WO2010137367A1 - Film mirror, method for manufacturing film mirror, and solar light reflecting mirror using film mirror - Google Patents

Film mirror, method for manufacturing film mirror, and solar light reflecting mirror using film mirror Download PDF

Info

Publication number
WO2010137367A1
WO2010137367A1 PCT/JP2010/052729 JP2010052729W WO2010137367A1 WO 2010137367 A1 WO2010137367 A1 WO 2010137367A1 JP 2010052729 W JP2010052729 W JP 2010052729W WO 2010137367 A1 WO2010137367 A1 WO 2010137367A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
mirror
inorganic oxide
layer
film mirror
Prior art date
Application number
PCT/JP2010/052729
Other languages
French (fr)
Japanese (ja)
Inventor
仁 安達
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2010137367A1 publication Critical patent/WO2010137367A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/0825Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only
    • G02B5/0833Multilayer mirrors, i.e. having two or more reflecting layers the reflecting layers comprising dielectric materials only comprising inorganic materials only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/81Arrangements for concentrating solar-rays for solar heat collectors with reflectors flexible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/82Arrangements for concentrating solar-rays for solar heat collectors with reflectors characterised by the material or the construction of the reflector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a film mirror having good light reflectivity and excellent light resistance and weather resistance, a method for producing the film mirror, and a solar reflective mirror using the film mirror.
  • a mirror for reflecting or condensing sunlight is often used.
  • a mirror as described above it is a mirror that is lightweight and difficult to break to facilitate handling during installation and installation, and from the viewpoint of securing light extraction, it is a mirror that can be enlarged and mass-produced.
  • a mirror made of glass in which silver is deposited on one side of a transparent glass substrate to form a silver thin film is known as a commonly used mirror having a high light reflectance.
  • glass mirrors are prone to breakage and thereby expose sharp edges, so careful handling is always necessary.
  • the glass plate is too thin, it is difficult to handle it at the time of manufacture, so a certain thickness is required. For this reason, especially in a large-sized product, mass increases remarkably and special consideration is required for its transportation and installation.
  • Patent Document 1 a mirror using a plastic resin substrate has been considered (for example, see Patent Document 1).
  • the mirror described in Patent Document 1 is a plastic mirror in which a silver thin film layer is formed on the surface of a plate-like or film-like transparent plastic resin.
  • the substrate is made of plastic resin, it is lighter and can be manufactured at a lower cost than when the substrate is made of glass.
  • the plastic resin can be easily processed into a film shape, it is possible to form a very flexible mirror.
  • Patent Document 2 a technique for forming a metal layer with silver having a high reflectance in the visible light region is known.
  • these techniques have a problem that the metal layer is inferior in weather resistance and deteriorates with oxygen, water vapor, sulfur, or the like.
  • the plastic substrate functions as a protective layer for the metal layer.
  • plastic easily transmits water vapor and oxygen in the air, the metal layer deteriorates due to oxidation, which causes a problem that the reflectivity of the mirror decreases.
  • the mirror when using a mirror for the purpose of reflecting sunlight, the mirror is often used outdoors. When used outdoors, the mirror is exposed to wind and rain, and in such a severe environment, the metal layer is oxidatively deteriorated, and the problem of reduction in the reflectance of the mirror becomes a more prominent problem.
  • a barrier property by providing a barrier layer immediately above the metal layer.
  • a technique of forming a silica thin film by a vapor deposition method is known (see, for example, Patent Document 3).
  • the present invention has been considered in view of the above problems, and the problem to be solved is to prevent deterioration of the metal thin film layer and to be lightweight and flexible, and to reduce the manufacturing cost and increase the area and mass production. And providing a film mirror having good light reflectivity and excellent light resistance and weather resistance, a method for producing the film mirror, and a solar reflective mirror using the film mirror.
  • An inorganic oxide film having a light reflecting layer formed of a metal thin film on a resin substrate, on the same side as the light reflecting layer, on the side far from the resin substrate with respect to the light reflecting layer;
  • the manufacturing method of the film mirror characterized by having the process of heat-processing at the heating temperature within the range of ° C.
  • a solar light reflecting mirror which is formed by attaching the film mirror on a base material through an adhesive layer disposed on the side opposite to the light incident side of the light reflecting layer.
  • the metal thin film layer is prevented from being deteriorated, lightweight and flexible, and can be manufactured with a large area and mass-produced with reduced manufacturing cost, good light reflectance, and light resistance.
  • the film mirror excellent in the property and the weather resistance, its manufacturing method, and the mirror for sunlight reflection using the said film mirror can be provided.
  • schematic flow sheet which shows the embodiment example of the manufacturing apparatus of a film-form resin substrate.
  • the film mirror of the present invention has a light reflection layer formed of a metal thin film on a resin base material, on the same side as the light reflection layer, on the side far from the resin base material with respect to the light reflection layer,
  • This feature is a technical feature common to the inventions according to claims 1 to 7.
  • the inorganic oxide particles may contain any compound of silicon oxide, aluminum oxide, zinc oxide, titanium oxide and zirconium oxide. preferable.
  • the said metal thin film is a thin film which has silver as a main component.
  • an aspect having a stress relaxation layer adjacent to the inorganic oxide layer is preferable. Moreover, it is preferable that it is an aspect which has the said inorganic oxide layer in the both sides of the resin base material in the positional relationship which pinches
  • the method for producing a film mirror of the present invention is a method for producing an embodiment having a step of heat-treating a coating film comprising an inorganic oxide film containing inorganic oxide particles at a heating temperature in the range of 50 to 200 ° C. It is preferable.
  • the film mirror of the present invention can be suitably used for a sunlight reflecting mirror.
  • the film mirror of the present invention has a light reflecting layer made of a metal thin film on a resin substrate and an inorganic oxide layer made of an inorganic oxide film containing inorganic oxide particles. It is composed of a hard coat film, an antifogging film, a functional film such as an antireflection film or an antistatic film formed on the outer surface.
  • resin base material As the resin base material according to the present invention, various publicly known resin films can be used.
  • a polyester film or a cellulose ester film it is preferable to use a polyester film or a cellulose ester film, and it may be a film manufactured by melt casting or a film manufactured by solution casting.
  • the thickness of the resin base material is preferably an appropriate thickness depending on the type and purpose of the resin. For example, it is generally in the range of 10 to 300 ⁇ m. The thickness is preferably 20 to 200 ⁇ m, more preferably 30 to 100 ⁇ m.
  • the light reflecting layer according to the present invention refers to a layer made of a metal that reflects visible light and infrared light.
  • the light reflecting layer according to the present invention is not particularly limited, but silver or aluminum can be used, and silver can be particularly preferably used. By using silver, a reflectance higher than that of aluminum can be obtained for light having a wavelength of 380 nm or more.
  • silver or aluminum When silver or aluminum is used for the light reflecting layer, basically, it is desirable to use silver alone or aluminum alone, but gold, copper, nickel, iron, cobalt, tungsten, molybdenum to the extent that they do not adversely affect their properties.
  • Metal impurities such as tantalum, chromium, indium, manganese, titanium, and palladium may be included.
  • the thickness of the light reflecting layer is preferably 70 to 400 nm, more preferably 100 to 300 nm, and still more preferably 150 to 250 nm, from the viewpoints of reflectivity and effective use of resources. It is.
  • the wet method is a general term for a plating method, and is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction.
  • the dry method is a general term for a vacuum film-forming method. Specific examples include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, and an ion beam assisted vacuum deposition method. And sputtering method.
  • a vacuum film forming method capable of a roll-to-roll method for continuously forming a film is preferably used in the present invention.
  • silver is most preferably used because high reflectance can be obtained not only in the visible light region but also in the infrared light region. Further, when the light reflecting layer is formed of silver, the weather resistance deterioration becomes more prominent, so the configuration of the present invention is effective.
  • the light reflecting layer may be on the light incident side or the opposite side with respect to the support, but since the support is a resin, for the purpose of preventing resin degradation due to light, It is preferable to be positioned on the light incident side.
  • the film mirror of the present invention has a light reflecting layer formed of a metal thin film on a resin substrate, and is inorganic on the same side as the light reflecting layer and on the side far from the resin substrate with respect to the light reflecting layer.
  • the inorganic oxide layer is provided on each of both sides of the resin base material in a positional relationship of sandwiching the light reflection layer.
  • the composition of the inorganic oxide particles according to the present invention is not particularly limited, but is preferably any of silicon oxide, aluminum oxide, zinc oxide, titanium oxide and zirconium oxide.
  • the average particle size is 1 nm to 1 ⁇ m, preferably 3 to 300 nm, more preferably 5 to 100 nm.
  • the inorganic oxide particles used are in the nm order.
  • the reactivity is improved by increasing the specific surface area, and a strong inorganic oxide can be formed by heat treatment.
  • inorganic oxide particles having a particle diameter of 1 nm or less are difficult to obtain themselves, and even if obtained, aggregation of particles proceeds in a short time, and is extremely unstable. It was difficult to apply to the present invention.
  • the “inorganic oxide film” refers to a film containing at least the above-described inorganic oxide particles and a compound having a polysiloxane structure for forming a silica-based film described later as its constituent elements.
  • the content of the inorganic oxide particles is preferably 30 to 99 vol%, more preferably 50 to 80 vol% of the inorganic oxide film.
  • the cross section of the film is observed with a transmission electron microscope, and the ratio of the total area of the inorganic fine particles contained in the total cross-sectional area of the inorganic oxide film Indicated. Since the original particle interface of the inorganic fine particles is observed in the film, the area where the inorganic fine particles are present can be quantified.
  • Inorganic oxide films can be formed by vapor deposition, dry processes, and wet processes such as sol-gel methods, but they all have crystal grain interfaces, so they do not have sufficient barrier properties against gases and water vapor.
  • the inclusion of inorganic oxide particles in the inorganic oxide film according to the present invention can minimize the occurrence of cracks that impair the barrier property, thereby improving the barrier property. Became possible.
  • the siloxane polymer according to the present invention is not particularly limited, and is a polymer having a Si—O—Si bond.
  • a hydrolytic condensate of alkoxysilane can be suitably used. Any kind of alkoxysilane can be used as the alkoxysilane. Examples of such alkoxysilanes include compounds represented by the following general formula (a).
  • R 1 n —Si (OR 2 ) 4-n (Wherein R 1 is hydrogen, an alkyl group having 1 to 20 carbon atoms, or an aryl group, R 2 is a monovalent organic group, and n is an integer of 0 to 2)
  • examples of the monovalent organic group include an alkyl group, an aryl group, an allyl group, and a glycidyl group. In these, an alkyl group and an aryl group are preferable.
  • the alkyl group preferably has 1 to 5 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • the alkyl group may be linear or branched, and hydrogen may be substituted with fluorine.
  • the aryl group preferably has 6 to 20 carbon atoms, and examples thereof include a phenyl group and a naphthyl group.
  • n 2
  • the weight average molecular weight of the siloxane polymer is preferably 200 or more and 50000 or less, and more preferably 1000 or more and 3000 or less. If it is this range, the applicability
  • Alkoxysilane hydrolytic condensation is obtained by reacting an alkoxysilane serving as a polymerization monomer in an organic solvent in the presence of an acid catalyst or a base catalyst.
  • the alkoxysilane used as the polymerization monomer may be used alone or may be condensed in combination of plural kinds.
  • trialkylalkoxysilanes such as trimethylmethoxysilane, trimethylethoxysilane, trimethylpropoxysilane, triethylmethoxysilane, triethylethoxysilane, triethylpropoxysilane, tripropylmethoxysilane, tripropylethoxysilane, triphenylmethoxysilane, triphenylethoxy Triphenylalkoxysilane such as silane may be added during hydrolysis.
  • the degree of hydrolysis of the alkoxysilane which is the premise of the condensation, can be adjusted by the amount of water to be added, but in general, with respect to the total number of moles of alkoxysilane represented by the general formula (a). 1.0 to 10.0 times mol, and more preferably 1.5 to 8.0 times mol.
  • the degree of hydrolysis can be sufficiently increased, and the film formation can be improved.
  • gelation can be prevented and the storage stability can be improved by making it 10.0 mol or less.
  • the acid catalyst used is not particularly limited, and conventionally used organic acids are conventionally used. Any of inorganic acids can be used. Examples of the organic acid include organic carboxylic acids such as acetic acid, propionic acid, and butyric acid, and examples of the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, and the like.
  • the acid catalyst may be added directly to the mixture of alkoxysilane and water, or may be added to the alkoxysilane as an acidic aqueous solution together with water.
  • the hydrolysis reaction is usually completed in about 5 to 100 hours.
  • the reaction can be performed in a short reaction time by reacting the acid catalyst aqueous solution dropwise with an organic solvent containing one or more alkoxysilanes represented by the general formula (a). It can also be completed.
  • the hydrolyzed alkoxysilane then undergoes a condensation reaction, resulting in the formation of a Si—O—Si network.
  • a composition for forming a silica-based coating is applied on a substrate.
  • a method for applying the composition for forming a silica-based film on the substrate for example, any method such as a spray method, a spin coating method, a dip coating method, a roll coating method can be used. Used.
  • the silica-based film forming composition applied on the substrate is heat-treated.
  • the means, temperature, time, etc. of the heat treatment are not particularly limited, but in general, it may be heated for about 1 to 6 minutes on a hot plate at about 80 to 300 ° C.
  • composition for forming a silica-based film of the present invention an acid or a base is generated by heating with a heat treatment. Since hydrolysis is promoted by the generated acid or base, the alkoxy group becomes a hydroxyl group (hydroxyl group), and alcohol is generated. Thereafter, since a hydroxyl group (hydroxyl group) is polycondensed between two molecules to form a Si—O—Si network, a dense silica-based film can be obtained by heat treatment.
  • the heat treatment is preferably performed in three or more steps in a stepwise manner. Specifically, after performing the first heat treatment for about 30 seconds to 2 minutes on a hot plate at about 60 to 150 ° C. in an air or an inert gas atmosphere such as nitrogen, the temperature is about 100 to 220 ° C. The second heat treatment is performed for about 30 seconds to 2 minutes, and the third heat treatment is performed at about 150 to 300 ° C. for about 30 seconds to 2 minutes.
  • stepwise heat treatment of three or more steps preferably about 3 to 6 steps, a silica-based film can be formed at a lower temperature.
  • Stress relaxation layer Synthetic resin layer
  • the purpose of the stress relaxation layer according to the present invention is to obtain a stress relaxation function that prevents the film mirror constituent layer from cracking due to bending of the film.
  • the stress relaxation layer can be arranged in various modes, but it is preferably a film mirror having a stress relaxation layer adjacent to the inorganic oxide layer.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate (CAP), cellulose acetate
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • TAC cellulose triacetate
  • CAP cellulose acetate propionate
  • Cellulose esters such as phthalate and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyetherketone, polyimide, polyethersulfone ( PES), polysulfones, polyether ketone imide, polyamide, fluororesin Nylon, polymethyl methacrylate, acrylic or polyarylates, and
  • resins particularly preferred resins are cycloolefin resins.
  • cycloolefin resins examples include norbornene resins, monocyclic cyclo (cyclic) olefin resins, cyclo (cyclic) conjugated diene resins, and vinyl alicyclic hydrocarbon resins. Examples thereof include resins and hydrides thereof. Among these, norbornene-based resins can be suitably used because of their good transparency and moldability.
  • Examples of the norbornene-based resin include a ring-opening polymer of a monomer having a norbornene structure, a ring-opening copolymer of a monomer having a norbornene structure and another monomer, a hydride thereof, and a norbornene structure.
  • a ring-opening (co) polymer hydride of a monomer having a norbornene structure is particularly suitable from the viewpoints of transparency, moldability, heat resistance, low hygroscopicity, dimensional stability, lightness, and the like. Can be used.
  • Examples of the monomer having a norbornene structure include bicyclo [2.2.1] hept-2-ene (common name: norbornene), tricyclo [4.3.0.1 2,5 ] deca-3,7-diene. (Common name: dicyclopentadiene), 7,8-benzotricyclo [4.3.0.1 2,5 ] dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo [4.4.0. 1 2,5 . 1 7,10 ] dodec-3-ene (common name: tetracyclododecene) and derivatives of these compounds (for example, those having a substituent in the ring).
  • examples of the substituent include an alkyl group, an alkylene group, and a polar group.
  • these substituents may be the same or different and a plurality may be bonded to the ring.
  • Monomers having a norbornene structure can be used singly or in combination of two or more.
  • Examples of the polar group include heteroatoms or atomic groups having heteroatoms.
  • Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom.
  • Specific examples of the polar group include a carboxyl group, a carbonyloxycarbonyl group, an epoxy group, a hydroxyl group, an oxy group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, and a sulfone group.
  • monomers capable of ring-opening copolymerization with monomers having a norbornene structure include monocyclo (cyclic) olefins such as cyclohexene, cycloheptene, and cyclooctene and derivatives thereof, and cyclo ( Cyclic) conjugated dienes and derivatives thereof.
  • a ring-opening polymer of a monomer having a norbornene structure and a ring-opening copolymer of a monomer having a norbornene structure and another monomer copolymerizable with the monomer have a known ring-opening polymerization catalyst. It can be obtained by (co) polymerization in the presence.
  • Examples of other monomers that can be addition-copolymerized with a monomer having a norbornene structure include, for example, ⁇ -olefins having 2 to 20 carbon atoms such as ethylene, propylene, and 1-butene, and derivatives thereof; cyclobutene, cyclopentene, Examples thereof include cycloolefins such as cyclohexene and derivatives thereof; non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, and 5-methyl-1,4-hexadiene. These monomers can be used alone or in combination of two or more. Among these, ⁇ -olefin is preferable, and ethylene is more preferable.
  • An addition polymer of a monomer having a norbornene structure and an addition copolymer of another monomer copolymerizable with a monomer having a norbornene structure can be used in the presence of a known addition polymerization catalyst. It can be obtained by polymerization.
  • a known hydrogenation catalyst containing a transition metal such as nickel or palladium is added to the polymer solution, and the carbon-carbon unsaturated bond is preferably hydrogenated by 90% or more.
  • X bicyclo [3.3.0] octane-2,4-diyl-ethylene structure and Y: tricyclo [4.3.0.1 2,5 ] decane-7 are used as repeating units.
  • 9-diyl-ethylene structure the content of these repeating units is 90% by mass or more based on the entire repeating units of the norbornene resin, and the X content ratio and the Y content ratio are The ratio of X: Y is preferably 100: 0 to 40:60.
  • the molecular weight of the cyclo (cyclic) olefin resin used in the present invention is appropriately selected according to the purpose of use.
  • Polyisoprene or polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography using cyclohexane (toluene if the polymer resin does not dissolve) as a solvent usually 20,000 to 150,000. . It is preferably 25,000 to 100,000, more preferably 30,000 to 80,000.
  • Mw weight average molecular weight
  • the glass transition temperature of the cyclo (cyclic) olefin resin may be appropriately selected according to the purpose of use.
  • the range is preferably from 130 to 160 ° C, more preferably from 135 to 150 ° C.
  • cycloolefin resin used in the present invention include, for example, JSR Corporation trade name: ARTON; Nippon Zeon Corporation trade name: Zeonoa; Sekisui Chemical Co., Ltd. trade name: Essina. be able to.
  • the synthetic resin layer used as the stress relaxation layer contains an inorganic filler.
  • the gas barrier film is protected from external stress, thereby providing a gas barrier film whose performance is not deteriorated by compression / expansion stress due to environmental changes. be able to.
  • the adhesion between the plastic substrate and the inorganic vapor deposition layer can be enhanced.
  • the filler, the antioxidant, the ultraviolet absorber, the heat stabilizer, the lubricant, the antistatic agent, and the antibacterial agent are optionally added to each layer, particularly to the base material. , Pigments and the like can be added.
  • a coating film comprising an inorganic oxide film containing inorganic oxide particles is within a range of 50 to 200 ° C. It is preferable that it is a manufacturing method of the aspect which has the process of heat-processing at heating temperature.
  • the heat treatment temperature of the peripheral substrate when the heat treatment temperature of the peripheral substrate is high, it is originally preferable that the heat treatment is performed at a high temperature from the viewpoint that the treatment time can be shortened. From the viewpoint of using a synthetic resin as a material, 50 to 200 ° C. is preferable. Furthermore, 70 to 150 ° C. is preferable.
  • Any heating means that is generally used can be applied to the heating method, but a method of heating by intermittently repeating heating for one hour is also preferably used.
  • a heating method it is preferable to form a moisture-proof layer by locally heating a coating film (also referred to as “coating layer”) of a dispersion containing inorganic oxide particles.
  • local heating of the coating film means that the coating layer is substantially heated to 10 ° C. or more, preferably 20 ° C. or more higher than the resin substrate without substantially deteriorating the resin substrate by heating.
  • heating As a local heating method for this purpose, various conventionally known methods can be employed. For example, heating with an infrared heater, hot air, microwave, ultrasonic heating, induction heating, or the like can be selected as appropriate. Of these, methods using intermittent electromagnetic irradiation of infrared rays, electromagnetic waves such as microwaves and ultrasonic waves are preferable.
  • an irradiation device such as an infrared lamp or an infrared heater can be used. If the inorganic oxide layer can be formed, the irradiation by the infrared irradiation device may be performed once. However, in order to locally heat the coating layer, there is a method of intermittently repeating the infrared irradiation for one hour. Preferably used.
  • a method of intermittently repeating short-time infrared irradiation for example, a method of repeatedly turning on and off the infrared irradiation device in a short time, a shielding plate is provided between the infrared irradiation device and a non-irradiated object, and the shielding plate is moved
  • a method of repeatedly irradiating infrared rays by providing an infrared irradiation device at a plurality of locations in the conveyance direction of the non-irradiated material (resin film) and conveying the non-irradiated material.
  • a microwave is a general term for a UHF to EHF band with a frequency of 1 GHz to 3 THz and a wavelength of about 0.1 to 300 mm, and a microwave generator with a frequency of 2.45 GHz is common, but a microwave with a frequency of 1 to 100 GHz is common.
  • a 2.45 GHz microwave irradiator ⁇ -reactor manufactured by Shikoku Keiki Kogyo Co., Ltd.
  • a microwave generator electromagnetic that radiates a 2.45 GHz microwave, and the like can be given.
  • ultrasonic wave refers to an elastic vibration wave (sound wave) having a frequency of 10 kHz or more.
  • the frequency of the horn is a frequency in the range of 50 kHz or less, and heating for a single time is repeated repeatedly as in the case of infrared irradiation.
  • the coating layer is heated using microwaves or ultrasonic waves, only the resin coating layer is locally applied without causing deterioration of the resin base material by intermittently repeating heating for a single hour as in the case of infrared irradiation.
  • the method of heating is preferably used.
  • Method for producing resin base material As a method for producing a resin base material according to the present invention, the usual inflation method, T-die method, calender method, cutting method, casting method, emulsion method, hot press method and the like can be used. From the viewpoints of suppressing foreign matter defects and optical defects such as die lines, the solution casting method and the melt casting method by casting are preferred.
  • an organic solvent useful for forming the dope can be used without limitation as long as it dissolves a thermoplastic resin such as a cellulose ester resin. .
  • methylene chloride as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, ethyl lactate, lactic acid , Diacetone alcohol, etc., preferably methylene chloride, methyl acetate, ethyl acetate,
  • the dope may contain 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • thermoplastic resin should be a dope composition in which at least 10 to 45% by mass of the thermoplastic resin is dissolved in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. preferable.
  • linear or branched aliphatic alcohol having 1 to 4 carbon atoms examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.
  • film a film-like resin substrate according to the present invention
  • thermoplastic resin a thermoplastic resin, a heat-shrinkable material, and other additives are dissolved in an organic solvent mainly composed of a good solvent for the thermoplastic resin while stirring to form a dope.
  • thermoplastic resin For the dissolution of the thermoplastic resin, a method carried out at normal pressure, a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544, JP-A-9-95557 Alternatively, various dissolution methods such as a method using a cooling dissolution method as described in JP-A-9-95538 and a method using a high pressure as described in JP-A-11-21379 can be used. The method of pressurizing at a boiling point or higher is preferred.
  • Recycled material is a finely pulverized film, which is generated when the film is formed, cut off on both sides of the film, or the original film that has been speculated out due to scratches, etc. Reused.
  • An endless metal belt such as a stainless steel belt or a rotating metal drum, which supports the dope is fed to a pressure die through a liquid feed pump (for example, a pressurized metering gear pump) and supported infinitely. This is a step of casting a dope from a pressure die slit to a casting position on the body.
  • a liquid feed pump for example, a pressurized metering gear pump
  • ⁇ Pressure dies that can adjust the slit shape of the die base and make the film thickness uniform are preferred.
  • the pressure die include a coat hanger die and a T die, and any of them is preferably used.
  • the surface of the metal support is a mirror surface.
  • two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
  • Solvent evaporation step In this step, the web (the dope is cast on the casting support and the formed dope film is called a web) is heated on the casting support to evaporate the solvent.
  • the web on the support after casting is preferably dried on the support in an atmosphere of 40 to 100 ° C. In order to maintain the atmosphere at 40 to 100 ° C., it is preferable to apply hot air at this temperature to the upper surface of the web or heat by means such as infrared rays.
  • Peeling process It is the process of peeling the web which the solvent evaporated on the metal support body in a peeling position. The peeled web is sent to the next process.
  • the temperature at the peeling position on the metal support is preferably 10 to 40 ° C, more preferably 11 to 30 ° C.
  • the amount of residual solvent at the time of peeling of the web on the metal support at the time of peeling is preferably 50 to 120% by mass depending on the strength of drying conditions, the length of the metal support, and the like. If the web is peeled off at a time when the amount of residual solvent is larger, if the web is too soft, the flatness at the time of peeling will be lost, and slippage and vertical stripes are likely to occur due to the peeling tension. The amount of solvent is determined.
  • the amount of residual solvent in the web is defined by the following formula.
  • Residual solvent amount (%) (mass before web heat treatment ⁇ mass after web heat treatment) / (mass after web heat treatment) ⁇ 100 Note that the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
  • the peeling tension at the time of peeling the metal support and the film is usually 196 to 245 N / m. However, if wrinkles easily occur at the time of peeling, it is preferable to peel with a tension of 190 N / m or less. It is preferable to peel at a minimum tension of ⁇ 166.6 N / m, and then peel at a minimum tension of ⁇ 137.2 N / m, and particularly preferable to peel at a minimum tension of ⁇ 100 N / m.
  • the temperature at the peeling position on the metal support is preferably ⁇ 50 to 40 ° C., more preferably 10 to 40 ° C., and most preferably 15 to 30 ° C.
  • a drying device 35 that transports the web alternately through rolls arranged in the drying device and / or a tenter stretching device 34 that clips and transports both ends of the web with clips. And dry the web.
  • the drying means is generally to blow hot air on both sides of the web, but there is also a means to heat by applying microwaves instead of wind. Too rapid drying tends to impair the flatness of the finished film. Drying at a high temperature is preferably performed from about 8% by mass or less of residual solvent. Throughout, drying is generally performed at 40-250 ° C. In particular, drying at 40 to 160 ° C. is preferable.
  • tenter stretching apparatus When using a tenter stretching apparatus, it is preferable to use an apparatus that can independently control the film gripping length (distance from the start of gripping to the end of gripping) left and right by the left and right gripping means of the tenter. In the tenter process, it is also preferable to intentionally create sections having different temperatures in order to improve planarity.
  • the stretching operation may be performed in multiple stages, and it is also preferable to perform biaxial stretching in the casting direction and the width direction.
  • biaxial stretching When biaxial stretching is performed, simultaneous biaxial stretching may be performed or may be performed stepwise.
  • stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible. That is, for example, the following stretching steps are possible.
  • Simultaneous biaxial stretching includes stretching in one direction and contracting the other while relaxing the tension.
  • the preferred draw ratio for simultaneous biaxial stretching can be in the range of x1.01 to x1.5 in both the width direction and the longitudinal direction.
  • the amount of residual solvent in the web is preferably 20 to 100% by mass at the start of the tenter, and drying is preferably performed while the tenter is applied until the amount of residual solvent in the web is 10% by mass or less. More preferably, it is 5% by mass or less.
  • the drying temperature is preferably 30 to 160 ° C., more preferably 50 to 150 ° C., and most preferably 70 to 140 ° C.
  • the temperature distribution in the width direction of the atmosphere is small from the viewpoint of improving the uniformity of the film.
  • the temperature distribution in the width direction in the tenter process is preferably within ⁇ 5 ° C, and within ⁇ 2 ° C. Is more preferable, and within ⁇ 1 ° C. is most preferable.
  • Winding process This is a process in which the amount of residual solvent in the web becomes 2% by mass or less, and is taken up by the winder 37 as a film, and the dimensional stability is achieved by setting the residual solvent amount to 0.4% by mass or less. Can be obtained. It is particularly preferable to wind up at 0.00 to 0.10% by mass.
  • a generally used one may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, etc., and these may be used properly.
  • the film according to the present invention is preferably a long film, specifically a film having a thickness of about 100 m to 5000 m, and usually in a form provided in a roll shape.
  • the film width is preferably 1.3 to 4 m, more preferably 1.4 to 2 m.
  • the film thickness of the film according to the present invention is not particularly limited, but is preferably 20 to 200 ⁇ m, more preferably 25 to 150 ⁇ m, and particularly preferably 30 to 120 ⁇ m.
  • the composition constituting a film made of a thermoplastic resin and a heat shrinkable material used for melt extrusion is usually preferably kneaded in advance and pelletized.
  • the pelletization may be performed by a known method.
  • an additive comprising a dried thermoplastic resin and a heat-shrinkable material is supplied to an extruder with a feeder and kneaded using a single-screw or twin-screw extruder. It is possible to extrude into a strand, cool with water or air, and cut.
  • cellulose ester easily absorbs moisture, it is preferable to dry it at 70 to 140 ° C. for 3 hours or more with a dehumidifying hot air dryer or a vacuum dryer so that the moisture content is 200 ppm or less, and further 100 ppm or less.
  • Additives may be fed into the extruder and fed into the extruder, or may be fed through individual feeders. In order to mix a small amount of additives such as an antioxidant uniformly, it is preferable to mix them in advance.
  • the antioxidant may be mixed with each other, and if necessary, the antioxidant may be dissolved in a solvent, impregnated with a thermoplastic resin and mixed, or mixed by spraying. May be.
  • a vacuum nauter mixer or the like is preferable because drying and mixing can be performed simultaneously. Further, if the contact with air, such as the exit from the feeder unit or die, it is preferable that the atmosphere such as dehumidified air and dehumidified N 2 gas.
  • the extruder is preferably processed at as low a temperature as possible so as to be able to be pelletized so that the shear force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.).
  • a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
  • Film formation is performed using the pellets obtained as described above. It is also possible to feed the raw material powder directly to the extruder with a feeder and form a film as it is without pelletization.
  • the pellets produced are extruded using a single-screw or twin-screw extruder, the melting temperature Tm during extrusion is set to about 200 to 300 ° C., filtered through a leaf disk type filter or the like to remove foreign matter, and then the T-die The film is coextruded into a film, solidified on a cooling roll, and cast while pressing with an elastic touch roll.
  • Tm is the temperature of the die exit portion of the extruder.
  • defects are also referred to as die lines, but in order to reduce surface defects such as die lines, it is preferable to have a structure in which the resin retention portion is minimized in the piping from the extruder to the die. . It is preferable to use a die that has as few scratches as possible inside the lip.
  • the inner surface that comes into contact with the molten resin is preferably subjected to surface treatment that makes it difficult for the molten resin to adhere to the surface by reducing the surface roughness or using a material with low surface energy.
  • a hard chrome plated or ceramic sprayed material is polished so that the surface roughness is 0.2 S or less.
  • the cooling roll is not particularly limited, but it is a roll having a structure in which a heat medium or a coolant that can be controlled in temperature flows with a highly rigid metal roll, and the size is not limited.
  • the size of the cooling roll is usually about 100 mm to 1 m.
  • the surface material of the cooling roll includes carbon steel, stainless steel, aluminum, titanium and the like. Further, in order to increase the hardness of the surface or improve the releasability from the resin, it is preferable to perform a surface treatment such as hard chrome plating, nickel plating, amorphous chrome plating, or ceramic spraying.
  • the surface roughness of the cooling roll surface is preferably 0.1 ⁇ m or less in terms of Ra, and more preferably 0.05 ⁇ m or less.
  • the smoother the roll surface the smoother the surface of the resulting film.
  • the surface processed is further polished to have the above-described surface roughness.
  • the film obtained as described above can be further stretched 1.01 to 3.0 times in at least one direction after passing through the step of contacting the cooling roll.
  • the film is stretched 1.1 to 2.0 times in both the longitudinal (film transport direction) and lateral (width direction) directions.
  • a known roll stretching machine or tenter can be preferably used.
  • the slow axis of the optical film becomes the width direction by stretching in the width direction.
  • the draw ratio is 1.1 to 3.0 times, preferably 1.2 to 1.5 times
  • the drawing temperature is usually Tg to Tg + 50 ° C. of the resin constituting the film, preferably Tg to Tg + 50 ° C. In the temperature range.
  • the stretching is preferably performed under a uniform temperature distribution controlled in the longitudinal direction or the width direction.
  • the temperature is preferably within ⁇ 2 ° C, more preferably within ⁇ 1 ° C, and particularly preferably within ⁇ 0.5 ° C.
  • the film When the film-like resin substrate produced by the above method is used as an optical film, the film may be contracted in the longitudinal direction or the width direction for the purpose of adjusting the retardation of the optical film and reducing the dimensional change rate.
  • Uniformity in the slow axis direction is also important, and the angle is preferably ⁇ 5 to + 5 ° with respect to the film width direction, more preferably in the range of ⁇ 1 to + 1 °, particularly ⁇ 0.
  • a range of 5 to + 0.5 ° is preferable, and a range of ⁇ 0.1 to + 0.1 ° is particularly preferable.
  • the film-like resin base material of the present invention is preferably a long film, specifically, a film having a thickness of about 100 m to 5000 m, and usually in a form provided in a roll shape.
  • the film width is preferably 1.3 to 4 m, more preferably 1.4 to 2 m.
  • the film thickness of the film-like resin substrate according to the present invention is not particularly limited, and is preferably changed according to the purpose.
  • FIG. 1 is a schematic flow sheet showing an overall configuration of an example of a resin base material manufacturing apparatus according to the present invention.
  • a flexible resin substrate is manufactured by mixing and extruding a film material such as a thermoplastic resin and then extruding from a casting die 4 onto a first cooling roll 5 using an extruder 1.
  • the film 10 is further circumscribed by the total of three cooling rolls, the second cooling roll 7 and the third cooling roll 8, and cooled and solidified to form the film 10.
  • the film 10 peeled off by the peeling roll 9 is then stretched in the width direction by holding both ends of the film by the stretching device 12 and then wound by the winding device 16.
  • a touch roll 6 is provided that clamps the molten film on the surface of the first cooling roll 5 in order to correct the flatness.
  • the touch roll 6 has an elastic surface and forms a nip with the first cooling roll 5.
  • a device for automatically cleaning the belt and the roll it is preferable to add a device for automatically cleaning the belt and the roll to the manufacturing apparatus.
  • the cleaning device there is no particular limitation on the cleaning device, but for example, a method of niping a brush roll, a water absorbing roll, an adhesive roll, a wiping roll, etc., an air blowing method for spraying clean air, a laser incinerator, or a combination thereof. is there.
  • the film mirror of the present invention can be preferably used for the purpose of collecting sunlight.
  • the film mirror can be used alone as a sunlight collecting mirror, but more preferably, via a pressure-sensitive adhesive layer coated on the surface of the resin substrate opposite to the side having the light reflecting layer with the resin substrate interposed therebetween.
  • the film mirror is stuck on another base material, particularly on a metal base material, and used as a solar reflective mirror.
  • the shape of the reflecting device When used as a mirror for reflecting sunlight, the shape of the reflecting device is made into a bowl shape (semi-cylindrical shape), and a cylindrical member having a fluid inside is provided at the center of the semicircle, and sunlight is condensed on the cylindrical member.
  • the form which heats an internal fluid by this, converts the heat energy, and generates electric power is mentioned as one form.
  • flat reflectors were installed at multiple locations, and the sunlight reflected by each reflector was collected on one reflector (central reflector) and reflected by the reflector.
  • the film mirror of the present invention is particularly preferably used because a high regular reflectance is required for the reflection device used.
  • the adhesive layer is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent, and the like is used.
  • polyester resin urethane resin, polyvinyl acetate resin, acrylic resin, nitrile rubber and the like are used.
  • the laminating method is not particularly limited, and for example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity.
  • the thickness of the pressure-sensitive adhesive layer is usually preferably in the range of about 1 to 50 ⁇ m from the viewpoint of the pressure-sensitive adhesive effect, the drying speed, and the like.
  • the other base material to be bonded to the film mirror of the present invention may be any substrate that can impart the protection of the light reflecting layer, for example, an acrylic film or sheet, a polycarbonate film or sheet, Polyarylate film or sheet, polyethylene naphthalate film or sheet, polyethylene terephthalate film or sheet, plastic film or sheet such as fluorine film, or resin film or sheet kneaded with titanium oxide, silica, aluminum powder, copper powder, etc.
  • a resin film or sheet coated with a resin kneaded with a resin or subjected to surface processing such as metal deposition is used.
  • the thickness of the laminated film or sheet is not particularly limited but is preferably in the range of 12 to 250 ⁇ m.
  • these other base materials may be bonded after providing a concave portion or a convex portion before being bonded to the film mirror of the present invention, or may be formed to have a concave portion or a convex portion after being bonded.
  • the bonding and the molding so as to have a concave portion or a convex portion may be performed at the same time.
  • the metal substrate of the solar reflective mirror according to the present invention includes a steel plate, a copper plate, an aluminum plate, an aluminum plated steel plate, an aluminum alloy plated steel plate, a copper plated steel plate, a tin plated steel plate, a chrome plated steel plate, a stainless steel plate, etc.
  • a metal material having a high rate can be used.
  • Comparative Example 2 The sample on which the aluminum deposited film obtained in Comparative Example 1 was formed was wound using a vacuum deposition apparatus, and the ultimate vacuum in the chamber was 3.0 ⁇ 10 ⁇ 5 torr (4.0 ⁇ 10 ⁇ 3 Pa). Then, oxygen gas is introduced in the vicinity of the coating drum while maintaining the pressure in the chamber at 3.0 ⁇ 10 ⁇ 4 torr (4.0 ⁇ 10 ⁇ 2 Pa), and the evaporation source is oxidized. Comparative Example 2 A silicon oxide moisture-proof layer having a thickness of 1 ⁇ m was formed while silicon was heated and vapor-deposited with a pierce-type electron gun at a power of about 10 kw and traveled on a coating drum at a speed of 120 m / min. A sample of was prepared.
  • Comparative Example 3 Silver having a purity of 99.9% was used in place of aluminum, and a silver deposited film was formed in a thickness of 100 nm by the same method as in Comparative Example 1. Further, a silicon oxide moisture-proof layer having a thickness of 1 ⁇ m was formed on the silver vapor-deposited film in the same manner as in Comparative Example 2 to produce a sample of Comparative Example 3.
  • Example 1 (Inorganic oxide particle-containing coating solution-1) 400 g of pure water was put into a 1 L stainless steel pot, and 600 g of silicon oxide (trade name: SFP-30M average particle size 700 nm, manufactured by Denki Kagaku Kogyo Co., Ltd.) was used at 6000 rpm using an Ultra Turrax T25 Digital (IKA). It was added over a period of time and then dispersed for 30 minutes. Thereafter, 1000 g of MEK was added, and the operation of removing the solvent with an evaporator until the residual mass reached 800 g under a reduced pressure of bath temperature of 40 ° C.
  • silicon oxide trade name: SFP-30M average particle size 700 nm, manufactured by Denki Kagaku Kogyo Co., Ltd.
  • IKA Ultra Turrax T25 Digital
  • Example 2 On one side of a biaxially stretched polyester film (polyethylene terephthalate film, thickness 175 ⁇ m), silver with a purity of 99.9% was used instead of aluminum, and a silver deposited film with a film thickness of 100 nm was used in the same manner as in Comparative Example 1. Formed. Subsequently, the coating solution-1 containing inorganic oxide particles was bar-coated so that the thickness of the dried film was 1 ⁇ m, and dried by heating in a dry oven at 150 ° C. for 30 minutes. Produced.
  • Example 3 The inorganic oxide particles were the same as the coating solution-1 containing the inorganic oxide particles except that the silicon oxide was changed to trade name: SFP-20M (average particle size: 300 nm) manufactured by Denki Kagaku Kogyo Co., Ltd. Containing coating solution-2 was obtained. Further, the same operation as in Example 2 was performed to prepare a sample of Example 3.
  • Example 4 The inorganic oxide particle-containing coating solution-1 was the same as the coating solution-1 containing inorganic oxide particles except that silicon oxide was changed to Corefront Co., Ltd., trade name: sicastar (average particle size: 70 nm). -3 was obtained. Furthermore, the sample of Example 4 was produced in the same manner as in Example 2.
  • Example 5 Into a 1 L stainless steel pot, an aqueous dispersion of aluminum oxide (trade name: NANOBYK-3600, average particle diameter: 40 nm) and 1000 g of MEK were added, and the bath temperature was 40 ° C., 2.0 ⁇ 10 2 torr (2 The operation of removing the solvent with an evaporator was repeated three times under a reduced pressure of 0.7 ⁇ 10 4 Pa) until the residual mass reached 800 g. Finally, 200 g of MEK was added to make the total mass 1000 g, thereby obtaining a dispersion. 30 g of this dispersion and 70 g of resin solution-1 were mixed to prepare inorganic oxide particle-containing coating solution-4. Furthermore, the sample of Example 5 was produced in the same manner as in Example 2.
  • Example 6 An inorganic oxide particle-containing coating solution-5 was prepared in the same manner as in the inorganic oxide particle-containing coating solution-1, except that silicon oxide was replaced with titanium oxide having an average particle size of 50 nm. Furthermore, the sample of Example 6 was produced in the same manner as in Example 2.
  • Example 7 (Preparation of stress relaxation layer coating solution-1) Weigh 1000 g of cyclohexane in a 2 L stainless beaker and add 200 g of cycloolefin polymer (ZEONOR 1060R manufactured by Nippon Zeon Co., Ltd.) while stirring with a magnetic stirrer. It was set to 1.
  • Example preparation of Example 7 The stress relaxation layer coating solution-1 was applied on the moisture-proof layer of the sample of Example 2 so that the dry film thickness was 3 ⁇ m, and then dried in a dry oven at 75 ° C. for 20 minutes. A sample was obtained.
  • Example 8 The inorganic oxide particle-containing coating solution-3 was bar-coated on the PET substrate opposite to the silver vapor-deposited film of Example 7 so that the thickness of the dried film was 1 ⁇ m.
  • Example 8 Got a sample.
  • Example 9 The inorganic oxide particle-containing coating solution-1 was coated in the same manner except that the silicon oxide was replaced with zinc oxide having an average particle size of 20 nm (Nano Fine manufactured by Sakai Chemical Industry Co., Ltd.). Liquid-6 was prepared. After forming a moisture-proof layer on the silver vapor-deposited film using the inorganic oxide particle-containing coating solution-6 by the same operation as in Example 2, the stress relaxation layer coating solution-1 was further formed on the moisture-proof layer. Was applied to a dry film thickness of 3 ⁇ m and dried in a dry oven at 75 ° C. for 20 minutes.
  • the inorganic oxide particle-containing coating liquid-6 was bar-coated on a PET base material opposite to the silver vapor-deposited film so that the thickness of the dried film was 1 ⁇ m. After heating and drying for 30 minutes, the above-described stress relaxation layer coating solution-1 was applied so that the dry film thickness was 3 ⁇ m, and then dried at 75 ° C. for 20 minutes in a dry oven. Obtained.
  • Example 10 Inorganic oxide particle-containing coating solution-7, except that silicon oxide was replaced with zirconium oxide having an average particle size of 40 nm (manufactured by Sumitomo Osaka Cement) with respect to inorganic oxide particle-containing coating solution-1. was prepared. In the same manner as in Example 9, a silver deposited film was formed on one side of the substrate, a moisture-proof layer and a stress relaxation layer were formed on both sides of the substrate, and a sample of Example 10 was obtained.
  • the sample was pasted on a stainless steel (SUS304) plate having a thickness of 0.1 mm and a length of 4 cm ⁇ width 5 cm through a 3 ⁇ m thick adhesive layer to produce a solar reflective mirror.
  • SUS304 stainless steel
  • a spectrophotometer “UV265” manufactured by Shimadzu Corporation was used with an integrating sphere reflection accessory attached thereto, and a barium sulfate powder pressed and used as a reference plate. Evaluation was made with respect to the light reflectance at 555 nm, which is the wavelength with the highest human eye sensitivity.
  • ⁇ Weight resistance test of light reflectance> The reflectance of the film mirror after being left for 30 days under the conditions of a temperature of 85 ° C. and a humidity of 85% RH is measured by the same method as the light reflectance measurement, and the reflectance of the film mirror before the forced deterioration and after the forced deterioration are measured. From the film mirror reflectance, the reduction rate of the reflectance before and after the xenon lamp irradiation was calculated. The evaluation criteria for the weather resistance test are described below.
  • Reflection decrease rate is less than 5% 4: Reflectance decrease rate is 5% or more and less than 10% 3: Reflection decrease rate is 10% or more and less than 15% 2: Reflection decrease rate is 15% or more Less than 20% 1: Decrease in reflectance is 20% or more ⁇ Bend resistance test> Using a gel bow flex tester device manufactured by Rigaku Kogyo Co., Ltd., the sample is subjected to a bending test at 23 ° C. and 50% RH atmosphere, and after the bending is repeated 10 times, the same test as the light reflectance weathering test is performed. did.
  • the film mirror of the present invention has high light reflectance and excellent weather resistance and flexibility.

