reaction is actually higher than that of (R) -MDH and GDH related to the reduction reaction in the wet cells. Furthermore, when the activities of (R) -MDH and GDH are compared, the rate-limiting enzyme of the reduction reaction is considered to be GDH.
  • the reaction solution having the composition shown in Table 18 was placed in a 500-ml Erlenmeyer flask and swirled at 30 ° C. and 180 rpm. As a result, the reaction stopped after about 30 hours, the yield of mandelic acid was 72%, and the optical purity remained at 55% ee. Then, in order to increase the reaction rate, it was decided to increase the amount of wet cells. The reaction was attempted with a wet cell mass of 2.5 g (5 times) and 5 g (10 times), and changes over time were measured (FIGS. 33 and 34).
  • the reaction could not proceed sufficiently at a substrate concentration of 500 mM. Therefore, finally, a reaction was attempted using 10 g of wet cells at a substrate concentration of 385 mM, and the change with time was measured (FIG. 35). As a result, the reaction was completed in about 22 hours, the yield of mandelic acid reached 99% or more, the optical purity reached 100% ee, and the yield of benzoylformic acid remained at 5%. In this way, the deracemization reaction of mandelic acid by the deracemization factory was successfully advanced at a substrate concentration of 385 mM. The substrate concentration of 385 mM corresponds to 59 g / l.
  • o-chloromandelic acid was fractionated by PLC, the structure was measured by 1 H-NMR, and the optical purity was measured by HPLC. As a result, it was found that the product was indeed 99% ee or higher o-chloro- (R) -mandelic acid.
  • the deracemization reaction of o-chloromandelic acid by the deracemization factory was successfully advanced at a substrate concentration of 100 mM.
  • a substrate concentration of 100 mM corresponds to 19 g / l.
  • pACYCMG was constructed as a plasmid for co-expression of Enterococcus faecalis IAM 10071-derived (R) -mandelate dehydrogenase and Bacillus megaterium IAM 13418-derived glucose dehydrogenase.
  • Escherichia coli BL21-Gold (DE3) was transformed with pASA, which is a plasmid for expression of mandelate oxidase derived from pACYCMG and Pseudomonas putida ATCC 12633, and three types of enzymes were co-expressed. Using this Escherichia coli, a mandelic acid derivative was deracemized.
  • the method of the present invention has two features that are epoch-making compared to the prior art.
  • the first feature is that the cost is low. In the deracemization reaction, since an inexpensive racemate is used as a raw material and all unnecessary enantiomers are converted into the desired enantiomers, the raw materials can be used effectively. Moreover, since the coenzyme regeneration system is introduced, expensive coenzyme NADH can be recycled.
  • the second feature is a safety point because a biocatalyst is used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Disclosed is a deracemization reaction of a mandelic acid derivative utilizing a biocatalyst, which is a process for producing an optically active mandelic acid derivative. Specifically disclosed is a process for producing optically active mandelic acid or a derivative thereof by deracemizing racemic mandelic acid or a derivative thereof, which comprises allowing a transformed microorganism having a gene encoding mandelate oxidase, a gene encoding (R)-mandelate dehydrogenase and a gene encoding a coenzyme-regenerating enzyme introduced therein to act on racemic mandelic acid or a derivative thereof in the presence of a substrate for the coenzyme-regenerating enzyme and an oxidized coenzyme to deracemize the racemic mandelic acid or the derivative thereof.

Description

新規な光学活性マンデル酸及びその誘導体の製造方法Process for producing novel optically active mandelic acid and derivatives thereof
 本発明は、医薬品として重要な光学活性マンデル酸及びその誘導体の製造方法に関し、光学活性マンデル酸及びその誘導体の製造に関与する遺伝子を導入した微生物を用いた光学活性マンデル酸及びその誘導体の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing optically active mandelic acid and its derivatives important as pharmaceuticals, and a method for producing optically active mandelic acid and its derivatives using a microorganism into which a gene involved in the production of optically active mandelic acid and its derivatives is introduced. About.
 光学活性体は、医薬品を中心に年々その重要性を増している。光学活性体の合成法としては、(1)光学活性な原料(キラルプール)の使用、(2)ラセミ体を合成して光学分割する、(3)不斉合成の3つがあり、それぞれの特長を生かして使い分けられている。
 最近の医薬品はしだいに複雑な化学構造をもつものが増加し、不斉中心も1つではなく、多いものでは4~5個、あるいはそれ以上のものも少なくない。したがって、これらの化合物を合成するには1つの出発原料から最終製品まで順次合成を進めるのではなく、最終化合物をいくつかの成分に分割してそれぞれを別途に合成し、最後に結合して製品とする方法を採用することが効率的である。その結果、光学活性医薬中間体の需要が世界的に増加している。
 生化学反応を利用して合成反応を行う触媒を総称して生体触媒とよぶ。近年、生体触媒が光学活性体合成のための触媒として利用されている。有用化合物の合成には、生体触媒として、単一の酵素から複数の酵素系、微生物の菌体、及び動植物培養細胞などが使われている。
 これまでの一般的な生体触媒に加え、最近では新しい生体触媒が多数登場しはじめている。さまざまな生物から単離して得られるだけであった酵素も最近では、遺伝的に手を加えたものも現れてきた。補酵素のリサイクリングを必要とする酸化還元酵素は単離酵素ではなく、菌体を使うと、菌体内の酵素系で再生が可能であり実用的である。しかしながら、菌体には多くの酵素が存在するために、立体選択性が悪くなる場合も多い。このような場合に他の菌体の酵素の遺伝子を導入し、大量に発現させることにより、収率及び立体選択性を向上させることができる。また、補酵素再生系が弱い場合はその酵素も導入して反応速度を上昇させうる。
 光学活性マンデル酸誘導体は、医薬中間体として有用である。例えば、マンデル酸のR体は、セファロスポリン系抗生物質「セファマンドール」の側鎖修飾剤として用いられる。また、o−クロロマンデル酸のR体は、抗血小板剤「クロピドグレル」や抗真菌剤の原料となる。
 光学活性マンデル酸誘導体を製造する方法として、以下のような方法が知られている。
(a) ラセミ体の分別結晶による光学分割法(特許文献1を参照)
(b) クロマトグラフィーによる光学分割法(非特許文献1を参照)
(c) ラセミ体の一方を酸化することにより光学活性体を得る方法(特許文献2を参照)
(d) ニトリラーゼを用いる方法(特許文献3及び4を参照)
(e) ヒドロキシルニトリルリアーゼを用いる方法(特許文献5を参照)
(f) ベンゾイルギ酸誘導体の還元法(特許文献6及び7を参照)
(g) 微生物を用いる方法(特許文献8を参照)
 上記の(a)、(b)及び(c)の方法は、目的とする鏡像異性体を回収する一方で、不要な鏡像異性体を利用できないため、原料の半分を失う結果になる。つまり、原料を有効に利用できないため、コストを高める原因となる。不要な鏡像異性体を回収して、ラセミ化することで原料として再利用する方法も報告されているが、操作が煩雑である。上記(d)の方法は、原料としてマンデロニトリル誘導体を必要とする。マンデロニトリル誘導体の合成には、シアン化ナトリウムが必要であり、そのシアン化ナトリウムは、ニトリラーゼを阻害するため、シアン化ナトリウム濃度のコントロールが必要となり、工業的な生産には適していない。上記(e)の方法は、原料としてベンズアルデヒドとシアン化水素を原料とする。シアン化水素は人に対する毒性が高く、また、酵素に対する毒性も高いため、工業的な生産には適していない。また、上記(f)の方法は、高い光学純度と収率でマンデル酸誘導体が得られるものの、ベンゾイルギ酸誘導体が不安定で光学活性マンデル酸誘導体より高価なことからコスト的に成立しないプロセスである。さらに、上記(g)の方法においては、1種類の天然由来の微生物を用いており、長時間の培養を必要とし、酵素活性の点から高濃度の基質を用いることができず、短時間で効率的に大量の光学活性マンデル酸を製造することはできなかった。さらに、100%の光学活性純度を達成することもできなかった。このように、従来の技術にはそれぞれ問題点がある。
Optically active substances are becoming more important year by year, mainly for pharmaceuticals. There are three methods for synthesizing optically active substances: (1) using optically active raw materials (chiral pools), (2) synthesizing racemates and optically resolving them, and (3) asymmetric synthesis. It is used properly by making use of.
Recently, the number of drugs with complicated chemical structures has increased, and there are not only one asymmetric center, and many have 4 to 5 or more. Therefore, in order to synthesize these compounds, the synthesis is not carried out sequentially from one starting material to the final product, but the final compound is divided into several components, each synthesized separately, and finally combined into a product. It is efficient to adopt the method. As a result, the demand for optically active pharmaceutical intermediates is increasing worldwide.
Catalysts that perform synthetic reactions using biochemical reactions are collectively referred to as biocatalysts. In recent years, biocatalysts have been used as catalysts for synthesizing optically active substances. For the synthesis of useful compounds, a single enzyme to a plurality of enzyme systems, microorganism cells, animal and plant cultured cells, and the like are used as biocatalysts.
In addition to conventional biocatalysts, many new biocatalysts have recently appeared. Enzymes that could only be obtained by isolation from various organisms have recently been genetically modified. An oxidoreductase that requires recycling of the coenzyme is not an isolated enzyme, but if a microbial cell is used, it can be regenerated by an enzyme system in the microbial cell and is practical. However, since there are many enzymes in the cells, stereoselectivity often deteriorates. In such a case, the yield and stereoselectivity can be improved by introducing genes of enzymes of other bacterial cells and expressing them in large quantities. If the coenzyme regeneration system is weak, the enzyme can also be introduced to increase the reaction rate.
Optically active mandelic acid derivatives are useful as pharmaceutical intermediates. For example, the R form of mandelic acid is used as a side chain modifier of the cephalosporin antibiotic “cefamandol”. The R form of o-chloromandelic acid is a raw material for the antiplatelet agent “clopidogrel” and antifungal agents.
As a method for producing an optically active mandelic acid derivative, the following method is known.
(A) Optical resolution method by fractionated crystal of racemic body (see Patent Document 1)
(B) Chromatographic optical resolution method (see Non-Patent Document 1)
(C) A method of obtaining an optically active substance by oxidizing one of the racemates (see Patent Document 2)
(D) Method using nitrilase (see Patent Documents 3 and 4)
(E) Method using hydroxyl nitrile lyase (see Patent Document 5)
(F) Reduction method of benzoylformic acid derivative (see Patent Documents 6 and 7)
(G) Method using microorganisms (see Patent Document 8)
While the above methods (a), (b) and (c) recover the target enantiomer, the unnecessary enantiomer cannot be used, resulting in the loss of half of the raw material. That is, since the raw material cannot be used effectively, it causes a cost increase. A method of recovering unnecessary enantiomers and reusing them as racemates by racemization has been reported, but the operation is complicated. The method (d) above requires a mandelonitrile derivative as a raw material. Sodium cyanide is required for the synthesis of the mandelonitrile derivative, and the sodium cyanide inhibits nitrilase, so that it is necessary to control the sodium cyanide concentration, and is not suitable for industrial production. The method (e) uses benzaldehyde and hydrogen cyanide as raw materials. Since hydrogen cyanide is highly toxic to humans and highly toxic to enzymes, it is not suitable for industrial production. The method (f) is a process that does not costly because the benzoylformic acid derivative is unstable and more expensive than the optically active mandelic acid derivative, although the mandelic acid derivative can be obtained with high optical purity and yield. . Furthermore, in the method (g), one kind of naturally-derived microorganism is used, which requires long-term culture, and a high-concentration substrate cannot be used from the viewpoint of enzyme activity. A large amount of optically active mandelic acid could not be produced efficiently. Furthermore, 100% optically active purity could not be achieved. Thus, each of the conventional techniques has problems.
特開2001−72644号公報JP 2001-72644 A 特開平6−165695号公報JP-A-6-165695 特開平4−99496号公報Japanese Patent Laid-Open No. 4-99496 特開平6−237789号公報JP-A-6-237789 特開2001−354616号公報JP 2001-354616 A 特開2004−65049号公報JP 2004-65049 A 特開2003−199595号公報JP 2003-199595 A 特開平6−7196号公報JP-A-6-7196
 本発明は、光学活性マンデル酸誘導体の製造方法として、生体触媒を利用したマンデル酸誘導体のデラセミ化反応の提供を目的とする。
 本発明者らは、従来の光学活性マンデル酸及びその誘導体の製造方法の問題点を解消し、新たな光学活性マンデル酸及びその誘導体の製造方法を開発すべく鋭意検討を行った。
 本発明者等は、生体触媒として、光学活性マンデル酸及びその誘導体の合成に関与する3種類の酵素遺伝子を導入し共発現させた大腸菌を用いて、3種類の酵素反応を組み合わせることにより、デラセミ化反応(ラセミ体を100%の収率で一方の鏡像体に変換する反応)によりマンデル酸及びその誘導体をデラセミ化することができると考えた。3種類の酵素として、ラセミ体マンデル酸誘導体のうちS体のみを立体選択的に酸化し、ベンゾイルギ酸誘導体を生成するマンデル酸オキシダーゼ(MOX)、補酵素NADHを消費してベンゾイルギ酸誘導体を立体選択的に酸化し、マンデル酸誘導体のR体のみを生成する(R)−マンデル酸デヒドロゲナーゼ((R)−MDH)及びグルコースを酸化してグルコン酸を生成し、補酵素NADHを再生するグルコースデヒドロゲナーゼ(GDH)等の補酵素再生系酵素を用いて、検討を行い上記の3種類の酵素をコードする遺伝子を導入した組換え大腸菌を用いることにより効率的にマンデル酸及びその誘導体のデラセミ化を行い、光学活性マンデル酸及びその誘導体を製造できることを見出した。本発明者等は、MOXと(R)−MDH及びGDHをコードする遺伝子を導入し、共発現させた大腸菌を「デラセミ化工場」と呼び、3段階に分けて構築した。まず、1段階目として、MOXをコードする遺伝子を導入し発現させた大腸菌である「酸化工場」を構築した。次いで、2段階目として、(R)−MDHをコードする遺伝子及びGDHをコードする遺伝子を導入し共発現させた大腸菌である「還元工場」を構築した。最後に、3段階目として、上記の酸化工場と還元工場とを組み合わせてデラセミ化工場を構築し、本発明を完成させるに至った。
 すなわち、本発明は以下のとおりである。
[1] ラセミ体のマンデル酸又はその誘導体をデラセミ化して光学活性マンデル酸又はその誘導体を製造する方法であって、マンデル酸オキシダーゼ、(R)−マンデル酸デヒドロゲナーゼ及び補酵素再生系酵素をコードする遺伝子を導入した形質転換微生物を、補酵素再生系酵素の基質及び酸化型補酵素の存在下でラセミ体のマンデル酸又はその誘導体に作用させデラセミ化することを含む、光学活性マンデル酸又はその誘導体を製造する方法であって、マンデル酸又はその誘導体が下記式(I)で表される、形質転換微生物:
Figure JPOXMLDOC01-appb-I000003
(式中Xは水素原子又はアルカリあるいはアルカリ土類金属を表し、Rはオルト位、メタ位又はパラ位が一個又は複数個置換されていることを意味し、置換基は水素原子、ハロゲン原子、ヒドロキシル基、炭素数1~3個のアルキル基、アルコキシ基又はチオアルキル基、アミノ基、ニトロ基、メルカプト基、フェニル基、又はフェノキシ基を表す)。
[2]酵素再生系酵素が、グルコースデヒドロゲナーゼ、ヒドロゲナーゼ、ギ酸デヒドロゲナーゼ、アルコールデヒドロゲナーゼ、アルデヒドデヒドロゲナーゼ及びグルコース−6−リン酸デヒドロゲナーゼからなる群から選択される、[1]の光学活性マンデル酸又はその誘導体を製造する方法。
[3] 形質転換微生物がマンデル酸オキシダーゼをコードする遺伝子を挿入した発現ベクター並びに(R)−マンデル酸デヒドロゲナーゼ及び補酵素再生系酵素をコードする遺伝子を挿入した2遺伝子発現ベクターの2種類の発現ベクターを用いて形質転換される、[1]又は[2]の光学活性マンデル酸又はその誘導体を製造する方法。
[4] マンデル酸オキシダーゼ、(R)−マンデル酸デヒドロゲナーゼ及び補酵素再生系酵素が微生物由来である、[1]~[3]のいずれかの光学活性マンデル酸又はその誘導体を製造する方法。
[5] 補酵素再生系酵素がグルコースデヒドロゲナーゼである、[1]~[4]のいずれかの光学活性マンデル酸又はその誘導体を製造する方法。
[6] マンデル酸オキシダーゼがシュードモナス(Pseudomonas)属微生物由来であり、(R)−マンデル酸デヒドロゲナーゼがエンテロコッカス(Enterococcus)属微生物由来であり、補酵素再生系酵素がバシラス属(Bacillus)微生物由来である、[1]~[5]のいずれかの光学活性マンデル酸又はその誘導体を製造する方法。
[7] 形質転換微生物が大腸菌である、[1]~[6]のいずれかの光学活性マンデル酸又はその誘導体を製造する方法。
[8] ラセミ体のマンデル酸又はその誘導体をデラセミ化して光学活性マンデル酸又はその誘導体を製造するための、マンデル酸オキシダーゼ、(R)−マンデル酸デヒドロゲナーゼ及び補酵素再生系酵素をコードする遺伝子を導入した形質転換微生物であって、マンデル酸又はその誘導体が下記式(I)で表される、形質転換微生物:
Figure JPOXMLDOC01-appb-I000004
(式中Xは水素原子又はアルカリあるいはアルカリ土類金属を表し、Rはオルト位、メタ位又はパラ位が一個又は複数個置換されていることを意味し、置換基は水素原子、ハロゲン原子、ヒドロキシル基、炭素数1~3個のアルキル基、アルコキシ基又はチオアルキル基、アミノ基、ニトロ基、メルカプト基、フェニル基、又はフェノキシ基を表す)。
[9] 補酵素再生系酵素が、グルコースデヒドロゲナーゼ、ヒドロゲナーゼ、ギ酸デヒドロゲナーゼ、アルコールデヒドロゲナーゼ、アルデヒドデヒドロゲナーゼ及びグルコース−6−リン酸デヒドロゲナーゼからなる群から選択される、光学活性マンデル酸又はその誘導体を製造するための、[8]の形質転換微生物。
[10] 形質転換微生物がマンデル酸オキシダーゼをコードする遺伝子を挿入した発現ベクター及び(R)−マンデル酸デヒドロゲナーゼ及び補酵素再生系酵素をコードする遺伝子を挿入した2遺伝子発現ベクターの2種類の発現ベクターを用いて形質転換された、光学活性マンデル酸又はその誘導体を製造するための、[8]又は[9]の形質転換微生物。
[11] マンデル酸オキシダーゼ、(R)−マンデル酸デヒドロゲナーゼ及び補酵素再生系酵素が微生物由来である、光学活性マンデル酸又はその誘導体を製造するための、[8]~[10]のいずれかの形質転換微生物。
[12] 補酵素再生系酵素がグルコースデヒドロゲナーゼである、光学活性マンデル酸又はその誘導体を製造するための、[8]~[11]のいずれかの形質転換微生物。
[13] マンデル酸オキシダーゼがシュードモナス(Pseudomonas)属微生物由来であり、(R)−マンデル酸デヒドロゲナーゼがエンテロコッカス(Enterococcus)属微生物由来であり、補酵素再生系酵素がバシラス属(Bacillus)微生物由来である、光学活性マンデル酸又はその誘導体を製造するための、[8]~[12]のいずれかの形質転換微生物。
[14] 大腸菌である、光学活性マンデル酸又はその誘導体を製造するための、[8]~[13]のいずれかの形質転換微生物。
 本明細書は本願の優先権の基礎である日本国特許出願2009−046995号の明細書および/または図面に記載される内容を包含する。
An object of the present invention is to provide a deracemization reaction of a mandelic acid derivative using a biocatalyst as a method for producing an optically active mandelic acid derivative.
The present inventors have intensively studied to solve the problems of the conventional methods for producing optically active mandelic acid and its derivatives and to develop new methods for producing optically active mandelic acid and its derivatives.
The present inventors have combined the three enzyme reactions using Escherichia coli in which three enzyme genes involved in the synthesis of optically active mandelic acid and its derivatives have been introduced and co-expressed as biocatalysts. It was thought that mandelic acid and its derivatives could be deracemized by a hydration reaction (a reaction that converts a racemate into one enantiomer in 100% yield). As three types of enzymes, only the S form of the racemic mandelic acid derivative is stereoselectively oxidized to produce the benzoylformic acid derivative, mandelate oxidase (MOX), and the coenzyme NADH is consumed to stereoselect the benzoylformic acid derivative. (R) -mandelate dehydrogenase ((R) -MDH) that produces only the R form of the mandelic acid derivative and glucose dehydrogenase that oxidizes glucose to produce gluconic acid and regenerates the coenzyme NADH ( GDH) and other coenzyme regeneration system enzymes were used to perform deracemization of mandelic acid and its derivatives efficiently by using recombinant Escherichia coli that had been studied and introduced genes encoding the above three types of enzymes. It has been found that optically active mandelic acid and its derivatives can be produced. The inventors of the present invention introduced and co-expressed E. coli introduced with genes encoding MOX and (R) -MDH and GDH, called a “deracemization factory” and constructed it in three stages. First, as the first stage, an “oxidation factory”, which is Escherichia coli in which a gene encoding MOX was introduced and expressed, was constructed. Next, as a second stage, a “reduction factory”, which is Escherichia coli in which a gene encoding (R) -MDH and a gene encoding GDH were introduced and co-expressed, was constructed. Finally, as a third stage, a deracemization factory was constructed by combining the above oxidation factory and reduction factory, and the present invention was completed.
That is, the present invention is as follows.
[1] A method for producing optically active mandelic acid or a derivative thereof by deracemizing racemic mandelic acid or a derivative thereof, which encodes mandelate oxidase, (R) -mandelate dehydrogenase and a coenzyme regeneration system enzyme An optically active mandelic acid or a derivative thereof, comprising detransformation of a transformed microorganism into which a gene has been introduced by acting on a racemic mandelic acid or a derivative thereof in the presence of a substrate of a coenzyme regeneration system enzyme and an oxidized coenzyme A transformed microorganism in which mandelic acid or a derivative thereof is represented by the following formula (I):
Figure JPOXMLDOC01-appb-I000003
(In the formula, X represents a hydrogen atom or an alkali or alkaline earth metal, R means that one or a plurality of ortho, meta or para positions are substituted, and the substituent is a hydrogen atom, a halogen atom, A hydroxyl group, an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a thioalkyl group, an amino group, a nitro group, a mercapto group, a phenyl group, or a phenoxy group).
[2] The optically active mandelic acid or derivative thereof according to [1], wherein the enzyme regeneration system enzyme is selected from the group consisting of glucose dehydrogenase, hydrogenase, formate dehydrogenase, alcohol dehydrogenase, aldehyde dehydrogenase and glucose-6-phosphate dehydrogenase. How to manufacture.
[3] Two types of expression vectors including an expression vector into which a transformed microorganism has inserted a gene encoding mandelate oxidase and a 2-gene expression vector into which a gene encoding (R) -mandelate dehydrogenase and a coenzyme regeneration system enzyme has been inserted A method for producing the optically active mandelic acid or derivative thereof according to [1] or [2], wherein
[4] A method for producing the optically active mandelic acid or derivative thereof according to any one of [1] to [3], wherein the mandelate oxidase, (R) -mandelate dehydrogenase and the coenzyme regeneration system enzyme are derived from a microorganism.
[5] A method for producing the optically active mandelic acid or derivative thereof according to any one of [1] to [4], wherein the coenzyme regeneration system enzyme is glucose dehydrogenase.
[6] Mandelate oxidase is derived from Pseudomonas microorganisms, (R) -Mandelate dehydrogenase is derived from Enterococcus microorganisms, and a coenzyme regeneration system enzyme is derived from Bacillus microorganisms [1] A method for producing the optically active mandelic acid or derivative thereof according to any of [1] to [5].
[7] A method for producing the optically active mandelic acid or derivative thereof according to any one of [1] to [6], wherein the transformed microorganism is Escherichia coli.
[8] A gene encoding mandelate oxidase, (R) -mandelate dehydrogenase and a coenzyme regeneration system enzyme for producing optically active mandelic acid or a derivative thereof by deracemizing racemic mandelic acid or a derivative thereof. An introduced transformed microorganism, wherein mandelic acid or a derivative thereof is represented by the following formula (I):
Figure JPOXMLDOC01-appb-I000004
(In the formula, X represents a hydrogen atom or an alkali or alkaline earth metal, R means that one or a plurality of ortho, meta or para positions are substituted, and the substituent is a hydrogen atom, a halogen atom, A hydroxyl group, an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a thioalkyl group, an amino group, a nitro group, a mercapto group, a phenyl group, or a phenoxy group).
[9] To produce an optically active mandelic acid or a derivative thereof, wherein the coenzyme regeneration system enzyme is selected from the group consisting of glucose dehydrogenase, hydrogenase, formate dehydrogenase, alcohol dehydrogenase, aldehyde dehydrogenase and glucose-6-phosphate dehydrogenase. The transformed microorganism of [8].
[10] Two types of expression vectors: an expression vector into which a transformed microorganism has inserted a gene encoding mandelate oxidase and a 2-gene expression vector into which a gene encoding (R) -mandelate dehydrogenase and a coenzyme regeneration system enzyme has been inserted The transformed microorganism of [8] or [9] for producing an optically active mandelic acid or a derivative thereof transformed with
[11] Any one of [8] to [10] for producing optically active mandelic acid or a derivative thereof, wherein mandelate oxidase, (R) -mandelate dehydrogenase and a coenzyme regeneration system enzyme are derived from a microorganism. Transformed microorganisms.
[12] The transformed microorganism of any one of [8] to [11] for producing optically active mandelic acid or a derivative thereof, wherein the coenzyme regeneration system enzyme is glucose dehydrogenase.
[13] Mandelate oxidase is derived from Pseudomonas microorganisms, (R) -Mandelate dehydrogenase is derived from Enterococcus microorganisms, and a coenzyme regeneration system enzyme is derived from Bacillus microorganisms The transformed microorganism of any one of [8] to [12] for producing optically active mandelic acid or a derivative thereof.
[14] The transformed microorganism of any one of [8] to [13] for producing optically active mandelic acid or a derivative thereof, which is Escherichia coli.
This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2009-046995 which is the basis of the priority of the present application.
 図1は、デラセミ化工場によるマンデル酸誘導体のデラセミ化反応を示す図である。
 図2は、酸化工場における反応を示す図である。
 図3は、還元工場における反応を示す図である。
 図4は、MOXの反応を示す図である。
 図5は、(R)−MDHの反応を示す図である。
 図6は、GDHの反応を示す図である。
 図7は、mox遺伝子を含むpASA1の構造を示す図である。
 図8は、pASA1を用いて形質転換した大腸菌におけるMOXの発現を示す図である。
 図9は、酸化工場による生成物を示す図である。
 図10は、(R)−mdh遺伝子を含むpET3aRMDHの構造を示す図である。
 図11は、pET3aRMDHのコロニーPCRの結果を示す図である。
 図12は、(R)−mdh遺伝子におけるコドンの補正を示す図である。
 図13は、pET3aRMDHを用いて形質転換した大腸菌における(R)−MDHの発現を示す図である。
 図14は、gdh遺伝子を含むpACYCGDHの構造を示す図である。
 図15は、pACYCGDHのコロニーPCRの結果を示す図である。
 図16は、pACYCGDHを用いて形質転換した大腸菌における(R)−MDHの発現を示す図である。
 図17は、(R)−MDHとGDHの2種類の共発現を示す図である。図17Aは2種類の発現用プラスミドによる共発現を示す図であり、図17Bは1種類の発現用プラスミドによる共発現を示す図である。
 図18は、2種類の発現用プラスミドによる共発現の結果を示す図である。
 図19は、(R)−mdh及びgdh遺伝子を含むpACYCCMGの構造を示す図である。
 図20は、欠失変異導入部位の塩基配列を示す図である。
 図21は、pACYCCMGのコロニーPCRの結果を示す図である。
 図22は、1種類の発現用プラスミドによる共発現の結果を示す図である。
 図23は、CFEによる反応を示す図である。
 図24は、還元工場による生成物を示す図である。
 図25は、MOX、(r)−MDH及びGDHの共発現を示す図である。
 図26は、MOX、(r)−MDH及びGDHの共発現の結果を示す図である。
 図27は、デラセミ化工場による生成物を示す図である。
 図28は、マンデル酸のデラセミ化反応の経時変化を示す図である(湿菌体0.5g、基質濃度10mM)。
 図29は、マンデル酸のデラセミ化反応の経時変化を示す図である(湿菌体0.5g、基質濃度50mM)。
 図30は、マンデル酸のデラセミ化反応の経時変化を示す図である(湿菌体0.5g、基質濃度100mM)。
 図31は、MOXの可溶化の確認の結果を示す図である。
 図32は、マンデル酸のデラセミ化反応の経時変化を示す図である(湿菌体0.5g、基質濃度500mM)。
 図33は、マンデル酸のデラセミ化反応の経時変化を示す図である(湿菌体2.5g、基質濃度500mM)。
 図34は、マンデル酸のデラセミ化反応の経時変化を示す図である(湿菌体5g、基質濃度500mM)。
 図35は、マンデル酸のデラセミ化反応の経時変化を示す図である(湿菌体10g、基質濃度385mM)。
 図36は、o−クロロマンデル酸のデラセミ化反応の経時変化を示す図である(湿菌体0.5g、基質濃度10mM)。
 図37は、o−クロロマンデル酸のデラセミ化反応の経時変化を示す図である(湿菌体0.5g、基質濃度100mM)。
 図38は、デラセミ化反応における鏡像体過剰率の経時間変化を示す図である。
FIG. 1 is a diagram showing a deracemization reaction of a mandelic acid derivative by a deracemization factory.
FIG. 2 is a diagram showing a reaction in an oxidation factory.
FIG. 3 is a diagram showing a reaction in a reduction factory.
FIG. 4 is a diagram showing the MOX reaction.
FIG. 5 is a diagram showing a reaction of (R) -MDH.
FIG. 6 is a diagram showing the reaction of GDH.
FIG. 7 shows the structure of pASA1 containing the mox gene.
FIG. 8 is a diagram showing the expression of MOX in E. coli transformed with pASA1.
FIG. 9 is a diagram showing a product from an oxidation factory.
FIG. 10 is a diagram showing the structure of pET3aRMDH containing the (R) -mdh gene.
FIG. 11 is a figure which shows the result of colony PCR of pET3aRMDH.
FIG. 12 is a diagram showing codon correction in the (R) -mdh gene.
FIG. 13 shows (R) -MDH expression in E. coli transformed with pET3aRMDH.
FIG. 14 is a diagram showing the structure of pACYCGDH containing the gdh gene.
FIG. 15 shows the results of pACYCGDH colony PCR.
FIG. 16 shows the expression of (R) -MDH in E. coli transformed with pACYCGDH.
FIG. 17 is a diagram showing two types of co-expression of (R) -MDH and GDH. FIG. 17A is a diagram showing co-expression with two types of expression plasmids, and FIG. 17B is a diagram showing co-expression with one type of expression plasmid.
FIG. 18 shows the results of co-expression with two types of expression plasmids.
FIG. 19 shows the structure of pACYCCMG containing the (R) -mdh and gdh genes.
FIG. 20 is a diagram showing the base sequence of the deletion mutation introduction site.
FIG. 21 is a diagram showing the results of colony PCR of pACYCCMG.
FIG. 22 shows the results of co-expression with one type of expression plasmid.
FIG. 23 is a diagram showing a reaction by CFE.
FIG. 24 is a diagram showing a product produced by a reduction factory.
FIG. 25 is a diagram showing the co-expression of MOX, (r) -MDH and GDH.
FIG. 26 is a diagram showing the results of co-expression of MOX, (r) -MDH and GDH.
FIG. 27 is a diagram showing a product produced by a deracemization factory.
FIG. 28 is a diagram showing the change over time of the mandelic acid deracemization reaction (0.5 g wet cell, 10 mM substrate concentration).
FIG. 29 is a diagram showing the change over time of the mandelic acid deracemization reaction (0.5 g wet cell, 50 mM substrate concentration).
FIG. 30 is a diagram showing the change over time of the mandelic acid deracemization reaction (0.5 g wet cells, substrate concentration 100 mM).
FIG. 31 is a diagram showing the results of confirmation of MOX solubilization.
FIG. 32 is a diagram showing the time course of mandelic acid deracemization reaction (wet bacterial cell 0.5 g, substrate concentration 500 mM).
FIG. 33 is a diagram showing the time course of mandelic acid deracemization reaction (2.5 g wet cells, substrate concentration 500 mM).
FIG. 34 is a diagram showing the change over time of the mandelic acid deracemization reaction (5 g wet cells, substrate concentration 500 mM).
FIG. 35 is a diagram showing the change over time of the mandelic acid deracemization reaction (10 g of wet cells, substrate concentration of 385 mM).
FIG. 36 is a diagram showing the change over time in the deracemization reaction of o-chloromandelic acid (0.5 g wet cell, 10 mM substrate concentration).
FIG. 37 is a diagram showing the change over time in the deracemization reaction of o-chloromandelic acid (0.5 g wet cells, substrate concentration 100 mM).
FIG. 38 is a diagram showing a change with time of the enantiomeric excess in the deracemization reaction.
 以下、本発明を詳細に説明する。
 本発明において、デラセミ化反応の対象は、マンデル酸又はその誘導体である。マンデル酸の誘導体としては、以下の式Iで表される化合物が含まれる。
Figure JPOXMLDOC01-appb-I000005
(式中Xは水素原子又はアルカリあるいはアルカリ土類金属を表し、Rはオルト位、メタ位又はパラ位が一個又は複数個置換されていることを意味し、置換基は水素原子、ハロゲン原子、ヒドロキシル基、炭素数1~3個のアルキル基、アルコキシ基又はチオアルキル基、アミノ基、ニトロ基、メルカプト基、フェニル基、又はフェノキシ基を表す)
 以下の式IIで表される化合物において、オルト位のRがHである化合物がマンデル酸であり、オルト位のRがClである化合物が0−クロロマンデル酸である。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-I000007
 本発明における「光学活性マンデル酸又はその誘導体」とは、ある光学異性体が別の光学異性体より多く含まれるマンデル酸誘導体をいう。本発明において、好ましい光学活性マンデル酸誘導体は、50%ee以上、好ましくは80%ee以上、より好ましくは90%ee以上、更に好ましくは95%ee以上、特に好ましくは97%ee以上の光学純度(enantiomeric excess;ee)を有する。光学活性マンデル酸又はその誘導体の光学純度は、たとえば光学分割カラムなどを用いて確認することができる。本発明の「光学異性体」は、一般的に「光学活性体」及び「鏡像異性体」と呼ばれる場合もある。
 本発明においては、微生物にマンデル酸又はその誘導体のデラセミ化に関与する3種類の酵素をコードする遺伝子を導入し、該3種類の酵素を共発現させる。
 用いる3種類の酵素は、マンデル酸オキシダーゼ(MOX)、(R)−マンデル酸デヒドロゲナーゼ及び補酵素再生系酵素である。
 マンデル酸オキシダーゼは、ラセミ体のマンデル酸又はその誘導体のS体を立体選択的に酸化し、ベンゾイルギ酸誘導体を生成する(図2)。
 ベンゾイルギ酸誘導体は上記の式(I)で表されるマンデル酸又はその誘導体に対して、以下の式(II)で表される。
Figure JPOXMLDOC01-appb-I000008
(式中Xは水素原子又はアルカリあるいはアルカリ土類金属を表し、Rはオルト位、メタ位又はパラ位が一個又は複数個置換されていることを意味し、置換基は水素、ハロゲン原子、ヒドロキシル基、炭素数1~3個のアルキル基、アルコキシ基又はチオアルキル基、アミノ基、ニトロ基、メルカプト基、フェニル基、又はフェノキシ基を表す)
 マンデル酸オキシダーゼは、微生物由来のものを用いることができ、例えば、シュードモナス(Pseudomonas)属、キャンディダ(Candida)属、サッカロマイセス(Saccharomyces)属、エンテロコッカス(Enterococcus)属、ロドコッカス(Rhodococcus)属、コリネバクテリウム(Corynebactrium)属、エンテロバクター(Enterobacter)属、ラクトバシラス(Lactobacillus)属、ミクロコッカス(Micrococcus)属、クリプトコッカス(Cryptococcus)属、ハンゼヌラ(Hansenula)属、オガタエア(Ogataea)属、ピキア(Pichia)属、ロドスポリディウム(Rhodosporidium)属、ロドトルラ(Rhodotorula)属、トリコスポロン(Trichosporon)属、ヤマダジマ(Yamadazyma)属、アミコラトプシス(Amycolatopsis)属、アルカリゲネス(Alcaligenes)属、アルスロバクター(Arthrobacter)属、ブレビバクテリウム(Brevibacterium)属、コマモナス(Comamonas)属、ロイコノストック(Leuconostoc)属、ミクロバテリウム(Microbacterium)属、プロテウス(Proteus)属等に属する微生物が挙げられる。好適には、シュードモナス属微生物由来のものが用いられ、さらには、Pseudomonas putida由来のものが用いられ、例えば、Pseudomonas putida ATCC12633由来のものを用いることができる。Pseudomonas putida ATCC12633由来のマンデル酸オキシダーゼについては、Asteriani R.et al.,Biochemistry,2004,43,1883−1890、Isabelle E.Lehoux et al,Biochemistry,1999,38,5836−5848、Amy Y.Tsou et al,Biochemistry,1990,29,9856−9862、Bharati Mitra et al.,Biochemistry,1993,32,12959−12967、Yang Xu et al.,Biochemistry,1999,38(38),12367−12376、Narayanasami Sukumar et al.,Biochemistry,2001,40(33),9870−9878等に開示されている。
 マンデル酸オキシダーゼ活性は、例えば、50mMトリス塩酸バッファーpH7.5、1mM DCPIP(酸化型)、1mMマンデル酸及び酵素を含む反応液を反応させ、DCPIP(還元型)の増加による600nmの吸光度の上昇を測定することにより測定することができる。マンデル酸オキシダーゼの1Uは、1分間に1μmolのマンデル酸をベンゾイルギ酸誘導体へ変換する酵素量とする。
 (R)−マンデル酸デヒドロゲナーゼは、補酵素NADHを用いてベンゾイルギ酸誘導体を立体的に酸化し、マンデル酸又はマンデル酸誘導体のR体のみを生成する(図3)。マンデル酸オキシダーゼは、微生物由来のものを用いることができ、例えば、エンテロコッカス(Enterococcus)属、シュードモナス(Pseudomonas)属、キャンディダ(Candida)属、サッカロマイセス(Saccharomyces)属、ロドコッカス(Rhodococcus)属、コリネバクテリウム(Corynebactrium)属、エンテロバクター(Enterobacter)属、ラクトバシラス(Lactobacillus)属、ミクロコッカス(Micrococcus)属、クリプトコッカス(Cryptococcus)属、ハンゼヌラ(Hansenula)属、オガタエア(Ogataea)属、ピキア(Pichia)属、ロドスポリディウム(Rhodosporidium)属、ロドトルラ(Rhodotorula)属、トリコスポロン(Trichosporon)属、ヤマダジマ(Yamadazyma)属、アミコラトプシス(Amycolatopsis)属、アルカリゲネス(Alcaligenes)属、アルスロバクター(Arthrobacter)属、ブレビバクテリウム(Brevibacterium)属、コマモナス(Comamonas)属、ロイコノストック(Leuconostoc)属、ミクロバテリウム(Microbacterium)属、プロテウス(Proteus)属等に属する微生物が挙げられる。好適には、エンテロコッカス属微生物由来のものが用いられ、さらには、Enterococcus faesalis由来のものが用いられ、例えば、Enterococcus faesalis IAM10071由来のものを用いることができる。Enterococcus faesalis IAM10071由来の(R)−マンデル酸デヒドロゲナーゼについては、特開2004−65049、Yusuke Tamura et al.,Applied and Environmental Microbiology,2002,68(2),947−951、Yusuke Wada,et al.,Biosci.Biotechnol.Biochem.,2008,72(4),1087−1094等に開示されている。
 (R)−マンデル酸デヒドロゲナーゼ活性は、例えば、50mMトリス塩酸バッファーpH7.5、1mM NAD、1mMマンデル酸及び酵素を含む反応液を反応させ、NADHの増加による340nmの吸光度の上昇を測定することにより測定することができる。1Uは、1分間に1μmolのマンデル酸をベンゾイルギ酸誘導体へ変換する酵素量とする。
 補酵素再生系酵素は、NADH、HADPHのような還元型の補酵素を必要とする酵素反応において、酵素反応の進行に伴い酸化型に変換されたNAD、NADP等の補酵素を還元型に変換する能力(補酵素再生能と呼ぶ)を有する酵素をいう。補酵素再生系酵素としては、例えば、グルコースデヒドロゲナーゼ(GDH)(図3)、ヒドロゲナーゼ、ギ酸デヒドロゲナーゼ、アルコールデヒドロゲナーゼ、アルデヒドデヒドロゲナーゼ、グルコース−6−リン酸デヒドロゲナーゼ等を挙げることができる。この中でも、グルコースデヒドロゲナーゼが好ましく用いられる。
 補酵素再生系酵素は微生物由来のものを用いることができ、例えば、バシラス属(Bacillus)、チオバシラス属(Thiobacillus)、シュードモナス属(Pseudomonas)、キャンディダ属(Candida)、クロイッケラ属(Kloeckera)、ピキア属(Pichia)、リポマイセス属(Lipomyces)、モラキセラ属(Moraxella)、ハイホマイクロビウム属(Hyphomicrobium)、パラコッカス属(Paracoccus)、アンシロバクター属(Ancylobacter)等に属する微生物が挙げられる。好適には、バシラス属微生物由来のものが用いられ、さらには、Bacillus megaterium由来のものが用いられ、例えばBacillus megaterium IAM13481由来のグルコースデヒドロゲナーゼを用いることができる。Bacillus megaterium IAM13481由来のグルコースデヒドロゲナーゼについては、S.−H.Baik et al.,Appl.Microbiol.Biotechnol.,2003,61,329−335、Tadashi Ema et al.,Tetrahedron:Asymmetry,2005,16,1075−1078、Tadashi Ema et al.,Tetrahedron,2006,62,6143−6149等に開示されている。
 グルコースデヒドロゲナーゼ活性は、例えば、50mMトリス塩酸バッファーpH7.5、1mM NAD、1mM D−グルコース及び酵素を含む反応液を反応させ、NADHの増加による340nmの吸光度の上昇を測定することにより測定することができる。1Uは、1分間に1μmolのグルコースをグルコン酸へ変換する酵素量とする。補酵素再生能は、反応系にグルコース、スクロースなどの糖、有機酸、又はエタノール、イソプロパノールなどのアルコールを添加することにより増強できる。
 これらの酵素をコードする遺伝子は、上記の微生物から公知の配列情報に基づいて、PCR等の増幅手段を用いる方法、化学的に合成する方法等の公知の方法を利用して調製することができる。
 Pseudomonas putida ATCC12633由来のマンデル酸オキシダーゼをコードするDNAの配列及びアミノ酸配列をそれぞれ配列番号14及び15に、Enterococcus faesalis IAM10071由来の(R)−マンデル酸デヒドロゲナーゼをコードするDNAの配列及びアミノ酸配列をそれぞれ配列番号16及び17に、Bacillus megaterium IAM13481由来のグルコースデヒドロゲナーゼをコードするDNAの配列及びアミノ酸配列をそれぞれ配列番号18及び19に示す。
 また、配列番号14に表される塩基配列からなるDNAと相補的な配列からなるDNAと下記のストリンジェントな条件下でハイブリダイズすることができるDNAであってマンデル酸オキシダーゼ活性を有するタンパク質をコードするDNA、配列番号16に表される塩基配列からなるDNAと相補的な配列からなるDNAと下記のストリンジェントな条件下でハイブリダイズすることができるDNAであって(R)−マンデル酸デヒドロゲナーゼ活性を有するタンパク質をコードするDNA及び配列番号18に表される塩基配列からなるDNAと相補的な配列からなるDNAと下記のストリンジェントな条件下でハイブリダイズすることができるDNAであってグルコースデヒドロゲナーゼ活性を有するタンパク質をコードするDNAも用いることができる。すなわち、DNAを固定したフィルターを用いて、0.7~1.0MのNaCl存在下、68℃でハイブリダイゼーションを行った後、0.1~2倍濃度のSSC溶液(1倍濃度のSSCとは150mM NaCl、15mMクエン酸ナトリウムからなる)を用い、68℃で洗浄することにより同定することができる条件をいう。あるいは、サザンブロッティング法によりニトロセルロース膜上にDNAを転写、固定後、ハイブリダイゼーション緩衝液〔50%フォルムアミド、4×SSC、50mM HEPES(pH7.0)、10×デンハルツ(Denhardt’s)溶液、100μg/mlサケ精子DNA〕中で42℃で一晩反応させることによりハイブリッドを形成することができるDNAである。さらに、BLAST等(例えば、デフォルトすなわち初期設定のパラメータを用いて)を用いて計算したときに、配列番号14に表される塩基配列と少なくとも85%以上、好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上の相同性を有しており、マンデル酸オキシダーゼ活性を有するタンパク質をコードするDNA、配列番号16に表される塩基配列と少なくとも85%以上、好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上の相同性を有しており、(R)−マンデル酸デヒドロゲナーゼ活性を有するタンパク質をコードするDNA及び配列番号18に表される塩基配列と少なくとも85%以上、好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは97%以上の相同性を有しており、グルコースデヒドロゲナーゼ活性を有するタンパク質をコードするDNAも用いることができる。
 本発明においては、上記の3種類の酵素をコードする遺伝子を1種類の微生物に導入し、3種類の酵素をコードする遺伝子を含む組換え微生物を作製する。
 組換え微生物は、上記の酵素をコードする遺伝子を発現ベクターに挿入し、該発現ベクターを用いて微生物を形質転換すればよい。
 3種類の酵素をコードする遺伝子を発現ベクターに挿入する組合せとしては以下の組合せがあり、いずれの組合せも取り得る。
(1) 3種類の酵素をコードする遺伝子をそれぞれ、別々に3つの発現ベクターに挿入する。
(2) 3種類の酵素をコードする遺伝子のうち、2種類の遺伝子を1つの発現ベクターに同時に挿入し(2遺伝子発現ベクター)、残りの1種類の遺伝子を別の発現ベクターに挿入する。この際、1つの発現ベクターに同時に挿入する2種類の遺伝子の組合せとして、(R)−mdh遺伝子とgdh遺伝子、mox遺伝子とgdh遺伝子、及び(R)−mdh遺伝子とmox遺伝子の組合せをとり得る。補酵素を必要とする(R)−MDHと補酵素を再生するGDHの活性がほぼ等しいことが望ましい。そこで、好ましくは(R)−mdh遺伝子と補酵素を再生するgdh遺伝子を1つの発現ベクター中で共発現させるために、1つの発現ベクターに挿入する。
(3) 3種類の酵素をコードする遺伝子を1つの発現ベクターに挿入する(3遺伝子発現ベクター)。
 1つの発現ベクターに複数の遺伝子を挿入する際、別々のプロモーターで発現を制御してもよいし、1つのプロモーターの下流に複数の遺伝子を連結し、1つのプロモーターの制御により複数の遺伝子を発現させてもよい。好ましくは、異なるプロモーターでそれぞれの遺伝子の発現を制御する。この際、複数のマルチクローニングサイトを含む発現ベクターを用いればよい。
 酵素をコードする遺伝子を挿入するための発現ベクターは、宿主中で複製可能なものであれば特に限定されず、例えば、プラスミドDNA、ファージDNA等が挙げられる。
 プラスミドDNAとしては、大腸菌由来のプラスミド(例えばpUC19,pUC18,pUC118,pUC119などのpUCベクター、pET3a~3d,pET9a~9d、pET11a~11d、pETpBR322などのpETベクター、pACYCベクター、pBR325などのpBRベクター等)、枯草菌由来のプラスミド(例えばpUB110,pTP5等)、酵母由来のプラスミド(例えばYEp13,YEp24,YCp50等)などが挙げられ、ファージDNAとしてはλファージ(Charon4A、Charon21A、EMBL3、EMBL4、λgt10、λgt11、λZAP等)が挙げられる。さらに、無毒化したレトロウイルス、アデノウイルス、アデノ随伴ウイルス、ヘルペスウイルス、ワクシニアウイルス、ポックスウイルス、ポリオウイルス、シンビスウイルス、センダイウイルス、SV40、免疫不全症ウイルス(HIV)等のDNAウイルス若しくはRNAウイルス、pCI−neo、pcDNA3、pZeoSV等の動物ウイルス、バキュロウイルスなどの昆虫ウイルスベクターを用いることもできる。
 発現ベクターに酵素をコードする遺伝子を挿入するには、まず、精製されたDNAを適当な制限酵素で切断し、適当なベクターDNAの制限酵素部位又はマルチクローニングサイトに挿入して発現ベクターに連結する方法などが採用される。また、1つの発現ベクターに2種類又は3種類の酵素をコードする遺伝子を同時に挿入して、共発現させる場合、複数のマルチクローニングサイトを含む発現ベクターを用いればよい。複数のマルチクローニングサイトを含む発現ベクターとして、例えば、pACYC Duet−1等が挙げられる。
 酵素をコードする遺伝子は、その遺伝子の機能が発揮されるように発現ベクターに組み込まれることが必要である。そこで、用いる発現ベクターには、プロモーター、上記酵素をコードする遺伝子のほか、所望によりエンハンサーなどのシスエレメント、イントロンの5’末端側に存在するスプライス供与部位及びイントロンの3’末端側に存在するスプライス受容部位からなるスプライシングシグナル、ポリA付加シグナル、選択マーカー、リボソーム結合配列(SD配列)などを含有するものを作動可能に連結することができる。なお、選択マーカーとしては、例えばジヒドロ葉酸還元酵素遺伝子、アンピシリン耐性遺伝子、ネオマイシン耐性遺伝子等が挙げられる。
 形質転換体は、酵素をコードする遺伝子を挿入した組換えベクターを、目的遺伝子が発現し得るように宿主中に導入することにより得ることができる。ここで、宿主としては、本発明のDNAを発現できるものであれば特に限定されるものではない。例えば、大腸菌(Escherichia coli)等のエッシェリヒア属、バチルス・ズブチリス(Bacillus subtilis)等のバチルス属、シュードモナス・プチダ(Pseudomonas putida)等のシュードモナス属に属する細菌が挙げられ、サッカロミセス・セレビシエ(Saccharomyces cerevisiae)、シゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)等の酵母が挙げられ、COS細胞、CHO細胞等の動物細胞が挙げられ、あるいはS121等の昆虫細胞が挙げられる。
 大腸菌等の細菌を宿主とする場合は、本発明の組換えベクターが該細菌中で自律複製可能であると同時に、プロモーター、リボゾーム結合配列、本発明の遺伝子、転写終結配列により構成されていることが好ましい。また、プロモーターを制御する遺伝子が含まれていてもよい。
 大腸菌としては、例えばエッシェリヒア・コリ(Escherichia coli)DH1、BL21などが挙げられ、枯草菌としては、例えばバチルス・ズブチリス(Bacillus subtilis)などが挙げられるが、これらに限定されるものではない。
 プロモーターは、大腸菌等の宿主中で発現できるものであればいずれを用いてもよい。例えばtrpプロモーター、lacプロモーター、Pプロモーター、Pプロモーターなどの、大腸菌やファージに由来するプロモーターが用いられる。tacプロモーターなどのように、人為的に設計改変されたプロモーターを用いてもよい。
 細菌への組換えベクターの導入方法は、細菌にDNAを導入する方法であれば特に限定されるものではない。例えばカルシウムイオンを用いる方法[Cohen,S.N.et al.:Proc.Natl.Acad.Sci.,USA,69:2110(1972)]、エレクトロポレーション法等が挙げられる。
 酵母を宿主とする場合は、例えばサッカロミセス・セレビシエ(Saccharomyces cerevisiae)、シゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)、ピヒア・パストリス(Pichia pastoris)などが用いられる。この場合、プロモーターは酵母中で発現できるものであれば特に限定されず、例えばgal1プロモーター、gal10プロモーター、ヒートショックタンパク質プロモーター、MFα1プロモーター、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADHプロモーター、AOX1プロモーター等を用いることができる。酵母への組換えベクターの導入方法は、酵母にDNAを導入する方法であれば特に限定されず、例えばエレクトロポレーション法[Becker,D.M.et al.:Methods.Enzymol.,194:182(1990)]、スフェロプラスト法[Hinnen,A.et al.:Proc.Natl.Acad.Sci.,USA,75:1929(1978)]、酢酸リチウム法[Itoh,H.:J.Bacteriol.,153:163(1983)]等が挙げられる。
 動物細胞を宿主とする場合は、サル細胞COS−7、Vero、チャイニーズハムスター卵巣細胞(CHO細胞)、マウスL細胞、ラットGH3、ヒトFL細胞などが用いられる。プロモーターとしてSRαプロモーター、SV40プロモーター、LTRプロモーター、CMVプロモーター等が用いられ、また、ヒトサイトメガロウイルスの初期遺伝子プロモーター等を用いてもよい。動物細胞への組換えベクターの導入方法としては、例えばエレクトロポレーション法、リン酸カルシウム法、リポフェクション法等が挙げられる。
 昆虫細胞を宿主とする場合は、S121細胞などが用いられる。昆虫細胞への組換えベクターの導入方法としては、例えばリン酸カルシウム法、リポフェクション法、エレクトロポレーション法などが挙げられる。
 大腸菌等の細菌を宿主として用いる場合、細菌のコドンの使用頻度やGC含量を考慮して、コドンを補正してもよい。
 上記形質転換宿主を導入した酵素をコードする遺伝子が発現可能な条件で培養することにより、宿主内で3種類の酵素が発現する。基質となるマンデル酸又はその誘導体、補酵素再生系酵素の基質及び補酵素を添加することにより、それぞれの酵素の触媒反応が起こり、デラセミ化反応が生じ、マンデル酸及びその誘導体が生成する。この際、酵素を十分発現させてから、マンデル酸又はその誘導体、補酵素再生系酵素の基質及び補酵素を添加してもよいし、酵素をコードする遺伝子を含む宿主を培養する際に、マンデル酸又はその誘導体、補酵素再生系酵素の基質及び補酵素を添加し、酵素の発現と酵素反応を同時に行わせてもよい。
 酵素をコードする遺伝子を含む形質転換体宿主を培養する方法は、宿主の培養に用いられる通常の方法に従って行われる。
 大腸菌や酵母等の微生物を宿主として得られた形質転換体を培養する培地としては、微生物が資化し得る炭素源、窒素源、無機塩類等を含有し、形質転換体の培養を効率的に行うことができる培地であれば、天然培地、合成培地のいずれを用いてもよい。例えば、大腸菌を培養する場合、LB培地、2×YT培地等を用いればよい。
 炭素源としては、グルコース、フラクトース、スクロース、デンプン等の炭水化物、酢酸、プロピオン酸等の有機酸、エタノール、プロパノール等のアルコール類が挙げられる。
 窒素源としては、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム、リン酸アンモニウム等の無機酸若しくは有機酸のアンモニウム塩又はその他の含窒素化合物のほか、ペプトン、肉エキス、コーンスティープリカー等が挙げられる。
 無機物としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム等が挙げられる。
 プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養する場合は、必要に応じてインデューサーを培地に添加してもよい。例えば、Lacプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはイソプロピル−β−D−チオガラクトピラノシド(IPTG)等を、trpプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはインドール酢酸(IAA)等を培地に添加してもよい。
 動物細胞を宿主として得られた形質転換体を培養する培地として、一般に使用されているRPMI1640培地、DMEM培地又はこれらの培地に牛胎児血清等を添加した培地等が用いられる。
 また、3種類の酵素を含む形質転換体宿主の培養物を基質と反応させても、光学活性マンデル酸及びその誘導体を製造することができる。ここで、「培養物」とは、培養上清、あるいは培養細胞又は細胞の破砕物のいずれをも意味する。
 培養、酵素反応は、通常、振盪培養又は通気攪拌培養などの好気的条件下、20~40℃、pH6.0~9.0で数時間~数日間行う。培地のpHの調整は、無機又は有機酸、アルカリ溶液等を用いて行えばよい。培養中は必要に応じてカナマイシン、ペニシリン等の抗生物質を培地に添加してもよい。
 例えば、3種類の酵素を含む微生物を湿重量で0.5g添加し、マンデル酸又はその誘導体を10mM~100mM添加することにより、数時間から24時間培養することにより、すべての基質が反応し、光学純度99%ee以上の光学活性マンデル酸又はその誘導体が収率100%で得ることができる。
 当業者ならば、適宜微生物、基質の添加量を決定し、所望のスケールで光学活性マンデル酸を製造することができる。
 さらに、微生物を固定化してデラセミ化反応を行い、光学活性マンデル酸を製造することができる。
 通常、酵素や微生物あるいは動植物細胞などの生体触媒を適当な不溶性の担体に保持させることを固定化とよび、固定化されたものを固定化生体触媒と称する。生体触媒を固定化する最大の利点は繰り返し使用や連続反応が可能になることである。また、適切に固定化することにより生体触媒の安定性を高めることも可能である。さらに、酵素固定化により以下のような様々な効果が期待できる。
(i) 反応最適温度や熱安定性の向上
(ii) 基質親和性(K値)や最大反応速度(Vmax値)の変化
(iii) 反応最適pH域拡大やpH安定性向上
(iv) 有機溶媒中での安定性向上や活性発現
(v) 基質特異性、反応特異性、反応の位置特異性、立体特異性の変化
(vi) 補因子要求性やアロステリック制御の変化
(vii) タンパク質分解酵素(プロテアーゼ)による分解に対する抵抗性の向上
 特に本発明は3種類の酵素を同時に導入した形質転換微生物を用いており、効率的に産生物を得ることができる。上記(ii)の具体的な効果に関して、数時間から22時間の培養で、例えば、基質濃度50mMの場合は3時間、100mMの場合は18時間、基質濃度385mMの場合は22時間で反応が完了し、光学純度99%ee以上の光学活性マンデル酸又はその誘導体が収率100%で得ることができる。また、385mMという高濃度での反応が可能であり、収率:99%、光学純度:100%を実現することができる。従来の1種類の微生物を用いて光学活性マンデル酸を製造する方法(特開平6−7196号公報)においては、40時間という長時間の培養を必要とし、基質濃度も本発明ほど高くできなかった。また、光学純度100%を実現することもできなかった。本発明は、従来の微生物を用いる方法に対してより効率的に光学活性マンデル酸を製造することを可能にする。
 微生物の固定化は、増殖を伴わない静止状態の微生物を固定化する場合と、生きた状態で増殖を示す微生物を固定化する場合に大別される。それぞれ、固定化静止菌体(immobilized resting cell)、固定化増殖菌体(immobilized growing cell)とよぶ。固定化静止菌体は、ある特定の菌体内酵素を利用する場合に適用される。微生物を生体触媒素子とするバイオリアクターの工業化では、固定化静止菌体を利用することが多い。この理由は、酵素を使用する場合は、菌体を破砕して取り出すという繁雑な操作が必要であるだけではなく、菌体内から取り出すことにより酵素の安定性が低下するためである。静止菌体の固定化には、担体結合法と包括法が用いられている。担体結合法では、担体に直接、あるいはプレポリマーやポリマーを介して保持させる方法が提案されている。包括法では、高分子ゲル中に保持する方法が用いられる。
 製造した光学活性マンデル酸又はその誘導体は、一般的な分離精製方法により反応液から単離することができる。例えば、反応液から遠心分離によって宿主菌体などの不溶性物質を除去し、反応液のpHを酸性に調整し、酢酸エチル等の溶媒を用いて抽出し、脱水し、減圧乾固又は再結晶を行うことにより単離精製することができる。
 本発明を以下の実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
酵素
 以下の実施例で用いた酵素を表1に示す。
Figure JPOXMLDOC01-appb-T000009
プライマー
 以下の実施例でPCRに用いたプライマーの塩基配列を表2に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-I000011
大腸菌の形質転換
 また、以下の実施例において、大腸菌BL21−Gold(DE3)の形質転換は、ヒートショック法により行い、大腸菌JM109の形質転換は、エレクトロポレーション法により行った。2種類の発現用プラスミドを用いる場合は、1種類の発現用プラスミドを用いて形質転換した大腸菌のエレクトロポレーション用コンピテントセルを作製し、もう1種類の発現用プラスミドを用いてさらに形質転換した。
酵素活性の測定
 さらに、MOX、(R)−MDH及びGDHの酵素活性は、以下の方法により測定した。
MOXの活性測定
 1Uを1分間に1μmolのマンデル酸又はo−クロロマンデル酸をベンゾイルギ酸誘導体へ変換する酵素量と定義した。光路長1cmセルに、1mM(RS)−マンデル酸又はo−クロロマンデル酸、1mM DCPIP(酸化型)、可溶化画分のサンプル、50mMトリス塩酸バッファー(pH7.5)及び蒸留水を、全量が1mlとなるよう混合し、DCPIP(酸化型)が吸収を有する600nmの吸光度の減少を測定した(図4)。
(R)−MDHの活性測定
 1Uを1分間に1μmolのマンデル酸又はo−クロロマンデル酸をベンゾイルギ酸誘導体へ変換する酵素量と定義した。光路長1cmセルに、1mM(RS)−マンデル酸又はo−クロロマンデル酸、1mM NAD、可溶性画分のサンプル、50mMトリス塩酸バッファー(pH7.5)及び蒸留水を、全量が1mlとなるよう混合し、NADHが吸収を有する340nmの吸光度の増加を測定した(図5)。
GDHの活性測定
 1Uを1分間に1μmolのグルコースをグルコン酸へ変換する酵素量と定義した。光路長1cmセルに、1mM D−グルコース、1mM NAD、可溶性画分のサンプル、50mMトリス塩酸バッファー(pH7.5)及び蒸留水を、全量が1mlとなるよう混合し、NADHが吸収を有する340nmの吸光度の増加を測定した(図6)。
 以下の発現検討においては、培養液を8,000rpmで10分間遠心分離することにより集菌し、上清を除いた後の湿菌体を50mMトリス塩酸緩衝液(pH7.5)に懸濁し8,000rpmで10分間遠心分離することにより洗浄した。再び上清を除き、湿菌体が10%となるように50mMトリス塩酸緩衝液(pH7.5)に懸濁し、5分間×2回超音波破砕した.そして,破砕液を12,000rpmで30分間遠心分離することにより、上清として可溶性画分(CFE:無細胞抽出液)を、沈殿として不溶性画分を得た。これらのサンプルと破砕液をSDS−PAGEに用いた。また、可溶性画分のサンプルを(R)−MDH及びGDHの酵素活性測定に用いた。さらに、不溶性画分として得られた沈殿を50mMトリス塩酸緩衝液(pH7.5)に懸濁し12,000rpmで10分間遠心分離することにより洗浄した。上清を除き、不溶性画分として得られた沈殿が10%となるように可溶化バッファーに懸濁することにより可溶化した。そして、懸濁液を12,000rpmで30分間遠心分離することにより不溶物を除き、可溶化画分を得た。このサンプルをMOXの酵素活性測定に用いた。
Hereinafter, the present invention will be described in detail.
In the present invention, the object of the deracemization reaction is mandelic acid or a derivative thereof. Mandelic acid derivatives include compounds of the following formula I:
Figure JPOXMLDOC01-appb-I000005
(In the formula, X represents a hydrogen atom or an alkali or alkaline earth metal, R means that one or a plurality of ortho, meta or para positions are substituted, and the substituent is a hydrogen atom, a halogen atom, A hydroxyl group, an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a thioalkyl group, an amino group, a nitro group, a mercapto group, a phenyl group, or a phenoxy group)
In the compound represented by the following formula II, a compound in which R at the ortho position is H is mandelic acid, and a compound in which R at the ortho position is Cl is 0-chloromandelic acid.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-I000007
The “optically active mandelic acid or a derivative thereof” in the present invention refers to a mandelic acid derivative in which a certain optical isomer is contained more than another optical isomer. In the present invention, a preferable optically active mandelic acid derivative has an optical purity of 50% ee or higher, preferably 80% ee or higher, more preferably 90% ee or higher, still more preferably 95% ee or higher, particularly preferably 97% ee or higher. (Enantiomericexcess; ee). The optical purity of the optically active mandelic acid or its derivative can be confirmed using, for example, an optical resolution column. The “optical isomer” of the present invention may be generally referred to as “optically active form” and “enantiomer”.
In the present invention, genes encoding three types of enzymes involved in deracemization of mandelic acid or its derivatives are introduced into microorganisms, and the three types of enzymes are co-expressed.
The three types of enzymes used are mandelate oxidase (MOX), (R) -mandelate dehydrogenase, and a coenzyme regeneration system enzyme.
Mandelic acid oxidase stereoselectively oxidizes racemic mandelic acid or its derivative S form to produce a benzoylformic acid derivative (FIG. 2).
The benzoylformic acid derivative is represented by the following formula (II) with respect to mandelic acid represented by the above formula (I) or a derivative thereof.
Figure JPOXMLDOC01-appb-I000008
(Wherein X represents a hydrogen atom or an alkali or alkaline earth metal, R means that one or more of ortho, meta or para positions are substituted, and the substituent is hydrogen, halogen atom, hydroxyl, Group, an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a thioalkyl group, an amino group, a nitro group, a mercapto group, a phenyl group, or a phenoxy group)
Mandelic acid oxidase may be derived from microorganisms such as Pseudomonas genus, Candida genus, Saccharomyces genus, Enterococcus genus, Rhodococcus genus, Corynebacterium, Cornebactrium, Enterobacter, Lactobacillus, Micrococcus, Cryptococcus, Hansenula, i, Ogataa, Ogataa Rhodosporidium (Rhodosporid um), Rhodotorula genus, Trichosporon genus, Yamadazyma genus, Amycolatopsis genus, Alcaligenes genus, Althrobacter genus Examples include microorganisms belonging to the genus, the genus Comamonas, the genus Leuconostoc, the genus Microbacterium, the genus Proteus and the like. Preferably, those derived from Pseudomonas microorganisms are used, and those derived from Pseudomonas putida are used. For example, those derived from Pseudomonas putida ATCC 12633 can be used. For the mandelate oxidase derived from Pseudomonas putida ATCC12633, see Asterian R. et al. et al. , Biochemistry, 2004, 43, 183-1890, Isabelle E. et al. Lehoux et al, Biochemistry, 1999, 38, 5836-5848, Amy Y. et al. Tsuou et al, Biochemistry, 1990, 29, 9856-9862, Bharati Mitra et al. Biochemistry, 1993, 32, 12959-12967, Yang Xu et al. Biochemistry, 1999, 38 (38), 12367-12376, Narayanasami Sukumar et al. Biochemistry, 2001, 40 (33), 9870-9878, and the like.
Mandelic acid oxidase activity is caused by, for example, reacting a reaction solution containing 50 mM Tris-HCl buffer pH 7.5, 1 mM DCPIP (oxidized type), 1 mM mandelic acid and enzyme, and increasing the absorbance at 600 nm due to an increase in DCPIP (reduced type). It can be measured by measuring. 1 U of mandelic acid oxidase is the amount of enzyme that converts 1 μmol of mandelic acid into a benzoylformic acid derivative per minute.
(R) -Mandelic acid dehydrogenase sterically oxidizes a benzoylformic acid derivative using the coenzyme NADH to produce only the R form of mandelic acid or a mandelic acid derivative (FIG. 3). Mandelic acid oxidase may be derived from microorganisms, for example, Enterococcus, Pseudomonas, Candida, Saccharomyces, Rhodococcus, Cornebactrium, Enterobacter, Lactobacillus, Micrococcus, Cryptococcus, Hansenula, i, Ogataa, Ogataa Rhodosporidium (Rhodosporid um), Rhodotorula genus, Trichosporon genus, Yamadazyma genus, Amycolatopsis genus, Alcaligenes genus, Althrobacter genus Examples include microorganisms belonging to the genus, the genus Comamonas, the genus Leuconostoc, the genus Microbacterium, the genus Proteus and the like. Preferably, those derived from microorganisms of the genus Enterococcus are used, and those derived from Enterococcus faesalis are used. For example, those derived from Enterococcus faesalis IAM10071 can be used. Regarding (R) -mandelate dehydrogenase derived from Enterococcus faesalis IAM10071, JP 2004-65049, Yusuke Tamura et al. , Applied and Environmental Microbiology, 2002, 68 (2), 947-951, Yusuke Wada, et al. Biosci. Biotechnol. Biochem. 2008, 72 (4), 1087-1094, and the like.
(R) -Mandelate dehydrogenase activity is, for example, 50 mM Tris-HCl buffer pH 7.5, 1 mM NAD + It can be measured by reacting a reaction solution containing 1 mM mandelic acid and an enzyme and measuring an increase in absorbance at 340 nm due to an increase in NADH. 1 U is defined as the amount of enzyme that converts 1 μmol of mandelic acid into a benzoylformic acid derivative per minute.
A coenzyme regeneration system enzyme is an NAD that is converted to an oxidized form as the enzyme reaction progresses in an enzyme reaction that requires a reduced coenzyme such as NADH or HADPH. + An enzyme having the ability to convert a coenzyme such as NADP into a reduced form (referred to as coenzyme regeneration ability). Examples of the coenzyme regeneration system enzyme include glucose dehydrogenase (GDH) (FIG. 3), hydrogenase, formate dehydrogenase, alcohol dehydrogenase, aldehyde dehydrogenase, glucose-6-phosphate dehydrogenase, and the like. Among these, glucose dehydrogenase is preferably used.
As the coenzyme regeneration system enzyme, those derived from microorganisms can be used, for example, Bacillus genus, Thiobacillus genus, Pseudomonas genus, Candida genus, Kloeckera genus, Pichia. Examples include microorganisms belonging to the genus (Pichia), the genus Lipomyces, the genus Moraxella, the genus Hyphomicrobium, the genus Paracoccus, the Ancylobacter, and the like. Preferably, those derived from microorganisms belonging to the genus Bacillus are used, and those derived from Bacillus megaterium are used. For example, glucose dehydrogenase derived from Bacillus megaterium IAM13481 can be used. For glucose dehydrogenase derived from Bacillus megaterium IAM13481, see S. et al. -H. Baik et al. , Appl. Microbiol. Biotechnol. , 2003, 61, 329-335, Tadashi Ema et al. Tetrahedron: Asymmetry, 2005, 16, 1075-1078, Tadashi Ema et al. , Tetrahedron, 2006, 62, 6143-6149, and the like.
Glucose dehydrogenase activity is, for example, 50 mM Tris-HCl buffer pH 7.5, 1 mM NAD + It can be measured by reacting a reaction solution containing 1 mM D-glucose and an enzyme and measuring an increase in absorbance at 340 nm due to an increase in NADH. 1 U is defined as the amount of enzyme that converts 1 μmol of glucose into gluconic acid per minute. The coenzyme regeneration ability can be enhanced by adding sugars such as glucose and sucrose, organic acids, or alcohols such as ethanol and isopropanol to the reaction system.
Genes encoding these enzymes can be prepared based on known sequence information from the above-mentioned microorganisms using known methods such as a method using amplification means such as PCR, a method of chemically synthesizing, and the like. .
The sequence and amino acid sequence of DNA encoding mandelate oxidase derived from Pseudomonas putida ATCC12633 are respectively represented by SEQ ID NOs: 14 and 15, and the sequence and amino acid sequence of DNA encoding (R) -mandelate dehydrogenase derived from Enterococcus faesalis IAM10071 are sequenced, respectively. Nos. 16 and 17 show the DNA sequence and amino acid sequence encoding glucose dehydrogenase derived from Bacillus megaterium IAM13481, respectively, in SEQ ID Nos. 18 and 19, respectively.
In addition, it encodes a protein having a mandelate oxidase activity, which is capable of hybridizing with a DNA comprising a sequence complementary to the DNA comprising the nucleotide sequence represented by SEQ ID NO: 14 under the following stringent conditions: (R) -mandelate dehydrogenase activity which is capable of hybridizing with DNA comprising a sequence complementary to the DNA comprising the base sequence represented by SEQ ID NO: 16 under the following stringent conditions Glucose dehydrogenase activity, which is capable of hybridizing under the following stringent conditions with a DNA encoding a protein having a DNA and a DNA complementary to the DNA consisting of the base sequence represented by SEQ ID NO: 18 DNA encoding a protein having It is possible to have. Specifically, hybridization was performed at 68 ° C. in the presence of 0.7 to 1.0 M NaCl using a filter on which DNA was immobilized, and then a 0.1 to 2 fold concentration of SSC solution (with 1 fold concentration of SSC) was obtained. Is a condition that can be identified by washing at 68 ° C. using 150 mM NaCl and 15 mM sodium citrate). Alternatively, after transferring and immobilizing DNA on a nitrocellulose membrane by Southern blotting, hybridization buffer [50% formamide, 4 × SSC, 50 mM HEPES (pH 7.0), 10 × Denhardt's solution, 100 μg / ml salmon sperm DNA], which can form a hybrid by reacting overnight at 42 ° C. Furthermore, when calculated using BLAST or the like (for example, using default or initial setting parameters), the base sequence represented by SEQ ID NO: 14 is at least 85% or more, preferably 90% or more, more preferably 95 At least 85%, preferably 90% or more of the DNA encoding the protein having mandelate oxidase activity and the base sequence represented by SEQ ID NO: 16. More preferably 95% or more, particularly preferably 97% or more of the homologous DNA encoding a protein having (R) -mandelate dehydrogenase activity and at least the base sequence represented by SEQ ID NO: 18 85% or more, preferably 90% or more, more preferably 95% or more, particularly preferably 97 Has a higher homology can be used also DNA encoding a protein having a glucose dehydrogenase activity.
In the present invention, the genes encoding the above three types of enzymes are introduced into one type of microorganism to produce a recombinant microorganism containing the genes encoding the three types of enzymes.
A recombinant microorganism may be obtained by inserting a gene encoding the above enzyme into an expression vector and transforming the microorganism using the expression vector.
Combinations for inserting genes encoding three types of enzymes into expression vectors include the following combinations, and any combination can be taken.
(1) Each of the genes encoding the three types of enzymes is separately inserted into three expression vectors.
(2) Of the genes encoding the three types of enzymes, two types of genes are simultaneously inserted into one expression vector (two gene expression vectors), and the remaining one type of gene is inserted into another expression vector. In this case, the combination of two types of genes inserted simultaneously into one expression vector can be a combination of (R) -mdh gene and gdh gene, mox gene and gdh gene, and (R) -mdh gene and mox gene. . It is desirable that the activity of (R) -MDH, which requires a coenzyme, and GDH to regenerate the coenzyme are approximately equal. Therefore, preferably, the (R) -mdh gene and the gdh gene that regenerates the coenzyme are co-expressed in one expression vector, and inserted into one expression vector.
(3) A gene encoding three kinds of enzymes is inserted into one expression vector (three gene expression vector).
When inserting a plurality of genes into one expression vector, the expression may be controlled by separate promoters, or a plurality of genes may be linked downstream of one promoter and a plurality of genes may be expressed by controlling one promoter. You may let them. Preferably, the expression of each gene is controlled by different promoters. At this time, an expression vector containing a plurality of multiple cloning sites may be used.
The expression vector for inserting the gene encoding the enzyme is not particularly limited as long as it can replicate in the host, and examples thereof include plasmid DNA and phage DNA.
Plasmid DNA includes plasmids derived from E. coli (for example, pUC vectors such as pUC19, pUC18, pUC118, and pUC119, pET vectors such as pET3a to 3d, pET9a to 9d, pET11a to 11d, and pETpBR322, pBR vectors such as pACYC vector and pBR325) ), Plasmids derived from Bacillus subtilis (eg, pUB110, pTP5, etc.), plasmids derived from yeast (eg, YEp13, YEp24, YCp50, etc.), and the like. Phage DNA includes λ phage (Charon4A, Charon21A, EMBL3, EMBL4, λgt10, λgt11, λZAP, etc.). Furthermore, DNA viruses or RNA viruses such as detoxified retroviruses, adenoviruses, adeno-associated viruses, herpes viruses, vaccinia viruses, poxviruses, polioviruses, synbisviruses, Sendai viruses, SV40, immunodeficiency viruses (HIV), etc. Insect virus vectors such as animal viruses such as pCI-neo, pcDNA3, and pZeoSV, and baculovirus can also be used.
To insert an enzyme-encoding gene into an expression vector, first, the purified DNA is cleaved with an appropriate restriction enzyme, inserted into a restriction enzyme site or a multicloning site of an appropriate vector DNA, and ligated to the expression vector. Method is adopted. In the case where genes encoding two or three enzymes are simultaneously inserted into one expression vector for co-expression, an expression vector containing a plurality of multiple cloning sites may be used. Examples of the expression vector containing a plurality of multicloning sites include pACYC Duet-1.
A gene encoding an enzyme needs to be incorporated into an expression vector so that the function of the gene is exhibited. Therefore, the expression vector to be used includes a promoter, a gene encoding the above enzyme, a cis element such as an enhancer, a splice donor site present on the 5 ′ end side of the intron, and a splice present on the 3 ′ end side of the intron. Those containing a splicing signal consisting of a receptor site, a poly A addition signal, a selection marker, a ribosome binding sequence (SD sequence) and the like can be operably linked. Examples of the selection marker include dihydrofolate reductase gene, ampicillin resistance gene, neomycin resistance gene and the like.
A transformant can be obtained by introducing a recombinant vector into which a gene encoding an enzyme is inserted into a host so that the target gene can be expressed. Here, the host is not particularly limited as long as it can express the DNA of the present invention. Examples include bacteria belonging to the genus Escherichia such as Escherichia coli, the genus Bacillus such as Bacillus subtilis, and the genus Pseudomonas such as Pseudomonas putida, and Saccharomyces c. Examples thereof include yeast such as Schizosaccharomyces pombe, animal cells such as COS cells and CHO cells, and insect cells such as S121.
When a bacterium such as Escherichia coli is used as a host, the recombinant vector of the present invention is capable of autonomous replication in the bacterium, and at the same time is composed of a promoter, a ribosome binding sequence, a gene of the present invention, and a transcription termination sequence. Is preferred. Moreover, the gene which controls a promoter may be contained.
Examples of Escherichia coli include Escherichia coli DH1 and BL21. Examples of Bacillus subtilis include, but are not limited to, Bacillus subtilis.
Any promoter can be used as long as it can be expressed in a host such as Escherichia coli. For example trp promoter, lac promoter, P L Promoter, P R A promoter derived from E. coli or phage, such as a promoter, is used. An artificially designed and modified promoter such as a tac promoter may be used.
The method for introducing a recombinant vector into bacteria is not particularly limited as long as it is a method for introducing DNA into bacteria. For example, a method using calcium ions [Cohen, S .; N. et al. : Proc. Natl. Acad. Sci. USA, 69: 2110 (1972)], electroporation method and the like.
When yeast is used as a host, for example, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia pastoris and the like are used. In this case, the promoter is not particularly limited as long as it can be expressed in yeast. For example, gal1 promoter, gal10 promoter, heat shock protein promoter, MFα1 promoter, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, AOX1 promoter and the like. Can be used. The method for introducing a recombinant vector into yeast is not particularly limited as long as it is a method for introducing DNA into yeast. For example, the electroporation method [Becker, D. et al. M.M. et al. : Methods. Enzymol. 194: 182 (1990)], spheroplast method [Hinnen, A. et al. et al. : Proc. Natl. Acad. Sci. USA, 75, 1929 (1978)], lithium acetate method [Itoh, H. et al. : J. Bacteriol. , 153: 163 (1983)].
When animal cells are used as hosts, monkey cells COS-7, Vero, Chinese hamster ovary cells (CHO cells), mouse L cells, rat GH3, human FL cells and the like are used. As the promoter, SRα promoter, SV40 promoter, LTR promoter, CMV promoter and the like may be used, and human cytomegalovirus early gene promoter and the like may be used. Examples of methods for introducing a recombinant vector into animal cells include an electroporation method, a calcium phosphate method, and a lipofection method.
When insect cells are used as hosts, S121 cells and the like are used. Examples of the method for introducing a recombinant vector into insect cells include the calcium phosphate method, lipofection method, electroporation method and the like.
When bacteria such as E. coli are used as a host, the codons may be corrected in consideration of the codon usage frequency and GC content of the bacteria.
By culturing under conditions that allow expression of the gene encoding the enzyme into which the transformed host has been introduced, three types of enzymes are expressed in the host. By adding mandelic acid or a derivative thereof as a substrate, a substrate of a coenzyme regeneration system enzyme and a coenzyme, a catalytic reaction of each enzyme occurs, a deracemization reaction occurs, and mandelic acid and a derivative thereof are generated. At this time, after sufficient expression of the enzyme, mandelic acid or a derivative thereof, a substrate of a coenzyme regeneration system enzyme and a coenzyme may be added, or when culturing a host containing a gene encoding the enzyme, mandel An acid or a derivative thereof, a substrate of a coenzyme regeneration system enzyme, and a coenzyme may be added to cause the enzyme expression and the enzyme reaction to be performed simultaneously.
A method for culturing a transformant host containing a gene encoding an enzyme is performed according to a usual method used for culturing a host.
As a medium for culturing transformants obtained using microorganisms such as E. coli and yeast as a host, the medium contains a carbon source, nitrogen source, inorganic salts, etc. that can be assimilated by the microorganisms, and the transformants are efficiently cultured. As long as the medium can be used, either a natural medium or a synthetic medium may be used. For example, when culturing Escherichia coli, LB medium, 2 × YT medium or the like may be used.
Examples of the carbon source include carbohydrates such as glucose, fructose, sucrose, and starch, organic acids such as acetic acid and propionic acid, and alcohols such as ethanol and propanol.
Examples of the nitrogen source include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium salts of organic acids such as ammonium phosphate or other nitrogen-containing compounds, peptone, meat extract, corn steep liquor, and the like.
Examples of the inorganic substance include monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, and calcium carbonate.
When culturing a microorganism transformed with an expression vector using an inducible promoter as a promoter, an inducer may be added to the medium as necessary. For example, when cultivating a microorganism transformed with an expression vector using the Lac promoter, a microorganism transformed with isopropyl-β-D-thiogalactopyranoside (IPTG) or the like with an expression vector using the trp promoter is cultured. Sometimes indole acetic acid (IAA) or the like may be added to the medium.
As a medium for culturing a transformant obtained using animal cells as a host, a generally used RPMI 1640 medium, DMEM medium, a medium obtained by adding fetal calf serum or the like to these mediums, or the like is used.
Also, optically active mandelic acid and its derivatives can be produced by reacting a culture of a transformant host containing three kinds of enzymes with a substrate. Here, the “culture” means either a culture supernatant, a cultured cell or a disrupted cell.
Cultivation and enzyme reaction are usually carried out at a temperature of 20 to 40 ° C. and a pH of 6.0 to 9.0 for several hours to several days under aerobic conditions such as shaking culture or aeration stirring culture. The pH of the medium may be adjusted using an inorganic or organic acid, an alkaline solution, or the like. During culture, antibiotics such as kanamycin and penicillin may be added to the medium as necessary.
For example, by adding 0.5 g of a microorganism containing three kinds of enzymes by wet weight and adding 10 mM to 100 mM of mandelic acid or a derivative thereof, all the substrates react by culturing for several to 24 hours, An optically active mandelic acid or derivative thereof having an optical purity of 99% ee or higher can be obtained in a yield of 100%.
A person skilled in the art can determine the addition amount of the microorganism and the substrate as appropriate, and produce optically active mandelic acid at a desired scale.
Furthermore, an optically active mandelic acid can be produced by immobilizing microorganisms and performing a deracemization reaction.
Usually, holding a biocatalyst such as an enzyme, a microorganism, or an animal or plant cell on a suitable insoluble carrier is called immobilization, and the immobilized one is called an immobilized biocatalyst. The greatest advantage of immobilizing the biocatalyst is that it can be used repeatedly or continuously. It is also possible to enhance the stability of the biocatalyst by appropriate immobilization. Furthermore, the following various effects can be expected by enzyme immobilization.
(I) Improvement of optimum reaction temperature and thermal stability
(Ii) Substrate affinity (K m Value) and maximum reaction rate (V max Value)
(Iii) Expansion of optimal pH range and improved pH stability
(Iv) Stability improvement and activity expression in organic solvents
(V) Changes in substrate specificity, reaction specificity, reaction position specificity, stereospecificity
(Vi) Changes in cofactor requirement and allosteric regulation
(Vii) Improved resistance to degradation by proteolytic enzymes (proteases)
In particular, the present invention uses a transformed microorganism into which three kinds of enzymes have been introduced at the same time, so that a product can be obtained efficiently. Regarding the specific effect of (ii), the reaction is completed in 3 to 22 hours of culture, for example, 3 hours when the substrate concentration is 50 mM, 18 hours when the substrate concentration is 100 mM, and 22 hours when the substrate concentration is 385 mM. In addition, an optically active mandelic acid or derivative thereof having an optical purity of 99% ee or higher can be obtained in a yield of 100%. Moreover, the reaction at a high concentration of 385 mM is possible, and a yield: 99% and an optical purity: 100% can be realized. In the conventional method for producing optically active mandelic acid using one kind of microorganism (Japanese Patent Laid-Open No. 6-7196), a long culture period of 40 hours is required, and the substrate concentration cannot be as high as that of the present invention. . Also, it was impossible to achieve an optical purity of 100%. The present invention makes it possible to produce optically active mandelic acid more efficiently than conventional methods using microorganisms.
The immobilization of microorganisms is roughly classified into a case where a stationary microorganism without growth is immobilized, and a case where a microorganism showing proliferation in a living state is immobilized. They are referred to as an immobilized resting cell and an immobilized growing cell, respectively. Immobilized static cells are applied when a specific intracellular enzyme is used. In the industrialization of bioreactors that use microorganisms as biocatalytic elements, immobilized stationary cells are often used. This is because, when an enzyme is used, not only a complicated operation of crushing and removing the microbial cells is required, but also the stability of the enzyme is reduced by taking it out from the microbial cells. The carrier binding method and the entrapment method are used for immobilization of stationary cells. In the carrier binding method, a method of holding the carrier directly or via a prepolymer or polymer has been proposed. In the inclusion method, a method of holding in a polymer gel is used.
The produced optically active mandelic acid or derivative thereof can be isolated from the reaction solution by a general separation and purification method. For example, insoluble substances such as host cells are removed from the reaction solution by centrifugation, the pH of the reaction solution is adjusted to acidity, extracted with a solvent such as ethyl acetate, dehydrated, vacuum-dried or recrystallized. It can be isolated and purified by performing.
The present invention will be specifically described by the following examples, but the present invention is not limited to these examples.
enzyme
The enzymes used in the following examples are shown in Table 1.
Figure JPOXMLDOC01-appb-T000009
Primer
Table 2 shows the base sequences of primers used for PCR in the following examples.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-I000011
E. coli transformation
In the following examples, E. coli BL21-Gold (DE3) was transformed by the heat shock method, and E. coli JM109 was transformed by the electroporation method. When using two types of expression plasmids, a competent cell for electroporation of E. coli transformed with one type of expression plasmid was prepared, and further transformed with another type of expression plasmid. .
Measurement of enzyme activity
Furthermore, the enzyme activity of MOX, (R) -MDH and GDH was measured by the following method.
MOX activity measurement
1 U was defined as the amount of enzyme that converted 1 μmol of mandelic acid or o-chloromandelic acid into a benzoylformic acid derivative per minute. In a 1 cm cell with an optical path length, 1 mM (RS) -mandelic acid or o-chloromandelic acid, 1 mM DCPIP (oxidized form), a sample of the solubilized fraction, 50 mM Tris-HCl buffer (pH 7.5) and distilled water, The mixture was mixed to 1 ml, and the decrease in absorbance at 600 nm where DCPIP (oxidized type) had absorption was measured (FIG. 4).
(R) -MDH activity measurement
1 U was defined as the amount of enzyme that converted 1 μmol of mandelic acid or o-chloromandelic acid into a benzoylformic acid derivative per minute. 1 mM (RS) -mandelic acid or o-chloromandelic acid, 1 mM NAD in a 1 cm optical path length cell + A sample of the soluble fraction, 50 mM Tris-HCl buffer (pH 7.5) and distilled water were mixed so that the total amount was 1 ml, and the increase in absorbance at 340 nm where NADH had absorption was measured (FIG. 5).
GDH activity measurement
1 U was defined as the amount of enzyme that converts 1 μmol of glucose into gluconic acid per minute. 1mM D-glucose, 1mM NAD in 1cm cell + The sample of the soluble fraction, 50 mM Tris-HCl buffer (pH 7.5) and distilled water were mixed so that the total amount became 1 ml, and the increase in absorbance at 340 nm where NADH had absorption was measured (FIG. 6).
In the following expression study, the culture solution was collected by centrifuging at 8,000 rpm for 10 minutes, and the wet cells after removing the supernatant were suspended in 50 mM Tris-HCl buffer (pH 7.5). Washed by centrifuging at 1,000 rpm for 10 minutes. The supernatant was again removed, suspended in 50 mM Tris-HCl buffer (pH 7.5) so that the wet cell mass was 10%, and sonicated twice for 5 minutes. Then, the crushed liquid was centrifuged at 12,000 rpm for 30 minutes to obtain a soluble fraction (CFE: cell-free extract) as a supernatant and an insoluble fraction as a precipitate. These samples and the crushing liquid were used for SDS-PAGE. Moreover, the sample of the soluble fraction was used for the enzyme activity measurement of (R) -MDH and GDH. Further, the precipitate obtained as an insoluble fraction was suspended in 50 mM Tris-HCl buffer (pH 7.5) and washed by centrifugation at 12,000 rpm for 10 minutes. The supernatant was removed, and the precipitate obtained as an insoluble fraction was solubilized by suspending in a solubilization buffer so that the precipitate was 10%. And the insoluble matter was removed by centrifuging the suspension at 12,000 rpm for 30 minutes to obtain a solubilized fraction. This sample was used for measuring the enzyme activity of MOX.
 酸化工場の構築
 本実施例において酸化工場とは、MOXの遺伝子を導入し発現させた大腸菌を指す。デラセミ化工場構築の1段階目として酸化工場を構築し、マンデル酸のS選択的酸化反応を試みた(図2)。
(1) MOXの発現
 Pseudomonas putida ATCC12633由来mox遺伝子をベクターpUC19のEcoR Iサイトへクローニングし、MOXの発現用プラスミドであるpASA1(図7)を構築した。
 このpASA1を用いて大腸菌JM109を形質転換し、IPTGを添加しての培養によりMOXの発現を誘導した。また、コントロールとしてベクターpUC19を用いて同様の実験を行った。培養終了後、タンパク質の発現をSDS−PAGEにより確認し、マンデル酸に対するMOXの活性を上記方法により測定した。このとき、MOXは不溶性の膜タンパク質であるため、活性測定には不溶性画分を界面活性剤により可溶化した画分を用いた。その結果、pASA1により約40kDaのMOXが不溶性画分に発現し(図8)、酵素活性は湿菌体1gあたり24U(コントロール:0U)であった。このようにして、MOXの発現に成功した。以下、酸化工場とは、上記の条件でMOXの発現を誘導した大腸菌を指すものとする。
(2) 酸化工場による反応
 次に、酸化工場を用いて、10mM(RS)−マンデル酸、湿菌体(酸化工場)0.5g、50mMトリス塩酸緩衝液(pH7.5)、蒸留水を、全量が50mlとなるよう混合して500−ml三角フラスコに入れ、30℃、180rpmで旋回し、マンデル酸のS選択的酸化反応を行った。そして、TLCにより反応の進行を分析した。このとき、基質であるマンデル酸と生成物であるベンゾイルギ酸は分離が困難なため、これらの分離を容易にするためにメチルエステル化したサンプルを分析に用いた。その結果、反応開始17時間後には、酸化工場によりいくらかのマンデル酸がベンゾイルギ酸へ変換されたことが示唆された(図9)。そこで、PLCによりベンゾイルギ酸メチルとマンデル酸メチルを分取し、それぞれの構造をH−NMRにより、マンデル酸メチルの光学純度をHPLCにより測定した。その結果、生成物はベンゾイルギ酸であり、残存基質は100%eeの(R)−マンデル酸であることがわかった。このようにして、酸化工場により目的のマンデル酸のS選択的酸化反応を進行させることに成功した。
Construction of Oxidation Factory In this example, the oxidation factory refers to E. coli into which the MOX gene has been introduced and expressed. An oxidation factory was constructed as the first stage of deracemization factory construction, and an S selective oxidation reaction of mandelic acid was attempted (FIG. 2).
(1) Expression of MOX The Pseudomonas putida ATCC12633-derived mox gene was cloned into the EcoR I site of the vector pUC19 to construct pASA1 (FIG. 7), a plasmid for MOX expression.
Escherichia coli JM109 was transformed with this pASA1, and the expression of MOX was induced by culturing with the addition of IPTG. Moreover, the same experiment was conducted using the vector pUC19 as a control. After completion of the culture, protein expression was confirmed by SDS-PAGE, and the activity of MOX against mandelic acid was measured by the above method. At this time, since MOX is an insoluble membrane protein, the fraction obtained by solubilizing the insoluble fraction with a surfactant was used for the activity measurement. As a result, about 40 kDa MOX was expressed in the insoluble fraction by pASA1 (FIG. 8), and the enzyme activity was 24 U / g wet cell (control: 0 U). In this way, MOX was successfully expressed. Hereinafter, the oxidation factory refers to E. coli that has induced the expression of MOX under the above-described conditions.
(2) Reaction by oxidation factory Next, using an oxidation factory, 10 mM (RS) -mandelic acid, wet bacterial cell (oxidation factory) 0.5 g, 50 mM Tris-HCl buffer (pH 7.5), distilled water, The mixture was mixed so that the total amount became 50 ml, put into a 500-ml Erlenmeyer flask, swirled at 30 ° C. and 180 rpm, and subjected to S selective oxidation of mandelic acid. Then, the progress of the reaction was analyzed by TLC. At this time, since mandelic acid as a substrate and benzoylformic acid as a product are difficult to separate, a methyl esterified sample was used for analysis in order to facilitate the separation. As a result, it was suggested that some mandelic acid was converted to benzoylformic acid by the oxidation factory 17 hours after the start of the reaction (FIG. 9). Therefore, methyl benzoylformate and methyl mandelate were fractionated by PLC, and the structure of each was measured by 1 H-NMR, and the optical purity of methyl mandelate was measured by HPLC. As a result, it was found that the product was benzoylformic acid and the residual substrate was 100% ee (R) -mandelic acid. In this way, the oxidation factory succeeded in proceeding the S selective oxidation reaction of the target mandelic acid.
 還元工場の構築
 本実施例における還元工場とは、(R)−MDHとGDHの遺伝子を導入し共発現させた大腸菌を指す。デラセミ化工場構築の2段階目として還元工場を構築し、ベンゾイルギ酸のR選択的還元反応を試みた(図3)。
(1) pET3aRMDHの構築
 (R)−MDHの発現用プラスミドとして、pET3aRMDH(図10)を構築した。pET3aRMDHは、Enterococcus faecalis IAM 10071由来(R)−mdh遺伝子領域をベクターpET−3aのNde I、Bam HIサイトへクローニングすることにより構築した。
 まず、表3に示す条件でPCRを行い、(R)−mdh遺伝子の5’末端から3’末端の下流120塩基までを増幅した。なお、primer1は、コドンを補正した(R)−mdh遺伝子の5’末端に特異的な配列に、制限酵素Nde Iサイトを含むアダプター配列を付加したものである。また、primer2は、(R)−mdh遺伝子の3’末端の下流領域に特異的な配列に、制限酵素BamH Iサイトを含むアダプター配列を付加したものである。
Figure JPOXMLDOC01-appb-T000012
 次に、得られたPCR産物(インサート)とベクターpET−3aを、表4に示す条件で制限酵素Nde IとBamH Iにより消化した。
Figure JPOXMLDOC01-appb-T000013
 続いて、得られた2種類のDNA断片について、表5に示す条件でライゲーション反応を行った。
Figure JPOXMLDOC01-appb-T000014
 ライゲーション反応後、反応液を用いて大腸菌TOP10を形質転換し、生育したコロニーについて以下のようにコロニーPCRを行った。まず、爪楊枝を用いてプレート上のコロニーを滅菌蒸留水30μlに懸濁して98℃で5分間加熱し、12,000rpmで1分間遠心分離した上清を鋳型DNA溶液とした。次に、この鋳型DNA溶液を用いて表6に示す条件でPCRを行った。
Figure JPOXMLDOC01-appb-T000015
 そして、目的のサイズのDNA断片が増幅したコロニー(図11)からプラスミドを抽出し、シーケンシングにより塩基配列を解析した。なお、シーケンシングではベクターpET−3aに特異的なT7 promoterプライマー又はT7 terminatorプライマーを用いた。
 このとき、目的タンパク質の発現を最適化するために、使用頻度の低いコドン及びGC含量の補正を行った。(R)−mdh遺伝子の5’末端の24塩基の配列を解析した。その結果、使用頻度の低いコドンが1ヶ所、GC含量の低いコドンに置換可能なコドンが1ヶ所あることがわかった(図12)。そこで、これらのコドンを大腸菌で使用頻度が高くかつGC含量の低いコドンへ補正した。
 プラスミドの構築に成功したことは、コロニーPCR(図11)とシーケンシングにより確認した。
(2) (R)−MDHのクローニング及び発現
 構築したpET3aRMDHを用いて大腸菌BL21−Gold(DE3)を形質転換し、IPTGを添加しての培養により(R)−MDHの発現を誘導した。また、コントロールとしてベクターpET−3aを用いて同様の実験を行った。培養終了後、タンパク質の発現をSDS−PAGEにより確認し、マンデル酸に対する(R)−MDHの活性を上記方法により測定した。その結果、pET3aRMDHにより約35kDaの(R)−MDHが発現し(図13)、酵素活性は湿菌体1gあたり74U(コントロール:0U)であった。このようにして、(R)−MDHの発現に成功した。
(3) pACYCGDHの構築
 まず、GDHの発現用プラスミドとして、pACYCGDH(図14)を構築した。pACYCGDHは,Bacillus megaterium IAM 13418由来gdh遺伝子をベクターpACYCDuet−1のMCS(Multiple Cloning Sites)2のNde I、Kpn Iサイトへクローニングすることにより構築した。
 まず、表7に示す条件でPCRを行い、gdh遺伝子の5’末端から3’末端までを増幅した。なお、primer3は、gdh遺伝子の5’末端に特異的な配列に、制限酵素Nde Iサイトを含むアダプター配列を付加したものである。また、primer4は、gdh遺伝子の3’末端に特異的な配列に、制限酵素Kpn Iサイトを含むアダプター配列を付加したものである。
Figure JPOXMLDOC01-appb-T000016
 次に、得られたPCR産物(インサート)とベクターpACYCDuet−1を、表8に示す条件で制限酵素Nde I次いでKpn Iにより消化した。
Figure JPOXMLDOC01-appb-T000017
 続いて、得られた2種類のDNA断片について、表9に示す条件でライゲーション反応を行った。
Figure JPOXMLDOC01-appb-T000018
 ライゲーション反応後、反応液を用いて大腸菌TOP10を形質転換し、生育したコロニーについて以下のようにコロニーPCRを行った。まず、前項と同様に鋳型DNA溶液を調製した。次に、この鋳型DNA溶液を用いて表10に示す条件でPCRを行った。
Figure JPOXMLDOC01-appb-T000019
 そして、目的のサイズのDNA断片が増幅したコロニー(図15)からプラスミドを抽出し、シーケンシングにより塩基配列を解析した。なお、シーケンシングではベクターpACYCDuet−1のMCS2に特異的なDuetUP2プライマー又はT7terminatorプライマーを用いた。
 プラスミドの構築に成功したことは、コロニーPCR(図15)とシーケンシングにより確認した。
(4) GDHのクローニング及び発現
 pACYCGDHを用いて大腸菌BL21−Gold(DE3)を形質転換し、IPTGを添加しての培養によりGDHの発現を誘導した。また、コントロールとしてベクターpACYCDuet−1を用いて同様の実験を行った。培養終了後、タンパク質の発現をSDS−PAGEにより確認し、GDHの活性を上記方法により測定した。その結果、pACYCGDHにより約30kDaのGDHが発現し(図16)、酵素活性は湿菌体1gあたり6.9U(コントロール:0U)であった。このようにして、GDHの発現に成功した。
Construction of Reduction Factory The reduction factory in this example refers to Escherichia coli in which (R) -MDH and GDH genes have been introduced and co-expressed. A reduction factory was constructed as the second stage of deracemization factory construction, and an R-selective reduction reaction of benzoylformic acid was attempted (FIG. 3).
(1) Construction of pET3aRMDH pET3aRMDH (FIG. 10) was constructed as a plasmid for expression of (R) -MDH. pET3aRMDH was constructed by cloning the (R) -mdh gene region derived from Enterococcus faecalis IAM 10071 into the Nde I and Bam HI sites of the vector pET-3a.
First, PCR was performed under the conditions shown in Table 3 to amplify from the 5 ′ end of the (R) -mdh gene to 120 bases downstream of the 3 ′ end. In addition, primer1 is obtained by adding an adapter sequence containing a restriction enzyme NdeI site to a sequence specific to the 5 ′ end of the (R) -mdh gene with a corrected codon. Primer 2 is obtained by adding an adapter sequence containing a restriction enzyme BamHI site to a sequence specific to the downstream region at the 3 ′ end of the (R) -mdh gene.
Figure JPOXMLDOC01-appb-T000012
Next, the obtained PCR product (insert) and vector pET-3a were digested with restriction enzymes Nde I and BamH I under the conditions shown in Table 4.
Figure JPOXMLDOC01-appb-T000013
Subsequently, a ligation reaction was performed on the obtained two kinds of DNA fragments under the conditions shown in Table 5.
Figure JPOXMLDOC01-appb-T000014
After the ligation reaction, E. coli TOP10 was transformed using the reaction solution, and colony PCR was performed on the grown colonies as follows. First, a colony on a plate was suspended in 30 μl of sterile distilled water using a toothpick, heated at 98 ° C. for 5 minutes, and centrifuged at 12,000 rpm for 1 minute to obtain a template DNA solution. Next, PCR was performed under the conditions shown in Table 6 using this template DNA solution.
Figure JPOXMLDOC01-appb-T000015
Then, a plasmid was extracted from a colony (FIG. 11) in which a DNA fragment of the desired size was amplified, and the nucleotide sequence was analyzed by sequencing. In sequencing, a T7 promoter primer or a T7 terminator primer specific to the vector pET-3a was used.
At this time, in order to optimize the expression of the target protein, correction was made for codons and GC contents which are infrequently used. The sequence of 24 bases at the 5 ′ end of the (R) -mdh gene was analyzed. As a result, it was found that there was one codon that was infrequently used and one codon that could be replaced with a codon with a low GC content (FIG. 12). Therefore, these codons were corrected to codons that are frequently used in E. coli and have a low GC content.
Successful construction of the plasmid was confirmed by colony PCR (FIG. 11) and sequencing.
(2) Cloning and Expression of (R) -MDH The constructed pET3aRMDH was used to transform E. coli BL21-Gold (DE3), and expression of (R) -MDH was induced by culturing with addition of IPTG. In addition, a similar experiment was performed using the vector pET-3a as a control. After completion of the culture, protein expression was confirmed by SDS-PAGE, and the activity of (R) -MDH against mandelic acid was measured by the above method. As a result, about 35 kDa (R) -MDH was expressed by pET3aRMDH (FIG. 13), and the enzyme activity was 74 U / g wet cell (control: 0 U). In this way, (R) -MDH was successfully expressed.
(3) Construction of pACYCGDH First, pACYCGDH (FIG. 14) was constructed as a GDH expression plasmid. pACYCGDH was constructed by cloning the Bacillus megaterium IAM 13418-derived gdh gene into the Nde I and Kpn I sites of MCS (Multiple Cloning Sites) 2 of the vector pACYCDuet-1.
First, PCR was performed under the conditions shown in Table 7 to amplify from the 5 ′ end to the 3 ′ end of the gdh gene. Primer 3 is obtained by adding an adapter sequence containing a restriction enzyme Nde I site to a sequence specific to the 5 ′ end of the gdh gene. Primer 4 is obtained by adding an adapter sequence containing a restriction enzyme Kpn I site to a sequence specific to the 3 ′ end of the gdh gene.
Figure JPOXMLDOC01-appb-T000016
Next, the obtained PCR product (insert) and the vector pACYCDuet-1 were digested with the restriction enzymes NdeI and then KpnI under the conditions shown in Table 8.
Figure JPOXMLDOC01-appb-T000017
Subsequently, a ligation reaction was performed on the obtained two types of DNA fragments under the conditions shown in Table 9.
Figure JPOXMLDOC01-appb-T000018
After the ligation reaction, E. coli TOP10 was transformed using the reaction solution, and colony PCR was performed on the grown colonies as follows. First, a template DNA solution was prepared as in the previous section. Next, PCR was performed using this template DNA solution under the conditions shown in Table 10.
Figure JPOXMLDOC01-appb-T000019
Then, a plasmid was extracted from a colony (FIG. 15) in which a DNA fragment of the desired size was amplified, and the nucleotide sequence was analyzed by sequencing. In sequencing, a DuetUP2 primer or a T7 terminator primer specific for MCS2 of the vector pACYCDuet-1 was used.
Successful construction of the plasmid was confirmed by colony PCR (FIG. 15) and sequencing.
(4) Cloning and expression of GDH Escherichia coli BL21-Gold (DE3) was transformed with pACYCGDH, and expression of GDH was induced by culturing with addition of IPTG. Moreover, the same experiment was performed using the vector pACYCDuet-1 as a control. After completion of the culture, protein expression was confirmed by SDS-PAGE, and the activity of GDH was measured by the above method. As a result, about 30 kDa GDH was expressed by pACYCGDH (FIG. 16), and the enzyme activity was 6.9 U / g wet cell (control: 0 U). In this way, GDH expression was successful.
 (R)−MDHとGDHの共発現検討
 (R)−MDHについては発現用プラスミドpET3aRMDHによる発現に成功し、また、GDHについては発現用プラスミドpACYCGDHによる発現に成功した。そこで次に、これら2種類のタンパク質の共発現検討を行った。その方法として、2種類の発現用プラスミドによる共発現と、1種類の発現用プラスミドによる共発現を試み(図17)、それらの結果を比較した。
(1) 2種類の発現用プラスミドによる共発現(図17A)
 2種類の発現用プラスミドによる共発現のためには、これまでに構築した(R)−MDH発現用プラスミドpET3aRMDHとGDH発現用プラスミドpACYCGDHを用いた。これらのプラスミドを用いて大腸菌BL21−Gold(DE3)を形質転換し、IPTGを添加しての培養により、(R)−MDHとGDHの共発現を誘導した。また、コントロールとしてベクターpET−3aとpACYCDuet−1を用いて同様の実験を行った。培養終了後、タンパク質の発現をSDS−PAGEにより確認し、(R)−MDHとGDHの活性をそれぞれ上記方法により測定した。その結果、pET3aRMDHにより約35kDaの(R)−MDHが発現し、マンデル酸に対する酵素活性は湿菌体1gあたり250U(コントロール:0U)であった。また、pACYCGDHにより約30kDaのGDHが発現し、酵素活性は湿菌体1gあたり2.8U/mg(コントロール:0U)であった(図18)。
(2) 1種類の発現用プラスミドによる共発現(図17B)
(i) pACYCMGの構築
 2種類の発現用プラスミドによる共発現のためには、新たに(R)−MDHとGDHの共発現用プラスミドとしてpACYCMGを構築した(図19)。pACYCGDHは、ベクターpACYCDuet−1のMCS1のNco I、Not Iサイトへ(R)−mdh遺伝子領域を、MCS2のNde I、Kpn Iサイトへgdh遺伝子をクローニングすることにより構築した。(R)−MDHとGDHの共発現用プラスミドpACYCMGは以下のように構築した。
 まず、表11に示す条件でPCRを行い、(R)−mdh遺伝子の5’末端から3’末端の下流120塩基までを増幅した。なお、primer5は、コドンを補正した(R)−mdh遺伝子の5’末端に特異的な配列に、制限酵素Nco Iサイトを含むアダプター配列を付加したものである。また、primer6は、(R)−mdh遺伝子の3’末端の下流領域に特異的な配列に、制限酵素Not Iサイトを含むアダプター配列を付加したものである。
Figure JPOXMLDOC01-appb-T000020
 次に、得られたPCR産物(インサート)と、前項で構築したGDH発現用プラスミドpACYCGDH(ベクター)を、表12に示す条件で制限酵素Nco IとNot Iにより消化した。
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-I000022
 続いて、得られた2種類のDNA断片について、表13に示す条件でライゲーション反応を行った。
Figure JPOXMLDOC01-appb-T000023
 ライゲーション反応後、反応液を用いて大腸菌TOP10を形質転換し、生育したコロニーについて以下のようにコロニーPCRを行った。まず、前項と同様に鋳型DNA溶液を調製した。次に、この鋳型DNA溶液を用いて表14に示す条件でPCRを行った。
Figure JPOXMLDOC01-appb-T000024
 そして、目的のサイズのDNA断片が増幅したコロニー(図19)からプラスミドを抽出し、シーケンシングにより塩基配列を解析した。なお、シーケンシングではベクターpACYCDuet−1のMCS1に特異的なACYCDuetUP1プライマー又はDuetDOWN1プライマーを用いた。
 しかし、このようにして構築したプラスミドをそのまま発現に用いると、mRNAからタンパク質への翻訳開始位置が、(R)−mdh遺伝子の開始コドン(ATG)ではなく、Nco Iサイトに含まれる開始コドンとなり、コドンのフレームがずれてしまう。そこで、図20に示す方法で4塩基の欠失変異を導入した。
 まず、表15に示す反応液組成と反応条件でプラスミド全体を増幅し、欠失変異を導入した。なお、primer7は、欠失変異を中央にしてその前に11塩基、後に23塩基ずつ付加したものである。また、primer8はprimer7の相補鎖である。
 プラスミドの構築に成功したことは、コロニーPCR(図21)とシーケンシングにより確認した。
Figure JPOXMLDOC01-appb-T000025
 次に、反応液に制限酵素Dpn Iを加えて37℃で1時間インキュベートし、鋳型DNAを切断した。なお、Dpn IはAがメチル化された4塩基配列GATCを認識して切断する制限酵素である。鋳型DNAは大腸菌内で増殖しメチル化されているため切断されるが、PCR産物はメチル化されていないため切断されない。
 最後に、大腸菌TOP10を形質転換し、生育したコロニーからプラスミドを抽出し、シーケンシングにより塩基配列を解析した。なお、シーケンシングでは上記と同様にACYCDuetUP1プライマー又はDuetDOWN1プライマーを用いた。
(ii) 1種類の発現用プラスミドによる共発現
 pACYCMGを用いて大腸菌BL21−Gold(DE3)を形質転換し、IPTGを添加しての培養により(R)−MDHとGDHの共発現を誘導した。また、コントロールとしてベクターpACYCDuet−1を用いて同様の実験を行った。培養終了後、タンパク質の発現をSDS−PAGEにより確認し、(R)−MDHとGDHの活性をそれぞれ上記方法により測定した。その結果、pACYCMGにより約35kDaの(R)−MDHが発現し、マンデル酸に対する酵素活性は湿菌体1gあたり67U(コントロール:0U)であった。また、約30kDaのGDHも発現し、酵素活性は湿菌体1gあたり6.7U(コントロール:0U)であった(図22)。
(3) 上記(1)と(2)の結果の比較
 (1)2種類のプラスミドによる共発現と、(2)1種類のプラスミドによる共発現の結果をまとめると、表16のようになる。
Figure JPOXMLDOC01-appb-T000026
 還元工場で補酵素を効率良く回転させ反応を進行させるためには、(R)−MDH活性とGDH活性が同程度であることが望ましい。表16より、どちらの方法でも(R)−MDH活性よりGDH活性の方が低いが、その差は(1)より(2)の方が小さいことがわかる。また、実際に、(1)と(2)で調製した可溶性画分(CFE:無細胞抽出液)を用いてベンゾイルギ酸のR選択的還元反応を試み、TLCにより反応の進行を分析した結果、反応開始15時間後において、(1)では基質が残っているが、(2)では反応が十分に進行していることが示唆された(図23)。これらの結果より、(R)−MDHとGDHの共発現には、(2)の方法を採用することとした。以下、還元工場とは、1種類の発現用プラスミドpACYCMGにより上記の条件で(R)−MDHとGDHの共発現を誘導した大腸菌を指すものとする。
 ここで、発現量の差について考察する。表16より、(1)では(R)−MDHとGDHの発現量にかなり差があるが、(2)ではほとんど差がないことがわかる。これは、発現用プラスミドに用いたベクターのコピー数と関係していると考えられる。まず、(1)では(R)−MDHとGDHとで発現用プラスミドが異なり、発現用プラスミドに用いたベクターのコピー数は、GDHのpACYCDuet−1よりも(R)−MDHのpET−3aの方が多い(表16)。そのため、GDHよりも(R)−MDHの方が優先的に発現し、発現量にかなり差が出たと考えられる。また、(2)では(R)−MDHとGDHの発現用プラスミドは同じものである。そのため、発現量にほとんど差が出なかったと考えられる。
(R) Co-expression study of MDH and GDH (R) -MDH was successfully expressed with the expression plasmid pET3aRMDH, and GDH was successfully expressed with the expression plasmid pACYCGDH. Then, next, co-expression examination of these two kinds of proteins was performed. As the method, co-expression with two types of expression plasmids and co-expression with one type of expression plasmid were tried (FIG. 17), and the results were compared.
(1) Co-expression with two types of expression plasmids (FIG. 17A)
For co-expression with two types of expression plasmids, the (R) -MDH expression plasmid pET3aRMDH and the GDH expression plasmid pACYCGDH constructed so far were used. E. coli BL21-Gold (DE3) was transformed with these plasmids, and (R) -MDH and GDH co-expression was induced by culturing with the addition of IPTG. In addition, similar experiments were performed using vectors pET-3a and pACYCDuet-1 as controls. After completion of the culture, protein expression was confirmed by SDS-PAGE, and (R) -MDH and GDH activities were measured by the above methods. As a result, about 35 kDa (R) -MDH was expressed by pET3aRMDH, and the enzyme activity against mandelic acid was 250 U (control: 0 U) per 1 g of wet cells. Moreover, about 30 kDa GDH was expressed by pACYCGDH, and the enzyme activity was 2.8 U / mg (control: 0 U) per 1 g of wet cells (FIG. 18).
(2) Co-expression with one expression plasmid (FIG. 17B)
(I) Construction of pACYCMG For co-expression with two types of expression plasmids, pACYCMG was newly constructed as a plasmid for co-expression of (R) -MDH and GDH (FIG. 19). pACYCGDH was constructed by cloning the (R) -mdh gene region into the Nco I and Not I sites of MCS1 of the vector pACYCDuet-1 and the gdh gene into the Nde I and Kpn I sites of MCS2. The plasmid pACYCMG for co-expression of (R) -MDH and GDH was constructed as follows.
First, PCR was performed under the conditions shown in Table 11 to amplify from the 5 ′ end of the (R) -mdh gene to 120 bases downstream of the 3 ′ end. In addition, primer5 is obtained by adding an adapter sequence containing a restriction enzyme NcoI site to a sequence specific to the 5 ′ end of the (R) -mdh gene with a corrected codon. Primer 6 is obtained by adding an adapter sequence containing a restriction enzyme Not I site to a sequence specific to the downstream region at the 3 ′ end of the (R) -mdh gene.
Figure JPOXMLDOC01-appb-T000020
Next, the obtained PCR product (insert) and the GDH expression plasmid pACYCGDH (vector) constructed in the previous section were digested with the restriction enzymes Nco I and Not I under the conditions shown in Table 12.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-I000022
Subsequently, a ligation reaction was performed on the obtained two kinds of DNA fragments under the conditions shown in Table 13.
Figure JPOXMLDOC01-appb-T000023
After the ligation reaction, E. coli TOP10 was transformed using the reaction solution, and colony PCR was performed on the grown colonies as follows. First, a template DNA solution was prepared as in the previous section. Next, PCR was performed using this template DNA solution under the conditions shown in Table 14.
Figure JPOXMLDOC01-appb-T000024
Then, a plasmid was extracted from a colony (FIG. 19) in which a DNA fragment of the desired size was amplified, and the nucleotide sequence was analyzed by sequencing. In sequencing, an ACYCDuetUP1 primer or DuetDOWN1 primer specific for MCS1 of the vector pACYCDuet-1 was used.
However, if the plasmid constructed in this way is used for expression as it is, the translation start position from mRNA to protein is not the start codon (ATG) of the (R) -mdh gene but the start codon contained in the Nco I site. , The frame of the codon will shift. Therefore, a 4-base deletion mutation was introduced by the method shown in FIG.
First, the entire plasmid was amplified with the reaction solution composition and reaction conditions shown in Table 15, and a deletion mutation was introduced. In addition, primer7 is obtained by adding 11 bases before and 23 bases after the deletion mutation at the center. Primer8 is a complementary strand of primer7.
Successful construction of the plasmid was confirmed by colony PCR (FIG. 21) and sequencing.
Figure JPOXMLDOC01-appb-T000025
Next, restriction enzyme Dpn I was added to the reaction solution and incubated at 37 ° C. for 1 hour to cleave the template DNA. Dpn I is a restriction enzyme that recognizes and cleaves the 4-base sequence GATC in which A is methylated. The template DNA grows in E. coli and is cleaved because it is methylated, but the PCR product is not cleaved because it is not methylated.
Finally, E. coli TOP10 was transformed, a plasmid was extracted from the grown colonies, and the nucleotide sequence was analyzed by sequencing. In the sequencing, the ACYCDuetUP1 primer or DuetDOWN1 primer was used as described above.
(Ii) Co-expression with one type of expression plasmid Escherichia coli BL21-Gold (DE3) was transformed with pACYCMG, and co-expression of (R) -MDH and GDH was induced by culturing with the addition of IPTG. Moreover, the same experiment was performed using the vector pACYCDuet-1 as a control. After completion of the culture, protein expression was confirmed by SDS-PAGE, and (R) -MDH and GDH activities were measured by the above methods. As a result, about 35 kDa (R) -MDH was expressed by pACYCMG, and the enzyme activity against mandelic acid was 67 U per 1 g of wet cells (control: 0 U). Moreover, about 30 kDa GDH was also expressed, and the enzyme activity was 6.7 U (control: 0 U) per 1 g of wet cells (FIG. 22).
(3) Comparison of the results of (1) and (2) (1) The results of co-expression with two types of plasmids and (2) co-expression with one type of plasmids are summarized in Table 16.
Figure JPOXMLDOC01-appb-T000026
In order to efficiently rotate the coenzyme and advance the reaction in the reduction factory, it is desirable that the (R) -MDH activity and the GDH activity are comparable. Table 16 shows that GDH activity is lower than (R) -MDH activity in either method, but the difference is smaller in (2) than in (1). Moreover, as a result of actually trying the R selective reduction reaction of benzoylformic acid using the soluble fraction (CFE: cell-free extract) prepared in (1) and (2) and analyzing the progress of the reaction by TLC, 15 hours after the start of the reaction, the substrate remained in (1), but it was suggested that the reaction was sufficiently advanced in (2) (FIG. 23). From these results, the method (2) was adopted for co-expression of (R) -MDH and GDH. Hereinafter, the reduction factory refers to E. coli in which the co-expression of (R) -MDH and GDH is induced under the above conditions by using one type of expression plasmid pACYCMG.
Here, the difference in the expression level will be considered. From Table 16, it can be seen that in (1) there is a considerable difference in the expression levels of (R) -MDH and GDH, but in (2) there is little difference. This is considered to be related to the copy number of the vector used for the expression plasmid. First, in (1), (R) -MDH and GDH have different expression plasmids, and the copy number of the vector used for the expression plasmid is higher than that of GDH pACYCDuet-1 (R) -MDH pET-3a. There are more (Table 16). Therefore, (R) -MDH is preferentially expressed over GDH, and it is considered that the expression level is considerably different. In (2), the expression plasmids for (R) -MDH and GDH are the same. Therefore, it is considered that there was almost no difference in the expression level.
 還元工場による反応
 還元工場を用いて、10mMベンゾイルギ酸、20mM D−グルコース、0.1mM NADH、湿菌体(還元工場)0.5g、50mMトリス塩酸緩衝液(pH7.5)及び蒸留水を、全量が50mlとなるよう混合して500−ml三角フラスコに入れ、30℃、180rpmで旋回することによりベンゾイルギ酸のR選択的還元反応を試みた。このとき、大腸菌内のNADHにより反応は進行すると考えられるが、反応を促進させるため、文献(Tadashi Ema et al,Tetrahedron:Asymmetry,2005,16,1075−1078:Tadashi Ema et al.,Tetrahedron,2006,62,6143−6149)を参考に触媒量のNADHを添加することとした。この文献に記載の研究では、カルボニル還元酵素とGDHの遺伝子を導入し共発現させた大腸菌によるケトンの不斉還元が達成されたが、触媒量の補酵素の添加により反応が促進されたことが示されている。TLCにより反応の進行を分析した結果、反応開始17時間後には、還元工場によりすべてのベンゾイルギ酸がマンデル酸に変換されたことが示唆された(図24)。そこで、PLCによりマンデル酸メチルを分取し、構造をH−NMRにより、光学純度をHPLCにより測定した。その結果、生成物は100%eeの(R)−マンデル酸であることがわかった。このようにして、還元工場により目的のベンゾイルギ酸のR選択的還元反応を進行させることに成功した。
Reaction by reduction factory Using a reduction factory, 10 mM benzoylformic acid, 20 mM D-glucose, 0.1 mM NADH, wet cell (reduction factory) 0.5 g, 50 mM Tris-HCl buffer (pH 7.5) and distilled water, The mixture was mixed to a total volume of 50 ml, placed in a 500-ml Erlenmeyer flask, and swirled at 30 ° C. and 180 rpm to attempt R-selective reduction of benzoylformic acid. At this time, the reaction is considered to proceed by NADH in Escherichia coli. However, in order to promote the reaction, the literature (Tadashi Ema et al, Tetrahedron: 2005, 16, 1075-1078: Tadashi Ema et al., Tetrahedron, 2006). 62, 6143-6149), it was decided to add a catalytic amount of NADH. In the study described in this document, asymmetric reduction of ketones by E. coli co-expressed by introducing carbonyl reductase and GDH genes was achieved, but the reaction was promoted by addition of a catalytic amount of coenzyme. It is shown. As a result of analyzing the progress of the reaction by TLC, it was suggested that all the benzoylformic acid was converted to mandelic acid by the reduction plant 17 hours after the start of the reaction (FIG. 24). Therefore, methyl mandelate was fractionated by PLC, the structure was measured by 1 H-NMR, and the optical purity was measured by HPLC. As a result, the product was found to be 100% ee (R) -mandelic acid. In this way, the reduction factory succeeded in proceeding the R selective reduction reaction of the target benzoylformic acid.
 デラセミ化工場の構築
 デラセミ化工場とは、MOXと(R)−MDH、GDHの遺伝子を導入し共発現させた大腸菌を指す。デラセミ化工場構築の3段階目として、酸化工場と還元工場を組み合わせてデラセミ化工場を構築し、マンデル酸のデラセミ化反応を試みた(図1)。
(1) MOXと(R)−MDH,GDHの共発現
 MOXについては、発現用プラスミドpASA1による発現に成功した。また、(R)−MDHとGDHについては、共発現用プラスミドpACYCMGによる共発現に成功した。そこで次に、これらを組み合わせて、2種類の発現用プラスミドによる3種類のタンパク質の共発現検討を行った(図25)。
 これまでに構築したMOX発現用プラスミドpASA1と(R)−MDHとGDHの共発現用プラスミドpACYCMGを用いて大腸菌BL21−Gold(DE3)を形質転換し、IPTGを添加しての培養によりMOXと(R)−MDH、GDHの共発現を誘導した。また、コントロールとしてベクターpET−3aとpACYCDuet−1を用いて同様の実験を行った。培養終了後、タンパク質の発現をSDS−PAGEにより確認し、MOXと(R)−MDH、GDHの活性をそれぞれ上記方法により測定した。その結果、pASA1により約40kDaのMOXが不溶性画分に発現し、酵素活性は湿菌体1gあたり9.9U(コントロール:0U)であった。また、pACYCMGにより約35kDaの(R)−MDHが発現し、マンデル酸に対する酵素活性は湿菌体1gあたり290U(コントロール:0U/mg)であった。また、約30kDaのGDHも発現し、酵素活性は湿菌体1gあたり100U(コントロール:0U)であった(図26)。このようにして、MOXと(R)−MDH、GDHの共発現に成功した。以下、デラセミ化工場とは、上記の条件でMOXと(R)−MDH、GDHの共発現を誘導した大腸菌を指すものとする。
(2) デラセミ化工場による反応
 デラセミ化工場を用いて、10mM(RS)−マンデル酸、20mM D−グルコース、0.1mM NADH、湿菌体(デラセミ化工場)0.5g、50mMトリス塩酸緩衝液(pH7.5)及び蒸留水を、全量が50mlとなるよう混合して500−ml三角フラスコに入れ、30℃、180rpmで旋回することによりマンデル酸のデラセミ化反応を試みた。TLCにより反応の進行を分析した結果、反応開始17時間後には、マンデル酸のみが検出され、ベンゾイルギ酸は検出されなかった(図27)。マンデル酸は基質と生成物を兼ねており、また、ベンゾイルギ酸は中間体であることから、2つの可能性が示唆された。1つは、反応が全く進行しなかったという可能性である。もう1つは、1段階目の酸化反応で生成したすべてのベンゾイルギ酸が、2段階目の還元反応でマンデル酸に変換されたという可能性である。これを検証するために、PLCによりマンデル酸メチルを分取し、構造をH−NMRにより、光学純度をHPLCにより測定した。その結果、生成物は100%ee(コントロール:0%ee)の(R)−マンデル酸であることがわかった。すなわち、(RS)−マンデル酸のうちすべての(S)−マンデル酸が(R)−マンデル酸へ変換されたということである。このようにして、デラセミ化工場により目的のマンデル酸のデラセミ化反応を進行させることに成功した。
(3) デラセミ化工場による反応の経時変化
 デラセミ化工場によるマンデル酸のデラセミ化反応の経時変化を測定した。表17に示した組成の反応液を500−ml三角フラスコに入れ、30℃、180rpmで旋回した。
Figure JPOXMLDOC01-appb-T000027
 湿菌体0.5gを用いて基質濃度10mM、50mM、100mMにて反応を試み、反応中のマンデル酸とベンゾイルギ酸の収率、及びマンデル酸の光学純度をHPLCにより測定した(図28~30)。なお、湿菌体1gは200ml培養分に相当する。図28~30より、基質濃度10mMと50mMでは約3時間、100mMでは約18時間で反応が終了し、すべての基質濃度でマンデル酸の収率は99%以上、光学純度は100%eeに達したことがわかる。しかし、経時変化を示すには、基質濃度10mMと50mMではデータ数が不十分である。そこで、データ数が十分な100mMでの経時変化について考察する。はじめの3時間で、マンデル酸の収率は最小値の69%、ベンゾイルギ酸の収率は最大値の28%、マンデル酸の光学純度は最大値の100%eeとなった。そして、その後の15時間で、マンデル酸の収率は100%、ベンゾイルギ酸の収率は1%となり、マンデル酸の光学純度は100%eeのまま変化しなかった。このことから、はじめの3時間は1段階目の酸化反応の方が2段階目の還元反応よりも速い速度で進行してベンゾイルギ酸が蓄積し、その後の15時間は還元反応のみが進行したことがわかる。したがって、還元反応が律速段階であるといえる。その原因として、湿菌体中においては、酸化反応に関わるMOXの活性が、還元反応に関わる(R)−MDHやGDHの活性よりも高いということが考えられる。しかし、前述のとおり、デラセミ化工場の湿菌体1gあたりの酵素活性はMOXが9.9U、(R)−MDHが290U、GDHが100Uであり、この考えと矛盾しているようにみえる。ここで、活性測定に用いたサンプルについて考慮すると、以下のことが考えられる。まず、膜タンパク質であるMOXについては、可溶化画分のサンプルを用いたため、2つの理由で活性が湿菌体中よりも低下した可能性がある。1つ目の理由は酵素量の減少である。MOXの可溶化をSDS−PAGEにより確認したところ、可溶化画分だけでなく沈殿にも含まれており、すべてが可溶化されたわけではないことがわかった(図31)。2つ目の理由は酵素活性の低下である。MOXの可溶化は界面活性剤を用いて変性させることにより行ったため、膜結合部位だけでなく活性部位のコンフォメーションも変化して活性が低下した可能性がある。このように、湿菌体中における膜タンパク質の活性を正確に測定することは難しい。一方、細胞質タンパク質である(R)−MDHとGDHについては、可溶性画分のサンプルを用いたため、活性は湿菌体中とほぼ同じであると考えられる。これらのことから、湿菌体中においては、実際には酸化反応に関わるMOXの活性が、還元反応に関わる(R)−MDHやGDHの活性よりも高い可能性が高い。さらに、(R)−MDHとGDHの活性を比較すると、還元反応の律速酵素はGDHであると考えられる。
Construction of Deracemization Factory The deracemization factory refers to E. coli that has been introduced and co-expressed with MOX, (R) -MDH, and GDH genes. As the third stage of deracemization factory construction, a deracemization factory was constructed by combining an oxidation factory and a reduction factory, and a deracemization reaction of mandelic acid was attempted (Fig. 1).
(1) Co-expression of MOX with (R) -MDH and GDH MOX was successfully expressed with the expression plasmid pASA1. (R) -MDH and GDH were successfully co-expressed with the co-expression plasmid pACYCMG. Then, next, combining these, examination of co-expression of three types of proteins using two types of expression plasmids was performed (FIG. 25).
E. coli BL21-Gold (DE3) was transformed with the MOX expression plasmid pASA1 constructed so far and the (R) -MDH and GDH co-expression plasmid pACYCMG, and IPTG was added to the MOX ( R) -MDH and GDH co-expression was induced. In addition, similar experiments were performed using vectors pET-3a and pACYCDuet-1 as controls. After completion of the culture, protein expression was confirmed by SDS-PAGE, and the activities of MOX, (R) -MDH, and GDH were measured by the above methods. As a result, about 40 kDa MOX was expressed in the insoluble fraction by pASA1, and the enzyme activity was 9.9 U / g wet cell (control: 0 U). Furthermore, about 35 kDa (R) -MDH was expressed by pACYCMG, and the enzyme activity against mandelic acid was 290 U per 1 g of wet cells (control: 0 U / mg). Moreover, about 30 kDa GDH was also expressed, and the enzyme activity was 100 U (control: 0 U) per 1 g of wet cells (FIG. 26). Thus, the co-expression of MOX, (R) -MDH, and GDH was successful. Hereinafter, the deracemization plant refers to E. coli that has induced the co-expression of MOX, (R) -MDH, and GDH under the above conditions.
(2) Reaction by the deracemization factory Using the deracemization factory, 10 mM (RS) -mandelic acid, 20 mM D-glucose, 0.1 mM NADH, wet cells (deracemization factory) 0.5 g, 50 mM Tris-HCl buffer (PH 7.5) and distilled water were mixed so that the total amount would be 50 ml, put into a 500-ml Erlenmeyer flask, and swirled at 30 ° C. and 180 rpm to try a deracemization reaction of mandelic acid. As a result of analyzing the progress of the reaction by TLC, only mandelic acid was detected and benzoylformic acid was not detected 17 hours after the start of the reaction (FIG. 27). Mandelic acid is both a substrate and a product, and benzoylformic acid is an intermediate, suggesting two possibilities. One is the possibility that the reaction did not proceed at all. The other is the possibility that all the benzoylformic acid produced in the first stage oxidation reaction was converted to mandelic acid in the second stage reduction reaction. In order to verify this, methyl mandelate was fractionated by PLC, the structure was measured by 1 H-NMR, and the optical purity was measured by HPLC. As a result, the product was found to be 100% ee (control: 0% ee) (R) -mandelic acid. That is, all (S) -mandelic acid in (RS) -mandelic acid was converted to (R) -mandelic acid. In this way, the deracemization plant succeeded in proceeding the deracemization reaction of the target mandelic acid.
(3) Time-dependent change of reaction by deracemization factory The time-dependent change of the deracemization reaction of mandelic acid by the deracemization factory was measured. The reaction solution having the composition shown in Table 17 was placed in a 500-ml Erlenmeyer flask and swirled at 30 ° C. and 180 rpm.
Figure JPOXMLDOC01-appb-T000027
The reaction was attempted using 0.5 g of wet cells at substrate concentrations of 10 mM, 50 mM, and 100 mM, and the yield of mandelic acid and benzoylformic acid during the reaction and the optical purity of mandelic acid were measured by HPLC (FIGS. 28 to 30). ). In addition, 1 g of wet cells corresponds to 200 ml culture. 28 to 30, the reaction was completed in about 3 hours at substrate concentrations of 10 mM and 50 mM, and about 18 hours at 100 mM, and the yield of mandelic acid reached 99% or more and the optical purity reached 100% ee at all substrate concentrations. You can see that However, the number of data is insufficient to show changes with time at substrate concentrations of 10 mM and 50 mM. Therefore, the change with time at 100 mM with a sufficient number of data will be considered. In the first 3 hours, the yield of mandelic acid was 69% of the minimum value, the yield of benzoylformic acid was 28% of the maximum value, and the optical purity of mandelic acid was 100% ee of the maximum value. In the subsequent 15 hours, the yield of mandelic acid was 100%, the yield of benzoylformic acid was 1%, and the optical purity of mandelic acid remained 100% ee. From this, the first three hours of oxidation reaction proceeded at a faster rate than the second stage reduction reaction, and benzoylformic acid accumulated, and the subsequent 15 hours, only the reduction reaction proceeded. I understand. Therefore, it can be said that the reduction reaction is a rate-limiting step. As the cause, it is considered that the activity of MOX related to the oxidation reaction is higher than the activities of (R) -MDH and GDH related to the reduction reaction in the wet cells. However, as described above, the enzyme activity per 1 g of wet cells in the deracemization plant is 9.9 U for MOX, 290 U for (R) -MDH, and 100 U for GDH, which seems to contradict this idea. Here, considering the sample used for the activity measurement, the following can be considered. First, with respect to MOX, which is a membrane protein, since a sample of a solubilized fraction was used, the activity may be lower than that in wet cells for two reasons. The first reason is a decrease in the amount of enzyme. When the solubilization of MOX was confirmed by SDS-PAGE, it was found that it was contained not only in the solubilized fraction but also in the precipitate, and not all was solubilized (FIG. 31). The second reason is a decrease in enzyme activity. Since MOX solubilization was performed by denaturation using a surfactant, it is possible that not only the membrane binding site but also the conformation of the active site was changed to reduce the activity. Thus, it is difficult to accurately measure the activity of membrane proteins in wet cells. On the other hand, (R) -MDH and GDH, which are cytoplasmic proteins, are considered to have almost the same activity as in wet cells because samples of the soluble fraction were used. From these facts, it is highly likely that the activity of MOX related to the oxidation reaction is actually higher than that of (R) -MDH and GDH related to the reduction reaction in the wet cells. Furthermore, when the activities of (R) -MDH and GDH are compared, the rate-limiting enzyme of the reduction reaction is considered to be GDH.
 デラセミ化工場の利用
 上記実施例により構築したデラセミ化工場をより利用価値の高いものとするために、次に、高基質濃度における反応や固定化静止菌体による反応、o−クロロマンデル酸のデラセミ化反応に利用することを試みた。
(1) 高基質濃度における反応
 デラセミ化工場によるマンデル酸のデラセミ化反応を、基質濃度500mMにて十分に進行させることを目標とした。そのためにまず、上記実施例と同様に湿菌体0.5gを用いて反応を試み、経時変化を測定した(図32)。
 表18に示した組成の反応液を500−ml三角フラスコに入れ、30℃、180rpmで旋回した。
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-I000029
 その結果、約30時間後には反応が停止し、マンデル酸の収率は72%、光学純度は55%eeに留まった。そこで次に、反応速度を増加させるために、湿菌体量を増加させることとした。湿菌体量を5倍の2.5g、10倍の5gとして反応を試み、経時変化を測定した(図33及び図34)。その結果、湿菌体量を5倍にするとマンデル酸の収率は76%、光学純度は77%まで上昇したが、湿菌体量をそれ以上増加させてもマンデル酸の収率と光学純度は上昇しなかった。これは、一般的な酵素の性質によるものと考えられる。基質濃度を大過剰に保った場合、酵素濃度が低い間は反応速度が酵素濃度に比例するが、酵素濃度が高くなると反応速度は一定値へと漸近していく。また、反応が途中で停止してしまった原因として、3種類の酵素それぞれの基質阻害や生成物阻害、失活などの影響が複雑に絡み合っていることが考えられる。したがって、さらなる考察をするためには、これらの事柄について詳細に解析する必要がある。このように、基質濃度500mMでは反応を十分に進行させることができなかった。そこで最後に、基質濃度385mMにて湿菌体10gを用いて反応を試み、経時変化を測定した(図35)。その結果、約22時間で反応が終了し、マンデル酸の収率は99%以上、光学純度は100%eeに達し、ベンゾイルギ酸の収率は5%に留まった。このようにして、デラセミ化工場によるマンデル酸のデラセミ化反応を、基質濃度385mMにて十分に進行させることに成功した。なお、基質濃度385mMは59g/lに相当する。
(2) o−クロロマンデル酸のデラセミ化反応
 デラセミ化工場によるo−クロロマンデル酸のデラセミ化反応の経時変化を測定した。湿菌体0.5gを用いて基質濃度10mM、100mMにて反応を試み、反応中のo−クロロマンデル酸の収率と光学純度をHPLCにより測定した(図36及び37)。その結果、基質濃度10mMでは約4時間、100mMでは約21時間で反応が終了し、どちらの基質濃度でもo−クロロマンデル酸の収率は100%、光学純度は99%ee以上に達した。反応終了後、PLCによりo−クロロマンデル酸を分取し、構造をH−NMRにより、光学純度をHPLCにより測定した。その結果、生成物は確かに99%ee以上のo−クロロ−(R)−マンデル酸であることがわかった。このようにして、デラセミ化工場によるo−クロロマンデル酸のデラセミ化反応を、基質濃度100mMにて十分に進行させることに成功した。なお、基質濃度100mMは19g/lに相当する。
Utilization of deracemization factory In order to make the deracemization factory constructed according to the above examples more valuable, the reaction at a high substrate concentration, the reaction with immobilized stationary cells, the deracemization of o-chloromandelic acid, I tried to use it for the chemical reaction.
(1) Reaction at High Substrate Concentration The goal was to sufficiently proceed the mandelic acid deracemization reaction at the deracemization plant at a substrate concentration of 500 mM. For this purpose, first, a reaction was attempted using 0.5 g of wet bacterial cells in the same manner as in the above example, and the change with time was measured (FIG. 32).
The reaction solution having the composition shown in Table 18 was placed in a 500-ml Erlenmeyer flask and swirled at 30 ° C. and 180 rpm.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-I000029
As a result, the reaction stopped after about 30 hours, the yield of mandelic acid was 72%, and the optical purity remained at 55% ee. Then, in order to increase the reaction rate, it was decided to increase the amount of wet cells. The reaction was attempted with a wet cell mass of 2.5 g (5 times) and 5 g (10 times), and changes over time were measured (FIGS. 33 and 34). As a result, when the amount of wet cells was increased 5 times, the yield of mandelic acid increased to 76% and the optical purity increased to 77%, but even if the amount of wet cells was increased further, the yield and optical purity of mandelic acid were increased. Did not rise. This is thought to be due to the nature of general enzymes. When the substrate concentration is kept in a large excess, the reaction rate is proportional to the enzyme concentration while the enzyme concentration is low, but as the enzyme concentration increases, the reaction rate gradually approaches a constant value. In addition, it is considered that the cause of the reaction being stopped in the middle is that the effects of substrate inhibition, product inhibition, and deactivation of each of the three types of enzymes are intertwined in a complicated manner. Therefore, these matters need to be analyzed in detail for further consideration. Thus, the reaction could not proceed sufficiently at a substrate concentration of 500 mM. Therefore, finally, a reaction was attempted using 10 g of wet cells at a substrate concentration of 385 mM, and the change with time was measured (FIG. 35). As a result, the reaction was completed in about 22 hours, the yield of mandelic acid reached 99% or more, the optical purity reached 100% ee, and the yield of benzoylformic acid remained at 5%. In this way, the deracemization reaction of mandelic acid by the deracemization factory was successfully advanced at a substrate concentration of 385 mM. The substrate concentration of 385 mM corresponds to 59 g / l.
(2) Deracemization reaction of o-chloromandelic acid The time-dependent change of the deracemization reaction of o-chloromandelic acid by the deracemization factory was measured. The reaction was attempted at substrate concentrations of 10 mM and 100 mM using 0.5 g of wet cells, and the yield and optical purity of o-chloromandelic acid during the reaction were measured by HPLC (FIGS. 36 and 37). As a result, the reaction was completed in about 4 hours at a substrate concentration of 10 mM and about 21 hours at 100 mM, and the yield of o-chloromandelic acid reached 100% and the optical purity reached 99% ee or higher at both substrate concentrations. After completion of the reaction, o-chloromandelic acid was fractionated by PLC, the structure was measured by 1 H-NMR, and the optical purity was measured by HPLC. As a result, it was found that the product was indeed 99% ee or higher o-chloro- (R) -mandelic acid. In this way, the deracemization reaction of o-chloromandelic acid by the deracemization factory was successfully advanced at a substrate concentration of 100 mM. A substrate concentration of 100 mM corresponds to 19 g / l.
 2種類の大腸菌(酸化工場と還元工場)によるマンデル酸のデラセミ化反応
 上記方法にて2種類の大腸菌(酸化工場と還元工場)を調製した。次に、10mM(RS)−マンデル酸、20mM D−グルコース、0.1mM NADH、50mMトリス塩酸緩衝液(pH7.5)、湿菌体(酸化工場と還元工場)各0.5g及び蒸留水を全量が50mlとなるよう混合し、500ml−三角フラスコ中に反応液を調製した。そして、30℃、180rpmで旋回して反応させ、上記方法によりマンデル酸の鏡像体過剰率の経時変化を測定した。
 結果を図38に示す。図38に示すように、反応開始4時間後には鏡像体過剰率は100%eeに達した。しかし、定量はしていないが、1種類の大腸菌(デラセミ化工場)によるデラセミ化反応の場合と異なり、8時間経過しても中間体であるベンゾイルギ酸が微量残存しており、これは22時間経過しても変わらなかった。
 以上のように、Enterococcus faecalis IAM 10071由来(R)−マンデル酸デヒドロゲナーゼとBacillus megaterium IAM 13418由来グルコースデヒドロゲナーゼの共発現用プラスミドとして、pACYCMGを構築した。pACYCMGとPseudomonas putida ATCC 12633由来マンデル酸オキシダーゼの発現用プラスミドであるpASAを用いて大腸菌BL21−Gold(DE3)を形質転換し、3種類の酵素を共発現させた。この大腸菌を用いてマンデル酸誘導体のデラセミ化反応を行った。その結果、基質がマンデル酸の場合は、基質濃度59g/lにて収率92%で光学純度100%eeのR体が得られた。さらに、基質がo−クロロマンデル酸の場合は基質濃度19g/lにて収率100%で光学純度100%eeのR体が得られた。このようにして、マンデル酸誘導体のデラセミ化反応の開発に成功した。
Mandelic acid deracemization reaction by two kinds of E. coli (oxidation factory and reduction factory) Two kinds of E. coli (oxidation factory and reduction factory) were prepared by the above method. Next, 10 mM (RS) -mandelic acid, 20 mM D-glucose, 0.1 mM NADH, 50 mM Tris-HCl buffer (pH 7.5), wet cells (oxidation factory and reduction factory) 0.5 g each and distilled water The mixture was mixed so that the total amount became 50 ml, and a reaction solution was prepared in a 500 ml Erlenmeyer flask. And it swirled and reacted at 30 degreeC and 180 rpm, and the time-dependent change of the enantiomeric excess of mandelic acid was measured by the said method.
The results are shown in FIG. As shown in FIG. 38, the enantiomeric excess reached 100% ee 4 hours after the start of the reaction. However, although not quantified, unlike the case of the deracemization reaction by one type of E. coli (deracemization plant), a trace amount of the intermediate benzoylformic acid remains even after 8 hours, which is 22 hours. It did not change even after the passage.
As described above, pACYCMG was constructed as a plasmid for co-expression of Enterococcus faecalis IAM 10071-derived (R) -mandelate dehydrogenase and Bacillus megaterium IAM 13418-derived glucose dehydrogenase. Escherichia coli BL21-Gold (DE3) was transformed with pASA, which is a plasmid for expression of mandelate oxidase derived from pACYCMG and Pseudomonas putida ATCC 12633, and three types of enzymes were co-expressed. Using this Escherichia coli, a mandelic acid derivative was deracemized. As a result, when the substrate was mandelic acid, an R-isomer with a substrate concentration of 59 g / l and a yield of 92% and an optical purity of 100% ee was obtained. Further, when the substrate was o-chloromandelic acid, an R-isomer with an optical purity of 100% ee was obtained at a yield of 100% at a substrate concentration of 19 g / l. In this way, a deracemization reaction of a mandelic acid derivative was successfully developed.
 本発明の方法は、従来の技術と比較して画期的な2つの特徴を有する。第1の特徴は、コストが低い点である。デラセミ化反応では、安価なラセミ体を原料とし、さらに、不要な鏡像異性体のみをすべて目的とする鏡像異性体に変換するため、原料を有効に利用できる。また、補酵素再生系を導入しているため、高価な補酵素NADHをリサイクルすることができる。第2の特徴は、生体触媒を利用するため安全な点である。 The method of the present invention has two features that are epoch-making compared to the prior art. The first feature is that the cost is low. In the deracemization reaction, since an inexpensive racemate is used as a raw material and all unnecessary enantiomers are converted into the desired enantiomers, the raw materials can be used effectively. Moreover, since the coenzyme regeneration system is introduced, expensive coenzyme NADH can be recycled. The second feature is a safety point because a biocatalyst is used.
配列番号1~13 プライマー
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
SEQ ID NOs: 1 to 13 Primers All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims (14)

  1.  ラセミ体のマンデル酸又はその誘導体をデラセミ化して光学活性マンデル酸又はその誘導体を製造する方法であって、マンデル酸オキシダーゼ、(R)−マンデル酸デヒドロゲナーゼ及び補酵素再生系酵素をコードする遺伝子を導入した形質転換微生物を、補酵素再生系酵素の基質及び酸化型補酵素の存在下でラセミ体のマンデル酸又はその誘導体に作用させデラセミ化することを含む、光学活性マンデル酸又はその誘導体を製造する方法であって、マンデル酸又はその誘導体が下記式(I)で表される方法:
    Figure JPOXMLDOC01-appb-I000001
    (式中Xは水素原子又はアルカリあるいはアルカリ土類金属を表し、Rはオルト位、メタ位又はパラ位が一個又は複数個置換されていることを意味し、置換基は水素原子、ハロゲン原子、ヒドロキシル基、炭素数1~3個のアルキル基、アルコキシ基又はチオアルキル基、アミノ基、ニトロ基、メルカプト基、フェニル基、又はフェノキシ基を表す)。
    A method for deracemizing racemic mandelic acid or a derivative thereof to produce optically active mandelic acid or a derivative thereof, wherein a gene encoding mandelate oxidase, (R) -mandelate dehydrogenase and a coenzyme regeneration system enzyme is introduced. Producing an optically active mandelic acid or a derivative thereof, comprising subjecting the transformed microorganism to deracemization by acting on a racemic mandelic acid or a derivative thereof in the presence of a substrate of a coenzyme regeneration system enzyme and an oxidized coenzyme A method wherein mandelic acid or a derivative thereof is represented by the following formula (I):
    Figure JPOXMLDOC01-appb-I000001
    (In the formula, X represents a hydrogen atom or an alkali or alkaline earth metal, R means that one or a plurality of ortho, meta or para positions are substituted, and the substituent is a hydrogen atom, a halogen atom, A hydroxyl group, an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a thioalkyl group, an amino group, a nitro group, a mercapto group, a phenyl group, or a phenoxy group).
  2.  補酵素再生系酵素が、グルコースデヒドロゲナーゼ、ヒドロゲナーゼ、ギ酸デヒドロゲナーゼ、アルコールデヒドロゲナーゼ、アルデヒドデヒドロゲナーゼ及びグルコース−6−リン酸デヒドロゲナーゼからなる群から選択される、請求項1記載の光学活性マンデル酸又はその誘導体を製造する方法。 The optically active mandelic acid or a derivative thereof according to claim 1, wherein the coenzyme regeneration system enzyme is selected from the group consisting of glucose dehydrogenase, hydrogenase, formate dehydrogenase, alcohol dehydrogenase, aldehyde dehydrogenase and glucose-6-phosphate dehydrogenase. how to.
  3.  形質転換微生物がマンデル酸オキシダーゼをコードする遺伝子を挿入した発現ベクター並びに(R)−マンデル酸デヒドロゲナーゼ及び補酵素再生系酵素をコードする遺伝子を挿入した2遺伝子発現ベクターの2種類のベクターを用いて形質転換される、請求項1又は2に記載の光学活性マンデル酸又はその誘導体を製造する方法。 The transformed microorganism is transformed using two types of vectors: an expression vector in which a gene encoding mandelate oxidase is inserted and a two-gene expression vector in which a gene encoding (R) -mandelate dehydrogenase and a coenzyme regeneration system enzyme is inserted. The method for producing an optically active mandelic acid or a derivative thereof according to claim 1, which is converted.
  4.  マンデル酸オキシダーゼ、(R)−マンデル酸デヒドロゲナーゼ及び補酵素再生系酵素が微生物由来である、請求項1~3のいずれか1項に記載の光学活性マンデル酸又はその誘導体を製造する方法。 The method for producing an optically active mandelic acid or a derivative thereof according to any one of claims 1 to 3, wherein the mandelate oxidase, (R) -mandelate dehydrogenase and the coenzyme regeneration system enzyme are derived from a microorganism.
  5.  補酵素再生系酵素がグルコースデヒドロゲナーゼである、請求項1~4のいずれか1項に記載の光学活性マンデル酸又はその誘導体を製造する方法。 The method for producing an optically active mandelic acid or a derivative thereof according to any one of claims 1 to 4, wherein the coenzyme regeneration system enzyme is glucose dehydrogenase.
  6.  マンデル酸オキシダーゼがシュードモナス(Pseudomonas)属微生物由来であり、(R)−マンデル酸デヒドロゲナーゼがエンテロコッカス(Enterococcus)属微生物由来であり、補酵素再生系酵素がバシラス属(Bacillus)微生物由来である、請求項1~5のいずれか1項に記載の光学活性マンデル酸又はその誘導体を製造する方法。 The mandelate oxidase is derived from a Pseudomonas microorganism, the (R) -mandelate dehydrogenase is derived from an Enterococcus microorganism, and the coenzyme regeneration system enzyme is derived from a Bacillus microorganism. 6. A process for producing the optically active mandelic acid or derivative thereof according to any one of 1 to 5.
  7.  形質転換微生物が大腸菌である、請求項1~6のいずれか1項に記載の光学活性マンデル酸又はその誘導体を製造する方法。 The method for producing an optically active mandelic acid or a derivative thereof according to any one of claims 1 to 6, wherein the transformed microorganism is Escherichia coli.
  8.  ラセミ体のマンデル酸又はその誘導体をデラセミ化して光学活性マンデル酸又はその誘導体を製造するための、マンデル酸オキシダーゼ、(R)−マンデル酸デヒドロゲナーゼ及び補酵素再生系酵素をコードする遺伝子を導入した形質転換微生物であって、マンデル酸又はその誘導体が下記式(I)で表される、形質転換微生物:
    Figure JPOXMLDOC01-appb-I000002
    (式中Xは水素原子又はアルカリあるいはアルカリ土類金属を表し、Rはオルト位、メタ位又はパラ位が一個又は複数個置換されていることを意味し、置換基は水素原子、ハロゲン原子、ヒドロキシル基、炭素数1~3個のアルキル基、アルコキシ基又はチオアルキル基、アミノ基、ニトロ基、メルカプト基、フェニル基、又はフェノキシ基を表す)。
    A trait introduced with a gene encoding mandelate oxidase, (R) -mandelate dehydrogenase, and a coenzyme regeneration system enzyme for deracemizing racemic mandelic acid or its derivative to produce optically active mandelic acid or its derivative A transformed microorganism, wherein mandelic acid or a derivative thereof is represented by the following formula (I):
    Figure JPOXMLDOC01-appb-I000002
    (In the formula, X represents a hydrogen atom or an alkali or alkaline earth metal, R means that one or a plurality of ortho, meta or para positions are substituted, and the substituent is a hydrogen atom, a halogen atom, A hydroxyl group, an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a thioalkyl group, an amino group, a nitro group, a mercapto group, a phenyl group, or a phenoxy group).
  9.  補酵素再生系酵素が、グルコースデヒドロゲナーゼ、ヒドロゲナーゼ、ギ酸デヒドロゲナーゼ、アルコールデヒドロゲナーゼ、アルデヒドデヒドロゲナーゼ及びグルコース−6−リン酸デヒドロゲナーゼからなる群から選択される、光学活性マンデル酸又はその誘導体を製造するための、請求項8記載の形質転換微生物。 Claims for producing an optically active mandelic acid or derivative thereof, wherein the coenzyme regeneration system enzyme is selected from the group consisting of glucose dehydrogenase, hydrogenase, formate dehydrogenase, alcohol dehydrogenase, aldehyde dehydrogenase and glucose-6-phosphate dehydrogenase Item 9. A transformed microorganism according to Item 8.
  10.  形質転換微生物がマンデル酸オキシダーゼをコードする遺伝子を挿入した発現ベクター及び(R)−マンデル酸デヒドロゲナーゼ及び補酵素再生系酵素をコードする遺伝子を挿入した2遺伝子発現ベクターの2種類のベクターを用いて形質転換された、光学活性マンデル酸又はその誘導体を製造するための、請求項8又は9に記載の形質転換微生物。 The transformed microorganism is transformed using two types of vectors: an expression vector in which a gene encoding mandelate oxidase is inserted and a two-gene expression vector in which a gene encoding (R) -mandelate dehydrogenase and a coenzyme regeneration system enzyme is inserted. The transformed microorganism according to claim 8 or 9, for producing a converted optically active mandelic acid or a derivative thereof.
  11.  マンデル酸オキシダーゼ、(R)−マンデル酸デヒドロゲナーゼ及び補酵素再生系酵素が微生物由来である、光学活性マンデル酸又はその誘導体を製造するための、請求項8~10のいずれか1項に記載の形質転換微生物。 The trait according to any one of claims 8 to 10, for producing optically active mandelic acid or a derivative thereof, wherein mandelate oxidase, (R) -mandelate dehydrogenase and a coenzyme regeneration system enzyme are derived from a microorganism. Convert microorganisms.
  12.  補酵素再生系酵素がグルコースデヒドロゲナーゼである、光学活性マンデル酸又はその誘導体を製造するための、請求項8~11のいずれか1項に記載の形質転換微生物。 The transformed microorganism according to any one of claims 8 to 11, for producing an optically active mandelic acid or a derivative thereof, wherein the coenzyme regeneration system enzyme is glucose dehydrogenase.
  13.  マンデル酸オキシダーゼがシュードモナス(Pseudomonas)属微生物由来であり、(R)−マンデル酸デヒドロゲナーゼがエンテロコッカス(Enterococcus)属微生物由来であり、補酵素再生系酵素がバシラス属(Bacillus)微生物由来である、光学活性マンデル酸又はその誘導体を製造するための、請求項8~12のいずれか1項に記載の形質転換微生物。 Optical activity wherein mandelate oxidase is derived from a microorganism belonging to the genus Pseudomonas, (R) -mandelate dehydrogenase is derived from a microorganism belonging to the genus Enterococcus, and a coenzyme regeneration enzyme is derived from a microorganism belonging to the genus Bacillus. The transformed microorganism according to any one of claims 8 to 12, for producing mandelic acid or a derivative thereof.
  14.  大腸菌である、光学活性マンデル酸又はその誘導体を製造するための、請求項8~13のいずれか1項に記載の形質転換微生物。 The transformed microorganism according to any one of claims 8 to 13, for producing optically active mandelic acid or a derivative thereof, which is Escherichia coli.
PCT/JP2010/053597 2009-02-27 2010-02-26 Process for producing novel optically active mandelic acid and derivative thereof WO2010098505A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011501698A JPWO2010098505A1 (en) 2009-02-27 2010-02-26 Process for producing novel optically active mandelic acid and derivatives thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-046995 2009-02-27
JP2009046995 2009-02-27

Publications (1)

Publication Number Publication Date
WO2010098505A1 true WO2010098505A1 (en) 2010-09-02

Family

ID=42665698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053597 WO2010098505A1 (en) 2009-02-27 2010-02-26 Process for producing novel optically active mandelic acid and derivative thereof

Country Status (2)

Country Link
JP (1) JPWO2010098505A1 (en)
WO (1) WO2010098505A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014502490A (en) * 2010-12-16 2014-02-03 ファルマツェル、ゲーエムベーハー Novel 7β-hydroxysteroid dehydrogenase mutant and method for preparing ursodeoxycholic acid
CN113930463A (en) * 2021-08-30 2022-01-14 上海晖胧生物医药有限公司 Method for preparing chiral mandelic acid by biocatalysis of 2- (phenylcarbonyl) acetonitrile

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499496A (en) * 1990-08-16 1992-03-31 Nitto Chem Ind Co Ltd Production of r(-)-mandelic acid derivative
JPH04341195A (en) * 1991-05-14 1992-11-27 Tanabe Seiyaku Co Ltd Production of optically active mandelic acid
JPH067196A (en) * 1992-06-25 1994-01-18 Toray Ind Inc Production of optically active mandelic acid
JPH067178A (en) * 1992-06-25 1994-01-18 Toray Ind Inc Production of benzoylformic acid
JP2001072644A (en) * 1999-09-06 2001-03-21 Yamakawa Yakuhin Kogyo Kk Production of optically active 2-chloromandelic acid and production intermediate
JP2003199595A (en) * 2001-10-24 2003-07-15 Daicel Chem Ind Ltd Method for producing optically active mandelic acid derivative
JP2004065049A (en) * 2002-08-02 2004-03-04 Daicel Chem Ind Ltd Polynucleotide encoding d-mandelic acid dehydrogenase, and its use
JP2008092832A (en) * 2006-10-10 2008-04-24 Keio Gijuku Novel nadh oxidase of generating hydrogen peroxide
JP2008182984A (en) * 2007-01-31 2008-08-14 Okayama Univ Method for producing (r)-2-chloromandelic acid methyl ester

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499496A (en) * 1990-08-16 1992-03-31 Nitto Chem Ind Co Ltd Production of r(-)-mandelic acid derivative
JPH04341195A (en) * 1991-05-14 1992-11-27 Tanabe Seiyaku Co Ltd Production of optically active mandelic acid
JPH067196A (en) * 1992-06-25 1994-01-18 Toray Ind Inc Production of optically active mandelic acid
JPH067178A (en) * 1992-06-25 1994-01-18 Toray Ind Inc Production of benzoylformic acid
JP2001072644A (en) * 1999-09-06 2001-03-21 Yamakawa Yakuhin Kogyo Kk Production of optically active 2-chloromandelic acid and production intermediate
JP2003199595A (en) * 2001-10-24 2003-07-15 Daicel Chem Ind Ltd Method for producing optically active mandelic acid derivative
JP2004065049A (en) * 2002-08-02 2004-03-04 Daicel Chem Ind Ltd Polynucleotide encoding d-mandelic acid dehydrogenase, and its use
JP2008092832A (en) * 2006-10-10 2008-04-24 Keio Gijuku Novel nadh oxidase of generating hydrogen peroxide
JP2008182984A (en) * 2007-01-31 2008-08-14 Okayama Univ Method for producing (r)-2-chloromandelic acid methyl ester

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] 2 April 2003 (2003-04-02), retrieved from http://www.ncbi.nlm.nih.gov/nuccore/27762473 accession no. DDBJ Database accession no. AY143338 *
TOMOKO SANO ET AL.: "Mandel San no Deracemization Hanno no Kaihatsu", DAI 87 KAI ANNUAL MEETING OF CHEMICAL SOCIETY OF JAPAN IN SPRING-KOEN YOKOSHU II, 12 March 2007 (2007-03-12), pages 1374 *
TOMOKO SANO ET AL.: "Mandel San Yudotai no Deracemization Hanno no Kaihatsu", DAI 89 KAI ANNUAL MEETING OF CHEMICAL SOCIETY OF JAPAN IN SPRING-KOEN YOKOSHU II, 13 March 2009 (2009-03-13), pages 1358 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014502490A (en) * 2010-12-16 2014-02-03 ファルマツェル、ゲーエムベーハー Novel 7β-hydroxysteroid dehydrogenase mutant and method for preparing ursodeoxycholic acid
US10954494B2 (en) 2010-12-16 2021-03-23 Pharmazell Gmbh 7Beta-hydroxysteroid dehydrogenase mutants and process for the preparation of ursodeoxycholic acid
US11981935B2 (en) 2010-12-16 2024-05-14 Pharmazell Gmbh 7β-hydroxysteroid dehydrogenase mutants and process for the preparation of ursodeoxycholic acid
CN113930463A (en) * 2021-08-30 2022-01-14 上海晖胧生物医药有限公司 Method for preparing chiral mandelic acid by biocatalysis of 2- (phenylcarbonyl) acetonitrile
CN113930463B (en) * 2021-08-30 2023-12-08 上海晖胧生物医药有限公司 Method for preparing chiral mandelic acid by biocatalysis of 2- (phenylcarbonyl) acetonitrile

Also Published As

Publication number Publication date
JPWO2010098505A1 (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP7044860B2 (en) Genetic engineering bacteria
JP4012257B2 (en) Novel carbonyl reductase, gene encoding the same, and method of using them
US7794993B2 (en) Carbonyl reductase, gene thereof and method of using the same
US20070117191A1 (en) Reductase gene for alpha-substituted-alpha, beta-unsaturated carbonyl compound
US7202069B2 (en) (R)-2-octanol dehydrogenases, methods for producing the enzymes, DNA encoding the enzymes, and methods for producing alcohols using the enzymes
EP2022852B1 (en) Method for production of optically active amine compound, recombinant vector, and transformant carrying the vector
JP2000236883A (en) New carbonyl reductase, production of the enzyme, dna coding for the enzyme, and production of alcohol using the same
Wang et al. An enoate reductase Achr-OYE4 from Achromobacter sp. JA81: characterization and application in asymmetric bioreduction of C= C bonds
KR102149044B1 (en) Method of producing 2-hydroxy gamma butyrolactone or 2,4-dihydroxybutanoic acid
EP0955375B1 (en) Method for producing optically active 4-Halo-3-hydroxybutyric acid ester
WO2010098505A1 (en) Process for producing novel optically active mandelic acid and derivative thereof
JP4154182B2 (en) α-Keto acid reductase, method for producing the same, and method for producing optically active α-hydroxy acid using the same
EP1505155B1 (en) Carbonyl reductase, gene thereof and use of the same
WO2007028729A1 (en) Nocardia globerula alcohol dehydrogenase and use thereof
JP6600352B2 (en) Catalyst and use thereof
JP2003033185A (en) Enone reductase
JPWO2006109632A1 (en) Novel α-keto acid reductase, gene thereof, and use thereof
JP2021503287A (en) Enantioselective enzymatic sulfoxide conversion of chiral aryl sulfides
JP2004065049A (en) Polynucleotide encoding d-mandelic acid dehydrogenase, and its use
JP4729919B2 (en) Microbial culture method and optically active carboxylic acid production method
JP5704650B2 (en) Process for producing (S) -1-substituted propan-1-ol derivative
JP4603171B2 (en) (S) -4-Halo-3-hydroxybutyric acid ester-encoding gene useful for enzyme, method for obtaining the same, and method for producing optically active alcohol using the same
JP2000224984A (en) New secondary alcohol dehydrogenase, production of the enzyme and production of alcohol, aldehyde and ketone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746374

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011501698

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10746374

Country of ref document: EP

Kind code of ref document: A1