WO2010097998A1 - Moistureproof film, process for producing same, back sheet comprising same for solar cell module, and solar cell module - Google Patents

Moistureproof film, process for producing same, back sheet comprising same for solar cell module, and solar cell module Download PDF

Info

Publication number
WO2010097998A1
WO2010097998A1 PCT/JP2009/070533 JP2009070533W WO2010097998A1 WO 2010097998 A1 WO2010097998 A1 WO 2010097998A1 JP 2009070533 W JP2009070533 W JP 2009070533W WO 2010097998 A1 WO2010097998 A1 WO 2010097998A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
moisture
proof
heating
solar cell
Prior art date
Application number
PCT/JP2009/070533
Other languages
French (fr)
Japanese (ja)
Inventor
仁 安達
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2010097998A1 publication Critical patent/WO2010097998A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a moisture-proof film, a manufacturing method thereof, a back sheet for a solar cell module using the same, and a solar cell module.
  • a problem with solar cell modules is that the cells deteriorate over time due to the permeation of water vapor, resulting in a decrease in power generation efficiency.
  • a resin moisture-proof sheet (back sheet) is generally used on the back side in terms of weight reduction and cost.
  • current moisture-proof sheets made of resin do not have sufficient water vapor permeation resistance, and there have been cases in which they have deteriorated without waiting for 20 years, which is the durability standard required for solar cell modules.
  • conventional resin moisture-proof sheets generally employ a technique of forming an inorganic oxide film such as silica by vapor deposition (see, for example, Patent Documents 1 and 2).
  • the vapor deposition process has a problem that the manufacturing apparatus becomes large in size, such as requiring a vacuum apparatus, and is not suitable for continuous production, resulting in high costs.
  • the moisture-proof sheet used in the solar cell module needs to suppress deterioration due to cell oxidation, but the moisture-proof sheet in which the inorganic oxide film is formed by the vapor deposition described above is necessary as a moisture-proof sheet for the solar cell module. And low oxidative permeability cannot be achieved at the same time.
  • the present inventors examined the manufacture of a new moisture-proof sheet.
  • the moisture resistance and low oxygen permeability of the inorganic oxide film formed by using a ceramic precursor that forms an inorganic oxide film by heat treatment after coating are determined by a vapor deposition method. It has been found that it is possible to raise it more than it is formed.
  • a high temperature is required for converting the film into a ceramic. Sintering is required, damage is applied to the resin base material, and a new problem arises that the performance of the moisture-proof film deteriorates due to deterioration of the resin base material.
  • the present invention has been made in view of the above-mentioned problems and situations, and the problem to be solved is a resin substrate that is superior in moisture resistance and high in productivity as compared with a moisture-proof film produced by a conventional vapor deposition method or baking method. It is providing the moisture-proof film using a material, and providing the manufacturing method. Moreover, it is providing the solar cell module backsheet and solar cell module using the said moisture-proof film.
  • a moisture-proof film provided with a moisture-proof layer on a resin substrate, wherein the moisture-proof layer is formed by applying a ceramic precursor that forms an inorganic oxide film by heating, and then forming an inorganic oxide by local heating of the coating film.
  • a moisture-proof film comprising a product.
  • the ceramic precursor is a sol-like organometallic compound, which is composed of silicon (Si), aluminum (Al), lithium (Li), zirconium (Zr), titanium (Ti), zinc (Zn), and barium (Ba).
  • a back sheet for a solar cell module wherein the moisture-proof film according to any one of items 1 to 5 is used.
  • a moisture-proof film using a resin base material that is superior in moisture resistance and high in productivity as compared with a moisture-proof film produced by a conventional vapor deposition method or baking method, and a method for producing the same. can be provided.
  • the solar cell module backsheet and solar cell module using the moisture-proof film can be provided.
  • Schematic flow sheet showing one embodiment of an apparatus for producing a film-like resin substrate Sectional drawing which shows an example of the laminated constitution of the back seat
  • the moisture-proof film of the present invention is a moisture-proof film in which a moisture-proof layer is provided on a resin substrate, and after the moisture-proof layer has applied a ceramic precursor that forms an inorganic oxide film by heating, It contains an inorganic oxide formed by heating.
  • This feature is a technical feature common to the inventions according to claims 1 to 11.
  • the ceramic precursor is a sol-like organometallic compound, and silicon (Si), aluminum (Al), lithium (Li), zirconium (Zr), It is preferable to contain at least one element of titanium (Ti), zinc (Zn), and barium (Ba). Moreover, it is preferable that the said ceramic precursor contains polysilazane. Furthermore, it is preferable that it is an aspect which has at least one synthetic resin layer above the moisture-proof layer. In this case, the synthetic resin of the synthetic resin layer is preferably a cycloolefin resin.
  • the moisture-proof film production method of the present invention includes at least (1) a step of applying a ceramic precursor that forms an inorganic oxide film by heating, and (2) locally heating the coating film of the ceramic precursor. And an inorganic oxide forming step.
  • the method of locally heating is a method of heating by intermittently repeating short-time heating.
  • the method of heating locally is a method of irradiating the coated ceramic precursor layer with electromagnetic waves or ultrasonic waves.
  • the electromagnetic waves are infrared rays or microwaves.
  • the moisture-proof film of the present invention can be suitably used as a back sheet for a solar cell module. Therefore, a solar cell module using the moisture-proof film having excellent moisture resistance as a back sheet can be provided.
  • resin base material As the resin base material according to the present invention, various publicly known resin films can be used.
  • a polyester film or a cellulose ester film it is preferable to use a polyester film or a cellulose ester film, and it may be a film manufactured by melt casting or a film manufactured by solution casting.
  • the thickness of the resin base material is preferably an appropriate thickness depending on the type and purpose of the resin. For example, it is generally in the range of 10 to 300 ⁇ m. The thickness is preferably 20 to 200 ⁇ m, more preferably 30 to 100 ⁇ m.
  • the moisture-proof film of the present invention is characterized by having a moisture-proof layer on at least one surface of the resin substrate.
  • the moisture-proof layer contains an inorganic oxide formed by local heating from a ceramic precursor that forms an inorganic oxide film by heat treatment.
  • the moisture-proof layer according to the present invention is intended to prevent deterioration of humidity, particularly deterioration of a resin base material and various functional elements protected by the resin base material due to high humidity. As long as the above characteristics are maintained, various types of moisture-proof layers can be provided.
  • the moisture resistance of the moisture-proof film of the present invention is 100 g / m 2 ⁇ day / ⁇ m or less, preferably 50 g / m 2 ⁇ day / ⁇ m or less, more preferably 20 g / It is preferable to adjust the moisture-proof property of the moisture-proof layer so as to be m 2 ⁇ day / ⁇ m or less.
  • the moisture-proof layer according to the present invention is characterized by containing an inorganic oxide formed by local heating of a coating film after applying a ceramic precursor that forms an inorganic oxide film by heating.
  • the ceramic precursor is preferably a sol-like organometallic compound.
  • the organometallic compound according to the present invention includes silicon (Si), aluminum (Al), lithium (Li), zirconium (Zr), titanium (Ti), tantalum (Ta), zinc (Zn), barium (Ba), and indium. It is preferable to contain at least one element of (In), tin (Sn), lanthanum (La), yttrium (Y), and niobium (Nb).
  • the organometallic compound is at least one element of silicon (Si), aluminum (Al), lithium (Li), zirconium (Zr), titanium (Ti), zinc (Zn), and barium (Ba). It is preferable to contain. Furthermore, it is preferable to contain at least one element of silicon (Si), aluminum (Al), and lithium (Li).
  • the organometallic compound is not particularly limited as long as it can be hydrolyzed, and preferred organometallic compounds include metal alkoxides.
  • the metal alkoxide is represented by the following general formula (I).
  • M represents a metal having an oxidation number n.
  • R 1 and R 2 each independently represents an alkyl group.
  • m represents an integer of 0 to (n ⁇ 1).
  • R 1 and R 2 may be the same or different.
  • R 1 and R 2 are preferably alkyl groups having 4 or less carbon atoms, for example, a methyl group CH 3 (hereinafter represented by Me), an ethyl group C 2 H 5 (hereinafter represented by Et), a propyl group.
  • C 3 H 7 (hereinafter represented by Pr), isopropyl group i-C 3 H 7 (hereinafter represented by i-Pr), butyl group C 4 H 9 (hereinafter represented by Bu), isobutyl group i- A lower alkyl group such as C 4 H 9 (hereinafter referred to as i-Bu) is more preferred.
  • Examples of the metal alkoxide represented by the general formula (I) include lithium ethoxide LiOEt, niobium ethoxide Nb (OEt) 5 , magnesium isopropoxide Mg (OPr-i) 2 , aluminum isopropoxide Al (OPr -I) 3 , zinc propoxide Zn (OPr) 2 , tetraethoxysilane Si (OEt) 4 , titanium isopropoxide Ti (OPr-i) 4 , barium ethoxide Ba (OEt) 2 , barium isopropoxide Ba ( OPr-i) 2 , triethoxyborane B (OEt) 3 , zirconium propoxide Zn (OPr) 4 , lanthanum propoxide La (OPr) 3 , yttrium propoxide Y (OPr) 3 , lead isopropoxide Pb (OPr- i) 2 etc. are mentioned suitably. All of these metal alkoxide
  • the inorganic oxide according to the present invention is characterized in that it is formed by local heating from a sol using the organometallic compound as a raw material. Therefore, silicon (Si), aluminum (Al), zirconium (Zr), titanium (Ti), tantalum (Ta), zinc (Zn), barium (Ba), indium (In) contained in the organometallic compound, It is an oxide of an element such as tin (Sn) or niobium (Nb).
  • silicon oxide aluminum oxide, zirconium oxide and the like. Of these, silicon oxide is preferable.
  • a method for forming an inorganic oxide from an organometallic compound it is preferable to use a so-called sol-gel method and a method of applying polysilazane.
  • the “sol-gel method” is to obtain a hydroxide sol by hydrolyzing an organometallic compound, etc., dehydrate it into a gel, and further heat-treat the gel. It refers to a method for preparing a metal oxide glass having a certain shape (film, particle, fiber, etc.).
  • a multi-component metal oxide glass can be obtained by a method of mixing a plurality of different sol solutions, a method of adding other metal ions, or the like.
  • an inorganic oxide by a sol-gel method having the following steps.
  • the organometallic compound in a reaction solution containing at least water and an organic solvent, is hydrolyzed and dehydrated and condensed while adjusting the pH to 4.5 to 5.0 using a halogen ion as a catalyst in the presence of boron ion.
  • Generation of fine pores due to high-temperature heat treatment is produced by a sol-gel method having a step of obtaining a reaction product by heating and vitrifying the reaction product at a temperature of 200 ° C. or less. And is particularly preferable from the viewpoint that no deterioration of the film occurs.
  • the organometallic compound used as a raw material is not particularly limited as long as it can be hydrolyzed, and preferred organometallic compounds include the metal alkoxides. .
  • the organometallic compound may be used for the reaction as it is, but it is preferably diluted with a solvent for easy control of the reaction.
  • the solvent for dilution is not particularly limited as long as it can dissolve the organometallic compound and can be uniformly mixed with water.
  • Preferred examples of such a solvent for dilution include aliphatic lower alcohols such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, ethylene glycol, propylene glycol, and mixtures thereof.
  • a mixed solvent of butanol, cellosolve, and butyl cellosolve or a mixed solvent of xylol, cellosolve acetate, methyl isobutyl ketone, and cyclohexane may be used.
  • the metal when the metal is Ca, Mg, Al or the like, it reacts with water in the reaction solution to form a hydroxide, or when carbonate ion CO 3 2- is present, a carbonate is formed. Therefore, it is preferable to add an alcohol solution of triethanolamine as a masking agent to the reaction solution.
  • the concentration of the organometallic compound when mixed and dissolved in a solvent is preferably 70% by mass or less, and more preferably diluted to a range of 5 to 70% by mass.
  • the reaction solution used in the sol-gel method contains at least water and an organic solvent.
  • the organic solvent is not particularly limited as long as it can form a uniform solution with water, acid, and alkali, and usually the same aliphatic lower alcohols used for diluting the organometallic compound are preferably used.
  • the aliphatic lower alcohols propanol, isopropanol, butanol, and isobutanol having a larger number of carbon atoms are preferable to methanol and ethanol. This is because the growth of the metal oxide glass film to be generated is stable.
  • the water ratio is preferably in the range of 0.2 to 50 mol / L as the concentration of water.
  • an organometallic compound is hydrolyzed in the reaction solution in the presence of boron ions using a halogen ion as a catalyst.
  • Preferred examples of the compound that gives the boron ion B 3+ include trialkoxyborane B (OR) 3 . Among these, triethoxyborane B (OEt) 3 is more preferable.
  • the B 3+ ion concentration in the reaction solution is preferably in the range of 1.0 to 10.0 mol / L.
  • halogen ion a fluorine ion and / or a chlorine ion are mentioned suitably. That is, fluorine ions alone, chlorine ions alone or a mixture thereof may be used.
  • the compound to be used may be any compound that generates fluorine ions and / or chlorine ions in the reaction solution.
  • the fluorine ion source ammonium hydrogen fluoride NH 4 HF ⁇ HF, sodium fluoride NaF, or the like is preferable.
  • Preferred examples of the chlorine ion source include ammonium chloride NH 4 Cl.
  • the concentration of the halogen ions in the reaction solution varies depending on the film thickness of an inorganic composition having an inorganic matrix to be produced and other conditions, but generally the reaction solution containing a catalyst. Is preferably in the range of 0.001 to 2 mol / kg, particularly 0.002 to 0.3 mol / kg. If the halogen ion concentration is lower than 0.001 mol / kg, hydrolysis of the organometallic compound does not proceed sufficiently, and film formation becomes difficult. Alternatively, when the concentration of the rogen ion exceeds 2 mol / kg, the generated inorganic matrix (metal oxide glass) tends to be nonuniform, which is not preferable.
  • boron used during the reaction, if to be contained as a B 2 O 3 component in the design the composition of the resulting inorganic matrix, by leaving product was added calculated amount of organic boron compound in accordance with the content of
  • boron can be removed by evaporation as boron methyl ester by heating after film formation in the presence of methanol as a solvent or by immersing in methanol.
  • a main agent solution in which a predetermined amount of the organometallic compound is usually mixed and dissolved in a mixed solvent containing a predetermined amount of water and an organic solvent,
  • a predetermined amount of the reaction solution containing a predetermined amount of the above-mentioned halogen ions is mixed at a predetermined ratio and sufficiently stirred to obtain a uniform reaction solution, and then the pH of the reaction solution is adjusted to a desired value with acid or alkali.
  • the reaction product is obtained by aging for several hours.
  • a predetermined amount of the boron compound is mixed and dissolved in advance in the main agent solution or reaction solution. Further, when alkoxyborane is used, it is advantageous to dissolve it in the main agent solution together with other organometallic compounds.
  • the pH of the reaction solution is selected depending on the purpose, and for the purpose of forming a film (film) made of an inorganic composition having an inorganic matrix (metal oxide glass), for example, the pH is adjusted using an acid such as hydrochloric acid. It is preferable to ripen the mixture by adjusting it to the range of 4.5 to 5. In this case, for example, it is convenient to use a mixture of methyl red and bromocresol green as an indicator.
  • the main component solution of the same concentration of the same component and the reaction liquid (including B 3+ and halogen ions) are adjusted to a predetermined pH while being added in succession at the same ratio.
  • the reaction product can also be produced continuously.
  • the concentration of the reaction solution is in the range of ⁇ 50% by mass
  • the concentration of water (including acid or alkali) is in the range of ⁇ 30% by mass
  • the concentration of halogen ions is in the range of ⁇ 30% by mass.
  • reaction product reaction solution after aging
  • reaction solution after aging reaction solution after aging
  • the temperature is raised gradually while paying particular attention to a temperature range of 50 to 70 ° C., followed by a preliminary drying (solvent volatilization) step and further raising the temperature.
  • This drying is important for forming a nonporous film in the case of film formation.
  • the temperature for heating and drying after the preliminary drying step is preferably 70 to 150 ° C, more preferably 80 to 130 ° C.
  • the moisture-proof layer according to the present invention is characterized by containing an inorganic oxide formed by local heating of a coating film after coating a ceramic precursor that forms an inorganic oxide film by heating.
  • the precursor contains polysilazane
  • the resin substrate is coated with a solution containing a catalyst in the polysilazane represented by the following formula (I) and an organic solvent as necessary, and the solvent is evaporated.
  • Removing thereby leaving a polysilazane layer having a layer thickness of 0.05 to 3.0 ⁇ m on the resin substrate, and in the presence of oxygen, active oxygen, and optionally in the presence of water vapor It is preferable to employ a method of forming a glass-like transparent film on the resin substrate by locally heating the polysilazane layer.
  • R1, R2 and R3 are the same or different and independently of each other, hydrogen, or an optionally substituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group, preferably Selected from the group consisting of hydrogen, methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, tert-butyl, phenyl, vinyl or 3- (triethoxysilyl) propyl, 3- (trimethoxysilylpropyl) Represents a group, where n is an integer and n is defined such that the polysilazane has a number average molecular weight of 150 to 150,000 g / mol.
  • catalysts preferably basic catalysts, in particular N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine or N-heterocyclic compounds are used.
  • the catalyst concentration is usually in the range of 0.1 to 10 mol%, preferably 0.5 to 7 mol%, based on polysilazane.
  • a solution containing perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms is used.
  • the coating according to the invention comprises at least one polysilazane of the formula (III) Formula (III): — (SiR 1 R 2 —NR 3 ) n — (SiR 4 R 5 —NR 6 ) p —
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are independently of each other hydrogen, or optionally substituted alkyl, aryl, vinyl, or (trialkoxysilyl) Represents an alkyl group, where n and p are integers, and n is determined such that the polysilazane has a number average molecular weight of 150 to 150,000 g / mol.
  • R 1 , R 3 and R 6 represent hydrogen and R 2 , R 4 and R 5 represent methyl, R 1 , R 3 and R 6 represent hydrogen and R 2 , A compound in which R 4 represents methyl and R 5 represents vinyl, R 1 , R 3 , R 4 and R 6 represent hydrogen and R 2 and R 5 represent methyl.
  • a solution containing at least one polysilazane represented by the following formula (IV) is also preferable.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are independently of one another hydrogen or optionally substituted alkyl group
  • R 1 , R 3 and R 6 represent hydrogen and R 2 , R 4 , R 5 and R 8 represent methyl, R 9 represents (triethoxysilyl) propyl and R 7 Is a compound in which represents alkyl or hydrogen.
  • the proportion of polysilazane in the solvent is generally 1 to 80% by mass, preferably 5 to 50% by mass, and particularly preferably 10 to 40% by mass.
  • an aprotic solvent which does not contain water and a reactive group (for example, hydroxyl group or amine group) and is inert to polysilazane, preferably an aprotic solvent is suitable.
  • aprotic solvent which includes, for example, aliphatic or aromatic hydrocarbons, halogen hydrocarbons, esters such as ethyl acetate or butyl acetate, ketones such as acetone or methyl ethyl ketone, ethers such as tetrahydrofuran or dibutyl ether, and mono- and polyalkylene glycol dialkyl ethers (Diglymes) or a mixture of these solvents.
  • the additional component of the polysilazane solution can be a further binder such as those conventionally used in the manufacture of paints.
  • cellulose ethers and cellulose esters such as ethyl cellulose, nitrocellulose, cellulose acetate or cellulose acetobutyrate, natural resins such as rubber or rosin resins, or synthetic resins such as polymerized resins or condensed resins such as aminoplasts, in particular Urea resins and melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, or polysiloxanes.
  • the polysilazane further components of the formulation, for example, the viscosity of the formulation, wetting the underlying film-forming property, additives influencing the lubrication or exhaust resistance, or inorganic nanoparticles, for example SiO 2, TiO 2, It can be ZnO, ZrO 2 or Al 2 O 3 .
  • the thickness of the coating film to be formed is preferably in the range of 100 nm to 2 ⁇ m.
  • the inorganic oxide is formed by locally heating the coating layer (coating liquid) of the sol using an organometallic compound as a raw material.
  • the “local heating” of the coating layer in the present invention means that the coating layer is substantially heated to 10 ° C. or more, preferably 20 ° C. or more higher than the resin substrate without substantially deteriorating the resin substrate by heating. It means heating, and various conventionally known methods can be adopted as the local heating method for this purpose. For example, heating with an infrared heater, hot air, microwave, ultrasonic heating, induction heating, or the like can be selected as appropriate. Of these, methods using intermittent electromagnetic irradiation of infrared rays, electromagnetic waves such as microwaves and ultrasonic waves are preferable.
  • an irradiation device such as an infrared lamp or an infrared heater can be used. If the inorganic oxide layer can be formed, the irradiation by the infrared irradiation device may be performed once. However, in order to locally heat the coating layer, there is a method of intermittently repeating the infrared irradiation for one hour. Preferably used.
  • a method of intermittently repeating short-time infrared irradiation for example, a method of repeatedly turning on and off the infrared irradiation device in a short time, a shielding plate is provided between the infrared irradiation device and a non-irradiated object, and the shielding plate is moved
  • a method of repeatedly irradiating infrared rays by providing an infrared irradiation device at a plurality of locations in the conveyance direction of the non-irradiated material (resin film) and conveying the non-irradiated material.
  • a microwave is a general term for a UHF to EHF band with a frequency of 1 GHz to 3 THz and a wavelength of about 0.1 to 300 mm, and a microwave generator with a frequency of 2.45 GHz is common, but a microwave with a frequency of 1 to 100 GHz is common.
  • a 2.45 GHz microwave irradiator ⁇ -reactor manufactured by Shikoku Keiki Kogyo Co., Ltd.
  • a microwave generator electromagnetic that radiates a 2.45 GHz microwave, and the like can be given.
  • ultrasonic wave refers to an elastic vibration wave (sound wave) having a frequency of 10 kHz or more.
  • the frequency of the horn is a frequency in the range of 50 kHz or less, and heating for a single time is repeated repeatedly as in the case of infrared irradiation.
  • the coating layer is heated using microwaves or ultrasonic waves, only the resin coating layer is locally applied without causing deterioration of the resin base material by intermittently repeating heating for a single hour as in the case of infrared irradiation.
  • the method of heating is preferably used.
  • the synthetic resin layer according to the present invention prevents the moisture-proof layer from functioning as a stress relaxation layer that prevents cracks due to bending of the moisture-proof film and the like, and prevents the moisture-proof layer from becoming dirty and damaging the original moisture resistance.
  • the purpose is to obtain a function as an antifouling layer.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate (CAP), cellulose acetate
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • TAC cellulose triacetate
  • CAP cellulose acetate propionate
  • Cellulose esters such as phthalate and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyetherketone, polyimide, polyethersulfone ( PES), polysulfones, polyether ketone imide, polyamide, fluororesin Nylon, polymethyl methacrylate, acrylic or polyarylates, and
  • resins particularly preferred resins are cycloolefin resins.
  • cycloolefin resins examples include norbornene resins, monocyclic cyclo (cyclic) olefin resins, cyclo (cyclic) conjugated diene resins, and vinyl alicyclic hydrocarbon resins. Examples thereof include resins and hydrides thereof. Among these, norbornene-based resins can be suitably used because of their good transparency and moldability.
  • Examples of the norbornene-based resin include a ring-opening polymer of a monomer having a norbornene structure, a ring-opening copolymer of a monomer having a norbornene structure and another monomer, a hydride thereof, and a norbornene structure.
  • a ring-opening (co) polymer hydride of a monomer having a norbornene structure is particularly suitable from the viewpoints of transparency, moldability, heat resistance, low hygroscopicity, dimensional stability, lightness, and the like. Can be used.
  • Examples of the monomer having a norbornene structure include bicyclo [2.2.1] hept-2-ene (common name: norbornene), tricyclo [4.3.0.1 2,5 ] deca-3,7-diene. (Common name: dicyclopentadiene), 7,8-benzotricyclo [4.3.0.1 2,5 ] dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo [4.4.0. 1 2,5 . 1 7,10 ] dodec-3-ene (common name: tetracyclododecene) and derivatives of these compounds (for example, those having a substituent in the ring).
  • examples of the substituent include an alkyl group, an alkylene group, and a polar group.
  • these substituents may be the same or different and a plurality may be bonded to the ring.
  • Monomers having a norbornene structure can be used singly or in combination of two or more.
  • Examples of the polar group include heteroatoms or atomic groups having heteroatoms.
  • Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom.
  • Specific examples of the polar group include a carboxyl group, a carbonyloxycarbonyl group, an epoxy group, a hydroxyl group, an oxy group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, and a sulfone group.
  • monomers capable of ring-opening copolymerization with monomers having a norbornene structure include monocyclo (cyclic) olefins such as cyclohexene, cycloheptene, and cyclooctene and derivatives thereof, and cyclo ( Cyclic) conjugated dienes and derivatives thereof.
  • a ring-opening polymer of a monomer having a norbornene structure and a ring-opening copolymer of a monomer having a norbornene structure and another monomer copolymerizable with the monomer have a known ring-opening polymerization catalyst. It can be obtained by (co) polymerization in the presence.
  • Examples of other monomers that can be addition-copolymerized with a monomer having a norbornene structure include, for example, ⁇ -olefins having 2 to 20 carbon atoms such as ethylene, propylene, and 1-butene, and derivatives thereof; cyclobutene, cyclopentene, Examples thereof include cycloolefins such as cyclohexene and derivatives thereof; non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, and 5-methyl-1,4-hexadiene. These monomers can be used alone or in combination of two or more. Among these, ⁇ -olefin is preferable, and ethylene is more preferable.
  • An addition polymer of a monomer having a norbornene structure and an addition copolymer of another monomer copolymerizable with a monomer having a norbornene structure can be used in the presence of a known addition polymerization catalyst. It can be obtained by polymerization.
  • a known hydrogenation catalyst containing a transition metal such as nickel or palladium is added to the polymer solution, and the carbon-carbon unsaturated bond is preferably hydrogenated by 90% or more.
  • X bicyclo [3.3.0] octane-2,4-diyl-ethylene structure and Y: tricyclo [4.3.0.1 2,5 ] decane-7 are used as repeating units.
  • 9-diyl-ethylene structure the content of these repeating units is 90% by mass or more based on the entire repeating units of the norbornene resin, and the X content ratio and the Y content ratio are The ratio of X: Y is preferably 100: 0 to 40:60.
  • the molecular weight of the cyclo (cyclic) olefin resin used in the present invention is appropriately selected according to the purpose of use.
  • Polyisoprene or polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography using cyclohexane (toluene if the polymer resin does not dissolve) as a solvent usually 20,000 to 150,000. . It is preferably 25,000 to 100,000, more preferably 30,000 to 80,000.
  • Mw weight average molecular weight
  • the glass transition temperature of the cyclo (cyclic) olefin resin may be appropriately selected according to the purpose of use.
  • the range is preferably from 130 to 160 ° C, more preferably from 135 to 150 ° C.
  • cycloolefin resin used in the present invention include, for example, JSR Corporation trade name: ARTON; Nippon Zeon Corporation trade name: Zeonoa; Sekisui Chemical Co., Ltd. trade name: Essina. be able to.
  • a filler, an antioxidant, an ultraviolet absorber, a heat stabilizer, a lubricant, an antistatic agent, and an antibacterial agent are added to each layer as needed, particularly to the substrate.
  • Pigments and the like can be added.
  • the solution casting method and the melt casting method by casting are preferable from the viewpoints of suppression of coloring, suppression of defects of foreign matters, suppression of optical defects such as die lines, and the like.
  • an organic solvent useful for forming the dope can be used without limitation as long as it dissolves a thermoplastic resin such as a cellulose ester resin. .
  • methylene chloride as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, ethyl lactate, lactic acid , Diacetone alcohol, etc., preferably methylene chloride, methyl acetate, ethyl acetate,
  • the dope may contain 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • thermoplastic resin should be a dope composition in which at least 10 to 45% by mass of the thermoplastic resin is dissolved in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. preferable.
  • linear or branched aliphatic alcohol having 1 to 4 carbon atoms examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.
  • film a film-like resin substrate (hereinafter also simply referred to as “film”) according to the present invention.
  • thermoplastic resin a thermoplastic resin, a heat-shrinkable material, and other additives are dissolved in an organic solvent mainly composed of a good solvent for the thermoplastic resin while stirring to form a dope.
  • thermoplastic resin For the dissolution of the thermoplastic resin, a method carried out at normal pressure, a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544, JP-A-9-95557 Alternatively, various dissolution methods such as a method using a cooling dissolution method as described in JP-A-9-95538 and a method using a high pressure as described in JP-A-11-21379 can be used. The method of pressurizing at a boiling point or higher is preferred.
  • Recycled material is a finely pulverized film, which is generated when the film is formed, cut off on both sides of the film, or the original film that has been speculated out due to scratches, etc. Reused.
  • An endless metal belt such as a stainless steel belt or a rotating metal drum, which supports the dope is fed to a pressure die through a liquid feed pump (for example, a pressurized metering gear pump) and supported infinitely. This is a step of casting a dope from a pressure die slit to a casting position on the body.
  • a liquid feed pump for example, a pressurized metering gear pump
  • ⁇ Pressure dies that can adjust the slit shape of the die base and make the film thickness uniform are preferred.
  • the pressure die include a coat hanger die and a T die, and any of them is preferably used.
  • the surface of the metal support is a mirror surface.
  • two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
  • Solvent evaporation step In this step, the web (the dope is cast on the casting support and the formed dope film is called a web) is heated on the casting support to evaporate the solvent.
  • the web on the support after casting is preferably dried on the support in an atmosphere of 40 to 100 ° C. In order to maintain the atmosphere at 40 to 100 ° C., it is preferable to apply hot air at this temperature to the upper surface of the web or heat by means such as infrared rays.
  • Peeling process It is the process of peeling the web which the solvent evaporated on the metal support body in a peeling position. The peeled web is sent to the next process.
  • the temperature at the peeling position on the metal support is preferably 10 to 40 ° C, more preferably 11 to 30 ° C.
  • the amount of residual solvent at the time of peeling of the web on the metal support at the time of peeling is preferably 50 to 120% by mass depending on the strength of drying conditions, the length of the metal support, and the like. If the web is peeled off at a time when the amount of residual solvent is larger, if the web is too soft, the flatness at the time of peeling will be lost, and slippage and vertical stripes are likely to occur due to the peeling tension. The amount of solvent is determined.
  • the amount of residual solvent in the web is defined by the following formula.
  • Residual solvent amount (%) (mass before web heat treatment ⁇ mass after web heat treatment) / (mass after web heat treatment) ⁇ 100 Note that the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
  • the peeling tension at the time of peeling the metal support and the film is usually 196 to 245 N / m. However, if wrinkles easily occur at the time of peeling, it is preferable to peel with a tension of 190 N / m or less. It is preferable to peel at a minimum tension of ⁇ 166.6 N / m, and then peel at a minimum tension of ⁇ 137.2 N / m, and particularly preferable to peel at a minimum tension of ⁇ 100 N / m.
  • the temperature at the peeling position on the metal support is preferably ⁇ 50 to 40 ° C., more preferably 10 to 40 ° C., and most preferably 15 to 30 ° C.
  • a drying device 35 that transports the web alternately through rolls arranged in the drying device and / or a tenter stretching device 34 that clips and transports both ends of the web with clips. And dry the web.
  • the drying means is generally to blow hot air on both sides of the web, but there is also a means to heat by applying microwaves instead of wind. Too rapid drying tends to impair the flatness of the finished film. Drying at a high temperature is preferably performed from about 8% by mass or less of residual solvent. Throughout, drying is generally performed at 40-250 ° C. In particular, drying at 40 to 160 ° C. is preferable.
  • tenter stretching apparatus When using a tenter stretching apparatus, it is preferable to use an apparatus that can independently control the film gripping length (distance from the start of gripping to the end of gripping) left and right by the left and right gripping means of the tenter. In the tenter process, it is also preferable to intentionally create sections having different temperatures in order to improve planarity.
  • the stretching operation may be performed in multiple stages, and it is also preferable to perform biaxial stretching in the casting direction and the width direction.
  • biaxial stretching When biaxial stretching is performed, simultaneous biaxial stretching may be performed or may be performed stepwise.
  • stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible. That is, for example, the following stretching steps are possible.
  • Simultaneous biaxial stretching includes stretching in one direction and contracting the other while relaxing the tension.
  • the preferred draw ratio for simultaneous biaxial stretching can be in the range of x1.01 to x1.5 in both the width direction and the longitudinal direction.
  • the amount of residual solvent in the web is preferably 20 to 100% by mass at the start of the tenter, and drying is preferably performed while the tenter is applied until the amount of residual solvent in the web is 10% by mass or less. More preferably, it is 5% by mass or less.
  • the drying temperature is preferably 30 to 160 ° C., more preferably 50 to 150 ° C., and most preferably 70 to 140 ° C.
  • the temperature distribution in the width direction of the atmosphere is small from the viewpoint of improving the uniformity of the film.
  • the temperature distribution in the width direction in the tenter process is preferably within ⁇ 5 ° C, and within ⁇ 2 ° C. Is more preferable, and within ⁇ 1 ° C. is most preferable.
  • Winding process This is a process in which the amount of residual solvent in the web becomes 2% by mass or less, and is taken up by the winder 37 as a film, and the dimensional stability is achieved by setting the residual solvent amount to 0.4% by mass or less. Can be obtained. It is particularly preferable to wind up at 0.00 to 0.10% by mass.
  • a generally used one may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, etc., and these may be used properly.
  • the film according to the present invention is preferably a long film, specifically a film having a thickness of about 100 m to 5000 m, and usually in a form provided in a roll shape.
  • the film width is preferably 1.3 to 4 m, more preferably 1.4 to 2 m.
  • the film thickness of the film according to the present invention is not particularly limited, but is preferably 20 to 200 ⁇ m, more preferably 25 to 150 ⁇ m, and particularly preferably 30 to 120 ⁇ m.
  • the composition constituting a film made of a thermoplastic resin and a heat shrinkable material used for melt extrusion is usually preferably kneaded in advance and pelletized.
  • the pelletization may be performed by a known method.
  • an additive comprising a dried thermoplastic resin and a heat-shrinkable material is supplied to an extruder with a feeder and kneaded using a single-screw or twin-screw extruder. It is possible to extrude into a strand, cool with water or air, and cut.
  • cellulose ester easily absorbs moisture, it is preferable to dry it at 70 to 140 ° C. for 3 hours or more with a dehumidifying hot air dryer or a vacuum dryer so that the moisture content is 200 ppm or less, and further 100 ppm or less.
  • Additives may be fed into the extruder and fed into the extruder, or may be fed through individual feeders. In order to mix a small amount of additives such as an antioxidant uniformly, it is preferable to mix them in advance.
  • the antioxidant may be mixed with each other, and if necessary, the antioxidant may be dissolved in a solvent, impregnated with a thermoplastic resin and mixed, or mixed by spraying. May be.
  • a vacuum nauter mixer or the like is preferable because drying and mixing can be performed simultaneously. Further, if the contact with air, such as the exit from the feeder unit or die, it is preferable that the atmosphere such as dehumidified air and dehumidified N 2 gas.
  • the extruder is preferably processed at as low a temperature as possible so as to be able to be pelletized so that the shear force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.).
  • a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
  • Film formation is performed using the pellets obtained as described above. It is also possible to feed the raw material powder directly to the extruder with a feeder and form a film as it is without pelletization.
  • the pellets produced are extruded using a single-screw or twin-screw extruder, the melting temperature Tm during extrusion is set to about 200 to 300 ° C., filtered through a leaf disk type filter or the like to remove foreign matter, and then the T-die The film is coextruded into a film, solidified on a cooling roll, and cast while pressing with an elastic touch roll.
  • Tm is the temperature of the die exit portion of the extruder.
  • defects are also referred to as die lines, but in order to reduce surface defects such as die lines, it is preferable to have a structure in which the resin retention portion is minimized in the piping from the extruder to the die. . It is preferable to use a die that has as few scratches as possible inside the lip.
  • the inner surface that comes into contact with the molten resin is preferably subjected to surface treatment that makes it difficult for the molten resin to adhere to the surface by reducing the surface roughness or using a material with low surface energy.
  • a hard chrome plated or ceramic sprayed material is polished so that the surface roughness is 0.2 S or less.
  • the cooling roll is not particularly limited, but is a roll having a structure in which a heat medium or a coolant that can be controlled in temperature flows with a highly rigid metal roll, and the size is not limited.
  • the diameter of the cooling roll is usually about 100 mm to 1 m as long as it is sufficient to cool the extruded film.
  • the surface material of the cooling roll includes carbon steel, stainless steel, aluminum, titanium and the like. Further, in order to increase the hardness of the surface or improve the releasability from the resin, it is preferable to perform a surface treatment such as hard chrome plating, nickel plating, amorphous chrome plating, or ceramic spraying.
  • the surface roughness of the cooling roll surface is preferably 0.1 ⁇ m or less in terms of Ra, and more preferably 0.05 ⁇ m or less.
  • the smoother the roll surface the smoother the surface of the resulting film.
  • the surface processed is further polished to have the above-described surface roughness.
  • the film obtained as described above can be further stretched 1.01 to 3.0 times in at least one direction after passing through the step of contacting the cooling roll.
  • the film is stretched 1.1 to 2.0 times in both the longitudinal (film transport direction) and lateral (width direction) directions.
  • a known roll stretching machine or tenter can be preferably used.
  • the draw ratio is 1.1 to 3.0 times, preferably 1.2 to 1.5 times
  • the drawing temperature is usually Tg to Tg + 50 ° C. of the resin constituting the film, preferably Tg to Tg + 50 ° C. In the temperature range.
  • the stretching is preferably performed under a uniform temperature distribution controlled in the longitudinal direction or the width direction.
  • the temperature is preferably within ⁇ 2 ° C, more preferably within ⁇ 1 ° C, and particularly preferably within ⁇ 0.5 ° C.
  • the film-like resin base material of the present invention is preferably a long film, specifically, a film having a thickness of about 100 m to 5000 m, and usually in a form provided in a roll shape.
  • the film width is preferably 1.3 to 4 m, more preferably 1.4 to 2 m.
  • FIG. 1 is a schematic flow sheet showing an overall configuration of an example of a resin base material manufacturing apparatus according to the present invention.
  • the resin base material is manufactured by mixing a film material such as a thermoplastic resin and then using the extruder 1 to melt and extrude from a casting die 4 onto a first cooling roll 5. 5, and is further circumscribed in order by a total of three cooling rolls of the second cooling roll 7 and the third cooling roll 8, and is cooled and solidified to form a film 10.
  • the film 10 peeled off by the peeling roll 9 is then stretched in the width direction by holding both ends of the film by the stretching device 12 and then wound by the winding device 16.
  • a touch roll 6 is provided that clamps the molten film on the surface of the first cooling roll 5 in order to correct the flatness.
  • the touch roll 6 has an elastic surface and forms a nip with the first cooling roll 5.
  • a device for automatically cleaning the belt and the roll it is preferable to add a device for automatically cleaning the belt and the roll to the manufacturing apparatus.
  • the cleaning device there is no particular limitation on the cleaning device, but for example, a method of niping a brush roll, a water absorbing roll, an adhesive roll, a wiping roll, etc., an air blowing method for spraying clean air, a laser incinerator, or a combination thereof. is there.
  • the solar cell module backsheet of various aspects can be produced using the moisture-proof film of this invention mentioned above.
  • the back sheet (10A) for a solar cell module shown in FIG. 2 is formed by laminating an inner surface base material (11A) and an outer surface base material (13A) via a barrier layer (12A).
  • the barrier layer (12A) includes a first barrier layer (12Aa) made of an aluminum foil disposed on the inner surface base material (11A) side, and a resin film having a barrier property disposed on the outer surface base material (13A) side.
  • the second barrier layer (12Ab) made of, for example, is laminated with a two-component reaction type polyurethane resin adhesive (12Ac) interposed therebetween.
  • the aluminum foil constituting the first barrier layer (12Aa) can preferably be used with a thickness of about 5 to 50 ⁇ m.
  • prevention of deterioration and extension of the life of the aluminum foil layer means prevention of water vapor from entering the solar cell module as it is.
  • the resin film constituting the second barrier layer (12Ab) has a barrier property such as a polyester film having a thickness of about 5 to 50 ⁇ m and an ethylene / vinyl alcohol copolymer (EVOH) film having a thickness of about 10 to 50 ⁇ m.
  • the resin base material (film) which has can be used preferably.
  • silicon oxide, aluminum oxide, magnesium oxide, or a mixture thereof can be preferably used as the inorganic compound constituting the moisture-proof layer provided on the surface of the second barrier layer (12Ab).
  • the thickness of the moisture-proof layer is preferably in the range of 5 to 100 nm.
  • the first barrier layer (12Aa) and the second barrier layer (12Ab) are bonded together by a dry lamination method using a two-component reaction type polyurethane resin adhesive (12Ac) to form a barrier layer (12A).
  • a polyester resin-based or polyether acrylic resin-based adhesive can also be used.
  • the barrier layer (12A) By configuring the barrier layer (12A) in this way, the aluminum foil of the first barrier layer (12Aa) has the highest level of oxygen and water vapor barrier properties, and the second barrier layer (12Ab) works. Since oxygen and water vapor that touch the aluminum foil in the back sheet are blocked, deterioration due to oxidation and hydrolysis is prevented even after a long time, and the barrier property of the aluminum foil can be maintained for a long time.
  • plastic films are extremely superior to oxidation resistance and hydrolysis resistance compared to aluminum foil, it is very preferable to use them in such a configuration.
  • the above resin base materials can be preferably used.
  • a material of about 20 to 50 ⁇ m and a polyester base material of about 50 to 250 ⁇ m can be suitably used.
  • the inner surface base material (11A) and the outer surface base material (13A) may be made of the same material or different materials.
  • the barrier layer (12A) and the outer surface base material (13A) makes the inner surface base material (11A) and the first barrier layer (12Aa) face each other,
  • the second barrier layer (12Ab) and the outer surface base material (13A) are opposed to each other, and the first barrier layer (12Aa) and the second barrier layer (12Ab) are made of a two-component reaction type polyurethane resin adhesive (12Ac).
  • it can be performed by the dry laminating method using the two-component reaction type polyurethane resin adhesive (12Ac).
  • the moisture-proof film of the present invention can be applied to various types of solar cell modules.
  • FIG. 3 schematically shows a solar cell module produced using the moisture-proof film of the present invention as a back sheet (10A), in which 20A is a filler (EVA), 30A is a solar cell element, and 40A.
  • 20A is a filler (EVA)
  • 30A is a solar cell element
  • 40A Is a front glass
  • 50A is an aluminum frame
  • 60A is a lead wire
  • 70A is a terminal
  • 80A is a terminal box
  • 90A is a sealing material (butyl rubber).
  • the solar cell element various types of elements can be used.
  • a light-transmitting conductive film having a texture structure, a photoelectric conversion film, and a back electrode film are sequentially stacked on a light-transmitting insulating substrate as disclosed in JP-A-2004-2261, and
  • a solar cell element or the like having an aspect in which the photoelectric conversion film and the back electrode film are missing and a light-reflective insulating film is provided in the lacking part can be used.
  • Light-reflective insulating film means an insulating film having the property of reflecting incident light and guiding it to a photoelectric conversion film, and is not particularly limited as long as it has such a property, regardless of whether it is organic or inorganic. Can be used without Use of a film having a reflection spectrum that reflects all or part of the wavelength within a range in which the photoelectric conversion film has sensitivity as the light-reflective insulating film is preferable from the viewpoint of improving the utilization efficiency of incident light. It is.
  • the photoelectric conversion film when silicon is used as the photoelectric conversion film, it is preferable to use a light-reflective insulating film that reflects all or part of light having a wavelength of 1000 nm or less, which is a light absorption region of silicon.
  • a light-reflective insulating film that reflects all or part of light having a wavelength of 1000 nm or less, which is a light absorption region of silicon.
  • sunlight when sunlight is used as the light source, since sunlight has a large emission spectrum in the visible light region of 400 to 700 nm, a colored film having a reflection spectrum having a wavelength in such a region is preferable.
  • the white film is more preferable from the viewpoint of reflecting most of the light in the visible light region wavelength.
  • the method for forming the light-reflective insulating film is not particularly limited.
  • the light-reflective insulating film is formed by adhering a thin-film organic substance or organic substance to a necessary part, or by applying an organic paint or an inorganic paint to the necessary part. be able to.
  • the film thickness of the light-reflective insulating film is not particularly limited, but is preferably from 0.01 to 100 ⁇ m from the viewpoints of light reflection intensity and prevention of film peeling.
  • the “photoelectric conversion film” refers to a film having a property of converting light energy into electrical energy, and any film having such properties can be used without any limitation, regardless of whether it is an organic material or an inorganic material.
  • photoelectric conversion thin films for solar cells amorphous silicon, polycrystalline silicon, or the like is generally used.
  • the film thickness of the photoelectric conversion film is not particularly limited, but is preferably 0.2 to 10 ⁇ m from the viewpoint of photoelectric conversion efficiency.
  • the “light transmissive conductive film” means a light transmissive electrode provided on the light incident side of the photoelectric conversion film in order to take out the current generated in the photoelectric conversion film.
  • ITO indium tin oxide
  • SnO 2 tin oxide
  • the thickness of the light transmissive conductive film is not particularly limited, but is preferably 0.1 to 2 ⁇ m from the viewpoint of photoelectric conversion efficiency.
  • Back-side electrode film means an electrode provided on the back side of the photoelectric conversion film (on the opposite side of the light incidence) for taking out the current generated in the photoelectric conversion film, and it is not necessary to transmit light.
  • a metal electrode is used.
  • silver, aluminum or the like of about 0.1 to 1 ⁇ m is usually used.
  • the “light-transmitting insulating film” is an insulating film having a property of transmitting incident light and needs to have a refractive index lower than that of the light-transmitting conductive film. This is because incident light leaks from the light transmissive insulating film at a refractive index higher than that of the light transmissive conductive film. Even if it is a light-transmitting insulating film, if its refractive index is lower than that of the light-transmitting insulating film, incident light is transmitted through the texture structure formed at the interface between the light-transmitting conductive film and the light-transmitting insulating film. This is because the conductive film and the light-transmissive insulating substrate are sealed. Any material having such properties can be used without particular limitation regardless of whether it is organic or inorganic. Includes transparent and translucent films.
  • a reflection film may be further provided on the surface of the light-transmitting insulating film to further reduce the leakage of incident light.
  • the reflective film may be a film having a property of reflecting incident light and guiding it to the photoelectric conversion film, and includes not only a light reflective insulating film but also a light reflective conductive film.
  • a reflective film is necessary to prevent leakage of incident light.
  • the “texture structure” is a structure in which the surface shapes of the light-transmitting conductive film, the photoelectric conversion film, and the back electrode film are a collection of a large number of minute pyramids of about 0.1 to 10 ⁇ m. It means being. Because it resembles the structure of a fabric, it is called a texture structure.
  • the light incident surface has a texture structure
  • the reflected light is reduced
  • the light output surface has a texture structure
  • reflection between the light incident surface and the surface of the light-transmissive insulating substrate is caused by reflection on the texture surface.
  • the incident light is confined in the light-transmitting conductive film and the photoelectric conversion film.
  • Comparative Example 1 (Moisture-proof layer formation process by vacuum deposition) A biaxially stretched polyester film (polyethylene terephthalate film, thickness 100 ⁇ m) was used as the substrate. Next, after evacuating until the ultimate vacuum of the chamber reaches 3.0 ⁇ 10 ⁇ 5 torr (4.0 ⁇ 10 ⁇ 3 Pa) using a wind-up type vacuum deposition apparatus, oxygen gas is supplied to the coating drum. In the vicinity, the pressure in the chamber was introduced at 3.0 ⁇ 10 ⁇ 4 torr (4.0 ⁇ 10 ⁇ 2 Pa), and the silicon monoxide of the evaporation source was supplied by a pierce-type electron gun at a power of about 10 kW. A sample of Comparative Example 1 was prepared by forming a moisture-proof layer of silicon oxide having a thickness of 100 nm on a polyester film that was heated and evaporated to run on a coating drum at a speed of 120 m / min.
  • One side of a biaxially stretched polyester film (polyethylene terephthalate film, thickness 100 ⁇ m) is bar-coated with the above-mentioned sol solution-1 so that the thickness of the dried film becomes 100 nm, and is 150 ° C. in a dry oven.
  • the sample of Comparative Example 2 was prepared by heating and drying for 30 minutes.
  • Example 1 In order to prepare a sol solution using an organometallic compound as a raw material, 0.04 mol of tetraethoxysilane (manufactured by Wako Pure Chemical Industries, Ltd.) is weighed in a polypropylene beaker. While stirring, 0.25 mol of ethyl alcohol is added and stirred for 10 minutes with a magnetic stirrer. Further, 0.24 mol of pure water was added and stirred for 10 minutes, and then 1 ml of 1 mol / L HCL was added to prepare a sol solution-1.
  • tetraethoxysilane manufactured by Wako Pure Chemical Industries, Ltd.
  • a biaxially stretched polyester film (polyethylene terephthalate film, thickness 100 ⁇ m) is bar-coated with the above-mentioned sol solution-1 so that the thickness of the dried film becomes 100 nm, and is 80 ° C. in a dry oven. After heating and drying for 30 minutes, using a near-infrared dryer (Nippon Electric Heat Co., Ltd. paint dryer PDH1000), 10 seconds of irradiation with an infrared ray for 0.5 seconds was performed at a distance of 50 cm from the coating surface at an output of 1 kW. Repeatedly, the sample of Example 1 was produced.
  • a near-infrared dryer Nippon Electric Heat Co., Ltd. paint dryer PDH1000
  • Example 2 In order to prepare a sol solution using an organometallic compound as a raw material, 0.04 mol of tetraethoxysilane (manufactured by Wako Pure Chemical Industries, Ltd.) is weighed in a polypropylene beaker. While stirring, 0.25 mol of ethyl alcohol is added and stirred for 10 minutes with a magnetic stirrer. Further, 0.24 mol of pure water was added and stirred for 10 minutes, and then 1 ml of 1 mol / L HCL was added to prepare a sol solution-1.
  • tetraethoxysilane manufactured by Wako Pure Chemical Industries, Ltd.
  • polyester film is bar-coated with the above-mentioned sol solution-1 so that the thickness of the dried film becomes 100 nm, dried by heating in a dry oven at 80 ° C. for 30 minutes, A sample of Example 2 was produced by applying ultrasonic vibration for 1 minute in a 1.05 MHz frequency band with a sound wave generator.
  • Example 3 In order to prepare a sol solution using an organometallic compound as a raw material, 0.04 mol of tetraethoxysilane (manufactured by Wako Pure Chemical Industries, Ltd.) is weighed in a polypropylene beaker. While stirring, 0.25 mol of ethyl alcohol is added and stirred for 10 minutes with a magnetic stirrer. Further, 0.24 mol of pure water was added and stirred for 10 minutes, and then 1 ml of 1 mol / L HCL was added to prepare a sol solution-1.
  • tetraethoxysilane manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 3 One side of the polyester film is bar-coated with the above-mentioned sol solution-1 so that the thickness of the dried film becomes 100 nm, dried by heating in a dry oven at 80 ° C. for 30 minutes, and then batch-type micro A sample of Example 3 was prepared by using a wave heating device (manufactured by Yamamoto Vinita Co., Ltd.) and heating at a frequency of 2450 MHz for 30 seconds.
  • a wave heating device manufactured by Yamamoto Vinita Co., Ltd.
  • Example 4 In order to prepare a sol solution using an organometallic compound as a raw material, 0.04 mol of aluminum isopropoxide (manufactured by Wako Pure Chemical Industries, Ltd.) is weighed in a polypropylene beaker. Add 0.25 mol of isopropyl alcohol with stirring and stir for 10 minutes with a magnetic stirrer. Further, 0.24 mol of pure water was added and stirred for 10 minutes, and then 1 ml of 1 mol / L HCL was added to prepare a sol solution-2. One side of the polyester film is bar-coated with the aforementioned sol solution-1 so that the thickness of the dried film becomes 100 nm, dried by heating in a dry oven at 80 ° C.
  • Example 4 was produced by repeating infrared irradiation for 0.5 seconds 10 times at a distance of 50 cm from the coating surface at an output of 1 kW using a paint dryer (Nippon Electric Heat Co., Ltd. paint dryer PDH1000). .
  • Example 5 Preparation of sol solution using organometallic compound as raw material
  • TEOS tetraethyl orthosilicate
  • 8.3 g (0 0.04 mol) 8.3 g (0 0.04 mol)
  • 9.9 g (0.04 mol) of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane manufactured by Chisso, Siler Ace S530
  • 18 g of 0.1N hydrochloric acid were added and stirred for 18 hours.
  • Sol solution-3 was prepared.
  • the sol solution-3 and the polyethyleneimine solution were mixed at a mass ratio of 5: 5 to prepare a sol coat layer forming coating solution.
  • This sol-coat layer-forming coating solution is bar-coated on one side of the polyester film so as to have a dry film thickness of 100 nm, dried by heating in a dry oven at 80 ° C. for 30 minutes, and then a near-infrared dryer (Japan)
  • the sample of Example 5 was produced by repeating infrared irradiation for 0.5 seconds 10 times at a distance of 50 cm from the coating surface at an output of 1 kW using a paint dryer PDH1000 manufactured by Denki Co., Ltd.
  • Example 6 (Preparation of synthetic resin layer coating solution) Weighing 1000 g of cyclohexanone in a 2 L stainless beaker, stirring with a magnetic stirrer, adding 200 g of cycloolefin polymer (ZEONOR 1060R manufactured by Nippon Zeon Co., Ltd.) and confirming that it was completely dissolved, synthetic resin layer coating solution It was set to -1.
  • the synthetic resin layer coating solution-1 was applied so that the dry film thickness was 3 ⁇ m, and then dried in a dry oven at 75 ° C. for 20 minutes. A sample was obtained.
  • Example 7 On one side of a biaxially stretched polyester film (polyethylene terephthalate film, thickness 100 ⁇ m), using a 3% perhydropolysilazane solution in dibutyl ether (NL120 manufactured by Clariant), the thickness of the dried film becomes 100 nm. After bar-coating for 3 minutes and air drying for 3 minutes, using a near-infrared dryer (Nippon Electric Heat Co., Ltd. paint dryer PDH1000) at a power of 1 kW and a distance of 50 cm from the coated surface for 0.3 seconds The sample of Example 7 was prepared by repeating infrared irradiation of 15 times.
  • a near-infrared dryer Nippon Electric Heat Co., Ltd. paint dryer PDH1000
  • Example 8 In the same manner as in Example 7, bar coating was performed so that the thickness of the dried film was 100 nm, followed by natural drying for 3 minutes, and then for 2 minutes in a frequency band of 1.05 MHz using a commercially available ultrasonic generator. A sample of Example 8 was produced by applying sonic vibration.
  • Example 9 In the same manner as in Example 7, bar coating was performed so that the thickness of the dried film was 100 nm, and after natural drying for 3 minutes, a batch type microwave heating apparatus (manufactured by Yamamoto Vinita Co., Ltd.) was used, and 2450 MHz. The sample of Example 9 was produced by heating at a frequency of 50 seconds.
  • the oxygen permeability is a value measured using an oxygen gas permeability measuring device (manufactured by Modern Control Co., Ltd., OX-TRAN 2/20: trade name) under the conditions of a measurement temperature of 23 ° C. and a humidity of 90% RH. is there.
  • the water vapor permeability is measured using a water vapor permeability measuring device (manufactured by Modern Control Co., Ltd., PERMATRAN-W 3/31: trade name) under the conditions of a measurement temperature of 37.8 ° C. and a humidity of 100% RH. It is a measured value.
  • the water vapor transmission rate is a value measured using a water vapor transmission measurement device (manufactured by Modern Control Co., Ltd., PERMATRAN-W 3/31: trade name) under the conditions of a measurement temperature of 40.0 ° C. and a humidity of 90% RH. It is.
  • Oxygen permeability and water vapor permeability were measured by the methods described above.
  • the moisture-proof film according to the present invention is excellent in barrier properties against water vapor and oxygen.
  • Comparative Example 2 the resin film contracted and deformed by heating, so that it could not be used as a moisture-proof film.
  • Example 10 A two-component reaction type polyurethane resin adhesive 14B is applied to the outer surface side of the resin base material 13A of the moisture-proof film produced in Example 1 (the coating amount is 5 g / m 2 ), and the inner surface base material 15B has a thickness.
  • a 50 ⁇ m white polyethylene terephthalate film was bonded to produce a solar cell backsheet of Example 10a having the layer configuration of FIG.
  • Example 10a Using the back sheet of Example 10a, as shown in FIG. 2, the glass, the filler (EVA), the solar cell element, the filler (EVA), and the back sheet were superposed and vacuum heated at 150 ° C. for 30 minutes to 1 torr. Lamination was performed to obtain a solar cell module of Example 10b.
  • the solar cell backsheets of Examples 11a to 18a (the layer structure of Example 16a is FIG. 4) and the solar cell modules of Examples 11b to 18b It was.