Abstract

Provided is a film mirror, which has a metal thin film layer that is prevented from being deteriorated, is light in weight and flexible, is capable of having an increased area and being mass-produced with suppressed manufacturing cost, and has excellent beam reflectance and light/weather resistance. A method for manufacturing the film mirror, and a solar light reflecting mirror using the film mirror are also provided. The film mirror has, on a resin base material, a light reflecting layer formed of a metal thin film, and also has an inorganic oxide layer composed of an inorganic oxide film on the side which is the same side where the light reflecting layer is formed and is further from the resin base material than the light reflecting layer. The inorganic oxide film is formed of a film containing inorganic oxide particles having an average particle diameter within a range of 1 nm to 1 μm.

Description

フィルムミラー、その製造方法、それを用いた太陽光反射用ミラーFILM MIRROR, METHOD FOR MANUFACTURING THE SAME, AND MIRROR FOR sunshine reflection using the
 本発明は、光線反射率が良好で、かつ耐光性及び耐候性に優れたフィルムミラー及びその製造方法、及び当該フィルムミラーを用いた太陽光反射用ミラーに関する。 The present invention relates to a film mirror having good light reflectivity and excellent light resistance and weather resistance, a method for producing the film mirror, and a solar reflective mirror using the film mirror.
 近年、環境問題への関心が高くなるとともに、太陽光を活用しようとする動きが活発になってきている。太陽光を活用する際には、太陽光を反射したり集光したりするためのミラーが通常よく用いられる。例えば、高層ビルにより太陽光を遮られてしまった低層の建物へ太陽光を当てるための採光ミラーや、建物の内部へ太陽光を導入するために用いられる光ダクト内部の反射ミラー等を例として挙げることができる。上記のようなミラーとしては、運搬、設置の際の取り扱いを容易にするために軽量で割れにくいミラーであること、採光量を確保するという観点から、大面積化や大量生産が可能なミラーであること、設置場所の形状とミラーの形状を合わせることのできる柔軟性のあるミラーであること、さらには、太陽光を反射するという観点から耐光性及び耐候性に優れたミラーであることが要求されている。 In recent years, interest in environmental issues has increased and movements to utilize sunlight have become active. When utilizing sunlight, a mirror for reflecting or condensing sunlight is often used. For example, a daylighting mirror for directing sunlight into a low-rise building that has been blocked by sunlight by a high-rise building, or a reflection mirror inside a light duct used to introduce sunlight into the building. Can be mentioned. As a mirror as described above, it is a mirror that is lightweight and difficult to break to facilitate handling during installation and installation, and from the viewpoint of securing light extraction, it is a mirror that can be enlarged and mass-produced. There must be a flexible mirror that can match the shape of the installation location and the shape of the mirror, and also a mirror that has excellent light resistance and weather resistance from the viewpoint of reflecting sunlight. Has been.
 一般に、よく用いられる光反射率が高いミラーとしては、透明なガラス基板の片面に銀を析出させて銀薄膜を形成したガラス製のミラーが知られている。しかし、ガラス製のミラーは、破損し易く、それにより鋭いエッジが露出することから、常に取り扱いに細心の注意が必要である。さらに、ガラス板はあまり薄いと製造時の取り扱いが困難であるため、ある程度の厚みが必要である。このため、特に大型品では質量が著しく増大し、その運搬、設置等に特別の配慮が必要となる。 Generally, a mirror made of glass in which silver is deposited on one side of a transparent glass substrate to form a silver thin film is known as a commonly used mirror having a high light reflectance. However, glass mirrors are prone to breakage and thereby expose sharp edges, so careful handling is always necessary. Furthermore, if the glass plate is too thin, it is difficult to handle it at the time of manufacture, so a certain thickness is required. For this reason, especially in a large-sized product, mass increases remarkably and special consideration is required for its transportation and installation.
 このため、破損による怪我の危険や取り扱いの困難性を考慮して、プラスチック樹脂を基板としたミラーが考えられている(例えば特許文献1参照)。特許文献1に記載のミラーは、板状又はフィルム状の透明なプラスチック樹脂の表面に銀薄膜層を形成したプラスチックミラーとなっている。このプラスチックミラーでは、基板をプラスチック樹脂で構成しているため、基板をガラスで構成した場合に比べ、軽量で且つ製造コストを安価にすることを可能にしている。また、プラスチック樹脂はフィルム状への加工が容易なために非常に柔軟性のあるミラーにすることを可能にしている。 For this reason, in consideration of the risk of injury due to breakage and the difficulty of handling, a mirror using a plastic resin substrate has been considered (for example, see Patent Document 1). The mirror described in Patent Document 1 is a plastic mirror in which a silver thin film layer is formed on the surface of a plate-like or film-like transparent plastic resin. In this plastic mirror, since the substrate is made of plastic resin, it is lighter and can be manufactured at a lower cost than when the substrate is made of glass. In addition, since the plastic resin can be easily processed into a film shape, it is possible to form a very flexible mirror.
 また、高い反射率を得るという観点では、特許文献2に開示されているように、金属層を可視光領域の反射率の高い銀で構成する技術が知られている。しかしながら、これらの技術では金属層が耐候性に劣り、酸素・水蒸気・硫黄などで劣化してしまうという問題がある。この問題に対しは、プラスチック基板が金属層の保護層として機能していると考えられる。しかしながら、プラスチックは空気中の水蒸気や酸素を透過しやすいため、酸化により金属層が劣化することにより、ミラーの反射率が低下するという問題も招いてしまう。 Also, from the viewpoint of obtaining a high reflectance, as disclosed in Patent Document 2, a technique for forming a metal layer with silver having a high reflectance in the visible light region is known. However, these techniques have a problem that the metal layer is inferior in weather resistance and deteriorates with oxygen, water vapor, sulfur, or the like. For this problem, it is considered that the plastic substrate functions as a protective layer for the metal layer. However, since plastic easily transmits water vapor and oxygen in the air, the metal layer deteriorates due to oxidation, which causes a problem that the reflectivity of the mirror decreases.
 さらに、太陽光を反射する目的でミラーを使用する場合、ミラーを屋外で使用することが多い。屋外で使用する場合には、ミラーが風雨に曝されることになり、そのような厳しい環境下では金属層の酸化劣化が早まり、ミラーの反射率の低下の問題はより顕著な問題となる。 Furthermore, when using a mirror for the purpose of reflecting sunlight, the mirror is often used outdoors. When used outdoors, the mirror is exposed to wind and rain, and in such a severe environment, the metal layer is oxidatively deteriorated, and the problem of reduction in the reflectance of the mirror becomes a more prominent problem.
 そこで、金属層を空気中の水蒸気や酸素から保護する目的で、金属層の直上にバリア層を設け、バリア性を付与することが考えられる。このようなバリア層としては、シリカ薄膜を、蒸着法により製膜する技術が知られている(例えば特許文献3参照)。 Therefore, for the purpose of protecting the metal layer from water vapor and oxygen in the air, it is conceivable to provide a barrier property by providing a barrier layer immediately above the metal layer. As such a barrier layer, a technique of forming a silica thin film by a vapor deposition method is known (see, for example, Patent Document 3).
 しかしながら、本発明にバリア性付与の目的でシリカ蒸着を用いると、金属薄膜層、シリカ層がそれぞれ持つ内部応力と、樹脂基材も含めた線膨張係数の違いにより、屋外使用の環境下において、ミラー面に歪みが生じてしまうといった不具合が発生していた。 However, when silica deposition is used for the purpose of imparting barrier properties to the present invention, due to the difference between the internal stress of the metal thin film layer and the silica layer and the linear expansion coefficient including the resin base material, There has been a problem that the mirror surface is distorted.
特開2005-59382号公報JP 2005-59382 A 特開平6-38860号公報JP-A-6-38860 特開2006-334865号公報JP 2006-334865 A
 本発明は、上記問題にかんがみなされたものであり、その解決課題は、金属薄膜層の劣化を防止するとともに、軽量で柔軟性があり、製造コストを抑え大面積化・大量生産することが可能であり、光線反射率が良好で、かつ耐光性及び耐候性に優れたフィルムミラー及びその製造方法、及び当該フィルムミラーを用いた太陽光反射用ミラーを提供することである。 The present invention has been considered in view of the above problems, and the problem to be solved is to prevent deterioration of the metal thin film layer and to be lightweight and flexible, and to reduce the manufacturing cost and increase the area and mass production. And providing a film mirror having good light reflectivity and excellent light resistance and weather resistance, a method for producing the film mirror, and a solar reflective mirror using the film mirror.
 本発明に係る上記課題は、下記の手段により解決される。 The above-mentioned problem according to the present invention is solved by the following means.
 1.樹脂基材上に金属薄膜により形成された光反射層を有し、当該光反射層と同じ側で、当該光反射層に対して当該樹脂基材から遠い側に、無機酸化物膜から成る無機酸化物層を有するフィルムミラーであって、当該無機酸化物膜が、平均粒径が1nm~1μmの範囲内の無機酸化物粒子を含有する塗膜で形成されたことを特徴とするフィルムミラー。 1. An inorganic oxide film having a light reflecting layer formed of a metal thin film on a resin substrate, on the same side as the light reflecting layer, on the side far from the resin substrate with respect to the light reflecting layer; A film mirror having an oxide layer, wherein the inorganic oxide film is formed of a coating film containing inorganic oxide particles having an average particle diameter in the range of 1 nm to 1 μm.
 2.前記無機酸化物粒子が、酸化珪素、酸化アルミニウム、酸化亜鉛、酸化チタン及び酸化ジルコニウムのうちのいずれかの化合物を含有することを特徴とする前記第1項に記載のフィルムミラー。 2. 2. The film mirror according to item 1, wherein the inorganic oxide particles contain any one compound of silicon oxide, aluminum oxide, zinc oxide, titanium oxide, and zirconium oxide.
 3.前記金属薄膜が、銀を主成分とする薄膜であることを特徴とする前記第1項又は第2項に記載のフィルムミラー。 3. The film mirror according to item 1 or 2, wherein the metal thin film is a thin film mainly composed of silver.
 4.前記無機酸化物層と隣接した応力緩和層を有することを特徴とする前記第1項から第3項までのいずれか一項に記載のフィルムミラー。 4. The film mirror according to any one of items 1 to 3, further comprising a stress relaxation layer adjacent to the inorganic oxide layer.
 5.前記光反射層を挟み込む位置関係において、前記樹脂基材の両側に、前記無機酸化物層を有することを特徴とする前記第1項から第4項までのいずれか一項に記載に記載のフィルムミラー。 5. The film according to any one of items 1 to 4, wherein the inorganic oxide layer is provided on both sides of the resin base material in a positional relationship of sandwiching the light reflecting layer. mirror.
 6.前記第1項から第5項までのいずれか一項に記載のフィルムミラーを製造するフィルムミラーの製造方法であって、無機酸化物粒子を含有する無機酸化物膜から成る塗膜を50~200℃の範囲内の加熱温度で加熱処理する工程を有することを特徴とするフィルムミラーの製造方法。 6. A film mirror manufacturing method for manufacturing the film mirror according to any one of items 1 to 5, wherein a coating film comprising an inorganic oxide film containing inorganic oxide particles is applied in an amount of 50 to 200. The manufacturing method of the film mirror characterized by having the process of heat-processing at the heating temperature within the range of ° C.
 7.前記第1項から第5項までのいずれか一項に記載のフィルムミラー、又は請求項6に記載のフィルムミラーの製造方法により得られたフィルムミラーを用いた太陽光反射用ミラーであって、前記光反射層の光の入射側に対して反対面側に配置した粘着層を介して、基材上に当該フィルムミラーを貼り付けて形成されたことを特徴とする太陽光反射用ミラー。 7. The film mirror according to any one of claims 1 to 5 or a solar reflective mirror using a film mirror obtained by the method for producing a film mirror according to claim 6, A solar light reflecting mirror, which is formed by attaching the film mirror on a base material through an adhesive layer disposed on the side opposite to the light incident side of the light reflecting layer.
 本発明の上記手段により、金属薄膜層の劣化を防止するとともに、軽量で柔軟性があり、製造コストを抑え大面積化・大量生産することが可能であり、光線反射率が良好で、かつ耐光性及び耐候性に優れたフィルムミラーとその製造方法、及び当該フィルムミラーを用いた太陽光反射用ミラーを提供することができる。 By the above-mentioned means of the present invention, the metal thin film layer is prevented from being deteriorated, lightweight and flexible, and can be manufactured with a large area and mass-produced with reduced manufacturing cost, good light reflectance, and light resistance. The film mirror excellent in the property and the weather resistance, its manufacturing method, and the mirror for sunlight reflection using the said film mirror can be provided.
フィルム状の樹脂基板の製造装置の実施形態例を示す概略フローシート。The general | schematic flow sheet which shows the embodiment example of the manufacturing apparatus of a film-form resin substrate.
 本発明のフィルムミラーは、樹脂基材上に金属薄膜により形成された光反射層を有し、当該光反射層と同じ側で、当該光反射層に対して当該樹脂基材から遠い側に、無機酸化物膜から成る無機酸化物層を有するフィルムミラーであって、当該無機酸化物膜が、平均粒径が1nm~1μmの範囲内の無機酸化物粒子を含有する塗膜で形成されたことを特徴とする。この特徴は、請求項1から請求項7までの請求項に係る発明に共通する技術的特徴である。 The film mirror of the present invention has a light reflection layer formed of a metal thin film on a resin base material, on the same side as the light reflection layer, on the side far from the resin base material with respect to the light reflection layer, A film mirror having an inorganic oxide layer composed of an inorganic oxide film, wherein the inorganic oxide film is formed of a coating film containing inorganic oxide particles having an average particle diameter in the range of 1 nm to 1 μm. It is characterized by. This feature is a technical feature common to the inventions according to claims 1 to 7.
 本発明の実施態様としては、本発明の効果発現の観点から、前記無機酸化物粒子が、酸化珪素、酸化アルミニウム、酸化亜鉛、酸化チタン及び酸化ジルコニウムのうちのいずれかの化合物を含有することが好ましい。また、前記金属薄膜が、銀を主成分とする薄膜であることが好ましい。 As an embodiment of the present invention, from the viewpoint of manifesting the effects of the present invention, the inorganic oxide particles may contain any compound of silicon oxide, aluminum oxide, zinc oxide, titanium oxide and zirconium oxide. preferable. Moreover, it is preferable that the said metal thin film is a thin film which has silver as a main component.
 本発明のフィルムミラーの構成態様としては、前記無機酸化物層と隣接した応力緩和層を有する態様であることが好ましい。また、前記光反射層を挟み込む位置関係において、樹脂基材の両側に、前記無機酸化物層を有する態様であることが好ましい。 As a configuration aspect of the film mirror of the present invention, an aspect having a stress relaxation layer adjacent to the inorganic oxide layer is preferable. Moreover, it is preferable that it is an aspect which has the said inorganic oxide layer in the both sides of the resin base material in the positional relationship which pinches | interposes the said light reflection layer.
 本発明のフィルムミラーの製造方法としては、無機酸化物粒子を含有する無機酸化物膜から成る塗膜を50~200℃の範囲内の加熱温度で加熱処理する工程を有する態様の製造方法であることが好ましい。 The method for producing a film mirror of the present invention is a method for producing an embodiment having a step of heat-treating a coating film comprising an inorganic oxide film containing inorganic oxide particles at a heating temperature in the range of 50 to 200 ° C. It is preferable.
 本発明のフィルムミラーは、太陽光反射用ミラーに好適に用いることができる。 The film mirror of the present invention can be suitably used for a sunlight reflecting mirror.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail.
 (フィルムミラーの基本的構成概要)
 本発明のフィルムミラーは、樹脂基材上に金属薄膜よりなる光反射層と、無機酸化物粒子を含有する無機酸化物膜よりなる無機酸化物層を有し、必要に応じて、フィルムミラーの外表面に形成されたハードコート膜、防曇膜、反射防止膜や帯電防止膜等の機能性膜とから構成される。
(Outline of basic structure of film mirror)
The film mirror of the present invention has a light reflecting layer made of a metal thin film on a resin substrate and an inorganic oxide layer made of an inorganic oxide film containing inorganic oxide particles. It is composed of a hard coat film, an antifogging film, a functional film such as an antireflection film or an antistatic film formed on the outer surface.
 (樹脂基材)
 本発明に係る樹脂基材としては、従来公地の種々の樹脂フィルムを用いることができる。例えば、セルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、ノルボルネン系樹脂フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルム等を挙げることができる。中でも、ポリカーボネート系フィルム、ポリエステル系フィルム、ノルボルネン系樹脂フィルム、及びセルロースエステル系フィルムが好ましい。
(Resin base material)
As the resin base material according to the present invention, various publicly known resin films can be used. For example, cellulose ester film, polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene terephthalate, polyethylene naphthalate polyester film, polyethylene film, polypropylene film, cellophane, Cellulose diacetate film, cellulose triacetate film, cellulose acetate propionate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, norbornene resin film , Polymethylpentenef Can Lum, polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, and acrylic films. Among these, a polycarbonate film, a polyester film, a norbornene resin film, and a cellulose ester film are preferable.
 特にポリエステル系フィルム、セルロースエステル系フィルムを用いることが好ましく、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。 In particular, it is preferable to use a polyester film or a cellulose ester film, and it may be a film manufactured by melt casting or a film manufactured by solution casting.
 当該樹脂基材の厚さは、樹脂の種類及び目的等に応じて適切な厚さにすることが好ましい。例えば、一般的には、10~300μmの範囲内である。好ましくは20~200μm、更に好ましくは30~100μmである。 The thickness of the resin base material is preferably an appropriate thickness depending on the type and purpose of the resin. For example, it is generally in the range of 10 to 300 μm. The thickness is preferably 20 to 200 μm, more preferably 30 to 100 μm.
 なお、樹脂基材の製造方法については、後述する。 In addition, the manufacturing method of a resin base material is mentioned later.
 (光反射層)
 本発明に係る光反射層とは、可視光及び赤外光を反射する金属から構成された層のことをいう。
(Light reflecting layer)
The light reflecting layer according to the present invention refers to a layer made of a metal that reflects visible light and infrared light.
 本発明に係る光反射層としては、特に限定されないが、銀やアルミニウムを用いることができ、特に銀を好ましく用いることができる。銀を用いることにより、380nm以上の波長の光に対して、アルミニウムよりも高い反射率を得ることができる。 The light reflecting layer according to the present invention is not particularly limited, but silver or aluminum can be used, and silver can be particularly preferably used. By using silver, a reflectance higher than that of aluminum can be obtained for light having a wavelength of 380 nm or more.
 光反射層に銀又はアルミニウムを用いる場合、基本的には、銀単体又はアルミニウム単体であることが望ましいが、その性質に害を及ぼさない程度の金、銅、ニッケル、鉄、コバルト、タングステン、モリブデン、タンタル、クロム、インジウム、マンガン、チタン、パラジウムなどの金属不純物が含まれても良い。 When silver or aluminum is used for the light reflecting layer, basically, it is desirable to use silver alone or aluminum alone, but gold, copper, nickel, iron, cobalt, tungsten, molybdenum to the extent that they do not adversely affect their properties. Metal impurities such as tantalum, chromium, indium, manganese, titanium, and palladium may be included.
 光反射層に銀又はアルミニウムを用いる場合、光反射層の厚さは、反射率及び資源の有効利用等の観点から、70~400nmが好ましく、より好ましくは100~300nm、さらに好ましくは150~250nmである。 When silver or aluminum is used for the light reflecting layer, the thickness of the light reflecting layer is preferably 70 to 400 nm, more preferably 100 to 300 nm, and still more preferably 150 to 250 nm, from the viewpoints of reflectivity and effective use of resources. It is.
 本発明に係る光反射層の形成法としては、湿式法及び乾式法のどちらも使用することができる。湿式法とは、メッキ法の総称であり、溶液から金属を析出させ膜を形成する方法である。具体例をあげるとすれば、銀鏡反応などがある。一方、乾式法とは、真空成膜法の総称であり、具体的に例示するとすれば、抵抗加熱式真空蒸着法、電子ビーム加熱式真空蒸着法、イオンプレーティング法、イオンビームアシスト真空蒸着法、スパッタ法などがある。とりわけ、本発明には連続的に成膜するロールツーロール方式が可能な真空成膜法が好ましく用いられる。 Both the wet method and the dry method can be used as the method for forming the light reflecting layer according to the present invention. The wet method is a general term for a plating method, and is a method of forming a film by depositing a metal from a solution. Specific examples include silver mirror reaction. On the other hand, the dry method is a general term for a vacuum film-forming method. Specific examples include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion plating method, and an ion beam assisted vacuum deposition method. And sputtering method. In particular, a vacuum film forming method capable of a roll-to-roll method for continuously forming a film is preferably used in the present invention.
 また、可視光領域のみならず、赤外光領域においても高反射率が得られることから、銀が最も好ましく用いられる。また、銀により光反射層を形成した場合は、より耐候劣化が顕著となる為、本発明の構成が効果的である。 Also, silver is most preferably used because high reflectance can be obtained not only in the visible light region but also in the infrared light region. Further, when the light reflecting layer is formed of silver, the weather resistance deterioration becomes more prominent, so the configuration of the present invention is effective.
 本発明において、光反射層は支持体に対して光線入射側にあっても、その反対側にあっても良いが、支持体が樹脂であることから、光線による樹脂劣化を防止する目的から、光線入射側に位置する方が好ましい。 In the present invention, the light reflecting layer may be on the light incident side or the opposite side with respect to the support, but since the support is a resin, for the purpose of preventing resin degradation due to light, It is preferable to be positioned on the light incident side.
 (無機酸化物層)
 本発明のフィルムミラーは、樹脂基材上に金属薄膜により形成された光反射層を有し、当該光反射層と同じ側で、当該光反射層に対して樹脂基材から遠い側に、無機酸化物膜から成る無機酸化物層を有するフィルムミラーであって、当該無機酸化物膜が、平均粒径が1nm~1μmの範囲内の無機酸化物粒子を含有する塗膜で形成されたことを特徴とする。また、実施態様として、前記光反射層を挟み込む位置関係において、樹脂基材の両側のそれぞれに、前記無機酸化物層を有する態様であることが好ましい。
(Inorganic oxide layer)
The film mirror of the present invention has a light reflecting layer formed of a metal thin film on a resin substrate, and is inorganic on the same side as the light reflecting layer and on the side far from the resin substrate with respect to the light reflecting layer. A film mirror having an inorganic oxide layer made of an oxide film, wherein the inorganic oxide film is formed of a coating film containing inorganic oxide particles having an average particle diameter in the range of 1 nm to 1 μm. Features. In addition, as an embodiment, it is preferable that the inorganic oxide layer is provided on each of both sides of the resin base material in a positional relationship of sandwiching the light reflection layer.
 以下において、無機酸化物層の構成要素等について説明する。 Hereinafter, components of the inorganic oxide layer will be described.
 〈無機酸化物粒子〉
 本発明に係る無機酸化物粒子の組成は特に制限は無いが、酸化珪素、酸化アルミニウム、酸化亜鉛、酸化チタン及び酸化ジルコニウムのいずれかであることが好ましい。
<Inorganic oxide particles>
The composition of the inorganic oxide particles according to the present invention is not particularly limited, but is preferably any of silicon oxide, aluminum oxide, zinc oxide, titanium oxide and zirconium oxide.
 また、平均粒径は1nm~1μm、好ましくは3~300nm、更に好ましくは5~100nmである。通常、μmオーダーの無機酸化物粒子の分散液より得られた塗膜を加熱処理するだけでは強固な塗膜は得られないが、本発明のように、使用する無機酸化物粒子がnmオーダーであることにより、比表面積が増大することで反応性が向上し、加熱処理によって強固な無機酸化物を形成できる。一方で1nm以下の粒径の無機酸化物粒子は、そのもの自体を得ることが困難であるとともに、得られても短時間で粒子同士の凝集が進行してしまい、極めて不安定なものであり、本発明に適用することが困難であった。 The average particle size is 1 nm to 1 μm, preferably 3 to 300 nm, more preferably 5 to 100 nm. Usually, only a heat treatment of a coating film obtained from a dispersion of inorganic oxide particles in the order of μm cannot provide a strong coating film. However, as in the present invention, the inorganic oxide particles used are in the nm order. As a result, the reactivity is improved by increasing the specific surface area, and a strong inorganic oxide can be formed by heat treatment. On the other hand, inorganic oxide particles having a particle diameter of 1 nm or less are difficult to obtain themselves, and even if obtained, aggregation of particles proceeds in a short time, and is extremely unstable. It was difficult to apply to the present invention.
 〈無機酸化物粒子を含有する無機酸化物膜〉
 本発明に係る「無機酸化物膜」とは、少なくとも上記の無機酸化物粒子と後述するシリカ系被膜を形成するためのポリシロキサン構造を有する化合物をその構成要素として含有する膜をいう。
<Inorganic oxide film containing inorganic oxide particles>
The “inorganic oxide film” according to the present invention refers to a film containing at least the above-described inorganic oxide particles and a compound having a polysiloxane structure for forming a silica-based film described later as its constituent elements.
 無機酸化物粒子の含有率は、無機酸化物膜の30~99vol%が好ましく、50~80vol%が更に好ましい。 The content of the inorganic oxide particles is preferably 30 to 99 vol%, more preferably 50 to 80 vol% of the inorganic oxide film.
 無機酸化物膜中の無機酸化物粒子の含有率については、フィルムの断面を透過型電子顕微鏡で観察を行い、無機酸化物膜の全断面積中に含まれる無機微粒子の面積の合計の割合で示される。無機微粒子は膜中で元の粒子界面が観察されることから、無機微粒子の存在する面積を定量することが可能である。無機酸化物膜は蒸着などとドライプロセスや、ゾルゲル法といったウェットプロセスにて成膜可能であるが、いずれも結晶の粒界面が存在するため、ガスや水蒸気に対してのバリア性が十分ではなかったが、本発明に係る無機酸化物膜中に無機酸化物粒子が含有されていることにより、バリア性を損なう原因となるクラックの発生を極小化することができるため、バリア性を向上することが可能となった。 Regarding the content of the inorganic oxide particles in the inorganic oxide film, the cross section of the film is observed with a transmission electron microscope, and the ratio of the total area of the inorganic fine particles contained in the total cross-sectional area of the inorganic oxide film Indicated. Since the original particle interface of the inorganic fine particles is observed in the film, the area where the inorganic fine particles are present can be quantified. Inorganic oxide films can be formed by vapor deposition, dry processes, and wet processes such as sol-gel methods, but they all have crystal grain interfaces, so they do not have sufficient barrier properties against gases and water vapor. However, the inclusion of inorganic oxide particles in the inorganic oxide film according to the present invention can minimize the occurrence of cracks that impair the barrier property, thereby improving the barrier property. Became possible.
 〈ポリシロキサン構造を有する化合物〉
 本発明に係るポリシロキサン構造を有する化合物としては、従来公知の種々の化合物を用いることができるが、シロキサンポリマー用いることが好ましい。
<Compound having polysiloxane structure>
As the compound having a polysiloxane structure according to the present invention, various conventionally known compounds can be used, but a siloxane polymer is preferably used.
 本発明に係るシロキサンポリマーは、特に限定されず、Si-O-Si結合を有するポリマーである。このシロキサンポリマーの中でも、アルコキシシランの加水分解縮合物を好適に用いることができる。上記アルコキシシランとしては、あらゆる種類のアルコキシシランを用いることができる。このようなアルコキシシランとしては、例えば、下記一般式(a)で表される化合物を挙げることができる。 The siloxane polymer according to the present invention is not particularly limited, and is a polymer having a Si—O—Si bond. Among these siloxane polymers, a hydrolytic condensate of alkoxysilane can be suitably used. Any kind of alkoxysilane can be used as the alkoxysilane. Examples of such alkoxysilanes include compounds represented by the following general formula (a).
 一般式(a): R -Si(OR4-n
(式中、Rは、水素、炭素数1から20のアルキル基又はアリール基であり、Rは1価の有機基であり、nは、0~2の整数を示す。)
 ここで、1価の有機基としては、例えば、アルキル基、アリール基、アリル基、グリジル基を挙げることができる。これらの中では、アルキル基及びアリール基が好ましい。アルキル基の炭素数は1~5が好ましく、例えば、メチル基、エチル基、プロピル基、ブチル基等を挙げることができる。また、アルキル基は直鎖状であっても分岐状であってもよく、水素がフッ素により置換されていてもよい。アリール基としては、炭素数6~20のもが好ましく、例えばフェニル基、ナフチル基等を挙げることができる。
Formula (a): R 1 n —Si (OR 2 ) 4-n
(Wherein R 1 is hydrogen, an alkyl group having 1 to 20 carbon atoms, or an aryl group, R 2 is a monovalent organic group, and n is an integer of 0 to 2)
Here, examples of the monovalent organic group include an alkyl group, an aryl group, an allyl group, and a glycidyl group. In these, an alkyl group and an aryl group are preferable. The alkyl group preferably has 1 to 5 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, and a butyl group. The alkyl group may be linear or branched, and hydrogen may be substituted with fluorine. The aryl group preferably has 6 to 20 carbon atoms, and examples thereof include a phenyl group and a naphthyl group.
 上記一般式(a)で表される化合物の具体例としては、
 (a1)n=0の場合、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等を挙げることができ、
 (a2)n=1の場合、モノメチルトリメトキシシラン、モノメチルトリエトキシシラン、モノメチルトリプロポキシシラン、モノエチルトリメトキシシラン、モノエチルトリエトキシシラン、モノエチルトリプロポキシシラン、モノプロピルトリメトキシシラン、モノプロピルトリエトキシシランなどのモノアルキルトリアルコキシシラン、モノフェニルトリメトキシシラン、モノフェニルトリエトキシシランなどのモノフェニルトリアルコキシシラン等を挙げることができ、
 (a3)n=2の場合、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジプロポキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジプロポキシシラン、ジプロピルジジメトキシシラン、ジプロピルジエトキシシラン、ジプロピルジプロポキシシランなどのジアルキルジアルコキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシランなどのジフェニルジアルコキシシラン等を挙げることができる。
Specific examples of the compound represented by the general formula (a) include
(A1) When n = 0, examples include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane,
(A2) When n = 1, monomethyltrimethoxysilane, monomethyltriethoxysilane, monomethyltripropoxysilane, monoethyltrimethoxysilane, monoethyltriethoxysilane, monoethyltripropoxysilane, monopropyltrimethoxysilane, monopropyl Examples include monoalkyltrialkoxysilanes such as triethoxysilane, monophenyltrialkoxysilanes such as monophenyltrimethoxysilane, and monophenyltriethoxysilane.
(A3) When n = 2, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldipropoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, diethyldipropoxysilane, dipropyldidimethoxysilane, dipropyldiethoxysilane, di Examples thereof include dialkyl dialkoxysilanes such as propyldipropoxysilane, diphenyldialkoxysilanes such as diphenyldimethoxysilane and diphenyldiethoxysilane.
 本発明に係るシリカ系被膜形成用組成物において、シロキサンポリマーの重量平均分子量は、200以上50000以下であることが好ましく、1000以上3000以下であることがより好ましい。この範囲であれば、シリカ系被膜形成用組成物の塗布性を向上させることができる。 In the silica-based film forming composition according to the present invention, the weight average molecular weight of the siloxane polymer is preferably 200 or more and 50000 or less, and more preferably 1000 or more and 3000 or less. If it is this range, the applicability | paintability of the composition for silica-type film formation can be improved.
 アルコキシシランの加水分解縮合は、重合モノマーとなるアルコキシシランを、有機溶媒中、酸触媒又は塩基触媒の存在下で反応させることにより得られる。重合モノマーとなるアルコキシシランは、1種のみの使用であっても、また複数種を組み合わせて縮合してもよい。 Alkoxysilane hydrolytic condensation is obtained by reacting an alkoxysilane serving as a polymerization monomer in an organic solvent in the presence of an acid catalyst or a base catalyst. The alkoxysilane used as the polymerization monomer may be used alone or may be condensed in combination of plural kinds.
 また、トリメチルメトキシシラン、トリメチルエトキシシラン、トリメチルプロポキシシラン、トリエチルメトキシシラン、トリエチルエトキシシラン、トリエチルプロポキシシラン、トリプロピルメトキシシラン、トリプロピルエトキシシランなどのトリアルキルアルコキシシラン、トリフェニルメトキシシラン、トリフェニルエトキシシランなどのトリフェニルアルコキシシラン等を加水分解時に添加してもよい。 Also, trialkylalkoxysilanes such as trimethylmethoxysilane, trimethylethoxysilane, trimethylpropoxysilane, triethylmethoxysilane, triethylethoxysilane, triethylpropoxysilane, tripropylmethoxysilane, tripropylethoxysilane, triphenylmethoxysilane, triphenylethoxy Triphenylalkoxysilane such as silane may be added during hydrolysis.
 縮合の前提となるアルコキシシランの加水分解の度合いは、添加する水の量により調整することができるが、一般的には、前記一般式(a)で示されるアルコキシシランの合計モル数に対して、1.0~10.0倍モルにすることが好ましく、1.5~8.0倍モルの割合で添加することがより好ましい。水の添加量を1.0倍モル以上にすることにより加水分解度を十分大きくすることができ、被膜形成を良好にすることができる。一方で、10.0倍モル以下にすることによりゲル化を防止することができ、保存安定性を良好にすることができる。 The degree of hydrolysis of the alkoxysilane, which is the premise of the condensation, can be adjusted by the amount of water to be added, but in general, with respect to the total number of moles of alkoxysilane represented by the general formula (a). 1.0 to 10.0 times mol, and more preferably 1.5 to 8.0 times mol. By making the addition amount of water 1.0 mol or more, the degree of hydrolysis can be sufficiently increased, and the film formation can be improved. On the other hand, gelation can be prevented and the storage stability can be improved by making it 10.0 mol or less.
 また、一般式(a)で示されるアルコキシシランの縮合においては、酸触媒を用いることが好ましく、用いられる酸触媒としては、特に限定されるものではなく、従来慣用的に使用されている有機酸、無機酸のいずれも使用することができる。有機酸としては、酢酸、プロピオン酸、酪酸等の有機カルボン酸を挙げることができ、無機酸としては、塩酸、硝酸、硫酸、燐酸等が挙げられる。酸触媒は、アルコキシシランと水との混合物に直接添加するか、又は、水とともに酸性水溶液としてアルコキシシランに添加してもよい。 In addition, in the condensation of the alkoxysilane represented by the general formula (a), it is preferable to use an acid catalyst, and the acid catalyst used is not particularly limited, and conventionally used organic acids are conventionally used. Any of inorganic acids can be used. Examples of the organic acid include organic carboxylic acids such as acetic acid, propionic acid, and butyric acid, and examples of the inorganic acid include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, and the like. The acid catalyst may be added directly to the mixture of alkoxysilane and water, or may be added to the alkoxysilane as an acidic aqueous solution together with water.
 加水分解反応は、通常5~100時間程度で完了する。また、室温から80℃を超えない加熱温度において、一般式(a)で示される1種以上のアルコキシシランを含む有機溶剤に酸触媒水溶液を滴下して反応させることにより、短い反応時間で反応を完了させることも可能である。加水分解されたアルコキシシランは、その後、縮合反応を起こし、その結果、Si-O-Siのネットワークを形成する。 The hydrolysis reaction is usually completed in about 5 to 100 hours. In addition, at a heating temperature not exceeding 80 ° C. from room temperature, the reaction can be performed in a short reaction time by reacting the acid catalyst aqueous solution dropwise with an organic solvent containing one or more alkoxysilanes represented by the general formula (a). It can also be completed. The hydrolyzed alkoxysilane then undergoes a condensation reaction, resulting in the formation of a Si—O—Si network.
 ≪シリカ系被膜の形成方法≫
 シリカ系被膜の形成方法としては、まず、シリカ系被膜形成用組成物を基板上に塗布する。基板上にシリカ系被膜形成用組成物を塗布する方法としては、例えば、スプレー法、スピンコート法、ディップコート法、ロールコート法など、任意の方法を用いることができるが、通常スピンコート法が用いられる。
≪Method for forming silica-based film≫
As a method for forming a silica-based coating, first, a composition for forming a silica-based coating is applied on a substrate. As a method for applying the composition for forming a silica-based film on the substrate, for example, any method such as a spray method, a spin coating method, a dip coating method, a roll coating method can be used. Used.
 次に、基板上に塗布されたシリカ系被膜形成用組成物を加熱処理する。加熱処理は、その手段、温度、時間などについては特に制限されないが、一般的には、80~300℃程度のホットプレート上で1~6分間程度加熱すればよい。 Next, the silica-based film forming composition applied on the substrate is heat-treated. The means, temperature, time, etc. of the heat treatment are not particularly limited, but in general, it may be heated for about 1 to 6 minutes on a hot plate at about 80 to 300 ° C.
 本発明のシリカ系被膜形成用組成物によれば、加熱処理により加熱することで、酸又は塩基が発生する。この発生した酸又は塩基により加水分解が促進されるため、アルコキシ基がヒドロキシル基(水酸基)となり、アルコールが生成する。その後、2分子間でヒドロキシル基(水酸基)が重縮合することにより、Si-O-Siのネットワークが形成されるため、加熱処理により、緻密なシリカ系被膜を得ることができる。 According to the composition for forming a silica-based film of the present invention, an acid or a base is generated by heating with a heat treatment. Since hydrolysis is promoted by the generated acid or base, the alkoxy group becomes a hydroxyl group (hydroxyl group), and alcohol is generated. Thereafter, since a hydroxyl group (hydroxyl group) is polycondensed between two molecules to form a Si—O—Si network, a dense silica-based film can be obtained by heat treatment.
 また、加熱処理は、好ましくは、3段階以上、段階的に昇温することが好ましい。具体的には、大気中又は窒素などの不活性ガス雰囲気下、60~150℃程度のホットプレート上で30秒~2分間程度第1回目の加熱処理を行ったのち、100~220℃程度で30秒~2分間程度第2回目の加熱処理を行い、さらに150~300℃程度で30秒~2分間程度第3回目の加熱処理を行う。このように3段階以上、好ましくは3~6段階程度の段階的な加熱処理を行うことにより、より低い温度で、シリカ系被膜の形成をすることができる。 In addition, the heat treatment is preferably performed in three or more steps in a stepwise manner. Specifically, after performing the first heat treatment for about 30 seconds to 2 minutes on a hot plate at about 60 to 150 ° C. in an air or an inert gas atmosphere such as nitrogen, the temperature is about 100 to 220 ° C. The second heat treatment is performed for about 30 seconds to 2 minutes, and the third heat treatment is performed at about 150 to 300 ° C. for about 30 seconds to 2 minutes. Thus, by performing stepwise heat treatment of three or more steps, preferably about 3 to 6 steps, a silica-based film can be formed at a lower temperature.
 (応力緩和層:合成樹脂層)
 本発明に係る応力緩和層は、フィルムミラー構成層が、フィルムの屈曲などでクラックが入らないようにする応力緩和機能を得ることを目的とするものである。
(Stress relaxation layer: Synthetic resin layer)
The purpose of the stress relaxation layer according to the present invention is to obtain a stress relaxation function that prevents the film mirror constituent layer from cracking due to bending of the film.
 本発明のフィルムミラーにおいては、当該応力緩和層を、種々の態様で配置することができるが、前記無機酸化物層と隣接した応力緩和層を有する態様のフィルムミラーであることが好ましい。 In the film mirror of the present invention, the stress relaxation layer can be arranged in various modes, but it is preferably a film mirror having a stress relaxation layer adjacent to the inorganic oxide layer.
 応力緩和層を構成する材料としては、従来公知の種々の合成樹脂を用いることができる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリスルホン類、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル或いはポリアリレート類、アートン(商品名JSR社製)或いはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。 As the material constituting the stress relaxation layer, conventionally known various synthetic resins can be used. For example, polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate (CAP), cellulose acetate Cellulose esters such as phthalate and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyetherketone, polyimide, polyethersulfone ( PES), polysulfones, polyether ketone imide, polyamide, fluororesin Nylon, polymethyl methacrylate, acrylic or polyarylates, and cycloolefin resins such as ARTON (trade name JSR Corp.) or APEL (trade name Mitsui Chemicals, Inc.).
 これらの樹脂のうち、特に好ましい樹脂は、シクロオレフィン系樹脂である。 Among these resins, particularly preferred resins are cycloolefin resins.
 シクロオレフィン系樹脂(以下「環状オレフィン系樹脂」ともいう。)としては、ノルボルネン系樹脂、単環のシクロ(環状)オレフィン系樹脂、シクロ(環状)共役ジエン系樹脂、ビニル脂環式炭化水素系樹脂、及び、これらの水素化物等を挙げることができる。これらの中で、ノルボルネン系樹脂は、透明性と成形性が良好なため、好適に用いることができる。 Examples of cycloolefin resins (hereinafter also referred to as “cyclic olefin resins”) include norbornene resins, monocyclic cyclo (cyclic) olefin resins, cyclo (cyclic) conjugated diene resins, and vinyl alicyclic hydrocarbon resins. Examples thereof include resins and hydrides thereof. Among these, norbornene-based resins can be suitably used because of their good transparency and moldability.
 ノルボルネン系樹脂としては、例えば、ノルボルネン構造を有する単量体の開環重合体若しくはノルボルネン構造を有する単量体と他の単量体との開環共重合体又はそれらの水素化物、ノルボルネン構造を有する単量体の付加重合体若しくはノルボルネン構造を有する単量体と他の単量体との付加共重合体又はそれらの水素化物等を挙げることができる。 Examples of the norbornene-based resin include a ring-opening polymer of a monomer having a norbornene structure, a ring-opening copolymer of a monomer having a norbornene structure and another monomer, a hydride thereof, and a norbornene structure. An addition polymer of a monomer having a monomer, an addition copolymer of a monomer having a norbornene structure and another monomer, or a hydride thereof.
 これらの中で、ノルボルネン構造を有する単量体の開環(共)重合体水素化物は、透明性、成形性、耐熱性、低吸湿性、寸法安定性、軽量性などの観点から、特に好適に用いることができる。 Among these, a ring-opening (co) polymer hydride of a monomer having a norbornene structure is particularly suitable from the viewpoints of transparency, moldability, heat resistance, low hygroscopicity, dimensional stability, lightness, and the like. Can be used.
 ノルボルネン構造を有する単量体としては、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)、及びこれらの化合物の誘導体(例えば、環に置換基を有するもの)などを挙げることができる。ここで、置換基としては、例えばアルキル基、アルキレン基、極性基などを挙げることができる。また、これらの置換基は、同一又は相異なって複数個が環に結合していてもよい。ノルボルネン構造を有する単量体は1種単独で、あるいは2種以上を組み合わせて用いることができる。 Examples of the monomer having a norbornene structure include bicyclo [2.2.1] hept-2-ene (common name: norbornene), tricyclo [4.3.0.1 2,5 ] deca-3,7-diene. (Common name: dicyclopentadiene), 7,8-benzotricyclo [4.3.0.1 2,5 ] dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo [4.4.0. 1 2,5 . 1 7,10 ] dodec-3-ene (common name: tetracyclododecene) and derivatives of these compounds (for example, those having a substituent in the ring). Here, examples of the substituent include an alkyl group, an alkylene group, and a polar group. In addition, these substituents may be the same or different and a plurality may be bonded to the ring. Monomers having a norbornene structure can be used singly or in combination of two or more.
 極性基の種類としては、ヘテロ原子、又はヘテロ原子を有する原子団などが挙げられる。ヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、ケイ素原子、ハロゲン原子などが挙げられる。極性基の具体例としては、カルボキシル基、カルボニルオキシカルボニル基、エポキシ基、ヒドロキシル基、オキシ基、エステル基、シラノール基、シリル基、アミノ基、ニトリル基、スルホン基などが挙げられる。 Examples of the polar group include heteroatoms or atomic groups having heteroatoms. Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom. Specific examples of the polar group include a carboxyl group, a carbonyloxycarbonyl group, an epoxy group, a hydroxyl group, an oxy group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, and a sulfone group.
 ノルボルネン構造を有する単量体と開環共重合可能な他の単量体としては、シクロヘキセン、シクロヘプテン、シクロオクテンなどのモノシクロ(環状)オレフィン類及びその誘導体、シクロヘキサジエン、シクロヘプタジエンなどのシクロ(環状)共役ジエン及びその誘導体などが挙げられる。 Other monomers capable of ring-opening copolymerization with monomers having a norbornene structure include monocyclo (cyclic) olefins such as cyclohexene, cycloheptene, and cyclooctene and derivatives thereof, and cyclo ( Cyclic) conjugated dienes and derivatives thereof.
 ノルボルネン構造を有する単量体の開環重合体及びノルボルネン構造を有する単量体と共重合可能な他の単量体との開環共重合体は、単量体を公知の開環重合触媒の存在下に(共)重合することにより得ることができる。 A ring-opening polymer of a monomer having a norbornene structure and a ring-opening copolymer of a monomer having a norbornene structure and another monomer copolymerizable with the monomer have a known ring-opening polymerization catalyst. It can be obtained by (co) polymerization in the presence.
 ノルボルネン構造を有する単量体と付加共重合可能な他の単量体としては、例えば、エチレン、プロピレン、1-ブテンなどの炭素数2~20のα-オレフィン及びこれらの誘導体;シクロブテン、シクロペンテン、シクロヘキセンなどのシクロオレフィン及びこれらの誘導体;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエンなどの非共役ジエンなどが挙げられる。これらの単量体は1種単独で、あるいは2種以上を組み合わせて用いることができる。これらの中でも、α-オレフィンが好ましく、エチレンがより好ましい。 Examples of other monomers that can be addition-copolymerized with a monomer having a norbornene structure include, for example, α-olefins having 2 to 20 carbon atoms such as ethylene, propylene, and 1-butene, and derivatives thereof; cyclobutene, cyclopentene, Examples thereof include cycloolefins such as cyclohexene and derivatives thereof; non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, and 5-methyl-1,4-hexadiene. These monomers can be used alone or in combination of two or more. Among these, α-olefin is preferable, and ethylene is more preferable.
 ノルボルネン構造を有する単量体の付加重合体及びノルボルネン構造を有する単量体と共重合可能な他の単量体との付加共重合体は、単量体を公知の付加重合触媒の存在下に重合することにより得ることができる。 An addition polymer of a monomer having a norbornene structure and an addition copolymer of another monomer copolymerizable with a monomer having a norbornene structure can be used in the presence of a known addition polymerization catalyst. It can be obtained by polymerization.
 ノルボルネン構造を有する単量体の開環重合体の水素添加物、ノルボルネン構造を有する単量体とこれと開環共重合可能なその他の単量体との開環共重合体の水素添加物、ノルボルネン構造を有する単量体の付加重合体の水素添加物、及びノルボルネン構造を有する単量体とこれと付加共重合可能なその他の単量体との付加共重合体の水素添加物は、これらの重合体の溶液に、ニッケル、パラジウムなどの遷移金属を含む公知の水素添加触媒を添加し、炭素-炭素不飽和結合を好ましくは90%以上水素添加することによって得ることができる。 A hydrogenated product of a ring-opening polymer of a monomer having a norbornene structure, a hydrogenated product of a ring-opening copolymer of a monomer having a norbornene structure and another monomer capable of ring-opening copolymerization thereof, Hydrogenated products of addition polymers of monomers having a norbornene structure, and hydrogenated products of addition copolymers of monomers having a norbornene structure and other monomers capable of addition copolymerization with these A known hydrogenation catalyst containing a transition metal such as nickel or palladium is added to the polymer solution, and the carbon-carbon unsaturated bond is preferably hydrogenated by 90% or more.
 ノルボルネン系樹脂の中でも、繰り返し単位として、X:ビシクロ[3.3.0]オクタン-2,4-ジイル-エチレン構造と、Y:トリシクロ[4.3.0.12,5]デカン-7,9-ジイル-エチレン構造とを有し、これらの繰り返し単位の含有量が、ノルボルネン系樹脂の繰り返し単位全体に対して90質量%以上であり、かつ、Xの含有割合とYの含有割合との比が、X:Yの質量比で100:0~40:60であるものが好ましい。 Among norbornene-based resins, X: bicyclo [3.3.0] octane-2,4-diyl-ethylene structure and Y: tricyclo [4.3.0.1 2,5 ] decane-7 are used as repeating units. , 9-diyl-ethylene structure, the content of these repeating units is 90% by mass or more based on the entire repeating units of the norbornene resin, and the X content ratio and the Y content ratio are The ratio of X: Y is preferably 100: 0 to 40:60.
 本発明に用いるシクロ(環状)オレフィン樹脂の分子量は使用目的に応じて適宜選定される。溶媒としてシクロヘキサン(重合体樹脂が溶解しない場合はトルエン)を用いるゲル・パーミエーション・クロマトグラフィーで測定したポリイソプレン又はポリスチレン換算の重量平均分子量(Mw)で、通常20,000~150,000である。好ましくは25,000~100,000、より好ましくは30,000~80,000である。重量平均分子量がこのような範囲にあるときに、フィルムの機械的強度及び成型加工性とが高度にバランスされ好適である。 The molecular weight of the cyclo (cyclic) olefin resin used in the present invention is appropriately selected according to the purpose of use. Polyisoprene or polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography using cyclohexane (toluene if the polymer resin does not dissolve) as a solvent, usually 20,000 to 150,000. . It is preferably 25,000 to 100,000, more preferably 30,000 to 80,000. When the weight average molecular weight is in such a range, the mechanical strength and molding processability of the film are highly balanced and suitable.
 シクロ(環状)オレフィン樹脂のガラス転移温度は、使用目的に応じて適宜選択されればよい。好ましくは130~160℃、より好ましくは135~150℃の範囲である。 The glass transition temperature of the cyclo (cyclic) olefin resin may be appropriately selected according to the purpose of use. The range is preferably from 130 to 160 ° C, more preferably from 135 to 150 ° C.
 本発明に用いられる上記シクロオレフィン系樹脂の具体例としては、例えば、JSR株式会社製 商品名:ARTON;日本ゼオン株式会社製 商品名:ゼオノア;積水化学工業株式会社製 商品名:エスシーナ等を挙げることができる。 Specific examples of the cycloolefin resin used in the present invention include, for example, JSR Corporation trade name: ARTON; Nippon Zeon Corporation trade name: Zeonoa; Sekisui Chemical Co., Ltd. trade name: Essina. be able to.
 また、応力緩和層として用いられる合成樹脂層には、無機フィラーを含有することも好ましく用いられる。 In addition, it is also preferable that the synthetic resin layer used as the stress relaxation layer contains an inorganic filler.
 上記発明によれば、無機フィラーの入った無機フィラー含有層(応力緩和層)により、蒸着膜を外部応力から護ることで、環境変化による圧縮/膨張応力によっても性能が劣化しないガスバリアフィルムを提供することができる。 According to the above invention, by providing an inorganic filler-containing layer (stress relaxation layer) containing an inorganic filler, the gas barrier film is protected from external stress, thereby providing a gas barrier film whose performance is not deteriorated by compression / expansion stress due to environmental changes. be able to.
 外部応力を緩衝する作用としては、無機フィラーが導入された無機フィラー含有層にて、無機フィラーと通常含まれる樹脂との境界に微細な空孔が存在し、その空孔が外部応力を吸収緩和し、蒸着膜への負荷を低減させ、蒸着膜へのクラック導入を阻止し、バリア性を維持することが考えられる。 As an action to buffer external stress, in the inorganic filler-containing layer into which inorganic filler is introduced, there are fine pores at the boundary between the inorganic filler and the resin that is usually contained, and these pores absorb and relax external stress. Therefore, it is conceivable to reduce the load on the deposited film, prevent cracks from being introduced into the deposited film, and maintain the barrier property.
 また、透明プライマー層を設ける形態では、プラスチック基材と無機蒸着層との密着性を高めることができる。 Moreover, in the form in which the transparent primer layer is provided, the adhesion between the plastic substrate and the inorganic vapor deposition layer can be enhanced.
 なお、本発明のミラーフィルムには、必要に応じて、各層に対して、特に基材に対して、充填剤、酸化防止剤、紫外線吸収剤、熱安定剤、滑剤、帯電防止剤、抗菌剤、顔料等を添加することができる。 In the mirror film of the present invention, the filler, the antioxidant, the ultraviolet absorber, the heat stabilizer, the lubricant, the antistatic agent, and the antibacterial agent are optionally added to each layer, particularly to the base material. , Pigments and the like can be added.
 (加熱処理工程)
 本発明のフィルムミラーを製造するフィルムミラーの製造方法としては、種々の態様の方法を採り得るが、無機酸化物粒子を含有する無機酸化物膜から成る塗膜を50~200℃の範囲内の加熱温度で加熱処理する工程を有する態様の製造方法であることが好ましい。
(Heat treatment process)
As a film mirror manufacturing method for manufacturing the film mirror of the present invention, various methods can be employed. A coating film comprising an inorganic oxide film containing inorganic oxide particles is within a range of 50 to 200 ° C. It is preferable that it is a manufacturing method of the aspect which has the process of heat-processing at heating temperature.
 本発明において、加熱処理する温度は、周辺基材の耐熱性が高い場合には、高温で処理することが、処理時間を短縮できるという点から本来は好ましいが、本発明のフィルムミラーには基材として合成樹脂を用いるという観点から、50~200℃が好ましい。さらには、70~150℃が好ましい。 In the present invention, when the heat treatment temperature of the peripheral substrate is high, it is originally preferable that the heat treatment is performed at a high temperature from the viewpoint that the treatment time can be shortened. From the viewpoint of using a synthetic resin as a material, 50 to 200 ° C. is preferable. Furthermore, 70 to 150 ° C. is preferable.
 加熱方法には、一般的に用いられる加熱手段はどんなものでも適用できるが、単時間の加熱を断続的に繰り返すことで加熱する方法も好ましく用いられる。 Any heating means that is generally used can be applied to the heating method, but a method of heating by intermittently repeating heating for one hour is also preferably used.
 加熱方法としては、無機酸化物粒子を含有する分散物の塗膜(「塗布層」ともいう。)に局所的加熱をすることにより防湿層を形成することが好ましい。 As a heating method, it is preferable to form a moisture-proof layer by locally heating a coating film (also referred to as “coating layer”) of a dispersion containing inorganic oxide particles.
 ここで、塗膜の「局所的加熱」とは、樹脂基材を実質的に加熱劣化させることなく、実質的に塗布層を(樹脂基材より10℃以上、好ましくは20℃以上高温に)加熱することをいう。このための局所的加熱方法としては、従来公知の種々の方法を採用することができる。例えば、赤外線ヒーターによる加熱、熱風、マイクロ波、超音波加熱、誘導加熱などを、適宜選択することができる。これらのうち、赤外線の断続照射やマイクロ波等の電磁波及び超音波を用いる方法が好ましい。 Here, “local heating” of the coating film means that the coating layer is substantially heated to 10 ° C. or more, preferably 20 ° C. or more higher than the resin substrate without substantially deteriorating the resin substrate by heating. Refers to heating. As a local heating method for this purpose, various conventionally known methods can be employed. For example, heating with an infrared heater, hot air, microwave, ultrasonic heating, induction heating, or the like can be selected as appropriate. Of these, methods using intermittent electromagnetic irradiation of infrared rays, electromagnetic waves such as microwaves and ultrasonic waves are preferable.
 赤外線の照射手段としては、赤外線ランプ、赤外線ヒーター等の照射装置を用いることができる。無機酸化物層を形成することができれば、赤外線照射装置による照射は一回で行われてもよいが、塗布層を局所的に加熱するためには単時間の赤外線照射を断続的に繰り返す方法が好ましく用いられる。短時間の赤外線照射を断続的に繰り返す方法としては、例えば、赤外線照射装置のオンオフを短時間で繰り返す方法、赤外線照射装置と非照射物との間に遮蔽板を設けて、遮蔽板を動かすことで繰り返し照射する方法、非照射物(樹脂フィルム)の搬送方向の複数個所に赤外線照射装置を設け、非照射物を搬送させることで赤外線照射を繰り返し行う方法などが挙げられる。 As the infrared irradiation means, an irradiation device such as an infrared lamp or an infrared heater can be used. If the inorganic oxide layer can be formed, the irradiation by the infrared irradiation device may be performed once. However, in order to locally heat the coating layer, there is a method of intermittently repeating the infrared irradiation for one hour. Preferably used. As a method of intermittently repeating short-time infrared irradiation, for example, a method of repeatedly turning on and off the infrared irradiation device in a short time, a shielding plate is provided between the infrared irradiation device and a non-irradiated object, and the shielding plate is moved And a method of repeatedly irradiating infrared rays by providing an infrared irradiation device at a plurality of locations in the conveyance direction of the non-irradiated material (resin film) and conveying the non-irradiated material.
 マイクロ波は、周波数1GHz~3THz、波長0.1~300mm位のUHF~EHF帯の総称で、2.45GHzの周波数のマイクロ波発生装置が一般的であるが、1~100GHzの周波数のマイクロ波を用いることができる。例えば、2.45GHzマイクロ波照射機(四国計測工業(株)製 μ-reactor)、2.45GHzのマイクロ波を照射するマイクロ波発生装置(マグネトロン)等を挙げることができる。 A microwave is a general term for a UHF to EHF band with a frequency of 1 GHz to 3 THz and a wavelength of about 0.1 to 300 mm, and a microwave generator with a frequency of 2.45 GHz is common, but a microwave with a frequency of 1 to 100 GHz is common. Can be used. For example, a 2.45 GHz microwave irradiator (μ-reactor manufactured by Shikoku Keiki Kogyo Co., Ltd.), a microwave generator (magnetron) that radiates a 2.45 GHz microwave, and the like can be given.
 本願において、「超音波」とは、10kHz以上の振動数の弾性振動波(音波)をいう。本発明に係る超音波による加熱方法としては、ホーンの周波数は、50kHz以下の範囲の周波数で、赤外線照射と同様に単時間の加熱を断続的に繰り返し加熱すことが好ましい。 In the present application, “ultrasonic wave” refers to an elastic vibration wave (sound wave) having a frequency of 10 kHz or more. As the heating method using ultrasonic waves according to the present invention, it is preferable that the frequency of the horn is a frequency in the range of 50 kHz or less, and heating for a single time is repeated repeatedly as in the case of infrared irradiation.
 マイクロ波や超音波を用いて塗布層の加熱を行う場合も、赤外線照射と同様に単時間の加熱を断続的に繰り返すことで、樹脂基材の劣化を引き起こすことなく樹脂塗布層のみを局所的に加熱する方法が好ましく用いられる。 Even when the coating layer is heated using microwaves or ultrasonic waves, only the resin coating layer is locally applied without causing deterioration of the resin base material by intermittently repeating heating for a single hour as in the case of infrared irradiation. The method of heating is preferably used.
 (樹脂基材の製造方法)
 本発明に係る樹脂基材の製造方法としては、通常のインフレーション法、T-ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造法が使用できるが、着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制などの観点から流延法による溶液流延法、溶融流延法が好ましい。
(Method for producing resin base material)
As a method for producing a resin base material according to the present invention, the usual inflation method, T-die method, calender method, cutting method, casting method, emulsion method, hot press method and the like can be used. From the viewpoints of suppressing foreign matter defects and optical defects such as die lines, the solution casting method and the melt casting method by casting are preferred.
 以下、典型的例として、フィルム状樹脂基材として、作製する場合の製造方法について詳述する。 Hereinafter, as a typical example, a production method in the case of producing a film-like resin base material will be described in detail.
 <溶液流延法による樹脂基材の製造方法>
 (有機溶媒)
 本発明に係る樹脂基材を溶液流延法で製造する場合、ドープを形成するのに有用な有機溶媒は、セルロースエステル樹脂等の熱可塑性樹脂を溶解するものであれば制限なく用いることができる。
<Method for producing resin base material by solution casting method>
(Organic solvent)
When the resin substrate according to the present invention is produced by the solution casting method, an organic solvent useful for forming the dope can be used without limitation as long as it dissolves a thermoplastic resin such as a cellulose ester resin. .
 例えば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン、乳酸エチル、乳酸、ジアセトンアルコール等を挙げることができ、塩化メチレン、酢酸メチル、酢酸エチル、アセトン、乳酸エチル等を好ましく使用し得る。 For example, as a chlorinated organic solvent, methylene chloride, as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, ethyl lactate, lactic acid , Diacetone alcohol, etc., preferably methylene chloride, methyl acetate, ethyl acetate, acetone, ethyl lactate, etc. Get.
 ドープには、上記有機溶媒の他に、1~40質量%の炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有させてもよい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ない時は非塩素系有機溶媒系での熱可塑性樹脂の溶解を促進する役割もある。 In addition to the organic solvent, the dope may contain 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. When the proportion of alcohol in the dope increases, the web gels, facilitating peeling from the metal support, and when the proportion of alcohol is small, the dissolution of the thermoplastic resin in a non-chlorine organic solvent system is promoted. There is also a role.
 特に、メチレンクロライド、及び炭素数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有する溶媒に、熱可塑性樹脂は、少なくとも計10~45質量%溶解させたドープ組成物であることが好ましい。 In particular, the thermoplastic resin should be a dope composition in which at least 10 to 45% by mass of the thermoplastic resin is dissolved in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. preferable.
 炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらの内ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からエタノールが好ましい。 Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.
 以下、本発明に係るフィルム状樹脂基板(以下、単に「フィルム」ともいう。)の好ましい製膜方法について説明する。 Hereinafter, a preferred method for forming a film-like resin substrate according to the present invention (hereinafter also simply referred to as “film”) will be described.
 1)溶解工程
 熱可塑性樹脂に対する良溶媒を主とする有機溶媒に、溶解釜中で熱可塑性樹脂、熱収縮材料、その他の添加剤を攪拌しながら溶解しドープを形成する工程である。
1) Dissolution Step In this step, a thermoplastic resin, a heat-shrinkable material, and other additives are dissolved in an organic solvent mainly composed of a good solvent for the thermoplastic resin while stirring to form a dope.
 熱可塑性樹脂の溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報、又は特開平9-95538号公報に記載の如き冷却溶解法で行う方法、特開平11-21379号公報に記載の如き高圧で行う方法等種々の溶解方法を用いることができるが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。 For the dissolution of the thermoplastic resin, a method carried out at normal pressure, a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544, JP-A-9-95557 Alternatively, various dissolution methods such as a method using a cooling dissolution method as described in JP-A-9-95538 and a method using a high pressure as described in JP-A-11-21379 can be used. The method of pressurizing at a boiling point or higher is preferred.
 返材とは、フィルムを細かく粉砕した物で、フィルムを製膜するときに発生する、フィルムの両サイド部分を切り落とした物や、擦り傷などでスペックアウトしたフィルム原反のことをいい、これも再使用される。 Recycled material is a finely pulverized film, which is generated when the film is formed, cut off on both sides of the film, or the original film that has been speculated out due to scratches, etc. Reused.
 2)流延工程
 ドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイに送液し、無限に移送する無端の金属ベルト、例えばステンレスベルト、あるいは回転する金属ドラム等の金属支持体上の流延位置に、加圧ダイスリットからドープを流延する工程である。
2) Casting process An endless metal belt, such as a stainless steel belt or a rotating metal drum, which supports the dope is fed to a pressure die through a liquid feed pump (for example, a pressurized metering gear pump) and supported infinitely. This is a step of casting a dope from a pressure die slit to a casting position on the body.
 ダイの口金部分のスリット形状を調整でき、膜厚を均一にし易い加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。金属支持体の表面は鏡面となっている。製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して重層してもよい。あるいは複数のドープを同時に流延する共流延法によって積層構造のフィルムを得ることも好ましい。 ¡Pressure dies that can adjust the slit shape of the die base and make the film thickness uniform are preferred. Examples of the pressure die include a coat hanger die and a T die, and any of them is preferably used. The surface of the metal support is a mirror surface. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
 3)溶媒蒸発工程
 ウェブ(流延用支持体上にドープを流延し、形成されたドープ膜をウェブと呼ぶ)を流延用支持体上で加熱し、溶媒を蒸発させる工程である。
3) Solvent evaporation step In this step, the web (the dope is cast on the casting support and the formed dope film is called a web) is heated on the casting support to evaporate the solvent.
 溶媒を蒸発させるには、ウェブ側から風を吹かせる方法及び/又は支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法の乾燥効率が良く好ましい。又、それらを組み合わせる方法も好ましく用いられる。流延後の支持体上のウェブを40~100℃の雰囲気下、支持体上で乾燥させることが好ましい。40~100℃の雰囲気下に維持するには、この温度の温風をウェブ上面に当てるか赤外線等の手段により加熱することが好ましい。 To evaporate the solvent, there are a method of blowing air from the web side and / or a method of transferring heat from the back side of the support by a liquid, a method of transferring heat from the front and back by radiant heat, etc. High efficiency and preferable. A method of combining them is also preferably used. The web on the support after casting is preferably dried on the support in an atmosphere of 40 to 100 ° C. In order to maintain the atmosphere at 40 to 100 ° C., it is preferable to apply hot air at this temperature to the upper surface of the web or heat by means such as infrared rays.
 面品質、透湿性、剥離性の観点から、30~120秒以内で該ウェブを支持体から剥離することが好ましい。 From the viewpoint of surface quality, moisture permeability, and peelability, it is preferable to peel the web from the support within 30 to 120 seconds.
 4)剥離工程
 金属支持体上で溶媒が蒸発したウェブを、剥離位置で剥離する工程である。剥離されたウェブは次工程に送られる。
4) Peeling process It is the process of peeling the web which the solvent evaporated on the metal support body in a peeling position. The peeled web is sent to the next process.
 金属支持体上の剥離位置における温度は好ましくは10~40℃であり、さらに好ましくは11~30℃である。 The temperature at the peeling position on the metal support is preferably 10 to 40 ° C, more preferably 11 to 30 ° C.
 なお、剥離する時点での金属支持体上でのウェブの剥離時残留溶媒量は、乾燥の条件の強弱、金属支持体の長さ等により50~120質量%の範囲で剥離することが好ましいが、残留溶媒量がより多い時点で剥離する場合、ウェブが柔らか過ぎると剥離時平面性を損ね、剥離張力によるツレや縦スジが発生し易いため、経済速度と品質との兼ね合いで剥離時の残留溶媒量が決められる。 The amount of residual solvent at the time of peeling of the web on the metal support at the time of peeling is preferably 50 to 120% by mass depending on the strength of drying conditions, the length of the metal support, and the like. If the web is peeled off at a time when the amount of residual solvent is larger, if the web is too soft, the flatness at the time of peeling will be lost, and slippage and vertical stripes are likely to occur due to the peeling tension. The amount of solvent is determined.
 ウェブの残留溶媒量は下記式で定義される。 The amount of residual solvent in the web is defined by the following formula.
 残留溶媒量(%)=(ウェブの加熱処理前質量-ウェブの加熱処理後質量)/(ウェブの加熱処理後質量)×100
 なお、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
Residual solvent amount (%) = (mass before web heat treatment−mass after web heat treatment) / (mass after web heat treatment) × 100
Note that the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
 金属支持体とフィルムを剥離する際の剥離張力は、通常、196~245N/mであるが、剥離の際に皺が入り易い場合、190N/m以下の張力で剥離することが好ましく、さらには、剥離できる最低張力~166.6N/m、次いで、最低張力~137.2N/mで剥離することが好ましいが、特に好ましくは最低張力~100N/mで剥離することである。 The peeling tension at the time of peeling the metal support and the film is usually 196 to 245 N / m. However, if wrinkles easily occur at the time of peeling, it is preferable to peel with a tension of 190 N / m or less. It is preferable to peel at a minimum tension of ˜166.6 N / m, and then peel at a minimum tension of ˜137.2 N / m, and particularly preferable to peel at a minimum tension of ˜100 N / m.
 本発明においては、当該金属支持体上の剥離位置における温度を-50~40℃とするのが好ましく、10~40℃がより好ましく、15~30℃とするのが最も好ましい。 In the present invention, the temperature at the peeling position on the metal support is preferably −50 to 40 ° C., more preferably 10 to 40 ° C., and most preferably 15 to 30 ° C.
 5)乾燥及び延伸工程
 剥離後、ウェブを乾燥装置内に複数配置したロールに交互に通して搬送する乾燥装置35、及び/又はクリップでウェブの両端をクリップして搬送するテンター延伸装置34を用いて、ウェブを乾燥する。
5) Drying and stretching step After peeling, a drying device 35 that transports the web alternately through rolls arranged in the drying device and / or a tenter stretching device 34 that clips and transports both ends of the web with clips. And dry the web.
 乾燥手段はウェブの両面に熱風を吹かせるのが一般的であるが、風の代わりにマイクロウェーブを当てて加熱する手段もある。余り急激な乾燥は出来上がりのフィルムの平面性を損ね易い。高温による乾燥は残留溶媒が8質量%以下くらいから行うのがよい。全体を通し、乾燥は概ね40~250℃で行われる。特に40~160℃で乾燥させることが好ましい。 The drying means is generally to blow hot air on both sides of the web, but there is also a means to heat by applying microwaves instead of wind. Too rapid drying tends to impair the flatness of the finished film. Drying at a high temperature is preferably performed from about 8% by mass or less of residual solvent. Throughout, drying is generally performed at 40-250 ° C. In particular, drying at 40 to 160 ° C. is preferable.
 テンター延伸装置を用いる場合は、テンターの左右把持手段によってフィルムの把持長(把持開始から把持終了までの距離)を左右で独立に制御できる装置を用いることが好ましい。また、テンター工程において、平面性を改善するため意図的に異なる温度を持つ区画を作ることも好ましい。 When using a tenter stretching apparatus, it is preferable to use an apparatus that can independently control the film gripping length (distance from the start of gripping to the end of gripping) left and right by the left and right gripping means of the tenter. In the tenter process, it is also preferable to intentionally create sections having different temperatures in order to improve planarity.
 また、異なる温度区画の間にそれぞれの区画が干渉を起こさないように、ニュートラルゾーンを設けることも好ましい。 It is also preferable to provide a neutral zone between different temperature zones so that each zone does not cause interference.
 なお、延伸操作は多段階に分割して実施してもよく、流延方向、幅手方向に二軸延伸を実施することも好ましい。また、二軸延伸を行う場合には同時二軸延伸を行ってもよいし、段階的に実施してもよい。 The stretching operation may be performed in multiple stages, and it is also preferable to perform biaxial stretching in the casting direction and the width direction. When biaxial stretching is performed, simultaneous biaxial stretching may be performed or may be performed stepwise.
 この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。即ち、例えば、次のような延伸ステップも可能である。 In this case, stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible. That is, for example, the following stretching steps are possible.
 ・流延方向に延伸-幅手方向に延伸-流延方向に延伸-流延方向に延伸
 ・幅手方向に延伸-幅手方向に延伸-流延方向に延伸-流延方向に延伸
 また、同時2軸延伸には、一方向に延伸し、もう一方を、張力を緩和して収縮させる場合も含まれる。同時2軸延伸の好ましい延伸倍率は幅手方向、長手方向ともに×1.01倍~×1.5倍の範囲でとることができる。
-Stretch in the casting direction-Stretch in the width direction-Stretch in the casting direction-Stretch in the casting direction-Stretch in the width direction-Stretch in the width direction-Stretch in the casting direction-Stretch in the casting direction Simultaneous biaxial stretching includes stretching in one direction and contracting the other while relaxing the tension. The preferred draw ratio for simultaneous biaxial stretching can be in the range of x1.01 to x1.5 in both the width direction and the longitudinal direction.
 テンターを行う場合のウェブの残留溶媒量は、テンター開始時に20~100質量%であるのが好ましく、かつウェブの残留溶媒量が10質量%以下になる迄テンターを掛けながら乾燥を行うことが好ましく、さらに好ましくは5質量%以下である。 When the tenter is used, the amount of residual solvent in the web is preferably 20 to 100% by mass at the start of the tenter, and drying is preferably performed while the tenter is applied until the amount of residual solvent in the web is 10% by mass or less. More preferably, it is 5% by mass or less.
 テンターを行う場合の乾燥温度は、30~160℃が好ましく、50~150℃がさらに好ましく、70~140℃が最も好ましい。 When performing the tenter, the drying temperature is preferably 30 to 160 ° C., more preferably 50 to 150 ° C., and most preferably 70 to 140 ° C.
 テンター工程において、雰囲気の幅手方向の温度分布が少ないことが、フィルムの均一性を高める観点から好ましく、テンター工程での幅手方向の温度分布は、±5℃以内が好ましく、±2℃以内がより好ましく、±1℃以内が最も好ましい。 In the tenter process, it is preferable that the temperature distribution in the width direction of the atmosphere is small from the viewpoint of improving the uniformity of the film. The temperature distribution in the width direction in the tenter process is preferably within ± 5 ° C, and within ± 2 ° C. Is more preferable, and within ± 1 ° C. is most preferable.
 6)巻き取り工程
 ウェブ中の残留溶媒量が2質量%以下となってからフィルムとして巻き取り機37により巻き取る工程であり、残留溶媒量を0.4質量%以下にすることにより寸法安定性の良好なフィルムを得ることができる。特に0.00~0.10質量%で巻き取ることが好ましい。
6) Winding process This is a process in which the amount of residual solvent in the web becomes 2% by mass or less, and is taken up by the winder 37 as a film, and the dimensional stability is achieved by setting the residual solvent amount to 0.4% by mass or less. Can be obtained. It is particularly preferable to wind up at 0.00 to 0.10% by mass.
 巻き取り方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使いわければよい。 As a winding method, a generally used one may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, etc., and these may be used properly.
 本発明に係るフィルムは、長尺フィルムであることが好ましく、具体的には、100m~5000m程度のものを示し、通常、ロール状で提供される形態のものである。また、フィルムの幅は1.3~4mであることが好ましく、1.4~2mであることがより好ましい。 The film according to the present invention is preferably a long film, specifically a film having a thickness of about 100 m to 5000 m, and usually in a form provided in a roll shape. The film width is preferably 1.3 to 4 m, more preferably 1.4 to 2 m.
 本発明に係るフィルムの膜厚に特に制限はないが、20~200μmであることが好ましく、25~150μmであることがより好ましく、30~120μmであることが特に好ましい。 The film thickness of the film according to the present invention is not particularly limited, but is preferably 20 to 200 μm, more preferably 25 to 150 μm, and particularly preferably 30 to 120 μm.
 <溶融流延製膜法による基板の製造方法>
 本発明に係る樹脂基材を、フィルム状樹脂基材として、溶融流延製膜法により製造する場合の方法について説明する。
<Manufacturing method of substrate by melt casting film forming method>
The method in the case of manufacturing the resin base material which concerns on this invention as a film-form resin base material by the melt casting film forming method is demonstrated.
 〈溶融ペレット製造工程〉
 溶融押出に用いる熱可塑性樹脂、熱収縮材料からなるフィルムを構成する組成物は、通常あらかじめ混錬してペレット化しておくことが好ましい。
<Melted pellet manufacturing process>
The composition constituting a film made of a thermoplastic resin and a heat shrinkable material used for melt extrusion is usually preferably kneaded in advance and pelletized.
 ペレット化は、公知の方法でよく、例えば、乾燥した熱可塑性樹脂と熱収縮材料等からなる添加剤をフィーダーで押出機に供給し1軸や2軸の押出機を用いて混錬し、ダイからストランド状に押出し、水冷又は空冷し、カッティングすることでできる。 The pelletization may be performed by a known method. For example, an additive comprising a dried thermoplastic resin and a heat-shrinkable material is supplied to an extruder with a feeder and kneaded using a single-screw or twin-screw extruder. It is possible to extrude into a strand, cool with water or air, and cut.
 原材料は、押出する前に乾燥しておくことが原材料の分解を防止する上で重要である。特にセルロースエステルは吸湿しやすいので、除湿熱風乾燥機や真空乾燥機で70~140℃で3時間以上乾燥し、水分率を200ppm以下、さらに100ppm以下にしておくことが好ましい。 It is important to dry the raw material before extruding to prevent the raw material from being decomposed. In particular, since cellulose ester easily absorbs moisture, it is preferable to dry it at 70 to 140 ° C. for 3 hours or more with a dehumidifying hot air dryer or a vacuum dryer so that the moisture content is 200 ppm or less, and further 100 ppm or less.
 添加剤は、押出機に供給押出機合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。酸化防止剤等少量の添加剤は、均一に混合するため、こと前に混合しておくことが好ましい。 Additives may be fed into the extruder and fed into the extruder, or may be fed through individual feeders. In order to mix a small amount of additives such as an antioxidant uniformly, it is preferable to mix them in advance.
 酸化防止剤の混合は、固体同士で混合してもよいし、必要により、酸化防止剤を溶剤に溶解しておき、熱可塑性樹脂に含浸させて混合してもよく、あるいは噴霧して混合してもよい。 The antioxidant may be mixed with each other, and if necessary, the antioxidant may be dissolved in a solvent, impregnated with a thermoplastic resin and mixed, or mixed by spraying. May be.
 真空ナウターミキサーなどが乾燥と混合を同時にできるので好ましい。また、フィーダー部やダイからの出口など空気と触れる場合は、除湿空気や除湿したNガスなどの雰囲気下にすることが好ましい。 A vacuum nauter mixer or the like is preferable because drying and mixing can be performed simultaneously. Further, if the contact with air, such as the exit from the feeder unit or die, it is preferable that the atmosphere such as dehumidified air and dehumidified N 2 gas.
 押出機は、せん断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないようにペレット化可能でなるべく低温で加工することが好ましい。例えば、2軸押出機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。 The extruder is preferably processed at as low a temperature as possible so as to be able to be pelletized so that the shear force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.). For example, in the case of a twin screw extruder, it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
 以上のようにして得られたペレットを用いてフィルム製膜を行う。ペレット化せず、原材料の粉末をそのままフィーダーで押出機に供給し、そのままフィルム製膜することも可能である。 Film formation is performed using the pellets obtained as described above. It is also possible to feed the raw material powder directly to the extruder with a feeder and form a film as it is without pelletization.
 〈溶融混合物をダイから冷却ロールへ押し出す工程〉
 まず、作製したペレットを1軸や2軸タイプの押出機を用いて、押し出す際の溶融温度Tmを200~300℃程度とし、リーフディスクタイプのフィルターなどでろ過し異物を除去した後、Tダイからフィルム状に共押出し、冷却ロール上で固化し、弾性タッチロールと押圧しながら流延する。
<Process for extruding molten mixture from die to cooling roll>
First, the pellets produced are extruded using a single-screw or twin-screw extruder, the melting temperature Tm during extrusion is set to about 200 to 300 ° C., filtered through a leaf disk type filter or the like to remove foreign matter, and then the T-die The film is coextruded into a film, solidified on a cooling roll, and cast while pressing with an elastic touch roll.
 供給ホッパーから押出機へ導入する際は真空下又は減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。なお、Tmは、押出機のダイ出口部分の温度である。 When introducing from the supply hopper to the extruder, it is preferable to prevent oxidative decomposition or the like under vacuum or reduced pressure or in an inert gas atmosphere. Tm is the temperature of the die exit portion of the extruder.
 ダイに傷や可塑剤の凝結物等の異物が付着するとスジ状の欠陥が発生する場合がある。このような欠陥のことをダイラインとも呼ぶが、ダイライン等の表面の欠陥を小さくするためには、押出機からダイまでの配管には樹脂の滞留部が極力少なくなるような構造にすることが好ましい。ダイの内部やリップにキズ等が極力無いものを用いることが好ましい。 ∙ If foreign matter such as scratches or plasticizer aggregates adheres to the die, streaky defects may occur. Such defects are also referred to as die lines, but in order to reduce surface defects such as die lines, it is preferable to have a structure in which the resin retention portion is minimized in the piping from the extruder to the die. . It is preferable to use a die that has as few scratches as possible inside the lip.
 押出機やダイなどの溶融樹脂と接触する内面は、表面粗さを小さくしたり、表面エネルギーの低い材質を用いるなどして、溶融樹脂が付着し難い表面加工が施されていることが好ましい。具体的には、ハードクロムメッキやセラミック溶射したものを表面粗さ0.2S以下となるように研磨したものが挙げられる。 The inner surface that comes into contact with the molten resin, such as an extruder or a die, is preferably subjected to surface treatment that makes it difficult for the molten resin to adhere to the surface by reducing the surface roughness or using a material with low surface energy. Specifically, a hard chrome plated or ceramic sprayed material is polished so that the surface roughness is 0.2 S or less.
 本発明において冷却ロールには特に制限はないが、高剛性の金属ロールで内部に温度制御可能な熱媒体又は冷媒体が流れるような構造を備えるロールであり、大きさは限定されないが、溶融押し出されたフィルムを冷却するのに十分な大きさであればよく、通常冷却ロールの直径は100mmから1m程度である。 In the present invention, the cooling roll is not particularly limited, but it is a roll having a structure in which a heat medium or a coolant that can be controlled in temperature flows with a highly rigid metal roll, and the size is not limited. The size of the cooling roll is usually about 100 mm to 1 m.
 冷却ロールの表面材質は、炭素鋼、ステンレス、アルミニウム、チタンなどが挙げられる。さらに表面の硬度を上げたり、樹脂との剥離性を改良するため、ハードクロムメッキや、ニッケルメッキ、非晶質クロムメッキなどや、セラミック溶射等の表面処理を施すことが好ましい。 The surface material of the cooling roll includes carbon steel, stainless steel, aluminum, titanium and the like. Further, in order to increase the hardness of the surface or improve the releasability from the resin, it is preferable to perform a surface treatment such as hard chrome plating, nickel plating, amorphous chrome plating, or ceramic spraying.
 冷却ロール表面の表面粗さは、Raで0.1μm以下とすることが好ましく、さらに0.05μm以下とすることが好ましい。ロール表面が平滑であるほど、得られるフィルムの表面も平滑にできるのである。もちろん表面加工した表面はさらに研磨し上述した表面粗さとすることが好ましい。 The surface roughness of the cooling roll surface is preferably 0.1 μm or less in terms of Ra, and more preferably 0.05 μm or less. The smoother the roll surface, the smoother the surface of the resulting film. Of course, it is preferable that the surface processed is further polished to have the above-described surface roughness.
 本発明において、弾性タッチロールとしては、特開平03-124425号、特開平08-224772号、特開平07-100960号、特開平10-272676号、WO97/028950号、特開平11-235747号、特開2002-36332号、特開2005-172940号や特開2005-280217号公報に記載されているような表面が薄膜金属スリーブ被覆シリコンゴムロールを使用することができる。 In the present invention, as an elastic touch roll, JP-A Nos. 03-124425, 08-224772, JP-A-07-1000096, JP-A-10-272676, WO97 / 028950, JP-A-11-235747, As described in JP-A-2002-36332, JP-A-2005-172940 and JP-A-2005-280217, a thin-film metal sleeve-covered silicon rubber roll can be used.
 冷却ロールからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。 When peeling the film from the cooling roll, it is preferable to control the tension to prevent deformation of the film.
 〈延伸工程〉
 本発明では、上記のようにして得られたフィルムは冷却ロールに接する工程を通過後、さらに少なくとも1方向に1.01~3.0倍延伸することもできる。
<Extension process>
In the present invention, the film obtained as described above can be further stretched 1.01 to 3.0 times in at least one direction after passing through the step of contacting the cooling roll.
 好ましくは縦(フィルム搬送方向)、横(巾方向)両方向にそれぞれ1.1~2.0倍延伸することが好ましい。 Preferably, the film is stretched 1.1 to 2.0 times in both the longitudinal (film transport direction) and lateral (width direction) directions.
 延伸する方法は、公知のロール延伸機やテンターなどを好ましく用いることができる。 As the stretching method, a known roll stretching machine or tenter can be preferably used.
 巾方向に延伸することで光学フィルムの遅相軸は巾方向になる。 The slow axis of the optical film becomes the width direction by stretching in the width direction.
 通常、延伸倍率は1.1~3.0倍、好ましくは1.2~1.5倍であり、延伸温度は、通常、フィルムを構成する樹脂のTg~Tg+50℃、好ましくはTg~Tg+50℃の温度範囲で行われる。 Usually, the draw ratio is 1.1 to 3.0 times, preferably 1.2 to 1.5 times, and the drawing temperature is usually Tg to Tg + 50 ° C. of the resin constituting the film, preferably Tg to Tg + 50 ° C. In the temperature range.
 延伸は、長手方向もしくは幅手方向で制御された均一な温度分布下で行うことが好ましい。好ましくは±2℃以内、さらに好ましくは±1℃以内、特に好ましくは±0.5℃以内である。 The stretching is preferably performed under a uniform temperature distribution controlled in the longitudinal direction or the width direction. The temperature is preferably within ± 2 ° C, more preferably within ± 1 ° C, and particularly preferably within ± 0.5 ° C.
 上記の方法で作製したフィルム状樹脂基板を光学フィルムとして用いる場合、当該光学フィルムのレターデーション調整や寸法変化率を小さくする目的で、フィルムを長手方向や幅手方向に収縮させてもよい。 When the film-like resin substrate produced by the above method is used as an optical film, the film may be contracted in the longitudinal direction or the width direction for the purpose of adjusting the retardation of the optical film and reducing the dimensional change rate.
 長手方向に収縮するには、例えば、巾延伸を一時クリップアウトさせて長手方向に弛緩させる、又は横延伸機の隣り合うクリップの間隔を徐々に狭くすることによりフィルムを収縮させるという方法がある。 In order to shrink in the longitudinal direction, for example, there is a method in which the film is shrunk by temporarily clipping out the width stretching and relaxing in the longitudinal direction, or by gradually narrowing the interval between adjacent clips of the transverse stretching machine.
 遅相軸方向の均一性も重要であり、フィルム巾方向に対して、角度が-5~+5°であることが好ましく、さらに-1~+1°の範囲にあることが好ましく、特に-0.5~+0.5°の範囲にあることが好ましく、特に-0.1~+0.1°の範囲にあることが好ましい。これらのばらつきは延伸条件を最適化することで達成できる。 Uniformity in the slow axis direction is also important, and the angle is preferably −5 to + 5 ° with respect to the film width direction, more preferably in the range of −1 to + 1 °, particularly −0. A range of 5 to + 0.5 ° is preferable, and a range of −0.1 to + 0.1 ° is particularly preferable. These variations can be achieved by optimizing the stretching conditions.
 本発明のフィルム状樹脂基材は、長尺フィルムであることが好ましく、具体的には、100m~5000m程度のものを示し、通常、ロール状で提供される形態のものである。また、フィルムの幅は1.3~4mであることが好ましく、1.4~2mであることがより好ましい。 The film-like resin base material of the present invention is preferably a long film, specifically, a film having a thickness of about 100 m to 5000 m, and usually in a form provided in a roll shape. The film width is preferably 1.3 to 4 m, more preferably 1.4 to 2 m.
 本発明に係るフィルム状樹脂基板の膜厚に特に制限はなく、目的に応じて変化させることが好ましい。 The film thickness of the film-like resin substrate according to the present invention is not particularly limited, and is preferably changed according to the purpose.
 〈可撓性樹脂基板の製造装置〉
 図1は、本発明に係る樹脂基材の製造装置の一例の全体構成を示す概略フローシートである。図1において、可撓性樹脂基板の製造方法は、熱可塑性樹脂等のフィルム材料を混合した後、押出し機1を用いて、流延ダイ4から第1冷却ロール5上に溶融押し出し、第1冷却ロール5に外接させるとともに、更に、第2冷却ロール7、第3冷却ロール8の合計3本の冷却ロールに順に外接させて、冷却固化してフィルム10とする。次いで、剥離ロール9によって剥離したフィルム10を、次いで延伸装置12によりフィルムの両端部を把持して幅方向に延伸した後、巻取り装置16により巻き取る。また、平面性を矯正するために溶融フィルムを第1冷却ロール5表面に挟圧するタッチロール6が設けられている。このタッチロール6は表面が弾性を有し、第1冷却ロール5との間でニップを形成している。
<Flexible resin substrate manufacturing equipment>
FIG. 1 is a schematic flow sheet showing an overall configuration of an example of a resin base material manufacturing apparatus according to the present invention. In FIG. 1, a flexible resin substrate is manufactured by mixing and extruding a film material such as a thermoplastic resin and then extruding from a casting die 4 onto a first cooling roll 5 using an extruder 1. In addition to circumscribing the cooling roll 5, the film 10 is further circumscribed by the total of three cooling rolls, the second cooling roll 7 and the third cooling roll 8, and cooled and solidified to form the film 10. Next, the film 10 peeled off by the peeling roll 9 is then stretched in the width direction by holding both ends of the film by the stretching device 12 and then wound by the winding device 16. In addition, a touch roll 6 is provided that clamps the molten film on the surface of the first cooling roll 5 in order to correct the flatness. The touch roll 6 has an elastic surface and forms a nip with the first cooling roll 5.
 本発明において、製造装置には、ベルト及びロールを自動的に清掃する装置を付加させることが好ましい。清掃装置については特に限定はないが、例えば、ブラシ・ロール、吸水ロール、粘着ロール、ふき取りロール等をニップする方式、清浄エアーを吹き掛けるエアーブロー方式、レーザーによる焼却装置、あるいはこれらの組み合わせなどがある。 In the present invention, it is preferable to add a device for automatically cleaning the belt and the roll to the manufacturing apparatus. There is no particular limitation on the cleaning device, but for example, a method of niping a brush roll, a water absorbing roll, an adhesive roll, a wiping roll, etc., an air blowing method for spraying clean air, a laser incinerator, or a combination thereof. is there.
 清掃用ロールをニップする方式の場合、ベルト線速度とローラ線速度を変えると清掃効果が大きい。 ¡In the case of a system in which a cleaning roll is nipped, the cleaning effect is great if the belt linear velocity and roller linear velocity are changed.
 (太陽光反射用ミラー)
 本発明のフィルムミラーは、太陽光を集光する目的において、好ましく使用できる。フィルムミラー単体で太陽光集光ミラーとして用いることもできるが、より好ましくは、樹脂基材を挟んで光反射層を有する側と反対側の樹脂基材面に塗設された粘着層を介して、他基材上に、特に金属基材上に、当該フィルムミラーを貼り付けて太陽光反射用ミラーとして用いることである。
(Sunlight reflection mirror)
The film mirror of the present invention can be preferably used for the purpose of collecting sunlight. The film mirror can be used alone as a sunlight collecting mirror, but more preferably, via a pressure-sensitive adhesive layer coated on the surface of the resin substrate opposite to the side having the light reflecting layer with the resin substrate interposed therebetween. The film mirror is stuck on another base material, particularly on a metal base material, and used as a solar reflective mirror.
 太陽光反射用ミラーとして用いる場合、反射装置の形状を樋状(半円筒状)として、半円の中心部分に内部に流体を有する筒状部材を設け、筒状部材に太陽光を集光させることで内部の流体を加熱し、その熱エネルギーを変換して発電する形態が一形態として挙げられる。また、平板状の反射装置を複数個所に設置し、それぞれの反射装置で反射された太陽光を一枚の反射鏡(中央反射鏡)に集光させて、反射鏡により反射して得られた熱エネルギーを発電部で変換することで発電する形態も一形態として挙げられる。特に後者の形態においては、用いられる反射装置に高い正反射率が求められる為、本発明のフィルムミラーが特に好適に用いられる。 When used as a mirror for reflecting sunlight, the shape of the reflecting device is made into a bowl shape (semi-cylindrical shape), and a cylindrical member having a fluid inside is provided at the center of the semicircle, and sunlight is condensed on the cylindrical member. The form which heats an internal fluid by this, converts the heat energy, and generates electric power is mentioned as one form. In addition, flat reflectors were installed at multiple locations, and the sunlight reflected by each reflector was collected on one reflector (central reflector) and reflected by the reflector. The form which generate | occur | produces electricity by converting a thermal energy in a power generation part is also mentioned as one form. In particular, in the latter form, the film mirror of the present invention is particularly preferably used because a high regular reflectance is required for the reflection device used.
 〈粘着層〉
 粘着層としては、特に制限されず、例えばドライラミネート剤、ウエットラミネート剤、粘着剤、ヒートシール剤、ホットメルト剤などのいずれもが用いられる。
<Adhesive layer>
The adhesive layer is not particularly limited, and for example, any of a dry laminating agent, a wet laminating agent, an adhesive, a heat seal agent, a hot melt agent, and the like is used.
 例えばポリエステル系樹脂、ウレタン系樹脂、ポリ酢酸ビニル系樹脂、アクリル系樹脂、ニトリルゴムなどが用いられる。 For example, polyester resin, urethane resin, polyvinyl acetate resin, acrylic resin, nitrile rubber and the like are used.
 ラミネート方法は特に制限されず、例えばロール式で連続的に行うのが経済性及び生産性の点から好ましい。 The laminating method is not particularly limited, and for example, it is preferable to carry out the roll method continuously from the viewpoint of economy and productivity.
 粘着層の厚さは、粘着効果、乾燥速度等の観点から、通常1~50μm程度の範囲であることが好ましい。 The thickness of the pressure-sensitive adhesive layer is usually preferably in the range of about 1 to 50 μm from the viewpoint of the pressure-sensitive adhesive effect, the drying speed, and the like.
 本発明に適宜採用される本発明のフィルムミラーと貼り合せられる他基材としては、光反射層層の保護性を付与できるものであればよく、例えば、アクリルフィルム又はシート、ポリカーボネートフィルム又はシート、ポリアリレートフィルム又はシート、ポリエチレンナフタレートフィルム又はシート、ポリエチレンテレフタレートフィルム又はシート、フッ素フィルムなどのプラスチックフィルム又はシート、又は酸化チタン、シリカ、アルミニウム粉、銅粉などを練り込んだ樹脂フィルム又はシート、これらを練り込んだ樹脂をコーティングしたり金属蒸着などの表面加工を施した樹脂フィルム又はシートが用いられる。 The other base material to be bonded to the film mirror of the present invention that is appropriately employed in the present invention may be any substrate that can impart the protection of the light reflecting layer, for example, an acrylic film or sheet, a polycarbonate film or sheet, Polyarylate film or sheet, polyethylene naphthalate film or sheet, polyethylene terephthalate film or sheet, plastic film or sheet such as fluorine film, or resin film or sheet kneaded with titanium oxide, silica, aluminum powder, copper powder, etc. A resin film or sheet coated with a resin kneaded with a resin or subjected to surface processing such as metal deposition is used.
 貼り合わせフィルム又はシートの厚さは、特に制限はないが通常12~250μmの範囲であることが好ましい。 The thickness of the laminated film or sheet is not particularly limited but is preferably in the range of 12 to 250 μm.
 また、これらの他基材は本発明のフィルムミラーと貼り合わせる前に凹部や凸部を設けてから貼り合せてもよく、貼り合せた後で凹部や凸部を有するように成形してもよく、貼り合わせと凹部や凸部を有するように成形することを同時にしてもよいものである。 In addition, these other base materials may be bonded after providing a concave portion or a convex portion before being bonded to the film mirror of the present invention, or may be formed to have a concave portion or a convex portion after being bonded. In addition, the bonding and the molding so as to have a concave portion or a convex portion may be performed at the same time.
 〈金属基材〉
 本発明に係る太陽光反射用ミラーの金属基材としては、鋼板、銅板、アルミニウム板、アルミニウムめっき鋼板、アルミニウム系合金めっき鋼板、銅めっき鋼板、錫めっき鋼板、クロムめっき鋼板、ステンレス鋼板など熱伝導率の高い金属材料を用いることができる。本発明においては、特に耐食性の良好なめっき鋼板、ステンレス鋼板、アルミニウム板などにすることが好ましい。
<Metal base material>
The metal substrate of the solar reflective mirror according to the present invention includes a steel plate, a copper plate, an aluminum plate, an aluminum plated steel plate, an aluminum alloy plated steel plate, a copper plated steel plate, a tin plated steel plate, a chrome plated steel plate, a stainless steel plate, etc. A metal material having a high rate can be used. In the present invention, it is particularly preferable to use a plated steel plate, a stainless steel plate, an aluminum plate, or the like having good corrosion resistance.
 以下、本発明について実施例及び比較例を用いて具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples.
 [比較例1]
 (真空蒸着によるアルミニウム蒸着膜の形成)
 基材として、2軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚み175μm)を用いた。次に、アルミニウムには純度99.9%のものを使用し、巻き取り式の真空蒸着装置を用い、チャンバーの到達真空度が0.5×10-4torr(6.7×10-3Pa)になるまで排気した後、膜厚が100nmとなるまで真空蒸着を行った。真空加工時はガスの発生も無く、蒸着されたアルミニウムの蒸着金属膜の外観も鏡面状のものが得られた。
[Comparative Example 1]
(Formation of evaporated aluminum film by vacuum deposition)
A biaxially stretched polyester film (polyethylene terephthalate film, thickness 175 μm) was used as the substrate. Next, aluminum having a purity of 99.9% is used, and the ultimate vacuum of the chamber is 0.5 × 10 −4 torr (6.7 × 10 −3 Pa) using a take-up vacuum deposition apparatus. ), And vacuum deposition was performed until the film thickness reached 100 nm. During vacuum processing, no gas was generated, and the vapor-deposited aluminum deposited metal film had a mirror-like appearance.
 [比較例2]
 比較例1で得られたアルミニウム蒸着膜を形成したサンプルを、巻き取り式の真空蒸着装置を用い、チャンバーの到達真空度が3.0×10-5torr(4.0×10-3Pa)になるまで排気した後、酸素ガスをコーティングドラムの近傍に、チャンバー内の圧力を3.0×10-4torr(4.0×10-2Pa)に保って導入し、蒸発源の一酸化ケイ素をピアス型電子銃により、約10kwの電力で加熱して蒸着させ、コーティングドラム上を120m/minの速度で走行しながら、厚さが1μmの酸化ケイ素の防湿層を形成し、比較例2のサンプルを作製した。
[Comparative Example 2]
The sample on which the aluminum deposited film obtained in Comparative Example 1 was formed was wound using a vacuum deposition apparatus, and the ultimate vacuum in the chamber was 3.0 × 10 −5 torr (4.0 × 10 −3 Pa). Then, oxygen gas is introduced in the vicinity of the coating drum while maintaining the pressure in the chamber at 3.0 × 10 −4 torr (4.0 × 10 −2 Pa), and the evaporation source is oxidized. Comparative Example 2 A silicon oxide moisture-proof layer having a thickness of 1 μm was formed while silicon was heated and vapor-deposited with a pierce-type electron gun at a power of about 10 kw and traveled on a coating drum at a speed of 120 m / min. A sample of was prepared.
 [比較例3]
 アルミニウムに代えて純度99.9%の銀を使用し、比較例1と同様の方法で100nmの膜厚で銀蒸着膜を形成した。更に銀蒸着膜の上に、比較例2と同様の方法にて、厚さが1μmの酸化ケイ素の防湿層を形成し、比較例3のサンプルを作製した。
[Comparative Example 3]
Silver having a purity of 99.9% was used in place of aluminum, and a silver deposited film was formed in a thickness of 100 nm by the same method as in Comparative Example 1. Further, a silicon oxide moisture-proof layer having a thickness of 1 μm was formed on the silver vapor-deposited film in the same manner as in Comparative Example 2 to produce a sample of Comparative Example 3.
 [実施例1]
 (無機酸化物粒子含有塗布液-1)
 1Lのステンレスポットに純水400gを入れ、ウルトラタラックス T25 デジタル (IKA社)を用いて6000rpmにて、酸化珪素(電気化学工業株式会社製 商品名:SFP-30M 平均粒径700nm)600gを5分かけて添加し、その後30分間分散を行った。その後、1000gのMEKを添加し、バス温40℃、2.0×10torr(2.7×10Pa)の減圧下にて残質量が800gとなるまでエバポレーターにより溶媒除去する操作を3回繰り返し、最後にMEKを200g加えて総質量を1000gとし、分散液-1を得た。次にテトラエトキシシラン(Si(CO))を20質量部と、フェニルトリエトキシシラン(CSi(OC)を80質量部とをエチルアルコール100質量部に混合し、蟻酸を触媒として反応させ、酸性の溶液を得た。次に、その酸性溶液をトリエチルアミン((CN)によって中和し、中和溶液を得た。そして、中和溶液をメチルエチルケトンで溶剤置換し、樹脂不揮発分濃度60%、粘度400cpの樹脂溶液-1を得た。分散液-1の30gと樹脂溶液-1の70gを混合し、無機酸化物粒子塗布液-1を100g得た。
[Example 1]
(Inorganic oxide particle-containing coating solution-1)
400 g of pure water was put into a 1 L stainless steel pot, and 600 g of silicon oxide (trade name: SFP-30M average particle size 700 nm, manufactured by Denki Kagaku Kogyo Co., Ltd.) was used at 6000 rpm using an Ultra Turrax T25 Digital (IKA). It was added over a period of time and then dispersed for 30 minutes. Thereafter, 1000 g of MEK was added, and the operation of removing the solvent with an evaporator until the residual mass reached 800 g under a reduced pressure of bath temperature of 40 ° C. and 2.0 × 10 2 torr (2.7 × 10 4 Pa) was 3 Repeatedly, finally, 200 g of MEK was added to make the total mass 1000 g, and dispersion 1 was obtained. Next, 20 parts by mass of tetraethoxysilane (Si (C 2 H 5 O) 4 ), 80 parts by mass of phenyltriethoxysilane (C 6 H 5 Si (OC 2 H 5 ) 3 ) and 100 parts by mass of ethyl alcohol The formic acid was reacted as a catalyst to obtain an acidic solution. Next, the acidic solution was neutralized with triethylamine ((C 2 H 5 ) 3 N) to obtain a neutralized solution. Then, the solvent of the neutralized solution was replaced with methyl ethyl ketone to obtain a resin solution-1 having a resin nonvolatile content concentration of 60% and a viscosity of 400 cp. 30 g of Dispersion-1 and 70 g of Resin Solution-1 were mixed to obtain 100 g of inorganic oxide particle coating solution-1.
 (実施例1の塗布サンプル作製)
 2軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ175μm)の片面側に、比較例1と同様の方法でアルミニウム蒸着膜を真空蒸着にて形成した。続いて、上記無機酸化物粒子含有塗布液-1を、乾燥後の膜の厚さが1μmとなるようにバーコーティングし、ドライオーブンにて150℃、30分加熱乾燥し、実施例1のサンプルを作製した。
(Preparation of coated sample of Example 1)
An aluminum vapor deposition film was formed on one side of a biaxially stretched polyester film (polyethylene terephthalate film, thickness 175 μm) by vacuum vapor deposition in the same manner as in Comparative Example 1. Subsequently, the inorganic oxide particle-containing coating solution-1 was bar-coated so that the thickness of the dried film was 1 μm, and dried by heating in a dry oven at 150 ° C. for 30 minutes. Was made.
 [実施例2]
 2軸延伸ポリエステルフィルム(ポリエチレンテレフタレートフィルム、厚さ175μm)の片面側に、アルミニウムに代えて純度99.9%の銀を使用し、比較例1と同様の方法で100nmの膜厚で銀蒸着膜を形成した。続いて上記無機酸化物粒子含有塗布液-1を、乾燥後の膜の厚さが1μmとなるようにバーコーティングし、ドライオーブンにて150℃、30分加熱乾燥し、実施例2のサンプルを作製した。
[Example 2]
On one side of a biaxially stretched polyester film (polyethylene terephthalate film, thickness 175 μm), silver with a purity of 99.9% was used instead of aluminum, and a silver deposited film with a film thickness of 100 nm was used in the same manner as in Comparative Example 1. Formed. Subsequently, the coating solution-1 containing inorganic oxide particles was bar-coated so that the thickness of the dried film was 1 μm, and dried by heating in a dry oven at 150 ° C. for 30 minutes. Produced.
 [実施例3]
 無機酸化物粒子含有塗布液-1に対して、酸化珪素を電気化学工業株式会社製 商品名:SFP-20M(平均粒径:300nm)に替えた以外は全て同じ操作にて、無機酸化物粒子含有塗布液-2を得た。更に実施例2と同様の操作を行い、実施例3のサンプルを作製した。
[Example 3]
The inorganic oxide particles were the same as the coating solution-1 containing the inorganic oxide particles except that the silicon oxide was changed to trade name: SFP-20M (average particle size: 300 nm) manufactured by Denki Kagaku Kogyo Co., Ltd. Containing coating solution-2 was obtained. Further, the same operation as in Example 2 was performed to prepare a sample of Example 3.
 [実施例4]
 無機酸化物粒子含有塗布液-1に対して、酸化珪素をコアフロント株式会社製 商品名:sicastar(平均粒径:70nm)に替えた以外は全て同じ操作にて、無機酸化物粒子含有塗布液-3を得た。更に実施例2と同様の操作にて、実施例4のサンプルを作製した。
[Example 4]
The inorganic oxide particle-containing coating solution-1 was the same as the coating solution-1 containing inorganic oxide particles except that silicon oxide was changed to Corefront Co., Ltd., trade name: sicastar (average particle size: 70 nm). -3 was obtained. Furthermore, the sample of Example 4 was produced in the same manner as in Example 2.
 [実施例5]
 1Lのステンレスポットに酸化アルミニウムの水分散物(株式会社テツタニ製 商品名:NANOBYK-3600 平均粒径:40nm)と1000gのMEKを添加し、バス温40℃、2.0×10torr(2.7×10Pa)の減圧下にて残質量が800gとなるまでエバポレーターにより溶媒除去する操作を3回繰り返し、最後にMEKを200g加えて総質量を1000gとし、分散液を得た。この分散液の30gと樹脂溶液-1の70gを混合することで、無機酸化物粒子含有塗布液-4を調製した。更に実施例2と同様の操作にて、実施例5のサンプルを作製した。
[Example 5]
Into a 1 L stainless steel pot, an aqueous dispersion of aluminum oxide (trade name: NANOBYK-3600, average particle diameter: 40 nm) and 1000 g of MEK were added, and the bath temperature was 40 ° C., 2.0 × 10 2 torr (2 The operation of removing the solvent with an evaporator was repeated three times under a reduced pressure of 0.7 × 10 4 Pa) until the residual mass reached 800 g. Finally, 200 g of MEK was added to make the total mass 1000 g, thereby obtaining a dispersion. 30 g of this dispersion and 70 g of resin solution-1 were mixed to prepare inorganic oxide particle-containing coating solution-4. Furthermore, the sample of Example 5 was produced in the same manner as in Example 2.
 [実施例6]
 無機酸化物粒子含有塗布液-1に対して、酸化珪素を平均粒径50nmの酸化チタンに替えた以外は全て同様の操作にて無機酸化物粒子含有塗布液-5を調製した。更に実施例2と同様の操作にて、実施例6のサンプルを作製した。
[Example 6]
An inorganic oxide particle-containing coating solution-5 was prepared in the same manner as in the inorganic oxide particle-containing coating solution-1, except that silicon oxide was replaced with titanium oxide having an average particle size of 50 nm. Furthermore, the sample of Example 6 was produced in the same manner as in Example 2.
 [実施例7]
 (応力緩和層塗布液-1の調製)
 2Lのステンレスビーカーに1000gのシクロヘキサンを秤量し、マグネティックスターラーにて撹拌しながら、シクロオレフィンポリマー(日本ゼオン製 ZEONOR 1060R)を200g添加し、完全に溶解したことを確認し、応力緩和層塗布液-1とした。
[Example 7]
(Preparation of stress relaxation layer coating solution-1)
Weigh 1000 g of cyclohexane in a 2 L stainless beaker and add 200 g of cycloolefin polymer (ZEONOR 1060R manufactured by Nippon Zeon Co., Ltd.) while stirring with a magnetic stirrer. It was set to 1.
 (実施例7のサンプル作製)
 実施例2のサンプルの防湿層の上に、上記応力緩和層塗布液-1を、乾燥膜厚が3μmとなるように塗布した後に、ドライオーブンにて75℃20分乾燥し、実施例7のサンプルを得た。
(Sample preparation of Example 7)
The stress relaxation layer coating solution-1 was applied on the moisture-proof layer of the sample of Example 2 so that the dry film thickness was 3 μm, and then dried in a dry oven at 75 ° C. for 20 minutes. A sample was obtained.
 [実施例8]
 実施例7の銀蒸着膜と反対面のPET基材上に、上記無機酸化物粒子含有塗布液-3を、乾燥後の膜の厚さが1μmとなるようにバーコーティングし、ドライオーブンにて150℃、30分加熱乾燥し、更にその上から上記応力緩和層塗布液-1を、乾燥膜厚が3μmとなるように塗布した後に、ドライオーブンにて75℃20分乾燥し、実施例8のサンプルを得た。
[Example 8]
The inorganic oxide particle-containing coating solution-3 was bar-coated on the PET substrate opposite to the silver vapor-deposited film of Example 7 so that the thickness of the dried film was 1 μm. Example 8 Got a sample.
 [実施例9]
 無機酸化物粒子含有塗布液-1に対して、酸化珪素を平均粒径20nmの酸化亜鉛(堺化学工業社製 ナノファイン)に替えた以外は全て同様の操作にて、無機酸化物粒子含有塗布液-6を調製した。実施例2と同様の操作により銀蒸着膜の上に、上記無機酸化物粒子含有塗布液-6を用いて防湿層を形成した後、更に防湿層の上に、上記応力緩和層塗布液-1を乾燥膜厚が3μmとなるように塗布し、ドライオーブンにて75℃20分乾燥した。
[Example 9]
The inorganic oxide particle-containing coating solution-1 was coated in the same manner except that the silicon oxide was replaced with zinc oxide having an average particle size of 20 nm (Nano Fine manufactured by Sakai Chemical Industry Co., Ltd.). Liquid-6 was prepared. After forming a moisture-proof layer on the silver vapor-deposited film using the inorganic oxide particle-containing coating solution-6 by the same operation as in Example 2, the stress relaxation layer coating solution-1 was further formed on the moisture-proof layer. Was applied to a dry film thickness of 3 μm and dried in a dry oven at 75 ° C. for 20 minutes.
 更に銀蒸着膜と反対面のPET基材上に、上記無機酸化物粒子含有塗布液-6を、乾燥後の膜の厚さが1μmとなるようにバーコーティングし、ドライオーブンにて150℃、30分加熱乾燥し、更にその上から上記応力緩和層塗布液-1を、乾燥膜厚が3μmとなるように塗布した後に、ドライオーブンにて75℃20分乾燥し、実施例9のサンプルを得た。 Further, the inorganic oxide particle-containing coating liquid-6 was bar-coated on a PET base material opposite to the silver vapor-deposited film so that the thickness of the dried film was 1 μm. After heating and drying for 30 minutes, the above-described stress relaxation layer coating solution-1 was applied so that the dry film thickness was 3 μm, and then dried at 75 ° C. for 20 minutes in a dry oven. Obtained.
 [実施例10]
 無機酸化物粒子含有塗布液-1に対して、酸化珪素を平均粒径40nmの酸化ジルコニウム(住友大阪セメント製)に替えた以外は全て同様の操作にて、無機酸化物粒子含有塗布液-7を調製した。実施例9と同様の操作により、基材の片側に銀蒸着膜を、基材の両側に防湿層と応力緩和層を形成し、実施例10のサンプルを得た。
[Example 10]
Inorganic oxide particle-containing coating solution-7, except that silicon oxide was replaced with zirconium oxide having an average particle size of 40 nm (manufactured by Sumitomo Osaka Cement) with respect to inorganic oxide particle-containing coating solution-1. Was prepared. In the same manner as in Example 9, a silver deposited film was formed on one side of the substrate, a moisture-proof layer and a stress relaxation layer were formed on both sides of the substrate, and a sample of Example 10 was obtained.
 (太陽光集光ミラーの作製)
 厚さ0.1mmで、たて4cm×よこ5cmのステンレス(SUS304)板上に、上記サンプルを、厚さ3μmの粘着層を介して貼り付け、太陽光反射用ミラーを作製した。
(Production of solar collector mirror)
The sample was pasted on a stainless steel (SUS304) plate having a thickness of 0.1 mm and a length of 4 cm × width 5 cm through a 3 μm thick adhesive layer to produce a solar reflective mirror.
 [評価]
 上記で得た太陽光反射用ミラーについて、下記の方法により光線反射率及び耐候性、耐屈曲性の測定をそれぞれ行った。
[Evaluation]
About the solar reflective mirror obtained above, the light reflectance, weather resistance, and flex resistance were measured by the following methods.
 <光線反射率測定>
 島津製作所社製の分光光度計「UV265」に、積分球反射付属装置を取り付けたものを用い、基準板としては硫酸バリウム粉末を押し固めたものを用いた。評価は、人の目の感度が最も高い波長である555nmにおける光線反射率について測定した。
<Light reflectance measurement>
A spectrophotometer “UV265” manufactured by Shimadzu Corporation was used with an integrating sphere reflection accessory attached thereto, and a barium sulfate powder pressed and used as a reference plate. Evaluation was made with respect to the light reflectance at 555 nm, which is the wavelength with the highest human eye sensitivity.
 <光線反射率の耐候性試験>
 温度85℃、湿度85%RHの条件で30日間放置後のフィルムミラーの反射率を、上記光線反射率測定と同様の方法により測定し、強制劣化前のフィルムミラーの反射率と強制劣化後のフィルムミラー反射率から、キセノンランプ照射前後における反射率の低下率を算出した。以下に耐候性試験の評価基準を記す。
<Weight resistance test of light reflectance>
The reflectance of the film mirror after being left for 30 days under the conditions of a temperature of 85 ° C. and a humidity of 85% RH is measured by the same method as the light reflectance measurement, and the reflectance of the film mirror before the forced deterioration and after the forced deterioration are measured. From the film mirror reflectance, the reduction rate of the reflectance before and after the xenon lamp irradiation was calculated. The evaluation criteria for the weather resistance test are described below.
 5:反射率の低下率が5%未満
 4:反射率の低下率が5%以上10%未満
 3:反射率の低下率が10%以上15%未満
 2:反射率の低下率が15%以上20%未満
 1:反射率の低下率が20%以上
 <耐屈曲性試験>
 理学工業(株)製ゲルボーフレックステスター装置を用いて、23℃、50%RH雰囲気条件にてサンプルの屈曲試験を行ない、屈曲10回後に上記光線反射率の耐候性試験と同様の試験を実施した。
5: Reflection decrease rate is less than 5% 4: Reflectance decrease rate is 5% or more and less than 10% 3: Reflection decrease rate is 10% or more and less than 15% 2: Reflection decrease rate is 15% or more Less than 20% 1: Decrease in reflectance is 20% or more <Bend resistance test>
Using a gel bow flex tester device manufactured by Rigaku Kogyo Co., Ltd., the sample is subjected to a bending test at 23 ° C. and 50% RH atmosphere, and after the bending is repeated 10 times, the same test as the light reflectance weathering test is performed. did.
 得られたフィルムミラーの内容を下記表1に、特性を評価した結果を下記表2に示す。 The contents of the obtained film mirror are shown in Table 1 below, and the results of evaluating the characteristics are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示した結果から明らかなように、本発明のフィルムミラーは、光線反射率が高い上に、耐候性及び屈曲性において優れていることが分かる。 As is apparent from the results shown in Table 2, it can be seen that the film mirror of the present invention has high light reflectance and excellent weather resistance and flexibility.
 1 押出し機
 2 フィルター
 3 スタチックミキサー
 4 流延ダイ
 5 回転支持体(第1冷却ロール)
 6 挟圧回転体(タッチロール)
 7 回転支持体(第2冷却ロール)
 8 回転支持体(第3冷却ロール)
 9 剥離ロール
 10 フィルム
 11、13、14 搬送ロール
 12 延伸機
 15 スリッター
 16 巻き取り機
 F 本発明に係るフィルム状樹脂基材
DESCRIPTION OF SYMBOLS 1 Extruder 2 Filter 3 Static mixer 4 Casting die 5 Rotating support body (1st cooling roll)
6 Nipping pressure rotating body (touch roll)
7 Rotating support (second cooling roll)
8 Rotating support (3rd cooling roll)
DESCRIPTION OF SYMBOLS 9 Peeling roll 10 Film 11, 13, 14 Conveyance roll 12 Stretching machine 15 Slitter 16 Winding machine F The film-form resin base material which concerns on this invention

Claims (7)

  1.  樹脂基材上に金属薄膜により形成された光反射層を有し、当該光反射層と同じ側で、当該光反射層に対して当該樹脂基材から遠い側に、無機酸化物膜から成る無機酸化物層を有するフィルムミラーであって、当該無機酸化物膜が、平均粒径が1nm~1μmの範囲内の無機酸化物粒子を含有する塗膜で形成されたことを特徴とするフィルムミラー。 An inorganic oxide film having a light reflecting layer formed of a metal thin film on a resin substrate, on the same side as the light reflecting layer, on the side far from the resin substrate with respect to the light reflecting layer; A film mirror having an oxide layer, wherein the inorganic oxide film is formed of a coating film containing inorganic oxide particles having an average particle diameter in the range of 1 nm to 1 μm.
  2.  前記無機酸化物粒子が、酸化珪素、酸化アルミニウム、酸化亜鉛、酸化チタン及び酸化ジルコニウムのうちのいずれかの化合物を含有することを特徴とする請求項1に記載のフィルムミラー。 The film mirror according to claim 1, wherein the inorganic oxide particles contain any one compound of silicon oxide, aluminum oxide, zinc oxide, titanium oxide and zirconium oxide.
  3.  前記金属薄膜が、銀を主成分とする薄膜であることを特徴とする請求項1又は請求項2に記載のフィルムミラー。 The film mirror according to claim 1 or 2, wherein the metal thin film is a thin film mainly composed of silver.
  4.  前記無機酸化物層と隣接した応力緩和層を有することを特徴とする請求項1から請求項3までのいずれか一項に記載のフィルムミラー。 The film mirror according to claim 1, further comprising a stress relaxation layer adjacent to the inorganic oxide layer.
  5.  前記光反射層を挟み込む位置関係において、前記樹脂基材の両側に、前記無機酸化物層を有することを特徴とする請求項1から請求項4までのいずれか一項に記載に記載のフィルムミラー。 5. The film mirror according to claim 1, wherein the inorganic oxide layer is provided on both sides of the resin base material in a positional relationship of sandwiching the light reflection layer. 6. .
  6.  請求項1から請求項5までのいずれか一項に記載のフィルムミラーを製造するフィルムミラーの製造方法であって、無機酸化物粒子を含有する無機酸化物膜から成る塗膜を50~200℃の範囲内の加熱温度で加熱処理する工程を有することを特徴とするフィルムミラーの製造方法。 A film mirror manufacturing method for manufacturing a film mirror according to any one of claims 1 to 5, wherein a coating film comprising an inorganic oxide film containing inorganic oxide particles is applied at 50 to 200 ° C. The manufacturing method of the film mirror characterized by having the process of heat-processing with the heating temperature within the range of this.
  7.  請求項1から請求項5までのいずれか一項に記載のフィルムミラー、又は請求項6に記載のフィルムミラーの製造方法により得られたフィルムミラーを用いた太陽光反射用ミラーであって、前記光反射層の光の入射側に対して反対面側に配置した粘着層を介して、基材上に当該フィルムミラーを貼り付けて形成されたことを特徴とする太陽光反射用ミラー。 It is the mirror for sunlight reflection using the film mirror obtained by the film mirror as described in any one of Claim 1- Claim 5, or the film mirror as described in Claim 6, Comprising: A solar light reflecting mirror, which is formed by attaching the film mirror on a base material through an adhesive layer disposed on the side opposite to the light incident side of the light reflecting layer.
PCT/JP2010/052729 2009-05-25 2010-02-23 Film mirror, method for manufacturing film mirror, and solar light reflecting mirror using film mirror WO2010137367A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009125107 2009-05-25
JP2009-125107 2009-05-25

Publications (1)

Publication Number Publication Date
WO2010137367A1 true WO2010137367A1 (en) 2010-12-02

Family

ID=43222493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052729 WO2010137367A1 (en) 2009-05-25 2010-02-23 Film mirror, method for manufacturing film mirror, and solar light reflecting mirror using film mirror

Country Status (1)

Country Link
WO (1) WO2010137367A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015112A1 (en) * 2011-07-25 2013-01-31 コニカミノルタアドバンストレイヤー株式会社 Mirror for solar light reflection, reflection device for solar-heat power generation, functional film, and electrostatic charge preventing composition for outdoor use
WO2018199161A1 (en) * 2017-04-28 2018-11-01 株式会社クラレ Thermoplastic resin multilayer film, method for manufacturing same, and laminate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005227469A (en) * 2004-02-12 2005-08-25 Asahi Glass Co Ltd High reflectance mirror
JP2006326971A (en) * 2005-05-25 2006-12-07 Toray Ind Inc Weatherable resin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005227469A (en) * 2004-02-12 2005-08-25 Asahi Glass Co Ltd High reflectance mirror
JP2006326971A (en) * 2005-05-25 2006-12-07 Toray Ind Inc Weatherable resin film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015112A1 (en) * 2011-07-25 2013-01-31 コニカミノルタアドバンストレイヤー株式会社 Mirror for solar light reflection, reflection device for solar-heat power generation, functional film, and electrostatic charge preventing composition for outdoor use
US20140133028A1 (en) * 2011-07-25 2014-05-15 Konica Minolta , Inc. Mirror for solar light reflection, reflection device for solar-heat power generation, functional film, and electrostatic charge preventing composition for outdoor use
WO2018199161A1 (en) * 2017-04-28 2018-11-01 株式会社クラレ Thermoplastic resin multilayer film, method for manufacturing same, and laminate
KR20190140462A (en) * 2017-04-28 2019-12-19 주식회사 쿠라레 Thermoplastic multilayer film, its manufacturing method and laminated body
JPWO2018199161A1 (en) * 2017-04-28 2020-03-12 株式会社クラレ Thermoplastic resin multilayer film, method for producing the same, and laminate
EP3616910A4 (en) * 2017-04-28 2021-01-27 Kuraray Co., Ltd. Thermoplastic resin multilayer film, method for manufacturing same, and laminate
JP7038702B2 (en) 2017-04-28 2022-03-18 株式会社クラレ Thermoplastic resin multilayer film and its manufacturing method and laminate
KR102527436B1 (en) 2017-04-28 2023-05-02 주식회사 쿠라레 Thermoplastic resin multilayer film, manufacturing method and laminate

Similar Documents

Publication Publication Date Title
WO2010109947A1 (en) Moisture-proof film, process for producing same, back sheet for solar battery module comprising same, and solar battery module
JP7017183B2 (en) Release film for manufacturing ceramic green sheets
EP2484716B1 (en) Polyester film for solar cells
JP2010189616A (en) Antistatic polyester film of which defect of coating appearance is improved and method for producing the same
WO2010150570A1 (en) Film mirror, method for producing same, and sunlight reflecting mirror using same
WO2010137367A1 (en) Film mirror, method for manufacturing film mirror, and solar light reflecting mirror using film mirror
EP2689914B1 (en) Method for stretching film
TWI762667B (en) Polarizing film, polarizing plate, polarizing plate roll, and manufacturing method of polarizing film
WO2010071009A1 (en) Flexible resin substrate and display device using same
WO2014157109A1 (en) Polyester film and method for producing same
JP2011077425A (en) Moisture-proof film and method of manufacturing the same, back sheet for solar cell module using the moisture-proof film, and solar cell module
US20190040223A1 (en) Method for producing porous gel-containing liquid, porous gel-containing liquid, method for producing high-void layer, method for producing high-void porous body, and method for producing laminated film roll
WO2010097998A1 (en) Moistureproof film, process for producing same, back sheet comprising same for solar cell module, and solar cell module
TWI775958B (en) Polarizing plate, image display device, and manufacturing method of polarizing plate
JP5562889B2 (en) LAMINATED FILM, SOLAR CELL BACK SHEET, AND METHOD FOR PRODUCING LAMINATED FILM
JP2000108241A (en) Transparent conductive film and its manufacture
JP5715093B2 (en) Method for improving adhesion between polyester film and aqueous dispersion, and method for producing polyester film
TWI789514B (en) Polarizing plate, polarizing plate coil, and method for manufacturing polarizing film
JP2012094618A (en) Light confining film for solar cell, manufacturing method of the same, and solar cell
JP6708206B2 (en) White polyester film for solar cell, solar cell backside sealing sheet and solar cell module using the same
JP7320954B2 (en) release film
JP2012062379A (en) Method for producing water-repellent film, and water-repellent film
JP2009066962A (en) Method for manufacturing antiglare film, and antiglare film
CN106233170B (en) Method for producing stretched laminate
TW201922480A (en) Polarizing plate, image display device, and production method for polarizing plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP