WO2010098090A1 - Voltage polarity discrimination circuit and electrical load measuring circuit - Google Patents

Voltage polarity discrimination circuit and electrical load measuring circuit Download PDF

Info

Publication number
WO2010098090A1
WO2010098090A1 PCT/JP2010/001247 JP2010001247W WO2010098090A1 WO 2010098090 A1 WO2010098090 A1 WO 2010098090A1 JP 2010001247 W JP2010001247 W JP 2010001247W WO 2010098090 A1 WO2010098090 A1 WO 2010098090A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
charge
charge amount
measurement
Prior art date
Application number
PCT/JP2010/001247
Other languages
French (fr)
Japanese (ja)
Inventor
井上敦雄
松野則昭
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009042206A external-priority patent/JP5355144B2/en
Priority claimed from JP2010030562A external-priority patent/JP5635279B2/en
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2010098090A1 publication Critical patent/WO2010098090A1/en
Priority to US13/218,193 priority Critical patent/US8901891B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/14Indicating direction of current; Indicating polarity of voltage

Definitions

  • the present invention relates to a circuit for determining the polarity of a target voltage.
  • the present invention detects the remaining current of the secondary battery by detecting the consumption current and charge amount of the electronic device supplied with power by the secondary battery, and the charge current and accumulated charge amount when charging the secondary battery.
  • the present invention relates to an estimation system, and particularly to a circuit that measures the charge / discharge charge amount of the secondary battery.
  • LSI detects the charge amount or current, adds the detected charge amount to the battery capacity after discharging during charging, and subtracts the detected charge amount from the charged battery capacity during discharging.
  • the determination of addition and subtraction is performed by determining the polarity of the charge / discharge current whether the battery is in a charged state or a discharged state.
  • the result of addition and subtraction is the remaining capacity (also referred to as remaining charge amount, remaining capacity, etc.), and the state of the secondary battery can be known by displaying this.
  • a portion for detecting the charge amount or current is called a charge amount measurement circuit (also called a coulomb counter).
  • a detection resistor connected in series to a secondary battery and a load or a charger is used to detect the charge amount or current.
  • This detection resistor has a resistance value as small as several tens of m ⁇ to several hundreds of m ⁇ in order to suppress the power consumption by itself and the influence on the load due to voltage drop.
  • the current flowing through the detection resistor depends on the consumption current and the charging current of the portable electronic device, and generally both the consumption current and the charging current are about several A.
  • the detection resistance is 20 m ⁇
  • the maximum charging current is ⁇ 6.25 A ( ⁇ sign indicates the direction of current during charging)
  • the maximum current consumption is +6.25 A (+ sign is the current during discharging)
  • the voltage appearing at both ends of the sensing resistor is ⁇ 125 mV.
  • a method of amplifying the input voltage by a differential amplifier circuit or integrating charges by an integration circuit using an operational amplifier circuit is used.
  • the differential amplifier circuit and the operational amplifier circuit have an input offset voltage that varies within a range of ⁇ several mV for each product.
  • the input offset voltage is ⁇ 1 mV, it corresponds to ⁇ 50 mA of the current flowing through the detection resistor. That is, in the conventional voltage polarity discrimination circuit and the conventional charge amount measurement circuit, for example, ⁇ 6.25 A to ⁇ 50 mA and +50 mA to +6.25 A are set as the measurement range.
  • FIG. 24 is a diagram showing a configuration of a conventional voltage polarity discrimination circuit 303 (see Non-Patent Document 1).
  • the voltage polarity discrimination circuit 303 includes an integration circuit 300, an initialization circuit 331, first and second comparison circuits 601, 602, and first and second counters 603, 604.
  • the integrating circuit 300 uses an operational amplifier circuit 300a designed to reduce the input offset voltage Vos.
  • the initialization circuit 331 includes a voltage source that outputs the initial voltage Vc, and a switch SW3 that sets one end of the capacitor C1 used in the integration circuit 300 to the initial voltage Vc.
  • the first comparison circuit 601 compares the output voltage V30 of the integration circuit 300 with the first reference voltage VH.
  • the first counter 603 measures the time from when the switch SW3 is turned off and disconnected from the initial voltage Vc to when the output V31 of the first comparison circuit 601 is inverted.
  • the second comparison circuit 602 compares the output voltage V30 of the integration circuit 300 with the second reference voltage VL.
  • the second counter 604 measures the time from when the switch SW3 is turned off and disconnected from the initial voltage Vc to when the output V32 of the second comparison circuit 602 is inverted.
  • a capacitor C1 is connected in parallel between the output terminal e and the inverting input terminal c of the operational amplifier circuit 300a, and a resistor R1 is connected between the inverting input terminal c and the terminal a.
  • the reference voltage GND is connected to the non-inverting input terminal d via the GND terminal b.
  • the input voltage Vin is In this range, the polarity of the charge / discharge current can be correctly determined.
  • FIG. 26 is a diagram showing a configuration of a conventional charge amount measurement circuit 2 (see Patent Document 1).
  • the conventional charge amount measurement circuit 2 includes a first switch 101, an integration circuit 200 using an operational amplifier circuit 200a designed to reduce the input offset voltage Vos, an output voltage V20 of the integration circuit 200, and a first voltage.
  • the first comparison circuit 102 that compares the reference voltage VH
  • the second comparison circuit 103 that compares the output voltage V20 of the integration circuit 200 and the second reference voltage VL
  • the first comparison circuit 102 and the second comparison circuit A logic circuit 104 that inputs the output voltages V42 and V43 to and from the comparison circuit 103, a second switch 105 that is controlled to be turned on and off by the output voltage V44 of the logic circuit 104, and a first comparison circuit.
  • the time Tos until the output voltage of either the first comparison circuit 102 or the second comparison circuit 103 is inverted is measured and the first switch 101 is switched to the input terminal a
  • the time Tos And a register 108 that stores the measured value measured by the timer 207 and sets the measured value in the timer 207.
  • the capacitor C and the second switch 105 are connected in parallel between the output terminal e and the inverting input terminal c of the operational amplifier circuit 200a, and between the inverting input terminal c and the input terminal a.
  • a resistor R is connected to the non-inverting input terminal d, and a GND terminal b is connected to the non-inverting input terminal d.
  • a trimming step is provided as an information collection period for correcting the influence of the input offset voltage Vos of the operational amplifier circuit 200a.
  • FIGS. 27A to 27F show the operation of the trimming step.
  • the output voltage V20 of the integrating circuit 200 increases from the second reference voltage VL to the first reference voltage VH during the time Tos. Holds (FIG. 27B).
  • Vdd when the power supply voltage is Vdd, Vdd>VH>VL> 0V.
  • the logic circuit 104 By inversion of the output voltage V43, the logic circuit 104 outputs a signal for turning off the second switch 105 (FIG. 27E).
  • the output voltage V20 of the integrating circuit 200 increases again (FIG. 27 (b)).
  • the timer 207 measures the time Tos until the output voltage V20 of the integration circuit 200 reaches the first reference voltage VH from the second reference voltage VL with the clock CLK having the cycle Tclk (FIG. 27 (f)).
  • the measured time information Nos is stored in the register 108, and the stored time information Nos is set in the timer 207. This time information Nos represents a charge amount corresponding to the input offset voltage Vos. After the trimming step as described above, the process proceeds to the measurement step.
  • the measurement step has two states of charging and discharging.
  • the operation during charging will be described with reference to FIGS. 28 (a) to 28 (g).
  • the condition under which the conventional charge amount measurement circuit 2 can output a correct result that is, the operation when the input voltage Vin is larger than twice the input offset voltage Vos (Vin> 2Vos) will be described (FIG. 28A). ).
  • the first switch 101 is switched to the input terminal a, and the input terminal a and the GND terminal b are connected to both ends of the detection resistor Rin.
  • the output voltage V20 of the integrating circuit 200 decreases from the first reference voltage VH to the second reference voltage VL during the time Tm. Holds (FIG. 28B).
  • the time Tm is It is represented by Here, since the input voltage Vin is Vin> 2Vos, the time Tm is shorter than the time Tos measured in the trimming step. That is, Holds.
  • the output voltage V43 of the second comparison circuit 103 is inverted as shown in FIG.
  • the logic circuit 104 outputs a signal for conducting the second switch 105 (FIG. 28 (e)).
  • the asynchronous counter 206 adds 1 count (FIG. 28 (g)).
  • the second switch 105 is turned on, both ends of the capacitor C are short-circuited, so that the output voltage V20 of the integrating circuit 200 increases (FIG. 28 (b)).
  • the output voltage V20 of the integration circuit 200 increases and reaches the first reference voltage VH, the output voltage V42 of the first comparison circuit 102 is inverted (FIG. 28 (c)).
  • the logic circuit 104 By inversion of the output voltage V42, the logic circuit 104 outputs a signal for turning off the second switch 105 (FIG. 28E).
  • the output voltage V20 of the integrating circuit 200 decreases again.
  • the asynchronous counter 206 adds 1 count (FIG. 28). 28 (g)). In these added values, the charge amount corresponding to the input offset voltage Vos is insufficient from the charge amount corresponding to the input voltage Vin generated at both ends of the detection resistor Rin.
  • the above operation is repeated.
  • Timer 207 outputs an elapsed signal of time Tos stored in register 108. Each time the time Tos elapses, the asynchronous counter 206 is incremented by 1 (FIG. 28 (g)). The value to be added is a charge amount corresponding to the input offset voltage Vos measured in the trimming step, and the charge amount corresponding to the input offset voltage Vos is corrected.
  • FIGS. 29 (a) to 29 (g) the operation during discharge will be described with reference to FIGS. 29 (a) to 29 (g).
  • the operation when the input voltage is Vin ⁇ 0 V FIGS. 29 (a) to 29 (g).
  • the first switch 101 is switched to the input terminal a, and the input terminal a and the GND terminal b are connected to both ends of the detection resistor Rin.
  • the output voltage V20 of the integrating circuit 200 increases from the second reference voltage VL to the first reference voltage VH during the time Tm. Holds (FIG. 29B).
  • the time Tm is It is represented by Here, since the input voltage Vin is Vin ⁇ 0 V, the time Tm is shorter than the time Tos measured in the trimming step as in the case of charging. That is, Holds.
  • the output voltage V42 of the first comparison circuit 102 is inverted as shown in FIG. Due to the inversion of the output voltage V42, the logic circuit 104 outputs a signal for conducting the second switch 105 (FIG. 29E). At this time, the asynchronous counter 206 adds 1 count (FIG. 29 (g)). When the second switch 105 is turned on, both ends of the capacitor C are short-circuited, so that the output voltage V20 of the integrating circuit 200 decreases (FIG. 29 (b)). When the output voltage V20 of the integration circuit 200 decreases and reaches the second reference voltage VL, the output voltage V43 of the second comparison circuit 103 is inverted (FIG. 29 (d)).
  • the logic circuit 104 By inversion of the output voltage V43, the logic circuit 104 outputs a signal for turning off the second switch 105 (FIG. 29 (e)).
  • the second switch 105 becomes non-conductive, the output voltage V20 of the integrating circuit 200 increases again, and when the first reference voltage VH is reached (FIG. 29B), the asynchronous counter 206 adds 1 count ( FIG. 29 (g)).
  • These added values include a charge amount corresponding to the input voltage Vin generated at both ends of the detection resistor Rin and a charge amount corresponding to the input offset voltage Vos.
  • Timer 207 outputs an elapsed signal of time Tos stored in register 108. Every time the time Tos elapses, the asynchronous counter 206 is decremented by one count (FIG. 29 (g)). The value to be subtracted is a charge amount corresponding to the input offset voltage Vos measured in the trimming step, and the charge amount corresponding to the input offset voltage Vos is corrected.
  • the state of the output voltage V30 of the integration circuit 300 depends on the condition of the input voltage Vin.
  • the first problem is that when the input voltage Vin and the input offset voltage Vos are equal, in [Equation 1], the time from the initial voltage Vc to the second reference voltage VL, and the initial voltage Vc to the first reference voltage.
  • Tc time to the voltage VH
  • the second problem is that the polarity of the charge / discharge current may be erroneously determined depending on the conditions of the input voltage Vin and the input offset voltage Vos.
  • the case of the input offset voltage Vos> 0 is compared with the determination result of the conventional voltage polarity determination circuit 303 by examining the slope of the output voltage V30 of the integration circuit 300 for each voltage range of the input voltage Vin.
  • the discrimination result of the conventional voltage polarity discrimination circuit 303 indicates charging and is a correct result.
  • the discrimination result of the conventional voltage polarity discrimination circuit 303 indicates discharge, which is an incorrect result.
  • the discrimination result of the conventional voltage polarity discrimination circuit 303 indicates a discharge and is a correct result.
  • the discrimination result of the conventional voltage polarity discrimination circuit 303 indicates charging and is a correct result.
  • the discrimination result of the conventional voltage polarity discrimination circuit 303 indicates charging and is an incorrect result.
  • the discrimination result of the conventional voltage polarity discrimination circuit 303 indicates a discharge and is a correct result.
  • FIG. 30 (a) to 30 (d) show the conventional voltage polarities when the input offset voltage Vos> 0 and the input voltage Vin is in a charged state of 0 ⁇ Vin ⁇ Vos and a discharged state of Vin ⁇ 0.
  • 7 shows an operation example of a determination circuit 303.
  • the output voltage V30 of the integration circuit 300 reaches the first reference voltage VH in both the charged state and the discharged state, and only one output V31 of the first and second comparison circuits 601 and 602 is inverted. And misjudgment in the state of charge.
  • FIG. 31 is a diagram showing the correctness of the discrimination result of the conventional voltage polarity discrimination circuit 303 with respect to the input offset voltage Vos and the input voltage range of the input voltage Vin.
  • the conventional voltage polarity discrimination circuit 303 has a range in which the input voltage range is erroneously discriminated.
  • the voltage polarity discrimination circuit 303 has one of the output voltages V31 and V32 of the first and second comparison circuits 601 and 602 depending on the input offset voltage Vos of the operational amplifier circuit 300a used in the integration circuit 300. In some cases, the polarity of the charging / discharging current cannot be discriminated, and the polarity of the charging / discharging current is misjudged in the input voltage range.
  • the trimming step time becomes long when the input offset voltage Vos is close to 0 V, and there is a range in the input voltage range that cannot be measured due to an input condition called a dead zone. There was a problem.
  • the first problem is that, when the input offset voltage Vos is close to 0 V in the trimming step, thus, both the first and second comparison circuits 102 and 103 can take a long time until the output voltage is inverted. That is, since the trimming step time is long, it is not suitable for mass production of products. Further, if the trimming step is lengthened, the timer 207 for measuring information for a long time and the register 108 for storing the information each require a large number of bits, so that the circuit scale increases and the area increases accordingly. Also grows.
  • the second problem is that the conventional charge measurement circuit 2 has a dead zone.
  • the measurement step when the input voltage Vin is within the dead band range, the measurement time becomes longer than the time Tos measured in the trimming step, the output voltage V20 of the integration circuit 200 does not increase, and the asynchronous counter 206 is not added. The charge / discharge charge amount may not be measured.
  • FIG. 32A and 32B are diagrams showing the distribution of the input offset voltage Vos and the range of the input voltage Vin of the amplification arithmetic circuit 200a of the integrating circuit 200 provided in the conventional charge amount measuring circuit 2.
  • FIG. is there.
  • the input offset voltage Vos of the operational amplifier circuit 200a cannot be set to 0 V for all products in mass production, and variations always occur (FIG. 32 (a)).
  • the time until the output voltage V20 of the integrating circuit 200 reaches the first reference voltage VH from the second reference voltage VL in the conventional charge amount measurement circuit 2 Tm is expressed by the above [Equation 9].
  • the conventional charge amount measurement circuit 2 can correct the influence of the input offset voltage Vos.
  • the conventional charge amount measurement circuit 2 determines the correct charge amount when ⁇ 2 Vos ⁇ Vin ⁇ 0V. It cannot be measured.
  • the variation range of the input offset voltage Vos when the product is mass-produced is ⁇ Vos to + Vos
  • a range in which the charge amount cannot be measured correctly such as ⁇ 2 Vos to +2 Vos, that is, a dead zone (FIG. 32 (b)).
  • the input offset voltage is ⁇ 1.5 mV
  • the conventional charge amount measurement circuit 2 has a measurement range of ⁇ 2.0 A to ⁇ 300 mA and +300 mA to +2.0 A, and has a dead zone of ⁇ 300 mA to +300 mA.
  • the charge amount (electric amount) of 2400 mAh is consumed in about one week, and the actual remaining capacity becomes zero. Since the conventional charge amount measuring circuit 2 has a dead zone, the remaining capacity of 2400 mAh is displayed.
  • the conventional charge amount measuring circuit 2 takes a trimming step, and the timer 207 that measures long-time information.
  • the circuit scale of each of the registers 108 for storing the information increases, and the area increases accordingly. Further, there is a problem that there is an input voltage range that has a dead zone and cannot be measured correctly.
  • An object of the present invention is to provide a voltage polarity determination circuit that can accurately determine the polarity of a target voltage.
  • Another object of the present invention is to make it possible to measure the charge amount or the current value without having a dead zone in the entire measurement range of the input voltage.
  • the voltage polarity discrimination circuit of the present invention includes an integration circuit, a switch, and a time measurement circuit.
  • the integration circuit is configured using an operational amplifier circuit having an input offset voltage that is greater than the maximum value or less than the minimum value of the input voltage of the integration circuit.
  • the switch switches the input voltage to the integration circuit to a voltage for polarity discrimination or a reference voltage.
  • the time measurement circuit measures the time until the output voltage of the integration circuit reaches a set voltage, and determines the polarity of the input voltage to the integration circuit based on the measurement result.
  • the input offset voltage of the operational amplifier circuit used in the integration circuit is set larger than the absolute value of the input voltage of the integration circuit, so the input voltage range is a continuous range smaller than the input offset voltage. In the range, it is possible to accurately determine the polarity of the input voltage, that is, the polarity of the voltage to be subjected to polarity determination. Further, since the input voltage and the input offset voltage are not equal, it is possible to always determine the polarity of the input voltage, that is, the polarity of the voltage to be subjected to polarity determination.
  • the time measurement circuit includes a first comparison circuit, a second comparison circuit, a logic circuit, a counter, and a determination circuit.
  • the first comparison circuit compares the output voltage of the integration circuit with the first reference voltage and outputs the comparison result.
  • the second comparison circuit compares the output voltage of the integration circuit with a second reference voltage and outputs the comparison result.
  • the logic circuit outputs a voltage that is set and reset in response to inversion of the output voltage of the first comparison circuit and inversion of the output voltage of the second comparison circuit.
  • the counter measures the output of the logic circuit up to a set value.
  • the determination circuit measures a time from when the input voltage to the integration circuit is switched by the switch until the measurement value by the counter reaches the set value, and based on the measurement result, inputs to the integration circuit Determine the polarity of the voltage.
  • the voltage polarity determination circuit further includes an initialization circuit that initializes the output voltage of the integration circuit in response to the output of the logic circuit.
  • the input offset voltage of the operational amplifier circuit used in the integration circuit is set larger than the absolute value of the input voltage of the integration circuit, so the input voltage range is a continuous range smaller than the input offset voltage. In the range, it is possible to accurately determine the polarity of the input voltage, that is, the polarity of the voltage to be subjected to polarity determination. Further, since the input voltage and the input offset voltage are not equal, it is possible to always determine the polarity of the input voltage, that is, the polarity of the voltage to be subjected to polarity determination.
  • the polarity can be accurately determined in the entire input voltage range.
  • the voltage of the polarity discrimination target is a voltage across a detection resistor connected in series to a predetermined power source. In this way, the polarity of the current flowing through the detection resistor can be determined.
  • the charge amount measurement circuit of the present invention includes a voltage charge conversion circuit for converting an input voltage into a pulse corresponding to the charge amount, a charge measurement circuit and a discharge measurement circuit for counting output pulses of the voltage charge conversion circuit,
  • a charge amount measurement circuit having a storage circuit that holds a count value of the charge measurement circuit when the input voltage is 0 V and sets the count value in the charge measurement circuit
  • the count of the charge measurement circuit overflows Is configured to subtract the count value of the discharge measurement circuit when the count reaches the overflow, subtract the count value of the charge measurement circuit when the count of the discharge measurement circuit reaches an overflow, and the voltage charge conversion circuit
  • an integrating circuit using an operational amplifier circuit having an input offset voltage larger than the maximum value of the input voltage or smaller than the minimum value It is obtained by and.
  • Another charge amount measurement circuit of the present invention includes a voltage charge conversion circuit that converts an input voltage into a pulse corresponding to a charge amount, a charge measurement circuit that counts output pulses of the voltage charge conversion circuit, and the input voltage.
  • a time measurement circuit that measures the time until the charge measurement circuit overflows when the voltage is 0 V, and indicates the passage of the measurement time when measuring the charge amount, and each of the charge measurement circuit and the time measurement circuit
  • a charge integrating circuit that counts the number of clocks corresponding to an overflow time difference, a storage circuit that holds a count value of the time measurement circuit when the input voltage is 0 V, and sets the count value in the time measurement circuit;
  • the voltage charge conversion circuit has an input offset voltage that is greater than the maximum value of the input voltage or less than the minimum value. It is obtained by a further comprising an integrating circuit including an operational amplifier circuit that.
  • the input offset voltage of the operational amplifier circuit used in the integrating circuit is made larger than the absolute value of the input voltage, the charge amount during charging / discharging can be reduced in a continuous input voltage range smaller than the input offset voltage. It can be measured.
  • the polarity of the input voltage that is, the polarity of the voltage to be polarity discriminated can be accurately discriminated in the entire input voltage range.
  • the charge amount or the current value can be measured without having a dead zone in the entire measurement range of the input voltage.
  • FIG. 2 is a block diagram illustrating an internal configuration example of a determination circuit in FIG. 1. It is a figure which shows the voltage polarity discrimination circuit by 2nd Embodiment.
  • A) is an input voltage waveform diagram to the voltage polarity discrimination circuit
  • (b) is an output voltage waveform diagram of the integration circuit
  • (c) is an output voltage waveform diagram of the comparison circuit.
  • FIG. 2 is a block diagram illustrating an internal configuration example of a determination circuit in FIG. 1.
  • FIG. 2nd Embodiment (A) is an input voltage waveform diagram to the voltage polarity discrimination circuit, (b) is an output voltage waveform diagram of the integration circuit, (c) and (d) are output voltage waveform diagrams of the comparison circuit, and (e) is a logic circuit diagram.
  • FIG. 5 is a block diagram illustrating an internal configuration example of a determination circuit in FIG. 4. It is a block diagram which shows the structure of the electric charge amount measurement circuit which concerns on the 3rd Embodiment of this invention.
  • FIG. 8 is a waveform diagram showing an operation at the trimming step of the charge amount measurement circuit of FIG. 7, (a) is an input voltage to the charge amount measurement circuit, (b) is an output voltage of the integration circuit, (c).
  • FIG. 8 is a waveform diagram showing an operation at the time of charging of the charge amount measurement circuit of FIG. 7, (a) is an input voltage to the charge amount measurement circuit, (b) is an output voltage of the integration circuit, and (c) is an output voltage.
  • (D) is a charge counter state, (e) is a clock voltage, (f) is a measurement counter state, and (g) is a charge counter state. .
  • FIG. 8 is a waveform diagram showing an operation of the charge amount measurement circuit of FIG.
  • FIG. 13 is a waveform diagram showing an operation at the trimming step of the charge amount measurement circuit of FIG. 12, where (a) shows an input voltage to the charge amount measurement circuit, (b) shows an output voltage of the integration circuit, and (c). Is the output voltage of the first comparison circuit, (d) is the output voltage of the second comparison circuit, (e) is the output voltage of the logic circuit, (f) is the state of the charge counter, (g) is (H) is a diagram showing the state of the measurement counter.
  • FIG. 13 is a waveform diagram showing an operation at the time of charging of the charge amount measurement circuit of FIG.
  • FIG. 13 is a waveform diagram showing the operation of the charge amount measurement circuit of FIG. 12 during discharging, where (a) shows the input voltage to the charge amount measurement circuit, (b) shows the output voltage of the integration circuit, and (c) shows the operation.
  • the output voltage of the logic circuit (d) the state of the charge counter, (e) the overflow signal of the charge counter, (f) the state of the measurement counter, (g) the overflow signal of the measurement counter, ( h) is an enable signal from the start / stop control circuit, (i) is a clock voltage, and (j) is a diagram showing the state of the integration counter. It is the figure which represented the time in a measurement counter, an electric charge counter, and an integration counter with a number line, (a) is a time relation in a trimming step, (b) is a time relation at the time of charge, (c) is a discharge. It is a figure which shows the time relationship at the time of, respectively.
  • FIG. 3 is a circuit diagram of an operational amplifier circuit in which an input offset voltage is set by making a difference in the size of a pair of transistors in a differential input stage according to an embodiment of the present invention.
  • FIG. 4 is a circuit diagram of an operational amplifier circuit in which an input offset voltage is set with a difference in the amount of current of a current source according to an embodiment of the present invention.
  • FIG. 3 is a circuit diagram of an operational amplifier circuit in which an input offset voltage is set by making a difference between resistance values of offset resistors connected to a pair of transistors in a differential input stage according to an embodiment of the present invention.
  • FIG. 4 is a circuit diagram of an operational amplifier circuit in which an input offset voltage is set by making a difference between resistance values of offset resistors connected to a current source according to an embodiment of the present invention. It is a circuit diagram of the operational amplifier circuit which set the input offset voltage by the bias voltage which concerns on embodiment of this invention. It is a figure which shows the conventional voltage polarity discrimination circuit.
  • FIG. 4 is a diagram showing an output voltage of the first comparison circuit, (d) is an output voltage of the second comparison circuit, (e) is an output voltage of the logic circuit, and (f) is a voltage of the clock. It is a wave form diagram which shows the operation
  • FIG. 27 is a waveform diagram showing an operation during discharging of the charge amount measurement circuit of FIG. 26, where (a) shows the input voltage to the charge amount measurement circuit, (b) shows the output voltage of the integration circuit, and (c) shows The output voltage of the first comparison circuit, (d) the output voltage of the second comparison circuit, (e) the output voltage of the logic circuit, (f) the clock voltage, and (g) the asynchronous counter. It is a figure which shows each of these states.
  • FIG. 1 is a configuration diagram of a voltage polarity determination circuit 301 according to the first embodiment.
  • the voltage polarity determination circuit 301 includes a switch SW 0, an integration circuit 100, an initialization circuit 311, and a time measurement circuit 312.
  • the integration circuit 100 includes an operational amplifier circuit 100a, a capacitor C1, and a resistor R1.
  • the capacitor C1 is connected between the output terminal e and the inverting input terminal c of the operational amplifier circuit 100a.
  • the resistor R1 is connected between the inverting input terminal c of the operational amplifier circuit 100a and the switch SW0.
  • the non-inverting input terminal d of the operational amplifier circuit 100a is connected to the reference voltage GND through the GND terminal b.
  • the operational amplifier circuit 100a has an input offset voltage Vosa whose level is outside the input voltage range.
  • “outside the input voltage range” is a region that is larger than the maximum value or smaller than the minimum value of the input voltage Vin of the integration circuit 100.
  • the input offset voltage Vosa is preferably set at a level outside the input voltage range of the input voltage Vin, but may be set in a region close to the maximum value or the minimum value where the frequency of occurrence of the input voltage Vin is low.
  • the switch SW0 switches the connection destination of the inverting input terminal c of the operational amplifier circuit 100a to the input terminal a or the GND terminal b.
  • the input terminal a is connected to a node between the negative electrode of the secondary battery and the detection resistor Rin.
  • the initialization circuit 311 includes a switch SW1.
  • the switch SW1 is connected in parallel with the capacitor C1 between the output terminal e and the inverting input terminal c of the operational amplifier circuit 100a.
  • the time measurement circuit 312 includes a comparison circuit 401 and a determination circuit 402.
  • the comparison circuit 401 compares the output voltage V10 of the integration circuit 100 with the reference voltage VH and outputs the result.
  • the determination circuit 402 measures a time (Tdis or Tch) from when the connection destination of the inverting input terminal c is switched to the input terminal a or the GND terminal b by the switch SW0 until the output voltage V11 of the comparison circuit 401 is inverted. .
  • the output voltage V10 of the integrating circuit 100 reaches the reference voltage VH from the reference voltage GND. If this time is Tosa, Holds. From [Equation 28], the time Tosa is When the time Tosa elapses, the output voltage V11 of the comparison circuit 401 is inverted as shown in FIG. This time Tosa is used as a reference time for determining the polarity of charge / discharge.
  • switch SW0 is switched to the input terminal a side, and the time corresponding to the state of charge or discharge is measured. At this time, an input voltage Vin having a different polarity is applied depending on charging and discharging of the secondary battery.
  • the output voltage V10 of the integrating circuit 100 at this time is set so that the time from the reference voltage GND to the reference voltage VH is Tch (charge in FIG. 2B), and the input offset voltage Vosa is larger than the input voltage range (Vosa> Vin). Therefore, for the input voltage range (0V ⁇ Vin ⁇ Vosa) during charging, Holds. From [Equation 30], the time Tch is When this time Tch elapses, the output voltage V11 of the comparison circuit 401 is inverted (charging in FIG. 2 (c)). At this time, the time Tch is longer than the time Tosa.
  • the output voltage V10 of the integration circuit 100 at this time is such that the time from the reference voltage GND to the reference voltage VH is Tdis (discharge in FIG. 2B), and the input offset voltage Vosa is larger than the input voltage range (Vosa> Vin). Therefore, for the input voltage range ( ⁇ Vosa ⁇ Vin ⁇ 0V) during discharge, Holds.
  • the time Tdis is When the time Tdis elapses, the output voltage V11 of the comparison circuit 401 is inverted (discharge in FIG. 2C). At this time, the time Tdis is shorter than the time Tosa.
  • This comparison is performed in the determination circuit 402 by holding the measurement results of the respective times Tosa, Tdis, and Tch in a storage circuit such as a register and performing an operation such as subtraction on the time Tosa.
  • the determination circuit 402 is a timer that measures the time from when the input voltage to the integration circuit 100 is switched by the switch SW0 until the output voltage V11 of the comparison circuit 401 is inverted using the clock CLK. 701, a storage circuit 702 that stores the measurement result of the timer 701, and an arithmetic circuit 703 that compares the measurement result.
  • the determination circuit 402 may be processed by a down counter in which the measurement result of the time Tosa is set. This process may be performed by a microcomputer outside the voltage polarity determination circuit 301 or a dedicated arithmetic circuit.
  • the input offset voltage Vosa given to the operational amplifier circuit 100a used in the integrating circuit 100 is made larger than the input voltage Vin, the input voltage Vin is a continuous value of ⁇ Vosa ⁇ Vin ⁇ Vosa.
  • the polarity of the charge / discharge current is determined by comparing the time to reach the reference voltage VH of the output voltage V10 of the integration circuit 100 with respect to the input voltage Vin is shown, but the reference time is set.
  • FIG. 4 is a configuration diagram of the voltage polarity determination circuit 302 according to the second embodiment.
  • the voltage polarity determination circuit 302 includes a switch SW0, an integration circuit 100, an initialization circuit 321 and a time measurement circuit 322.
  • the integration circuit 100 includes an operational amplifier circuit 100a, a capacitor C1, and a resistor R1.
  • the capacitor C1 is connected between the output terminal e and the inverting input terminal c of the operational amplifier circuit 100a.
  • the resistor R1 is connected between the inverting input terminal c of the operational amplifier circuit 100a and the switch SW0.
  • the non-inverting input terminal d of the operational amplifier circuit 100a is connected to the reference voltage GND through the GND terminal b.
  • the operational amplifier circuit 100a has an input offset voltage Vosa whose level is outside the input voltage range.
  • “outside of the input voltage range” is a region larger than the maximum value or smaller than the minimum value of the input voltage Vin of the integration circuit 100.
  • the input offset voltage Vosa is preferably set to a level outside the input voltage range of the input voltage Vin, but may be set to a region close to the maximum value or the minimum value where the frequency of occurrence of the input voltage Vin is low.
  • the switch SW0 switches the connection destination of the inverting input terminal c of the operational amplifier circuit 100a to the input terminal a or the GND terminal b.
  • the input terminal a is connected to a node between the negative electrode of the secondary battery and the detection resistor Rin.
  • the time measurement circuit 322 includes first and second comparison circuits 401 and 502, a logic circuit 503, a counter 504, and a determination circuit 505.
  • the first comparison circuit 401 compares the output voltage V10 of the integration circuit 100 with the first reference voltage VH and outputs the result.
  • the second comparison circuit 502 compares the output voltage V10 of the integration circuit 100 with the second reference voltage VL and outputs the result.
  • the logic circuit 503 receives the output voltage V11 of the first comparison circuit 401 and the output voltage V22 of the second comparison circuit 502, and outputs a voltage V23.
  • the counter 504 measures the output voltage V23 of the logic circuit 503 up to a set value.
  • the determination circuit 505 measures the time from when the connection destination of the inverting input terminal c is switched to the input terminal a or the GND terminal b by the switch SW0 until the measurement value of the counter 504 reaches the set value, and the polarity of the charge / discharge current Is determined.
  • V24 is a measurement value of the counter 504, and CLK is a clock input to the determination circuit 505.
  • the initialization circuit 321 includes a switch SW2.
  • the switch SW2 is connected in parallel with the capacitor C1 between the output terminal e and the inverting input terminal c of the operational amplifier circuit 100a.
  • the switch SW2 switches between a conductive state and a nonconductive state in response to the output voltage V23 of the logic circuit 503.
  • the output voltage V10 of the integrating circuit 100 reaches the first reference voltage VH from the second reference voltage VL as shown in FIG. If this time is Tosa, Holds. From [Equation 35], the time Tosa is When the time Tosa elapses, the output voltage V11 of the first comparison circuit 401 is inverted as shown in FIG. 5C (Vdd ⁇ 0). In response to this, the output voltage V23 of the logic circuit 503 is reset as shown in FIG.
  • the time of one cycle of the output voltage V10 of the integrating circuit 100 is Therefore, if the set number of times is 2 N times, the time Tosn until the set number of times is (FIG. 5 (f)). It becomes.
  • Tosn in FIG. 5 (f) is set to Tdisn when discharging, and FIG. 5 (f) is set when charging. Tosn is replaced with Tchn.
  • This comparison is performed in the determination circuit 505 by holding the measurement results of the respective times Tosn, Tdisn, Tchn in a storage circuit such as a register and performing an operation such as subtraction on the time Tosn.
  • the determination circuit 505 measures the time from when the input voltage to the integration circuit 100 is switched by the switch SW0 until the measurement value V24 by the counter 504 reaches the set value using the clock CLK.
  • the determination circuit 505 may be processed by a down counter in which the measurement result of the time Tosn is set. This process may be performed by a microcomputer outside the voltage polarity determination circuit 302 or a dedicated arithmetic circuit.
  • the present embodiment even in a system that measures time by measuring the number of clocks with a counter, it is possible to accurately determine the polarity with respect to the entire range of charge / discharge current.
  • the output voltages V11 and V22 of the circuits 401 and 502 are inverted, and the polarity of the charge / discharge current can be determined.
  • FIG. 7 is a configuration diagram of the charge amount measuring circuit 1 according to the third embodiment of the present invention.
  • the charge amount measurement circuit 1 counts the first switch 101, the voltage charge conversion circuit 10 that converts the input voltage into a pulse corresponding to the charge amount, and the output pulses of the voltage charge conversion circuit 10.
  • Charge measurement circuit 30 that subtracts the count value
  • discharge measurement circuit 20 that counts the output pulse of the voltage charge conversion circuit 10 and subtracts the count value of the charge measurement circuit 30, and a charge measurement circuit when the input voltage Vin is 0V
  • the storage circuit 50 holds the count value of 30 and sets the count value in the charge measurement circuit 30, and the voltage charge conversion circuit 10 is larger than the maximum value or smaller than the minimum value of the input voltage Vin.
  • An integrating circuit 100 using an operational amplifier circuit 100a having an input offset voltage Vosa is provided.
  • the voltage-to-charge converter circuit 10 includes an integrating circuit 100 configured using an operational amplifier circuit 100a having an input offset voltage Vosa, and a first that switches an input voltage Vin to the integrating circuit 100 to an input terminal a or a GND terminal b.
  • the first comparison circuit 102 that compares the output voltage V10 of the integration circuit 100 and the first reference voltage VH and outputs the comparison result, the output voltage V10 of the integration circuit 100 and the second reference voltage Set in response to the second comparison circuit 103 that compares VL and outputs the comparison result, and the inversion of the output voltage V12 of the first comparison circuit 102 or the inversion of the output voltage V13 of the second comparison circuit 103 ,
  • a logic circuit 104 that outputs a reset voltage, and a second switch 105 that is controlled to be turned on and off by the output voltage V14 of the logic circuit 104. It is constructed from.
  • the charge measuring circuit 30 measures the time Tosa until the charge counter 106 reaches an overflow (O / F) with the clock CLK.
  • the first switch 101 is connected to the input terminal a, that is, when the measurement counter 107 indicating the passage of the measurement time based on the clock CLK and the measurement counter 107 overflow in the measurement step.
  • a charge counter 109 that adds 1 count and decrements 1 count when the charge counter 106 overflows.
  • the discharge measurement circuit 20 counts the number of times the output voltage of the first comparison circuit 102 or the second comparison circuit 103 is inverted, and adds 1 count when the charge counter 106 overflows. And a discharge counter 110 that subtracts one count when the battery overflows.
  • a capacitor C and a second switch 105 are connected in parallel between the output terminal e and the inverting input terminal c of the operational amplifier circuit 100a, and between the inverting input terminal c and the input terminal a.
  • a resistor R is connected to the non-inverting input terminal d, and a GND terminal b is connected to the non-inverting input terminal d.
  • the operational amplifier circuit 100a has an input offset voltage Vosa whose level is outside the input voltage range.
  • “outside the input voltage range” is a region that is larger than the maximum value or smaller than the minimum value of the input voltage Vin of the integration circuit 100.
  • the input offset voltage Vosa is preferably set at a level outside the input voltage range of the input voltage Vin, but may be set in a region close to the maximum value or the minimum value where the frequency of occurrence of the input voltage Vin is low.
  • a trimming step is provided as an information collection period for correcting the influence of the input offset voltage Vosa set in the operational amplifier circuit 100a.
  • FIGS. 8A to 8H show the operation of the trimming step when the set input offset voltage Vosa> 0V.
  • the output voltage V10 of the integrating circuit 100 increases from the second reference voltage VL to the first reference voltage VH during the time Tosa. Holds (FIG. 8B).
  • the time Tosa is After this time Tosa, the output voltage V10 of the integration circuit 100 reaches the first reference voltage VH, and the output voltage V12 of the first comparison circuit 102 is inverted as shown in FIG.
  • the logic circuit 104 outputs a signal for conducting the second switch 105 (FIG. 8E).
  • the second switch 105 is turned on, both ends of the capacitor C are short-circuited, so that the output voltage V10 of the integrating circuit 100 decreases (FIG. 8B).
  • the output voltage V10 of the integration circuit 100 decreases and reaches the second reference voltage VL, the output voltage V13 of the second comparison circuit 103 is inverted (FIG. 8 (d)).
  • the logic circuit 104 By inversion of the output voltage V13, the logic circuit 104 outputs a signal for turning off the second switch 105 (FIG. 8E).
  • the output voltage V10 of the integration circuit 100 increases again (FIG. 8B).
  • the measurement counter 107 determines the time Tosan (FIG. 8 (f)) until the number of inversions of the output voltage V14 of the logic circuit 104 reaches the N count of the set value of the charge counter 106, and the clock CLK (FIG. 8). (G)) to measure (FIG. 8 (h)).
  • the time information Nosa is stored in the register 108, and the stored time information Nosa is set in the measurement counter 107. This time information Nosa represents a charge amount corresponding to the set input offset voltage Vosa.
  • the second switch 105 When the second switch 105 is turned on and the output voltage V10 of the integration circuit 100 changes from the first reference voltage VH to the second reference voltage VL, the second switch 105 has a resistance, so that the time Trst (Refer to FIG. 27 (b)) occurs, but since its value is generally small, it is ignored here. If the resistance when the second switch 105 is conductive is large, the time Trst may be measured and corrected.
  • the measurement step has two states of charging and discharging.
  • the operation at the time of charging will be described with reference to FIGS. 9 (a) to 9 (g).
  • FIGS. 9 (a) to 9 (g) Here, the operation in the case of 0V ⁇ Vin ⁇ Vosa (FIG. 9A) will be described.
  • the first switch 101 is switched to the input terminal a, and the input terminal a and the GND terminal b are connected to both ends of the detection resistor Rin.
  • the output voltage V10 of the integration circuit 100 increases from the second reference voltage VL to the first reference voltage VH during the time Tm. Holds (FIG. 9B).
  • the time Tm is It is represented by Here, since the input voltage Vin is 0V ⁇ Vin ⁇ Vosa, the time Tm is longer than the time Tosa measured in the trimming step. That is, Holds.
  • the output voltage V10 of the integration circuit 100 reaches the first reference voltage VH, and the output voltage V12 of the first comparison circuit 102 is inverted.
  • the logic circuit 104 outputs a signal for conducting the second switch 105 (FIG. 9C).
  • the charge counter 106 adds 1 count (FIG. 9D).
  • the second switch 105 is turned on, both ends of the capacitor C are short-circuited, so that the output voltage V10 of the integrating circuit 100 decreases (FIG. 9B).
  • the output voltage V10 of the integration circuit 100 decreases and reaches the second reference voltage VL, the output voltage V13 of the second comparison circuit 103 is inverted.
  • the logic circuit 104 By inversion of the output voltage V13, the logic circuit 104 outputs a signal for turning off the second switch 105 (FIG. 9C).
  • the second switch 105 becomes non-conductive, the output voltage V10 of the integrating circuit 100 increases again.
  • the charge counter 106 adds 1 count (FIG. 9). 9 (d)).
  • the input voltage Vin is continuously applied, the above operation is repeated.
  • the measurement counter 107 counts the time information Nosa stored in the register 108 (FIG. 9 (f)).
  • the charge counter 109 adds 1 count each time the measurement counter 107 counts the time information Nosa, that is, every time the time Tosan passes, and when the charge counter 106 overflows the set value N, the charge counter 109 One count is subtracted from the count value of 109 (FIG. 9 (g)).
  • This added value includes a charge amount corresponding to the input voltage Vin generated at both ends of the detection resistor Rin and a charge amount corresponding to the set input offset voltage Vosa.
  • the value to be subtracted is a charge amount corresponding to the set input offset voltage Vosa measured in the trimming step. By subtracting from the count value of the charge counter 109, the value to be subtracted corresponds to the set input offset voltage Vosa. The charge amount is corrected.
  • FIGS. 10 (a) to 10 (g) the operation during discharging will be described with reference to FIGS. 10 (a) to 10 (g).
  • the operation when the input voltage Vin is ⁇ Vosa ⁇ Vin ⁇ 0 V (FIG. 10A) will be described.
  • the first switch 101 is switched to the input terminal a, and the input terminal a and the GND terminal b are connected to both ends of the detection resistor Rin.
  • the output voltage V10 of the integration circuit 100 increases from the second reference voltage VL to the first reference voltage VH during the time Tm. Holds (FIG. 10B).
  • the time Tm is It is represented by Here, since the input voltage Vin is Vin ⁇ 0V, the time Tm is shorter than the time Tosa measured in the trimming step. That is, Holds.
  • the output voltage V10 of the integration circuit 100 reaches the first reference voltage VH, and the output voltage V12 of the first comparison circuit 102 is inverted.
  • the logic circuit 104 outputs a signal for conducting the second switch 105 (FIG. 10C).
  • the charge counter 106 adds 1 count (FIG. 10D).
  • the second switch 105 is turned on, both ends of the capacitor C are short-circuited, so that the output voltage V10 of the integrating circuit 100 decreases (FIG. 10B).
  • the output voltage V10 of the integration circuit 100 decreases and reaches the second reference voltage VL, the output voltage V13 of the second comparison circuit 103 is inverted.
  • the logic circuit 104 outputs a signal for turning off the second switch 105 (FIG. 10C).
  • the second switch 105 becomes non-conductive, the output voltage V10 of the integrating circuit 100 increases again.
  • the charge counter 106 adds 1 count (FIG. 10). 10 (d)).
  • the above operation is repeated as in the charged state.
  • the measurement counter 107 counts the time information Nosa stored in the register 108 (FIG. 10 (f)).
  • the discharge counter 110 adds 1 count every time the charge counter 106 counts the set value N, and when the measurement counter 107 overflows the set value Nosa, 1 count is subtracted from the count value of the discharge counter 110 ( FIG. 10 (e)).
  • This added value includes a charge amount corresponding to the input voltage Vin generated at both ends of the detection resistor Rin and a charge amount corresponding to the set input offset voltage Vosa.
  • the value to be subtracted is the amount of charge corresponding to the set input offset voltage Vosa measured in the trimming step. By subtracting from the count value of the discharge counter 110, the value to be subtracted corresponds to the set input offset voltage Vosa. The charge amount is corrected.
  • the charge amount qosa per count of the charge counter 106 and the charge amount qclk per clock of the measurement counter 107 are detected.
  • the time Tosa when the output voltage V10 of the integration circuit 100 changes from the first reference voltage VH to the level of the second reference voltage VL is expressed by the above-mentioned [Equation 47].
  • the product of the time Tosa and the current Iosa represents the amount of charge.
  • the charge amount qosa can be considered as a charge amount corresponding to the set input offset voltage Vosa.
  • the element constants (C, R, Rin) in [Equation 56] are values that can be measured by a measuring instrument such as an impedance analyzer.
  • FIG. 11A shows a time relationship in the measurement counter 107 and the charge counter 106 in the trimming step. Since the charge amount qosa is a charge amount for one count of the charge counter 106, if the set amount N is counted, that is, the charge amount when the charge counter 106 overflows is Qosa, It becomes.
  • the time Tosan when the charge counter 106 reaches the set value N count and reaches the charge amount Qosa is measured by the measurement counter 107 using the clock CLK.
  • the count number at this time is Nosa and is stored in the register 108.
  • the charge amount qclk for one clock of the measurement counter 107 is calculated using this count number Nosa. It can be expressed as. Since the count number N, Nosa and the charge amount qosa in [Formula 58] are both known, the charge amount qclk can be easily obtained.
  • the charge amount is obtained using the charge amounts qosa and qclk obtained in the trimming step.
  • FIG. 11B shows the time relationship in the measurement counter 107 and the charge counter 106 during charging.
  • the time Tmc of the charge counter 106 is a time when the charge counter 106 overflows after N counts due to the influence of the input voltage Vin and the set input offset voltage Vosa. At this time, the charge amount has reached Qosa.
  • the time Tosan of the measurement counter 107 is a time when the charge counter 106 reaches an overflow after N counts due to the influence of only the set input offset voltage Vosa.
  • the time Tch related only to the input voltage Vin is a time obtained by subtracting the time Tosan from the time Tmc. It is.
  • the charge amount Qch corresponding to this time Tch is Can be obtained as
  • the count counter 107 and the charge counter 109 remain in the count value Nch obtained by subtracting the count value Nosa corresponding to the charge amount Qosa, and the count value Nch is trimmed.
  • the charge amount Qch at the time of charging can be obtained as represented by [Equation 61].
  • the charge amount is obtained using the charge amounts qosa and qclk obtained in the trimming step.
  • FIG. 11C shows a time relationship in the measurement counter 107 and the charge counter 106 during discharge.
  • the measurement counter 107 reaches time Tosan, that is, when overflowing after counting Nosa, the charge counter 106 The time has passed.
  • the time Tmd of the charge counter 106 is a time when the charge counter 106 overflows after N counts due to the influence of the input voltage Vin and the set input offset voltage Vosa. At this time, the charge amount has reached Qosa.
  • the time Tosan of the measurement counter 107 is a time when the charge counter 106 reaches an overflow after N counts due to the influence of only the set input offset voltage Vosa.
  • the time Tdis relating only to the input voltage Vin is a time obtained by subtracting the time Tmd from the time Tosan of the measurement counter 107. It is.
  • the charge amount Qdis corresponding to this time Tdis is Can be obtained as
  • the state of the charge counter 106 and the discharge counter 110 remains as a count value Ndis obtained by subtracting the count value Nosa corresponding to the charge amount Qosa, and the count value Ndis is obtained by trimming.
  • the charge amount Qdis at the time of discharge can be obtained as represented by [Equation 64].
  • the current is obtained by dividing the amount of change in the charge amount by the elapsed time, it can be easily obtained using the charge amount obtained by charging and discharging.
  • the charging current Ich is It is obtained by Also, the discharge current Idis is It is obtained by
  • FIG. 12 is a configuration diagram of the charge amount measuring circuit 1 according to the fourth embodiment of the present invention.
  • the charge amount measurement circuit 1 includes a first switch 101, a voltage charge conversion circuit 10 that converts an input voltage Vin into a pulse corresponding to the charge amount, and a charge measurement circuit 25 that counts output pulses of the voltage charge conversion circuit 10. The time until the charge measurement circuit 25 overflows when the input voltage Vin is 0 V is measured by the clock CLK, and the time measurement circuit 35 indicating the passage of the measurement time at the time of charge amount measurement, the charge measurement circuit 25 and the time measurement.
  • the charge integration circuit 40 that counts the number of clocks CLK corresponding to each overflow time difference from the circuit 35, and the count value of the time measurement circuit 35 when the input voltage Vin is 0V, and the count value
  • the voltage / charge conversion circuit 10 is configured to be larger than the maximum value of the input voltage Vin.
  • a integrating circuit 100 including an operational amplifier circuit 100a having the minimum value is less than the input offset voltage Vosa.
  • the voltage-to-charge converter circuit 10 includes an integrating circuit 100 configured using an operational amplifier circuit 100a having an input offset voltage Vosa, and a first that switches an input voltage Vin to the integrating circuit 100 to an input terminal a or a GND terminal b.
  • the first comparison circuit 102 that compares the output voltage V10 of the integration circuit 100 and the first reference voltage VH and outputs the comparison result, the output voltage V10 of the integration circuit 100 and the second reference voltage Set in response to the second comparison circuit 103 that compares VL and outputs the comparison result, and the inversion of the output voltage V12 of the first comparison circuit 102 or the inversion of the output voltage V13 of the second comparison circuit 103 ,
  • a logic circuit 104 that outputs a reset voltage, and a second switch 105 that is controlled to be turned on and off by the output voltage V14 of the logic circuit 104. It is constructed from.
  • the charge measurement circuit 25 includes a charge counter 106 that counts the number of times the output voltage of the first comparison circuit 102 or the second comparison circuit 103 is inverted.
  • the time measuring circuit 35 measures a time Tosa until the charge counter 106 overflows with the clock CLK, and first time
  • a measurement counter 107 that indicates the passage of measurement time based on the clock CLK is provided.
  • the charge integrating circuit 40 detects an overflow signal (first overflow signal) OF1 of the charge counter 106 and an overflow signal (second overflow signal) OF2 of the measurement counter 107 from any overflow signal previously input. And a start / stop control circuit 111 for generating an enable signal EN indicating a period until another overflow signal inputted later, and an integration counter 112 controlled to be counted or stopped by the enable signal EN of the start / stop control circuit 111. Has been.
  • the storage circuit 50 includes a register 108 that stores a measurement value measured by the measurement counter 107 when the input voltage Vin is 0 V and sets the measurement value in the measurement counter 107.
  • a capacitor C and a second switch 105 are connected in parallel between the output terminal e and the inverting input terminal c of the operational amplifier circuit 100a, and between the inverting input terminal c and the input terminal a.
  • a resistor R is connected to the non-inverting input terminal d, and a GND terminal b is connected to the non-inverting input terminal d.
  • the operational amplifier circuit 100a has an input offset voltage Vosa whose level is outside the input voltage range.
  • “outside the input voltage range” is a region that is larger than the maximum value or smaller than the minimum value of the input voltage Vin of the integration circuit 100.
  • the input offset voltage Vosa is preferably set at a level outside the input voltage range of the input voltage Vin, but may be set in a region close to the maximum value or the minimum value where the frequency of occurrence of the input voltage Vin is low.
  • a trimming step is provided as an information collection period for correcting the influence of the input offset voltage Vosa set in the operational amplifier circuit 100a.
  • FIGS. 13A to 13H show the operation of the trimming step when the set input offset voltage Vosa> 0V.
  • the output voltage V10 of the integrating circuit 100 increases from the second reference voltage VL to the first reference voltage VH during the time Tosa. Holds (FIG. 13B).
  • the time Tosa is After this time Tosa, the output voltage V10 of the integration circuit 100 reaches the first reference voltage VH, and the output voltage V12 of the first comparison circuit 102 is inverted as shown in FIG. Due to the inversion of the output voltage V12, the logic circuit 104 outputs a signal for conducting the second switch 105 (FIG. 13E).
  • the second switch 105 When the second switch 105 is turned on, both ends of the capacitor C are short-circuited, so that the output voltage V10 of the integrating circuit 100 decreases (FIG. 13 (b)).
  • the output voltage V13 of the second comparison circuit 103 is inverted (FIG. 13 (d)).
  • the logic circuit 104 By inversion of the output voltage V13, the logic circuit 104 outputs a signal for turning off the second switch 105 (FIG. 13E).
  • the output voltage V10 of the integrating circuit 100 increases again (FIG. 13 (b)).
  • the measurement counter 107 determines the time Tosan (FIG. 13 (f)) until the number of inversions of the output voltage V14 of the logic circuit 104 reaches the N count of the set value of the charge counter 106, and the clock CLK (FIG. 13). (G)) to measure (FIG. 13 (h)).
  • the time information Nosa is stored in the register 108, and the stored time information Nosa is set in the measurement counter 107. This time information Nosa represents a charge amount corresponding to the set input offset voltage Vosa.
  • the second switch 105 When the second switch 105 is turned on and the output voltage V10 of the integration circuit 100 changes from the first reference voltage VH to the second reference voltage VL, the second switch 105 has a resistance, so that the time Trst (Refer to FIG. 27 (b)) occurs, but since its value is generally small, it is ignored here. If the resistance when the second switch 105 is conductive is large, the time Trst may be measured and corrected.
  • the first switch 101 is switched to the input terminal a, and the input terminal a and the GND terminal b are connected to both ends of the detection resistor Rin.
  • the output voltage V10 of the integration circuit 100 increases from the second reference voltage VL to the first reference voltage VH during the time Tm. Holds (FIG. 14B).
  • the time Tm is It is represented by Here, since the input voltage Vin is 0V ⁇ Vin ⁇ Vosa, the time Tm is longer than the time Tosa measured in the trimming step. That is, Holds.
  • the output voltage V10 of the integration circuit 100 reaches the first reference voltage VH, and the output voltage V12 of the first comparison circuit 102 is inverted.
  • the logic circuit 104 outputs a signal for conducting the second switch 105 (FIG. 14C).
  • the charge counter 106 adds 1 count (FIG. 14D).
  • the second switch 105 is turned on, both ends of the capacitor C are short-circuited, so that the output voltage V10 of the integrating circuit 100 decreases (FIG. 14B).
  • the output voltage V10 of the integration circuit 100 decreases and reaches the second reference voltage VL, the output voltage V13 of the second comparison circuit 103 is inverted.
  • the logic circuit 104 outputs a signal for turning off the second switch 105 (FIG. 14C).
  • the second switch 105 becomes non-conductive, the output voltage V10 of the integrating circuit 100 increases again.
  • the charge counter 106 adds one count (FIG. 14). 14 (d)).
  • the input voltage Vin is continuously applied, the above operation is repeated.
  • the charge counter 106 outputs the first overflow signal OF1 every time it counts to the set value N (FIG. 14 (d)) (FIG. 14 (e)).
  • the measurement counter 107 outputs the second overflow signal OF2 every time it counts up to the time information Nosa stored in the register 108 (FIG. 14 (f)), that is, every time the time Tosan elapses (FIG. 14). 14 (g)).
  • the start / stop control circuit 111 starts from the second overflow signal OF2 (FIG. 14 (g)) of the measurement counter 107 and stops at the first overflow signal OF1 (FIG. 14 (e)) of the charge counter 106. EN is output (FIG. 14 (h)).
  • the integration counter 112 counts the number of clocks CLK (FIG. 14 (i)) during which the enable signal EN is output from the start / stop control circuit 111 (FIG. 14 (j)).
  • the length of the period in which the integration counter 112 is stopped represents the amount of charge corresponding to the set input offset voltage Vosa, and the length of the period from the start to the stop is the input voltage generated at both ends of the detection resistor Rin. It represents the amount of charge corresponding to Vin. Therefore, only the charge amount to be measured corresponding to the input voltage Vin is cumulatively added to the integration counter 112.
  • FIGS. 15 (a) to 15 (j) the operation during discharging will be described with reference to FIGS. 15 (a) to 15 (j).
  • the operation when the input voltage Vin is ⁇ Vosa ⁇ Vin ⁇ 0 V (FIG. 15A) will be described.
  • the first switch 101 is switched to the input terminal a, and the input terminal a and the GND terminal b are connected to both ends of the detection resistor Rin.
  • the output voltage V10 of the integration circuit 100 increases from the second reference voltage VL to the first reference voltage VH during the time Tm. Holds (FIG. 15B).
  • the time Tm is It is represented by Here, since the input voltage Vin is Vin ⁇ 0V, the time Tm is shorter than the time Tosa measured in the trimming step. That is, Holds.
  • the output voltage V10 of the integration circuit 100 reaches the first reference voltage VH, and the output voltage V12 of the first comparison circuit 102 is inverted.
  • the logic circuit 104 outputs a signal for conducting the second switch 105 (FIG. 15C).
  • the charge counter 106 adds 1 count (FIG. 15D).
  • the second switch 105 is turned on, both ends of the capacitor C are short-circuited, so that the output voltage V10 of the integrating circuit 100 decreases (FIG. 15 (b)).
  • the output voltage V10 of the integration circuit 100 decreases and reaches the second reference voltage VL, the output voltage V13 of the second comparison circuit 103 is inverted.
  • the logic circuit 104 By inversion of the output voltage V13, the logic circuit 104 outputs a signal for turning off the second switch 105 (FIG. 15C).
  • the second switch 105 becomes non-conductive, the output voltage V10 of the integrating circuit 100 increases again, and when the first reference voltage VH is reached (FIG. 15B), the charge counter 106 adds 1 count (FIG. 15). 15 (d)).
  • the above operation is repeated as in the charged state.
  • the charge counter 106 outputs the first overflow signal OF1 every time it counts to the set value N (FIG. 15 (d)) (FIG. 15 (e)).
  • the measurement counter 107 outputs the second overflow signal OF2 every time it counts up to the time information Nosa stored in the register 108 (FIG. 15 (f)), that is, every time the time Tosan elapses (FIG. 15). 15 (g)).
  • the start / stop control circuit 111 starts from the first overflow signal OF1 (FIG. 15 (e)) of the charge counter 106 and stops at the second overflow signal OF2 (FIG. 15 (g)) of the measurement counter 107.
  • EN is output (FIG. 15 (h)).
  • the integration counter 112 counts the number of clocks CLK (FIG. 15 (i)) during which the enable signal EN is output from the start / stop control circuit 111 (FIG. 15 (j)).
  • the length of the period in which the integration counter 112 is stopped represents the amount of charge corresponding to the set input offset voltage Vosa, and the length of the period from the start to the stop is the input voltage generated at both ends of the detection resistor Rin. It represents the amount of charge corresponding to Vin. Therefore, only the charge amount to be measured corresponding to the input voltage Vin is cumulatively added to the integration counter 112.
  • the charge amount qosa per count of the charge counter 106 and the charge amount qclk per clock of the measurement counter 107 are detected.
  • the time Tosa when the output voltage V10 of the integrating circuit 100 changes from the first reference voltage VH to the level of the second reference voltage VL is expressed by the above-described [Equation 68].
  • the product of the time Tosa and the current Iosa represents the amount of charge.
  • the charge amount qosa can be considered as a charge amount corresponding to the set input offset voltage Vosa.
  • the element constants (C, R, Rin) in [Equation 77] are values that can be measured by a measuring instrument such as an impedance analyzer.
  • FIG. 16A shows a time relationship in the measurement counter 107 and the charge counter 106 in the trimming step. Since the charge amount qosa is a charge amount for one count of the charge counter 106, if the set amount N is counted, that is, the charge amount when the charge counter 106 overflows is Qosa, It becomes.
  • the time Tosan when the charge counter 106 reaches the set value N count and reaches the charge amount Qosa is measured by the measurement counter 107 using the clock CLK.
  • the count number at this time is Nosa and is stored in the register 108.
  • the charge amount qclk for one clock of the measurement counter 107 is calculated using this count number Nosa. It can be expressed as. Since the count number N, Nosa and the charge amount qosa in [Equation 79] are both known, the charge amount qclk can be easily obtained.
  • the charge amount is obtained using the charge amount qclk obtained in the trimming step.
  • FIG. 16B shows a time relationship in the measurement counter 107, the charge counter 106, and the integration counter 112 during charging.
  • the time Tmc of the charge counter 106 is a time when the charge counter 106 overflows after N counts due to the influence of the input voltage Vin and the set input offset voltage Vosa. At this time, the charge amount has reached Qosa.
  • the time Tosan of the measurement counter 107 is a time when the charge counter 106 reaches an overflow after N counts due to the influence of only the input offset voltage Vosa set in the trimming step.
  • the integration counter 112 starts counting after the second overflow signal OF2 of the measurement counter 107 is output, and stops counting when the first overflow signal OF1 of the charge counter 106 is output.
  • the time Tch counted by the integration counter 112 is a time difference between the time Tmc and the time Tosan corresponding to the time affected only by the input voltage Vin.
  • the integration counter 112 counts the number of clocks CLK (Nch). Therefore, the time Tch is It is represented by The charge amount Qch corresponding to this time Tch is Can be obtained as
  • the charge amount is obtained using the charge amount qclk obtained in the trimming step.
  • FIG. 16C shows the time relationship in the measurement counter 107, the charge counter 106, and the integration counter 112 during discharge.
  • the time Tmd of the charge counter 106 is a time when the charge counter 106 overflows after N counts due to the influence of the input voltage Vin and the set input offset voltage Vosa. At this time, the charge amount has reached Qosa.
  • the time Tosan of the measurement counter 107 is a time when the measurement counter 107 reaches an overflow after counting Nosa, under the influence of only the set input offset voltage Vosa.
  • the integration counter 112 starts counting after the first overflow signal OF1 of the charge counter 106 is output, and stops counting when the second overflow signal OF2 of the measurement counter 107 is output.
  • the time Tdis counted by the integration counter 112 is a time difference between the time Tosan and the time Tmd, which corresponds to a time affected only by the input voltage Vin.
  • the integration counter 112 counts the number of clocks CLK (Ndis). Therefore, the time Tdis is It is represented by The charge amount Qdis corresponding to this time Tdis is Can be obtained as
  • the state of the integration counter 112 in the charge measurement circuit 1 of FIG. 12 is the number of clocks CLK corresponding to the overflow time difference Tdis between the charge counter 106 and the measurement counter 107.
  • the charge amount Qdis at the time of discharge is obtained as represented by [Equation 83].
  • the current is obtained by dividing the amount of change in the charge amount by the elapsed time, it can be easily obtained using the charge amount obtained by charging and discharging.
  • the charging current Ich is It is obtained by Also, the discharge current Idis is It is obtained by
  • 17A and 17B show the distribution of the input offset voltage Vosa and the input voltage of the amplification operation circuit 100a of the integration circuit 100 provided in the charge amount measurement circuit 1 of the third and fourth embodiments. It is a figure which shows the range of Vin.
  • the input offset voltage Vosa of the operational amplifier circuit 100a is set outside the input voltage range in a state where the variation of the input offset voltage exists (FIG. 17A).
  • the charge amount measuring circuit 1 of the present invention corrects the influence of the input offset voltage Vosa as described in the operation during charging. The correct charge amount can be measured.
  • FIG. 18 shows an application example to the portable electronic device 3 to which the third and fourth embodiments are applied.
  • the portable electronic device 3 includes a detection resistor Rin that converts a current that flows during charging and discharging of the secondary battery into an input voltage Vin, and a charge amount measurement circuit 1 that measures the amount of charge or current flowing from the input voltage Vin to the detection resistor Rin. And an arithmetic circuit (microcomputer) 4 for calculating the remaining capacity of the secondary battery from the charge amount measured by the charge amount measuring circuit 1, and a display circuit 5 for displaying the calculation processing result of the microcomputer 4. ing.
  • a detection resistor Rin that converts a current that flows during charging and discharging of the secondary battery into an input voltage Vin
  • a charge amount measurement circuit 1 that measures the amount of charge or current flowing from the input voltage Vin to the detection resistor Rin.
  • an arithmetic circuit (microcomputer) 4 for calculating the remaining capacity of the secondary battery from the charge amount measured by the charge amount measuring circuit 1, and a display circuit 5 for displaying the
  • the charge amount measurement circuit 1 includes an integration circuit 100 using an operational amplifier circuit 100a having an input offset voltage Vosa that is larger than the maximum value of the input voltage Vin or smaller than the minimum value. I have. Therefore, such a portable electronic device 3 can measure the amount of charge or the amount of current without having a dead zone in the entire measurement range of the input voltage Vin.
  • FIGS. 19 to 23 are examples of realizing the input offset voltage Vosa of the operational amplifier circuit 100a according to the first to fourth embodiments.
  • FIG. 19 shows an example in which the input offset voltage Vosa is set with a difference in the size of a pair of transistors in a differential input stage often used in an operational amplifier circuit.
  • the transistor size is differentiated by connecting a plurality of transistors in one of the differential input stages in parallel.
  • I0 is a current source
  • MP1-3 are P-channel MOS transistors
  • MN1-2 are N-channel MOS transistors.
  • FIG. 20 shows an example in which the input offset voltage Vosa is set with a difference in the amount of current of a current source often used in an operational amplifier circuit.
  • I0 is a current source
  • MP1 and MP2 are P-channel MOS transistors
  • MN1 and MN3 are N-channel MOS transistors.
  • FIG. 21 shows an example in which the input offset voltage Vosa is set by making a difference between the resistance values of offset resistors connected to a pair of transistors in a differential input stage often used in an operational amplifier circuit.
  • the resistance value is differentiated by connecting the offset resistor Rof to only one transistor of the differential input stage.
  • FIG. 22 shows an example in which the input offset voltage Vosa is set by adding a difference to the resistance value of an offset resistor connected to a current source often used in an operational amplifier circuit.
  • the resistance value is differentiated by connecting the offset resistor Rof to only one current source.
  • FIG. 23 is a circuit diagram of an operational amplifier circuit in which the input offset voltage Vosa is set by applying a bias voltage to the amplifier AMP.
  • the input offset voltage Vosa is set on the non-inverting input side of the operational amplifier circuit 100a.
  • the input offset voltage Vosa is set on the inverting input side to obtain a desired operation.
  • the same effects as those of the first to fourth embodiments can be obtained.
  • the input offset voltage Vosa is set in the operational amplifier circuit 100a.
  • the same effect can be obtained even when a bias voltage is applied from the outside of the operational amplifier circuit 100a. Needless to say.
  • the charge / discharge determination using the secondary battery is described as an example.
  • the first and second embodiments can be used for determining the current polarity in current detection using a general power source. The same effect as in the second embodiment can be obtained.
  • the discharge measurement circuit 20 the charge measurement circuit 30, and the storage circuit 50 is used.
  • the charge measurement circuit 25, the time measurement circuit 35, the charge integration circuit 40, and the storage are stored.
  • examples using the circuit 50 are shown, the same effect can be obtained even if these functions are processed by a microcomputer or a dedicated arithmetic circuit. Further, addition and subtraction processing may be performed by an up / down counter.
  • the voltage polarity discrimination circuit of the present invention is useful for portable electronic devices such as mobile phones, digital cameras, and game machines equipped with secondary batteries, electric vehicles, and the like. It can also be applied to current detectors and the like. For example, the current consumption and charge amount of an electronic device supplied with power by the secondary battery, and the charge current and accumulated charge amount when charging the secondary battery are detected, and the remaining capacity of the secondary battery is detected or estimated. It is useful as a circuit for discriminating the polarity of the charge / discharge current in the system.
  • the charge amount measurement circuit of the present invention is useful for portable electronic devices such as mobile phones, digital cameras, and game machines equipped with secondary batteries, and electric vehicles. It can also be applied to ammeters and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

A voltage polarity discrimination circuit (1) is provided with an integration circuit (10), a switch (SW0), and a time measuring circuit (12). The integration circuit (10) is constructed by using an operational amplifier circuit (100) having an input offset voltage (Vosa) which is greater than the maximum value or less than the minimum value of the input voltage (Vin) of the integration circuit (10). The switch (SW0) switches the input voltage (Vin) to the integration circuit (10) to the voltage of the polarity discrimination target (voltage Rin between the terminals) or to a reference voltage (GND). The time measuring circuit (12) measures the time until the output voltage (V10) of the integration circuit (10) reaches a set voltage. The polarity of the input voltage (Vin) to the integration circuit (10) is discriminated on the basis of the measurement result.

Description

電圧極性判別回路及び電荷量計測回路Voltage polarity discrimination circuit and charge amount measurement circuit
 本発明は、対象電圧の極性を判別する回路に関するものである。また本発明は、二次電池によって電力が供給される電子機器の消費電流や電荷量、及び、二次電池の充電時の充電電流や積算電荷量を検出し、二次電池の残容量を検出又は推定するシステムに関するものであって、特にその二次電池の充放電電荷量を計測する回路に関するものである。 The present invention relates to a circuit for determining the polarity of a target voltage. In addition, the present invention detects the remaining current of the secondary battery by detecting the consumption current and charge amount of the electronic device supplied with power by the secondary battery, and the charge current and accumulated charge amount when charging the secondary battery. Alternatively, the present invention relates to an estimation system, and particularly to a circuit that measures the charge / discharge charge amount of the secondary battery.
 近年、携帯型電子機器は、充電可能な二次電池により駆動され、その多くのものは、二次電池の残容量を表示する機能を備えたLSIを搭載している。このLSIは、電荷量又は電流の検出を行い、充電時には、放電後の電池容量に検出された電荷量を加算し、放電時には、充電後の電池容量から検出された電荷量を減算する。この加算と減算の判断は、電池が充電状態にあるのか、放電状態にあるのかという充放電電流の極性の判別によって行われる。また、この加算と減算の結果が、残容量(残量電荷量、残留容量等ともいう)であり、これを表示することによって二次電池の状態を知ることができる。このような電荷量又は電流の検出を行う部分は電荷量計測回路(クーロンカウンタともいう)と呼ばれる。 In recent years, portable electronic devices are driven by a rechargeable secondary battery, and many of them are equipped with an LSI having a function of displaying the remaining capacity of the secondary battery. This LSI detects the charge amount or current, adds the detected charge amount to the battery capacity after discharging during charging, and subtracts the detected charge amount from the charged battery capacity during discharging. The determination of addition and subtraction is performed by determining the polarity of the charge / discharge current whether the battery is in a charged state or a discharged state. The result of addition and subtraction is the remaining capacity (also referred to as remaining charge amount, remaining capacity, etc.), and the state of the secondary battery can be known by displaying this. Such a portion for detecting the charge amount or current is called a charge amount measurement circuit (also called a coulomb counter).
 以下に、充放電電流の極性判別の従来例及び電荷量計測回路の従来例について説明する。電荷量計測回路では、電荷量又は電流を検出するために、二次電池と負荷又は充電器に直列に接続する検知抵抗が使用される。この検知抵抗は、自身による電力消費及び電圧降下による負荷への影響を抑えるため、数十mΩ~数百mΩという小さな抵抗値のものが用いられる。 Hereinafter, a conventional example of charge / discharge current polarity discrimination and a conventional example of a charge amount measurement circuit will be described. In the charge amount measurement circuit, a detection resistor connected in series to a secondary battery and a load or a charger is used to detect the charge amount or current. This detection resistor has a resistance value as small as several tens of mΩ to several hundreds of mΩ in order to suppress the power consumption by itself and the influence on the load due to voltage drop.
 検知抵抗に流れる電流は、携帯型電子機器の消費電流や充電電流に依存し、一般には、消費電流及び充電電流とも数A程度の大きさである。上記の場合、例えば、検知抵抗を20mΩ、最大充電電流を-6.25A(-符号は、充電時の電流の方向を表す)、最大消費電流を+6.25A(+符号は、放電時の電流の方向を表す)とすると、検知抵抗の両端に現れる電圧は、±125mVとなる。従来の電圧極性判別回路や従来の電荷量計測回路では、この入力電圧を差動増幅回路によって増幅し、又は演算増幅回路を用いた積分回路によって電荷を積算する方法が用いられているが、これらの差動増幅回路や演算増幅回路には、通常、製品ごとに±数mVの範囲内でばらつく入力オフセット電圧が存在する。この入力オフセット電圧は、例えば、±1mVとすると、検知抵抗に流れる電流の±50mAに相当する。つまり、従来の電圧極性判別回路や従来の電荷量計測回路では、例えば-6.25A~-50mA、及び、+50mA~+6.25Aを測定範囲としていた。 The current flowing through the detection resistor depends on the consumption current and the charging current of the portable electronic device, and generally both the consumption current and the charging current are about several A. In the above case, for example, the detection resistance is 20 mΩ, the maximum charging current is −6.25 A (− sign indicates the direction of current during charging), the maximum current consumption is +6.25 A (+ sign is the current during discharging) The voltage appearing at both ends of the sensing resistor is ± 125 mV. In the conventional voltage polarity discrimination circuit and the conventional charge amount measurement circuit, a method of amplifying the input voltage by a differential amplifier circuit or integrating charges by an integration circuit using an operational amplifier circuit is used. In general, the differential amplifier circuit and the operational amplifier circuit have an input offset voltage that varies within a range of ± several mV for each product. For example, when the input offset voltage is ± 1 mV, it corresponds to ± 50 mA of the current flowing through the detection resistor. That is, in the conventional voltage polarity discrimination circuit and the conventional charge amount measurement circuit, for example, −6.25 A to −50 mA and +50 mA to +6.25 A are set as the measurement range.
 図24は、従来の電圧極性判別回路303の構成を示す図である(非特許文献1参照)。この電圧極性判別回路303は、積分回路300と、初期化回路331と、第1及び第2の比較回路601,602と、第1及び第2のカウンタ603,604とを備えている。積分回路300には、入力オフセット電圧Vosを小さくしようとして設計された演算増幅回路300aを用いている。初期化回路331は、初期電圧Vcを出力する電圧源と、積分回路300に用いられているコンデンサC1の一端を初期電圧VcにするスイッチSW3とを備えている。第1の比較回路601は、積分回路300の出力電圧V30と第1の基準電圧VHとを比較する。第1のカウンタ603は、スイッチSW3が非導通になり初期電圧Vcから切り離されたときから第1の比較回路601の出力V31が反転したときまでの時間を計測する。第2の比較回路602は、積分回路300の出力電圧V30と第2の基準電圧VLとを比較する。第2のカウンタ604は、スイッチSW3が非導通になり初期電圧Vcから切り離されたときから第2の比較回路602の出力V32が反転したときまでの時間を計測する。積分回路300は、演算増幅回路300aの出力端子eと反転入力端子cとの間にコンデンサC1が並列に接続され、また、反転入力端子cと端子aとの間に抵抗R1が接続され、更に、非反転入力端子dにGND端子bを介して基準電圧GNDが接続されている。 FIG. 24 is a diagram showing a configuration of a conventional voltage polarity discrimination circuit 303 (see Non-Patent Document 1). The voltage polarity discrimination circuit 303 includes an integration circuit 300, an initialization circuit 331, first and second comparison circuits 601, 602, and first and second counters 603, 604. The integrating circuit 300 uses an operational amplifier circuit 300a designed to reduce the input offset voltage Vos. The initialization circuit 331 includes a voltage source that outputs the initial voltage Vc, and a switch SW3 that sets one end of the capacitor C1 used in the integration circuit 300 to the initial voltage Vc. The first comparison circuit 601 compares the output voltage V30 of the integration circuit 300 with the first reference voltage VH. The first counter 603 measures the time from when the switch SW3 is turned off and disconnected from the initial voltage Vc to when the output V31 of the first comparison circuit 601 is inverted. The second comparison circuit 602 compares the output voltage V30 of the integration circuit 300 with the second reference voltage VL. The second counter 604 measures the time from when the switch SW3 is turned off and disconnected from the initial voltage Vc to when the output V32 of the second comparison circuit 602 is inverted. In the integrating circuit 300, a capacitor C1 is connected in parallel between the output terminal e and the inverting input terminal c of the operational amplifier circuit 300a, and a resistor R1 is connected between the inverting input terminal c and the terminal a. The reference voltage GND is connected to the non-inverting input terminal d via the GND terminal b.
 次に、上記のように構成された従来の電圧極性判別回路303の動作について図25(a)~図25(d)を参照しながら説明する。 Next, the operation of the conventional voltage polarity discrimination circuit 303 configured as described above will be described with reference to FIGS. 25 (a) to 25 (d).
 二次電池と基準電圧GNDとの間に接続された検知抵抗Rinに充放電電流が流れ、その両端に入力電圧Vinが現れる。このとき積分回路300の出力電圧V30は、
Figure JPOXMLDOC01-appb-M000001
となり、時間tに対する傾きは、
Figure JPOXMLDOC01-appb-M000002
で表される。
A charge / discharge current flows through the detection resistor Rin connected between the secondary battery and the reference voltage GND, and the input voltage Vin appears at both ends thereof. At this time, the output voltage V30 of the integrating circuit 300 is
Figure JPOXMLDOC01-appb-M000001
And the slope with respect to time t is
Figure JPOXMLDOC01-appb-M000002
It is represented by
 図25(a)~図25(d)では、入力オフセット電圧Vos>0の場合について、入力電圧Vin>Vos(充電)のときと、入力電圧Vin<-Vos(放電)のときの各電圧波形を示している。 25 (a) to 25 (d), in the case of the input offset voltage Vos> 0, each voltage waveform when the input voltage Vin> Vos (charge) and when the input voltage Vin <−Vos (discharge). Is shown.
 まず、充電状態で、入力オフセット電圧Vos>0、かつ、入力電圧Vin>Vosのとき、積分回路300の出力電圧V30の傾きは[数2]より、
Figure JPOXMLDOC01-appb-M000003
となり、図25(b)が示すように、時間tが増加すると、積分回路300の出力電圧V30は減少する。よって、出力電圧V30は、初期電圧Vcから基準電圧GNDに到達し、第2の基準電圧VLと比較する第2の比較回路602の出力V32が反転する(図25(d))ことによって充電状態と判別する。
First, in the charged state, when the input offset voltage Vos> 0 and the input voltage Vin> Vos, the slope of the output voltage V30 of the integrating circuit 300 is given by [Equation 2]
Figure JPOXMLDOC01-appb-M000003
Thus, as shown in FIG. 25B, when the time t increases, the output voltage V30 of the integrating circuit 300 decreases. Therefore, the output voltage V30 reaches the reference voltage GND from the initial voltage Vc, and the output V32 of the second comparison circuit 602 that compares with the second reference voltage VL is inverted (FIG. 25 (d)), so that the charged state is obtained. Is determined.
 次に、放電状態で、入力オフセット電圧Vos>0、かつ、入力電圧Vin<-Vosのとき、積分回路300の出力電圧V30の傾きは[数2]より、
Figure JPOXMLDOC01-appb-M000004
となり、図25(b)が示すように、時間tが増加すると、積分回路300の出力電圧V30は増加する。よって、出力電圧V30は、初期電圧Vcから基準電圧Vddに到達し、第1の基準電圧VHと比較する第1の比較回路601の出力V31が反転する(図25(c))ことによって放電状態と判別する。
Next, in the discharge state, when the input offset voltage Vos> 0 and the input voltage Vin <−Vos, the slope of the output voltage V30 of the integrating circuit 300 is expressed by [Equation 2]
Figure JPOXMLDOC01-appb-M000004
Thus, as shown in FIG. 25B, when the time t increases, the output voltage V30 of the integrating circuit 300 increases. Therefore, the output voltage V30 reaches the reference voltage Vdd from the initial voltage Vc, and the output V31 of the first comparison circuit 601 that compares with the first reference voltage VH is inverted (FIG. 25 (c)), thereby causing a discharge state. Is determined.
 したがって、入力電圧Vinが、
Figure JPOXMLDOC01-appb-M000005
の範囲において、充放電電流の極性を正しく判別することができる。
Therefore, the input voltage Vin is
Figure JPOXMLDOC01-appb-M000005
In this range, the polarity of the charge / discharge current can be correctly determined.
 また、入力オフセット電圧Vos<0の場合についても、[数5]と同じ結果が得られるので、ここでは説明を省略する。 Also, in the case of the input offset voltage Vos <0, the same result as [Equation 5] can be obtained, so the description thereof is omitted here.
 図26は、従来の電荷量計測回路2の構成を示す図である(特許文献1参照)。従来の電荷量計測回路2は、第1のスイッチ101と、入力オフセット電圧Vosを小さくしようとして設計された演算増幅回路200aを用いた積分回路200と、積分回路200の出力電圧V20と第1の基準電圧VHとを比較する第1の比較回路102と、積分回路200の出力電圧V20と第2の基準電圧VLとを比較する第2の比較回路103と、第1の比較回路102と第2の比較回路103とのそれぞれの出力電圧V42,V43を入力する論理回路104と、論理回路104の出力電圧V44により導通と非導通とを制御される第2のスイッチ105と、第1の比較回路102又は第2の比較回路103の出力電圧が反転した回数をカウントする非同期カウンタ206と、第1のスイッチ101をGND端子bに切り替えたとき、第1の比較回路102又は第2の比較回路103のいずれかの出力電圧が反転するまでの時間Tosを計測し、かつ、第1のスイッチ101を入力端子aに切り替えたとき、時間Tosの経過を示すタイマ207と、タイマ207が計測した計測値を格納し、かつタイマ207に計測値を設定するレジスタ108とから構成されている。 FIG. 26 is a diagram showing a configuration of a conventional charge amount measurement circuit 2 (see Patent Document 1). The conventional charge amount measurement circuit 2 includes a first switch 101, an integration circuit 200 using an operational amplifier circuit 200a designed to reduce the input offset voltage Vos, an output voltage V20 of the integration circuit 200, and a first voltage. The first comparison circuit 102 that compares the reference voltage VH, the second comparison circuit 103 that compares the output voltage V20 of the integration circuit 200 and the second reference voltage VL, the first comparison circuit 102 and the second comparison circuit A logic circuit 104 that inputs the output voltages V42 and V43 to and from the comparison circuit 103, a second switch 105 that is controlled to be turned on and off by the output voltage V44 of the logic circuit 104, and a first comparison circuit. 102 or the asynchronous counter 206 that counts the number of times the output voltage of the second comparison circuit 103 is inverted, and the first switch 101 is switched to the GND terminal b. When the time Tos until the output voltage of either the first comparison circuit 102 or the second comparison circuit 103 is inverted is measured and the first switch 101 is switched to the input terminal a, the time Tos And a register 108 that stores the measured value measured by the timer 207 and sets the measured value in the timer 207.
 積分回路200は、演算増幅回路200aの出力端子eと反転入力端子cとの間にコンデンサCと第2のスイッチ105とが並列に接続され、また、反転入力端子cと入力端子aとの間に抵抗Rが接続され、更に、非反転入力端子dにGND端子bが接続されている。 In the integrating circuit 200, the capacitor C and the second switch 105 are connected in parallel between the output terminal e and the inverting input terminal c of the operational amplifier circuit 200a, and between the inverting input terminal c and the input terminal a. A resistor R is connected to the non-inverting input terminal d, and a GND terminal b is connected to the non-inverting input terminal d.
 次に、上記のように構成された従来の電荷量計測回路2の動作について説明する。ここでは、動作の理解を容易にするために、一定電流の場合、すなわち入力電圧Vinが一定であり、かつ入力オフセット電圧がVos>0のように発生した場合を例に説明する。 Next, the operation of the conventional charge amount measuring circuit 2 configured as described above will be described. Here, in order to facilitate understanding of the operation, a case where the current is constant, that is, the case where the input voltage Vin is constant and the input offset voltage is generated such that Vos> 0 will be described as an example.
 充放電時の電荷量を計測する前に、演算増幅回路200aの入力オフセット電圧Vosの影響を補正するための情報収集期間として、トリミングステップを設ける。 Before the charge amount at the time of charge / discharge is measured, a trimming step is provided as an information collection period for correcting the influence of the input offset voltage Vos of the operational amplifier circuit 200a.
 図27(a)~図27(f)に、トリミングステップの動作を示す。まず、第1のスイッチ101をGND端子bに切り替え、入力電圧をVin=0Vとする(図27(a))。このとき、積分回路200の出力電圧V20は、時間Tosの間に第2の基準電圧VLから第1の基準電圧VHまで増加するので、
Figure JPOXMLDOC01-appb-M000006
が成り立つ(図27(b))。ここに、電源電圧をVddとするとき、Vdd>VH>VL>0Vである。
FIGS. 27A to 27F show the operation of the trimming step. First, the first switch 101 is switched to the GND terminal b, and the input voltage is set to Vin = 0 V (FIG. 27A). At this time, the output voltage V20 of the integrating circuit 200 increases from the second reference voltage VL to the first reference voltage VH during the time Tos.
Figure JPOXMLDOC01-appb-M000006
Holds (FIG. 27B). Here, when the power supply voltage is Vdd, Vdd>VH>VL> 0V.
 [数6]より、時間Tosは、
Figure JPOXMLDOC01-appb-M000007
で表され、この時間Tosの後に、第1の比較回路102の出力電圧V42が図27(c)のように反転する。この出力電圧V42の反転により論理回路104は、第2のスイッチ105を導通する信号を出力する(図27(e))。第2のスイッチ105が導通すると、コンデンサCの両端が短絡されるため、積分回路200の出力電圧V20が減少する(図27(b))。積分回路200の出力電圧V20が減少し、第2の基準電圧VLに達すると、第2の比較回路103の出力電圧V43が反転する(図27(d))。この出力電圧V43の反転により論理回路104は、第2のスイッチ105を非導通にする信号を出力する(図27(e))。第2のスイッチ105が非導通になると、積分回路200の出力電圧V20が再び増加する(図27(b))。タイマ207は、積分回路200の出力電圧V20が第2の基準電圧VLから第1の基準電圧VHに達するまでの時間Tosを周期TclkのクロックCLKで計測する(図27(f))。この計測した時間情報Nosをレジスタ108に格納し、更に、この格納された時間情報Nosをタイマ207に設定する。この時間情報Nosは、入力オフセット電圧Vosに相当する電荷量を表している。以上のようなトリミングステップの後、計測ステップに移る。
From [Equation 6], the time Tos is
Figure JPOXMLDOC01-appb-M000007
After this time Tos, the output voltage V42 of the first comparison circuit 102 is inverted as shown in FIG. As a result of the inversion of the output voltage V42, the logic circuit 104 outputs a signal for conducting the second switch 105 (FIG. 27E). When the second switch 105 is turned on, both ends of the capacitor C are short-circuited, so that the output voltage V20 of the integrating circuit 200 decreases (FIG. 27 (b)). When the output voltage V20 of the integration circuit 200 decreases and reaches the second reference voltage VL, the output voltage V43 of the second comparison circuit 103 is inverted (FIG. 27 (d)). By inversion of the output voltage V43, the logic circuit 104 outputs a signal for turning off the second switch 105 (FIG. 27E). When the second switch 105 is turned off, the output voltage V20 of the integrating circuit 200 increases again (FIG. 27 (b)). The timer 207 measures the time Tos until the output voltage V20 of the integration circuit 200 reaches the first reference voltage VH from the second reference voltage VL with the clock CLK having the cycle Tclk (FIG. 27 (f)). The measured time information Nos is stored in the register 108, and the stored time information Nos is set in the timer 207. This time information Nos represents a charge amount corresponding to the input offset voltage Vos. After the trimming step as described above, the process proceeds to the measurement step.
 計測ステップには、充電と放電との2状態があり、まず、充電のときの動作を、図28(a)~図28(g)で説明する。ここでは、従来の電荷量計測回路2が正しい結果を出力できる条件、すなわち、入力電圧Vinが入力オフセット電圧Vosの2倍より大きい場合(Vin>2Vos)の動作を説明する(図28(a))。 The measurement step has two states of charging and discharging. First, the operation during charging will be described with reference to FIGS. 28 (a) to 28 (g). Here, the condition under which the conventional charge amount measurement circuit 2 can output a correct result, that is, the operation when the input voltage Vin is larger than twice the input offset voltage Vos (Vin> 2Vos) will be described (FIG. 28A). ).
 計測ステップでは、第1のスイッチ101を入力端子aに切り替え、入力端子aとGND端子bとを検知抵抗Rinの両端に接続した状態にする。このとき、積分回路200の出力電圧V20は、時間Tmの間に第1の基準電圧VHから第2の基準電圧VLまで減少するので、
Figure JPOXMLDOC01-appb-M000008
が成り立つ(図28(b))。
In the measurement step, the first switch 101 is switched to the input terminal a, and the input terminal a and the GND terminal b are connected to both ends of the detection resistor Rin. At this time, the output voltage V20 of the integrating circuit 200 decreases from the first reference voltage VH to the second reference voltage VL during the time Tm.
Figure JPOXMLDOC01-appb-M000008
Holds (FIG. 28B).
 入力電圧Vinを一定としているので、時間Tmは、
Figure JPOXMLDOC01-appb-M000009
で表される。また、ここでは、入力電圧Vinは、Vin>2Vosであるので、時間Tmは、トリミングステップで計測した時間Tosよりも短くなる。すなわち、
Figure JPOXMLDOC01-appb-M000010
が成り立つ。
Since the input voltage Vin is constant, the time Tm is
Figure JPOXMLDOC01-appb-M000009
It is represented by Here, since the input voltage Vin is Vin> 2Vos, the time Tm is shorter than the time Tos measured in the trimming step. That is,
Figure JPOXMLDOC01-appb-M000010
Holds.
 この時間Tmの後に、第2の比較回路103の出力電圧V43が図28(d)のように反転する。この出力電圧V43の反転により論理回路104は、第2のスイッチ105を導通する信号を出力する(図28(e))。また、このとき非同期カウンタ206は1カウント加算する(図28(g))。第2のスイッチ105が導通すると、コンデンサCの両端が短絡されるため、積分回路200の出力電圧V20が増加する(図28(b))。積分回路200の出力電圧V20が増加し、第1の基準電圧VHに達すると、第1の比較回路102の出力電圧V42が反転する(図28(c))。この出力電圧V42の反転により論理回路104は、第2のスイッチ105を非導通にする信号を出力する(図28(e))。第2のスイッチ105が非導通になると、積分回路200の出力電圧V20が再び減少し、第2の基準電圧VLに達すると(図28(b))、非同期カウンタ206は1カウント加算する(図28(g))。これらの加算された値は、検知抵抗Rinの両端に発生した入力電圧Vinに相当する電荷量から入力オフセット電圧Vosに相当する電荷量が不足している。入力電圧Vinが、継続してVin>2Vosの条件を満たすとき、以上の動作を繰り返す。 After this time Tm, the output voltage V43 of the second comparison circuit 103 is inverted as shown in FIG. By inversion of the output voltage V43, the logic circuit 104 outputs a signal for conducting the second switch 105 (FIG. 28 (e)). At this time, the asynchronous counter 206 adds 1 count (FIG. 28 (g)). When the second switch 105 is turned on, both ends of the capacitor C are short-circuited, so that the output voltage V20 of the integrating circuit 200 increases (FIG. 28 (b)). When the output voltage V20 of the integration circuit 200 increases and reaches the first reference voltage VH, the output voltage V42 of the first comparison circuit 102 is inverted (FIG. 28 (c)). By inversion of the output voltage V42, the logic circuit 104 outputs a signal for turning off the second switch 105 (FIG. 28E). When the second switch 105 is turned off, the output voltage V20 of the integrating circuit 200 decreases again. When the second switch 105 reaches the second reference voltage VL (FIG. 28B), the asynchronous counter 206 adds 1 count (FIG. 28). 28 (g)). In these added values, the charge amount corresponding to the input offset voltage Vos is insufficient from the charge amount corresponding to the input voltage Vin generated at both ends of the detection resistor Rin. When the input voltage Vin continues to satisfy the condition of Vin> 2Vos, the above operation is repeated.
 タイマ207は、レジスタ108に格納された時間Tosの経過信号を出力する。時間Tosが経過するごとに、非同期カウンタ206が1カウント加算される(図28(g))。この加算する値は、トリミングステップで測定した入力オフセット電圧Vosに相当する電荷量であり、この入力オフセット電圧Vosに相当する電荷量が補正される。 Timer 207 outputs an elapsed signal of time Tos stored in register 108. Each time the time Tos elapses, the asynchronous counter 206 is incremented by 1 (FIG. 28 (g)). The value to be added is a charge amount corresponding to the input offset voltage Vos measured in the trimming step, and the charge amount corresponding to the input offset voltage Vos is corrected.
 次に、放電のときの動作を、図29(a)~図29(g)により説明する。ここでは、入力電圧がVin<0Vの場合(図29(a))の動作を説明する。 Next, the operation during discharge will be described with reference to FIGS. 29 (a) to 29 (g). Here, the operation when the input voltage is Vin <0 V (FIG. 29A) will be described.
 充電のときと同様に、計測ステップでは、第1のスイッチ101を入力端子aに切り替え、入力端子aとGND端子bとを検知抵抗Rinの両端に接続した状態にする。このとき、積分回路200の出力電圧V20は、時間Tmの間に第2の基準電圧VLから第1の基準電圧VHまで増加するので、
Figure JPOXMLDOC01-appb-M000011
が成り立つ(図29(b))。
As in the case of charging, in the measurement step, the first switch 101 is switched to the input terminal a, and the input terminal a and the GND terminal b are connected to both ends of the detection resistor Rin. At this time, the output voltage V20 of the integrating circuit 200 increases from the second reference voltage VL to the first reference voltage VH during the time Tm.
Figure JPOXMLDOC01-appb-M000011
Holds (FIG. 29B).
 入力電圧Vinを一定としているので、時間Tmは、
Figure JPOXMLDOC01-appb-M000012
で表される。また、ここでは、入力電圧Vinは、Vin<0Vであるので、充電のときと同様に、時間Tmは、トリミングステップで計測した時間Tosよりも短くなる。すなわち、
Figure JPOXMLDOC01-appb-M000013
が成り立つ。
Since the input voltage Vin is constant, the time Tm is
Figure JPOXMLDOC01-appb-M000012
It is represented by Here, since the input voltage Vin is Vin <0 V, the time Tm is shorter than the time Tos measured in the trimming step as in the case of charging. That is,
Figure JPOXMLDOC01-appb-M000013
Holds.
 この時間Tmの後に、第1の比較回路102の出力電圧V42が図29(c)のように反転する。この出力電圧V42の反転により論理回路104は、第2のスイッチ105を導通する信号を出力する(図29(e))。また、このとき非同期カウンタ206は1カウント加算する(図29(g))。第2のスイッチ105が導通すると、コンデンサCの両端が短絡されるため、積分回路200の出力電圧V20が減少する(図29(b))。積分回路200の出力電圧V20が減少し、第2の基準電圧VLに達すると、第2の比較回路103の出力電圧V43が反転する(図29(d))。この出力電圧V43の反転により論理回路104は、第2のスイッチ105を非導通にする信号を出力する(図29(e))。第2のスイッチ105が非導通になると、積分回路200の出力電圧V20が再び増加し、第1の基準電圧VHに達すると(図29(b))、非同期カウンタ206は1カウント加算される(図29(g))。これらの加算された値は、検知抵抗Rinの両端に発生した入力電圧Vinに相当する電荷量と、入力オフセット電圧Vosに相当する電荷量とを含んでいる。入力電圧Vinが、継続してVin<0Vの条件を満たすとき、以上の動作を繰り返す。 After this time Tm, the output voltage V42 of the first comparison circuit 102 is inverted as shown in FIG. Due to the inversion of the output voltage V42, the logic circuit 104 outputs a signal for conducting the second switch 105 (FIG. 29E). At this time, the asynchronous counter 206 adds 1 count (FIG. 29 (g)). When the second switch 105 is turned on, both ends of the capacitor C are short-circuited, so that the output voltage V20 of the integrating circuit 200 decreases (FIG. 29 (b)). When the output voltage V20 of the integration circuit 200 decreases and reaches the second reference voltage VL, the output voltage V43 of the second comparison circuit 103 is inverted (FIG. 29 (d)). By inversion of the output voltage V43, the logic circuit 104 outputs a signal for turning off the second switch 105 (FIG. 29 (e)). When the second switch 105 becomes non-conductive, the output voltage V20 of the integrating circuit 200 increases again, and when the first reference voltage VH is reached (FIG. 29B), the asynchronous counter 206 adds 1 count ( FIG. 29 (g)). These added values include a charge amount corresponding to the input voltage Vin generated at both ends of the detection resistor Rin and a charge amount corresponding to the input offset voltage Vos. When the input voltage Vin continues to satisfy the condition of Vin <0V, the above operation is repeated.
 タイマ207は、レジスタ108に格納された時間Tosの経過信号を出力する。時間Tosが経過するごとに、非同期カウンタ206が1カウント減算される(図29(g))。この減算する値は、トリミングステップで測定した入力オフセット電圧Vosに相当する電荷量であり、この入力オフセット電圧Vosに相当する電荷量が補正される。 Timer 207 outputs an elapsed signal of time Tos stored in register 108. Every time the time Tos elapses, the asynchronous counter 206 is decremented by one count (FIG. 29 (g)). The value to be subtracted is a charge amount corresponding to the input offset voltage Vos measured in the trimming step, and the charge amount corresponding to the input offset voltage Vos is corrected.
 以上より、従来の電荷量計測回路2では、充電、放電の場合ともに、[数10]及び[数13]のように、
Figure JPOXMLDOC01-appb-M000014
であり、この条件の場合に対して、入力オフセット電圧Vosの影響を補正している。
From the above, in the conventional charge amount measurement circuit 2, as in [Equation 10] and [Equation 13] for both charging and discharging,
Figure JPOXMLDOC01-appb-M000014
In this case, the influence of the input offset voltage Vos is corrected.
特開2000-241515号公報JP 2000-241515 A
 上記従来の電圧極性判別回路303では、積分回路300に用いられる演算増幅回路300aに意図しない入力オフセット電圧Vosが存在するため、入力電圧Vinの条件によっては、積分回路300の出力電圧V30の状態が変化せず、充放電電流の極性判別が不能となる問題と、正確に判別できない入力電圧範囲が存在する問題という、2つの問題があった。 In the conventional voltage polarity discrimination circuit 303, since the unintended input offset voltage Vos exists in the operational amplifier circuit 300a used in the integration circuit 300, the state of the output voltage V30 of the integration circuit 300 depends on the condition of the input voltage Vin. There are two problems: the problem that the polarity of the charge / discharge current cannot be determined without change, and the problem that there is an input voltage range that cannot be accurately determined.
 1つ目の問題は、入力電圧Vinと入力オフセット電圧Vosとが等しいとき、[数1]において、初期電圧Vcから第2の基準電圧VLまでの時間、及び、初期電圧Vcから第1の基準電圧VHまでの時間をともにTcで表すと、
Figure JPOXMLDOC01-appb-M000015
となり、第1及び第2の比較回路601,602の出力電圧V31,V32のいずれもが反転せず、充放電電流の極性を判別できないことがあり得る。
The first problem is that when the input voltage Vin and the input offset voltage Vos are equal, in [Equation 1], the time from the initial voltage Vc to the second reference voltage VL, and the initial voltage Vc to the first reference voltage. When the time to the voltage VH is represented by Tc,
Figure JPOXMLDOC01-appb-M000015
Accordingly, there is a possibility that none of the output voltages V31 and V32 of the first and second comparison circuits 601 and 602 is inverted and the polarity of the charge / discharge current cannot be determined.
 2つ目の問題は、入力電圧Vinと入力オフセット電圧Vosとの条件によっては充放電電流の極性を誤判別する場合があることである。 The second problem is that the polarity of the charge / discharge current may be erroneously determined depending on the conditions of the input voltage Vin and the input offset voltage Vos.
 ここでは、入力オフセット電圧Vos>0の場合について、入力電圧Vinの電圧範囲ごとに積分回路300の出力電圧V30の傾きを調べることによって、従来の電圧極性判別回路303の判別結果と比較する。 Here, the case of the input offset voltage Vos> 0 is compared with the determination result of the conventional voltage polarity determination circuit 303 by examining the slope of the output voltage V30 of the integration circuit 300 for each voltage range of the input voltage Vin.
 Vos>0のとき、積分回路300の出力電圧V30は、
Figure JPOXMLDOC01-appb-M000016
となり、その傾きは、
Figure JPOXMLDOC01-appb-M000017
で表される。
When Vos> 0, the output voltage V30 of the integrating circuit 300 is
Figure JPOXMLDOC01-appb-M000016
And the slope is
Figure JPOXMLDOC01-appb-M000017
It is represented by
 Vin>Vos、すなわち、充電のとき、
Figure JPOXMLDOC01-appb-M000018
となり、従来の電圧極性判別回路303の判別結果は、充電を示し、正しい結果となる。
Vin> Vos, that is, when charging,
Figure JPOXMLDOC01-appb-M000018
Thus, the discrimination result of the conventional voltage polarity discrimination circuit 303 indicates charging and is a correct result.
 0<Vin<Vos、すなわち、充電のとき、
Figure JPOXMLDOC01-appb-M000019
となり、従来の電圧極性判別回路303の判別結果は、放電を示し、誤った結果となる。
0 <Vin <Vos, that is, when charging
Figure JPOXMLDOC01-appb-M000019
Thus, the discrimination result of the conventional voltage polarity discrimination circuit 303 indicates discharge, which is an incorrect result.
 Vin<0のとき、すなわち、放電のとき、
Figure JPOXMLDOC01-appb-M000020
となり、従来の電圧極性判別回路303の判別結果は、放電を示し、正しい結果となる。
When Vin <0, that is, when discharging,
Figure JPOXMLDOC01-appb-M000020
Thus, the discrimination result of the conventional voltage polarity discrimination circuit 303 indicates a discharge and is a correct result.
 Vos<0のときも同様に、積分回路300の出力電圧V30は、
Figure JPOXMLDOC01-appb-M000021
となり、その傾きは、
Figure JPOXMLDOC01-appb-M000022
で表される。
Similarly, when Vos <0, the output voltage V30 of the integrating circuit 300 is
Figure JPOXMLDOC01-appb-M000021
And the slope is
Figure JPOXMLDOC01-appb-M000022
It is represented by
 Vin>0、すなわち、充電のとき、
Figure JPOXMLDOC01-appb-M000023
となり、従来の電圧極性判別回路303の判別結果は、充電を示し、正しい結果となる。
Vin> 0, that is, when charging,
Figure JPOXMLDOC01-appb-M000023
Thus, the discrimination result of the conventional voltage polarity discrimination circuit 303 indicates charging and is a correct result.
 -Vos<Vin<0、すなわち、放電のとき、
Figure JPOXMLDOC01-appb-M000024
となり、従来の電圧極性判別回路303の判別結果は、充電を示し、誤った結果となる。
-Vos <Vin <0, ie, when discharging
Figure JPOXMLDOC01-appb-M000024
Thus, the discrimination result of the conventional voltage polarity discrimination circuit 303 indicates charging and is an incorrect result.
 Vin<-Vosのとき、すなわち、放電のとき、
Figure JPOXMLDOC01-appb-M000025
となり、従来の電圧極性判別回路303の判別結果は、放電を示し、正しい結果となる。
When Vin <−Vos, that is, when discharging,
Figure JPOXMLDOC01-appb-M000025
Thus, the discrimination result of the conventional voltage polarity discrimination circuit 303 indicates a discharge and is a correct result.
 図30(a)~図30(d)は、入力オフセット電圧Vos>0であり、入力電圧Vinが、0<Vin<Vosの充電状態と、Vin<0の放電状態のときの従来の電圧極性判別回路303の動作例である。積分回路300の出力電圧V30が充電状態、放電状態の両方において第1の基準電圧VHに達しており、第1及び第2の比較回路601,602のうちの一方の出力V31のみが反転しており、充電状態において誤判別している。 30 (a) to 30 (d) show the conventional voltage polarities when the input offset voltage Vos> 0 and the input voltage Vin is in a charged state of 0 <Vin <Vos and a discharged state of Vin <0. 7 shows an operation example of a determination circuit 303. The output voltage V30 of the integration circuit 300 reaches the first reference voltage VH in both the charged state and the discharged state, and only one output V31 of the first and second comparison circuits 601 and 602 is inverted. And misjudgment in the state of charge.
 図31は、入力オフセット電圧Vosと入力電圧Vinの入力電圧範囲に対する従来の電圧極性判別回路303の判別結果の正誤とを示す図である。図31より明らかなように、従来の電圧極性判別回路303は、入力電圧範囲に対して、誤判別する範囲が存在している。 FIG. 31 is a diagram showing the correctness of the discrimination result of the conventional voltage polarity discrimination circuit 303 with respect to the input offset voltage Vos and the input voltage range of the input voltage Vin. As is clear from FIG. 31, the conventional voltage polarity discrimination circuit 303 has a range in which the input voltage range is erroneously discriminated.
 以上のように、従来の電圧極性判別回路303は、積分回路300に用いられる演算増幅回路300aの入力オフセット電圧Vosによって、第1及び第2の比較回路601,602の出力電圧V31,V32のいずれもが反転せず充放電電流の極性を判別できないことがあり、更に、入力電圧範囲の中で、充放電電流の極性を誤判別する場合があった。 As described above, the voltage polarity discrimination circuit 303 according to the related art has one of the output voltages V31 and V32 of the first and second comparison circuits 601 and 602 depending on the input offset voltage Vos of the operational amplifier circuit 300a used in the integration circuit 300. In some cases, the polarity of the charging / discharging current cannot be discriminated, and the polarity of the charging / discharging current is misjudged in the input voltage range.
 また、上記従来の電荷量計測回路2では、入力オフセット電圧Vosが0Vに近い場合にトリミングステップ時間が長くなるという問題と、入力電圧範囲内に不感帯と呼ばれる入力条件により測定できない範囲が存在するという問題とがあった。 In the conventional charge amount measurement circuit 2, the trimming step time becomes long when the input offset voltage Vos is close to 0 V, and there is a range in the input voltage range that cannot be measured due to an input condition called a dead zone. There was a problem.
 1つ目の問題は、トリミングステップにおいて、入力オフセット電圧Vosが0Vに近い場合、[数7]より、
Figure JPOXMLDOC01-appb-M000026
となり、第1及び第2の比較回路102,103のいずれも出力電圧が反転するまでに長時間を要することがあり得ることである。すなわち、トリミングステップ時間が長くなるため、製品の量産には適さない。また、更に、トリミングステップが長くなると、長時間情報を計測するタイマ207と、その情報を格納するレジスタ108とのそれぞれが多くのビット数を必要とするため、回路規模が大きくなり、それに伴い面積も大きくなる。
The first problem is that, when the input offset voltage Vos is close to 0 V in the trimming step,
Figure JPOXMLDOC01-appb-M000026
Thus, both the first and second comparison circuits 102 and 103 can take a long time until the output voltage is inverted. That is, since the trimming step time is long, it is not suitable for mass production of products. Further, if the trimming step is lengthened, the timer 207 for measuring information for a long time and the register 108 for storing the information each require a large number of bits, so that the circuit scale increases and the area increases accordingly. Also grows.
 2つ目の問題は、従来の電荷量計測回路2が、不感帯を有することである。計測ステップにおいて、入力電圧Vinが不感帯範囲内にある場合、計測時間がトリミングステップで計測した時間Tosよりも長くなり、積分回路200の出力電圧V20が上昇せず、非同期カウンタ206が加算されないため、充放電の電荷量を計測できない場合がある。 The second problem is that the conventional charge measurement circuit 2 has a dead zone. In the measurement step, when the input voltage Vin is within the dead band range, the measurement time becomes longer than the time Tos measured in the trimming step, the output voltage V20 of the integration circuit 200 does not increase, and the asynchronous counter 206 is not added. The charge / discharge charge amount may not be measured.
 図32(a)及び図32(b)は、従来の電荷量計測回路2が備えている積分回路200の増幅演算回路200aの入力オフセット電圧Vosの分布と入力電圧Vinの範囲とを示す図である。量産における全ての製品に対して演算増幅回路200aの入力オフセット電圧Vosを0Vとすることはできず、必ず、ばらつきが発生する(図32(a))。例えば、ある製品の入力オフセット電圧が+Vosであった場合、従来の電荷量計測回路2において、積分回路200の出力電圧V20が第2の基準電圧VLから第1の基準電圧VHに達するまでの時間Tmは、前述の[数9]で表される。 32A and 32B are diagrams showing the distribution of the input offset voltage Vos and the range of the input voltage Vin of the amplification arithmetic circuit 200a of the integrating circuit 200 provided in the conventional charge amount measuring circuit 2. FIG. is there. The input offset voltage Vos of the operational amplifier circuit 200a cannot be set to 0 V for all products in mass production, and variations always occur (FIG. 32 (a)). For example, when the input offset voltage of a certain product is + Vos, the time until the output voltage V20 of the integrating circuit 200 reaches the first reference voltage VH from the second reference voltage VL in the conventional charge amount measurement circuit 2 Tm is expressed by the above [Equation 9].
 Vin<0Vと、Vin>2Vosのとき、Tm<Tosであるので、従来の電荷量計測回路2は、入力オフセット電圧Vosの影響を補正できる。 Since Vin <0V and Vin> 2Vos, Tm <Tos, the conventional charge amount measurement circuit 2 can correct the influence of the input offset voltage Vos.
 しかし、入力電圧Vinが0V≦Vin≦2Vosの範囲では、
Figure JPOXMLDOC01-appb-M000027
となる。従来の電荷量計測回路2は、この入力条件のときの入力オフセット電圧Vosの影響に対する補正機能を備えていないため、正しい電荷量を計測することができない。また、従来の電荷量計測回路2を備えた製品の入力オフセット電圧が-Vosであった場合も同様に、-2Vos≦Vin<0Vのとき、従来の電荷量計測回路2は、正しい電荷量を計測することができない。
However, when the input voltage Vin is in the range of 0V ≦ Vin ≦ 2Vos,
Figure JPOXMLDOC01-appb-M000027
It becomes. Since the conventional charge amount measurement circuit 2 does not have a correction function for the influence of the input offset voltage Vos under this input condition, it cannot measure the correct charge amount. Similarly, when the input offset voltage of the product including the conventional charge amount measurement circuit 2 is −Vos, the conventional charge amount measurement circuit 2 determines the correct charge amount when −2 Vos ≦ Vin <0V. It cannot be measured.
 したがって、製品を量産したときの入力オフセット電圧Vosのばらつき範囲が-Vos~+Vosであるとき、-2Vos~+2Vosのような正しく電荷量を計測できない範囲、すなわち、不感帯が存在する(図32(b))。例えば、入力オフセット電圧が±1.5mVとすると、これは検知抵抗Rinに流れる電流の±150mAに相当する。従来の電荷量計測回路2では、-2.0A~-300mA、及び、+300mA~+2.0Aを測定範囲とし、-300mA~+300mAの不感帯を有している。 Accordingly, when the variation range of the input offset voltage Vos when the product is mass-produced is −Vos to + Vos, there is a range in which the charge amount cannot be measured correctly such as −2 Vos to +2 Vos, that is, a dead zone (FIG. 32 (b)). )). For example, if the input offset voltage is ± 1.5 mV, this corresponds to ± 150 mA of the current flowing through the detection resistor Rin. The conventional charge amount measurement circuit 2 has a measurement range of −2.0 A to −300 mA and +300 mA to +2.0 A, and has a dead zone of −300 mA to +300 mA.
 二次電池の容量2400mAhを備えた携帯型電子機器の待機電流が15mAの場合を考えると、約1週間で電荷量(電気量)2400mAhを消費してしまい、実際の残容量は0となるが、従来の電荷量計測回路2は不感帯を有するため、残容量2400mAhを表示してしまう。 Considering the case where the standby current of a portable electronic device having a secondary battery capacity of 2400 mAh is 15 mA, the charge amount (electric amount) of 2400 mAh is consumed in about one week, and the actual remaining capacity becomes zero. Since the conventional charge amount measuring circuit 2 has a dead zone, the remaining capacity of 2400 mAh is displayed.
 以上のように、従来の電荷量計測回路2は、積分回路200に用いられる演算増幅回路200aの入力オフセット電圧Vosが0Vに近い場合、トリミングステップの時間がかかり、長時間情報を計測するタイマ207と、その情報を格納するレジスタ108とのそれぞれの回路規模が大きくなり、それに伴い面積も大きくなる。更に、不感帯を有し、正しく測定できない入力電圧範囲が存在するという問題があった。 As described above, when the input offset voltage Vos of the operational amplifier circuit 200a used in the integrating circuit 200 is close to 0V, the conventional charge amount measuring circuit 2 takes a trimming step, and the timer 207 that measures long-time information. In addition, the circuit scale of each of the registers 108 for storing the information increases, and the area increases accordingly. Further, there is a problem that there is an input voltage range that has a dead zone and cannot be measured correctly.
 本発明の目的は、対象電圧の極性を正確に判別できる電圧極性判別回路を提供することにある。 An object of the present invention is to provide a voltage polarity determination circuit that can accurately determine the polarity of a target voltage.
 本発明の他の目的は、入力電圧の全測定範囲において、不感帯を有することなく、電荷量又は電流値の測定を可能にすることにある。 Another object of the present invention is to make it possible to measure the charge amount or the current value without having a dead zone in the entire measurement range of the input voltage.
 本発明の電圧極性判別回路は、積分回路と、スイッチと、時間計測回路とを備える。前記積分回路は、前記積分回路の入力電圧の最大値より大きい、又は最小値より小さい入力オフセット電圧を有する演算増幅回路を用いて構成されている。スイッチは、前記積分回路への入力電圧を、極性判別対象の電圧又は基準電圧に切り替える。時間計測回路は、前記積分回路の出力電圧が設定電圧に到達するまでの時間を計測し、この計測結果に基づいて前記積分回路への入力電圧の極性を判別する。 The voltage polarity discrimination circuit of the present invention includes an integration circuit, a switch, and a time measurement circuit. The integration circuit is configured using an operational amplifier circuit having an input offset voltage that is greater than the maximum value or less than the minimum value of the input voltage of the integration circuit. The switch switches the input voltage to the integration circuit to a voltage for polarity discrimination or a reference voltage. The time measurement circuit measures the time until the output voltage of the integration circuit reaches a set voltage, and determines the polarity of the input voltage to the integration circuit based on the measurement result.
 上記電圧極性判別回路においては、積分回路に用いられる演算増幅回路の入力オフセット電圧を積分回路の入力電圧の絶対値より大きくしているので、入力電圧の範囲は、入力オフセット電圧より小さな連続的な範囲で、入力電圧の極性、すなわち、極性判別対象の電圧の極性を正確に判別することができる。また、入力電圧と入力オフセット電圧が等しい状態とはならないため、必ず入力電圧の極性、すなわち、極性判別対象の電圧の極性を判別することができる。 In the voltage polarity discrimination circuit, the input offset voltage of the operational amplifier circuit used in the integration circuit is set larger than the absolute value of the input voltage of the integration circuit, so the input voltage range is a continuous range smaller than the input offset voltage. In the range, it is possible to accurately determine the polarity of the input voltage, that is, the polarity of the voltage to be subjected to polarity determination. Further, since the input voltage and the input offset voltage are not equal, it is possible to always determine the polarity of the input voltage, that is, the polarity of the voltage to be subjected to polarity determination.
 好ましくは、前記時間計測回路は、第1の比較回路と、第2の比較回路と、論理回路と、カウンタと、判定回路とを含む。第1の比較回路は、前記積分回路の出力電圧と前記第1の基準電圧とを比較しその比較結果を出力する。第2の比較回路は、前記積分回路の出力電圧と第2の基準電圧とを比較しその比較結果を出力する。論理回路は、前記第1の比較回路の出力電圧の反転、前記第2の比較回路の出力電圧の反転に応答してセット、リセットされる電圧を出力する。カウンタは、前記論理回路の出力を設定値まで計測する。判定回路は、前記スイッチにより前記積分回路への入力電圧が切り替えられたときから前記カウンタによる計測値が前記設定値に至るまでの時間を計測し、この計測結果に基づいて前記積分回路への入力電圧の極性を判別する。また、前記電圧極性判別回路は、前記論理回路の出力に応答して前記積分回路の出力電圧を初期化する初期化回路を更に備える。 Preferably, the time measurement circuit includes a first comparison circuit, a second comparison circuit, a logic circuit, a counter, and a determination circuit. The first comparison circuit compares the output voltage of the integration circuit with the first reference voltage and outputs the comparison result. The second comparison circuit compares the output voltage of the integration circuit with a second reference voltage and outputs the comparison result. The logic circuit outputs a voltage that is set and reset in response to inversion of the output voltage of the first comparison circuit and inversion of the output voltage of the second comparison circuit. The counter measures the output of the logic circuit up to a set value. The determination circuit measures a time from when the input voltage to the integration circuit is switched by the switch until the measurement value by the counter reaches the set value, and based on the measurement result, inputs to the integration circuit Determine the polarity of the voltage. The voltage polarity determination circuit further includes an initialization circuit that initializes the output voltage of the integration circuit in response to the output of the logic circuit.
 上記電圧極性判別回路においては、積分回路に用いられる演算増幅回路の入力オフセット電圧を積分回路の入力電圧の絶対値より大きくしているので、入力電圧の範囲は、入力オフセット電圧より小さな連続的な範囲で、入力電圧の極性、すなわち、極性判別対象の電圧の極性を正確に判別することができる。また、入力電圧と入力オフセット電圧が等しい状態とはならないため、必ず入力電圧の極性、すなわち、極性判別対象の電圧の極性を判別することができる。 In the voltage polarity discrimination circuit, the input offset voltage of the operational amplifier circuit used in the integration circuit is set larger than the absolute value of the input voltage of the integration circuit, so the input voltage range is a continuous range smaller than the input offset voltage. In the range, it is possible to accurately determine the polarity of the input voltage, that is, the polarity of the voltage to be subjected to polarity determination. Further, since the input voltage and the input offset voltage are not equal, it is possible to always determine the polarity of the input voltage, that is, the polarity of the voltage to be subjected to polarity determination.
 更に、時間の計測を、カウンタでクロック数を計測することにより行うシステムであっても、全入力電圧範囲において、極性を正確に判別することができる。 Furthermore, even in a system that measures time by measuring the number of clocks with a counter, the polarity can be accurately determined in the entire input voltage range.
 好ましくは、前記極性判別対象の電圧は、所定の電源に直列接続された検知抵抗の両端電圧である。このようにすれば、検知抵抗に流れる電流の極性を判別することもできる。 Preferably, the voltage of the polarity discrimination target is a voltage across a detection resistor connected in series to a predetermined power source. In this way, the polarity of the current flowing through the detection resistor can be determined.
 また、本発明の電荷量計測回路は、入力電圧を電荷量に相当するパルスに変換する電圧電荷変換回路と、各々前記電圧電荷変換回路の出力パルスをカウントする充電計測回路及び放電計測回路と、前記入力電圧が0Vのときの前記充電計測回路の計数値を保持し、かつ当該計数値を前記充電計測回路に設定する記憶回路とを有する電荷量計測回路において、前記充電計測回路のカウントがオーバーフローに至ったときには前記放電計測回路の計数値を減算し、前記放電計測回路のカウントがオーバーフローに至ったときには前記充電計測回路の計数値を減算するように構成され、かつ、前記電圧電荷変換回路は、前記入力電圧の最大値より大きい、又は最小値より小さい入力オフセット電圧を有する演算増幅回路を用いた積分回路を備えることとしたものである。 The charge amount measurement circuit of the present invention includes a voltage charge conversion circuit for converting an input voltage into a pulse corresponding to the charge amount, a charge measurement circuit and a discharge measurement circuit for counting output pulses of the voltage charge conversion circuit, In a charge amount measurement circuit having a storage circuit that holds a count value of the charge measurement circuit when the input voltage is 0 V and sets the count value in the charge measurement circuit, the count of the charge measurement circuit overflows Is configured to subtract the count value of the discharge measurement circuit when the count reaches the overflow, subtract the count value of the charge measurement circuit when the count of the discharge measurement circuit reaches an overflow, and the voltage charge conversion circuit, And an integrating circuit using an operational amplifier circuit having an input offset voltage larger than the maximum value of the input voltage or smaller than the minimum value. It is obtained by and.
 また、本発明の他の電荷量計測回路は、入力電圧を電荷量に相当するパルスに変換する電圧電荷変換回路と、前記電圧電荷変換回路の出力パルスをカウントする電荷計測回路と、前記入力電圧が0Vのときに前記電荷計測回路がオーバーフローするまでの時間をクロックで計測し、かつ電荷量計測時に計測時間の経過を示す時間計測回路と、前記電荷計測回路と前記時間計測回路との各々のオーバーフローの時間差に相当するクロック数をカウントする電荷積算回路と、前記入力電圧が0Vのときの前記時間計測回路の計数値を保持し、かつ当該計数値を前記時間計測回路に設定する記憶回路とを有する電荷量計測回路において、前記電圧電荷変換回路は、前記入力電圧の最大値より大きい、又は最小値より小さい入力オフセット電圧を有する演算増幅回路を用いた積分回路を備えることとしたものである。 Another charge amount measurement circuit of the present invention includes a voltage charge conversion circuit that converts an input voltage into a pulse corresponding to a charge amount, a charge measurement circuit that counts output pulses of the voltage charge conversion circuit, and the input voltage. A time measurement circuit that measures the time until the charge measurement circuit overflows when the voltage is 0 V, and indicates the passage of the measurement time when measuring the charge amount, and each of the charge measurement circuit and the time measurement circuit A charge integrating circuit that counts the number of clocks corresponding to an overflow time difference, a storage circuit that holds a count value of the time measurement circuit when the input voltage is 0 V, and sets the count value in the time measurement circuit; The voltage charge conversion circuit has an input offset voltage that is greater than the maximum value of the input voltage or less than the minimum value. It is obtained by a further comprising an integrating circuit including an operational amplifier circuit that.
 本発明によると、積分回路に用いられる演算増幅回路の入力オフセット電圧を入力電圧の絶対値より大きくしているので、入力オフセット電圧より小さな連続的な入力電圧範囲で、充放電時の電荷量を計測することができる。 According to the present invention, since the input offset voltage of the operational amplifier circuit used in the integrating circuit is made larger than the absolute value of the input voltage, the charge amount during charging / discharging can be reduced in a continuous input voltage range smaller than the input offset voltage. It can be measured.
 本発明の電圧極性判別回路によれば、全入力電圧範囲において、入力電圧の極性、すなわち、極性判別対象の電圧の極性を正確に判別することができる。 According to the voltage polarity discriminating circuit of the present invention, the polarity of the input voltage, that is, the polarity of the voltage to be polarity discriminated can be accurately discriminated in the entire input voltage range.
 本発明の電荷量計測回路によれば、入力電圧の全測定範囲において、不感帯を有することなく、電荷量又は電流値を測定することができる。 According to the charge amount measurement circuit of the present invention, the charge amount or the current value can be measured without having a dead zone in the entire measurement range of the input voltage.
第1の実施形態による電圧極性判別回路を示す図である。It is a figure which shows the voltage polarity discrimination circuit by 1st Embodiment. (a)は電圧極性判別回路への入力電圧波形図、(b)は積分回路の出力電圧波形図、(c)は比較回路の出力電圧波形図である。(A) is an input voltage waveform diagram to the voltage polarity discrimination circuit, (b) is an output voltage waveform diagram of the integration circuit, and (c) is an output voltage waveform diagram of the comparison circuit. 図1中の判定回路の内部構成例を示すブロック図である。FIG. 2 is a block diagram illustrating an internal configuration example of a determination circuit in FIG. 1. 第2の実施形態による電圧極性判別回路を示す図である。It is a figure which shows the voltage polarity discrimination circuit by 2nd Embodiment. (a)は電圧極性判別回路への入力電圧波形図、(b)は積分回路の出力電圧波形図、(c)及び(d)は比較回路の出力電圧波形図、(e)は論理回路の出力電圧波形図、(f)はカウンタの出力電圧波形図、(g)はクロック波形図である。(A) is an input voltage waveform diagram to the voltage polarity discrimination circuit, (b) is an output voltage waveform diagram of the integration circuit, (c) and (d) are output voltage waveform diagrams of the comparison circuit, and (e) is a logic circuit diagram. The output voltage waveform diagram, (f) is the output voltage waveform diagram of the counter, and (g) is the clock waveform diagram. 図4中の判定回路の内部構成例を示すブロック図である。FIG. 5 is a block diagram illustrating an internal configuration example of a determination circuit in FIG. 4. 本発明の第3の実施形態に係る電荷量計測回路の構成を示すブロック図である。It is a block diagram which shows the structure of the electric charge amount measurement circuit which concerns on the 3rd Embodiment of this invention. 図7の電荷量計測回路のトリミングステップのときの動作を示す波形図であり、(a)は当該電荷量計測回路への入力電圧を、(b)は積分回路の出力電圧を、(c)は第1の比較回路の出力電圧を、(d)は第2の比較回路の出力電圧を、(e)は論理回路の出力電圧を、(f)は電荷カウンタの状態を、(g)はクロックの電圧を、(h)は計測カウンタの状態をそれぞれ示す図である。FIG. 8 is a waveform diagram showing an operation at the trimming step of the charge amount measurement circuit of FIG. 7, (a) is an input voltage to the charge amount measurement circuit, (b) is an output voltage of the integration circuit, (c). Is the output voltage of the first comparison circuit, (d) is the output voltage of the second comparison circuit, (e) is the output voltage of the logic circuit, (f) is the state of the charge counter, (g) is (H) is a diagram showing the state of the measurement counter. 図7の電荷量計測回路の充電のときの動作を示す波形図であり、(a)は当該電荷量計測回路への入力電圧を、(b)は積分回路の出力電圧を、(c)は論理回路の出力電圧を、(d)は電荷カウンタの状態を、(e)はクロックの電圧を、(f)は計測カウンタの状態を、(g)は充電カウンタの状態をそれぞれ示す図である。FIG. 8 is a waveform diagram showing an operation at the time of charging of the charge amount measurement circuit of FIG. 7, (a) is an input voltage to the charge amount measurement circuit, (b) is an output voltage of the integration circuit, and (c) is an output voltage. (D) is a charge counter state, (e) is a clock voltage, (f) is a measurement counter state, and (g) is a charge counter state. . 図7の電荷量計測回路の放電のときの動作を示す波形図であり、(a)は当該電荷量計測回路への入力電圧を、(b)は積分回路の出力電圧を、(c)は論理回路の出力電圧を、(d)は電荷カウンタの状態を、(e)は放電カウンタの状態を、(f)は計測カウンタの状態を、(g)はクロックの電圧をそれぞれ示す図である。FIG. 8 is a waveform diagram showing an operation of the charge amount measurement circuit of FIG. 7 during discharging, where (a) shows the input voltage to the charge amount measurement circuit, (b) shows the output voltage of the integration circuit, and (c) shows (D) is the state of the charge counter, (e) is the state of the discharge counter, (f) is the state of the measurement counter, and (g) is the voltage of the clock. . 計測カウンタと電荷カウンタとにおける時間を数直線で表した図であり、(a)はトリミングステップでの時間関係を、(b)は充電のときの時間関係を、(c)は放電のときの時間関係をそれぞれ示す図である。It is the figure which represented the time in a measurement counter and an electric charge counter with a number line, (a) is the time relationship in a trimming step, (b) is the time relationship at the time of charge, (c) is the time at the time of discharge. It is a figure which shows each time relationship. 本発明の第4の実施形態に係る電荷量計測回路の構成を示すブロック図である。It is a block diagram which shows the structure of the electric charge amount measurement circuit which concerns on the 4th Embodiment of this invention. 図12の電荷量計測回路のトリミングステップのときの動作を示す波形図であり、(a)は当該電荷量計測回路への入力電圧を、(b)は積分回路の出力電圧を、(c)は第1の比較回路の出力電圧を、(d)は第2の比較回路の出力電圧を、(e)は論理回路の出力電圧を、(f)は電荷カウンタの状態を、(g)はクロックの電圧を、(h)は計測カウンタの状態をそれぞれ示す図である。FIG. 13 is a waveform diagram showing an operation at the trimming step of the charge amount measurement circuit of FIG. 12, where (a) shows an input voltage to the charge amount measurement circuit, (b) shows an output voltage of the integration circuit, and (c). Is the output voltage of the first comparison circuit, (d) is the output voltage of the second comparison circuit, (e) is the output voltage of the logic circuit, (f) is the state of the charge counter, (g) is (H) is a diagram showing the state of the measurement counter. 図12の電荷量計測回路の充電のときの動作を示す波形図であり、(a)は当該電荷量計測回路への入力電圧を、(b)は積分回路の出力電圧を、(c)は論理回路の出力電圧を、(d)は電荷カウンタの状態を、(e)は電荷カウンタのオーバーフロー信号を、(f)は計測カウンタの状態を、(g)は計測カウンタのオーバーフロー信号を、(h)はスタートストップ制御回路からのイネーブル信号を、(i)はクロックの電圧を、(j)は積算カウンタの状態をそれぞれ示す図である。FIG. 13 is a waveform diagram showing an operation at the time of charging of the charge amount measurement circuit of FIG. 12, where (a) shows an input voltage to the charge amount measurement circuit, (b) shows an output voltage of the integration circuit, and (c) shows The output voltage of the logic circuit, (d) the state of the charge counter, (e) the overflow signal of the charge counter, (f) the state of the measurement counter, (g) the overflow signal of the measurement counter, ( h) is an enable signal from the start / stop control circuit, (i) is a clock voltage, and (j) is a diagram showing the state of the integration counter. 図12の電荷量計測回路の放電のときの動作を示す波形図であり、(a)は当該電荷量計測回路への入力電圧を、(b)は積分回路の出力電圧を、(c)は論理回路の出力電圧を、(d)は電荷カウンタの状態を、(e)は電荷カウンタのオーバーフロー信号を、(f)は計測カウンタの状態を、(g)は計測カウンタのオーバーフロー信号を、(h)はスタートストップ制御回路からのイネーブル信号を、(i)はクロックの電圧を、(j)は積算カウンタの状態をそれぞれ示す図である。FIG. 13 is a waveform diagram showing the operation of the charge amount measurement circuit of FIG. 12 during discharging, where (a) shows the input voltage to the charge amount measurement circuit, (b) shows the output voltage of the integration circuit, and (c) shows the operation. The output voltage of the logic circuit, (d) the state of the charge counter, (e) the overflow signal of the charge counter, (f) the state of the measurement counter, (g) the overflow signal of the measurement counter, ( h) is an enable signal from the start / stop control circuit, (i) is a clock voltage, and (j) is a diagram showing the state of the integration counter. 計測カウンタと電荷カウンタと積算カウンタとにおける時間を数直線で表した図であり、(a)はトリミングステップでの時間関係を、(b)は充電のときの時間関係を、(c)は放電のときの時間関係をそれぞれ示す図である。It is the figure which represented the time in a measurement counter, an electric charge counter, and an integration counter with a number line, (a) is a time relation in a trimming step, (b) is a time relation at the time of charge, (c) is a discharge. It is a figure which shows the time relationship at the time of, respectively. (a)及び(b)は、図8及び図12中の積分回路の入力オフセット電圧の分布と入力電圧範囲とを示す図である。(A) And (b) is a figure which shows distribution of the input offset voltage and input voltage range of the integration circuit in FIG.8 and FIG.12. 本発明の実施形態の応用例を示す図である。It is a figure which shows the example of application of embodiment of this invention. 本発明の実施形態に係る差動入力段の1対のトランジスタのサイズに差をつけて入力オフセット電圧を設定した演算増幅回路の回路図である。FIG. 3 is a circuit diagram of an operational amplifier circuit in which an input offset voltage is set by making a difference in the size of a pair of transistors in a differential input stage according to an embodiment of the present invention. 本発明の実施形態に係る電流源の電流量に差をつけて入力オフセット電圧を設定した演算増幅回路の回路図である。FIG. 4 is a circuit diagram of an operational amplifier circuit in which an input offset voltage is set with a difference in the amount of current of a current source according to an embodiment of the present invention. 本発明の実施形態に係る差動入力段の1対のトランジスタに接続されるオフセット抵抗の抵抗値に差をつけて入力オフセット電圧を設定した演算増幅回路の回路図である。FIG. 3 is a circuit diagram of an operational amplifier circuit in which an input offset voltage is set by making a difference between resistance values of offset resistors connected to a pair of transistors in a differential input stage according to an embodiment of the present invention. 本発明の実施形態に係る電流源に接続されるオフセット抵抗の抵抗値に差をつけて入力オフセット電圧を設定した演算増幅回路の回路図である。FIG. 4 is a circuit diagram of an operational amplifier circuit in which an input offset voltage is set by making a difference between resistance values of offset resistors connected to a current source according to an embodiment of the present invention. 本発明の実施形態に係るバイアス電圧による入力オフセット電圧を設定した演算増幅回路の回路図である。It is a circuit diagram of the operational amplifier circuit which set the input offset voltage by the bias voltage which concerns on embodiment of this invention. 従来の電圧極性判別回路を示す図である。It is a figure which shows the conventional voltage polarity discrimination circuit. 従来の電圧極性判別回路への入力電圧が入力オフセット電圧より大きい場合の電圧波形図であり、(a)は電圧極性判別回路への入力電圧波形図、(b)は積分回路の出力電圧波形図、(c)は比較回路の出力電圧波形図、(d)は比較回路の出力電圧波形図である。It is a voltage waveform diagram when the input voltage to the conventional voltage polarity discrimination circuit is larger than the input offset voltage, (a) is an input voltage waveform diagram to the voltage polarity discrimination circuit, (b) is an output voltage waveform diagram of the integration circuit , (C) is an output voltage waveform diagram of the comparison circuit, and (d) is an output voltage waveform diagram of the comparison circuit. 従来の電荷量計測回路の構成を示すブロック図である。It is a block diagram which shows the structure of the conventional charge amount measurement circuit. 図26の電荷量計測回路のトリミングステップのときの動作を示す波形図であり、(a)は当該電荷量計測回路への入力電圧を、(b)は積分回路の出力電圧を、(c)は第1の比較回路の出力電圧を、(d)は第2の比較回路の出力電圧を、(e)は論理回路の出力電圧を、(f)はクロックの電圧をそれぞれ示す図である。It is a wave form diagram which shows the operation | movement at the time of the trimming step of the electric charge measurement circuit of FIG. 26, (a) is the input voltage to the said electric charge measurement circuit, (b) is the output voltage of an integration circuit, (c). FIG. 4 is a diagram showing an output voltage of the first comparison circuit, (d) is an output voltage of the second comparison circuit, (e) is an output voltage of the logic circuit, and (f) is a voltage of the clock. 図26の電荷量計測回路の充電のときの動作を示す波形図であり、(a)は当該電荷量計測回路への入力電圧を、(b)は積分回路の出力電圧を、(c)は第1の比較回路の出力電圧を、(d)は第2の比較回路の出力電圧を、(e)は論理回路の出力電圧を、(f)はクロックの電圧を、(g)は非同期カウンタの状態をそれぞれ示す図である。It is a wave form diagram which shows the operation | movement at the time of charge of the charge amount measurement circuit of FIG. 26, (a) is the input voltage to the said charge amount measurement circuit, (b) is the output voltage of an integration circuit, (c) is The output voltage of the first comparison circuit, (d) the output voltage of the second comparison circuit, (e) the output voltage of the logic circuit, (f) the clock voltage, and (g) the asynchronous counter. It is a figure which shows each of these states. 図26の電荷量計測回路の放電のときの動作を示す波形図であり、(a)は当該電荷量計測回路への入力電圧を、(b)は積分回路の出力電圧を、(c)は第1の比較回路の出力電圧を、(d)は第2の比較回路の出力電圧を、(e)は論理回路の出力電圧を、(f)はクロックの電圧を、(g)は非同期カウンタの状態をそれぞれ示す図である。FIG. 27 is a waveform diagram showing an operation during discharging of the charge amount measurement circuit of FIG. 26, where (a) shows the input voltage to the charge amount measurement circuit, (b) shows the output voltage of the integration circuit, and (c) shows The output voltage of the first comparison circuit, (d) the output voltage of the second comparison circuit, (e) the output voltage of the logic circuit, (f) the clock voltage, and (g) the asynchronous counter. It is a figure which shows each of these states. 従来の電圧極性判別回路への入力電圧が入力オフセット電圧より小さい場合の電圧波形図であり、(a)は電圧極性判別回路への入力電圧波形図、(b)は積分回路の出力電圧波形図、(c)は比較回路の出力電圧波形図、(d)は比較回路の出力電圧波形図である。It is a voltage waveform diagram when the input voltage to the conventional voltage polarity discrimination circuit is smaller than the input offset voltage, (a) is the input voltage waveform diagram to the voltage polarity discrimination circuit, (b) is the output voltage waveform diagram of the integration circuit , (C) is an output voltage waveform diagram of the comparison circuit, and (d) is an output voltage waveform diagram of the comparison circuit. 従来の電圧極性判別回路の入力オフセット電圧と入力電圧の入力範囲に対する充放電電流の極性判別結果の正誤を示す図である。It is a figure which shows the right / wrong of the polarity discrimination | determination result of the charging / discharging current with respect to the input offset voltage of the conventional voltage polarity discrimination | determination circuit and the input range of input voltage. (a)及び(b)は、図26中の積分回路の入力オフセット電圧の分布と入力電圧範囲とを示す図である。(A) And (b) is a figure which shows distribution of the input offset voltage and input voltage range of the integration circuit in FIG.
 以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 《第1の実施形態》
 図1は、第1の実施形態による電圧極性判別回路301の構成図である。電圧極性判別回路301は、スイッチSW0と、積分回路100と、初期化回路311と、時間計測回路312とを備えている。
<< First Embodiment >>
FIG. 1 is a configuration diagram of a voltage polarity determination circuit 301 according to the first embodiment. The voltage polarity determination circuit 301 includes a switch SW 0, an integration circuit 100, an initialization circuit 311, and a time measurement circuit 312.
 積分回路100は、演算増幅回路100aと、コンデンサC1と、抵抗R1とを含む。コンデンサC1は、演算増幅回路100aの出力端子eと反転入力端子cとの間に接続されている。抵抗R1は、演算増幅回路100aの反転入力端子cとスイッチSW0との間に接続されている。演算増幅回路100aの非反転入力端子dはGND端子bを介して基準電圧GNDに接続されている。演算増幅回路100aは、入力電圧範囲外のレベルの入力オフセット電圧Vosaを有する。ここで、入力電圧範囲外とは、積分回路100の入力電圧Vinの最大値より大きい、又は最小値より小さい領域である。入力オフセット電圧Vosaは、入力電圧Vinの入力電圧範囲外のレベルに設定するのが望ましいが、入力電圧Vinの発生頻度が少ない最大値又は最小値に近い領域に設定してもかまわない。 The integration circuit 100 includes an operational amplifier circuit 100a, a capacitor C1, and a resistor R1. The capacitor C1 is connected between the output terminal e and the inverting input terminal c of the operational amplifier circuit 100a. The resistor R1 is connected between the inverting input terminal c of the operational amplifier circuit 100a and the switch SW0. The non-inverting input terminal d of the operational amplifier circuit 100a is connected to the reference voltage GND through the GND terminal b. The operational amplifier circuit 100a has an input offset voltage Vosa whose level is outside the input voltage range. Here, “outside the input voltage range” is a region that is larger than the maximum value or smaller than the minimum value of the input voltage Vin of the integration circuit 100. The input offset voltage Vosa is preferably set at a level outside the input voltage range of the input voltage Vin, but may be set in a region close to the maximum value or the minimum value where the frequency of occurrence of the input voltage Vin is low.
 スイッチSW0は、演算増幅回路100aの反転入力端子cの接続先を入力端子a又はGND端子bに切り替える。入力端子aは二次電池の負極と検知抵抗Rinとの間のノードに接続されている。 The switch SW0 switches the connection destination of the inverting input terminal c of the operational amplifier circuit 100a to the input terminal a or the GND terminal b. The input terminal a is connected to a node between the negative electrode of the secondary battery and the detection resistor Rin.
 初期化回路311はスイッチSW1を含む。スイッチSW1は、演算増幅回路100aの出力端子eと反転入力端子cとの間にコンデンサC1と並列に接続されている。 The initialization circuit 311 includes a switch SW1. The switch SW1 is connected in parallel with the capacitor C1 between the output terminal e and the inverting input terminal c of the operational amplifier circuit 100a.
 時間計測回路312は、比較回路401と、判定回路402とを含む。比較回路401は、積分回路100の出力電圧V10と基準電圧VHとを比較しその結果を出力する。判定回路402は、スイッチSW0により反転入力端子cの接続先が入力端子a又はGND端子bに切り替えられたときから比較回路401の出力電圧V11が反転するまでの時間(Tdis又はTch)を計測する。 The time measurement circuit 312 includes a comparison circuit 401 and a determination circuit 402. The comparison circuit 401 compares the output voltage V10 of the integration circuit 100 with the reference voltage VH and outputs the result. The determination circuit 402 measures a time (Tdis or Tch) from when the connection destination of the inverting input terminal c is switched to the input terminal a or the GND terminal b by the switch SW0 until the output voltage V11 of the comparison circuit 401 is inverted. .
 次に、上記のように構成された電圧極性判別回路301の動作について図2(a)~図2(c)を参照しながら説明する。ここでは、動作の理解を簡単にするために、一定電流の場合、すなわち、入力電圧Vinが一定の場合、及び、入力オフセット電圧Vosa>0の場合を例に説明する。 Next, the operation of the voltage polarity discrimination circuit 301 configured as described above will be described with reference to FIGS. 2 (a) to 2 (c). Here, in order to simplify the understanding of the operation, a case of a constant current, that is, a case where the input voltage Vin is constant and a case where the input offset voltage Vosa> 0 will be described as an example.
 まず、スイッチSW0を基準電圧GND(=0V)側に切り替え、図2(a)のように入力電圧Vin=0Vとし、充放電判別の基準時間を測定する。このとき積分回路100の出力電圧V10は、基準電圧GNDから基準電圧VHに達する。この時間をTosaとすると、
Figure JPOXMLDOC01-appb-M000028
が成り立つ。[数28]より、時間Tosaは、
Figure JPOXMLDOC01-appb-M000029
で表され、この時間Tosaが経過すると比較回路401の出力電圧V11が図2(c)のように反転する。この時間Tosaが、充放電の極性を判別する基準時間として用いられる。
First, the switch SW0 is switched to the reference voltage GND (= 0V) side, the input voltage Vin = 0V as shown in FIG. 2A, and the reference time for charge / discharge determination is measured. At this time, the output voltage V10 of the integrating circuit 100 reaches the reference voltage VH from the reference voltage GND. If this time is Tosa,
Figure JPOXMLDOC01-appb-M000028
Holds. From [Equation 28], the time Tosa is
Figure JPOXMLDOC01-appb-M000029
When the time Tosa elapses, the output voltage V11 of the comparison circuit 401 is inverted as shown in FIG. This time Tosa is used as a reference time for determining the polarity of charge / discharge.
 次に、スイッチSW0を入力端子a側に切り替え、充電又は放電の状態に対応した時間を測定する。このとき、二次電池の充電と放電とによって極性が異なった入力電圧Vinが印加される。 Next, switch SW0 is switched to the input terminal a side, and the time corresponding to the state of charge or discharge is measured. At this time, an input voltage Vin having a different polarity is applied depending on charging and discharging of the secondary battery.
 二次電池を充電している場合、電流が電池の正極に流れ込み、電池の負極から基準電圧GND(=0V)を通り流れ出すため、入力電圧Vin>0Vである(図2(a)充電)。このときの積分回路100の出力電圧V10は、基準電圧GNDから基準電圧VHまでの時間をTchとすると(図2(b)充電)、入力オフセット電圧Vosaを入力電圧範囲より大きく(Vosa>Vin)しているので、充電時の入力電圧範囲(0V<Vin<Vosa)に対して、
Figure JPOXMLDOC01-appb-M000030
が成り立つ。[数30]より、時間Tchは、
Figure JPOXMLDOC01-appb-M000031
で表され、この時間Tchが経過すると比較回路401の出力電圧V11が反転する(図2(c)充電)。このとき、時間Tchは時間Tosaよりも長くなる。
When the secondary battery is charged, the current flows into the positive electrode of the battery and flows out from the negative electrode of the battery through the reference voltage GND (= 0 V), so that the input voltage Vin> 0 V (charge in FIG. 2A). The output voltage V10 of the integrating circuit 100 at this time is set so that the time from the reference voltage GND to the reference voltage VH is Tch (charge in FIG. 2B), and the input offset voltage Vosa is larger than the input voltage range (Vosa> Vin). Therefore, for the input voltage range (0V <Vin <Vosa) during charging,
Figure JPOXMLDOC01-appb-M000030
Holds. From [Equation 30], the time Tch is
Figure JPOXMLDOC01-appb-M000031
When this time Tch elapses, the output voltage V11 of the comparison circuit 401 is inverted (charging in FIG. 2 (c)). At this time, the time Tch is longer than the time Tosa.
 二次電池を放電している場合、電流が電池の正極から基準電圧GND(=0V)を通り電池の負極に流れるため、入力電圧Vin<0Vである(図2(a)放電)。このときの積分回路100の出力電圧V10は、基準電圧GNDから基準電圧VHまでの時間をTdisとすると(図2(b)放電)、入力オフセット電圧Vosaを入力電圧範囲より大きく(Vosa>Vin)しているので、放電時の入力電圧範囲(-Vosa<Vin<0V)に対して、
Figure JPOXMLDOC01-appb-M000032
が成り立つ。[数32]より、時間Tdisは、
Figure JPOXMLDOC01-appb-M000033
で表され、この時間Tdisが経過すると比較回路401の出力電圧V11が反転する(図2(c)放電)。このとき、時間Tdisは時間Tosaよりも短くなる。
When the secondary battery is discharged, the current flows from the positive electrode of the battery through the reference voltage GND (= 0V) to the negative electrode of the battery, so that the input voltage Vin <0V (discharge in FIG. 2 (a)). The output voltage V10 of the integration circuit 100 at this time is such that the time from the reference voltage GND to the reference voltage VH is Tdis (discharge in FIG. 2B), and the input offset voltage Vosa is larger than the input voltage range (Vosa> Vin). Therefore, for the input voltage range (−Vosa <Vin <0V) during discharge,
Figure JPOXMLDOC01-appb-M000032
Holds. From [Equation 32], the time Tdis is
Figure JPOXMLDOC01-appb-M000033
When the time Tdis elapses, the output voltage V11 of the comparison circuit 401 is inverted (discharge in FIG. 2C). At this time, the time Tdis is shorter than the time Tosa.
 したがって、入力電圧Vinの入力電圧範囲(-Vosa<Vin<Vosa)において、
Figure JPOXMLDOC01-appb-M000034
の関係が成り立つ。ゆえに、最初に、又は定期的或いは不定期的に時間Tosaを計測しておき、次に時間Tdis又はTchを計測し時間Tosaと比較することにより、充放電の状態を判別することが可能となる。
Therefore, in the input voltage range of the input voltage Vin (−Vosa <Vin <Vosa),
Figure JPOXMLDOC01-appb-M000034
The relationship holds. Therefore, it is possible to determine the state of charge / discharge by measuring the time Tosa first or periodically or irregularly, and then measuring the time Tdis or Tch and comparing it with the time Tosa. .
 この比較は、判定回路402において、それぞれの時間Tosa,Tdis,Tchの計測結果をレジスタ等の記憶回路に保持し、時間Tosaに対する減算等の演算によって行われる。例えば、図3に示すように、判定回路402は、スイッチSW0により積分回路100への入力電圧が切り替えられたときから比較回路401の出力電圧V11が反転するまでの時間をクロックCLKで計測するタイマ701と、当該タイマ701の計測結果を記憶する記憶回路702と、当該計測結果を比較する演算回路703とで構成される。判定回路402として、時間Tosaの計測結果がセットされたダウンカウンタによって処理されてもよい。なお、この処理は、電圧極性判別回路301の外部にあるマイクロコンピュータや、専用の演算回路によって行われてもよい。 This comparison is performed in the determination circuit 402 by holding the measurement results of the respective times Tosa, Tdis, and Tch in a storage circuit such as a register and performing an operation such as subtraction on the time Tosa. For example, as shown in FIG. 3, the determination circuit 402 is a timer that measures the time from when the input voltage to the integration circuit 100 is switched by the switch SW0 until the output voltage V11 of the comparison circuit 401 is inverted using the clock CLK. 701, a storage circuit 702 that stores the measurement result of the timer 701, and an arithmetic circuit 703 that compares the measurement result. The determination circuit 402 may be processed by a down counter in which the measurement result of the time Tosa is set. This process may be performed by a microcomputer outside the voltage polarity determination circuit 301 or a dedicated arithmetic circuit.
 以上、本実施形態によると、積分回路100に用いられる演算増幅回路100aにもたせる入力オフセット電圧Vosaを入力電圧Vinより大きくしているので、入力電圧Vinは、-Vosa<Vin<Vosaの連続的な範囲で、充放電電流の極性を正確に判別することができる。また、入力電圧値Vinと入力オフセット電圧値VosaとをVin<Vosaの条件を満たし、かつ、適当な差をつけることによって、Vin=Vosaの状態とはならないため、必ず比較回路401の出力電圧V11は反転し、充放電電流の極性を判別することができる。 As described above, according to the present embodiment, since the input offset voltage Vosa given to the operational amplifier circuit 100a used in the integrating circuit 100 is made larger than the input voltage Vin, the input voltage Vin is a continuous value of −Vosa <Vin <Vosa. The polarity of the charge / discharge current can be accurately determined within the range. Further, since the input voltage value Vin and the input offset voltage value Vosa satisfy the condition of Vin <Vosa and an appropriate difference is not established, the state of Vin = Vosa is not obtained. Is inverted, and the polarity of the charge / discharge current can be determined.
 なお、本実施形態では、入力電圧Vinに対する積分回路100の出力電圧V10の基準電圧VHに到達する時間を比較することにより、充放電電流の極性を判別した例を示したが、基準時間を設定し、その時間に到達した積分回路100の出力電圧V10のレベルを測定し、入力電圧Vin=0Vのときの積分回路100の出力電圧V10のレベルと比較することによっても、本実施形態と同様の効果が得られる。 In the present embodiment, an example in which the polarity of the charge / discharge current is determined by comparing the time to reach the reference voltage VH of the output voltage V10 of the integration circuit 100 with respect to the input voltage Vin is shown, but the reference time is set. The level of the output voltage V10 of the integrating circuit 100 that has reached that time is measured and compared with the level of the output voltage V10 of the integrating circuit 100 when the input voltage Vin = 0V. An effect is obtained.
 《第2の実施形態》
 図4は、第2の実施形態による電圧極性判別回路302の構成図である。電圧極性判別回路302は、スイッチSW0と、積分回路100と、初期化回路321と、時間計測回路322とを備えている。
<< Second Embodiment >>
FIG. 4 is a configuration diagram of the voltage polarity determination circuit 302 according to the second embodiment. The voltage polarity determination circuit 302 includes a switch SW0, an integration circuit 100, an initialization circuit 321 and a time measurement circuit 322.
 積分回路100は、演算増幅回路100aと、コンデンサC1と、抵抗R1とを含む。コンデンサC1は、演算増幅回路100aの出力端子eと反転入力端子cとの間に接続されている。抵抗R1は、演算増幅回路100aの反転入力端子cとスイッチSW0との間に接続されている。演算増幅回路100aの非反転入力端子dはGND端子bを介して基準電圧GNDに接続されている。演算増幅回路100aは、入力電圧範囲外のレベルの入力オフセット電圧Vosaを有する。ここでも、第1の実施形態と同様に、入力電圧範囲外とは、積分回路100の入力電圧Vinの最大値より大きい、又は最小値より小さい領域である。入力オフセット電圧Vosaは、入力電圧Vinの入力電圧範囲外のレベルに設定するのが望ましいが、入力電圧Vinの発生頻度が少ない最大値又は最小値に近い領域に設定してもかまわない。 The integration circuit 100 includes an operational amplifier circuit 100a, a capacitor C1, and a resistor R1. The capacitor C1 is connected between the output terminal e and the inverting input terminal c of the operational amplifier circuit 100a. The resistor R1 is connected between the inverting input terminal c of the operational amplifier circuit 100a and the switch SW0. The non-inverting input terminal d of the operational amplifier circuit 100a is connected to the reference voltage GND through the GND terminal b. The operational amplifier circuit 100a has an input offset voltage Vosa whose level is outside the input voltage range. Here, as in the first embodiment, “outside of the input voltage range” is a region larger than the maximum value or smaller than the minimum value of the input voltage Vin of the integration circuit 100. The input offset voltage Vosa is preferably set to a level outside the input voltage range of the input voltage Vin, but may be set to a region close to the maximum value or the minimum value where the frequency of occurrence of the input voltage Vin is low.
 スイッチSW0は、演算増幅回路100aの反転入力端子cの接続先を入力端子a又はGND端子bに切り替える。入力端子aは二次電池の負極と検知抵抗Rinとの間のノードに接続されている。 The switch SW0 switches the connection destination of the inverting input terminal c of the operational amplifier circuit 100a to the input terminal a or the GND terminal b. The input terminal a is connected to a node between the negative electrode of the secondary battery and the detection resistor Rin.
 時間計測回路322は、第1及び第2の比較回路401,502と、論理回路503と、カウンタ504と、判定回路505とを含む。第1の比較回路401は、積分回路100の出力電圧V10と第1の基準電圧VHとを比較しその結果を出力する。第2の比較回路502は、積分回路100の出力電圧V10と第2の基準電圧VLとを比較しその結果を出力する。論理回路503は、第1の比較回路401の出力電圧V11と第2の比較回路502の出力電圧V22とを入力とし、電圧V23を出力する。論理回路503の出力電圧V23は、電圧V11の立ち下がり(Vdd→0)に応答してリセットされ(V23=0V)、電圧V22の立ち下がり(Vdd→0)に応答してセットされる(V23=Vdd)。カウンタ504は、論理回路503の出力電圧V23を設定値まで計測する。判定回路505は、スイッチSW0により反転入力端子cの接続先が入力端子a又はGND端子bに切り替えられたときからカウンタ504の計測値が設定値に至るまでの時間を計測し充放電電流の極性を判別する。V24はカウンタ504の計測値であり、CLKは判定回路505に入力されるクロックである。 The time measurement circuit 322 includes first and second comparison circuits 401 and 502, a logic circuit 503, a counter 504, and a determination circuit 505. The first comparison circuit 401 compares the output voltage V10 of the integration circuit 100 with the first reference voltage VH and outputs the result. The second comparison circuit 502 compares the output voltage V10 of the integration circuit 100 with the second reference voltage VL and outputs the result. The logic circuit 503 receives the output voltage V11 of the first comparison circuit 401 and the output voltage V22 of the second comparison circuit 502, and outputs a voltage V23. The output voltage V23 of the logic circuit 503 is reset in response to the fall of the voltage V11 (Vdd → 0) (V23 = 0V), and is set in response to the fall of the voltage V22 (Vdd → 0) (V23). = Vdd). The counter 504 measures the output voltage V23 of the logic circuit 503 up to a set value. The determination circuit 505 measures the time from when the connection destination of the inverting input terminal c is switched to the input terminal a or the GND terminal b by the switch SW0 until the measurement value of the counter 504 reaches the set value, and the polarity of the charge / discharge current Is determined. V24 is a measurement value of the counter 504, and CLK is a clock input to the determination circuit 505.
 初期化回路321は、スイッチSW2を含む。スイッチSW2は、演算増幅回路100aの出力端子eと反転入力端子cとの間にコンデンサC1と並列に接続されている。スイッチSW2は、論理回路503の出力電圧V23に応答して導通状態/非導通状態を切り替える。 The initialization circuit 321 includes a switch SW2. The switch SW2 is connected in parallel with the capacitor C1 between the output terminal e and the inverting input terminal c of the operational amplifier circuit 100a. The switch SW2 switches between a conductive state and a nonconductive state in response to the output voltage V23 of the logic circuit 503.
 次に、上記のように構成された電圧極性判別回路302の動作について、図5(a)~図5(g)を参照しながら説明する。ここでも、動作の理解を簡単にするために、一定電流の場合、すなわち、入力電圧Vinが一定値、及び、入力オフセット電圧Vosa>0の場合を例に説明する。 Next, the operation of the voltage polarity determination circuit 302 configured as described above will be described with reference to FIGS. 5 (a) to 5 (g). Here, in order to easily understand the operation, the case where the current is constant, that is, the case where the input voltage Vin is a constant value and the input offset voltage Vosa> 0 will be described as an example.
 まず、スイッチSW0を基準電圧GND(=0V)側に切り替え、図5(a)のように入力電圧Vin=0Vとし、充放電判別の基準時間を測定する。このとき積分回路100の出力電圧V10は、図5(b)に示すように第2の基準電圧VLから第1の基準電圧VHに達する。この時間をTosaとすると、
Figure JPOXMLDOC01-appb-M000035
が成り立つ。[数35]より、時間Tosaは、
Figure JPOXMLDOC01-appb-M000036
で表され、この時間Tosaが経過すると第1の比較回路401の出力電圧V11が図5(c)のように反転する(Vdd→0)。これに応答して論理回路503の出力電圧V23が図5(e)のようにリセットされ(V23=0V)、初期化回路321のスイッチSW2が導通する。これによりコンデンサC1が放電し、積分回路100の出力電圧V10が第2の基準電圧VLに到達する(図5(b))。第1の基準電圧VHから第2の基準電圧VLに達する時間をTrstとすると、
Figure JPOXMLDOC01-appb-M000037
が成り立つ。[数37]より、時間Trstは、
Figure JPOXMLDOC01-appb-M000038
で表され、この時間Trstが経過すると第2の比較回路502の出力電圧V22が図5(d)のように反転する(Vdd→0)。これに応答して論理回路503の出力電圧V23が図5(e)のようにセットされ(V23=Vdd)、初期化回路321のスイッチSW2が非導通となる。これにより、再び積分回路100の出力電圧V10が第2の基準電圧VLから第1の基準電圧VHに到達する。以降は、設定回数までの繰り返しである。
First, the switch SW0 is switched to the reference voltage GND (= 0V) side, the input voltage Vin = 0V as shown in FIG. 5A, and the reference time for charge / discharge determination is measured. At this time, the output voltage V10 of the integrating circuit 100 reaches the first reference voltage VH from the second reference voltage VL as shown in FIG. If this time is Tosa,
Figure JPOXMLDOC01-appb-M000035
Holds. From [Equation 35], the time Tosa is
Figure JPOXMLDOC01-appb-M000036
When the time Tosa elapses, the output voltage V11 of the first comparison circuit 401 is inverted as shown in FIG. 5C (Vdd → 0). In response to this, the output voltage V23 of the logic circuit 503 is reset as shown in FIG. 5E (V23 = 0V), and the switch SW2 of the initialization circuit 321 becomes conductive. As a result, the capacitor C1 is discharged, and the output voltage V10 of the integrating circuit 100 reaches the second reference voltage VL (FIG. 5B). If the time to reach the second reference voltage VL from the first reference voltage VH is Trst,
Figure JPOXMLDOC01-appb-M000037
Holds. From [Equation 37], the time Trst is
Figure JPOXMLDOC01-appb-M000038
When the time Trst elapses, the output voltage V22 of the second comparison circuit 502 is inverted as shown in FIG. 5D (Vdd → 0). In response to this, the output voltage V23 of the logic circuit 503 is set as shown in FIG. 5E (V23 = Vdd), and the switch SW2 of the initialization circuit 321 is turned off. As a result, the output voltage V10 of the integration circuit 100 reaches the first reference voltage VH from the second reference voltage VL again. Thereafter, the process is repeated up to the set number of times.
 積分回路100の出力電圧V10の1周期の時間は、
Figure JPOXMLDOC01-appb-M000039
であるので、設定回数を2のN乗回とすると、設定回数までの時間Tosnは(図5(f))、
Figure JPOXMLDOC01-appb-M000040
となる。
The time of one cycle of the output voltage V10 of the integrating circuit 100 is
Figure JPOXMLDOC01-appb-M000039
Therefore, if the set number of times is 2 N times, the time Tosn until the set number of times is (FIG. 5 (f)).
Figure JPOXMLDOC01-appb-M000040
It becomes.
 時間の計測を、カウンタでクロックCLKの数を計測することにより行うシステムの場合、クロックCLKとのタイミングのずれによる最大1クロック分の時間の誤差を含む(図5(g))。すなわち、
Figure JPOXMLDOC01-appb-M000041
となるが、
Figure JPOXMLDOC01-appb-M000042
となるように設定回数Nを設定すると、クロックCLKの1周期Tclkの影響が小さくなり、精度を向上させることができる。この時間Tosnを充放電の極性を判別する基準時間として用いる。
In the case of a system in which the time is measured by measuring the number of clocks CLK with a counter, a time error of a maximum of one clock due to a timing shift from the clock CLK is included (FIG. 5 (g)). That is,
Figure JPOXMLDOC01-appb-M000041
But
Figure JPOXMLDOC01-appb-M000042
When the set number of times N is set so as to satisfy, the influence of one cycle Tclk of the clock CLK is reduced, and the accuracy can be improved. This time Tosn is used as a reference time for discriminating the polarity of charge / discharge.
 次に、スイッチSW0を入力端子a側に切り替えた場合、二次電池の充電と放電とによって、極性が異なった入力電圧Vinが印加される。 Next, when the switch SW0 is switched to the input terminal a side, the input voltage Vin having a different polarity is applied depending on the charging and discharging of the secondary battery.
 これら充電及び放電の場合において、回路動作は図5(a)~図5(g)と同様であり、充電のときと放電のときとで測定時間が異なるだけであるので、充放電時の図示は省略する。 In these charge and discharge cases, the circuit operation is the same as in FIGS. 5 (a) to 5 (g), and only the measurement time differs between charge and discharge. Is omitted.
 二次電池が放電しているときの時間をTdisn、充電しているときの時間をTchnとすると、放電のときは図5(f)のTosnがTdisnに、充電のときは図5(f)のTosnがTchnにそれぞれ置き換わる。 When the time when the secondary battery is discharged is Tdisn, and the time when the secondary battery is charged is Tchn, Tosn in FIG. 5 (f) is set to Tdisn when discharging, and FIG. 5 (f) is set when charging. Tosn is replaced with Tchn.
 よって、クロックCLKによる誤差を含めると、放電の場合は、
Figure JPOXMLDOC01-appb-M000043
となり、充電の場合は、
Figure JPOXMLDOC01-appb-M000044
となり、
Figure JPOXMLDOC01-appb-M000045
の関係が成り立つ。
Therefore, if an error due to the clock CLK is included,
Figure JPOXMLDOC01-appb-M000043
In the case of charging,
Figure JPOXMLDOC01-appb-M000044
And
Figure JPOXMLDOC01-appb-M000045
The relationship holds.
 したがって、最初に、又は定期的或いは不定期的に時間Tosnを計測しておき、次に時間Tdisn又はTchnを計測し時間Tosnと比較することにより、充放電の状態を正確に判別することが可能となる。 Therefore, it is possible to accurately determine the charge / discharge state by measuring the time Tosn first, or periodically or irregularly, and then measuring the time Tdisn or Tchn and comparing it with the time Tosn. It becomes.
 この比較は、判定回路505において、それぞれの時間Tosn,Tdisn,Tchnの計測結果をレジスタ等の記憶回路に保持し、時間Tosnに対する減算等の演算によって行われる。例えば、図6に示すように、判定回路505は、スイッチSW0により積分回路100への入力電圧が切り替えられたときからカウンタ504による計測値V24が前記設定値に至るまでの時間をクロックCLKで計測するタイマ801と、当該タイマ801の計測結果を記憶する記憶回路802と、当該計測結果を比較する演算回路803とで構成される。判定回路505として、時間Tosnの計測結果がセットされたダウンカウンタによって処理されてもよい。なお、この処理は、電圧極性判別回路302の外部にあるマイクロコンピュータや、専用の演算回路によって行われてもよい。 This comparison is performed in the determination circuit 505 by holding the measurement results of the respective times Tosn, Tdisn, Tchn in a storage circuit such as a register and performing an operation such as subtraction on the time Tosn. For example, as shown in FIG. 6, the determination circuit 505 measures the time from when the input voltage to the integration circuit 100 is switched by the switch SW0 until the measurement value V24 by the counter 504 reaches the set value using the clock CLK. Timer 801, a storage circuit 802 for storing the measurement result of the timer 801, and an arithmetic circuit 803 for comparing the measurement result. The determination circuit 505 may be processed by a down counter in which the measurement result of the time Tosn is set. This process may be performed by a microcomputer outside the voltage polarity determination circuit 302 or a dedicated arithmetic circuit.
 以上、本実施形態によると、時間の計測を、カウンタでクロック数を計測することにより行うシステムであっても、全範囲の充放電電流に対して極性を正確に判別することができる。また、入力電圧値Vinと入力オフセット電圧値VosaとがVin<Vosaの条件を満たし、かつ、適当な差をつけることによって、Vin=Vosaの状態とはならないため、必ず第1及び第2の比較回路401,502の出力電圧V11,V22は反転し、充放電電流の極性を判別することができる。 As described above, according to the present embodiment, even in a system that measures time by measuring the number of clocks with a counter, it is possible to accurately determine the polarity with respect to the entire range of charge / discharge current. In addition, since the input voltage value Vin and the input offset voltage value Vosa satisfy the condition of Vin <Vosa, and an appropriate difference is not made, the state of Vin = Vosa is not obtained. The output voltages V11 and V22 of the circuits 401 and 502 are inverted, and the polarity of the charge / discharge current can be determined.
 《第3の実施形態》
 図7は、本発明の第3の実施形態における電荷量計測回路1の構成図である。電荷量計測回路1は、第1のスイッチ101と、入力電圧を電荷量に相当するパルスに変換する電圧電荷変換回路10と、電圧電荷変換回路10の出力パルスをカウントし、放電計測回路20の計数値を減算する充電計測回路30と、電圧電荷変換回路10の出力パルスをカウントし、充電計測回路30の計数値を減算する放電計測回路20と、入力電圧Vinが0Vのときの充電計測回路30の計数値を保持し、充電計測回路30にその計数値を設定する記憶回路50とを用いて構成され、電圧電荷変換回路10は、入力電圧Vinの最大値より大きい、又は最小値より小さい入力オフセット電圧Vosaを有する演算増幅回路100aを用いた積分回路100を備えている。
<< Third Embodiment >>
FIG. 7 is a configuration diagram of the charge amount measuring circuit 1 according to the third embodiment of the present invention. The charge amount measurement circuit 1 counts the first switch 101, the voltage charge conversion circuit 10 that converts the input voltage into a pulse corresponding to the charge amount, and the output pulses of the voltage charge conversion circuit 10. Charge measurement circuit 30 that subtracts the count value, discharge measurement circuit 20 that counts the output pulse of the voltage charge conversion circuit 10 and subtracts the count value of the charge measurement circuit 30, and a charge measurement circuit when the input voltage Vin is 0V The storage circuit 50 holds the count value of 30 and sets the count value in the charge measurement circuit 30, and the voltage charge conversion circuit 10 is larger than the maximum value or smaller than the minimum value of the input voltage Vin. An integrating circuit 100 using an operational amplifier circuit 100a having an input offset voltage Vosa is provided.
 電圧電荷変換回路10は、入力オフセット電圧Vosaを有する演算増幅回路100aを用いて構成されている積分回路100と、積分回路100への入力電圧Vinを、入力端子a又はGND端子bに切り替える第1のスイッチ101と、積分回路100の出力電圧V10と第1の基準電圧VHとを比較しその比較結果を出力する第1の比較回路102と、積分回路100の出力電圧V10と第2の基準電圧VLとを比較しその比較結果を出力する第2の比較回路103と、第1の比較回路102の出力電圧V12の反転、又は第2の比較回路103の出力電圧V13の反転に応答してセット、リセットされる電圧を出力する論理回路104と、論理回路104の出力電圧V14により導通と非導通とを制御される第2のスイッチ105とから構成されている。 The voltage-to-charge converter circuit 10 includes an integrating circuit 100 configured using an operational amplifier circuit 100a having an input offset voltage Vosa, and a first that switches an input voltage Vin to the integrating circuit 100 to an input terminal a or a GND terminal b. , The first comparison circuit 102 that compares the output voltage V10 of the integration circuit 100 and the first reference voltage VH and outputs the comparison result, the output voltage V10 of the integration circuit 100 and the second reference voltage Set in response to the second comparison circuit 103 that compares VL and outputs the comparison result, and the inversion of the output voltage V12 of the first comparison circuit 102 or the inversion of the output voltage V13 of the second comparison circuit 103 , A logic circuit 104 that outputs a reset voltage, and a second switch 105 that is controlled to be turned on and off by the output voltage V14 of the logic circuit 104. It is constructed from.
 充電計測回路30は、第1のスイッチ101がGND端子bに切り替えられたとき、すなわち、トリミングステップのときに電荷カウンタ106がオーバーフロー(O/F)に至るまでの時間TosaをクロックCLKで計測し、かつ、第1のスイッチ101が入力端子aに接続されたとき、すなわち、計測ステップのときにクロックCLKをもとに計測時間の経過を示す計測カウンタ107と、計測カウンタ107がオーバーフローしたときに1カウント加算し、電荷カウンタ106がオーバーフローしたときに1カウント減算される充電カウンタ109とを備えている。 When the first switch 101 is switched to the GND terminal b, that is, in the trimming step, the charge measuring circuit 30 measures the time Tosa until the charge counter 106 reaches an overflow (O / F) with the clock CLK. In addition, when the first switch 101 is connected to the input terminal a, that is, when the measurement counter 107 indicating the passage of the measurement time based on the clock CLK and the measurement counter 107 overflow in the measurement step. A charge counter 109 that adds 1 count and decrements 1 count when the charge counter 106 overflows.
 放電計測回路20は、第1の比較回路102又は第2の比較回路103の出力電圧が反転した回数をカウントする電荷カウンタ106と、電荷カウンタ106がオーバーフローしたときに1カウント加算し、計測カウンタ107がオーバーフローしたときに1カウント減算する放電カウンタ110とを備えている。 The discharge measurement circuit 20 counts the number of times the output voltage of the first comparison circuit 102 or the second comparison circuit 103 is inverted, and adds 1 count when the charge counter 106 overflows. And a discharge counter 110 that subtracts one count when the battery overflows.
 積分回路100は、演算増幅回路100aの出力端子eと反転入力端子cとの間にコンデンサCと第2のスイッチ105とが並列に接続され、また、反転入力端子cと入力端子aとの間に抵抗Rが接続され、更に、非反転入力端子dにGND端子bが接続されている。演算増幅回路100aは、入力電圧範囲外のレベルの入力オフセット電圧Vosaを有する。ここで、入力電圧範囲外とは、積分回路100の入力電圧Vinの最大値より大きい、又は最小値より小さい領域である。入力オフセット電圧Vosaは、入力電圧Vinの入力電圧範囲外のレベルに設定するのが望ましいが、入力電圧Vinの発生頻度が少ない最大値又は最小値に近い領域に設定してもかまわない。 In the integrating circuit 100, a capacitor C and a second switch 105 are connected in parallel between the output terminal e and the inverting input terminal c of the operational amplifier circuit 100a, and between the inverting input terminal c and the input terminal a. A resistor R is connected to the non-inverting input terminal d, and a GND terminal b is connected to the non-inverting input terminal d. The operational amplifier circuit 100a has an input offset voltage Vosa whose level is outside the input voltage range. Here, “outside the input voltage range” is a region that is larger than the maximum value or smaller than the minimum value of the input voltage Vin of the integration circuit 100. The input offset voltage Vosa is preferably set at a level outside the input voltage range of the input voltage Vin, but may be set in a region close to the maximum value or the minimum value where the frequency of occurrence of the input voltage Vin is low.
 次に、上記のように構成された本発明の実施形態の電荷量計測回路1の動作について説明する。ここでは、動作の理解を容易にするために、一定電流の場合、すなわち入力電圧Vinが一定であり、かつ入力オフセット電圧をVosa>0のように設定した場合を例に説明する。 Next, the operation of the charge amount measuring circuit 1 according to the embodiment of the present invention configured as described above will be described. Here, in order to facilitate understanding of the operation, a case where the current is constant, that is, the case where the input voltage Vin is constant and the input offset voltage is set such that Vosa> 0 will be described as an example.
 充放電時の電荷量を計測する前に、演算増幅回路100aに設定された入力オフセット電圧Vosaの影響を補正するための情報収集期間として、トリミングステップを設ける。 Before the charge amount at the time of charging / discharging is measured, a trimming step is provided as an information collection period for correcting the influence of the input offset voltage Vosa set in the operational amplifier circuit 100a.
 図8(a)~図8(h)に、設定された入力オフセット電圧Vosa>0Vの場合のトリミングステップの動作を示す。まず、第1のスイッチ101をGND端子bに切り替え、入力電圧をVin=0Vとする(図8(a))。このとき、積分回路100の出力電圧V10は、時間Tosaの間に第2の基準電圧VLから第1の基準電圧VHまで増加するので、
Figure JPOXMLDOC01-appb-M000046
が成り立つ(図8(b))。
FIGS. 8A to 8H show the operation of the trimming step when the set input offset voltage Vosa> 0V. First, the first switch 101 is switched to the GND terminal b, and the input voltage is set to Vin = 0 V (FIG. 8A). At this time, the output voltage V10 of the integrating circuit 100 increases from the second reference voltage VL to the first reference voltage VH during the time Tosa.
Figure JPOXMLDOC01-appb-M000046
Holds (FIG. 8B).
 [数46]より、時間Tosaは、
Figure JPOXMLDOC01-appb-M000047
で表され、この時間Tosaの後に、積分回路100の出力電圧V10は第1の基準電圧VHに到達し、第1の比較回路102の出力電圧V12が図8(c)のように反転する。この出力電圧V12の反転により論理回路104は、第2のスイッチ105を導通する信号を出力する(図8(e))。第2のスイッチ105が導通すると、コンデンサCの両端が短絡されるため、積分回路100の出力電圧V10が減少する(図8(b))。積分回路100の出力電圧V10が減少し、第2の基準電圧VLに達すると、第2の比較回路103の出力電圧V13が反転する(図8(d))。この出力電圧V13の反転により論理回路104は、第2のスイッチ105を非導通にする信号を出力する(図8(e))。第2のスイッチ105が非導通になると、積分回路100の出力電圧V10が再び増加する(図8(b))。計測カウンタ107は、論理回路104の出力電圧V14の反転した回数が、電荷カウンタ106の設定値のNカウントに達するまでの時間Tosan(図8(f))を、周期TclkのクロックCLK(図8(g))で計測する(図8(h))。この時間情報Nosaをレジスタ108に格納し、更に、この格納された時間情報Nosaを計測カウンタ107に設定する。この時間情報Nosaは、設定された入力オフセット電圧Vosaに相当する電荷量を表している。
From [Equation 46], the time Tosa is
Figure JPOXMLDOC01-appb-M000047
After this time Tosa, the output voltage V10 of the integration circuit 100 reaches the first reference voltage VH, and the output voltage V12 of the first comparison circuit 102 is inverted as shown in FIG. By inversion of the output voltage V12, the logic circuit 104 outputs a signal for conducting the second switch 105 (FIG. 8E). When the second switch 105 is turned on, both ends of the capacitor C are short-circuited, so that the output voltage V10 of the integrating circuit 100 decreases (FIG. 8B). When the output voltage V10 of the integration circuit 100 decreases and reaches the second reference voltage VL, the output voltage V13 of the second comparison circuit 103 is inverted (FIG. 8 (d)). By inversion of the output voltage V13, the logic circuit 104 outputs a signal for turning off the second switch 105 (FIG. 8E). When the second switch 105 becomes non-conductive, the output voltage V10 of the integration circuit 100 increases again (FIG. 8B). The measurement counter 107 determines the time Tosan (FIG. 8 (f)) until the number of inversions of the output voltage V14 of the logic circuit 104 reaches the N count of the set value of the charge counter 106, and the clock CLK (FIG. 8). (G)) to measure (FIG. 8 (h)). The time information Nosa is stored in the register 108, and the stored time information Nosa is set in the measurement counter 107. This time information Nosa represents a charge amount corresponding to the set input offset voltage Vosa.
 なお、第2のスイッチ105が導通し、積分回路100の出力電圧V10が第1の基準電圧VHから第2の基準電圧VLに変化したとき、第2のスイッチ105には抵抗があるため時間Trst(図27(b)参照)が発生するが、一般にその値は小さいので、ここでは無視している。第2のスイッチ105の導通時の抵抗が大きい場合には、時間Trstを測定し、補正してもよい。 When the second switch 105 is turned on and the output voltage V10 of the integration circuit 100 changes from the first reference voltage VH to the second reference voltage VL, the second switch 105 has a resistance, so that the time Trst (Refer to FIG. 27 (b)) occurs, but since its value is generally small, it is ignored here. If the resistance when the second switch 105 is conductive is large, the time Trst may be measured and corrected.
 以上のようなトリミングステップの後、計測ステップに移る。計測ステップには、充電と放電との2状態があり、まず、充電のときの動作を図9(a)~図9(g)で説明する。ここでは、しかも0V<Vin<Vosaの場合(図9(a))の動作を説明する。 After the above trimming step, move to the measurement step. The measurement step has two states of charging and discharging. First, the operation at the time of charging will be described with reference to FIGS. 9 (a) to 9 (g). Here, the operation in the case of 0V <Vin <Vosa (FIG. 9A) will be described.
 計測ステップでは、第1のスイッチ101を入力端子aに切り替え、入力端子aとGND端子bとを検知抵抗Rinの両端に接続した状態にする。このとき、積分回路100の出力電圧V10は、時間Tmの間に第2の基準電圧VLから第1の基準電圧VHまで増加するので、
Figure JPOXMLDOC01-appb-M000048
が成り立つ(図9(b))。
In the measurement step, the first switch 101 is switched to the input terminal a, and the input terminal a and the GND terminal b are connected to both ends of the detection resistor Rin. At this time, the output voltage V10 of the integration circuit 100 increases from the second reference voltage VL to the first reference voltage VH during the time Tm.
Figure JPOXMLDOC01-appb-M000048
Holds (FIG. 9B).
 入力電圧Vinを一定としているので、時間Tmは、
Figure JPOXMLDOC01-appb-M000049
で表される。また、ここでは、入力電圧Vinは、0V<Vin<Vosaであるので、時間Tmは、トリミングステップで計測した時間Tosaよりも長くなる。すなわち、
Figure JPOXMLDOC01-appb-M000050
が成り立つ。
Since the input voltage Vin is constant, the time Tm is
Figure JPOXMLDOC01-appb-M000049
It is represented by Here, since the input voltage Vin is 0V <Vin <Vosa, the time Tm is longer than the time Tosa measured in the trimming step. That is,
Figure JPOXMLDOC01-appb-M000050
Holds.
 この時間Tmの後に、積分回路100の出力電圧V10は第1の基準電圧VHに到達し、第1の比較回路102の出力電圧V12が反転する。この出力電圧V12の反転により論理回路104は、第2のスイッチ105を導通する信号を出力する(図9(c))。また、このとき電荷カウンタ106は1カウント加算する(図9(d))。第2のスイッチ105が導通すると、コンデンサCの両端が短絡されるため、積分回路100の出力電圧V10が減少する(図9(b))。積分回路100の出力電圧V10が減少し、第2の基準電圧VLに達すると、第2の比較回路103の出力電圧V13が反転する。この出力電圧V13の反転により論理回路104は、第2のスイッチ105を非導通にする信号を出力する(図9(c))。第2のスイッチ105が非導通になると、積分回路100の出力電圧V10が再び増加し、第1の基準電圧VHに達すると(図9(b))、電荷カウンタ106は1カウント加算する(図9(d))。入力電圧Vinが継続して印加されたとき、以上の動作を繰り返す。 After this time Tm, the output voltage V10 of the integration circuit 100 reaches the first reference voltage VH, and the output voltage V12 of the first comparison circuit 102 is inverted. By inversion of the output voltage V12, the logic circuit 104 outputs a signal for conducting the second switch 105 (FIG. 9C). At this time, the charge counter 106 adds 1 count (FIG. 9D). When the second switch 105 is turned on, both ends of the capacitor C are short-circuited, so that the output voltage V10 of the integrating circuit 100 decreases (FIG. 9B). When the output voltage V10 of the integration circuit 100 decreases and reaches the second reference voltage VL, the output voltage V13 of the second comparison circuit 103 is inverted. By inversion of the output voltage V13, the logic circuit 104 outputs a signal for turning off the second switch 105 (FIG. 9C). When the second switch 105 becomes non-conductive, the output voltage V10 of the integrating circuit 100 increases again. When the second switch 105 reaches the first reference voltage VH (FIG. 9B), the charge counter 106 adds 1 count (FIG. 9). 9 (d)). When the input voltage Vin is continuously applied, the above operation is repeated.
 計測カウンタ107は、レジスタ108に格納された時間情報Nosaをカウントする(図9(f))。充電カウンタ109は、計測カウンタ107が時間情報Nosaをカウントするごとに、すなわち、時間Tosanが経過するごとに、1カウント加算し、かつ、電荷カウンタ106が設定値Nをオーバーフローしたときに、充電カウンタ109の計数値から1カウント減算される(図9(g))。この加算された値は、検知抵抗Rinの両端に発生した入力電圧Vinに相当する電荷量と、設定された入力オフセット電圧Vosaに相当する電荷量とを含んでいる。また、この減算する値は、トリミングステップで測定した設定された入力オフセット電圧Vosaに相当する電荷量であり、この充電カウンタ109の計数値から減算することにより、設定した入力オフセット電圧Vosaに相当する電荷量を補正している。 The measurement counter 107 counts the time information Nosa stored in the register 108 (FIG. 9 (f)). The charge counter 109 adds 1 count each time the measurement counter 107 counts the time information Nosa, that is, every time the time Tosan passes, and when the charge counter 106 overflows the set value N, the charge counter 109 One count is subtracted from the count value of 109 (FIG. 9 (g)). This added value includes a charge amount corresponding to the input voltage Vin generated at both ends of the detection resistor Rin and a charge amount corresponding to the set input offset voltage Vosa. The value to be subtracted is a charge amount corresponding to the set input offset voltage Vosa measured in the trimming step. By subtracting from the count value of the charge counter 109, the value to be subtracted corresponds to the set input offset voltage Vosa. The charge amount is corrected.
 次に、放電のときの動作を、図10(a)~図10(g)により説明する。ここでは、入力電圧Vinが-Vosa<Vin<0Vの場合(図10(a))の動作を説明する。 Next, the operation during discharging will be described with reference to FIGS. 10 (a) to 10 (g). Here, the operation when the input voltage Vin is −Vosa <Vin <0 V (FIG. 10A) will be described.
 充電のときと同様に、計測ステップでは、第1のスイッチ101を入力端子aに切り替え、入力端子aとGND端子bとを検知抵抗Rinの両端に接続した状態にする。このとき、積分回路100の出力電圧V10は、時間Tmの間に第2の基準電圧VLから第1の基準電圧VHまで増加するので、
Figure JPOXMLDOC01-appb-M000051
が成り立つ(図10(b))。
As in the case of charging, in the measurement step, the first switch 101 is switched to the input terminal a, and the input terminal a and the GND terminal b are connected to both ends of the detection resistor Rin. At this time, the output voltage V10 of the integration circuit 100 increases from the second reference voltage VL to the first reference voltage VH during the time Tm.
Figure JPOXMLDOC01-appb-M000051
Holds (FIG. 10B).
 入力電圧Vinを一定としているので、時間Tmは、
Figure JPOXMLDOC01-appb-M000052
で表される。また、ここでは、入力電圧Vinは、Vin<0Vであるので、時間Tmは、トリミングステップで計測した時間Tosaよりも短くなる。すなわち、
Figure JPOXMLDOC01-appb-M000053
が成り立つ。
Since the input voltage Vin is constant, the time Tm is
Figure JPOXMLDOC01-appb-M000052
It is represented by Here, since the input voltage Vin is Vin <0V, the time Tm is shorter than the time Tosa measured in the trimming step. That is,
Figure JPOXMLDOC01-appb-M000053
Holds.
 この時間Tmの後に、積分回路100の出力電圧V10は第1の基準電圧VHに到達し、第1の比較回路102の出力電圧V12が反転する。この出力電圧V12の反転により論理回路104は、第2のスイッチ105を導通する信号を出力する(図10(c))。また、このとき電荷カウンタ106は1カウント加算する(図10(d))。第2のスイッチ105が導通すると、コンデンサCの両端が短絡されるため、積分回路100の出力電圧V10が減少する(図10(b))。積分回路100の出力電圧V10が減少し、第2の基準電圧VLに達すると、第2の比較回路103の出力電圧V13が反転する。この出力電圧V13の反転により論理回路104は、第2のスイッチ105を非導通にする信号を出力する(図10(c))。第2のスイッチ105が非導通になると、積分回路100の出力電圧V10が再び増加し、第1の基準電圧VHに達すると(図10(b))、電荷カウンタ106は1カウント加算する(図10(d))。入力電圧Vinが継続して印加されたとき、充電状態と同様に、以上の動作を繰り返す。 After this time Tm, the output voltage V10 of the integration circuit 100 reaches the first reference voltage VH, and the output voltage V12 of the first comparison circuit 102 is inverted. By inversion of the output voltage V12, the logic circuit 104 outputs a signal for conducting the second switch 105 (FIG. 10C). At this time, the charge counter 106 adds 1 count (FIG. 10D). When the second switch 105 is turned on, both ends of the capacitor C are short-circuited, so that the output voltage V10 of the integrating circuit 100 decreases (FIG. 10B). When the output voltage V10 of the integration circuit 100 decreases and reaches the second reference voltage VL, the output voltage V13 of the second comparison circuit 103 is inverted. Due to the inversion of the output voltage V13, the logic circuit 104 outputs a signal for turning off the second switch 105 (FIG. 10C). When the second switch 105 becomes non-conductive, the output voltage V10 of the integrating circuit 100 increases again. When the second switch 105 reaches the first reference voltage VH (FIG. 10B), the charge counter 106 adds 1 count (FIG. 10). 10 (d)). When the input voltage Vin is continuously applied, the above operation is repeated as in the charged state.
 計測カウンタ107は、レジスタ108に格納された時間情報Nosaをカウントする(図10(f))。放電カウンタ110は、電荷カウンタ106が設定値のNカウントするごとに1カウント加算し、かつ、計測カウンタ107が設定値Nosaをオーバーフローしたときに、放電カウンタ110の計数値から1カウント減算される(図10(e))。この加算された値は、検知抵抗Rinの両端に発生した入力電圧Vinに相当する電荷量と、設定された入力オフセット電圧Vosaに相当する電荷量とを含んでいる。また、この減算する値は、トリミングステップで測定した設定された入力オフセット電圧Vosaに相当する電荷量であり、この放電カウンタ110の計数値から減算することにより、設定した入力オフセット電圧Vosaに相当する電荷量を補正している。 The measurement counter 107 counts the time information Nosa stored in the register 108 (FIG. 10 (f)). The discharge counter 110 adds 1 count every time the charge counter 106 counts the set value N, and when the measurement counter 107 overflows the set value Nosa, 1 count is subtracted from the count value of the discharge counter 110 ( FIG. 10 (e)). This added value includes a charge amount corresponding to the input voltage Vin generated at both ends of the detection resistor Rin and a charge amount corresponding to the set input offset voltage Vosa. The value to be subtracted is the amount of charge corresponding to the set input offset voltage Vosa measured in the trimming step. By subtracting from the count value of the discharge counter 110, the value to be subtracted corresponds to the set input offset voltage Vosa. The charge amount is corrected.
 次に、上記のように動作する本発明の実施形態の電荷量計測回路1から、電荷量の求め方を説明する。 Next, how to obtain the charge amount from the charge amount measurement circuit 1 according to the embodiment of the present invention that operates as described above will be described.
 トリミングステップでは、電荷カウンタ106の1カウント当りの電荷量qosaと、計測カウンタ107の1クロック当りの電荷量qclkとを検出する。 In the trimming step, the charge amount qosa per count of the charge counter 106 and the charge amount qclk per clock of the measurement counter 107 are detected.
 まず、電荷カウンタ106の1カウント当りの電荷量qosaを求める。 First, the charge amount qosa per count of the charge counter 106 is obtained.
 積分回路100の出力電圧V10が第1の基準電圧VHから第2の基準電圧VLのレベルに変化する時間Tosaは、前述の[数47]で表される。ここで、検知抵抗Rinに仮想の電流Iosaが流れ、両端に電圧Vosaが発生したとすると、
Figure JPOXMLDOC01-appb-M000054
が成り立ち、[数47]は、
Figure JPOXMLDOC01-appb-M000055
となる。時間Tosaと電流Iosaとの積は、電荷量を表すので、それをqosaとおくと、
Figure JPOXMLDOC01-appb-M000056
となり、電荷量qosaは、設定された入力オフセット電圧Vosaに相当する電荷量と考えることができる。また、[数56]中の素子定数(C,R,Rin)は、インピーダンスアナライザ等の測定器によって測定することができる値である。また、電圧レベル(VH,VL)は、LSIに集積した場合には、テストモードを設け、これらの端子電圧をオシロスコープ等で観測できるようにしておけばよい。よって、[数56]で表される電荷量qosaは、容易に求めることができる。
The time Tosa when the output voltage V10 of the integration circuit 100 changes from the first reference voltage VH to the level of the second reference voltage VL is expressed by the above-mentioned [Equation 47]. Here, if a virtual current Iosa flows through the detection resistor Rin and a voltage Vosa is generated at both ends,
Figure JPOXMLDOC01-appb-M000054
And [Equation 47] is
Figure JPOXMLDOC01-appb-M000055
It becomes. The product of the time Tosa and the current Iosa represents the amount of charge.
Figure JPOXMLDOC01-appb-M000056
Thus, the charge amount qosa can be considered as a charge amount corresponding to the set input offset voltage Vosa. The element constants (C, R, Rin) in [Equation 56] are values that can be measured by a measuring instrument such as an impedance analyzer. When the voltage levels (VH, VL) are integrated in the LSI, a test mode may be provided so that these terminal voltages can be observed with an oscilloscope or the like. Therefore, the charge amount qosa represented by [Equation 56] can be easily obtained.
 次に、計測カウンタ107の1クロック当りの電荷量qclkを求める。 Next, a charge amount qclk per clock of the measurement counter 107 is obtained.
 図11(a)は、トリミングステップでの計測カウンタ107及び電荷カウンタ106における時間の関係を示す。電荷量qosaは、電荷カウンタ106の1カウント分の電荷量であるので、設定値Nカウントされたとき、すなわち、電荷カウンタ106がオーバーフローしたときの電荷量をQosaとすると、
Figure JPOXMLDOC01-appb-M000057
となる。
FIG. 11A shows a time relationship in the measurement counter 107 and the charge counter 106 in the trimming step. Since the charge amount qosa is a charge amount for one count of the charge counter 106, if the set amount N is counted, that is, the charge amount when the charge counter 106 overflows is Qosa,
Figure JPOXMLDOC01-appb-M000057
It becomes.
 電荷カウンタ106が設定値Nカウントに達し、電荷量Qosaになったときの時間Tosanを、クロックCLKを用いて計測カウンタ107で計測する。このときのカウント数がNosaであり、レジスタ108に格納されている。 The time Tosan when the charge counter 106 reaches the set value N count and reaches the charge amount Qosa is measured by the measurement counter 107 using the clock CLK. The count number at this time is Nosa and is stored in the register 108.
 計測カウンタ107の1クロック分の電荷量qclkは、このカウント数Nosaを用いて、
Figure JPOXMLDOC01-appb-M000058
と表すことができる。[数58]中のカウント数N,Nosaと電荷量qosaとはいずれも既知であるので、電荷量qclkは容易に求めることができる。
The charge amount qclk for one clock of the measurement counter 107 is calculated using this count number Nosa.
Figure JPOXMLDOC01-appb-M000058
It can be expressed as. Since the count number N, Nosa and the charge amount qosa in [Formula 58] are both known, the charge amount qclk can be easily obtained.
 計測ステップの充電状態では、トリミングステップで求めた電荷量qosa,qclkを用いて、電荷量を求める。 In the charged state of the measurement step, the charge amount is obtained using the charge amounts qosa and qclk obtained in the trimming step.
 図11(b)は、充電のときの計測カウンタ107及び電荷カウンタ106における時間の関係を示す。電荷カウンタ106の時間Tmcは、入力電圧Vinと設定された入力オフセット電圧Vosaとの影響を受けて、電荷カウンタ106がNカウント後にオーバーフローした時間である。このとき、電荷量はQosaに達している。 FIG. 11B shows the time relationship in the measurement counter 107 and the charge counter 106 during charging. The time Tmc of the charge counter 106 is a time when the charge counter 106 overflows after N counts due to the influence of the input voltage Vin and the set input offset voltage Vosa. At this time, the charge amount has reached Qosa.
 一方、計測カウンタ107では、電荷カウンタ106が時間Tmcに達したとき、
Figure JPOXMLDOC01-appb-M000059
の時間が経過している。
On the other hand, in the measurement counter 107, when the charge counter 106 reaches the time Tmc,
Figure JPOXMLDOC01-appb-M000059
The time has passed.
 計測カウンタ107の時間Tosanは、設定された入力オフセット電圧Vosaのみの影響を受けて、電荷カウンタ106がNカウント後にオーバーフローに達した時間である。 The time Tosan of the measurement counter 107 is a time when the charge counter 106 reaches an overflow after N counts due to the influence of only the set input offset voltage Vosa.
 よって、入力電圧Vinのみに関する時間Tchは、時間Tmcから時間Tosanを減じた時間であり、
Figure JPOXMLDOC01-appb-M000060
である。この時間Tchに対応する電荷量Qchは、
Figure JPOXMLDOC01-appb-M000061
として求めることができる。
Therefore, the time Tch related only to the input voltage Vin is a time obtained by subtracting the time Tosan from the time Tmc.
Figure JPOXMLDOC01-appb-M000060
It is. The charge amount Qch corresponding to this time Tch is
Figure JPOXMLDOC01-appb-M000061
Can be obtained as
 したがって、図7の電荷計測回路1では、計測カウンタ107と充電カウンタ109との状態は、電荷量Qosa相当のカウント値Nosaを減じたカウント値Nchが残っており、このカウント値Nchに、トリミングで求めた電荷量qclkを乗じれば、[数61]で表されるように充電時の電荷量Qchが求まる。 Therefore, in the charge measurement circuit 1 of FIG. 7, the count counter 107 and the charge counter 109 remain in the count value Nch obtained by subtracting the count value Nosa corresponding to the charge amount Qosa, and the count value Nch is trimmed. By multiplying the obtained charge amount qclk, the charge amount Qch at the time of charging can be obtained as represented by [Equation 61].
 計測ステップの放電状態においても同様に、トリミングステップで求めた電荷量qosa,qclkを用いて、電荷量を求める。 Similarly, in the discharge state of the measurement step, the charge amount is obtained using the charge amounts qosa and qclk obtained in the trimming step.
 図11(c)は、放電のときの計測カウンタ107及び電荷カウンタ106における時間の関係を示す。計測カウンタ107が時間Tosanに達したとき、すなわち、Nosaをカウント後にオーバーフローしたとき、電荷カウンタ106は、
Figure JPOXMLDOC01-appb-M000062
の時間を経過している。
FIG. 11C shows a time relationship in the measurement counter 107 and the charge counter 106 during discharge. When the measurement counter 107 reaches time Tosan, that is, when overflowing after counting Nosa, the charge counter 106
Figure JPOXMLDOC01-appb-M000062
The time has passed.
 電荷カウンタ106の時間Tmdは、入力電圧Vinと設定された入力オフセット電圧Vosaとの影響を受けて、電荷カウンタ106がNカウント後にオーバーフローした時間である。このとき、電荷量はQosaに達している。 The time Tmd of the charge counter 106 is a time when the charge counter 106 overflows after N counts due to the influence of the input voltage Vin and the set input offset voltage Vosa. At this time, the charge amount has reached Qosa.
 計測カウンタ107の時間Tosanは、設定された入力オフセット電圧Vosaのみの影響を受けて、電荷カウンタ106がNカウント後にオーバーフローに達した時間である。 The time Tosan of the measurement counter 107 is a time when the charge counter 106 reaches an overflow after N counts due to the influence of only the set input offset voltage Vosa.
 よって、入力電圧Vinのみに関する時間Tdisは、計測カウンタ107の時間Tosanから時間Tmdを減じた時間であり、
Figure JPOXMLDOC01-appb-M000063
である。この時間Tdisに対応する電荷量Qdisは、
Figure JPOXMLDOC01-appb-M000064
として求めることができる。
Therefore, the time Tdis relating only to the input voltage Vin is a time obtained by subtracting the time Tmd from the time Tosan of the measurement counter 107.
Figure JPOXMLDOC01-appb-M000063
It is. The charge amount Qdis corresponding to this time Tdis is
Figure JPOXMLDOC01-appb-M000064
Can be obtained as
 したがって、図7の電荷計測回路1では、電荷カウンタ106及び放電カウンタ110の状態は、電荷量Qosa相当のカウント値Nosaを減じたカウント値Ndisが残っており、このカウント値Ndisに、トリミングで求めた電荷量qosaを乗じれば、[数64]で表されるように放電時の電荷量Qdisが求まる。 Therefore, in the charge measurement circuit 1 of FIG. 7, the state of the charge counter 106 and the discharge counter 110 remains as a count value Ndis obtained by subtracting the count value Nosa corresponding to the charge amount Qosa, and the count value Ndis is obtained by trimming. By multiplying the charge amount qosa, the charge amount Qdis at the time of discharge can be obtained as represented by [Equation 64].
 また、電流は、電荷量の変化量を経過時間で除算したものであるので、充電及び放電で求めた電荷量を用いて容易に求めることができる。 Further, since the current is obtained by dividing the amount of change in the charge amount by the elapsed time, it can be easily obtained using the charge amount obtained by charging and discharging.
 例えば、充電電流Ichは、
Figure JPOXMLDOC01-appb-M000065
で求まる。また、放電電流Idisは、
Figure JPOXMLDOC01-appb-M000066
で求まる。
For example, the charging current Ich is
Figure JPOXMLDOC01-appb-M000065
It is obtained by Also, the discharge current Idis is
Figure JPOXMLDOC01-appb-M000066
It is obtained by
 《第4の実施形態》
 図12は、本発明の第4の実施形態における電荷量計測回路1の構成図である。電荷量計測回路1は、第1のスイッチ101と、入力電圧Vinを電荷量に相当するパルスに変換する電圧電荷変換回路10と、電圧電荷変換回路10の出力パルスをカウントする電荷計測回路25と、入力電圧Vinが0Vのときに電荷計測回路25がオーバーフローするまでの時間をクロックCLKで計測し、かつ電荷量計測時に計測時間の経過を示す時間計測回路35と、電荷計測回路25と時間計測回路35との各々のオーバーフローの時間差に相当するクロックCLKの数をカウントする電荷積算回路40と、入力電圧Vinが0Vのときの時間計測回路35の計数値を保持し、かつ、その計数値を時間計測回路35に設定する記憶回路50とを用いて構成され、電圧電荷変換回路10は、入力電圧Vinの最大値より大きい、又は最小値より小さい入力オフセット電圧Vosaを有する演算増幅回路100aを用いた積分回路100を備えている。
<< Fourth Embodiment >>
FIG. 12 is a configuration diagram of the charge amount measuring circuit 1 according to the fourth embodiment of the present invention. The charge amount measurement circuit 1 includes a first switch 101, a voltage charge conversion circuit 10 that converts an input voltage Vin into a pulse corresponding to the charge amount, and a charge measurement circuit 25 that counts output pulses of the voltage charge conversion circuit 10. The time until the charge measurement circuit 25 overflows when the input voltage Vin is 0 V is measured by the clock CLK, and the time measurement circuit 35 indicating the passage of the measurement time at the time of charge amount measurement, the charge measurement circuit 25 and the time measurement. The charge integration circuit 40 that counts the number of clocks CLK corresponding to each overflow time difference from the circuit 35, and the count value of the time measurement circuit 35 when the input voltage Vin is 0V, and the count value The voltage / charge conversion circuit 10 is configured to be larger than the maximum value of the input voltage Vin. And a integrating circuit 100 including an operational amplifier circuit 100a having the minimum value is less than the input offset voltage Vosa.
 電圧電荷変換回路10は、入力オフセット電圧Vosaを有する演算増幅回路100aを用いて構成されている積分回路100と、積分回路100への入力電圧Vinを、入力端子a又はGND端子bに切り替える第1のスイッチ101と、積分回路100の出力電圧V10と第1の基準電圧VHとを比較しその比較結果を出力する第1の比較回路102と、積分回路100の出力電圧V10と第2の基準電圧VLとを比較しその比較結果を出力する第2の比較回路103と、第1の比較回路102の出力電圧V12の反転、又は第2の比較回路103の出力電圧V13の反転に応答してセット、リセットされる電圧を出力する論理回路104と、論理回路104の出力電圧V14により導通と非導通とを制御される第2のスイッチ105とから構成されている。 The voltage-to-charge converter circuit 10 includes an integrating circuit 100 configured using an operational amplifier circuit 100a having an input offset voltage Vosa, and a first that switches an input voltage Vin to the integrating circuit 100 to an input terminal a or a GND terminal b. , The first comparison circuit 102 that compares the output voltage V10 of the integration circuit 100 and the first reference voltage VH and outputs the comparison result, the output voltage V10 of the integration circuit 100 and the second reference voltage Set in response to the second comparison circuit 103 that compares VL and outputs the comparison result, and the inversion of the output voltage V12 of the first comparison circuit 102 or the inversion of the output voltage V13 of the second comparison circuit 103 , A logic circuit 104 that outputs a reset voltage, and a second switch 105 that is controlled to be turned on and off by the output voltage V14 of the logic circuit 104. It is constructed from.
 電荷計測回路25は、第1の比較回路102又は第2の比較回路103の出力電圧が反転した回数をカウントする電荷カウンタ106を備えている。 The charge measurement circuit 25 includes a charge counter 106 that counts the number of times the output voltage of the first comparison circuit 102 or the second comparison circuit 103 is inverted.
 時間計測回路35は、第1のスイッチ101がGND端子bに切り替えられたとき、すなわち、トリミングステップのときに電荷カウンタ106がオーバーフローに至るまでの時間TosaをクロックCLKで計測し、かつ、第1のスイッチ101が入力端子aに接続されたとき、すなわち、計測ステップのときにクロックCLKをもとに計測時間の経過を示す計測カウンタ107を備えている。 When the first switch 101 is switched to the GND terminal b, that is, in the trimming step, the time measuring circuit 35 measures a time Tosa until the charge counter 106 overflows with the clock CLK, and first time When the switch 101 is connected to the input terminal a, that is, at the time of the measurement step, a measurement counter 107 that indicates the passage of measurement time based on the clock CLK is provided.
 電荷積算回路40は、電荷カウンタ106のオーバーフロー信号(第1のオーバーフロー信号)OF1と、計測カウンタ107のオーバーフロー信号(第2のオーバーフロー信号)OF2とにより、先に入力されたいずれかのオーバーフロー信号から、後に入力された他のオーバーフロー信号までの期間を示すイネーブル信号ENを生成するスタートストップ制御回路111と、スタートストップ制御回路111のイネーブル信号ENによりカウント又は停止を制御される積算カウンタ112とから構成されている。 The charge integrating circuit 40 detects an overflow signal (first overflow signal) OF1 of the charge counter 106 and an overflow signal (second overflow signal) OF2 of the measurement counter 107 from any overflow signal previously input. And a start / stop control circuit 111 for generating an enable signal EN indicating a period until another overflow signal inputted later, and an integration counter 112 controlled to be counted or stopped by the enable signal EN of the start / stop control circuit 111. Has been.
 記憶回路50は、入力電圧Vinが0Vのときに計測カウンタ107が計測した計測値を格納し、かつ当該計測値を計測カウンタ107に設定するレジスタ108から構成されている。 The storage circuit 50 includes a register 108 that stores a measurement value measured by the measurement counter 107 when the input voltage Vin is 0 V and sets the measurement value in the measurement counter 107.
 積分回路100は、演算増幅回路100aの出力端子eと反転入力端子cとの間にコンデンサCと第2のスイッチ105とが並列に接続され、また、反転入力端子cと入力端子aとの間に抵抗Rが接続され、更に、非反転入力端子dにGND端子bが接続されている。演算増幅回路100aは、入力電圧範囲外のレベルの入力オフセット電圧Vosaを有する。ここで、入力電圧範囲外とは、積分回路100の入力電圧Vinの最大値より大きい、又は最小値より小さい領域である。入力オフセット電圧Vosaは、入力電圧Vinの入力電圧範囲外のレベルに設定するのが望ましいが、入力電圧Vinの発生頻度が少ない最大値又は最小値に近い領域に設定してもかまわない。 In the integrating circuit 100, a capacitor C and a second switch 105 are connected in parallel between the output terminal e and the inverting input terminal c of the operational amplifier circuit 100a, and between the inverting input terminal c and the input terminal a. A resistor R is connected to the non-inverting input terminal d, and a GND terminal b is connected to the non-inverting input terminal d. The operational amplifier circuit 100a has an input offset voltage Vosa whose level is outside the input voltage range. Here, “outside the input voltage range” is a region that is larger than the maximum value or smaller than the minimum value of the input voltage Vin of the integration circuit 100. The input offset voltage Vosa is preferably set at a level outside the input voltage range of the input voltage Vin, but may be set in a region close to the maximum value or the minimum value where the frequency of occurrence of the input voltage Vin is low.
 次に、上記のように構成された本発明の実施形態の電荷量計測回路1の動作について説明する。ここでは、動作の理解を容易にするために、一定電流の場合、すなわち入力電圧Vinが一定であり、かつ入力オフセット電圧をVosa>0のように設定した場合を例に説明する。 Next, the operation of the charge amount measuring circuit 1 according to the embodiment of the present invention configured as described above will be described. Here, in order to facilitate understanding of the operation, a case where the current is constant, that is, the case where the input voltage Vin is constant and the input offset voltage is set such that Vosa> 0 will be described as an example.
 充放電時の電荷量を計測する前に、演算増幅回路100aに設定された入力オフセット電圧Vosaの影響を補正するための情報収集期間として、トリミングステップを設ける。 Before the charge amount at the time of charging / discharging is measured, a trimming step is provided as an information collection period for correcting the influence of the input offset voltage Vosa set in the operational amplifier circuit 100a.
 図13(a)~図13(h)に、設定された入力オフセット電圧Vosa>0Vの場合のトリミングステップの動作を示す。まず、第1のスイッチ101をGND端子bに切り替え、入力電圧をVin=0Vとする(図13(a))。このとき、積分回路100の出力電圧V10は、時間Tosaの間に第2の基準電圧VLから第1の基準電圧VHまで増加するので、
Figure JPOXMLDOC01-appb-M000067
が成り立つ(図13(b))。
FIGS. 13A to 13H show the operation of the trimming step when the set input offset voltage Vosa> 0V. First, the first switch 101 is switched to the GND terminal b, and the input voltage is set to Vin = 0 V (FIG. 13A). At this time, the output voltage V10 of the integrating circuit 100 increases from the second reference voltage VL to the first reference voltage VH during the time Tosa.
Figure JPOXMLDOC01-appb-M000067
Holds (FIG. 13B).
 [数67]より、時間Tosaは、
Figure JPOXMLDOC01-appb-M000068
で表され、この時間Tosaの後に、積分回路100の出力電圧V10は第1の基準電圧VHに到達し、第1の比較回路102の出力電圧V12が図13(c)のように反転する。この出力電圧V12の反転により論理回路104は、第2のスイッチ105を導通する信号を出力する(図13(e))。第2のスイッチ105が導通すると、コンデンサCの両端が短絡されるため、積分回路100の出力電圧V10が減少する(図13(b))。積分回路100の出力電圧V10が減少し、第2の基準電圧VLに達すると、第2の比較回路103の出力電圧V13が反転する(図13(d))。この出力電圧V13の反転により論理回路104は、第2のスイッチ105を非導通にする信号を出力する(図13(e))。第2のスイッチ105が非導通になると、積分回路100の出力電圧V10が再び増加する(図13(b))。計測カウンタ107は、論理回路104の出力電圧V14の反転した回数が、電荷カウンタ106の設定値のNカウントに達するまでの時間Tosan(図13(f))を、周期TclkのクロックCLK(図13(g))で計測する(図13(h))。この時間情報Nosaをレジスタ108に格納し、更に、この格納された時間情報Nosaを計測カウンタ107に設定する。この時間情報Nosaは、設定された入力オフセット電圧Vosaに相当する電荷量を表している。
From [Equation 67], the time Tosa is
Figure JPOXMLDOC01-appb-M000068
After this time Tosa, the output voltage V10 of the integration circuit 100 reaches the first reference voltage VH, and the output voltage V12 of the first comparison circuit 102 is inverted as shown in FIG. Due to the inversion of the output voltage V12, the logic circuit 104 outputs a signal for conducting the second switch 105 (FIG. 13E). When the second switch 105 is turned on, both ends of the capacitor C are short-circuited, so that the output voltage V10 of the integrating circuit 100 decreases (FIG. 13 (b)). When the output voltage V10 of the integration circuit 100 decreases and reaches the second reference voltage VL, the output voltage V13 of the second comparison circuit 103 is inverted (FIG. 13 (d)). By inversion of the output voltage V13, the logic circuit 104 outputs a signal for turning off the second switch 105 (FIG. 13E). When the second switch 105 is turned off, the output voltage V10 of the integrating circuit 100 increases again (FIG. 13 (b)). The measurement counter 107 determines the time Tosan (FIG. 13 (f)) until the number of inversions of the output voltage V14 of the logic circuit 104 reaches the N count of the set value of the charge counter 106, and the clock CLK (FIG. 13). (G)) to measure (FIG. 13 (h)). The time information Nosa is stored in the register 108, and the stored time information Nosa is set in the measurement counter 107. This time information Nosa represents a charge amount corresponding to the set input offset voltage Vosa.
 なお、第2のスイッチ105が導通し、積分回路100の出力電圧V10が第1の基準電圧VHから第2の基準電圧VLに変化したとき、第2のスイッチ105には抵抗があるため時間Trst(図27(b)参照)が発生するが、一般にその値は小さいので、ここでは無視している。第2のスイッチ105の導通時の抵抗が大きい場合には、時間Trstを測定し、補正してもよい。 When the second switch 105 is turned on and the output voltage V10 of the integration circuit 100 changes from the first reference voltage VH to the second reference voltage VL, the second switch 105 has a resistance, so that the time Trst (Refer to FIG. 27 (b)) occurs, but since its value is generally small, it is ignored here. If the resistance when the second switch 105 is conductive is large, the time Trst may be measured and corrected.
 以上のようなトリミングステップの後、計測ステップに移る。計測ステップには、充電と放電との2状態があり、まず、充電のときの動作を図14(a)~図14(j)で説明する。ここでは、しかも0V<Vin<Vosaの場合(図14(a))の動作を説明する。 After the above trimming step, move to the measurement step. There are two measurement steps, charging and discharging. First, the operation during charging will be described with reference to FIGS. 14 (a) to 14 (j). Here, the operation in the case of 0V <Vin <Vosa (FIG. 14A) will be described.
 計測ステップでは、第1のスイッチ101を入力端子aに切り替え、入力端子aとGND端子bとを検知抵抗Rinの両端に接続した状態にする。このとき、積分回路100の出力電圧V10は、時間Tmの間に第2の基準電圧VLから第1の基準電圧VHまで増加するので、
Figure JPOXMLDOC01-appb-M000069
が成り立つ(図14(b))。
In the measurement step, the first switch 101 is switched to the input terminal a, and the input terminal a and the GND terminal b are connected to both ends of the detection resistor Rin. At this time, the output voltage V10 of the integration circuit 100 increases from the second reference voltage VL to the first reference voltage VH during the time Tm.
Figure JPOXMLDOC01-appb-M000069
Holds (FIG. 14B).
 入力電圧Vinを一定としているので、時間Tmは、
Figure JPOXMLDOC01-appb-M000070
で表される。また、ここでは、入力電圧Vinは、0V<Vin<Vosaであるので、時間Tmは、トリミングステップで計測した時間Tosaよりも長くなる。すなわち、
Figure JPOXMLDOC01-appb-M000071
が成り立つ。
Since the input voltage Vin is constant, the time Tm is
Figure JPOXMLDOC01-appb-M000070
It is represented by Here, since the input voltage Vin is 0V <Vin <Vosa, the time Tm is longer than the time Tosa measured in the trimming step. That is,
Figure JPOXMLDOC01-appb-M000071
Holds.
 この時間Tmの後に、積分回路100の出力電圧V10は第1の基準電圧VHに到達し、第1の比較回路102の出力電圧V12が反転する。この出力電圧V12の反転により論理回路104は、第2のスイッチ105を導通する信号を出力する(図14(c))。また、このとき電荷カウンタ106は1カウント加算する(図14(d))。第2のスイッチ105が導通すると、コンデンサCの両端が短絡されるため、積分回路100の出力電圧V10が減少する(図14(b))。積分回路100の出力電圧V10が減少し、第2の基準電圧VLに達すると、第2の比較回路103の出力電圧V13が反転する。この出力電圧V13の反転により論理回路104は、第2のスイッチ105を非導通にする信号を出力する(図14(c))。第2のスイッチ105が非導通になると、積分回路100の出力電圧V10が再び増加し、第1の基準電圧VHに達すると(図14(b))、電荷カウンタ106は1カウント加算する(図14(d))。入力電圧Vinが継続して印加されたとき、以上の動作を繰り返す。 After this time Tm, the output voltage V10 of the integration circuit 100 reaches the first reference voltage VH, and the output voltage V12 of the first comparison circuit 102 is inverted. By inversion of the output voltage V12, the logic circuit 104 outputs a signal for conducting the second switch 105 (FIG. 14C). At this time, the charge counter 106 adds 1 count (FIG. 14D). When the second switch 105 is turned on, both ends of the capacitor C are short-circuited, so that the output voltage V10 of the integrating circuit 100 decreases (FIG. 14B). When the output voltage V10 of the integration circuit 100 decreases and reaches the second reference voltage VL, the output voltage V13 of the second comparison circuit 103 is inverted. Due to the inversion of the output voltage V13, the logic circuit 104 outputs a signal for turning off the second switch 105 (FIG. 14C). When the second switch 105 becomes non-conductive, the output voltage V10 of the integrating circuit 100 increases again. When the second switch 105 reaches the first reference voltage VH (FIG. 14B), the charge counter 106 adds one count (FIG. 14). 14 (d)). When the input voltage Vin is continuously applied, the above operation is repeated.
 電荷カウンタ106は、設定値Nまでカウントするごとに(図14(d))第1のオーバーフロー信号OF1を出力する(図14(e))。一方、計測カウンタ107は、レジスタ108に格納された時間情報Nosaまでカウントする(図14(f))ごとに、すなわち、時間Tosanが経過するごとに、第2のオーバーフロー信号OF2を出力する(図14(g))。スタートストップ制御回路111は、計測カウンタ107の第2のオーバーフロー信号OF2(図14(g))からスタートし、電荷カウンタ106の第1のオーバーフロー信号OF1(図14(e))でストップするイネーブル信号ENを出力する(図14(h))。積算カウンタ112は、スタートストップ制御回路111からイネーブル信号ENが出力されている期間のクロックCLK(図14(i))の数をカウントする(図14(j))。積算カウンタ112がストップしている期間の長さは、設定された入力オフセット電圧Vosaに相当する電荷量を表し、スタートからストップまでの期間の長さは、検知抵抗Rinの両端に発生した入力電圧Vinに相当する電荷量を表す。したがって、積算カウンタ112には、入力電圧Vinに相当する測定したい電荷量のみが累積加算されることになる。 The charge counter 106 outputs the first overflow signal OF1 every time it counts to the set value N (FIG. 14 (d)) (FIG. 14 (e)). On the other hand, the measurement counter 107 outputs the second overflow signal OF2 every time it counts up to the time information Nosa stored in the register 108 (FIG. 14 (f)), that is, every time the time Tosan elapses (FIG. 14). 14 (g)). The start / stop control circuit 111 starts from the second overflow signal OF2 (FIG. 14 (g)) of the measurement counter 107 and stops at the first overflow signal OF1 (FIG. 14 (e)) of the charge counter 106. EN is output (FIG. 14 (h)). The integration counter 112 counts the number of clocks CLK (FIG. 14 (i)) during which the enable signal EN is output from the start / stop control circuit 111 (FIG. 14 (j)). The length of the period in which the integration counter 112 is stopped represents the amount of charge corresponding to the set input offset voltage Vosa, and the length of the period from the start to the stop is the input voltage generated at both ends of the detection resistor Rin. It represents the amount of charge corresponding to Vin. Therefore, only the charge amount to be measured corresponding to the input voltage Vin is cumulatively added to the integration counter 112.
 次に、放電のときの動作を、図15(a)~図15(j)により説明する。ここでは、入力電圧Vinが-Vosa<Vin<0Vの場合(図15(a))の動作を説明する。 Next, the operation during discharging will be described with reference to FIGS. 15 (a) to 15 (j). Here, the operation when the input voltage Vin is −Vosa <Vin <0 V (FIG. 15A) will be described.
 充電のときと同様に、計測ステップでは、第1のスイッチ101を入力端子aに切り替え、入力端子aとGND端子bとを検知抵抗Rinの両端に接続した状態にする。このとき、積分回路100の出力電圧V10は、時間Tmの間に第2の基準電圧VLから第1の基準電圧VHまで増加するので、
Figure JPOXMLDOC01-appb-M000072
が成り立つ(図15(b))。
As in the case of charging, in the measurement step, the first switch 101 is switched to the input terminal a, and the input terminal a and the GND terminal b are connected to both ends of the detection resistor Rin. At this time, the output voltage V10 of the integration circuit 100 increases from the second reference voltage VL to the first reference voltage VH during the time Tm.
Figure JPOXMLDOC01-appb-M000072
Holds (FIG. 15B).
 入力電圧Vinを一定としているので、時間Tmは、
Figure JPOXMLDOC01-appb-M000073
で表される。また、ここでは、入力電圧Vinは、Vin<0Vであるので、時間Tmは、トリミングステップで計測した時間Tosaよりも短くなる。すなわち、
Figure JPOXMLDOC01-appb-M000074
が成り立つ。
Since the input voltage Vin is constant, the time Tm is
Figure JPOXMLDOC01-appb-M000073
It is represented by Here, since the input voltage Vin is Vin <0V, the time Tm is shorter than the time Tosa measured in the trimming step. That is,
Figure JPOXMLDOC01-appb-M000074
Holds.
 この時間Tmの後に、積分回路100の出力電圧V10は第1の基準電圧VHに到達し、第1の比較回路102の出力電圧V12が反転する。この出力電圧V12の反転により論理回路104は、第2のスイッチ105を導通する信号を出力する(図15(c))。また、このとき電荷カウンタ106は1カウント加算する(図15(d))。第2のスイッチ105が導通すると、コンデンサCの両端が短絡されるため、積分回路100の出力電圧V10が減少する(図15(b))。積分回路100の出力電圧V10が減少し、第2の基準電圧VLに達すると、第2の比較回路103の出力電圧V13が反転する。この出力電圧V13の反転により論理回路104は、第2のスイッチ105を非導通にする信号を出力する(図15(c))。第2のスイッチ105が非導通になると、積分回路100の出力電圧V10が再び増加し、第1の基準電圧VHに達すると(図15(b))、電荷カウンタ106は1カウント加算する(図15(d))。入力電圧Vinが継続して印加されたとき、充電状態と同様に、以上の動作を繰り返す。 After this time Tm, the output voltage V10 of the integration circuit 100 reaches the first reference voltage VH, and the output voltage V12 of the first comparison circuit 102 is inverted. By inversion of the output voltage V12, the logic circuit 104 outputs a signal for conducting the second switch 105 (FIG. 15C). At this time, the charge counter 106 adds 1 count (FIG. 15D). When the second switch 105 is turned on, both ends of the capacitor C are short-circuited, so that the output voltage V10 of the integrating circuit 100 decreases (FIG. 15 (b)). When the output voltage V10 of the integration circuit 100 decreases and reaches the second reference voltage VL, the output voltage V13 of the second comparison circuit 103 is inverted. By inversion of the output voltage V13, the logic circuit 104 outputs a signal for turning off the second switch 105 (FIG. 15C). When the second switch 105 becomes non-conductive, the output voltage V10 of the integrating circuit 100 increases again, and when the first reference voltage VH is reached (FIG. 15B), the charge counter 106 adds 1 count (FIG. 15). 15 (d)). When the input voltage Vin is continuously applied, the above operation is repeated as in the charged state.
 電荷カウンタ106は、設定値Nまでカウントするごとに(図15(d))第1のオーバーフロー信号OF1を出力する(図15(e))。一方、計測カウンタ107は、レジスタ108に格納された時間情報Nosaまでカウントする(図15(f))ごとに、すなわち、時間Tosanが経過するごとに、第2のオーバーフロー信号OF2を出力する(図15(g))。スタートストップ制御回路111は、電荷カウンタ106の第1のオーバーフロー信号OF1(図15(e))からスタートし、計測カウンタ107の第2のオーバーフロー信号OF2(図15(g))でストップするイネーブル信号ENを出力する(図15(h))。積算カウンタ112は、スタートストップ制御回路111からイネーブル信号ENが出力されている期間のクロックCLK(図15(i))の数をカウントする(図15(j))。積算カウンタ112がストップしている期間の長さは、設定された入力オフセット電圧Vosaに相当する電荷量を表し、スタートからストップまでの期間の長さは、検知抵抗Rinの両端に発生した入力電圧Vinに相当する電荷量を表す。したがって、積算カウンタ112には、入力電圧Vinに相当する測定したい電荷量のみが累積加算されることになる。 The charge counter 106 outputs the first overflow signal OF1 every time it counts to the set value N (FIG. 15 (d)) (FIG. 15 (e)). On the other hand, the measurement counter 107 outputs the second overflow signal OF2 every time it counts up to the time information Nosa stored in the register 108 (FIG. 15 (f)), that is, every time the time Tosan elapses (FIG. 15). 15 (g)). The start / stop control circuit 111 starts from the first overflow signal OF1 (FIG. 15 (e)) of the charge counter 106 and stops at the second overflow signal OF2 (FIG. 15 (g)) of the measurement counter 107. EN is output (FIG. 15 (h)). The integration counter 112 counts the number of clocks CLK (FIG. 15 (i)) during which the enable signal EN is output from the start / stop control circuit 111 (FIG. 15 (j)). The length of the period in which the integration counter 112 is stopped represents the amount of charge corresponding to the set input offset voltage Vosa, and the length of the period from the start to the stop is the input voltage generated at both ends of the detection resistor Rin. It represents the amount of charge corresponding to Vin. Therefore, only the charge amount to be measured corresponding to the input voltage Vin is cumulatively added to the integration counter 112.
 充電と放電とでは、電荷カウンタ106と計測カウンタ107とのそれぞれのオーバーフロー信号OF1,OF2によるスタートとストップとが逆になるだけであり、その他の動作は同じでよい。 In charge and discharge, only the start and stop by the overflow signals OF1 and OF2 of the charge counter 106 and the measurement counter 107 are reversed, and the other operations may be the same.
 次に、上記のように動作する本発明の実施形態の電荷量計測回路1から、電荷量の求め方を説明する。 Next, how to obtain the charge amount from the charge amount measurement circuit 1 according to the embodiment of the present invention that operates as described above will be described.
 トリミングステップでは、電荷カウンタ106の1カウント当りの電荷量qosaと、計測カウンタ107の1クロック当りの電荷量qclkとを検出する。 In the trimming step, the charge amount qosa per count of the charge counter 106 and the charge amount qclk per clock of the measurement counter 107 are detected.
 まず、電荷カウンタ106の1カウント当りの電荷量qosaを求める。 First, the charge amount qosa per count of the charge counter 106 is obtained.
 積分回路100の出力電圧V10が第1の基準電圧VHから第2の基準電圧VLのレベルに変化する時間Tosaは、前述の[数68]で表される。ここで、検知抵抗Rinに仮想の電流Iosaが流れ、両端に電圧Vosaが発生したとすると、
Figure JPOXMLDOC01-appb-M000075
が成り立ち、[数68]は、
Figure JPOXMLDOC01-appb-M000076
となる。時間Tosaと電流Iosaとの積は、電荷量を表すので、それをqosaとおくと、
Figure JPOXMLDOC01-appb-M000077
となり、電荷量qosaは、設定された入力オフセット電圧Vosaに相当する電荷量と考えることができる。また、[数77]中の素子定数(C,R,Rin)は、インピーダンスアナライザ等の測定器によって測定することができる値である。また、電圧レベル(VH,VL)は、LSIに集積した場合には、テストモードを設け、これらの端子電圧をオシロスコープ等で観測できるようにしておけばよい。よって、[数77]で表される電荷量qosaは、容易に求めることができる。
The time Tosa when the output voltage V10 of the integrating circuit 100 changes from the first reference voltage VH to the level of the second reference voltage VL is expressed by the above-described [Equation 68]. Here, if a virtual current Iosa flows through the detection resistor Rin and a voltage Vosa is generated at both ends,
Figure JPOXMLDOC01-appb-M000075
And [Equation 68] is
Figure JPOXMLDOC01-appb-M000076
It becomes. The product of the time Tosa and the current Iosa represents the amount of charge.
Figure JPOXMLDOC01-appb-M000077
Thus, the charge amount qosa can be considered as a charge amount corresponding to the set input offset voltage Vosa. The element constants (C, R, Rin) in [Equation 77] are values that can be measured by a measuring instrument such as an impedance analyzer. When the voltage levels (VH, VL) are integrated in the LSI, a test mode may be provided so that these terminal voltages can be observed with an oscilloscope or the like. Therefore, the charge amount qosa expressed by [Equation 77] can be easily obtained.
 次に、計測カウンタ107の1クロック当りの電荷量qclkを求める。 Next, a charge amount qclk per clock of the measurement counter 107 is obtained.
 図16(a)は、トリミングステップでの計測カウンタ107及び電荷カウンタ106における時間の関係を示す。電荷量qosaは、電荷カウンタ106の1カウント分の電荷量であるので、設定値Nカウントされたとき、すなわち、電荷カウンタ106がオーバーフローしたときの電荷量をQosaとすると、
Figure JPOXMLDOC01-appb-M000078
となる。
FIG. 16A shows a time relationship in the measurement counter 107 and the charge counter 106 in the trimming step. Since the charge amount qosa is a charge amount for one count of the charge counter 106, if the set amount N is counted, that is, the charge amount when the charge counter 106 overflows is Qosa,
Figure JPOXMLDOC01-appb-M000078
It becomes.
 電荷カウンタ106が設定値Nカウントに達し、電荷量Qosaになったときの時間Tosanを、クロックCLKを用いて計測カウンタ107で計測する。このときのカウント数がNosaであり、レジスタ108に格納されている。 The time Tosan when the charge counter 106 reaches the set value N count and reaches the charge amount Qosa is measured by the measurement counter 107 using the clock CLK. The count number at this time is Nosa and is stored in the register 108.
 計測カウンタ107の1クロック分の電荷量qclkは、このカウント数Nosaを用いて、
Figure JPOXMLDOC01-appb-M000079
と表すことができる。[数79]中のカウント数N,Nosaと電荷量qosaとはいずれも既知であるので、電荷量qclkは容易に求めることができる。
The charge amount qclk for one clock of the measurement counter 107 is calculated using this count number Nosa.
Figure JPOXMLDOC01-appb-M000079
It can be expressed as. Since the count number N, Nosa and the charge amount qosa in [Equation 79] are both known, the charge amount qclk can be easily obtained.
 計測ステップの充電状態では、トリミングステップで求めた電荷量qclkを用いて、電荷量を求める。 In the charge state of the measurement step, the charge amount is obtained using the charge amount qclk obtained in the trimming step.
 図16(b)は、充電のときの計測カウンタ107、電荷カウンタ106及び積算カウンタ112における時間の関係を示す。電荷カウンタ106の時間Tmcは、入力電圧Vinと設定された入力オフセット電圧Vosaとの影響を受けて、電荷カウンタ106がNカウント後にオーバーフローした時間である。このとき、電荷量はQosaに達している。計測カウンタ107の時間Tosanは、トリミングステップで設定された入力オフセット電圧Vosaのみの影響を受けて、電荷カウンタ106がNカウント後にオーバーフローに達した時間である。積算カウンタ112は、計測カウンタ107の第2のオーバーフロー信号OF2が出力されてからカウントを開始し、電荷カウンタ106の第1のオーバーフロー信号OF1が出力されるとカウントを停止する。積算カウンタ112がカウントした時間Tchは、入力電圧Vinのみに影響を受けた時間に相当する、時間Tmcと時間Tosanとの時間差である。この時間差Tchの間に積算カウンタ112は、クロックCLKの数をカウントしている(Nch)。よって、時間Tchは、
Figure JPOXMLDOC01-appb-M000080
で表される。この時間Tchに対応する電荷量Qchは、
Figure JPOXMLDOC01-appb-M000081
として求めることができる。
FIG. 16B shows a time relationship in the measurement counter 107, the charge counter 106, and the integration counter 112 during charging. The time Tmc of the charge counter 106 is a time when the charge counter 106 overflows after N counts due to the influence of the input voltage Vin and the set input offset voltage Vosa. At this time, the charge amount has reached Qosa. The time Tosan of the measurement counter 107 is a time when the charge counter 106 reaches an overflow after N counts due to the influence of only the input offset voltage Vosa set in the trimming step. The integration counter 112 starts counting after the second overflow signal OF2 of the measurement counter 107 is output, and stops counting when the first overflow signal OF1 of the charge counter 106 is output. The time Tch counted by the integration counter 112 is a time difference between the time Tmc and the time Tosan corresponding to the time affected only by the input voltage Vin. During this time difference Tch, the integration counter 112 counts the number of clocks CLK (Nch). Therefore, the time Tch is
Figure JPOXMLDOC01-appb-M000080
It is represented by The charge amount Qch corresponding to this time Tch is
Figure JPOXMLDOC01-appb-M000081
Can be obtained as
 したがって、図12の電荷計測回路1における積算カウンタ112の状態は、電荷カウンタ106と計測カウンタ107との各々のオーバーフローの時間差Tchに相当するクロックCLKの数がカウントされている。このカウント値Nchに、トリミングステップで求めた電荷量qclkを乗じれば、[数81]で表されるように充電時の電荷量Qchが求まる。 Therefore, in the state of the integration counter 112 in the charge measurement circuit 1 of FIG. 12, the number of clocks CLK corresponding to the overflow time difference Tch between the charge counter 106 and the measurement counter 107 is counted. When this count value Nch is multiplied by the charge amount qclk obtained in the trimming step, the charge amount Qch at the time of charging is obtained as represented by [Equation 81].
 計測ステップの放電状態においても同様に、トリミングステップで求めた電荷量qclkを用いて、電荷量を求める。 Similarly, in the discharge state of the measurement step, the charge amount is obtained using the charge amount qclk obtained in the trimming step.
 図16(c)は、放電のときの計測カウンタ107、電荷カウンタ106及び積算カウンタ112における時間の関係を示す。 FIG. 16C shows the time relationship in the measurement counter 107, the charge counter 106, and the integration counter 112 during discharge.
 電荷カウンタ106の時間Tmdは、入力電圧Vinと設定された入力オフセット電圧Vosaとの影響を受けて、電荷カウンタ106がNカウント後にオーバーフローした時間である。このとき、電荷量はQosaに達している。計測カウンタ107の時間Tosanは、設定された入力オフセット電圧Vosaのみの影響を受けて、計測カウンタ107がNosaカウント後にオーバーフローに達した時間である。積算カウンタ112は、電荷カウンタ106の第1のオーバーフロー信号OF1が出力されてからカウントを開始し、計測カウンタ107の第2のオーバーフロー信号OF2が出力されるとカウントを停止する。積算カウンタ112がカウントした時間Tdisは、入力電圧Vinのみに影響を受けた時間に相当する、時間Tosanと時間Tmdとの時間差である。この時間差Tdisの間に積算カウンタ112は、クロックCLKの数をカウントしている(Ndis)。よって、時間Tdisは、
Figure JPOXMLDOC01-appb-M000082
で表される。この時間Tdisに対応する電荷量Qdisは、
Figure JPOXMLDOC01-appb-M000083
として求めることができる。
The time Tmd of the charge counter 106 is a time when the charge counter 106 overflows after N counts due to the influence of the input voltage Vin and the set input offset voltage Vosa. At this time, the charge amount has reached Qosa. The time Tosan of the measurement counter 107 is a time when the measurement counter 107 reaches an overflow after counting Nosa, under the influence of only the set input offset voltage Vosa. The integration counter 112 starts counting after the first overflow signal OF1 of the charge counter 106 is output, and stops counting when the second overflow signal OF2 of the measurement counter 107 is output. The time Tdis counted by the integration counter 112 is a time difference between the time Tosan and the time Tmd, which corresponds to a time affected only by the input voltage Vin. During this time difference Tdis, the integration counter 112 counts the number of clocks CLK (Ndis). Therefore, the time Tdis is
Figure JPOXMLDOC01-appb-M000082
It is represented by The charge amount Qdis corresponding to this time Tdis is
Figure JPOXMLDOC01-appb-M000083
Can be obtained as
 したがって、図12の電荷計測回路1における積算カウンタ112の状態は、電荷カウンタ106と計測カウンタ107との各々のオーバーフローの時間差Tdisに相当するクロックCLKの数がカウントされている。このカウント値Ndisに、トリミングステップで求めた電荷量qclkを乗じれば、[数83]で表されるように放電時の電荷量Qdisが求まる。 Therefore, the state of the integration counter 112 in the charge measurement circuit 1 of FIG. 12 is the number of clocks CLK corresponding to the overflow time difference Tdis between the charge counter 106 and the measurement counter 107. By multiplying the count value Ndis by the charge amount qclk obtained in the trimming step, the charge amount Qdis at the time of discharge is obtained as represented by [Equation 83].
 また、電流は、電荷量の変化量を経過時間で除算したものであるので、充電及び放電で求めた電荷量を用いて容易に求めることができる。 Further, since the current is obtained by dividing the amount of change in the charge amount by the elapsed time, it can be easily obtained using the charge amount obtained by charging and discharging.
 例えば、充電電流Ichは、
Figure JPOXMLDOC01-appb-M000084
で求まる。また、放電電流Idisは、
Figure JPOXMLDOC01-appb-M000085
で求まる。
For example, the charging current Ich is
Figure JPOXMLDOC01-appb-M000084
It is obtained by Also, the discharge current Idis is
Figure JPOXMLDOC01-appb-M000085
It is obtained by
 図17(a)及び図17(b)は、第3及び第4の実施形態の電荷量計測回路1が備えている積分回路100の増幅演算回路100aの入力オフセット電圧Vosaの分布と、入力電圧Vinの範囲とを示す図である。 17A and 17B show the distribution of the input offset voltage Vosa and the input voltage of the amplification operation circuit 100a of the integration circuit 100 provided in the charge amount measurement circuit 1 of the third and fourth embodiments. It is a figure which shows the range of Vin.
 本発明の実施形態においても従来と同様に、製品の量産時に演算増幅回路100aの入力オフセット電圧Vosaのばらつきは発生する。本発明の実施形態では、この入力オフセット電圧のばらつきが存在する状態で入力オフセット電圧Vosaを入力電圧範囲外に設定する(図17(a))。 Also in the embodiment of the present invention, as in the prior art, variations in the input offset voltage Vosa of the operational amplifier circuit 100a occur during mass production of products. In the embodiment of the present invention, the input offset voltage Vosa is set outside the input voltage range in a state where the variation of the input offset voltage exists (FIG. 17A).
 -Vmin≦Vin<0Vのとき、Tm<Tosaとなり、従来の電荷量計測回路2と同様に、入力オフセット電圧Vosaの影響を補正し、正しい電荷量を計測することができる。 When −Vmin ≦ Vin <0 V, Tm <Tosa, and the influence of the input offset voltage Vosa can be corrected and the correct charge amount can be measured as in the conventional charge amount measurement circuit 2.
 一方、0V<Vin≦+Vmaxのとき、Tm>Tosaとなるが、このような場合でも本発明の電荷量計測回路1は、充電時の動作で説明したように、入力オフセット電圧Vosaの影響を補正する機能を備えており、正しい電荷量を計測することができる。 On the other hand, when 0 V <Vin ≦ + Vmax, Tm> Tosa. Even in such a case, the charge amount measuring circuit 1 of the present invention corrects the influence of the input offset voltage Vosa as described in the operation during charging. The correct charge amount can be measured.
 以上、第3及び第4の実施形態によると、積分回路100に用いられる演算増幅回路100aに入力オフセット電圧Vosaを設定することによって、入力電圧Vinの全測定範囲に対して、検知抵抗Rinに流れる電荷量を計測することができる。また、入力電圧Vinと設定された入力オフセット電圧VosaとがVin<Vosaの条件を満たし、かつ、適当な差をつけることによって、Vin=Vosaの状態とはならないため、第1の比較回路102の出力電圧V12は必ず反転し、検知抵抗Rinに流れる電荷量を計測することができる。 As described above, according to the third and fourth embodiments, by setting the input offset voltage Vosa in the operational amplifier circuit 100a used in the integrating circuit 100, the entire measurement range of the input voltage Vin flows to the detection resistor Rin. The amount of charge can be measured. Further, since the input voltage Vin and the set input offset voltage Vosa satisfy the condition of Vin <Vosa and an appropriate difference is not established, the state of Vin = Vosa is not obtained. The output voltage V12 is always inverted, and the amount of charge flowing through the detection resistor Rin can be measured.
 図18は、第3及び第4の実施形態を応用した携帯型電子機器3への応用例を示す。携帯型電子機器3は、二次電池の充放電時に流れる電流を入力電圧Vinに変換する検知抵抗Rinと、入力電圧Vinから検知抵抗Rinに流れる電荷量又は電流を計測する電荷量計測回路1と、電荷量計測回路1によって計測された電荷量から二次電池の残容量を計算処理する演算回路(マイクロコンピュータ)4と、このマイクロコンピュータ4の計算処理結果を表示する表示回路5とから構成されている。 FIG. 18 shows an application example to the portable electronic device 3 to which the third and fourth embodiments are applied. The portable electronic device 3 includes a detection resistor Rin that converts a current that flows during charging and discharging of the secondary battery into an input voltage Vin, and a charge amount measurement circuit 1 that measures the amount of charge or current flowing from the input voltage Vin to the detection resistor Rin. And an arithmetic circuit (microcomputer) 4 for calculating the remaining capacity of the secondary battery from the charge amount measured by the charge amount measuring circuit 1, and a display circuit 5 for displaying the calculation processing result of the microcomputer 4. ing.
 電荷量計測回路1は、第3及び第4の実施形態のように、入力電圧Vinの最大値より大きい、又は最小値より小さい入力オフセット電圧Vosaを有する演算増幅回路100aを用いた積分回路100を備えている。したがって、このような携帯型電子機器3は、入力電圧Vinの全測定範囲において、不感帯を有することなく、電荷量又は電流量を計測することができる。 As in the third and fourth embodiments, the charge amount measurement circuit 1 includes an integration circuit 100 using an operational amplifier circuit 100a having an input offset voltage Vosa that is larger than the maximum value of the input voltage Vin or smaller than the minimum value. I have. Therefore, such a portable electronic device 3 can measure the amount of charge or the amount of current without having a dead zone in the entire measurement range of the input voltage Vin.
 さて、図19~図23は、第1~第4の実施形態に係る演算増幅回路100aの入力オフセット電圧Vosaを実現する例である。 FIGS. 19 to 23 are examples of realizing the input offset voltage Vosa of the operational amplifier circuit 100a according to the first to fourth embodiments.
 図19は、演算増幅回路によく用いられる差動入力段の1対のトランジスタのサイズに差をつけて入力オフセット電圧Vosaを設定した例である。ここでは、差動入力段の一方のトランジスタを並列に複数接続することによりトランジスタのサイズに差をつけている。I0は電流源、MP1~3はPチャネル型MOSトランジスタ、MN1~2はNチャネル型MOSトランジスタである。図20は、演算増幅回路によく用いられる電流源の電流量に差をつけて入力オフセット電圧Vosaを設定した例である。ここでは、電流源としてカレントミラーを構成する1対のトランジスタの一方を並列に複数接続することによりトランジスタのサイズに差をつけ、電流量に差をつけている。I0は電流源、MP1~2はPチャネル型MOSトランジスタ、MN1~3はNチャネル型MOSトランジスタである。 FIG. 19 shows an example in which the input offset voltage Vosa is set with a difference in the size of a pair of transistors in a differential input stage often used in an operational amplifier circuit. Here, the transistor size is differentiated by connecting a plurality of transistors in one of the differential input stages in parallel. I0 is a current source, MP1-3 are P-channel MOS transistors, and MN1-2 are N-channel MOS transistors. FIG. 20 shows an example in which the input offset voltage Vosa is set with a difference in the amount of current of a current source often used in an operational amplifier circuit. Here, by connecting one of a pair of transistors constituting a current mirror as a current source in parallel, a difference is made in the size of the transistor, and the current amount is made different. I0 is a current source, MP1 and MP2 are P-channel MOS transistors, and MN1 and MN3 are N-channel MOS transistors.
 図21は、演算増幅回路によく用いられる差動入力段の1対のトランジスタに接続されるオフセット抵抗の抵抗値に差をつけて入力オフセット電圧Vosaを設定した例である。ここでは、差動入力段の一方のトランジスタのみにオフセット抵抗Rofを接続することにより抵抗値に差をつけている。図22は、演算増幅回路によく用いられる電流源に接続されるオフセット抵抗の抵抗値に差をつけて入力オフセット電圧Vosaを設定した例である。ここでは、一方の電流源のみにオフセット抵抗Rofを接続することにより抵抗値に差をつけている。 FIG. 21 shows an example in which the input offset voltage Vosa is set by making a difference between the resistance values of offset resistors connected to a pair of transistors in a differential input stage often used in an operational amplifier circuit. Here, the resistance value is differentiated by connecting the offset resistor Rof to only one transistor of the differential input stage. FIG. 22 shows an example in which the input offset voltage Vosa is set by adding a difference to the resistance value of an offset resistor connected to a current source often used in an operational amplifier circuit. Here, the resistance value is differentiated by connecting the offset resistor Rof to only one current source.
 図19~図22では、一般的な演算増幅回路を用いて説明したが、折り返しカスコード差動増幅回路(フォールデッドカスコード型増幅回路やRail-to-Rail型増幅回路)等の、他の差動又は演算増幅回路であっても同様の効果が得られるのは言うまでもない。 In FIGS. 19 to 22, description has been made using a general operational amplifier circuit. However, other differentials such as a folded cascode differential amplifier circuit (folded cascode amplifier circuit or Rail-to-Rail amplifier circuit) may be used. It goes without saying that the same effect can be obtained even with an operational amplifier circuit.
 図23は、増幅器AMPにバイアス電圧を印加することにより入力オフセット電圧Vosaを設定した演算増幅回路の回路図である。 FIG. 23 is a circuit diagram of an operational amplifier circuit in which the input offset voltage Vosa is set by applying a bias voltage to the amplifier AMP.
 なお、第1~第4の実施形態では、演算増幅回路100aの非反転入力側に入力オフセット電圧Vosaを設定したが、反転入力側に入力オフセット電圧Vosaを設定し、所望の動作を得るようにしても、第1~第4の実施形態と同様の効果が得られる。 In the first to fourth embodiments, the input offset voltage Vosa is set on the non-inverting input side of the operational amplifier circuit 100a. However, the input offset voltage Vosa is set on the inverting input side to obtain a desired operation. However, the same effects as those of the first to fourth embodiments can be obtained.
 更に、第1~第4の実施形態では、演算増幅回路100aに入力オフセット電圧Vosaを設定しているが、演算増幅回路100aの外部からバイアス電圧を印加しても同様の効果が得られることは言うまでもない。 Furthermore, in the first to fourth embodiments, the input offset voltage Vosa is set in the operational amplifier circuit 100a. However, the same effect can be obtained even when a bias voltage is applied from the outside of the operational amplifier circuit 100a. Needless to say.
 また、第1及び第2の実施形態では二次電池を用いた充放電判別の例で説明しているが、一般の電源とした電流検知での電流極性の判別に使用しても第1及び第2の実施形態と同様の効果が得られる。 In the first and second embodiments, the charge / discharge determination using the secondary battery is described as an example. However, the first and second embodiments can be used for determining the current polarity in current detection using a general power source. The same effect as in the second embodiment can be obtained.
 また、第3の実施形態では放電計測回路20と充電計測回路30と記憶回路50とを用いた例を、第4の実施形態では電荷計測回路25と時間計測回路35と電荷積算回路40と記憶回路50とを用いた例をそれぞれ示したが、これらの機能をマイクロコンピュータや専用の演算回路で処理しても同様の効果が得られる。また、加算及び減算の処理をアップダウンカウンタで行ってもよい。 In the third embodiment, an example using the discharge measurement circuit 20, the charge measurement circuit 30, and the storage circuit 50 is used. In the fourth embodiment, the charge measurement circuit 25, the time measurement circuit 35, the charge integration circuit 40, and the storage are stored. Although examples using the circuit 50 are shown, the same effect can be obtained even if these functions are processed by a microcomputer or a dedicated arithmetic circuit. Further, addition and subtraction processing may be performed by an up / down counter.
 本発明の電圧極性判別回路は、二次電池を搭載した携帯電話、デジタルカメラ、ゲーム機等の携帯型電子機器や電気自動車等に有用である。また、電流検出器等にも応用可能である。例えば、二次電池によって電力が供給される電子機器の消費電流や電荷量、及び、二次電池の充電時の充電電流や積算電荷量を検出し、二次電池の残容量を検出又は推定するシステムにおいてその充放電電流の極性を判別する回路として有用である。 The voltage polarity discrimination circuit of the present invention is useful for portable electronic devices such as mobile phones, digital cameras, and game machines equipped with secondary batteries, electric vehicles, and the like. It can also be applied to current detectors and the like. For example, the current consumption and charge amount of an electronic device supplied with power by the secondary battery, and the charge current and accumulated charge amount when charging the secondary battery are detected, and the remaining capacity of the secondary battery is detected or estimated. It is useful as a circuit for discriminating the polarity of the charge / discharge current in the system.
 また、本発明の電荷量計測回路は、二次電池を搭載した携帯電話、デジタルカメラ、ゲーム機等の携帯型電子機器や電気自動車等に有用である。また、電流計等にも応用可能である。 In addition, the charge amount measurement circuit of the present invention is useful for portable electronic devices such as mobile phones, digital cameras, and game machines equipped with secondary batteries, and electric vehicles. It can also be applied to ammeters and the like.
1,2 電荷量計測回路
3 携帯型電子機器
4 演算回路(マイクロコンピュータ)
5 表示回路
10 電圧電荷変換回路
20 放電計測回路
25 電荷計測回路
30 充電計測回路
35 時間計測回路
40 電荷積算回路
50 記憶回路
100,200,300 積分回路
100a,200a,300a 演算増幅回路
101,105 スイッチ
102,103 比較回路
104 論理回路
106 電荷カウンタ
107 計測カウンタ
108 レジスタ
109 充電カウンタ
110 放電カウンタ
111 スタートストップ制御回路
112 積算カウンタ
206 非同期カウンタ
207 タイマ
301,302,303 電圧極性判別回路
311,321,331 初期化回路
312,322 時間計測回路
401,502,601,602 比較回路
402,505 判定回路
503 論理回路
504,603,604 カウンタ
701,801 タイマ
702,802 記憶回路
703,803 演算回路
AMP 増幅器
C,C1 コンデンサ
CLK クロック
EN イネーブル信号
GND 基準電圧
OF1,OF2 オーバーフロー信号
R,R1,Rin,Rof 抵抗
SW0,SW1,SW2,SW3 スイッチ
V10,V20,V30 積分回路の出力電圧
V11,V12,V13,V22 比較回路の出力電圧
V14,V44 論理回路の出力電圧
V23 論理回路の出力電圧
V24 カウンタの出力電圧
V31,V32,V42,V43 比較回路の出力電圧
Vc 初期電圧
Vdd 電源電圧
VH 第1の基準電圧
Vin 入力電圧
VL 第2の基準電圧
Vos,Vosa 入力オフセット電圧
a 入力端子
b GND端子
c 演算増幅回路の反転入力端子
d 演算増幅回路の非反転入力端子
e 演算増幅回路の出力端子
1, 2 Charge measurement circuit 3 Portable electronic device 4 Arithmetic circuit (microcomputer)
5 Display Circuit 10 Voltage Charge Conversion Circuit 20 Discharge Measurement Circuit 25 Charge Measurement Circuit 30 Charge Measurement Circuit 35 Time Measurement Circuit 40 Charge Integration Circuit 50 Storage Circuit 100, 200, 300 Integration Circuit 100a, 200a, 300a Operational Amplification Circuit 101, 105 Switch 102, 103 Comparison circuit 104 Logic circuit 106 Charge counter 107 Measurement counter 108 Register 109 Charge counter 110 Discharge counter 111 Start / stop control circuit 112 Integration counter 206 Asynchronous counter 207 Timer 301, 302, 303 Voltage polarity discrimination circuit 311, 321, 331 Initial Circuit 312, 322 time measurement circuit 401, 502, 601, 602 comparison circuit 402, 505 determination circuit 503 logic circuit 504, 603, 604 counter 701, 801 timer 702, 8 2 Storage circuits 703, 803 Arithmetic circuit AMP Amplifier C, C1 Capacitor CLK Clock EN Enable signal GND Reference voltage OF1, OF2 Overflow signal R, R1, Rin, Rof Resistance SW0, SW1, SW2, SW3 Switch V10, V20, V30 Integration circuit Output voltage V11, V12, V13, V22 Comparison circuit output voltage V14, V44 Logic circuit output voltage V23 Logic circuit output voltage V24 Counter output voltage V31, V32, V42, V43 Comparison circuit output voltage Vc Initial voltage Vdd Power supply voltage VH First reference voltage Vin Input voltage VL Second reference voltage Vos, Vosa Input offset voltage a Input terminal b GND terminal c Inverted input terminal d of operational amplifier circuit Non-inverted input terminal e of operational amplifier circuit Operational amplifier circuit Output terminal

Claims (53)

  1.  積分回路と、
     前記積分回路への入力電圧を、極性判別対象の電圧又は基準電圧に切り替えるスイッチと、
     前記積分回路の出力電圧が設定電圧に到達するまでの時間を計測し、この計測結果に基づいて前記積分回路への入力電圧の極性を判別する時間計測回路とを備え、
     前記積分回路は、前記積分回路の入力電圧の最大値より大きい、又は最小値より小さい入力オフセット電圧を有する演算増幅回路を用いて構成されていることを特徴とする電圧極性判別回路。
    An integration circuit;
    A switch for switching the input voltage to the integration circuit to a voltage for discrimination of polarity or a reference voltage;
    A time measuring circuit for measuring the time until the output voltage of the integrating circuit reaches a set voltage, and determining the polarity of the input voltage to the integrating circuit based on the measurement result;
    The voltage polarity discriminating circuit, wherein the integrating circuit is configured using an operational amplifier circuit having an input offset voltage that is larger than a maximum value or smaller than a minimum value of an input voltage of the integrating circuit.
  2.  請求項1記載の電圧極性判別回路において、
     前記時間計測回路は、
     前記積分回路の出力電圧と第1の基準電圧とを比較しその比較結果を出力する比較回路と、
     前記スイッチにより前記積分回路への入力電圧が切り替えられたときから前記比較回路の出力電圧が反転するまでの時間を計測し、この計測結果に基づいて前記積分回路への入力電圧の極性を判別する判定回路とを含むことを特徴とする電圧極性判別回路。
    In the voltage polarity discrimination circuit according to claim 1,
    The time measuring circuit is
    A comparison circuit that compares the output voltage of the integration circuit with a first reference voltage and outputs the comparison result;
    The time from when the input voltage to the integration circuit is switched by the switch until the output voltage of the comparison circuit is inverted is measured, and the polarity of the input voltage to the integration circuit is determined based on the measurement result. A voltage polarity discrimination circuit including a determination circuit.
  3.  請求項2記載の電圧極性判別回路において、
     前記判定回路は、前記スイッチにより前記積分回路への入力電圧が切り替えられたときから前記比較回路の出力電圧が反転するまでの時間を計測するタイマを含むことを特徴とする電圧極性判別回路。
    In the voltage polarity discrimination circuit according to claim 2,
    The determination circuit includes a timer for measuring a time from when the input voltage to the integration circuit is switched by the switch to when the output voltage of the comparison circuit is inverted.
  4.  請求項3記載の電圧極性判別回路において、
     前記判定回路は、前記タイマの計測結果を記憶する記憶回路を更に含むことを特徴とする電圧極性判別回路。
    In the voltage polarity discrimination circuit according to claim 3,
    The voltage polarity determination circuit, wherein the determination circuit further includes a storage circuit that stores a measurement result of the timer.
  5.  請求項4記載の電圧極性判別回路において、
     前記判定回路は、前記計測結果を比較する演算回路を更に含むことを特徴とする電圧極性判別回路。
    In the voltage polarity discrimination circuit according to claim 4,
    The voltage determination circuit according to claim 1, wherein the determination circuit further includes an arithmetic circuit for comparing the measurement results.
  6.  請求項4記載の電圧極性判別回路において、
     前記記憶回路は、アップカウンタ又はダウンカウンタであることを特徴とする電圧極性判別回路。
    In the voltage polarity discrimination circuit according to claim 4,
    The voltage polarity discrimination circuit, wherein the memory circuit is an up counter or a down counter.
  7.  請求項1記載の電圧極性判別回路において、
     前記時間計測回路は、前記スイッチにより前記積分回路への入力電圧が前記基準電圧に切り替えられたときから前記積分回路の出力電圧が第1の基準電圧に到達するまでの時間と、前記スイッチにより前記積分回路への入力電圧が前記極性判別対象の電圧に切り替えられたときから前記積分回路の出力電圧が前記第1の基準電圧に到達するまでの時間とを比較することによって、前記積分回路への入力電圧の極性を判別することを特徴とする電圧極性判別回路。
    In the voltage polarity discrimination circuit according to claim 1,
    The time measuring circuit includes a time from when the input voltage to the integrating circuit is switched to the reference voltage by the switch until the output voltage of the integrating circuit reaches the first reference voltage, and the switch by the switch. By comparing the time until the output voltage of the integration circuit reaches the first reference voltage after the input voltage to the integration circuit has been switched to the voltage to be polarity-determined, A voltage polarity discrimination circuit for discriminating the polarity of an input voltage.
  8.  請求項1記載の電圧極性判別回路において、
     前記時間計測回路は、
     前記積分回路の出力電圧と第1の基準電圧とを比較しその比較結果を出力する第1の比較回路と、
     前記積分回路の出力電圧と第2の基準電圧とを比較しその比較結果を出力する第2の比較回路と、
     前記第1の比較回路の出力電圧の反転と、前記第2の比較回路の出力電圧の反転とに応答してセット、リセットされる電圧を出力する論理回路と、
     前記論理回路の出力を設定値まで計測するカウンタと、
     前記スイッチにより前記積分回路への入力電圧が切り替えられたときから前記カウンタによる計測値が前記設定値に至るまでの時間を計測し、この計測結果に基づいて前記積分回路への入力電圧の極性を判別する判定回路とを含み、
     前記電圧極性判別回路は、前記論理回路の出力に応答して前記積分回路の出力電圧を初期化する初期化回路を更に備えたことを特徴とする電圧極性判別回路。
    In the voltage polarity discrimination circuit according to claim 1,
    The time measuring circuit is
    A first comparison circuit that compares the output voltage of the integration circuit with a first reference voltage and outputs the comparison result;
    A second comparison circuit that compares the output voltage of the integration circuit with a second reference voltage and outputs the comparison result;
    A logic circuit that outputs a voltage that is set and reset in response to inversion of the output voltage of the first comparison circuit and inversion of the output voltage of the second comparison circuit;
    A counter for measuring the output of the logic circuit up to a set value;
    The time from when the input voltage to the integration circuit is switched by the switch until the measurement value by the counter reaches the set value is measured, and the polarity of the input voltage to the integration circuit is determined based on the measurement result. A determination circuit for determining,
    The voltage polarity discrimination circuit further comprises an initialization circuit that initializes an output voltage of the integration circuit in response to an output of the logic circuit.
  9.  請求項8記載の電圧極性判別回路において、
     前記初期化回路は、前記論理回路の出力に応じて導通又は非導通状態になり、前記積分回路の出力電圧を前記第2の基準電圧に設定するスイッチを含むことを特徴とする電圧極性判別回路。
    In the voltage polarity discrimination circuit according to claim 8,
    The initialization circuit includes a switch that is turned on or off according to the output of the logic circuit and sets the output voltage of the integrating circuit to the second reference voltage. .
  10.  請求項8記載の電圧極性判別回路において、
     前記判定回路は、前記スイッチにより前記積分回路への入力電圧が切り替えられたときから前記カウンタによる計測値が前記設定値に至るまでの時間を計測するタイマを含むことを特徴とする電圧極性判別回路。
    In the voltage polarity discrimination circuit according to claim 8,
    The determination circuit includes a timer for measuring a time from when the input voltage to the integration circuit is switched by the switch until the measurement value by the counter reaches the set value. .
  11.  請求項10記載の電圧極性判別回路において、
     前記判定回路は、前記タイマの計測結果を記憶する記憶回路を更に含むことを特徴とする電圧極性判別回路。
    In the voltage polarity discrimination circuit according to claim 10,
    The voltage polarity determination circuit, wherein the determination circuit further includes a storage circuit that stores a measurement result of the timer.
  12.  請求項11記載の電圧極性判別回路において、
     前記判定回路は、前記計測結果を比較する演算回路を更に含むことを特徴とする電圧極性判別回路。
    In the voltage polarity discrimination circuit according to claim 11,
    The voltage determination circuit according to claim 1, wherein the determination circuit further includes an arithmetic circuit for comparing the measurement results.
  13.  請求項11記載の電圧極性判別回路において、
     前記記憶回路は、アップカウンタ又はダウンカウンタであることを特徴とする電圧極性判別回路。
    In the voltage polarity discrimination circuit according to claim 11,
    The voltage polarity discrimination circuit, wherein the memory circuit is an up counter or a down counter.
  14.  請求項8記載の電圧極性判別回路において、
     前記判定回路は、前記スイッチにより前記積分回路への入力電圧が前記基準電圧に切り替えられたときから前記カウンタによる計測値が前記設定値に至るまでの時間と、前記スイッチにより前記積分回路への入力電圧が前記極性判別対象の電圧に切り替えられたときから前記カウンタによる計測値が前記設定値に至るまでの時間とを比較することによって、前記積分回路への入力電圧の極性を判別することを特徴とする電圧極性判別回路。
    In the voltage polarity discrimination circuit according to claim 8,
    The determination circuit includes a time from when the input voltage to the integration circuit is switched to the reference voltage by the switch until the measurement value by the counter reaches the set value, and an input to the integration circuit by the switch. The polarity of the input voltage to the integration circuit is determined by comparing the time from when the voltage is switched to the polarity determination target voltage until the value measured by the counter reaches the set value. Voltage polarity discrimination circuit.
  15.  請求項1記載の電圧極性判別回路において、
     前記演算増幅回路は、差動入力段の一対のトランジスタのサイズに差をつけることによって前記入力オフセット電圧を発生させることを特徴とする電圧極性判別回路。
    In the voltage polarity discrimination circuit according to claim 1,
    The operational amplifier circuit generates the input offset voltage by making a difference between the sizes of a pair of transistors in a differential input stage.
  16.  請求項1記載の電圧極性判別回路において、
     前記演算増幅回路は、差動入力段の一対のトランジスタに接続される電流源の電流量に差をつけることによって前記入力オフセット電圧を発生させることを特徴とする電圧極性判別回路。
    In the voltage polarity discrimination circuit according to claim 1,
    The operational amplifier circuit generates the input offset voltage by making a difference in a current amount of a current source connected to a pair of transistors in a differential input stage.
  17.  請求項1記載の電圧極性判別回路において、
     前記演算増幅回路は、差動入力段の1対のトランジスタに接続されるオフセット抵抗の抵抗値に差をつけることによって前記入力オフセット電圧を発生させることを特徴とする電圧極性判別回路。
    In the voltage polarity discrimination circuit according to claim 1,
    The operational amplifier circuit generates the input offset voltage by making a difference between resistance values of offset resistors connected to a pair of transistors in a differential input stage.
  18.  請求項1記載の電圧極性判別回路において、
     前記演算増幅回路は、差動入力段の1対のトランジスタに接続された電流源に接続されるオフセット抵抗の抵抗値に差をつけることによって前記入力オフセット電圧を発生させることを特徴とする電圧極性判別回路。
    In the voltage polarity discrimination circuit according to claim 1,
    The operational amplifier circuit generates the input offset voltage by differentiating a resistance value of an offset resistor connected to a current source connected to a pair of transistors of a differential input stage. Discrimination circuit.
  19.  請求項1記載の電圧極性判別回路において、
     前記演算増幅回路は、反転入力端子又は非反転入力端子のいずれかに前記積分回路の入力電圧の最大値より大きい、又は最小値より小さいバイアス電圧が印加されることを特徴とする電圧極性判別回路。
    In the voltage polarity discrimination circuit according to claim 1,
    In the operational amplifier circuit, a bias voltage greater than the maximum value or less than the minimum value of the input voltage of the integration circuit is applied to either the inverting input terminal or the non-inverting input terminal. .
  20.  請求項1記載の電圧極性判別回路において、
     前記極性判別対象の電圧は、所定の電源に直列接続された検知抵抗の両端電圧であることを特徴とする電圧極性判別回路。
    In the voltage polarity discrimination circuit according to claim 1,
    The voltage polarity discrimination circuit, wherein the voltage for polarity discrimination is a voltage between both ends of a detection resistor connected in series to a predetermined power source.
  21.  入力電圧を電荷量に相当するパルスに変換する電圧電荷変換回路と、
     各々前記電圧電荷変換回路の出力パルスをカウントする充電計測回路及び放電計測回路と、
     前記入力電圧が0Vのときの前記充電計測回路の計数値を保持し、かつ当該計数値を前記充電計測回路に設定する記憶回路とを有する電荷量計測回路であって、
     前記充電計測回路のカウントがオーバーフローに至ったときには前記放電計測回路の計数値を減算し、前記放電計測回路のカウントがオーバーフローに至ったときには前記充電計測回路の計数値を減算するように構成され、かつ、
     前記電圧電荷変換回路は、前記入力電圧の最大値より大きい、又は最小値より小さい入力オフセット電圧を有する演算増幅回路を用いた積分回路を備えたことを特徴とする電荷量計測回路。
    A voltage charge conversion circuit that converts an input voltage into a pulse corresponding to the amount of charge; and
    A charge measuring circuit and a discharge measuring circuit, each counting an output pulse of the voltage-to-charge converter circuit;
    A charge amount measurement circuit having a storage circuit that holds a count value of the charge measurement circuit when the input voltage is 0 V and sets the count value in the charge measurement circuit;
    The count value of the discharge measurement circuit is subtracted when the count of the charge measurement circuit reaches an overflow, and the count value of the charge measurement circuit is subtracted when the count of the discharge measurement circuit reaches an overflow, And,
    2. The charge amount measuring circuit according to claim 1, wherein the voltage-to-charge converter circuit includes an integrating circuit using an operational amplifier circuit having an input offset voltage that is greater than a maximum value or less than a minimum value of the input voltage.
  22.  請求項21記載の電荷量計測回路において、
     前記電圧電荷変換回路は、
     前記積分回路への入力電圧を、計測対象となる電圧又は基準電圧に切り替える第1のスイッチと、
     前記積分回路の出力電圧と第1の基準電圧とを比較しその比較結果を出力する第1の比較回路と、
     前記積分回路の出力電圧と第2の基準電圧とを比較しその比較結果を出力する第2の比較回路と、
     前記第1の比較回路の出力電圧の反転又は前記第2の比較回路の出力電圧の反転に応答してセット、リセットされる電圧を出力する論理回路と、
     前記論理回路の出力電圧により導通と非導通とを制御されて前記積分回路を初期化する第2のスイッチとを更に備えたことを特徴とする電荷量計測回路。
    The charge amount measuring circuit according to claim 21,
    The voltage to charge conversion circuit is
    A first switch for switching an input voltage to the integration circuit to a voltage to be measured or a reference voltage;
    A first comparison circuit that compares the output voltage of the integration circuit with a first reference voltage and outputs the comparison result;
    A second comparison circuit that compares the output voltage of the integration circuit with a second reference voltage and outputs the comparison result;
    A logic circuit that outputs a voltage that is set and reset in response to inversion of the output voltage of the first comparison circuit or inversion of the output voltage of the second comparison circuit;
    A charge amount measuring circuit, further comprising: a second switch that controls conduction and non-conduction by an output voltage of the logic circuit to initialize the integration circuit.
  23.  請求項21記載の電荷量計測回路において、
     前記充電計測回路は計測カウンタ及び充電カウンタを、前記放電計測回路は電荷カウンタ及び放電カウンタをそれぞれ備え、
     前記計測カウンタは、前記第1のスイッチが前記基準電圧に切り替えられたときには、前記電荷カウンタがオーバーフローに至るまでの時間を計測し、かつ、前記第1のスイッチが前記計測対象となる電圧に接続されたときには計測時間の経過を示すように構成され、
     前記充電カウンタは、前記計測カウンタがオーバーフローしたときに1カウント加算し、前記電荷カウンタがオーバーフローしたときに1カウント減算することを特徴とする電荷量計測回路。
    The charge amount measuring circuit according to claim 21,
    The charge measurement circuit includes a measurement counter and a charge counter, and the discharge measurement circuit includes a charge counter and a discharge counter,
    The measurement counter measures the time until the charge counter overflows when the first switch is switched to the reference voltage, and the first switch is connected to the voltage to be measured. Is configured to show the passage of measurement time,
    The charge amount measurement circuit according to claim 1, wherein the charge counter adds 1 count when the measurement counter overflows and subtracts 1 count when the charge counter overflows.
  24.  請求項23記載の電荷量計測回路において、
     前記電荷カウンタは、前記第1の比較回路の出力電圧又は前記第2の比較回路の出力電圧が反転した回数をカウントし、
     前記放電カウンタは、前記電荷カウンタがオーバーフローしたときに1カウント加算し、前記計測カウンタがオーバーフローしたときに1カウント減算することを特徴とする電荷量計測回路。
    The charge amount measurement circuit according to claim 23,
    The charge counter counts the number of times the output voltage of the first comparison circuit or the output voltage of the second comparison circuit is inverted,
    The charge amount measurement circuit according to claim 1, wherein the discharge counter adds 1 count when the charge counter overflows and subtracts 1 count when the measurement counter overflows.
  25.  請求項23記載の電荷量計測回路において、
     前記記憶回路は、前記入力電圧が0Vのときに前記計測カウンタが計測した計測値を格納し、かつ当該計測値を前記計測カウンタに設定するレジスタであることを特徴とする電荷量計測回路。
    The charge amount measurement circuit according to claim 23,
    The charge amount measurement circuit, wherein the storage circuit is a register that stores a measurement value measured by the measurement counter when the input voltage is 0 V and sets the measurement value in the measurement counter.
  26.  請求項25記載の電荷量計測回路において、
     前記レジスタは、アップカウンタ又はダウンカウンタであることを特徴とする電荷量計測回路。
    The charge amount measurement circuit according to claim 25,
    The charge amount measuring circuit, wherein the register is an up counter or a down counter.
  27.  請求項21記載の電荷量計測回路において、
     前記演算増幅回路は、差動入力段の1対のトランジスタのサイズに差をつけることによって前記入力オフセット電圧を発生させることを特徴とする電荷量計測回路。
    The charge amount measuring circuit according to claim 21,
    The charge amount measuring circuit, wherein the operational amplifier circuit generates the input offset voltage by making a difference between the sizes of a pair of transistors in a differential input stage.
  28.  請求項21記載の電荷量計測回路において、
     前記演算増幅回路は、差動入力段の1対のトランジスタに接続される電流源の電流量に差をつけることによって前記入力オフセット電圧を発生させることを特徴とする電荷量計測回路。
    The charge amount measuring circuit according to claim 21,
    The charge amount measuring circuit, wherein the operational amplifier circuit generates the input offset voltage by making a difference in a current amount of a current source connected to a pair of transistors in a differential input stage.
  29.  請求項21記載の電荷量計測回路において、
     前記演算増幅回路は、差動入力段の1対のトランジスタに接続されるオフセット抵抗の抵抗値に差をつけることによって前記入力オフセット電圧を発生させることを特徴とする電荷量計測回路。
    The charge amount measuring circuit according to claim 21,
    The charge amount measuring circuit, wherein the operational amplifier circuit generates the input offset voltage by making a difference between resistance values of offset resistors connected to a pair of transistors in a differential input stage.
  30.  請求項21記載の電荷量計測回路において、
     前記演算増幅回路は、差動入力段の1対のトランジスタに接続された電流源に接続されるオフセット抵抗の抵抗値に差をつけることによって前記入力オフセット電圧を発生させることを特徴とする電荷量計測回路。
    The charge amount measuring circuit according to claim 21,
    The operational amplifier circuit generates the input offset voltage by differentiating a resistance value of an offset resistor connected to a current source connected to a pair of transistors in a differential input stage. Measuring circuit.
  31.  請求項21記載の電荷量計測回路において、
     前記演算増幅回路は、反転入力端子又は非反転入力端子のいずれかに前記積分回路の入力電圧の最大値より大きい、又は最小値より小さいバイアス電圧が印加されることを特徴とする電荷量計測回路。
    The charge amount measuring circuit according to claim 21,
    In the operational amplifier circuit, a charge voltage measuring circuit, wherein a bias voltage larger than a maximum value or smaller than a minimum value of the input voltage of the integrating circuit is applied to either an inverting input terminal or a non-inverting input terminal. .
  32.  請求項21記載の電荷量計測回路において、
     前記記憶回路は、アップカウンタ又はダウンカウンタであることを特徴とする電荷量計測回路。
    The charge amount measuring circuit according to claim 21,
    The charge amount measuring circuit, wherein the memory circuit is an up counter or a down counter.
  33.  請求項21記載の電荷量計測回路において、
     前記入力電圧は、所定の電源に直列接続された検知抵抗の両端電圧であることを特徴とする電荷量計測回路。
    The charge amount measuring circuit according to claim 21,
    The charge amount measuring circuit, wherein the input voltage is a voltage across a sensing resistor connected in series to a predetermined power source.
  34.  二次電池に直列に接続された検知抵抗と、
     前記検知抵抗に流れる電流により発生する電圧を入力とし、前記検知抵抗に流れる電流に相当する電荷量を出力する請求項21記載の電荷量計測回路と、
     前記電荷量計測回路により計測された電荷量から二次電池の残容量を計算する演算回路と、
     前記演算回路の計算結果を表示する表示回路とを備えたことを特徴とする携帯型電子機器。
    A sensing resistor connected in series to the secondary battery;
    The charge amount measuring circuit according to claim 21, wherein a voltage generated by a current flowing through the detection resistor is input, and a charge amount corresponding to the current flowing through the detection resistor is output.
    An arithmetic circuit for calculating the remaining capacity of the secondary battery from the charge amount measured by the charge amount measurement circuit;
    A portable electronic device comprising a display circuit for displaying a calculation result of the arithmetic circuit.
  35.  請求項34記載の携帯型電子機器において、
     前記演算回路は、マイクロコンピュータであることを特徴とする携帯型電子機器。
    The portable electronic device according to claim 34,
    A portable electronic device, wherein the arithmetic circuit is a microcomputer.
  36.  入力電圧を電荷量に相当するパルスに変換する電圧電荷変換回路と、
     前記電圧電荷変換回路の出力パルスをカウントする電荷計測回路と、
     前記入力電圧が0Vのときに前記電荷計測回路がオーバーフローするまでの時間をクロックで計測し、かつ電荷量計測時に計測時間の経過を示す時間計測回路と、
     前記電荷計測回路と前記時間計測回路との各々のオーバーフローの時間差に相当するクロック数をカウントする電荷積算回路と、
     前記入力電圧が0Vのときの前記時間計測回路の計数値を保持し、かつ当該計数値を前記時間計測回路に設定する記憶回路とを有し、
     前記電圧電荷変換回路は、前記入力電圧の最大値より大きい、又は最小値より小さい入力オフセット電圧を有する演算増幅回路を用いた積分回路を備えたことを特徴とする電荷量計測回路。
    A voltage charge conversion circuit that converts an input voltage into a pulse corresponding to the amount of charge; and
    A charge measuring circuit for counting output pulses of the voltage-to-charge converter circuit;
    A time measurement circuit that measures the time until the charge measurement circuit overflows when the input voltage is 0 V with a clock and indicates the passage of the measurement time when measuring the charge amount; and
    A charge integrating circuit that counts the number of clocks corresponding to the time difference of overflow between the charge measuring circuit and the time measuring circuit;
    A storage circuit that holds a count value of the time measurement circuit when the input voltage is 0 V and sets the count value in the time measurement circuit;
    2. The charge amount measuring circuit according to claim 1, wherein the voltage-to-charge converter circuit includes an integrating circuit using an operational amplifier circuit having an input offset voltage that is greater than a maximum value or less than a minimum value of the input voltage.
  37.  請求項36記載の電荷量計測回路において、
     前記電圧電荷変換回路は、
     前記積分回路への入力電圧を、計測対象となる電圧又は基準電圧に切り替える第1のスイッチと、
     前記積分回路の出力電圧と第1の基準電圧とを比較しその比較結果を出力する第1の比較回路と、
     前記積分回路の出力電圧と第2の基準電圧とを比較しその比較結果を出力する第2の比較回路と、
     前記第1の比較回路の出力電圧の反転又は前記第2の比較回路の出力電圧の反転に応答してセット、リセットされる電圧を出力する論理回路と、
     前記論理回路の出力電圧により導通と非導通とを制御されて前記積分回路を初期化する第2のスイッチとを更に備えたことを特徴とする電荷量計測回路。
    The charge amount measuring circuit according to claim 36,
    The voltage to charge conversion circuit is
    A first switch for switching an input voltage to the integration circuit to a voltage to be measured or a reference voltage;
    A first comparison circuit that compares the output voltage of the integration circuit with a first reference voltage and outputs the comparison result;
    A second comparison circuit that compares the output voltage of the integration circuit with a second reference voltage and outputs the comparison result;
    A logic circuit that outputs a voltage that is set and reset in response to inversion of the output voltage of the first comparison circuit or inversion of the output voltage of the second comparison circuit;
    A charge amount measuring circuit, further comprising: a second switch that controls conduction and non-conduction by an output voltage of the logic circuit to initialize the integration circuit.
  38.  請求項37記載の電荷量計測回路において、
     前記電荷計測回路は、前記第1の比較回路の出力電圧又は前記第2の比較回路の出力電圧が反転した回数をカウントする電荷カウンタを備えたことを特徴とする電荷量計測回路。
    The charge amount measurement circuit according to claim 37,
    The charge measurement circuit includes a charge counter that counts the number of times the output voltage of the first comparison circuit or the output voltage of the second comparison circuit is inverted.
  39.  請求項37記載の電荷量計測回路において、
     前記時間計測回路は、前記第1のスイッチが前記基準電圧に切り替えられたときには、前記電荷カウンタがオーバーフローに至るまでの時間を計測し、かつ、前記第1のスイッチが前記計測対象となる電圧に接続されたときには計測時間の経過を示す計測カウンタを備えたことを特徴とする電荷量計測回路。
    The charge amount measurement circuit according to claim 37,
    When the first switch is switched to the reference voltage, the time measurement circuit measures a time until the charge counter reaches an overflow, and the first switch is set to the voltage to be measured. A charge amount measurement circuit comprising a measurement counter indicating the passage of measurement time when connected.
  40.  請求項39記載の電荷量計測回路において、
     前記計測カウンタは、アップカウンタ又はダウンカウンタであることを特徴とする電荷量計測回路。
    The charge amount measurement circuit according to claim 39,
    The charge amount measurement circuit, wherein the measurement counter is an up counter or a down counter.
  41.  請求項36記載の電荷量計測回路において、
     前記電荷積算回路は、
     前記電荷計測回路のオーバーフロー信号と前記時間計測回路のオーバーフロー信号とにより、先に入力されたいずれかのオーバーフロー信号から、後に入力された他のオーバーフロー信号までの期間を示すイネーブル信号を生成するスタートストップ制御回路と、
     前記スタートストップ制御回路の前記イネーブル信号によりカウント又は停止を制御される積算カウンタとを備えたことを特徴とする電荷量計測回路。
    The charge amount measuring circuit according to claim 36,
    The charge integrating circuit is
    Start / stop that generates an enable signal indicating a period from one of the previously input overflow signals to another overflow signal that is input later, based on the overflow signal of the charge measuring circuit and the overflow signal of the time measuring circuit A control circuit;
    A charge amount measuring circuit comprising: an integration counter whose counting or stopping is controlled by the enable signal of the start / stop control circuit.
  42.  請求項41記載の電荷量計測回路において、
     前記積算カウンタは、アップカウンタ又はダウンカウンタであることを特徴とする電荷量計測回路。
    The charge amount measuring circuit according to claim 41,
    The charge amount measuring circuit, wherein the integration counter is an up counter or a down counter.
  43.  請求項36記載の電荷量計測回路において、
     前記記憶回路は、前記入力電圧が0Vのときに前記時間計測回路が計測した計測値を格納し、かつ当該計測値を前記時間計測回路に設定することを特徴とする電荷量計測回路。
    The charge amount measuring circuit according to claim 36,
    The charge amount measurement circuit, wherein the storage circuit stores a measurement value measured by the time measurement circuit when the input voltage is 0 V, and sets the measurement value in the time measurement circuit.
  44.  請求項43記載の電荷量計測回路において、
     前記記憶回路は、レジスタであることを特徴とする電荷量計測回路。
    The charge amount measurement circuit according to claim 43,
    The charge amount measuring circuit, wherein the memory circuit is a register.
  45.  請求項43記載の電荷量計測回路において、
     前記記憶回路は、アップカウンタ又はダウンカウンタであることを特徴とする電荷量計測回路。
    The charge amount measurement circuit according to claim 43,
    The charge amount measuring circuit, wherein the memory circuit is an up counter or a down counter.
  46.  請求項36記載の電荷量計測回路において、
     前記演算増幅回路は、差動入力段の1対のトランジスタのサイズに差をつけることによって前記入力オフセット電圧を発生させることを特徴とする電荷量計測回路。
    The charge amount measuring circuit according to claim 36,
    The charge amount measuring circuit, wherein the operational amplifier circuit generates the input offset voltage by making a difference between the sizes of a pair of transistors in a differential input stage.
  47.  請求項36記載の電荷量計測回路において、
     前記演算増幅回路は、差動入力段の1対のトランジスタに接続される電流源の電流量に差をつけることによって前記入力オフセット電圧を発生させることを特徴とする電荷量計測回路。
    The charge amount measuring circuit according to claim 36,
    The charge amount measuring circuit, wherein the operational amplifier circuit generates the input offset voltage by making a difference in a current amount of a current source connected to a pair of transistors in a differential input stage.
  48.  請求項36記載の電荷量計測回路において、
     前記演算増幅回路は、差動入力段の1対のトランジスタに接続されるオフセット抵抗の抵抗値に差をつけることによって前記入力オフセット電圧を発生させることを特徴とする電荷量計測回路。
    The charge amount measuring circuit according to claim 36,
    The charge amount measuring circuit, wherein the operational amplifier circuit generates the input offset voltage by making a difference between resistance values of offset resistors connected to a pair of transistors in a differential input stage.
  49.  請求項36記載の電荷量計測回路において、
     前記演算増幅回路は、差動入力段の1対のトランジスタに接続された電流源に接続されるオフセット抵抗の抵抗値に差をつけることによって前記入力オフセット電圧を発生させることを特徴とする電荷量計測回路。
    The charge amount measuring circuit according to claim 36,
    The operational amplifier circuit generates the input offset voltage by differentiating a resistance value of an offset resistor connected to a current source connected to a pair of transistors in a differential input stage. Measuring circuit.
  50.  請求項36記載の電荷量計測回路において、
     前記演算増幅回路は、反転入力端子又は非反転入力端子のいずれかに前記積分回路の入力電圧の最大値より大きい、又は最小値より小さいバイアス電圧が印加されることを特徴とする電荷量計測回路。
    The charge amount measuring circuit according to claim 36,
    In the operational amplifier circuit, a charge voltage measuring circuit, wherein a bias voltage larger than a maximum value or smaller than a minimum value of the input voltage of the integrating circuit is applied to either an inverting input terminal or a non-inverting input terminal. .
  51.  請求項36記載の電荷量計測回路において、
     前記入力電圧は、所定の電源に直列接続された検知抵抗の両端電圧であることを特徴とする電荷量計測回路。
    The charge amount measuring circuit according to claim 36,
    The charge amount measuring circuit, wherein the input voltage is a voltage across a sensing resistor connected in series to a predetermined power source.
  52.  二次電池に直列に接続された検知抵抗と、
     前記検知抵抗に流れる電流により発生する電圧を入力とし、前記検知抵抗に流れる電流に相当する電荷量を出力する請求項36記載の電荷量計測回路と、
     前記電荷量計測回路により計測された電荷量から二次電池の残容量を計算する演算回路と、
     前記演算回路の計算結果を表示する表示回路とを備えたことを特徴とする携帯型電子機器。
    A sensing resistor connected in series to the secondary battery;
    The charge amount measuring circuit according to claim 36, wherein a voltage generated by a current flowing through the detection resistor is input, and a charge amount corresponding to the current flowing through the detection resistor is output.
    An arithmetic circuit for calculating the remaining capacity of the secondary battery from the charge amount measured by the charge amount measurement circuit;
    A portable electronic device comprising a display circuit for displaying a calculation result of the arithmetic circuit.
  53.  請求項52記載の携帯型電子機器において、
     前記演算回路は、マイクロコンピュータであることを特徴とする携帯型電子機器。
    The portable electronic device according to claim 52,
    A portable electronic device, wherein the arithmetic circuit is a microcomputer.
PCT/JP2010/001247 2009-02-25 2010-02-24 Voltage polarity discrimination circuit and electrical load measuring circuit WO2010098090A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/218,193 US8901891B2 (en) 2009-02-25 2011-08-25 Voltage polarity determination circuit and charge amount measurement circuit

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009042206A JP5355144B2 (en) 2009-02-25 2009-02-25 Voltage polarity discrimination circuit
JP2009-042206 2009-02-25
JP2009109716 2009-04-28
JP2009-109716 2009-04-28
JP2010-030562 2010-02-15
JP2010030562A JP5635279B2 (en) 2009-04-28 2010-02-15 Charge measurement circuit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/218,193 Continuation US8901891B2 (en) 2009-02-25 2011-08-25 Voltage polarity determination circuit and charge amount measurement circuit

Publications (1)

Publication Number Publication Date
WO2010098090A1 true WO2010098090A1 (en) 2010-09-02

Family

ID=42665305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001247 WO2010098090A1 (en) 2009-02-25 2010-02-24 Voltage polarity discrimination circuit and electrical load measuring circuit

Country Status (1)

Country Link
WO (1) WO2010098090A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149536A (en) * 2013-02-04 2013-06-12 普天新能源有限责任公司 Voltage measuring method of battery system
CN104251939A (en) * 2013-06-28 2014-12-31 英飞凌科技股份有限公司 System and method for a transformer and a phase-shift network
CN113300005A (en) * 2020-02-21 2021-08-24 Oppo广东移动通信有限公司 Electric quantity detection device and method and electronic equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09311147A (en) * 1996-05-24 1997-12-02 Matsushita Electric Ind Co Ltd Charging and discharging current measuring apparatus
JP2000241515A (en) * 1999-02-18 2000-09-08 Stmicroelectronics Srl Measurement counter for state of battery charge for supplying power to electronic instrument

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09311147A (en) * 1996-05-24 1997-12-02 Matsushita Electric Ind Co Ltd Charging and discharging current measuring apparatus
JP2000241515A (en) * 1999-02-18 2000-09-08 Stmicroelectronics Srl Measurement counter for state of battery charge for supplying power to electronic instrument

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149536A (en) * 2013-02-04 2013-06-12 普天新能源有限责任公司 Voltage measuring method of battery system
CN104251939A (en) * 2013-06-28 2014-12-31 英飞凌科技股份有限公司 System and method for a transformer and a phase-shift network
CN113300005A (en) * 2020-02-21 2021-08-24 Oppo广东移动通信有限公司 Electric quantity detection device and method and electronic equipment
CN113300005B (en) * 2020-02-21 2022-12-09 Oppo广东移动通信有限公司 Electric quantity detection device and method and electronic equipment

Similar Documents

Publication Publication Date Title
US6285164B1 (en) Means for detecting the integrated value of current flow, a means for detecting the value of current flow and a battery pack employing those means
US8901891B2 (en) Voltage polarity determination circuit and charge amount measurement circuit
US7911185B2 (en) Battery voltage detection circuit
TWI408378B (en) Apparatus for current sensing
US5124627A (en) Battery capacity computing apparatus
EP2780729B1 (en) Fast single-ended to differential converter
EP2343565A2 (en) Circuits and methods for measuring cell voltages in battery packs
KR100763117B1 (en) Voltage-frequency converter and method of changing reference voltage therein
EP2829889B1 (en) Sensor device
EP2863546A2 (en) Semiconductor device and electronic control device
KR102105034B1 (en) Magnetic sensor circuit
JP4553567B2 (en) Battery charge / discharge monitoring circuit and battery charge / discharge monitoring method
WO2010098090A1 (en) Voltage polarity discrimination circuit and electrical load measuring circuit
JP5635279B2 (en) Charge measurement circuit
US20090128132A1 (en) Current measurement
JP2002243771A (en) Battery voltage detecting circuit
CN111585244B (en) Leakage protection circuit, integrated circuit, electronic device, and method
EP2860541B1 (en) Magnetic sensor
JP2020085714A (en) Integration type current voltage conversion circuit, current measurement device and resistance measurement device
US20170288439A1 (en) Signal processing circuit, coulomb counter circuit, and electronic device
JPH11135156A (en) Charging/discharging current detecting method and device of secondary battery
JP2008249351A (en) Temperature measuring circuit
JP3273871B2 (en) Voltage detector
JP5355144B2 (en) Voltage polarity discrimination circuit
JPH11344546A (en) Current integrated value detecting device, current detecting device and battery pack using them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10745975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10745975

Country of ref document: EP

Kind code of ref document: A1