Abstract

Provided is a moistureproof film which is superior in moistureproofness and productivity to moistureproof films produced by conventional vapor deposition or burning methods. Also provided are: a process for producing the moistureproof film; a back sheet for solar cell modules which comprises the moistureproof film; and a solar cell module. The moistureproof film comprises a resin base and a moistureproof layer formed thereon, and is characterized in that the moistureproof layer contains an inorganic oxide formed by applying a ceramic precursor which forms an inorganic oxide film upon heating, and then locally heating the coating film.

Description

防湿フィルム、その製造方法、それを用いた太陽電池モジュール用バックシート、及び太陽電池モジュールMoisture-proof film, method for producing the same, solar cell module backsheet using the same, and solar cell module
 本発明は、防湿フィルム、その製造方法、それを用いた太陽電池モジュール用バックシート、及び太陽電池モジュールに関する。 The present invention relates to a moisture-proof film, a manufacturing method thereof, a back sheet for a solar cell module using the same, and a solar cell module.
 従来、太陽電池モジュールは、水蒸気の透過によってセルが経年劣化し、発電効率が低下してしまうことが大きな問題であった。モジュールを上下からガラスで挟み込むことで水蒸気透過の問題は解決されるが、軽量化やコストの点から、一般的に裏面側には樹脂製の防湿シート(バックシート)が使用されている。しかしながら、現状の樹脂製の防湿シートでは水蒸気透過耐性が十分でなく、太陽電池モジュールに求められる耐久性の基準である20年を待たずに劣化してしまうケースが生じていた。 Conventionally, a problem with solar cell modules is that the cells deteriorate over time due to the permeation of water vapor, resulting in a decrease in power generation efficiency. Although the problem of water vapor transmission is solved by sandwiching the module with glass from above and below, a resin moisture-proof sheet (back sheet) is generally used on the back side in terms of weight reduction and cost. However, current moisture-proof sheets made of resin do not have sufficient water vapor permeation resistance, and there have been cases in which they have deteriorated without waiting for 20 years, which is the durability standard required for solar cell modules.
 一方、従来の樹脂製防湿シートは、シリカなどの無機酸化物膜を蒸着によって形成する手法が一般的に採られている(例えば特許文献1及び2参照)。しかしながら、蒸着工程は、真空装置が必要となるなど、製造装置が大型化し、また連続生産に適さないため、コスト高となる問題があった。さらに、太陽電池モジュールに用いられる防湿シートは、セルの酸化による劣化も抑制する必要があるが、上記の蒸着により無機酸化物膜を形成した防湿シートでは、太陽電池モジュールの防湿シートとして必要な防湿性と低酸化透過性を同時に達成することができないことが判明した。 On the other hand, conventional resin moisture-proof sheets generally employ a technique of forming an inorganic oxide film such as silica by vapor deposition (see, for example, Patent Documents 1 and 2). However, the vapor deposition process has a problem that the manufacturing apparatus becomes large in size, such as requiring a vacuum apparatus, and is not suitable for continuous production, resulting in high costs. Furthermore, the moisture-proof sheet used in the solar cell module needs to suppress deterioration due to cell oxidation, but the moisture-proof sheet in which the inorganic oxide film is formed by the vapor deposition described above is necessary as a moisture-proof sheet for the solar cell module. And low oxidative permeability cannot be achieved at the same time.
特開2006-334865号公報JP 2006-334865 A 特開2008-105381号公報JP 2008-105381 A
 上記の問題に鑑み、本発明者らは、新たな防湿シートの製造を検討した。本発明者らの鋭意検討の結果、コーティング後に加熱処理することで無機酸化物膜を形成するセラミック前駆体を用いて形成した無機酸化物膜単体の防湿性と低酸素透過性は、蒸着法により形成された場合よりも高めることが可能であることが判明した。しかしながら、例えば、特開2008-179104号公報等に記載されているゾル-ゲル法を用いて、樹脂フィルム上に無機酸化物膜を形成した場合には、皮膜をセラミックス化するには高温での焼結が必要となり、樹脂基材にダメージが加えられてしまい、樹脂基材の劣化により防湿フィルムとしては、かえって性能が悪化してしまう、という問題が新たに発生した。 In view of the above problems, the present inventors examined the manufacture of a new moisture-proof sheet. As a result of intensive studies by the inventors, the moisture resistance and low oxygen permeability of the inorganic oxide film formed by using a ceramic precursor that forms an inorganic oxide film by heat treatment after coating are determined by a vapor deposition method. It has been found that it is possible to raise it more than it is formed. However, for example, when an inorganic oxide film is formed on a resin film by using a sol-gel method described in Japanese Patent Application Laid-Open No. 2008-179104, etc., a high temperature is required for converting the film into a ceramic. Sintering is required, damage is applied to the resin base material, and a new problem arises that the performance of the moisture-proof film deteriorates due to deterioration of the resin base material.
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、従来の蒸着法又は焼成法により作製される防湿フィルムに比べ、防湿性に優れ、かつ生産性が高い樹脂基材を用いた防湿フィルムを提供すること及びその製造方法を提供することである。また、当該防湿フィルムを用いた太陽電池モジュール用バックシート及び太陽電池モジュールを提供することである。 The present invention has been made in view of the above-mentioned problems and situations, and the problem to be solved is a resin substrate that is superior in moisture resistance and high in productivity as compared with a moisture-proof film produced by a conventional vapor deposition method or baking method. It is providing the moisture-proof film using a material, and providing the manufacturing method. Moreover, it is providing the solar cell module backsheet and solar cell module using the said moisture-proof film.
 本発明に係る上記課題は、以下の手段により解決される。 The above-mentioned problem according to the present invention is solved by the following means.
 1.樹脂基材上に防湿層を設けた防湿フィルムであって、当該防湿層が、加熱により無機酸化物膜を形成するセラミック前駆体を塗布した後に、塗布膜の局所的加熱により形成された無機酸化物を含有することを特徴とする防湿フィルム。 1. A moisture-proof film provided with a moisture-proof layer on a resin substrate, wherein the moisture-proof layer is formed by applying a ceramic precursor that forms an inorganic oxide film by heating, and then forming an inorganic oxide by local heating of the coating film. A moisture-proof film comprising a product.
 2.前記セラミック前駆体がゾル状の有機金属化合物であり、ケイ素(Si)、アルミニウム(Al)、リチウム(Li)、ジルコニウム(Zr)、チタン(Ti)、亜鉛(Zn)、及びバリウム(Ba)のうちの少なくとも一つの元素を含有することを特徴とする前記第1項に記載の防湿フィルム。 2. The ceramic precursor is a sol-like organometallic compound, which is composed of silicon (Si), aluminum (Al), lithium (Li), zirconium (Zr), titanium (Ti), zinc (Zn), and barium (Ba). The moisture-proof film according to item 1 above, which contains at least one element.
 3.前記セラミック前駆体が、ポリシラザンを含有することを特徴とする前記第1項又は第2項に記載の防湿フィルム。 3. The moisture-proof film according to Item 1 or 2, wherein the ceramic precursor contains polysilazane.
 4.前記防湿層の上側に、少なくとも一層の合成樹脂層を有することを特徴とする前記第1項から第3項までのいずれか一項に記載の防湿フィルム。 4. The moisture-proof film according to any one of items 1 to 3, further comprising at least one synthetic resin layer on the moisture-proof layer.
 5.前記合成樹脂層の合成樹脂が、シクロオレフィン系樹脂であることを特徴とする前記第4項に記載の防湿フィルム。 5. The moisture-proof film according to item 4, wherein the synthetic resin of the synthetic resin layer is a cycloolefin resin.
 6.前記第1項から第5項までのいずれか一項に記載の防湿フィルムを製造する防湿フィルムの製造方法であって、少なくとも、(1)加熱により無機酸化物膜を形成するセラミック前駆体を塗布する工程と、(2)前記セラミック前駆体の塗布膜を局所的に加熱して無機酸化物を形成する工程とを有することを特徴とする防湿フィルムの製造方法。 6. It is a manufacturing method of the moisture-proof film which manufactures the moisture-proof film as described in any one of said 1st term | claim-5th, Comprising: At least (1) Applying the ceramic precursor which forms an inorganic oxide film by heating And (2) a step of locally heating the coating film of the ceramic precursor to form an inorganic oxide.
 7.前記局所的に加熱する方法が、短時間の加熱を断続的に繰り返すことで加熱する方法であることを特徴とする前記第6項に記載の防湿フィルムの製造方法。 7. The method for producing a moisture-proof film according to claim 6, wherein the method of locally heating is a method of heating by intermittently repeating heating for a short time.
 8.前記局所的に加熱する方法が、塗布されたセラミック前駆体層に電磁波又は超音波を照射する方法であることを特徴とする前記第6項又は第7項に記載の防湿フィルムの製造方法。 8. 8. The method for producing a moisture-proof film according to item 6 or 7, wherein the locally heating method is a method of irradiating an applied ceramic precursor layer with electromagnetic waves or ultrasonic waves.
 9.前記電磁波が、赤外線、又はマイクロ波であることを特徴とする前記第8項に記載の防湿フィルムの製造方法。 9. The method for producing a moisture-proof film according to item 8, wherein the electromagnetic waves are infrared rays or microwaves.
 10.前記第1項から第5項までのいずれか一項に記載の防湿フィルムを用いたことを特徴とする太陽電池モジュール用バックシート。 10. A back sheet for a solar cell module, wherein the moisture-proof film according to any one of items 1 to 5 is used.
 11.前記第1項から第5項までのいずれか一項に記載の防湿フィルムをバックシートとして用いたことを特徴とする太陽電池モジュール。 11. A solar cell module using the moisture-proof film according to any one of items 1 to 5 as a back sheet.
 本発明の上記手段により、従来の蒸着法又は焼成法により作製される防湿フィルムに比べ、防湿性に優れ、かつ生産性が高い樹脂基材を用いた防湿フィルムを提供すること及びその製造方法を提供することができる。また、当該防湿フィルムを用いた太陽電池モジュール用バックシート及び太陽電池モジュールを提供することができる。 According to the above-mentioned means of the present invention, a moisture-proof film using a resin base material that is superior in moisture resistance and high in productivity as compared with a moisture-proof film produced by a conventional vapor deposition method or baking method, and a method for producing the same. Can be provided. Moreover, the solar cell module backsheet and solar cell module using the moisture-proof film can be provided.
フィルム状の樹脂基材の製造装置の1つの実施形態を示す概略フローシートSchematic flow sheet showing one embodiment of an apparatus for producing a film-like resin substrate 太陽電池モジュール用のバックシートの層構成の一例を示す断面図Sectional drawing which shows an example of the laminated constitution of the back seat | sheet for solar cell modules 上記バックシートを用いて作製した太陽電池モジュールの一例を示す断面図Sectional drawing which shows an example of the solar cell module produced using the said back sheet | seat 太陽電池用のバックシート層構成例を示す断面図Sectional drawing which shows the backsheet layer structural example for solar cells
 本発明の防湿フィルムは、樹脂基材上に防湿層を設けた防湿フィルムであって、当該防湿層が、加熱により無機酸化物膜を形成するセラミック前駆体を塗布した後に、塗布膜の局所的加熱により形成された無機酸化物を含有することを特徴とする。この特徴は、請求項1から請求項11までの請求項に係る発明に共通する技術的特徴である。 The moisture-proof film of the present invention is a moisture-proof film in which a moisture-proof layer is provided on a resin substrate, and after the moisture-proof layer has applied a ceramic precursor that forms an inorganic oxide film by heating, It contains an inorganic oxide formed by heating. This feature is a technical feature common to the inventions according to claims 1 to 11.
 本発明の実施態様としては、本発明の効果の観点から、前記セラミック前駆体がゾル状の有機金属化合物であり、ケイ素(Si)、アルミニウム(Al)、リチウム(Li)、ジルコニウム(Zr)、チタン(Ti)、亜鉛(Zn)、及びバリウム(Ba)のうちの少なくとも一つの元素を含有することが好ましい。また、当該セラミック前駆体が、ポリシラザンを含有することが好ましい。さらに、前記防湿層の上側に、少なくとも一層の合成樹脂層を有する態様であることが好ましい。また、この場合、当該合成樹脂層の合成樹脂が、シクロオレフィン系樹脂であることが好ましい。 As an embodiment of the present invention, from the viewpoint of the effect of the present invention, the ceramic precursor is a sol-like organometallic compound, and silicon (Si), aluminum (Al), lithium (Li), zirconium (Zr), It is preferable to contain at least one element of titanium (Ti), zinc (Zn), and barium (Ba). Moreover, it is preferable that the said ceramic precursor contains polysilazane. Furthermore, it is preferable that it is an aspect which has at least one synthetic resin layer above the moisture-proof layer. In this case, the synthetic resin of the synthetic resin layer is preferably a cycloolefin resin.
 本発明の防湿フィルムの製造方法としては、少なくとも、(1)加熱により無機酸化物膜を形成するセラミック前駆体を塗布する工程と、(2)前記セラミック前駆体の塗布膜を局所的に加熱して無機酸化物を形成する工程とを有する態様の製造方法であることが好ましい。この場合、当該局所的に加熱する方法が、短時間の加熱を断続的に繰り返すことで加熱する方法であることが好ましい。また、当該局所的に加熱する方法が、塗布されたセラミック前駆体層に電磁波又は超音波を照射する方法であることが好ましい。さらに、当該電磁波が、赤外線、又はマイクロ波であることが好ましい。 The moisture-proof film production method of the present invention includes at least (1) a step of applying a ceramic precursor that forms an inorganic oxide film by heating, and (2) locally heating the coating film of the ceramic precursor. And an inorganic oxide forming step. In this case, it is preferable that the method of locally heating is a method of heating by intermittently repeating short-time heating. Moreover, it is preferable that the method of heating locally is a method of irradiating the coated ceramic precursor layer with electromagnetic waves or ultrasonic waves. Furthermore, it is preferable that the electromagnetic waves are infrared rays or microwaves.
 本発明の防湿フィルムは、太陽電池モジュール用バックシートとして好適に用いることができる。したがって、防湿性に優れた当該防湿フィルムをバックシートとして用いた太陽電池モジュールを提供することができる。 The moisture-proof film of the present invention can be suitably used as a back sheet for a solar cell module. Therefore, a solar cell module using the moisture-proof film having excellent moisture resistance as a back sheet can be provided.
 以下、本発明とその構成要素、及び本発明を実施するための形態等について詳細な説明をする。 Hereinafter, the present invention, its components, and modes for carrying out the present invention will be described in detail.
 (樹脂基材)
 本発明に係る樹脂基材としては、従来公地の種々の樹脂フィルムを用いることができる。例えば、セルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、ノルボルネン系樹脂フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルム等を挙げることができる。中でも、ポリカーボネート系フィルム、ポリエステル系フィルム、ノルボルネン系樹脂フィルム、及びセルロースエステル系フィルムが好ましい。
(Resin base material)
As the resin base material according to the present invention, various publicly known resin films can be used. For example, cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene terephthalate, polyethylene naphthalate polyester film, polyethylene film, polypropylene film, cellophane, Cellulose diacetate film, cellulose triacetate film, cellulose acetate propionate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, norbornene resin film , Polymethylpentenef Can Lum, polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, and acrylic films. Among these, a polycarbonate film, a polyester film, a norbornene resin film, and a cellulose ester film are preferable.
 特にポリエステル系フィルム、セルロースエステル系フィルムを用いることが好ましく、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。 In particular, it is preferable to use a polyester film or a cellulose ester film, and it may be a film manufactured by melt casting or a film manufactured by solution casting.
 当該樹脂基材の厚さは、樹脂の種類及び目的等に応じて適切な厚さにすることが好ましい。例えば、一般的には、10~300μmの範囲内である。好ましくは20~200μm、更に好ましくは30~100μmである。 The thickness of the resin base material is preferably an appropriate thickness depending on the type and purpose of the resin. For example, it is generally in the range of 10 to 300 μm. The thickness is preferably 20 to 200 μm, more preferably 30 to 100 μm.
 なお、樹脂基材の製造方法については、後述する。 In addition, the manufacturing method of a resin base material is mentioned later.
 (防湿層)
 本発明の防湿フィルムは、樹脂基材上の少なくとも片面に防湿層を具備していることを特徴とする。また、当該防湿層は、加熱処理することで無機酸化物膜を形成するセラミック前駆体から局所的加熱により形成された無機酸化物を含有することを特徴とする。
(Dampproof layer)
The moisture-proof film of the present invention is characterized by having a moisture-proof layer on at least one surface of the resin substrate. The moisture-proof layer contains an inorganic oxide formed by local heating from a ceramic precursor that forms an inorganic oxide film by heat treatment.
 本発明に係る防湿層は、湿度の変動、特に高湿度による樹脂基材及び当該樹脂基材で保護される各種機能素子等の劣化を防止するためのものであるが、特別の機能・用途を持たせたものであっても良く、上記特徴を維持する限りにおいて、種々の態様の防湿層を設けることができる。 The moisture-proof layer according to the present invention is intended to prevent deterioration of humidity, particularly deterioration of a resin base material and various functional elements protected by the resin base material due to high humidity. As long as the above characteristics are maintained, various types of moisture-proof layers can be provided.
 本発明の防湿フィルムの防湿性としては、40℃、90%RHにおける水蒸気透過度が、100g/m・day/μm以下、好ましくは50g/m・day/μm以下、更に好ましくは20g/m・day/μm以下となるように当該防湿層の防湿性を調整することが好ましい。 As the moisture resistance of the moisture-proof film of the present invention, the water vapor permeability at 40 ° C. and 90% RH is 100 g / m 2 · day / μm or less, preferably 50 g / m 2 · day / μm or less, more preferably 20 g / It is preferable to adjust the moisture-proof property of the moisture-proof layer so as to be m 2 · day / μm or less.
 〈セラミック前駆体〉
 本発明に係る防湿層は、加熱により無機酸化物膜を形成するセラミック前駆体を塗布した後に、塗布膜の局所的加熱により形成された無機酸化物を含有することを特徴とする。当該セラミック前駆体は、ゾル状の有機金属化合物であることが好ましい。
<Ceramic precursor>
The moisture-proof layer according to the present invention is characterized by containing an inorganic oxide formed by local heating of a coating film after applying a ceramic precursor that forms an inorganic oxide film by heating. The ceramic precursor is preferably a sol-like organometallic compound.
 〈有機金属化合物〉
 本発明に係る有機金属化合物は、ケイ素(Si)、アルミニウム(Al)、リチウム(Li)、ジルコニウム(Zr)、チタン(Ti)、タンタル(Ta)、亜鉛(Zn)、バリウム(Ba)、インジウム(In)、スズ(Sn)、ランタン(La)、イットリウム(Y)、及びニオブ(Nb)のうちの少なくとも一つの元素を含有することが好ましい。特に、当該有機金属化合物が、ケイ素(Si)、アルミニウム(Al)、リチウム(Li)、ジルコニウム(Zr)、チタン(Ti)、亜鉛(Zn)、及びバリウム(Ba)のうちの少なくとも一つの元素を含有することが好ましい。さらに、ケイ素(Si)、アルミニウム(Al)、及びリチウム(Li)のうちの少なくとも一つの元素を含有することが好ましい。
<Organic metal compound>
The organometallic compound according to the present invention includes silicon (Si), aluminum (Al), lithium (Li), zirconium (Zr), titanium (Ti), tantalum (Ta), zinc (Zn), barium (Ba), and indium. It is preferable to contain at least one element of (In), tin (Sn), lanthanum (La), yttrium (Y), and niobium (Nb). In particular, the organometallic compound is at least one element of silicon (Si), aluminum (Al), lithium (Li), zirconium (Zr), titanium (Ti), zinc (Zn), and barium (Ba). It is preferable to contain. Furthermore, it is preferable to contain at least one element of silicon (Si), aluminum (Al), and lithium (Li).
 有機金属化合物としては、加水分解が可能なものであればよく、特に限定されるものではないが、好ましい有機金属化合物としては、金属アルコキシドが挙げられる。 The organometallic compound is not particularly limited as long as it can be hydrolyzed, and preferred organometallic compounds include metal alkoxides.
 前記金属アルコキシドは、下記一般式(I)で表される。 The metal alkoxide is represented by the following general formula (I).
 一般式(I):MR (ORn-m
 前記一般式(I)において、Mは、酸化数nの金属を表す。R及びRは、各々独立に、アルキル基を表す。mは、0~(n-1)の整数を表す。R及びRは、同一でもよく、異なっていてもよい。R及びRとしては、炭素原子4個以下のアルキル基が好ましく、例えば、メチル基CH(以下、Meで表す。)、エチル基C(以下、Etで表す)、プロピル基C(以下、Prで表す。)、イソプロピル基i-C(以下、i-Prで表す。)、ブチル基C(以下、Buで表す)、イソブチル基i-C(以下、i-Buで表す)等の低級アルキル基がより好ましい。
Formula (I): MR 2 m (OR 1 ) nm
In the general formula (I), M represents a metal having an oxidation number n. R 1 and R 2 each independently represents an alkyl group. m represents an integer of 0 to (n−1). R 1 and R 2 may be the same or different. R 1 and R 2 are preferably alkyl groups having 4 or less carbon atoms, for example, a methyl group CH 3 (hereinafter represented by Me), an ethyl group C 2 H 5 (hereinafter represented by Et), a propyl group. C 3 H 7 (hereinafter represented by Pr), isopropyl group i-C 3 H 7 (hereinafter represented by i-Pr), butyl group C 4 H 9 (hereinafter represented by Bu), isobutyl group i- A lower alkyl group such as C 4 H 9 (hereinafter referred to as i-Bu) is more preferred.
 前記一般式(I)で表される金属アルコキシドとしては、例えば、リチウムエトキシドLiOEt、ニオブエトキシドNb(OEt)、マグネシウムイソプロポキシドMg(OPr-i)、アルミニウムイソプロポキシドAl(OPr-i)、亜鉛プロポキシドZn(OPr)、テトラエトキシシランSi(OEt)、チタンイソプロポキシドTi(OPr-i)、バリウムエトキシドBa(OEt)、バリウムイソプロポキシドBa(OPr-i)、トリエトキシボランB(OEt)、ジルコニウムプロポキシドZn(OPr)、ランタンプロポキシドLa(OPr)、イットリウムプロポキシドY(OPr)、鉛イソプロポキシドPb(OPr-i)等が好適に挙げられる。これらの金属アルコキシドは何れも市販品があり、容易に入手することができる。また、金属アルコキシドは、部分的に加水分解して得られる低縮合物も市販されており、これを原料として使用することも可能である。 Examples of the metal alkoxide represented by the general formula (I) include lithium ethoxide LiOEt, niobium ethoxide Nb (OEt) 5 , magnesium isopropoxide Mg (OPr-i) 2 , aluminum isopropoxide Al (OPr -I) 3 , zinc propoxide Zn (OPr) 2 , tetraethoxysilane Si (OEt) 4 , titanium isopropoxide Ti (OPr-i) 4 , barium ethoxide Ba (OEt) 2 , barium isopropoxide Ba ( OPr-i) 2 , triethoxyborane B (OEt) 3 , zirconium propoxide Zn (OPr) 4 , lanthanum propoxide La (OPr) 3 , yttrium propoxide Y (OPr) 3 , lead isopropoxide Pb (OPr- i) 2 etc. are mentioned suitably. All of these metal alkoxides are commercially available and can be easily obtained. Moreover, the metal alkoxide is also commercially available as a low condensate obtained by partial hydrolysis, and it can be used as a raw material.
 〈無機酸化物〉
 本発明に係る無機酸化物は、上記有機金属化合物を原料とするゾルから局所的加熱により形成されたものであることを特徴とする。したがって、有機金属化合物に含有されているケイ素(Si)、アルミニウム(Al)、ジルコニウム(Zr)、チタン(Ti)、タンタル(Ta)、亜鉛(Zn)、バリウム(Ba)、インジウム(In)、スズ(Sn)、ニオブ(Nb)等の元素の酸化物であることを特徴とする。
<Inorganic oxide>
The inorganic oxide according to the present invention is characterized in that it is formed by local heating from a sol using the organometallic compound as a raw material. Therefore, silicon (Si), aluminum (Al), zirconium (Zr), titanium (Ti), tantalum (Ta), zinc (Zn), barium (Ba), indium (In) contained in the organometallic compound, It is an oxide of an element such as tin (Sn) or niobium (Nb).
 例えば、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム等である。これらのうち、好ましくは、酸化ケイ素である。 For example, silicon oxide, aluminum oxide, zirconium oxide and the like. Of these, silicon oxide is preferable.
 本発明において、有機金属化合物から無機酸化物を形成する方法としては、いわゆるゾル-ゲル法及びポリシラザンを塗布する方法を用いることが好ましい。 In the present invention, as a method for forming an inorganic oxide from an organometallic compound, it is preferable to use a so-called sol-gel method and a method of applying polysilazane.
 〈ゾル-ゲル法〉
 ここで、「ゾル-ゲル法」とは、有機金属化合物を加水分解すること等により、水酸化物のゾルを得て、脱水処理してゲルとし、さらにこのゲルを加熱処理することで、ある一定の形状(フィルム状、粒子状、繊維状等)の金属酸化物ガラスを調製する方法をいう。異なる複数のゾル溶液を混合する方法、他の金属イオンを添加する方法等により、多成分系の金属酸化物ガラスを得ることも可能である。
<Sol-gel method>
Here, the “sol-gel method” is to obtain a hydroxide sol by hydrolyzing an organometallic compound, etc., dehydrate it into a gel, and further heat-treat the gel. It refers to a method for preparing a metal oxide glass having a certain shape (film, particle, fiber, etc.). A multi-component metal oxide glass can be obtained by a method of mixing a plurality of different sol solutions, a method of adding other metal ions, or the like.
 具体的には、下記工程を有するゾル-ゲル法で、無機酸化物を製造することが好ましい。 Specifically, it is preferable to produce an inorganic oxide by a sol-gel method having the following steps.
 すなわち、少なくとも水及び有機溶媒を含有する反応液中で、ホウ素イオン存在下にてハロゲンイオンを触媒として、pHを4.5~5.0に調整しながら、有機金属化合物を加水分解及び脱水縮合して反応生成物を得る工程、及び該反応生成物を200℃以下の温度で加熱してガラス化する工程、を有するゾル-ゲル法により製造されてなることが、高温熱処理による微細孔の発生や膜の劣化等が発生しないという観点から、特に好ましい。 That is, in a reaction solution containing at least water and an organic solvent, the organometallic compound is hydrolyzed and dehydrated and condensed while adjusting the pH to 4.5 to 5.0 using a halogen ion as a catalyst in the presence of boron ion. Generation of fine pores due to high-temperature heat treatment is produced by a sol-gel method having a step of obtaining a reaction product by heating and vitrifying the reaction product at a temperature of 200 ° C. or less. And is particularly preferable from the viewpoint that no deterioration of the film occurs.
 前記ゾル-ゲル法において、原料として用いられる有機金属化合物としては、加水分解が可能なものであればよく、特に限定されるものではないが、好ましい有機金属化合物としては、前記金属アルコキシドが挙げられる。 In the sol-gel method, the organometallic compound used as a raw material is not particularly limited as long as it can be hydrolyzed, and preferred organometallic compounds include the metal alkoxides. .
 上記ゾル-ゲル法において、前記有機金属化合物は、そのまま反応に用いてもよいが、反応の制御を容易にするため溶媒で希釈して用いることが好ましい。希釈用溶媒は、前記有機金属化合物を溶解することができ、かつ水と均一に混合することができるものであればよい。そのような希釈用溶媒としては、脂肪族の低級アルコール、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、エチレングリコール、プロピレングリコール、及びそれらの混合物が好適に挙げられる。また、ブタノールとセロソルブとブチルセロソルブの混合溶媒、あるいはキシロールとセロソルブアセテートとメチルイソブチルケトンとシクロヘキサンの混合溶媒などを使用することもできる。 In the sol-gel method, the organometallic compound may be used for the reaction as it is, but it is preferably diluted with a solvent for easy control of the reaction. The solvent for dilution is not particularly limited as long as it can dissolve the organometallic compound and can be uniformly mixed with water. Preferred examples of such a solvent for dilution include aliphatic lower alcohols such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, ethylene glycol, propylene glycol, and mixtures thereof. Further, a mixed solvent of butanol, cellosolve, and butyl cellosolve, or a mixed solvent of xylol, cellosolve acetate, methyl isobutyl ketone, and cyclohexane may be used.
 前記有機金属化合物において、金属がCa、Mg、Al等である場合には、反応液中の水と反応して水酸化物を生成したり、炭酸イオンCO 2-が存在すると炭酸塩を生成して沈殿を生ずるため、反応液に隠蔽剤としてトリエタノールアミンのアルコール溶液を添加することが好ましい。溶媒に混合溶解するときの前記有機金属化合物の濃度としては、70質量%以下が好ましく、5~70質量%の範囲に希釈して使用することがより好ましい。 In the organometallic compound, when the metal is Ca, Mg, Al or the like, it reacts with water in the reaction solution to form a hydroxide, or when carbonate ion CO 3 2- is present, a carbonate is formed. Therefore, it is preferable to add an alcohol solution of triethanolamine as a masking agent to the reaction solution. The concentration of the organometallic compound when mixed and dissolved in a solvent is preferably 70% by mass or less, and more preferably diluted to a range of 5 to 70% by mass.
 前記ゾル-ゲル法において用いられる反応液は、少なくとも水及び有機溶媒を含有する。前記有機溶媒としては、水及び酸、アルカリと均一な溶液をつくるものであればよく、通常、前記有機金属化合物の希釈に用いる脂肪族の低級アルコール類と同様のものが好適に挙げられる。前記脂肪族の低級アルコール類の中でも、メタノール、エタノールより、炭素数の多いプロパノール、イソプロパノール、ブタノール、及びイソブタノールが好ましい。これは、生成する金属酸化物ガラスの膜の成長が安定であるためである。前記反応液において、水の割合としては、水の濃度として0.2~50mol/Lの範囲が好ましい。 The reaction solution used in the sol-gel method contains at least water and an organic solvent. The organic solvent is not particularly limited as long as it can form a uniform solution with water, acid, and alkali, and usually the same aliphatic lower alcohols used for diluting the organometallic compound are preferably used. Among the aliphatic lower alcohols, propanol, isopropanol, butanol, and isobutanol having a larger number of carbon atoms are preferable to methanol and ethanol. This is because the growth of the metal oxide glass film to be generated is stable. In the reaction solution, the water ratio is preferably in the range of 0.2 to 50 mol / L as the concentration of water.
 前記ゾル-ゲル法においては、前記反応液中において、ホウ素イオンの存在下にて、ハロゲンイオンを触媒として、有機金属化合物を加水分解する。前記ホウ素イオンB3+を与える化合物としては、トリアルコキシボランB(OR)が好適に挙げられる。その中でも、トリエトキシボランB(OEt)がより好ましい。また、前記反応液中のB3+イオン濃度としては、1.0~10.0mol/Lの範囲が好ましい。 In the sol-gel method, an organometallic compound is hydrolyzed in the reaction solution in the presence of boron ions using a halogen ion as a catalyst. Preferred examples of the compound that gives the boron ion B 3+ include trialkoxyborane B (OR) 3 . Among these, triethoxyborane B (OEt) 3 is more preferable. The B 3+ ion concentration in the reaction solution is preferably in the range of 1.0 to 10.0 mol / L.
 前記ハロゲンイオンとしては、フッ素イオン及び/又は塩素イオンが好適に挙げられる。即ち、フッ素イオン単独、塩素イオン単独でもよく、これらの混合物でもよい。用いる化合物としては、上記反応液中でフッ素イオン及び/又は塩素イオンを生ずるものであればよく、例えば、フッ素イオン源として、フッ化水素アンモニウムNHHF・HF、フッ化ナトリウムNaF等が好適に挙げられ、塩素イオン源として、塩化アンモニウムNHCl等が好適に挙げられる。 As said halogen ion, a fluorine ion and / or a chlorine ion are mentioned suitably. That is, fluorine ions alone, chlorine ions alone or a mixture thereof may be used. The compound to be used may be any compound that generates fluorine ions and / or chlorine ions in the reaction solution. For example, as the fluorine ion source, ammonium hydrogen fluoride NH 4 HF · HF, sodium fluoride NaF, or the like is preferable. Preferred examples of the chlorine ion source include ammonium chloride NH 4 Cl.
 前記反応液中の前記ハロゲンイオンの濃度としては、製造しようとする無機マトリックスを有する無機組成物からなるフィルムの膜厚や、その他の条件によって異なるが、一般的には、触媒を含む前記反応液の合計質量に対して、0.001~2mol/kg、特に0.002~0.3mol/kgの範囲が好ましい。ハロゲンイオンの濃度が0.001mol/kgより低いと、有機金属化合物の加水分解が十分に進行し難くなり、膜の形成が困難となる。又はロゲンイオンの濃度が2mol/kgを超えると、生成する無機マトリックス(金属酸化物ガラス)が不均一になり易いため、いずれも好ましくない。 The concentration of the halogen ions in the reaction solution varies depending on the film thickness of an inorganic composition having an inorganic matrix to be produced and other conditions, but generally the reaction solution containing a catalyst. Is preferably in the range of 0.001 to 2 mol / kg, particularly 0.002 to 0.3 mol / kg. If the halogen ion concentration is lower than 0.001 mol / kg, hydrolysis of the organometallic compound does not proceed sufficiently, and film formation becomes difficult. Alternatively, when the concentration of the rogen ion exceeds 2 mol / kg, the generated inorganic matrix (metal oxide glass) tends to be nonuniform, which is not preferable.
 なお、反応時に使用したホウ素に関しては、得られる無機マトリックスの設計組成中にB成分として含有させる場合は、その含有量に応じた有機ホウ素化合物の計算量を添加したまま生成物とすればよく、またホウ素を除去したいときは、成膜後、溶媒としてのメタノールの存在下、又はメタノールに浸漬して加熱すればホウ素はホウ素メチルエステルとして蒸発させて除去することができる。 With respect to the boron used during the reaction, if to be contained as a B 2 O 3 component in the design the composition of the resulting inorganic matrix, by leaving product was added calculated amount of organic boron compound in accordance with the content of In addition, when it is desired to remove boron, boron can be removed by evaporation as boron methyl ester by heating after film formation in the presence of methanol as a solvent or by immersing in methanol.
 前記有機金属化合物を、加水分解及び脱水縮合して反応生成物を得る工程においては、通常所定量の前記有機金属化合物を所定量の水及び有機溶媒を含有する混合溶媒に混合溶解した主剤溶液、ならびに所定量の前記ハロゲンイオンを含有する所定量の反応液を、所定の比で混合し十分に攪拌して均一な反応溶液とした後、酸又はアルカリで反応溶液のpHを希望の値に調整し、数時間熟成することにより進行させて反応生成物を得る。前記ホウ素化合物は、主剤溶液又は反応液に予め所定量を混合溶解しておく。また、アルコキシボランを用いる場合は、他の有機金属化合物と共に主剤溶液に溶解するのが有利である。 In the step of hydrolyzing and dehydrating and condensing the organometallic compound to obtain a reaction product, a main agent solution in which a predetermined amount of the organometallic compound is usually mixed and dissolved in a mixed solvent containing a predetermined amount of water and an organic solvent, In addition, a predetermined amount of the reaction solution containing a predetermined amount of the above-mentioned halogen ions is mixed at a predetermined ratio and sufficiently stirred to obtain a uniform reaction solution, and then the pH of the reaction solution is adjusted to a desired value with acid or alkali. The reaction product is obtained by aging for several hours. A predetermined amount of the boron compound is mixed and dissolved in advance in the main agent solution or reaction solution. Further, when alkoxyborane is used, it is advantageous to dissolve it in the main agent solution together with other organometallic compounds.
 前記反応溶液のpHは、目的によって選択され、無機マトリックス(金属酸化物ガラス)を有する無機組成物からなる膜(フィルム)の形成を目的とするときは、例えば、塩酸等の酸を用いてpHを4.5~5の範囲に調整して熟成するのが好ましい。この場合は、例えば、指示薬としてメチルレッドとブロモクレゾールグリーンとを混合したもの等を用いると便利である。 The pH of the reaction solution is selected depending on the purpose, and for the purpose of forming a film (film) made of an inorganic composition having an inorganic matrix (metal oxide glass), for example, the pH is adjusted using an acid such as hydrochloric acid. It is preferable to ripen the mixture by adjusting it to the range of 4.5 to 5. In this case, for example, it is convenient to use a mixture of methyl red and bromocresol green as an indicator.
 なお、前記ゾル-ゲル法においては、同一成分の同一濃度の主剤溶液、及び反応液(B3+及びハロゲンイオンを含む)を所定のpHに調整しながら、逐次同一割合で追加添加することにより簡単に継続して、反応生成物を製造することもできる。なお、前記反応溶液の濃度は±50質量%の範囲で、水(酸又はアルカリを含む)の濃度は、±30質量%の範囲で、及びハロゲンイオンの濃度は±30質量%の範囲で変化させることができる。 In the sol-gel method, the main component solution of the same concentration of the same component and the reaction liquid (including B 3+ and halogen ions) are adjusted to a predetermined pH while being added in succession at the same ratio. The reaction product can also be produced continuously. The concentration of the reaction solution is in the range of ± 50% by mass, the concentration of water (including acid or alkali) is in the range of ± 30% by mass, and the concentration of halogen ions is in the range of ± 30% by mass. Can be made.
 次に、前工程で得られた反応生成物(熟成後の反応溶液)を、200℃以下の温度に加熱して乾燥しガラス化させる。加熱にあたって、特に50~70℃の温度区間を注意して徐々に昇温して、予備乾燥(溶媒揮散)工程を経た後さらに昇温することが好ましい。この乾燥は、膜形成の場合、無孔化膜とするために重要である。予備乾燥工程後、加熱し乾燥する温度としては、70~150℃が好ましく、80~130℃がより好ましい。 Next, the reaction product (reaction solution after aging) obtained in the previous step is heated to a temperature of 200 ° C. or lower, dried and vitrified. In heating, it is preferable that the temperature is raised gradually while paying particular attention to a temperature range of 50 to 70 ° C., followed by a preliminary drying (solvent volatilization) step and further raising the temperature. This drying is important for forming a nonporous film in the case of film formation. The temperature for heating and drying after the preliminary drying step is preferably 70 to 150 ° C, more preferably 80 to 130 ° C.
 〈ポリシラザンを塗布する方法〉
 本発明に係る防湿層は、加熱により無機酸化物膜を形成するセラミック前駆体を塗布した後に、塗布膜の局所的加熱により形成された無機酸化物を含有することを特徴とするが、当該セラミック前駆体が、ポリシラザンを含有する場合は、下記式(I)で表されるポリシラザン及び有機溶剤中に必要に応じて触媒を含む溶液で樹脂基材を被覆し、そして、この溶剤を蒸発させて除去し、それによって樹脂基材上に0.05~3.0μmの層厚を有するポリシラザン層を残し、そして、水蒸気を含む雰囲気中で酸素、活性酸素、場合によっては、及び窒素の存在下に、上記のポリシラザン層を、局所的加熱することによって、当該樹脂基材上にガラス様の透明な被膜を形成する方法を採用することが好ましい。
式(I): -(SiR-NR
[式中、R1、R2、及びR3は、同一か又は異なり、互いに独立して、水素、あるいは場合によっては置換されたアルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基、好ましくは水素、メチル、エチル、プロピル、iso-プロピル、ブチル、iso-ブチル、tert-ブチル、フェニル、ビニル又は3-(トリエトキシシリル)プロピル、3-(トリメトキシシリルプロピル)からなる群から選択される基を表し、この際、nは整数であり、そしてnは、当該ポリシラザンが150~150,000g/モルの数平均分子量を有するように定められる。]
 触媒としては、好ましくは、塩基性触媒、特にN,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン又はN-複素環式化合物が使用される。触媒濃度は、ポリシラザンを基準にして通常0.1~10モル%、好ましくは0.5~7モル%の範囲である。
<Method of applying polysilazane>
The moisture-proof layer according to the present invention is characterized by containing an inorganic oxide formed by local heating of a coating film after coating a ceramic precursor that forms an inorganic oxide film by heating. When the precursor contains polysilazane, the resin substrate is coated with a solution containing a catalyst in the polysilazane represented by the following formula (I) and an organic solvent as necessary, and the solvent is evaporated. Removing, thereby leaving a polysilazane layer having a layer thickness of 0.05 to 3.0 μm on the resin substrate, and in the presence of oxygen, active oxygen, and optionally in the presence of water vapor It is preferable to employ a method of forming a glass-like transparent film on the resin substrate by locally heating the polysilazane layer.
Formula (I):-(SiR 1 R 2 -NR 3 ) n-
[Wherein R1, R2 and R3 are the same or different and independently of each other, hydrogen, or an optionally substituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group, preferably Selected from the group consisting of hydrogen, methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, tert-butyl, phenyl, vinyl or 3- (triethoxysilyl) propyl, 3- (trimethoxysilylpropyl) Represents a group, where n is an integer and n is defined such that the polysilazane has a number average molecular weight of 150 to 150,000 g / mol. ]
As catalysts, preferably basic catalysts, in particular N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine or N-heterocyclic compounds are used. . The catalyst concentration is usually in the range of 0.1 to 10 mol%, preferably 0.5 to 7 mol%, based on polysilazane.
 好ましい態様の一つでは、R、R及びRのすべてが水素原子であるパーヒドロポリシラザンを含む溶液が使用される。 In one of the preferred embodiments, a solution containing perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms is used.
 さらに別の好ましい態様の一つでは、本発明によるコーティングは、次式(III)の少なくとも一種のポリシラザンを含む。
式(III):-(SiR-NR-(SiR-NR
 式中、R、R、R、R、R及びRは、互いに独立して、水素、あるいは場合によっては置換されたアルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基を表し、この際、n及びpは整数であり、そしてnは、当該ポリシラザンが150~150,000g/モルの数平均分子量を有するように定められる。
In yet another preferred embodiment, the coating according to the invention comprises at least one polysilazane of the formula (III)
Formula (III): — (SiR 1 R 2 —NR 3 ) n — (SiR 4 R 5 —NR 6 ) p
In which R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are independently of each other hydrogen, or optionally substituted alkyl, aryl, vinyl, or (trialkoxysilyl) Represents an alkyl group, where n and p are integers, and n is determined such that the polysilazane has a number average molecular weight of 150 to 150,000 g / mol.
 特に好ましいものは、R、R及びRが水素を表し、そしてR、R及びRがメチルを表す化合物、R、R及びRが水素を表し、そしてR、Rがメチルを表し、そしてRがビニルを表す化合物、R、R、R及びRが水素を表し、そしてR及びRがメチルを表す化合物である。 Particularly preferred are compounds wherein R 1 , R 3 and R 6 represent hydrogen and R 2 , R 4 and R 5 represent methyl, R 1 , R 3 and R 6 represent hydrogen and R 2 , A compound in which R 4 represents methyl and R 5 represents vinyl, R 1 , R 3 , R 4 and R 6 represent hydrogen and R 2 and R 5 represent methyl.
 また、次式(IV)の少なくとも一種のポリシラザンを含む溶液も同様に好ましい。
式(IV):-(SiR-NR-(SiR-NR-(SiR-NR
 上記式中、R、R、R、R、R、R、R、R及びRは、互いに独立して、水素、あるいは場合によっては置換されたアルキル基、アリール基、ビニル基又は(トリアルコキシシリル)アルキル基を表し、この際、n、p及びqは整数であり、そしてnは、当該ポリシラザンが150~150,000g/モルの数平均分子量を有するように定められる。
A solution containing at least one polysilazane represented by the following formula (IV) is also preferable.
Formula (IV): — (SiR 1 R 2 —NR 3 ) n — (SiR 4 R 5 —NR 6 ) p — (SiR 7 R 8 —NR 9 ) q
In the above formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are independently of one another hydrogen or optionally substituted alkyl group, aryl Represents a group, vinyl group or (trialkoxysilyl) alkyl group, where n, p and q are integers, and n is such that the polysilazane has a number average molecular weight of 150 to 150,000 g / mol. Determined.
 特に好ましいものは、R、R及びRが水素を表し、そしてR、R、R及びRがメチルを表し、Rが(トリエトキシシリル)プロピルを表し、そしてRがアルキル又は水素を表す化合物である。 Particularly preferred are R 1 , R 3 and R 6 represent hydrogen and R 2 , R 4 , R 5 and R 8 represent methyl, R 9 represents (triethoxysilyl) propyl and R 7 Is a compound in which represents alkyl or hydrogen.
 溶剤中のポリシラザンの割合は、一般的には、ポリシラザン1~80質量%、好ましくは5~50質量%、特に好ましくは10~40質量%である。 The proportion of polysilazane in the solvent is generally 1 to 80% by mass, preferably 5 to 50% by mass, and particularly preferably 10 to 40% by mass.
 溶剤としては、特に、水及び反応性基(例えばヒドロキシル基又はアミン基)を含まずそしてポリシラザンに対して不活性の有機系で好ましくは非プロトン性の溶剤が好適である。これは、例えば、脂肪族又は芳香族炭化水素、ハロゲン炭化水素、エステル、例えば酢酸エチル又は酢酸ブチル、ケトン、例えばアセトン又はメチルエチルケトン、エーテル、例えばテトラヒドロフラン又はジブチルエーテル、並びにモノ-及びポリアルキレングリコールジアルキルエーテル(ジグライム類)又はこれらの溶剤からなる混合物である。 As the solvent, in particular, an aprotic solvent which does not contain water and a reactive group (for example, hydroxyl group or amine group) and is inert to polysilazane, preferably an aprotic solvent is suitable. This includes, for example, aliphatic or aromatic hydrocarbons, halogen hydrocarbons, esters such as ethyl acetate or butyl acetate, ketones such as acetone or methyl ethyl ketone, ethers such as tetrahydrofuran or dibutyl ether, and mono- and polyalkylene glycol dialkyl ethers (Diglymes) or a mixture of these solvents.
 上記ポリシラザン溶液の追加の成分は、塗料の製造に慣用されているもののような更に別のバインダーであることができる。これは、例えば、セルロースエーテル及びセルロースエステル、例えばエチルセルロース、ニトロセルロース、セルロースアセテート又はセルロースアセトブチレート、天然樹脂、例えばゴムもしくはロジン樹脂、又は合成樹脂、例えば重合樹脂もしくは縮合樹脂、例えばアミノプラスト、特に尿素樹脂及びメラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステルもしくは変性ポリエステル、エポキシド、ポリイソシアネートもしくはブロック化ポリイソシアネート、又はポリシロキサンである。 The additional component of the polysilazane solution can be a further binder such as those conventionally used in the manufacture of paints. For example, cellulose ethers and cellulose esters such as ethyl cellulose, nitrocellulose, cellulose acetate or cellulose acetobutyrate, natural resins such as rubber or rosin resins, or synthetic resins such as polymerized resins or condensed resins such as aminoplasts, in particular Urea resins and melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, or polysiloxanes.
 当該ポリシラザン調合物の更に別の成分は、例えば、調合物の粘度、下地の濡れ、成膜性、潤滑作用又は排気性に影響を与える添加剤、あるいは無機ナノ粒子、例えばSiO、TiO、ZnO、ZrO又はAlであることができる。 The polysilazane further components of the formulation, for example, the viscosity of the formulation, wetting the underlying film-forming property, additives influencing the lubrication or exhaust resistance, or inorganic nanoparticles, for example SiO 2, TiO 2, It can be ZnO, ZrO 2 or Al 2 O 3 .
 本発明の方法を用いることによって、亀裂及び孔が無いためにガスに対する高いバリア作用に優れる緻密なガラス様の層を製造することができる。 By using the method of the present invention, a dense glass-like layer having an excellent barrier action against gas can be produced because there are no cracks and holes.
 形成される被膜の厚さは、100nm~2μmの範囲内にすることが好ましい。 The thickness of the coating film to be formed is preferably in the range of 100 nm to 2 μm.
 〈局所的加熱方法〉
 本発明では、有機金属化合物を原料とするゾルの塗布層(塗布液)に局所的加熱をすることにより無機酸化物を形成する。本発明における塗布層の「局所的加熱」とは、樹脂基材を実質的に加熱劣化させることなく、実質的に塗布層を(樹脂基材より10℃以上、好ましくは20℃以上高温に)加熱することを意味しており、このための局所的加熱方法としては、従来公知の種々の方法を採用することができる。例えば、赤外線ヒーターによる加熱、熱風、マイクロ波、超音波加熱、誘導加熱などを、適宜選択することができる。これらのうち、赤外線の断続照射やマイクロ波等の電磁波及び超音波を用いる方法が好ましい。
<Local heating method>
In the present invention, the inorganic oxide is formed by locally heating the coating layer (coating liquid) of the sol using an organometallic compound as a raw material. The “local heating” of the coating layer in the present invention means that the coating layer is substantially heated to 10 ° C. or more, preferably 20 ° C. or more higher than the resin substrate without substantially deteriorating the resin substrate by heating. It means heating, and various conventionally known methods can be adopted as the local heating method for this purpose. For example, heating with an infrared heater, hot air, microwave, ultrasonic heating, induction heating, or the like can be selected as appropriate. Of these, methods using intermittent electromagnetic irradiation of infrared rays, electromagnetic waves such as microwaves and ultrasonic waves are preferable.
 赤外線の照射手段としては、赤外線ランプ、赤外線ヒーター等の照射装置を用いることができる。無機酸化物層を形成することができれば、赤外線照射装置による照射は一回で行われてもよいが、塗布層を局所的に加熱するためには単時間の赤外線照射を断続的に繰り返す方法が好ましく用いられる。短時間の赤外線照射を断続的に繰り返す方法としては、例えば、赤外線照射装置のオンオフを短時間で繰り返す方法、赤外線照射装置と非照射物との間に遮蔽板を設けて、遮蔽板を動かすことで繰り返し照射する方法、非照射物(樹脂フィルム)の搬送方向の複数個所に赤外線照射装置を設け、非照射物を搬送させることで赤外線照射を繰り返し行う方法などが挙げられる。 As the infrared irradiation means, an irradiation device such as an infrared lamp or an infrared heater can be used. If the inorganic oxide layer can be formed, the irradiation by the infrared irradiation device may be performed once. However, in order to locally heat the coating layer, there is a method of intermittently repeating the infrared irradiation for one hour. Preferably used. As a method of intermittently repeating short-time infrared irradiation, for example, a method of repeatedly turning on and off the infrared irradiation device in a short time, a shielding plate is provided between the infrared irradiation device and a non-irradiated object, and the shielding plate is moved And a method of repeatedly irradiating infrared rays by providing an infrared irradiation device at a plurality of locations in the conveyance direction of the non-irradiated material (resin film) and conveying the non-irradiated material.
 マイクロ波は、周波数1GHz~3THz、波長0.1~300mm位のUHF~EHF帯の総称で、2.45GHzの周波数のマイクロ波発生装置が一般的であるが、1~100GHzの周波数のマイクロ波を用いることができる。例えば、2.45GHzマイクロ波照射機(四国計測工業(株)製 μ-reactor)、2.45GHzのマイクロ波を照射するマイクロ波発生装置(マグネトロン)等を挙げることができる。 A microwave is a general term for a UHF to EHF band with a frequency of 1 GHz to 3 THz and a wavelength of about 0.1 to 300 mm, and a microwave generator with a frequency of 2.45 GHz is common, but a microwave with a frequency of 1 to 100 GHz is common. Can be used. For example, a 2.45 GHz microwave irradiator (μ-reactor manufactured by Shikoku Keiki Kogyo Co., Ltd.), a microwave generator (magnetron) that radiates a 2.45 GHz microwave, and the like can be given.
 本願において、「超音波」とは、10kHz以上の振動数の弾性振動波(音波)をいう。本発明に係る超音波による加熱方法としては、ホーンの周波数は、50kHz以下の範囲の周波数で、赤外線照射と同様に単時間の加熱を断続的に繰り返し加熱すことが好ましい。 In the present application, “ultrasonic wave” refers to an elastic vibration wave (sound wave) having a frequency of 10 kHz or more. As the heating method using ultrasonic waves according to the present invention, it is preferable that the frequency of the horn is a frequency in the range of 50 kHz or less, and heating for a single time is repeated repeatedly as in the case of infrared irradiation.
 マイクロ波や超音波を用いて塗布層の加熱を行う場合も、赤外線照射と同様に単時間の加熱を断続的に繰り返すことで、樹脂基材の劣化を引き起こすことなく樹脂塗布層のみを局所的に加熱する方法が好ましく用いられる。 Even when the coating layer is heated using microwaves or ultrasonic waves, only the resin coating layer is locally applied without causing deterioration of the resin base material by intermittently repeating heating for a single hour as in the case of infrared irradiation. The method of heating is preferably used.
 (合成樹脂層)
 本発明に係る合成樹脂層は、前記防湿層が、防湿フィルムの屈曲などでクラックが入らないようにする応力緩和層としての機能や、防湿層が汚れて本来の防湿性が損なわれることを防ぐ防汚層としての機能を得ることを目的とするものである。
(Synthetic resin layer)
The synthetic resin layer according to the present invention prevents the moisture-proof layer from functioning as a stress relaxation layer that prevents cracks due to bending of the moisture-proof film and the like, and prevents the moisture-proof layer from becoming dirty and damaging the original moisture resistance. The purpose is to obtain a function as an antifouling layer.
 合成樹脂層を構成する材料としては、従来公知の種々の合成樹脂を用いることができる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリスルホン類、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル或いはポリアリレート類、アートン(商品名JSR社製)或いはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。 As the material constituting the synthetic resin layer, various conventionally known synthetic resins can be used. For example, polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate (CAP), cellulose acetate Cellulose esters such as phthalate and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyetherketone, polyimide, polyethersulfone ( PES), polysulfones, polyether ketone imide, polyamide, fluororesin Nylon, polymethyl methacrylate, acrylic or polyarylates, and cycloolefin resins such as ARTON (trade name JSR Corp.) or APEL (trade name Mitsui Chemicals, Inc.).
 これらの樹脂のうち、特に好ましい樹脂は、シクロオレフィン系樹脂である。 Among these resins, particularly preferred resins are cycloolefin resins.
 シクロオレフィン系樹脂(以下「環状オレフィン系樹脂」ともいう。)としては、ノルボルネン系樹脂、単環のシクロ(環状)オレフィン系樹脂、シクロ(環状)共役ジエン系樹脂、ビニル脂環式炭化水素系樹脂、及び、これらの水素化物等を挙げることができる。これらの中で、ノルボルネン系樹脂は、透明性と成形性が良好なため、好適に用いることができる。 Examples of cycloolefin resins (hereinafter also referred to as “cyclic olefin resins”) include norbornene resins, monocyclic cyclo (cyclic) olefin resins, cyclo (cyclic) conjugated diene resins, and vinyl alicyclic hydrocarbon resins. Examples thereof include resins and hydrides thereof. Among these, norbornene-based resins can be suitably used because of their good transparency and moldability.
 ノルボルネン系樹脂としては、例えば、ノルボルネン構造を有する単量体の開環重合体若しくはノルボルネン構造を有する単量体と他の単量体との開環共重合体又はそれらの水素化物、ノルボルネン構造を有する単量体の付加重合体若しくはノルボルネン構造を有する単量体と他の単量体との付加共重合体又はそれらの水素化物等を挙げることができる。 Examples of the norbornene-based resin include a ring-opening polymer of a monomer having a norbornene structure, a ring-opening copolymer of a monomer having a norbornene structure and another monomer, a hydride thereof, and a norbornene structure. An addition polymer of a monomer having a monomer, an addition copolymer of a monomer having a norbornene structure and another monomer, or a hydride thereof.
 これらの中で、ノルボルネン構造を有する単量体の開環(共)重合体水素化物は、透明性、成形性、耐熱性、低吸湿性、寸法安定性、軽量性などの観点から、特に好適に用いることができる。 Among these, a ring-opening (co) polymer hydride of a monomer having a norbornene structure is particularly suitable from the viewpoints of transparency, moldability, heat resistance, low hygroscopicity, dimensional stability, lightness, and the like. Can be used.
 ノルボルネン構造を有する単量体としては、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)、及びこれらの化合物の誘導体(例えば、環に置換基を有するもの)などを挙げることができる。ここで、置換基としては、例えばアルキル基、アルキレン基、極性基などを挙げることができる。また、これらの置換基は、同一又は相異なって複数個が環に結合していてもよい。ノルボルネン構造を有する単量体は1種単独で、あるいは2種以上を組み合わせて用いることができる。 Examples of the monomer having a norbornene structure include bicyclo [2.2.1] hept-2-ene (common name: norbornene), tricyclo [4.3.0.1 2,5 ] deca-3,7-diene. (Common name: dicyclopentadiene), 7,8-benzotricyclo [4.3.0.1 2,5 ] dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo [4.4.0. 1 2,5 . 1 7,10 ] dodec-3-ene (common name: tetracyclododecene) and derivatives of these compounds (for example, those having a substituent in the ring). Here, examples of the substituent include an alkyl group, an alkylene group, and a polar group. In addition, these substituents may be the same or different and a plurality may be bonded to the ring. Monomers having a norbornene structure can be used singly or in combination of two or more.
 極性基の種類としては、ヘテロ原子、又はヘテロ原子を有する原子団などが挙げられる。ヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、ケイ素原子、ハロゲン原子などが挙げられる。極性基の具体例としては、カルボキシル基、カルボニルオキシカルボニル基、エポキシ基、ヒドロキシル基、オキシ基、エステル基、シラノール基、シリル基、アミノ基、ニトリル基、スルホン基などが挙げられる。 Examples of the polar group include heteroatoms or atomic groups having heteroatoms. Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom. Specific examples of the polar group include a carboxyl group, a carbonyloxycarbonyl group, an epoxy group, a hydroxyl group, an oxy group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, and a sulfone group.
 ノルボルネン構造を有する単量体と開環共重合可能な他の単量体としては、シクロヘキセン、シクロヘプテン、シクロオクテンなどのモノシクロ(環状)オレフィン類及びその誘導体、シクロヘキサジエン、シクロヘプタジエンなどのシクロ(環状)共役ジエン及びその誘導体などが挙げられる。 Other monomers capable of ring-opening copolymerization with monomers having a norbornene structure include monocyclo (cyclic) olefins such as cyclohexene, cycloheptene, and cyclooctene and derivatives thereof, and cyclo ( Cyclic) conjugated dienes and derivatives thereof.
 ノルボルネン構造を有する単量体の開環重合体及びノルボルネン構造を有する単量体と共重合可能な他の単量体との開環共重合体は、単量体を公知の開環重合触媒の存在下に(共)重合することにより得ることができる。 A ring-opening polymer of a monomer having a norbornene structure and a ring-opening copolymer of a monomer having a norbornene structure and another monomer copolymerizable with the monomer have a known ring-opening polymerization catalyst. It can be obtained by (co) polymerization in the presence.
 ノルボルネン構造を有する単量体と付加共重合可能な他の単量体としては、例えば、エチレン、プロピレン、1-ブテンなどの炭素数2~20のα-オレフィン及びこれらの誘導体;シクロブテン、シクロペンテン、シクロヘキセンなどのシクロオレフィン及びこれらの誘導体;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエンなどの非共役ジエンなどが挙げられる。これらの単量体は1種単独で、あるいは2種以上を組み合わせて用いることができる。これらの中でも、α-オレフィンが好ましく、エチレンがより好ましい。 Examples of other monomers that can be addition-copolymerized with a monomer having a norbornene structure include, for example, α-olefins having 2 to 20 carbon atoms such as ethylene, propylene, and 1-butene, and derivatives thereof; cyclobutene, cyclopentene, Examples thereof include cycloolefins such as cyclohexene and derivatives thereof; non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, and 5-methyl-1,4-hexadiene. These monomers can be used alone or in combination of two or more. Among these, α-olefin is preferable, and ethylene is more preferable.
 ノルボルネン構造を有する単量体の付加重合体及びノルボルネン構造を有する単量体と共重合可能な他の単量体との付加共重合体は、単量体を公知の付加重合触媒の存在下に重合することにより得ることができる。 An addition polymer of a monomer having a norbornene structure and an addition copolymer of another monomer copolymerizable with a monomer having a norbornene structure can be used in the presence of a known addition polymerization catalyst. It can be obtained by polymerization.
 ノルボルネン構造を有する単量体の開環重合体の水素添加物、ノルボルネン構造を有する単量体とこれと開環共重合可能なその他の単量体との開環共重合体の水素添加物、ノルボルネン構造を有する単量体の付加重合体の水素添加物、及びノルボルネン構造を有する単量体とこれと付加共重合可能なその他の単量体との付加共重合体の水素添加物は、これらの重合体の溶液に、ニッケル、パラジウムなどの遷移金属を含む公知の水素添加触媒を添加し、炭素-炭素不飽和結合を好ましくは90%以上水素添加することによって得ることができる。 A hydrogenated product of a ring-opening polymer of a monomer having a norbornene structure, a hydrogenated product of a ring-opening copolymer of a monomer having a norbornene structure and another monomer capable of ring-opening copolymerization thereof, Hydrogenated products of addition polymers of monomers having a norbornene structure, and hydrogenated products of addition copolymers of monomers having a norbornene structure and other monomers capable of addition copolymerization with these A known hydrogenation catalyst containing a transition metal such as nickel or palladium is added to the polymer solution, and the carbon-carbon unsaturated bond is preferably hydrogenated by 90% or more.
 ノルボルネン系樹脂の中でも、繰り返し単位として、X:ビシクロ[3.3.0]オクタン-2,4-ジイル-エチレン構造と、Y:トリシクロ[4.3.0.12,5]デカン-7,9-ジイル-エチレン構造とを有し、これらの繰り返し単位の含有量が、ノルボルネン系樹脂の繰り返し単位全体に対して90質量%以上であり、かつ、Xの含有割合とYの含有割合との比が、X:Yの質量比で100:0~40:60であるものが好ましい。 Among norbornene-based resins, X: bicyclo [3.3.0] octane-2,4-diyl-ethylene structure and Y: tricyclo [4.3.0.1 2,5 ] decane-7 are used as repeating units. , 9-diyl-ethylene structure, the content of these repeating units is 90% by mass or more based on the entire repeating units of the norbornene resin, and the X content ratio and the Y content ratio are The ratio of X: Y is preferably 100: 0 to 40:60.
 本発明に用いるシクロ(環状)オレフィン樹脂の分子量は使用目的に応じて適宜選定される。溶媒としてシクロヘキサン(重合体樹脂が溶解しない場合はトルエン)を用いるゲル・パーミエーション・クロマトグラフィーで測定したポリイソプレン又はポリスチレン換算の重量平均分子量(Mw)で、通常20,000~150,000である。好ましくは25,000~100,000、より好ましくは30,000~80,000である。重量平均分子量がこのような範囲にあるときに、フィルムの機械的強度及び成型加工性とが高度にバランスされ好適である。 The molecular weight of the cyclo (cyclic) olefin resin used in the present invention is appropriately selected according to the purpose of use. Polyisoprene or polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography using cyclohexane (toluene if the polymer resin does not dissolve) as a solvent, usually 20,000 to 150,000. . It is preferably 25,000 to 100,000, more preferably 30,000 to 80,000. When the weight average molecular weight is in such a range, the mechanical strength and molding processability of the film are highly balanced and suitable.
 シクロ(環状)オレフィン樹脂のガラス転移温度は、使用目的に応じて適宜選択されればよい。好ましくは130~160℃、より好ましくは135~150℃の範囲である。 The glass transition temperature of the cyclo (cyclic) olefin resin may be appropriately selected according to the purpose of use. The range is preferably from 130 to 160 ° C, more preferably from 135 to 150 ° C.
 本発明に用いられる上記シクロオレフィン系樹脂の具体例としては、例えば、JSR株式会社製 商品名:ARTON;日本ゼオン株式会社製 商品名:ゼオノア;積水化学工業株式会社製 商品名:エスシーナ等を挙げることができる。 Specific examples of the cycloolefin resin used in the present invention include, for example, JSR Corporation trade name: ARTON; Nippon Zeon Corporation trade name: Zeonoa; Sekisui Chemical Co., Ltd. trade name: Essina. be able to.
 なお、本発明の防湿フィルムには、必要に応じて、各層に対して、特に基材に対して、充填剤、酸化防止剤、紫外線吸収剤、熱安定剤、滑剤、帯電防止剤、抗菌剤、顔料等を添加することができる。 In the moisture-proof film of the present invention, a filler, an antioxidant, an ultraviolet absorber, a heat stabilizer, a lubricant, an antistatic agent, and an antibacterial agent are added to each layer as needed, particularly to the substrate. , Pigments and the like can be added.
 (防湿フィルム用樹脂基材の製造方法)
 本発明の防湿フィルム用の樹脂基材の製造方法としては、通常のインフレーション法、T-ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造法が使用できるが、着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制などの観点から流延法による溶液流延法、溶融流延法が好ましい。
(Manufacturing method of resin substrate for moisture-proof film)
As a method for producing the resin base material for the moisture-proof film of the present invention, the usual inflation method, T-die method, calendar method, cutting method, casting method, emulsion method, hot press method and the like can be used. The solution casting method and the melt casting method by casting are preferable from the viewpoints of suppression of coloring, suppression of defects of foreign matters, suppression of optical defects such as die lines, and the like.
 以下、典型的例として、フィルム状樹脂基材として、作製する場合の製造方法について詳述する。 Hereinafter, as a typical example, a production method in the case of producing a film-like resin base material will be described in detail.
 <溶液流延法による樹脂基材の製造方法>
 (有機溶媒)
 本発明に係る樹脂基材を溶液流延法で製造する場合、ドープを形成するのに有用な有機溶媒は、セルロースエステル樹脂等の熱可塑性樹脂を溶解するものであれば制限なく用いることができる。
<Method for producing resin base material by solution casting method>
(Organic solvent)
When the resin substrate according to the present invention is produced by the solution casting method, an organic solvent useful for forming the dope can be used without limitation as long as it dissolves a thermoplastic resin such as a cellulose ester resin. .
 例えば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン、乳酸エチル、乳酸、ジアセトンアルコール等を挙げることができ、塩化メチレン、酢酸メチル、酢酸エチル、アセトン、乳酸エチル等を好ましく使用し得る。 For example, as a chlorinated organic solvent, methylene chloride, as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, ethyl lactate, lactic acid , Diacetone alcohol, etc., preferably methylene chloride, methyl acetate, ethyl acetate, acetone, ethyl lactate, etc. Get.
 ドープには、上記有機溶媒の他に、1~40質量%の炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有させてもよい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ない時は非塩素系有機溶媒系での熱可塑性樹脂の溶解を促進する役割もある。 In addition to the organic solvent, the dope may contain 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. When the proportion of alcohol in the dope increases, the web gels, facilitating peeling from the metal support, and when the proportion of alcohol is small, the dissolution of the thermoplastic resin in a non-chlorine organic solvent system is promoted. There is also a role.
 特に、メチレンクロライド、及び炭素数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有する溶媒に、熱可塑性樹脂は、少なくとも計10~45質量%溶解させたドープ組成物であることが好ましい。 In particular, the thermoplastic resin should be a dope composition in which at least 10 to 45% by mass of the thermoplastic resin is dissolved in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. preferable.
 炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらの内ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からエタノールが好ましい。 Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.
 以下、本発明に係るフィルム状樹脂基材(以下、単に「フィルム」ともいう。)の好ましい製膜方法について説明する。 Hereinafter, a preferred method for forming a film-like resin substrate (hereinafter also simply referred to as “film”) according to the present invention will be described.
 1)溶解工程
 熱可塑性樹脂に対する良溶媒を主とする有機溶媒に、溶解釜中で熱可塑性樹脂、熱収縮材料、その他の添加剤を攪拌しながら溶解しドープを形成する工程である。
1) Dissolution Step In this step, a thermoplastic resin, a heat-shrinkable material, and other additives are dissolved in an organic solvent mainly composed of a good solvent for the thermoplastic resin while stirring to form a dope.
 熱可塑性樹脂の溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報、又は特開平9-95538号公報に記載の如き冷却溶解法で行う方法、特開平11-21379号公報に記載の如き高圧で行う方法等種々の溶解方法を用いることができるが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。 For the dissolution of the thermoplastic resin, a method carried out at normal pressure, a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544, JP-A-9-95557 Alternatively, various dissolution methods such as a method using a cooling dissolution method as described in JP-A-9-95538 and a method using a high pressure as described in JP-A-11-21379 can be used. The method of pressurizing at a boiling point or higher is preferred.
 返材とは、フィルムを細かく粉砕した物で、フィルムを製膜するときに発生する、フィルムの両サイド部分を切り落とした物や、擦り傷などでスペックアウトしたフィルム原反のことをいい、これも再使用される。 Recycled material is a finely pulverized film, which is generated when the film is formed, cut off on both sides of the film, or the original film that has been speculated out due to scratches, etc. Reused.
 2)流延工程
 ドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイに送液し、無限に移送する無端の金属ベルト、例えばステンレスベルト、あるいは回転する金属ドラム等の金属支持体上の流延位置に、加圧ダイスリットからドープを流延する工程である。
2) Casting process An endless metal belt, such as a stainless steel belt or a rotating metal drum, which supports the dope is fed to a pressure die through a liquid feed pump (for example, a pressurized metering gear pump) and supported infinitely. This is a step of casting a dope from a pressure die slit to a casting position on the body.
 ダイの口金部分のスリット形状を調整でき、膜厚を均一にし易い加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。金属支持体の表面は鏡面となっている。製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して重層してもよい。あるいは複数のドープを同時に流延する共流延法によって積層構造のフィルムを得ることも好ましい。 ¡Pressure dies that can adjust the slit shape of the die base and make the film thickness uniform are preferred. Examples of the pressure die include a coat hanger die and a T die, and any of them is preferably used. The surface of the metal support is a mirror surface. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
 3)溶媒蒸発工程
 ウェブ(流延用支持体上にドープを流延し、形成されたドープ膜をウェブと呼ぶ)を流延用支持体上で加熱し、溶媒を蒸発させる工程である。
3) Solvent evaporation step In this step, the web (the dope is cast on the casting support and the formed dope film is called a web) is heated on the casting support to evaporate the solvent.
 溶媒を蒸発させるには、ウェブ側から風を吹かせる方法及び/又は支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法の乾燥効率が良く好ましい。又、それらを組み合わせる方法も好ましく用いられる。流延後の支持体上のウェブを40~100℃の雰囲気下、支持体上で乾燥させることが好ましい。40~100℃の雰囲気下に維持するには、この温度の温風をウェブ上面に当てるか赤外線等の手段により加熱することが好ましい。 To evaporate the solvent, there are a method of blowing air from the web side and / or a method of transferring heat from the back side of the support by a liquid, a method of transferring heat from the front and back by radiant heat, etc. High efficiency and preferable. A method of combining them is also preferably used. The web on the support after casting is preferably dried on the support in an atmosphere of 40 to 100 ° C. In order to maintain the atmosphere at 40 to 100 ° C., it is preferable to apply hot air at this temperature to the upper surface of the web or heat by means such as infrared rays.
 面品質、透湿性、剥離性の観点から、30~120秒以内で該ウェブを支持体から剥離することが好ましい。 From the viewpoint of surface quality, moisture permeability, and peelability, it is preferable to peel the web from the support within 30 to 120 seconds.
 4)剥離工程
 金属支持体上で溶媒が蒸発したウェブを、剥離位置で剥離する工程である。剥離されたウェブは次工程に送られる。
4) Peeling process It is the process of peeling the web which the solvent evaporated on the metal support body in a peeling position. The peeled web is sent to the next process.
 金属支持体上の剥離位置における温度は好ましくは10~40℃であり、さらに好ましくは11~30℃である。 The temperature at the peeling position on the metal support is preferably 10 to 40 ° C, more preferably 11 to 30 ° C.
 なお、剥離する時点での金属支持体上でのウェブの剥離時残留溶媒量は、乾燥の条件の強弱、金属支持体の長さ等により50~120質量%の範囲で剥離することが好ましいが、残留溶媒量がより多い時点で剥離する場合、ウェブが柔らか過ぎると剥離時平面性を損ね、剥離張力によるツレや縦スジが発生し易いため、経済速度と品質との兼ね合いで剥離時の残留溶媒量が決められる。 The amount of residual solvent at the time of peeling of the web on the metal support at the time of peeling is preferably 50 to 120% by mass depending on the strength of drying conditions, the length of the metal support, and the like. If the web is peeled off at a time when the amount of residual solvent is larger, if the web is too soft, the flatness at the time of peeling will be lost, and slippage and vertical stripes are likely to occur due to the peeling tension. The amount of solvent is determined.
 ウェブの残留溶媒量は下記式で定義される。 The amount of residual solvent in the web is defined by the following formula.
 残留溶媒量(%)=(ウェブの加熱処理前質量-ウェブの加熱処理後質量)/(ウェブの加熱処理後質量)×100
 なお、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
Residual solvent amount (%) = (mass before web heat treatment−mass after web heat treatment) / (mass after web heat treatment) × 100
Note that the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
 金属支持体とフィルムを剥離する際の剥離張力は、通常、196~245N/mであるが、剥離の際に皺が入り易い場合、190N/m以下の張力で剥離することが好ましく、さらには、剥離できる最低張力~166.6N/m、次いで、最低張力~137.2N/mで剥離することが好ましいが、特に好ましくは最低張力~100N/mで剥離することである。 The peeling tension at the time of peeling the metal support and the film is usually 196 to 245 N / m. However, if wrinkles easily occur at the time of peeling, it is preferable to peel with a tension of 190 N / m or less. It is preferable to peel at a minimum tension of ˜166.6 N / m, and then peel at a minimum tension of ˜137.2 N / m, and particularly preferable to peel at a minimum tension of ˜100 N / m.
 本発明においては、当該金属支持体上の剥離位置における温度を-50~40℃とするのが好ましく、10~40℃がより好ましく、15~30℃とするのが最も好ましい。 In the present invention, the temperature at the peeling position on the metal support is preferably −50 to 40 ° C., more preferably 10 to 40 ° C., and most preferably 15 to 30 ° C.
 5)乾燥及び延伸工程
 剥離後、ウェブを乾燥装置内に複数配置したロールに交互に通して搬送する乾燥装置35、及び/又はクリップでウェブの両端をクリップして搬送するテンター延伸装置34を用いて、ウェブを乾燥する。
5) Drying and stretching step After peeling, a drying device 35 that transports the web alternately through rolls arranged in the drying device and / or a tenter stretching device 34 that clips and transports both ends of the web with clips. And dry the web.
 乾燥手段はウェブの両面に熱風を吹かせるのが一般的であるが、風の代わりにマイクロウェーブを当てて加熱する手段もある。余り急激な乾燥は出来上がりのフィルムの平面性を損ね易い。高温による乾燥は残留溶媒が8質量%以下くらいから行うのがよい。全体を通し、乾燥は概ね40~250℃で行われる。特に40~160℃で乾燥させることが好ましい。 The drying means is generally to blow hot air on both sides of the web, but there is also a means to heat by applying microwaves instead of wind. Too rapid drying tends to impair the flatness of the finished film. Drying at a high temperature is preferably performed from about 8% by mass or less of residual solvent. Throughout, drying is generally performed at 40-250 ° C. In particular, drying at 40 to 160 ° C. is preferable.
 テンター延伸装置を用いる場合は、テンターの左右把持手段によってフィルムの把持長(把持開始から把持終了までの距離)を左右で独立に制御できる装置を用いることが好ましい。また、テンター工程において、平面性を改善するため意図的に異なる温度を持つ区画を作ることも好ましい。 When using a tenter stretching apparatus, it is preferable to use an apparatus that can independently control the film gripping length (distance from the start of gripping to the end of gripping) left and right by the left and right gripping means of the tenter. In the tenter process, it is also preferable to intentionally create sections having different temperatures in order to improve planarity.
 また、異なる温度区画の間にそれぞれの区画が干渉を起こさないように、ニュートラルゾーンを設けることも好ましい。 It is also preferable to provide a neutral zone between different temperature zones so that each zone does not cause interference.
 なお、延伸操作は多段階に分割して実施してもよく、流延方向、幅手方向に二軸延伸を実施することも好ましい。また、二軸延伸を行う場合には同時二軸延伸を行ってもよいし、段階的に実施してもよい。 The stretching operation may be performed in multiple stages, and it is also preferable to perform biaxial stretching in the casting direction and the width direction. When biaxial stretching is performed, simultaneous biaxial stretching may be performed or may be performed stepwise.
 この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。即ち、例えば、次のような延伸ステップも可能である。 In this case, stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible. That is, for example, the following stretching steps are possible.
 ・流延方向に延伸-幅手方向に延伸-流延方向に延伸-流延方向に延伸
 ・幅手方向に延伸-幅手方向に延伸-流延方向に延伸-流延方向に延伸
 また、同時2軸延伸には、一方向に延伸し、もう一方を、張力を緩和して収縮させる場合も含まれる。同時2軸延伸の好ましい延伸倍率は幅手方向、長手方向ともに×1.01倍~×1.5倍の範囲でとることができる。
-Stretch in the casting direction-Stretch in the width direction-Stretch in the casting direction-Stretch in the casting direction-Stretch in the width direction-Stretch in the width direction-Stretch in the casting direction-Stretch in the casting direction Simultaneous biaxial stretching includes stretching in one direction and contracting the other while relaxing the tension. The preferred draw ratio for simultaneous biaxial stretching can be in the range of x1.01 to x1.5 in both the width direction and the longitudinal direction.
 テンターを行う場合のウェブの残留溶媒量は、テンター開始時に20~100質量%であるのが好ましく、かつウェブの残留溶媒量が10質量%以下になる迄テンターを掛けながら乾燥を行うことが好ましく、さらに好ましくは5質量%以下である。 When the tenter is used, the amount of residual solvent in the web is preferably 20 to 100% by mass at the start of the tenter, and drying is preferably performed while the tenter is applied until the amount of residual solvent in the web is 10% by mass or less. More preferably, it is 5% by mass or less.
 テンターを行う場合の乾燥温度は、30~160℃が好ましく、50~150℃がさらに好ましく、70~140℃が最も好ましい。 When performing the tenter, the drying temperature is preferably 30 to 160 ° C., more preferably 50 to 150 ° C., and most preferably 70 to 140 ° C.
 テンター工程において、雰囲気の幅手方向の温度分布が少ないことが、フィルムの均一性を高める観点から好ましく、テンター工程での幅手方向の温度分布は、±5℃以内が好ましく、±2℃以内がより好ましく、±1℃以内が最も好ましい。 In the tenter process, it is preferable that the temperature distribution in the width direction of the atmosphere is small from the viewpoint of improving the uniformity of the film. The temperature distribution in the width direction in the tenter process is preferably within ± 5 ° C, and within ± 2 ° C. Is more preferable, and within ± 1 ° C. is most preferable.
 6)巻き取り工程
 ウェブ中の残留溶媒量が2質量%以下となってからフィルムとして巻き取り機37により巻き取る工程であり、残留溶媒量を0.4質量%以下にすることにより寸法安定性の良好なフィルムを得ることができる。特に0.00~0.10質量%で巻き取ることが好ましい。
6) Winding process This is a process in which the amount of residual solvent in the web becomes 2% by mass or less, and is taken up by the winder 37 as a film, and the dimensional stability is achieved by setting the residual solvent amount to 0.4% by mass or less. Can be obtained. It is particularly preferable to wind up at 0.00 to 0.10% by mass.
 巻き取り方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使いわければよい。 As a winding method, a generally used one may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, etc., and these may be used properly.
 本発明に係るフィルムは、長尺フィルムであることが好ましく、具体的には、100m~5000m程度のものを示し、通常、ロール状で提供される形態のものである。また、フィルムの幅は1.3~4mであることが好ましく、1.4~2mであることがより好ましい。 The film according to the present invention is preferably a long film, specifically a film having a thickness of about 100 m to 5000 m, and usually in a form provided in a roll shape. The film width is preferably 1.3 to 4 m, more preferably 1.4 to 2 m.
 本発明に係るフィルムの膜厚に特に制限はないが、20~200μmであることが好ましく、25~150μmであることがより好ましく、30~120μmであることが特に好ましい。 The film thickness of the film according to the present invention is not particularly limited, but is preferably 20 to 200 μm, more preferably 25 to 150 μm, and particularly preferably 30 to 120 μm.
 <溶融流延製膜法による樹脂基材の製造方法>
 本発明に係る樹脂基材を、フィルム状樹脂基材として、溶融流延製膜法により製造する場合の方法について説明する。
<Method for producing resin base material by melt casting method>
The method in the case of manufacturing the resin base material which concerns on this invention as a film-form resin base material by the melt casting film forming method is demonstrated.
 〈溶融ペレット製造工程〉
 溶融押出に用いる熱可塑性樹脂、熱収縮材料からなるフィルムを構成する組成物は、通常あらかじめ混錬してペレット化しておくことが好ましい。
<Melted pellet manufacturing process>
The composition constituting a film made of a thermoplastic resin and a heat shrinkable material used for melt extrusion is usually preferably kneaded in advance and pelletized.
 ペレット化は、公知の方法でよく、例えば、乾燥した熱可塑性樹脂と熱収縮材料等からなる添加剤をフィーダーで押出機に供給し1軸や2軸の押出機を用いて混錬し、ダイからストランド状に押出し、水冷又は空冷し、カッティングすることでできる。 The pelletization may be performed by a known method. For example, an additive comprising a dried thermoplastic resin and a heat-shrinkable material is supplied to an extruder with a feeder and kneaded using a single-screw or twin-screw extruder. It is possible to extrude into a strand, cool with water or air, and cut.
 原材料は、押出する前に乾燥しておくことが原材料の分解を防止する上で重要である。特にセルロースエステルは吸湿しやすいので、除湿熱風乾燥機や真空乾燥機で70~140℃で3時間以上乾燥し、水分率を200ppm以下、さらに100ppm以下にしておくことが好ましい。 It is important to dry the raw material before extruding to prevent the raw material from being decomposed. In particular, since cellulose ester easily absorbs moisture, it is preferable to dry it at 70 to 140 ° C. for 3 hours or more with a dehumidifying hot air dryer or a vacuum dryer so that the moisture content is 200 ppm or less, and further 100 ppm or less.
 添加剤は、押出機に供給押出機合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。酸化防止剤等少量の添加剤は、均一に混合するため、こと前に混合しておくことが好ましい。 Additives may be fed into the extruder and fed into the extruder, or may be fed through individual feeders. In order to mix a small amount of additives such as an antioxidant uniformly, it is preferable to mix them in advance.
 酸化防止剤の混合は、固体同士で混合してもよいし、必要により、酸化防止剤を溶剤に溶解しておき、熱可塑性樹脂に含浸させて混合してもよく、あるいは噴霧して混合してもよい。 The antioxidant may be mixed with each other, and if necessary, the antioxidant may be dissolved in a solvent, impregnated with a thermoplastic resin and mixed, or mixed by spraying. May be.
 真空ナウターミキサーなどが乾燥と混合を同時にできるので好ましい。また、フィーダー部やダイからの出口など空気と触れる場合は、除湿空気や除湿したNガスなどの雰囲気下にすることが好ましい。 A vacuum nauter mixer or the like is preferable because drying and mixing can be performed simultaneously. Further, if the contact with air, such as the exit from the feeder unit or die, it is preferable that the atmosphere such as dehumidified air and dehumidified N 2 gas.
 押出機は、せん断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないようにペレット化可能でなるべく低温で加工することが好ましい。例えば、2軸押出機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。 The extruder is preferably processed at as low a temperature as possible so as to be able to be pelletized so that the shear force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.). For example, in the case of a twin screw extruder, it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
 以上のようにして得られたペレットを用いてフィルム製膜を行う。ペレット化せず、原材料の粉末をそのままフィーダーで押出機に供給し、そのままフィルム製膜することも可能である。 Film formation is performed using the pellets obtained as described above. It is also possible to feed the raw material powder directly to the extruder with a feeder and form a film as it is without pelletization.
 〈溶融混合物をダイから冷却ロールへ押し出す工程〉
 まず、作製したペレットを1軸や2軸タイプの押出機を用いて、押し出す際の溶融温度Tmを200~300℃程度とし、リーフディスクタイプのフィルターなどでろ過し異物を除去した後、Tダイからフィルム状に共押出し、冷却ロール上で固化し、弾性タッチロールと押圧しながら流延する。
<Process for extruding molten mixture from die to cooling roll>
First, the pellets produced are extruded using a single-screw or twin-screw extruder, the melting temperature Tm during extrusion is set to about 200 to 300 ° C., filtered through a leaf disk type filter or the like to remove foreign matter, and then the T-die The film is coextruded into a film, solidified on a cooling roll, and cast while pressing with an elastic touch roll.
 供給ホッパーから押出機へ導入する際は真空下又は減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。なお、Tmは、押出機のダイ出口部分の温度である。 When introducing from the supply hopper to the extruder, it is preferable to prevent oxidative decomposition or the like under vacuum or reduced pressure or in an inert gas atmosphere. Tm is the temperature of the die exit portion of the extruder.
 ダイに傷や可塑剤の凝結物等の異物が付着するとスジ状の欠陥が発生する場合がある。このような欠陥のことをダイラインとも呼ぶが、ダイライン等の表面の欠陥を小さくするためには、押出機からダイまでの配管には樹脂の滞留部が極力少なくなるような構造にすることが好ましい。ダイの内部やリップにキズ等が極力無いものを用いることが好ましい。 ∙ If foreign matter such as scratches or plasticizer aggregates adheres to the die, streaky defects may occur. Such defects are also referred to as die lines, but in order to reduce surface defects such as die lines, it is preferable to have a structure in which the resin retention portion is minimized in the piping from the extruder to the die. . It is preferable to use a die that has as few scratches as possible inside the lip.
 押出機やダイなどの溶融樹脂と接触する内面は、表面粗さを小さくしたり、表面エネルギーの低い材質を用いるなどして、溶融樹脂が付着し難い表面加工が施されていることが好ましい。具体的には、ハードクロムメッキやセラミック溶射したものを表面粗さ0.2S以下となるように研磨したものが挙げられる。 The inner surface that comes into contact with the molten resin, such as an extruder or a die, is preferably subjected to surface treatment that makes it difficult for the molten resin to adhere to the surface by reducing the surface roughness or using a material with low surface energy. Specifically, a hard chrome plated or ceramic sprayed material is polished so that the surface roughness is 0.2 S or less.
 本発明において、冷却ロールには特に制限はないが、高剛性の金属ロールで内部に温度制御可能な熱媒体又は冷媒体が流れるような構造を備えるロールであり、大きさは限定されないが、溶融押し出されたフィルムを冷却するのに十分な大きさであればよく、通常冷却ロールの直径は100mmから1m程度である。 In the present invention, the cooling roll is not particularly limited, but is a roll having a structure in which a heat medium or a coolant that can be controlled in temperature flows with a highly rigid metal roll, and the size is not limited. The diameter of the cooling roll is usually about 100 mm to 1 m as long as it is sufficient to cool the extruded film.
 冷却ロールの表面材質は、炭素鋼、ステンレス、アルミニウム、チタンなどが挙げられる。さらに表面の硬度を上げたり、樹脂との剥離性を改良するため、ハードクロムメッキや、ニッケルメッキ、非晶質クロムメッキなどや、セラミック溶射等の表面処理を施すことが好ましい。 The surface material of the cooling roll includes carbon steel, stainless steel, aluminum, titanium and the like. Further, in order to increase the hardness of the surface or improve the releasability from the resin, it is preferable to perform a surface treatment such as hard chrome plating, nickel plating, amorphous chrome plating, or ceramic spraying.
 冷却ロール表面の表面粗さは、Raで0.1μm以下とすることが好ましく、さらに0.05μm以下とすることが好ましい。ロール表面が平滑であるほど、得られるフィルムの表面も平滑にできるのである。もちろん表面加工した表面はさらに研磨し上述した表面粗さとすることが好ましい。 The surface roughness of the cooling roll surface is preferably 0.1 μm or less in terms of Ra, and more preferably 0.05 μm or less. The smoother the roll surface, the smoother the surface of the resulting film. Of course, it is preferable that the surface processed is further polished to have the above-described surface roughness.
 本発明において、弾性タッチロールとしては、特開平03-124425号、特開平08-224772号、特開平07-100960号、特開平10-272676号、WO97/028950号、特開平11-235747号、特開2002-36332号、特開2005-172940号や特開2005-280217号各公報に記載されているような表面が薄膜金属スリーブ被覆シリコンゴムロールを使用することができる。 In the present invention, as an elastic touch roll, JP-A-03-124425, JP-A-08-224772, JP-A-07-1000096, JP-A-10-272676, WO97 / 028950, JP-A-11-235747, As described in JP-A-2002-36332, JP-A-2005-172940, and JP-A-2005-280217, a thin-film metal sleeve-covered silicon rubber roll can be used.
 冷却ロールからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。 When peeling the film from the cooling roll, it is preferable to control the tension to prevent deformation of the film.
 〈延伸工程〉
 本発明では、上記のようにして得られたフィルムは冷却ロールに接する工程を通過後、さらに少なくとも1方向に1.01~3.0倍延伸することもできる。
<Extension process>
In the present invention, the film obtained as described above can be further stretched 1.01 to 3.0 times in at least one direction after passing through the step of contacting the cooling roll.
 好ましくは縦(フィルム搬送方向)、横(巾方向)両方向にそれぞれ1.1~2.0倍延伸することが好ましい。 Preferably, the film is stretched 1.1 to 2.0 times in both the longitudinal (film transport direction) and lateral (width direction) directions.
 延伸する方法は、公知のロール延伸機やテンターなどを好ましく用いることができる。 As the stretching method, a known roll stretching machine or tenter can be preferably used.
 通常、延伸倍率は1.1~3.0倍、好ましくは1.2~1.5倍であり、延伸温度は、通常、フィルムを構成する樹脂のTg~Tg+50℃、好ましくはTg~Tg+50℃の温度範囲で行われる。 Usually, the draw ratio is 1.1 to 3.0 times, preferably 1.2 to 1.5 times, and the drawing temperature is usually Tg to Tg + 50 ° C. of the resin constituting the film, preferably Tg to Tg + 50 ° C. In the temperature range.
 延伸は、長手方向もしくは幅手方向で制御された均一な温度分布下で行うことが好ましい。好ましくは±2℃以内、さらに好ましくは±1℃以内、特に好ましくは±0.5℃以内である。 The stretching is preferably performed under a uniform temperature distribution controlled in the longitudinal direction or the width direction. The temperature is preferably within ± 2 ° C, more preferably within ± 1 ° C, and particularly preferably within ± 0.5 ° C.
 本発明のフィルム状樹脂基材は、長尺フィルムであることが好ましく、具体的には、100m~5000m程度のものを示し、通常、ロール状で提供される形態のものである。また、フィルムの幅は1.3~4mであることが好ましく、1.4~2mであることがより好ましい。 The film-like resin base material of the present invention is preferably a long film, specifically, a film having a thickness of about 100 m to 5000 m, and usually in a form provided in a roll shape. The film width is preferably 1.3 to 4 m, more preferably 1.4 to 2 m.
 〈樹脂基材の製造装置〉
 図1は、本発明に係る樹脂基材の製造装置の一例の全体構成を示す概略フローシートである。図1において、樹脂基材の製造方法は、熱可塑性樹脂等のフィルム材料を混合した後、押出し機1を用いて、流延ダイ4から第1冷却ロール5上に溶融押し出し、第1冷却ロール5に外接させるとともに、更に、第2冷却ロール7、第3冷却ロール8の合計3本の冷却ロールに順に外接させて、冷却固化してフィルム10とする。次いで、剥離ロール9によって剥離したフィルム10を、次いで延伸装置12によりフィルムの両端部を把持して幅方向に延伸した後、巻取り装置16により巻き取る。また、平面性を矯正するために溶融フィルムを第1冷却ロール5表面に挟圧するタッチロール6が設けられている。このタッチロール6は表面が弾性を有し、第1冷却ロール5との間でニップを形成している。
<Resin substrate manufacturing equipment>
FIG. 1 is a schematic flow sheet showing an overall configuration of an example of a resin base material manufacturing apparatus according to the present invention. In FIG. 1, the resin base material is manufactured by mixing a film material such as a thermoplastic resin and then using the extruder 1 to melt and extrude from a casting die 4 onto a first cooling roll 5. 5, and is further circumscribed in order by a total of three cooling rolls of the second cooling roll 7 and the third cooling roll 8, and is cooled and solidified to form a film 10. Next, the film 10 peeled off by the peeling roll 9 is then stretched in the width direction by holding both ends of the film by the stretching device 12 and then wound by the winding device 16. In addition, a touch roll 6 is provided that clamps the molten film on the surface of the first cooling roll 5 in order to correct the flatness. The touch roll 6 has an elastic surface and forms a nip with the first cooling roll 5.
 本発明において、製造装置には、ベルト及びロールを自動的に清掃する装置を付加させることが好ましい。清掃装置については特に限定はないが、例えば、ブラシ・ロール、吸水ロール、粘着ロール、ふき取りロール等をニップする方式、清浄エアーを吹き掛けるエアーブロー方式、レーザーによる焼却装置、あるいはこれらの組み合わせなどがある。 In the present invention, it is preferable to add a device for automatically cleaning the belt and the roll to the manufacturing apparatus. There is no particular limitation on the cleaning device, but for example, a method of niping a brush roll, a water absorbing roll, an adhesive roll, a wiping roll, etc., an air blowing method for spraying clean air, a laser incinerator, or a combination thereof. is there.
 清掃用ロールをニップする方式の場合、ベルト線速度とローラ線速度を変えると清掃効果が大きい。 ¡In the case of a system in which a cleaning roll is nipped, the cleaning effect is great if the belt linear velocity and roller linear velocity are changed.
 (太陽電池モジュール用バックシート)
 本発明においては、前述した本発明の防湿フィルムを用いて種々の態様の太陽電池モジュール用バックシートを作製することができる。
(Back sheet for solar cell module)
In this invention, the solar cell module backsheet of various aspects can be produced using the moisture-proof film of this invention mentioned above.
 以下、典型的な例について説明するが、これに限定されるものではない。 Hereinafter, a typical example will be described, but the present invention is not limited to this.
 図2に示す太陽電池モジュール用のバックシート(10A)は、内面基材(11A)と外面基材(13A)とがバリア層(12A)を介して積層されてなるものである。 The back sheet (10A) for a solar cell module shown in FIG. 2 is formed by laminating an inner surface base material (11A) and an outer surface base material (13A) via a barrier layer (12A).
 そして、バリア層(12A)は、内面基材(11A)側に配置されたアルミニウム箔からなる第1バリア層(12Aa)と、外面基材(13A)側に配置されたバリア性を有する樹脂フィルムからなる第2バリア層(12Ab)が例えば二液反応型のポリウレタン樹脂系接着剤(12Ac)を介して積層された構成からなる。 The barrier layer (12A) includes a first barrier layer (12Aa) made of an aluminum foil disposed on the inner surface base material (11A) side, and a resin film having a barrier property disposed on the outer surface base material (13A) side. The second barrier layer (12Ab) made of, for example, is laminated with a two-component reaction type polyurethane resin adhesive (12Ac) interposed therebetween.
 第1バリア層(12Aa)を構成するアルミニウム箔は、厚さが5~50μm程度のものが好適に使用できる。 The aluminum foil constituting the first barrier layer (12Aa) can preferably be used with a thickness of about 5 to 50 μm.
 アルミニウム箔のバリア性はほぼ0g/m・dayであるため、アルミニウム箔層の劣化防止及び長寿命化は、そのまま太陽電池モジュールへの水蒸気の浸入防止を意味する。 Since the barrier property of the aluminum foil is approximately 0 g / m 2 · day, prevention of deterioration and extension of the life of the aluminum foil layer means prevention of water vapor from entering the solar cell module as it is.
 第2バリア層(12Ab)を構成する樹脂フィルムとしては、厚さが5~50μm程度のポリエステルフィルム、厚さが10~50μm程度のエチレン/ビニルアルコール共重合体(EVOH)フィルム等のバリア性を有する樹脂基材(フィルム)が好ましく使用できる。 The resin film constituting the second barrier layer (12Ab) has a barrier property such as a polyester film having a thickness of about 5 to 50 μm and an ethylene / vinyl alcohol copolymer (EVOH) film having a thickness of about 10 to 50 μm. The resin base material (film) which has can be used preferably.
 第2バリア層(12Ab)の表面に設けられた防湿層を構成する無機化合物としては、酸化ケイ素又は酸化アルミニウム、酸化マグネシウム、あるいはそれらの混合物が好ましく使用できる。なお、防湿層の厚さは、5~100nmの範囲内であることが好ましい。 As the inorganic compound constituting the moisture-proof layer provided on the surface of the second barrier layer (12Ab), silicon oxide, aluminum oxide, magnesium oxide, or a mixture thereof can be preferably used. The thickness of the moisture-proof layer is preferably in the range of 5 to 100 nm.
 なお、第1バリア層(12Aa)と第2バリア層(12Ab)とを、二液反応型のポリウレタン樹脂系接着剤(12Ac)を用いてドライラミネート法により貼り合わせ、バリア層(12A)とする。ポリウレタン樹脂系接着剤のほかに、ポリエステル樹脂系、ポリエーテルアクリル樹脂系の接着剤を用いることもできる。 The first barrier layer (12Aa) and the second barrier layer (12Ab) are bonded together by a dry lamination method using a two-component reaction type polyurethane resin adhesive (12Ac) to form a barrier layer (12A). . In addition to the polyurethane resin-based adhesive, a polyester resin-based or polyether acrylic resin-based adhesive can also be used.
 バリア層(12A)をこのような構成とすることにより、第1バリア層(12Aa)のアルミニウム箔で最高レベルの酸素、水蒸気バリア性を持たせ、また、第2バリア層(12Ab)の働きによりバックシート中のアルミニウム箔に触れる酸素、水蒸気が遮断されるため、長時間経過しても酸化、加水分解による劣化が防止されて長期間にわたりアルミニウム箔のバリア性が保持できる。 By configuring the barrier layer (12A) in this way, the aluminum foil of the first barrier layer (12Aa) has the highest level of oxygen and water vapor barrier properties, and the second barrier layer (12Ab) works. Since oxygen and water vapor that touch the aluminum foil in the back sheet are blocked, deterioration due to oxidation and hydrolysis is prevented even after a long time, and the barrier property of the aluminum foil can be maintained for a long time.
 プラスチックフィルムはアルミニウム箔と比較して、耐酸化特性、耐加水分解性に対して極端に優位性があるため、このような構成で使用することは非常に好ましい。 Since plastic films are extremely superior to oxidation resistance and hydrolysis resistance compared to aluminum foil, it is very preferable to use them in such a configuration.
 内面基材(11A)や外面基材(13A)としては、前記の樹脂基材が好ましく使用できる。 As the inner surface base material (11A) and the outer surface base material (13A), the above resin base materials can be preferably used.
 これらの組み合わせ及び厚さは、バックシートに求められる絶縁性に影響を与えるため、それぞれの仕様で要求される素材と厚さの組み合わせを別途選定する必要があるが、一般的にはフッ素系基材ならば20~50μm程度、ポリエステル基材であるならば50~250μm程度のものが好適に仕様できる。なお、内面基材(11A)と外面基材(13A)とは、材質を同じにしても良いし、違えても良い。 Since these combinations and thickness affect the insulation required for the backsheet, it is necessary to select the combination of materials and thickness required for each specification separately. A material of about 20 to 50 μm and a polyester base material of about 50 to 250 μm can be suitably used. The inner surface base material (11A) and the outer surface base material (13A) may be made of the same material or different materials.
 内面基材(11A)とバリア層(12A)、バリア層(12A)と外面基材(13A)の貼り合わせは、内面基材(11A)と第1バリア層(12Aa)を対向させ、また、第2バリア層(12Ab)と外面基材(13A)を対向させ、第1バリア層(12Aa)と第2バリア層(12Ab)とを二液反応型のポリウレタン樹脂系接着剤(12Ac)を用いてドライラミネート法により貼り合わせたのと同様に、二液反応型のポリウレタン樹脂系接着剤(12Ac)を用いてドライラミネート法により行うことができる。 Bonding of the inner surface base material (11A) and the barrier layer (12A), the barrier layer (12A) and the outer surface base material (13A) makes the inner surface base material (11A) and the first barrier layer (12Aa) face each other, The second barrier layer (12Ab) and the outer surface base material (13A) are opposed to each other, and the first barrier layer (12Aa) and the second barrier layer (12Ab) are made of a two-component reaction type polyurethane resin adhesive (12Ac). In the same manner as the pasting by the dry laminating method, it can be performed by the dry laminating method using the two-component reaction type polyurethane resin adhesive (12Ac).
 (太陽電池モジュール)
 本発明の防湿フィルムは、種々の態様の太陽電池モジュールに適用できる。
(Solar cell module)
The moisture-proof film of the present invention can be applied to various types of solar cell modules.
 図3は、本発明の防湿フィルムをバックシート(10A)として用いて作製した太陽電池モジュールを模式的に示したもので、図中、20Aは充填材(EVA)、30Aは太陽電池素子、40Aは前面ガラス、50Aはアルミニウム枠、60Aはリード線、70Aは端子、80Aは端子箱、90Aはシール材(ブチルゴム)をそれぞれ示している。 FIG. 3 schematically shows a solar cell module produced using the moisture-proof film of the present invention as a back sheet (10A), in which 20A is a filler (EVA), 30A is a solar cell element, and 40A. Is a front glass, 50A is an aluminum frame, 60A is a lead wire, 70A is a terminal, 80A is a terminal box, and 90A is a sealing material (butyl rubber).
 太陽電池素子としては、種々の態様の素子を用いることができる。例えば、特開2004-2261号公報に開示されているような、光透過性絶縁基板上に、テクスチャ構造を有する光透過性導電膜、光電変換膜、裏面電極膜を順次積層して設け、かつ、当該光電変換膜及び裏面電極膜が欠落している部分を設けて当該該欠落部分に光反射性絶縁膜を設けた態様の太陽電池素子等を用いることができる。 As the solar cell element, various types of elements can be used. For example, a light-transmitting conductive film having a texture structure, a photoelectric conversion film, and a back electrode film are sequentially stacked on a light-transmitting insulating substrate as disclosed in JP-A-2004-2261, and In addition, a solar cell element or the like having an aspect in which the photoelectric conversion film and the back electrode film are missing and a light-reflective insulating film is provided in the lacking part can be used.
 以下、太陽電池モジュールの主要構成要素について説明する。 Hereinafter, the main components of the solar cell module will be described.
 〈光反射性絶縁膜〉
 「光反射性絶縁膜」とは、入射光を反射して光電変換膜に導ける性質を有する絶縁性の膜を意味し、かかる性質を有する膜であれば、有機物、無機物を問わず、特に制限なく使用できる。光反射性絶縁膜として、光電変換膜が感度を有する範囲の波長のすべて又はその一部を反射する反射スペクトルを有する膜を使用することは、入射光の利用効率を向上させる観点から、好ましい態様である。
<Light reflective insulating film>
“Light-reflective insulating film” means an insulating film having the property of reflecting incident light and guiding it to a photoelectric conversion film, and is not particularly limited as long as it has such a property, regardless of whether it is organic or inorganic. Can be used without Use of a film having a reflection spectrum that reflects all or part of the wavelength within a range in which the photoelectric conversion film has sensitivity as the light-reflective insulating film is preferable from the viewpoint of improving the utilization efficiency of incident light. It is.
 たとえば、光電変換膜としてシリコンを使用する場合は、シリコンの光吸収領域である波長1000nm以下の光のすべて又はその一部を反射する光反射性絶縁膜を使用するのが好ましい。さらに、光源として太陽光を用いる場合は、太陽光は400~700nmの可視光領域に大きな放射スペクトルを有することから、かかる領域の波長の反射スペクトルを有する有色膜が好ましい。特に、可視光領域波長の光の大部分を反射する観点から、白色膜はより好ましい。 For example, when silicon is used as the photoelectric conversion film, it is preferable to use a light-reflective insulating film that reflects all or part of light having a wavelength of 1000 nm or less, which is a light absorption region of silicon. Furthermore, when sunlight is used as the light source, since sunlight has a large emission spectrum in the visible light region of 400 to 700 nm, a colored film having a reflection spectrum having a wavelength in such a region is preferable. In particular, the white film is more preferable from the viewpoint of reflecting most of the light in the visible light region wavelength.
 また、光反射性絶縁膜の形成方法には特に制限がなく、たとえば薄膜状の有機物又は有機物を必要部分に付着等することにより、又は有機塗料又は無機塗料を必要部分に塗布することにより形成することができる。 The method for forming the light-reflective insulating film is not particularly limited. For example, the light-reflective insulating film is formed by adhering a thin-film organic substance or organic substance to a necessary part, or by applying an organic paint or an inorganic paint to the necessary part. be able to.
 光反射性絶縁膜の膜厚には、特に制限はないが、光反射強度、膜の剥離防止等の観点から、0.01~100μmが好ましい。 The film thickness of the light-reflective insulating film is not particularly limited, but is preferably from 0.01 to 100 μm from the viewpoints of light reflection intensity and prevention of film peeling.
 〈光電変換膜〉
 「光電変換膜」とは、光エネルギーを電気エネルギーに変換する性質を有する膜をいい、かかる性質を有する膜であれば、有機物、無機物を問わず、特に制限なく使用できる。太陽電池用の光電変換薄膜としては、アモルファスシリコン、多結晶シリコン等が一般的に用いられている。
<Photoelectric conversion film>
The “photoelectric conversion film” refers to a film having a property of converting light energy into electrical energy, and any film having such properties can be used without any limitation, regardless of whether it is an organic material or an inorganic material. As photoelectric conversion thin films for solar cells, amorphous silicon, polycrystalline silicon, or the like is generally used.
 光電変換膜の膜厚には、特に制限はないが、光電変換効率の観点から、0.2~10μmが好ましい。 The film thickness of the photoelectric conversion film is not particularly limited, but is preferably 0.2 to 10 μm from the viewpoint of photoelectric conversion efficiency.
 〈光透過性導電膜〉
 「光透過性導電膜」とは、光電変換膜で生じた電流を取り出すために光電変換膜の光入射側に設けられた光透過性の電極を意味し、かかる性質を有する膜であれば特に制限はないが、一般にはインジウム錫酸化物(ITO)、錫酸化物(SnO)等が用いられる。
<Light transmissive conductive film>
The “light transmissive conductive film” means a light transmissive electrode provided on the light incident side of the photoelectric conversion film in order to take out the current generated in the photoelectric conversion film. Although there is no limitation, indium tin oxide (ITO), tin oxide (SnO 2 ) or the like is generally used.
 光透過性導電膜の膜厚には、特に制限はないが、光電変換効率の観点から、0.1~2μmが好ましい。 The thickness of the light transmissive conductive film is not particularly limited, but is preferably 0.1 to 2 μm from the viewpoint of photoelectric conversion efficiency.
 〈裏面電極膜〉
 「裏面電極膜」とは、光電変換膜で生じた電流を取り出すために光電変換膜の裏面(光入射の反対側)に設けられた電極を意味し、光を透過する必要がないので、通常金属電極が用いられる。金属電極としては、通常0.1~1μm程度の銀やアルミニウム等が用いられる。
<Back electrode film>
“Back-side electrode film” means an electrode provided on the back side of the photoelectric conversion film (on the opposite side of the light incidence) for taking out the current generated in the photoelectric conversion film, and it is not necessary to transmit light. A metal electrode is used. As the metal electrode, silver, aluminum or the like of about 0.1 to 1 μm is usually used.
 〈光反射性絶縁膜〉
 「光透過性絶縁膜」とは、入射光を透過する性質を有する絶縁性の膜であって、光透過性導電膜より低い屈折率を有していることが必要である。光透過性導電膜以上の屈折率では光透過性絶縁膜から入射光が漏れてしまうからである。光透過性絶縁膜であってもその屈折率が光透過性絶縁膜より低ければ、光透過性導電膜と光透過性絶縁膜との界面に形成されているテクスチャ構造によって、入射光が光透過性導電膜及び光透過性絶縁基板内に封じ込められるからである。かかる性質を有するものであれば、有機物、無機物を問わず、特に制限なく使用できる。透明膜及び半透明膜を含む。
<Light reflective insulating film>
The “light-transmitting insulating film” is an insulating film having a property of transmitting incident light and needs to have a refractive index lower than that of the light-transmitting conductive film. This is because incident light leaks from the light transmissive insulating film at a refractive index higher than that of the light transmissive conductive film. Even if it is a light-transmitting insulating film, if its refractive index is lower than that of the light-transmitting insulating film, incident light is transmitted through the texture structure formed at the interface between the light-transmitting conductive film and the light-transmitting insulating film. This is because the conductive film and the light-transmissive insulating substrate are sealed. Any material having such properties can be used without particular limitation regardless of whether it is organic or inorganic. Includes transparent and translucent films.
 本発明において、光透過性導電膜以下の屈折率を有する光透過性絶縁膜を用いる場合、該光透過性絶縁膜の表面にさらに反射膜を設けることも、入射光の漏れをいっそう少なくする観点から好ましい。この反射膜は、入射光を反射して光電変換膜に導ける性質を有する膜であれば足り、光反射性絶縁膜のみならず光反射性導電膜等も含まれる。特に、屈折率が光透過性導電膜に等しいを用いる場合は、入射光の漏れを防止するために反射膜は必要である。 In the present invention, when a light-transmitting insulating film having a refractive index equal to or lower than that of the light-transmitting conductive film is used, a reflection film may be further provided on the surface of the light-transmitting insulating film to further reduce the leakage of incident light. To preferred. The reflective film may be a film having a property of reflecting incident light and guiding it to the photoelectric conversion film, and includes not only a light reflective insulating film but also a light reflective conductive film. In particular, when using a refractive index equal to that of the light-transmitting conductive film, a reflective film is necessary to prevent leakage of incident light.
 なお、ここで、「テクスチャ構造」とは、光透過性導電膜、光電変換膜及び裏面電極膜の表面形状が、微小な0.1~10μm程度の微小なピラミッドが多数集まった構造と採っていることをいう。織物の構造に似ていることからテクスチャ構造と呼ばれる。光入射面がテクスチャ構造になっているときは反射光を低減させ、また光出射面がテクスチャ構造になっているときは、テクスチャ表面での反射により再入射光と光透過性絶縁基板表面とのなす角が小さくなり、最初の光入射面である光透過性絶縁基板表面からの光の出射を低減させるため、入射光を光透過性導電膜及び光電変換膜に閉じ込める働きを有する。 Here, the “texture structure” is a structure in which the surface shapes of the light-transmitting conductive film, the photoelectric conversion film, and the back electrode film are a collection of a large number of minute pyramids of about 0.1 to 10 μm. It means being. Because it resembles the structure of a fabric, it is called a texture structure. When the light incident surface has a texture structure, the reflected light is reduced, and when the light output surface has a texture structure, reflection between the light incident surface and the surface of the light-transmissive insulating substrate is caused by reflection on the texture surface. In order to reduce the angle formed and reduce the emission of light from the surface of the light-transmitting insulating substrate, which is the first light incident surface, the incident light is confined in the light-transmitting conductive film and the photoelectric conversion film.
 以下、本発明について実施例を挙げて説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although an example is given and the present invention is explained, the present invention is not limited to these.
 [比較例1]
 (真空蒸着による防湿層の形成工程)
 基材として、2軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ100μm)を用いた。次に、巻き取り式の真空蒸着装置を用い、チャンバーの到達真空度が3.0×10-5torr(4.0×10-3Pa)になるまで排気した後、酸素ガスをコーティングドラムの近傍に、チャンバー内の圧力を3.0×10-4torr(4.0×10-2Pa)に保って導入し、蒸発源の一酸化ケイ素をピアス型電子銃により、約10kWの電力で加熱して蒸着させ、コーティングドラム上を120m/minの速度で走行するポリエステルフィルム上に、厚さが100nmの酸化ケイ素の防湿層を形成し、比較例1のサンプルを作製した。
[Comparative Example 1]
(Moisture-proof layer formation process by vacuum deposition)
A biaxially stretched polyester film (polyethylene terephthalate film, thickness 100 μm) was used as the substrate. Next, after evacuating until the ultimate vacuum of the chamber reaches 3.0 × 10 −5 torr (4.0 × 10 −3 Pa) using a wind-up type vacuum deposition apparatus, oxygen gas is supplied to the coating drum. In the vicinity, the pressure in the chamber was introduced at 3.0 × 10 −4 torr (4.0 × 10 −2 Pa), and the silicon monoxide of the evaporation source was supplied by a pierce-type electron gun at a power of about 10 kW. A sample of Comparative Example 1 was prepared by forming a moisture-proof layer of silicon oxide having a thickness of 100 nm on a polyester film that was heated and evaporated to run on a coating drum at a speed of 120 m / min.
 [比較例2]
 (有機金属化合物を原料とするゾルを用いる防湿層形成工程)
 有機金属化合物を原料とするゾル溶液を調製するため、テトラエトキシシラン(和光純薬製)0.04molをポリプロピレンビーカーに秤量する。撹拌しながらエチルアルコール0.25molを添加し、マグネチックスターラーにより10分間撹拌する。更に、純水0.24molを添加し10分間撹拌した後、1mol/L HCL 1mlを添加し、ゾル溶液-1を調製した。2軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ100μm)の片面側に、前述のゾル溶液-1を、乾燥後の膜の厚さが100nmとなるようにバーコーティングし、ドライオーブンにて150℃、30分加熱乾燥し、比較例2のサンプルを作製した。
[Comparative Example 2]
(Moisture-proof layer forming process using sol made from organometallic compound)
In order to prepare a sol solution using an organometallic compound as a raw material, 0.04 mol of tetraethoxysilane (manufactured by Wako Pure Chemical Industries, Ltd.) is weighed in a polypropylene beaker. While stirring, 0.25 mol of ethyl alcohol is added and stirred for 10 minutes with a magnetic stirrer. Further, 0.24 mol of pure water was added and stirred for 10 minutes, and then 1 ml of 1 mol / L HCL was added to prepare a sol solution-1. One side of a biaxially stretched polyester film (polyethylene terephthalate film, thickness 100 μm) is bar-coated with the above-mentioned sol solution-1 so that the thickness of the dried film becomes 100 nm, and is 150 ° C. in a dry oven. The sample of Comparative Example 2 was prepared by heating and drying for 30 minutes.
 [実施例1]
 有機金属化合物を原料とするゾル溶液を調製するため、テトラエトキシシラン(和光純薬製)0.04molをポリプロピレンビーカーに秤量する。撹拌しながらエチルアルコール0.25molを添加し、マグネチックスターラーにより10分間撹拌する。更に、純水0.24molを添加し10分間撹拌した後、1mol/L HCL 1mlを添加し、ゾル溶液-1を調製した。2軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ100μm)の片面側に、前述のゾル溶液-1を、乾燥後の膜の厚さが100nmとなるようにバーコーティングし、ドライオーブンにて80℃、30分加熱乾燥した後、近赤外線乾燥機(日本電熱(株)製ペイントドライヤーPDH1000)を用いて、1kWの出力にて、塗布面から50cmの距離において、0.5秒間の赤外線照射を10回繰り返し、実施例1のサンプルを作製した。
[Example 1]
In order to prepare a sol solution using an organometallic compound as a raw material, 0.04 mol of tetraethoxysilane (manufactured by Wako Pure Chemical Industries, Ltd.) is weighed in a polypropylene beaker. While stirring, 0.25 mol of ethyl alcohol is added and stirred for 10 minutes with a magnetic stirrer. Further, 0.24 mol of pure water was added and stirred for 10 minutes, and then 1 ml of 1 mol / L HCL was added to prepare a sol solution-1. One side of a biaxially stretched polyester film (polyethylene terephthalate film, thickness 100 μm) is bar-coated with the above-mentioned sol solution-1 so that the thickness of the dried film becomes 100 nm, and is 80 ° C. in a dry oven. After heating and drying for 30 minutes, using a near-infrared dryer (Nippon Electric Heat Co., Ltd. paint dryer PDH1000), 10 seconds of irradiation with an infrared ray for 0.5 seconds was performed at a distance of 50 cm from the coating surface at an output of 1 kW. Repeatedly, the sample of Example 1 was produced.
 [実施例2]
 有機金属化合物を原料とするゾル溶液を調製するため、テトラエトキシシラン(和光純薬製)0.04molをポリプロピレンビーカーに秤量する。撹拌しながらエチルアルコール0.25molを添加し、マグネチックスターラーにより10分間撹拌する。更に、純水0.24molを添加し10分間撹拌した後、1mol/L HCL 1mlを添加し、ゾル溶液-1を調製した。前記ポリエステルフィルムの片面側に、前述のゾル溶液-1を、乾燥後の膜の厚さが100nmとなるようにバーコーティングし、ドライオーブンにて80℃、30分加熱乾燥した後、市販の超音波発生装置により、1.05MHzの周波数帯で1分間、超音波振動を与えることにより、実施例2のサンプルを作製した。
[Example 2]
In order to prepare a sol solution using an organometallic compound as a raw material, 0.04 mol of tetraethoxysilane (manufactured by Wako Pure Chemical Industries, Ltd.) is weighed in a polypropylene beaker. While stirring, 0.25 mol of ethyl alcohol is added and stirred for 10 minutes with a magnetic stirrer. Further, 0.24 mol of pure water was added and stirred for 10 minutes, and then 1 ml of 1 mol / L HCL was added to prepare a sol solution-1. One side of the polyester film is bar-coated with the above-mentioned sol solution-1 so that the thickness of the dried film becomes 100 nm, dried by heating in a dry oven at 80 ° C. for 30 minutes, A sample of Example 2 was produced by applying ultrasonic vibration for 1 minute in a 1.05 MHz frequency band with a sound wave generator.
 [実施例3]
 有機金属化合物を原料とするゾル溶液を調製するため、テトラエトキシシラン(和光純薬製)0.04molをポリプロピレンビーカーに秤量する。撹拌しながらエチルアルコール0.25molを添加し、マグネチックスターラーにより10分間撹拌する。更に、純水0.24molを添加し10分間撹拌した後、1mol/L HCL 1mlを添加し、ゾル溶液-1を調製した。前記ポリエステルフィルムの片面側に、前述のゾル溶液-1を、乾燥後の膜の厚さが100nmとなるようにバーコーティングし、ドライオーブンにて80℃、30分加熱乾燥した後、バッチ式マイクロ波加熱装置(山本ビニター(株)製)を使用し、2450MHzの周波数で30秒間加熱し、実施例3のサンプルを作製した。
[Example 3]
In order to prepare a sol solution using an organometallic compound as a raw material, 0.04 mol of tetraethoxysilane (manufactured by Wako Pure Chemical Industries, Ltd.) is weighed in a polypropylene beaker. While stirring, 0.25 mol of ethyl alcohol is added and stirred for 10 minutes with a magnetic stirrer. Further, 0.24 mol of pure water was added and stirred for 10 minutes, and then 1 ml of 1 mol / L HCL was added to prepare a sol solution-1. One side of the polyester film is bar-coated with the above-mentioned sol solution-1 so that the thickness of the dried film becomes 100 nm, dried by heating in a dry oven at 80 ° C. for 30 minutes, and then batch-type micro A sample of Example 3 was prepared by using a wave heating device (manufactured by Yamamoto Vinita Co., Ltd.) and heating at a frequency of 2450 MHz for 30 seconds.
 [実施例4]
 有機金属化合物を原料とするゾル溶液を調製するため、アルミニウムイソプロポキシド(和光純薬製)0.04molをポリプロピレンビーカーに秤量する。撹拌しながらイソプロピルアルコール0.25molを添加し、マグネチックスターラーにより10分間撹拌する。更に、純水0.24molを添加し10分間撹拌した後、1mol/L HCL 1mlを添加し、ゾル溶液-2を調製した。前記ポリエステルフィルムの片面側に、前述のゾル溶液-1を、乾燥後の膜の厚さが100nmとなるようにバーコーティングし、ドライオーブンにて80℃、30分加熱乾燥した後、近赤外線乾燥機(日本電熱(株)製ペイントドライヤーPDH1000)を用いて、1kWの出力にて、塗布面から50cmの距離において、0.5秒間の赤外線照射を10回繰り返し、実施例4のサンプルを作製した。
[Example 4]
In order to prepare a sol solution using an organometallic compound as a raw material, 0.04 mol of aluminum isopropoxide (manufactured by Wako Pure Chemical Industries, Ltd.) is weighed in a polypropylene beaker. Add 0.25 mol of isopropyl alcohol with stirring and stir for 10 minutes with a magnetic stirrer. Further, 0.24 mol of pure water was added and stirred for 10 minutes, and then 1 ml of 1 mol / L HCL was added to prepare a sol solution-2. One side of the polyester film is bar-coated with the aforementioned sol solution-1 so that the thickness of the dried film becomes 100 nm, dried by heating in a dry oven at 80 ° C. for 30 minutes, and then dried by near infrared rays. The sample of Example 4 was produced by repeating infrared irradiation for 0.5 seconds 10 times at a distance of 50 cm from the coating surface at an output of 1 kW using a paint dryer (Nippon Electric Heat Co., Ltd. paint dryer PDH1000). .
 [実施例5]
 (有機金属化合物を原料とするゾル溶液の調製)
 固形分10質量%に調整したリチウムシリケート水溶液(LiO・nSiO、n=約5mol比)10gに、テトラエチルオルソシリケート(Si(OC:TEOSと略記)8.3g(0.04mol)と、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(チッソ製 サイラーエースS530)9.9g(0.04mol)と、0.1Nの塩酸18gとを加え18時間攪拌し、ゾル溶液-3を調製した。
[Example 5]
(Preparation of sol solution using organometallic compound as raw material)
To 10 g of an aqueous lithium silicate solution (Li 2 O.nSiO 2 , n = about 5 mol ratio) adjusted to a solid content of 10% by mass, tetraethyl orthosilicate (Si (OC 2 H 5 ) 4 : abbreviated as TEOS) 8.3 g (0 0.04 mol), 9.9 g (0.04 mol) of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (manufactured by Chisso, Siler Ace S530) and 18 g of 0.1N hydrochloric acid were added and stirred for 18 hours. Sol solution-3 was prepared.
 (ポリエチレンイミン溶液の調製)
 ポリエチレンイミン(日本触媒社製 エポミンSP-012(商品名))の10%イソプロピルアルコール溶液を調製し、ポリエチレンイミン溶液とした。
(Preparation of polyethyleneimine solution)
A 10% isopropyl alcohol solution of polyethyleneimine (Epomin SP-012 (trade name) manufactured by Nippon Shokubai Co., Ltd.) was prepared as a polyethyleneimine solution.
 ゾル溶液-3及びポリエチレンイミン溶液を、質量比5:5で混合し、ゾルコート層形成用塗工液を調製した。このゾルコート層形成用塗工液を前記前記ポリエステルフィルムの片面側に、乾燥膜厚100nmとなるようにバーコーティングし、ドライオーブンにて80℃、30分加熱乾燥した後、近赤外線乾燥機(日本電熱(株)製ペイントドライヤーPDH1000)を用いて、1kWの出力にて、塗布面から50cmの距離において、0.5秒間の赤外線照射を10回繰り返し、実施例5のサンプルを作製した。 The sol solution-3 and the polyethyleneimine solution were mixed at a mass ratio of 5: 5 to prepare a sol coat layer forming coating solution. This sol-coat layer-forming coating solution is bar-coated on one side of the polyester film so as to have a dry film thickness of 100 nm, dried by heating in a dry oven at 80 ° C. for 30 minutes, and then a near-infrared dryer (Japan) The sample of Example 5 was produced by repeating infrared irradiation for 0.5 seconds 10 times at a distance of 50 cm from the coating surface at an output of 1 kW using a paint dryer PDH1000 manufactured by Denki Co., Ltd.
 [実施例6]
 (合成樹脂層塗布液の調製)
 2Lのステンレスビーカーに1000gのシクロヘキサノンを秤量し、マグネチックスターラーにて撹拌しながら、シクロオレフィンポリマー(日本ゼオン製 ZEONOR 1060R)を200g添加し、完全に溶解したことを確認し、合成樹脂層塗布液-1とした。
[Example 6]
(Preparation of synthetic resin layer coating solution)
Weighing 1000 g of cyclohexanone in a 2 L stainless beaker, stirring with a magnetic stirrer, adding 200 g of cycloolefin polymer (ZEONOR 1060R manufactured by Nippon Zeon Co., Ltd.) and confirming that it was completely dissolved, synthetic resin layer coating solution It was set to -1.
 実施例1のサンプルの防湿層の上に、上記合成樹脂層塗布液-1を、乾燥膜厚が3μmとなるように塗布した後に、ドライオーブンにて75℃20分乾燥し、実施例6のサンプルを得た。 On the moisture-proof layer of the sample of Example 1, the synthetic resin layer coating solution-1 was applied so that the dry film thickness was 3 μm, and then dried in a dry oven at 75 ° C. for 20 minutes. A sample was obtained.
 [実施例7]
 2軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ100μm)の片面側に、ジブチルエーテル中(クラリアント社製 NL120)の3%パーヒドロポリシラザン液を用いて、乾燥後の膜の厚さが100nmとなるようにバーコーティングし、3分間自然乾燥した後、近赤外線乾燥機(日本電熱(株)製ペイントドライヤーPDH1000)を用いて、1kWの出力にて、塗布面から50cmの距離において、0.3秒間の赤外線照射を15回繰り返し、実施例7のサンプルを作製した。
[Example 7]
On one side of a biaxially stretched polyester film (polyethylene terephthalate film, thickness 100 μm), using a 3% perhydropolysilazane solution in dibutyl ether (NL120 manufactured by Clariant), the thickness of the dried film becomes 100 nm. After bar-coating for 3 minutes and air drying for 3 minutes, using a near-infrared dryer (Nippon Electric Heat Co., Ltd. paint dryer PDH1000) at a power of 1 kW and a distance of 50 cm from the coated surface for 0.3 seconds The sample of Example 7 was prepared by repeating infrared irradiation of 15 times.
 [実施例8]
 実施例7と同様に、乾燥後の膜の厚さが100nmとなるようにバーコーティングし、3分間自然乾燥した後、市販の超音波発生装置により、1.05MHzの周波数帯で2分間、超音波振動を与えることにより、実施例8のサンプルを作製した。
[Example 8]
In the same manner as in Example 7, bar coating was performed so that the thickness of the dried film was 100 nm, followed by natural drying for 3 minutes, and then for 2 minutes in a frequency band of 1.05 MHz using a commercially available ultrasonic generator. A sample of Example 8 was produced by applying sonic vibration.
 [実施例9]
 実施例7と同様に、乾燥後の膜の厚さが100nmとなるようにバーコーティングし、3分間自然乾燥した後、バッチ式マイクロ波加熱装置(山本ビニター(株)製)を使用し、2450MHzの周波数で50秒間加熱し、実施例9のサンプルを作製した。
[Example 9]
In the same manner as in Example 7, bar coating was performed so that the thickness of the dried film was 100 nm, and after natural drying for 3 minutes, a batch type microwave heating apparatus (manufactured by Yamamoto Vinita Co., Ltd.) was used, and 2450 MHz. The sample of Example 9 was produced by heating at a frequency of 50 seconds.
 [評価]
 <酸素透過度>
 酸素透過度は、測定温度23℃、湿度90%RHの条件下で、酸素ガス透過度測定装置(モダンコントロール(株)製、OX-TRAN 2/20:商品名)を用いて測定した値である。また、上記水蒸気透過度は、測定温度37.8℃、湿度100%RHの条件下で、水蒸気透過度測定装置(モダンコントロール(株)製、PERMATRAN-W 3/31:商品名)を用いて測定した値である。
[Evaluation]
<Oxygen permeability>
The oxygen permeability is a value measured using an oxygen gas permeability measuring device (manufactured by Modern Control Co., Ltd., OX-TRAN 2/20: trade name) under the conditions of a measurement temperature of 23 ° C. and a humidity of 90% RH. is there. In addition, the water vapor permeability is measured using a water vapor permeability measuring device (manufactured by Modern Control Co., Ltd., PERMATRAN-W 3/31: trade name) under the conditions of a measurement temperature of 37.8 ° C. and a humidity of 100% RH. It is a measured value.
 <水蒸気透過度>
 水蒸気透過度は、測定温度40.0℃、湿度90%RHの条件下で、水蒸気透過度測定装置(モダンコントロール(株)製、PERMATRAN-W 3/31:商品名)を用いて測定した値である。
<Water vapor permeability>
The water vapor transmission rate is a value measured using a water vapor transmission measurement device (manufactured by Modern Control Co., Ltd., PERMATRAN-W 3/31: trade name) under the conditions of a measurement temperature of 40.0 ° C. and a humidity of 90% RH. It is.
 酸素透過度及び水蒸気透過度は、上述した方法により測定した。 Oxygen permeability and water vapor permeability were measured by the methods described above.
 得られた防湿フィルムの特性を評価した結果を下記表1に示す。 The results of evaluating the properties of the obtained moisture-proof film are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果から明らかなように、本発明に係る防湿フィルムは、水蒸気や酸素に対するバリア性において優れていることが分かる。比較例2については、加熱により樹脂フィルムが収縮変形し防湿フィルムとしての使用は不可能であった。 As is clear from the results shown in Table 1, it can be seen that the moisture-proof film according to the present invention is excellent in barrier properties against water vapor and oxygen. In Comparative Example 2, the resin film contracted and deformed by heating, so that it could not be used as a moisture-proof film.
 〔実施例10〕
 実施例1で作製した防湿フィルムの樹脂基材13Aの外面側に、二液反応型のポリウレタン樹脂系接着剤14Bを塗布し(塗布量は5g/m)、内面基材15Bとなる厚さ50μmの白色ポリエチレンテレフタレートフィルムを貼り合わせ、図4(a)の層構成からなる実施例10aの太陽電池用のバックシートを作製した。
Example 10
A two-component reaction type polyurethane resin adhesive 14B is applied to the outer surface side of the resin base material 13A of the moisture-proof film produced in Example 1 (the coating amount is 5 g / m 2 ), and the inner surface base material 15B has a thickness. A 50 μm white polyethylene terephthalate film was bonded to produce a solar cell backsheet of Example 10a having the layer configuration of FIG.
 この実施例10aのバックシートを用い、図2の如く、ガラス、充填材(EVA)、太陽電池素子、充填材(EVA)、バックシートを重ね合わせ、150℃-30分-1torrの真空加熱によりラミネートして実施例10bの太陽電池モジュールとした。 Using the back sheet of Example 10a, as shown in FIG. 2, the glass, the filler (EVA), the solar cell element, the filler (EVA), and the back sheet were superposed and vacuum heated at 150 ° C. for 30 minutes to 1 torr. Lamination was performed to obtain a solar cell module of Example 10b.
 同様の方法により、実施例2~9で作製した防湿フィルムについても、実施例11a~18aの太陽電池用バックシート(実施例16aの層構成は図4)及び実施例11b~18bの太陽電池モジュールとした。 For the moisture-proof films produced in Examples 2 to 9 by the same method, the solar cell backsheets of Examples 11a to 18a (the layer structure of Example 16a is FIG. 4) and the solar cell modules of Examples 11b to 18b It was.
 このようにして作製した実施例10b~18bの太陽電池モジュールを、85℃-85%RH環境下に0時間、1000時間、2000時間、3000時間放置後の水蒸気透過度を、JIS K7129の方法により測定した。その結果を表2に示す。 The water vapor permeability after leaving the solar cell modules of Examples 10b to 18b thus prepared in an environment of 85 ° C.-85% RH for 0 hours, 1000 hours, 2000 hours and 3000 hours was measured according to the method of JIS K7129. It was measured. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示した結果から明らかなように、本発明に係るバックシートは、水蒸気に対するバリア性において優れていることが分かる。 As is clear from the results shown in Table 2, it can be seen that the back sheet according to the present invention is excellent in barrier properties against water vapor.
 1 押出し機
 2 フィルター
 3 スタチックミキサー
 4 流延ダイ
 5 回転支持体(第1冷却ロール)
 6 挟圧回転体(タッチロール)
 7 回転支持体(第2冷却ロール)
 8 回転支持体(第3冷却ロール)
 9 剥離ロール
 10 フィルム
 11、13、14 搬送ロール
 12 延伸機
 15 スリッター
 16 巻き取り機
 F 本発明に係るフィルム状樹脂基材
 A 太陽電池モジュール
 10A バックシート
 11A 内面基材
 12A バリア層
 12Aa 第1バリア層
 12Ab 第2バリア層
 12Ac 着剤層
 13A 外面基材
 20A 充填材
 30A 太陽電池素子
 40A前面ガラス
 50A アルミニウム枠
 60A リード線
 70A 端子
 80A 端子箱
 90A シール材
 10B 太陽電池用バックシート
 11B 合成樹脂層
 12B 防湿層
 13B 樹脂基材
 14B 接着層
 15B 内面基材
DESCRIPTION OF SYMBOLS 1 Extruder 2 Filter 3 Static mixer 4 Casting die 5 Rotating support body (1st cooling roll)
6 Nipping pressure rotating body (touch roll)
7 Rotating support (second cooling roll)
8 Rotating support (3rd cooling roll)
DESCRIPTION OF SYMBOLS 9 Peeling roll 10 Film 11, 13, 14 Conveyance roll 12 Stretching machine 15 Slitter 16 Winding machine F Film-shaped resin base material which concerns on this invention A Solar cell module 10A Back sheet 11A Inner surface base material 12A Barrier layer 12Aa 1st barrier layer 12Ab Second barrier layer 12Ac Adhesive layer 13A Outer base material 20A Filler 30A Solar cell element 40A Front glass 50A Aluminum frame 60A Lead wire 70A Terminal 80A Terminal box 90A Sealing material 10B Solar cell backsheet 11B Synthetic resin layer 12B Moisture-proof layer 13B resin base material 14B adhesive layer 15B inner surface base material

Claims (11)

  1.  樹脂基材上に防湿層を設けた防湿フィルムであって、当該防湿層が、加熱により無機酸化物膜を形成するセラミック前駆体を塗布した後に、塗布膜の局所的加熱により形成された無機酸化物を含有することを特徴とする防湿フィルム。 A moisture-proof film provided with a moisture-proof layer on a resin substrate, wherein the moisture-proof layer is formed by applying a ceramic precursor that forms an inorganic oxide film by heating, and then forming an inorganic oxide by local heating of the coating film. A moisture-proof film comprising a product.
  2.  前記セラミック前駆体が、ゾル状の有機金属化合物であり、ケイ素(Si)、アルミニウム(Al)、リチウム(Li)、ジルコニウム(Zr)、チタン(Ti)、亜鉛(Zn)、及びバリウム(Ba)のうちの少なくとも一つの元素を含有することを特徴とする請求項1に記載の防湿フィルム。 The ceramic precursor is a sol-like organometallic compound, which is silicon (Si), aluminum (Al), lithium (Li), zirconium (Zr), titanium (Ti), zinc (Zn), and barium (Ba). The moisture-proof film according to claim 1, comprising at least one of the elements.
  3.  前記セラミック前駆体が、ポリシラザンを含有することを特徴とする請求項1又は請求項2に記載の防湿フィルム。 The moisture-proof film according to claim 1 or 2, wherein the ceramic precursor contains polysilazane.
  4.  前記防湿層の上側に、少なくとも一層の合成樹脂層を有することを特徴とする請求項1から請求項3までのいずれか一項に記載の防湿フィルム。 The moisture-proof film according to any one of claims 1 to 3, further comprising at least one synthetic resin layer above the moisture-proof layer.
  5.  前記合成樹脂層の合成樹脂が、シクロオレフィン系樹脂であることを特徴とする請求項4に記載の防湿フィルム。 The moisture-proof film according to claim 4, wherein the synthetic resin of the synthetic resin layer is a cycloolefin resin.
  6.  請求項1から請求項5までのいずれか一項に記載の防湿フィルムを製造する防湿フィルムの製造方法であって、少なくとも、(1)加熱により無機酸化物膜を形成するセラミック前駆体を塗布する工程と、(2)前記セラミック前駆体の塗布膜を局所的に加熱して無機酸化物を形成する工程とを有することを特徴とする防湿フィルムの製造方法。 It is a manufacturing method of the moisture-proof film which manufactures the moisture-proof film as described in any one of Claim 1- Claim 5, Comprising: (1) The ceramic precursor which forms an inorganic oxide film by heating is applied at least. A method for producing a moisture-proof film comprising: a step; and (2) a step of locally heating the coating film of the ceramic precursor to form an inorganic oxide.
  7.  前記局所的に加熱する方法が、短時間の加熱を断続的に繰り返すことで加熱する方法であることを特徴とする請求項6に記載の防湿フィルムの製造方法。 The method for producing a moisture-proof film according to claim 6, wherein the method of locally heating is a method of heating by intermittently repeating heating for a short time.
  8.  前記局所的に加熱する方法が、塗布されたセラミック前駆体層に電磁波又は超音波を照射する方法であることを特徴とする請求項6又は請求項7に記載の防湿フィルムの製造方法。 The method for producing a moisture-proof film according to claim 6 or 7, wherein the method of locally heating is a method of irradiating an applied ceramic precursor layer with electromagnetic waves or ultrasonic waves.
  9.  前記電磁波が、赤外線、又はマイクロ波であることを特徴とする請求項8に記載の防湿フィルムの製造方法。 The method for producing a moisture-proof film according to claim 8, wherein the electromagnetic wave is infrared or microwave.
  10.  請求項1から請求項5までのいずれか一項に記載の防湿フィルムを用いたことを特徴とする太陽電池モジュール用バックシート。 A back sheet for a solar cell module, wherein the moisture-proof film according to any one of claims 1 to 5 is used.
  11.  請求項1から請求項5までのいずれか一項に記載の防湿フィルムをバックシートとして用いたことを特徴とする太陽電池モジュール。 A solar cell module using the moisture-proof film according to any one of claims 1 to 5 as a back sheet.
PCT/JP2009/070533 2009-02-26 2009-12-08 Moistureproof film, process for producing same, back sheet comprising same for solar cell module, and solar cell module WO2010097998A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-043788 2009-02-26
JP2009043788 2009-02-26

Publications (1)

Publication Number Publication Date
WO2010097998A1 true WO2010097998A1 (en) 2010-09-02

Family

ID=42665219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070533 WO2010097998A1 (en) 2009-02-26 2009-12-08 Moistureproof film, process for producing same, back sheet comprising same for solar cell module, and solar cell module

Country Status (1)

Country Link
WO (1) WO2010097998A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016074222A (en) * 2009-11-19 2016-05-12 コニカミノルタ株式会社 Gas barrier film, its manufacturing method, and organic photoelectric conversion element and organic electroluminescent element using the gas barrier film
CN107644919A (en) * 2016-07-20 2018-01-30 栗村化学株式会社 Solar module backboard waterborne and its manufacture method and the solar module waterborne for including it

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62295931A (en) * 1986-06-16 1987-12-23 Mitsubishi Monsanto Chem Co Thermoplastic resin film or sheet having excellent gas barrier characteristics
JP2001111076A (en) * 1999-10-08 2001-04-20 Tdk Corp Coated body and solar cell module
JP2006299145A (en) * 2005-04-22 2006-11-02 Konica Minolta Holdings Inc Gas barrier film, resin substrate using gas barrier film and used for organic electroluminescence and organic electroluminescent element
JP2008130647A (en) * 2006-11-17 2008-06-05 Toppan Printing Co Ltd Backseat for solar-cell module, and solar-cell module using the backseat
JP2008181929A (en) * 2007-01-23 2008-08-07 Toppan Printing Co Ltd Solar cell rear surface protective sheet and solar cell module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62295931A (en) * 1986-06-16 1987-12-23 Mitsubishi Monsanto Chem Co Thermoplastic resin film or sheet having excellent gas barrier characteristics
JP2001111076A (en) * 1999-10-08 2001-04-20 Tdk Corp Coated body and solar cell module
JP2006299145A (en) * 2005-04-22 2006-11-02 Konica Minolta Holdings Inc Gas barrier film, resin substrate using gas barrier film and used for organic electroluminescence and organic electroluminescent element
JP2008130647A (en) * 2006-11-17 2008-06-05 Toppan Printing Co Ltd Backseat for solar-cell module, and solar-cell module using the backseat
JP2008181929A (en) * 2007-01-23 2008-08-07 Toppan Printing Co Ltd Solar cell rear surface protective sheet and solar cell module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016074222A (en) * 2009-11-19 2016-05-12 コニカミノルタ株式会社 Gas barrier film, its manufacturing method, and organic photoelectric conversion element and organic electroluminescent element using the gas barrier film
CN107644919A (en) * 2016-07-20 2018-01-30 栗村化学株式会社 Solar module backboard waterborne and its manufacture method and the solar module waterborne for including it

Similar Documents

Publication Publication Date Title
WO2010109947A1 (en) Moisture-proof film, process for producing same, back sheet for solar battery module comprising same, and solar battery module
JP5835667B2 (en) Method for producing polyester film for sealing solar cell back surface
EP2827379B1 (en) Sealing sheet for back surface of solar cell, and solar cell module
JP5722287B2 (en) SOLAR CELL BACK SHEET, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE
JP2012012578A (en) Polyester resin composition, method of producing the same, polyester film, and solar cell power generation module
WO2012063744A1 (en) Solar cell protective sheet and method for manufacturing same, solar cell backing sheet, and solar cell module
JP5951971B2 (en) Polyester film and method for producing the same, solar cell backsheet, and solar cell module
JP5710140B2 (en) Polyester film and method for producing the same, solar cell backsheet, and solar cell module
WO2010097998A1 (en) Moistureproof film, process for producing same, back sheet comprising same for solar cell module, and solar cell module
TWI499064B (en) White polyester film for solar cell, solar cell back encapsulant and solar cell module using same
WO2010150570A1 (en) Film mirror, method for producing same, and sunlight reflecting mirror using same
WO2010071009A1 (en) Flexible resin substrate and display device using same
WO2010137367A1 (en) Film mirror, method for manufacturing film mirror, and solar light reflecting mirror using film mirror
JP5562889B2 (en) LAMINATED FILM, SOLAR CELL BACK SHEET, AND METHOD FOR PRODUCING LAMINATED FILM
JP2011207168A (en) Method of manufacturing thermoplastic resin film
JP2011077425A (en) Moisture-proof film and method of manufacturing the same, back sheet for solar cell module using the moisture-proof film, and solar cell module
JP5715093B2 (en) Method for improving adhesion between polyester film and aqueous dispersion, and method for producing polyester film
JP6708206B2 (en) White polyester film for solar cell, solar cell backside sealing sheet and solar cell module using the same
JP5599339B2 (en) Solar cell back surface protective sheet, method for producing the same, and solar cell module
WO2018092657A1 (en) Optical film, polarizing plate protection film, polarizing plate including these films, and display device including these films
TW201945202A (en) Polarizer, polarizer roll, and method for manufacturing polarizing film
JP2012094618A (en) Light confining film for solar cell, manufacturing method of the same, and solar cell
TW202231491A (en) Laminated polyester film, and method for producing polyester film
CN116745117A (en) Laminated polyester film and method for producing polyester film
JP5739176B2 (en) Conductive film with antireflection function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09840845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP