WO2010097987A1 - Illumination device, display device, data generation method, data generation program, and recording medium - Google Patents

Illumination device, display device, data generation method, data generation program, and recording medium Download PDF

Info

Publication number
WO2010097987A1
WO2010097987A1 PCT/JP2009/068868 JP2009068868W WO2010097987A1 WO 2010097987 A1 WO2010097987 A1 WO 2010097987A1 JP 2009068868 W JP2009068868 W JP 2009068868W WO 2010097987 A1 WO2010097987 A1 WO 2010097987A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
frame
frame image
amount adjustment
light amount
Prior art date
Application number
PCT/JP2009/068868
Other languages
French (fr)
Japanese (ja)
Inventor
晃史 藤原
貴行 村井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN2009801550824A priority Critical patent/CN102292762A/en
Priority to US13/138,103 priority patent/US20110267384A1/en
Publication of WO2010097987A1 publication Critical patent/WO2010097987A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix

Definitions

  • the present invention relates to an illumination device such as a backlight unit and a display device (liquid crystal display device or the like) on which the illumination device is mounted.
  • the present invention also relates to a data generation method of light amount adjustment data for controlling a light source of a lighting device, a data generation program for light amount adjustment data, and a storage medium for storing the data generation program.
  • a liquid crystal display panel controller that controls the liquid crystal display panel has a function of generating an interpolated frame image signal (see Patent Document 1).
  • the interpolation frame generation function is a part of the image signal (image data), and is an interpolation that interpolates each frame image signal from the frame image signal based on the signal (panel control data) transmitted to the liquid crystal display panel controller.
  • a frame image signal is generated, and the generated interpolated frame image signal is inserted between the frame image signal data.
  • FIG. 13A shows a simple illustration of this function. More specifically, FIG. 13A shows frame image signals (frame image data) ap ′, bp ′, cp ′... And interpolated frame image signals (interpolated frame image data) ap′bp ′, bp generated from these frame image signals. 'cp' ... are arranged in time series (for example, the interpolated frame image signal ap'bp 'means that the frame image signal ap' and the frame image signal bp 'are generated) ).
  • the display image on the liquid crystal display panel is usually a higher quality image than a display image that displays only the frame image signal. Become.
  • the image signal includes a signal (light source control data) for controlling a light source ⁇ for example, LED (Light Emitting Diode) ⁇ mounted on the backlight unit in addition to a signal transmitted to the liquid crystal display panel controller. . Then, the light emission of the LED is controlled in accordance with the signal (light quantity adjustment data) after various processing with respect to this signal (a member that performs such various processing is a microcomputer unit).
  • a signal for example, LED (Light Emitting Diode) ⁇ mounted on the backlight unit in addition to a signal transmitted to the liquid crystal display panel controller.
  • the light emission of the LED is controlled in accordance with the signal (light quantity adjustment data) after various processing with respect to this signal (a member that performs such various processing is a microcomputer unit).
  • the microcomputer unit as a signal corresponding to the frame (one screen), is based on a signal (light source control data) for controlling the LED, and a frame type LED control signal (frame-corresponding light amount adjustment data). Is generated.
  • the microcomputer unit makes the frame type LED control signal correspond to the frame image signal. For example, as shown in FIG. 13B, frame type LED control signals ad ', bd', cd '... are generated as frame type LED control signals corresponding to the frame image signals ap', bp ', cp' ....
  • the frame image signals ap ′, bp ′, cp ′, and the interpolated frame image signals ap′bp ′, bp′cp ′ are signals obtained by multiplying the frame frequency 60 Hz. is there. Therefore, the microcomputer unit also doubles the frame-type LED control signal in order to synchronize with the frame image signals ap ′, bp ′, cp ′... And the interpolated frame image signals ap′bp ′, bp′cp ′. Normally, as shown in FIG. 13B, the microcomputer unit simply doubles the frame type LED control signals ad ', bd', cp ',.
  • the display image of the liquid crystal display panel based on the interpolated frame image signal receives light (backlight) based on a frame-type LED control signal having no corresponding relationship. For this reason, the display image is likely to cause image blur, moving image failure (flicker), and the like.
  • the present invention has been made to solve the above problems. Then, for example, it is to provide an illuminating device or the like that supplies light that makes a display image of a liquid crystal display panel high quality.
  • the lighting device generates light amount adjustment data by processing the light source control data from the plurality of light sources that emit light according to the light amount adjustment data and the image data that is the basis of the panel control data and the light source control data.
  • a control unit is
  • control unit In this lighting apparatus, the control unit generates two frame-type light amount adjustment data in association with two frame image data arranged in time series based on the panel control data. Further, the control unit generates interpolated frame type light amount adjustment data corresponding to the interpolated frame image data that is a time series intermediate between the two frame image data from the two frame type light amount adjustment data.
  • interpolated frame type light amount adjustment data that is compatible with the interpolated frame image data based on the two frame image data is generated. This is because the interpolated frame type light amount adjustment data is generated based on two frame type light amount adjustment data having good compatibility with the two frame image data.
  • interpolation generally performed on frame image data is also performed on frame-type light amount adjustment data. Therefore, if there is a compatible correspondence between the frame image data and the frame-type light amount adjustment data, a compatible relationship is also established between the interpolation frame image data and the interpolation frame-type light amount adjustment data.
  • the lighting device supplies light based on frame-type light amount adjustment data compatible with the interpolated frame image data to a liquid crystal display panel or the like that displays an image based on the interpolated frame image data.
  • the display image displayed on the liquid crystal display panel or the like is less likely to cause image blur, moving image failure (flickering), or the like. That is, the lighting device can supply light that does not cause video blurring, moving image failure (flickering), or the like to a display image displayed on a liquid crystal display panel or the like.
  • control unit generates the interpolated frame type light amount adjustment data by changing the contribution ratio between one of the two frame type light amount adjustment data and the other.
  • the control unit converts the interpolated frame type light amount adjustment data into one It is desirable to generate the maximum amount of contribution of one light quantity adjustment data corresponding to the frame image data.
  • control unit generates one or a plurality of interpolation frame type light amount adjustment data.
  • a display device including the above lighting device and a display panel that displays an image according to image data can also be said to be the present invention. More specifically, this display device is as follows.
  • the display device includes a video signal processing unit and a liquid crystal display panel controller in addition to the control unit.
  • the video signal processing unit divides the image data into panel control data and light source control data.
  • the liquid crystal display panel controller generates first frame image data and second frame image data arranged in time series as two frame image data by processing the panel control data, and the first frame image data Then, interpolated frame image data is generated from the second frame image data.
  • control unit processes the light source control data, so that the first light quantity adjustment data corresponding to the first frame image data and the second frame are obtained as two frame type light quantity adjustment data arranged in time series. Second light amount adjustment data corresponding to the image data is generated. Furthermore, the control unit generates interpolation frame type light amount adjustment data from the first light amount adjustment data and the second light amount adjustment data.
  • light amount adjustment data required for light emission control of a plurality of light sources is processed from the image data that is the basis of the panel control data and the light source control data to the light source control data.
  • the following method can also be said to be the present invention.
  • two frame-type light amount adjustment data are generated in correspondence with two frame image data arranged in time series based on the panel control data, and an interpolation frame that is a time series intermediate between the two frame image data
  • the lighting device processes the light source control data from the plurality of light sources that emit light according to the light amount adjustment data and the image data that is the basis of the panel control data and the light source control data, thereby adjusting the light amount adjustment data
  • the following program can be said to be the present invention.
  • two frame-type light amount adjustment data are generated in correspondence with two frame image data arranged in time series based on the panel control data, and an interpolation frame that is a time series intermediate between the two frame image data
  • a data generation program that causes a control unit to execute a data generation program that generates interpolated frame-type light amount adjustment data corresponding to image data from two frame-type light amount adjustment data.
  • interpolation that is generally performed on the panel control data included in the image data is also performed on the light amount adjustment data based on the light source control data included in the image data.
  • the interpolated frame image data generated from the two frame image data based on the panel control data and the interpolated frame type light amount adjustment data generated from the two frame type light amount adjustment data based on the light source control data are compatible with each other. A good correspondence is established.
  • the lighting device supplies light based on frame-type light amount adjustment data compatible with the interpolation frame image data to a liquid crystal display panel or the like that displays an image based on the interpolation frame image data.
  • this lighting device supplies a light distribution (video) that does not cause video blurring, moving picture failure (flickering), or the like on a display image displayed on a liquid crystal display panel or the like.
  • FIG. 2 is an explanatory diagram that simplifies the block diagram of FIG. 1 and schematically shows various signals. These are explanatory diagrams in which various signals are arranged in time series with the horizontal axis as the time axis (however, the frame frequency is doubled).
  • FIG. 5 is an explanatory diagram in which the contribution rate of the frame-type LED control signal to the interpolated frame-type LED control signal is shown together with the explanatory diagram of FIG. 4.
  • FIG. 7 is an explanatory diagram in which the contribution ratio of the frame-type LED control signal to the interpolated frame-type LED control signal is shown in the explanatory diagram of FIG. 6.
  • FIG. 6 is an explanatory diagram in which the contribution ratio of the frame image signal to the interpolated frame image signal is shown together with the explanatory diagram of FIG. 5.
  • FIG. 9B is an explanatory diagram showing that the interpolated frame image signal in FIG. 9A is substantially a frame image signal.
  • FIG. 9B is an explanatory diagram showing that the interpolated frame type LED control signal in FIG. 9B is substantially a frame type LED control signal.
  • FIG. 3 is an exploded perspective view of a liquid crystal display device.
  • FIG. 3 is an exploded perspective view of a liquid crystal display device. These are front views which show LED which mounts a some LED chip. These are front views which show LED which mounts a single LED chip.
  • FIG. 6 is an explanatory diagram in which frame image signals and interpolation frame image signals generated by a conventional liquid crystal display panel controller are arranged in time series. These are explanatory drawings which arranged the frame type LED control signal corresponding to a frame image signal and an interpolation frame image signal in time series.
  • FIG. 11 is an exploded perspective view showing a liquid crystal display device (display device) 99.
  • the liquid crystal display device 99 includes a liquid crystal display panel (display panel) 89, a backlight unit (illumination device) 79, and a housing HG (HG1 and HG2) sandwiching them.
  • liquid crystal (not shown) is composed of an active matrix substrate 81 to which an active element such as a TFT (Thin Film Transistor) (not shown) is attached and a counter substrate 82 facing the active matrix substrate 81. Is inserted. That is, the active matrix substrate 81 and the counter substrate 82 are substrates for sandwiching liquid crystal, and are formed of transparent glass or the like.
  • TFT Thin Film Transistor
  • a sealing material (not shown) is attached to the outer edge of the active matrix substrate 81 and the counter substrate 82, and this sealing material seals the liquid crystal. Further, polarizing films 83 and 83 are attached so as to sandwich the active matrix substrate 81 and the counter substrate 82.
  • the display image on the liquid crystal display panel 89 is controlled by a gate driver and a source driver (not shown) connected to the TFT.
  • the liquid crystal display panel 89 is a non-light-emitting display panel, the display function is exhibited by receiving light from the backlight unit 79 (backlight light). Therefore, if the light from the backlight unit 79 can uniformly irradiate the entire surface of the liquid crystal display panel 89, the display quality of the liquid crystal display panel 89 is improved.
  • the backlight unit 79 includes an LED module MJ, a thermistor (temperature measurement unit) 65, a photo sensor 66, a reflection sheet 71, a diffusion sheet 72, and prism sheets 73 and 74.
  • the LED module MJ includes a mounting substrate 61 and an LED (Light Emitting Diode) 62.
  • the mounting substrate 61 has electrodes (not shown) arranged in a planar shape (for example, a matrix), and an LED (light source, light emitting element) 62 is mounted on the electrodes. Then, the mounting substrate 61 supplies a current flowing from a power source (not shown) to the LED 62 via the electrode.
  • the LED 62 is a point light source that emits light upon receiving a current supply, and is arranged corresponding to the electrode on the mounting surface of the mounting substrate 61 (Note that the direction of the light emitting surface of the LED 62 is the same as that of the mounting surface on which the electrodes are spread. Is the same orientation). As a result, the LEDs 62 are arranged in a planar shape on the mounting surface of the mounting substrate 61, and generate planar light.
  • An example of the arrangement of the LEDs 62 is a rectangular and matrix planar arrangement. For convenience, the longitudinal direction of the rectangle is the X direction and the short direction is the Y direction.
  • the type of the LED 62 is not particularly limited. As an example, as shown in the front view of the LED 62 in FIG. 12A, one red light emitting (R) LED chip 63R, two green light emitting (G) LED chips 63G, and one blue light emitting (B). LED62 which parallelizes LED chip 63B and produces
  • LED 62 in which a blue light emitting LED chip 63B and a phosphor 54 that receives blue light and emits yellow light are combined (note that In the following description, it is assumed that the LED 62 that generates white light by color mixture is used unless otherwise specified).
  • FIG. 11 shows the illumination area SA that can be controlled by each LED 62 by broken lines. That is, one section of the dotted line area (one of a plurality of sections arranged in a matrix) becomes an illumination area SA that can be controlled by one LED 62.
  • the thermistor 65 is a temperature sensor for measuring the temperature of the LEDs 62, and is mounted on the mounting board 61 at a ratio of one to the four LEDs 62 (specifically, the mounting board 61 has four The thermistor 65 is mounted near the center of the area surrounded by the LED 62).
  • the photo sensor 66 is a photometric sensor for measuring the luminance of the LED 62, and is mounted on the mounting substrate 61 at a rate of one for the four LEDs 62, similarly to the thermistor 65.
  • the reflection sheet 71 is a reflection member that is affixed to the mounting surface of the mounting substrate 61, avoiding the LED 62, the thermistor 65, and the photo sensor 66, and has a reflection surface on the same side as the light emitting side of the LED 62. Thereby, even if a part of the light from the LED 62 travels toward the mounting surface of the mounting substrate 61, the light is reflected by the reflecting surface of the reflecting sheet 71.
  • the diffusion sheet 72 is positioned so as to cover the LEDs 62 arranged in a matrix, diffuses the planar light formed by the light from the plurality of LEDs 62, and spreads the light throughout the liquid crystal display panel 89.
  • the diffusion sheet 72 and the prism sheets 73 and 74 are collectively referred to as an optical sheet group (72 to 74) ⁇ .
  • the prism sheets 73 and 74 are, for example, optical sheets that have a prism shape in the sheet surface and deflect light emission characteristics, and are positioned so as to cover the diffusion sheet 72. Therefore, the prism sheets 73 and 74 collect the light traveling from the diffusion sheet 72 and improve the luminance. In addition, the divergence direction of each light condensed by the prism sheet 73 and the prism sheet 74 has a relation of crossing.
  • the planar light from the LED 62 passes through the optical sheet group (72 to 74) and is emitted as backlight light with increased brightness.
  • the backlight light reaches the liquid crystal display panel 89, and the liquid crystal display panel 89 displays an image by the backlight light.
  • the front housing HG1 and the back housing HG2, which are the housings HG, are fixed while sandwiching the above-described backlight unit 79 and the liquid crystal display panel 89 covering the backlight unit 79 (how to fix are particularly limited) is not). That is, the front housing HG1 sandwiches the backlight unit 79 and the liquid crystal display panel 89 together with the back housing HG2, thereby completing the liquid crystal display device 99.
  • the back housing HG2 accommodates the LED module MJ, the reflection sheet 71, the diffusion sheet 72, and the prism sheets 73 and 74 while being stacked in this order, and this stacking direction is referred to as the Z direction (note that the X direction, Y The direction and the Z direction are preferably orthogonal to each other.
  • the backlight unit 79 in which the plurality of LEDs 62 are arranged in a matrix can control the emitted light for each LED 62, and therefore can partially irradiate the display area of the liquid crystal display panel 89. Therefore, it can be said that such a backlight unit 79 is also an active area type backlight unit 79.
  • FIG. 1 is a block diagram showing various members included in the liquid crystal display device 99 (note that the LED 62 shown in FIG. 1 is one of a plurality of LEDs 62).
  • the liquid crystal display device 99 includes a receiving unit 51, a video signal processing unit 52, a liquid crystal display panel controller 31, a main microcomputer (main microcomputer) 12, an LED controller 13, a thermistor 65, a photo sensor 66, An LED driver 55 and an LED 62 are included.
  • the receiving unit 51 receives a video / audio signal such as a television broadcast signal (see white arrow), for example (hereinafter, the video signal included in the video / audio signal will be mainly described). Then, the reception unit 51 transmits the received video signal to the video signal processing unit 52.
  • a video / audio signal such as a television broadcast signal (see white arrow), for example (hereinafter, the video signal included in the video / audio signal will be mainly described). Then, the reception unit 51 transmits the received video signal to the video signal processing unit 52.
  • the video signal transmitted to the video signal processing unit 52 is a basic video signal (image data), and among the color video signals included in the basic video signal, a signal indicating red is a basic red video signal FRS, A green signal is a basic green video signal FGS, and a blue signal is a basic blue video signal FBS.
  • the video signal processing unit 52 generates a processed video signal based on the received basic video signal (image data). Then, the video signal processing unit 52 transmits the processed video signal to the liquid crystal display panel controller 31 and the LED controller 13.
  • the processed video signal is, for example, a processed color video signal (processed red video signal RS, processed green) obtained by processing a basic color video signal (basic red video signal FRS, basic green video signal FGS, basic blue video signal FBS, etc.).
  • a video signal GS, a processed blue video signal BS), and synchronization signals (clock signal CLK, vertical synchronization signal VS, horizontal synchronization signal HS, etc.) relating to the processed color video signal.
  • the processed color video signal transmitted to the liquid crystal display panel controller 31 and the processed color video signal transmitted to the LED controller 13 are different. Therefore, in order to distinguish these processed color video signals, the processed color video signals (panel control data) transmitted to the liquid crystal display panel controller 31 are processed panel red video signal RSp, processed green video signal GSp for panel, and panel.
  • the processed blue video signal BSp is processed panel red video signal RSp, processed green video signal GSp for panel, and panel.
  • the processed color video signal (light source control data) transmitted to the LED controller 13 is a red video signal RSd for a light source, a green video signal GSd for a light source, and a blue video signal BSd for a light source.
  • the color video signals (RSd, GSd, BSd) are subjected to processing such as interpolation and then transmitted to the LED driver 55, details of which will be described later.
  • the liquid crystal display panel controller 31 controls the pixels of the liquid crystal display panel 89 based on the processed red video signal RSp for panel, the processed green video signal GSp for panel, the processed blue video signal BSp for panel, and the synchronization signal related to these signals. To do.
  • the liquid crystal display panel controller 31 has a function of inserting another screen between one continuous screen (one frame) and the next screen, that is, a so-called interpolation frame generation function.
  • the liquid crystal display panel controller 31 includes a panel frame memory 32, a motion detection unit 33, a panel double speed conversion unit 34, a panel image adjustment unit 35, and a gate driver as shown in FIG.
  • a source driver control unit (G / S control unit) 36 is included.
  • the panel frame memory 32 stores one frame of the panel processed color video signal (RSp, GSp, BSp) ⁇ Note that the panel processed color video signal corresponding to the frame is converted into a frame image signal (frame image data). ⁇ .
  • the panel frame memory 32 reads the stored panel processed color video signal by 60 frames per second and delays it by one frame period (one vertical scanning period). And transmitted to the motion detection unit 33 and the panel double speed conversion unit 34.
  • the motion detector 33 uses the panel processed color video signal transmitted without passing through the panel frame memory 32 and the delayed panel processed color video signal transmitted through the panel frame memory 32. Then, a signal indicating a motion vector (motion vector signal MS) is detected by the block matching method. Then, the motion detection unit 33 transmits the detected motion vector signal MS to the panel double speed conversion unit 34.
  • motion vector signal MS motion vector signal
  • the panel double speed converter 34 doubles the panel processed color video signal transmitted from the panel frame memory 32 and doubles the motion vector signal MS transmitted from the motion detector 33. Then, these double-speed signals ⁇ the signal obtained by doubling the processed color video signal for panel (RSp, GSp, BSp) and the signal obtained by doubling the motion vector signal MS ⁇ are supplied to the panel image by the panel double-speed converter 34. It is transmitted to the adjustment unit 35.
  • the panel image adjustment unit 35 generates an interpolated frame image signal (interpolated image) from the panel processed color video signal (RSp, GSp, BSp) based on the motion vector signal MS, and the interpolated frame image signal is Between the frame image signals. Then, the panel image adjustment unit 35 transmits these signals (interpolation frame image signal and normal frame image signal that is not the interpolation frame image signal) to the source driver of the liquid crystal display panel 89.
  • the panel image adjustment unit 35 when a certain frame image signal arranged in time series is “Ap ′” and the next frame image signal is “Bp ′”, those frame image signals Ap ′ and frames Using the image signal Bp ′, the panel image adjustment unit 35 generates an interpolated frame image signal to be inserted between the frame image signal Ap ′ and the frame signal Bp ′. Based on the frame image signal Ap ′ and the frame image signal Bp ′, the interpolated frame image signal Ap′Bp ′ is used).
  • the panel image adjustment unit 35 then sends the frame image signal (first frame image data) Ap ′, the interpolation frame image signal (interpolation frame image data) Ap′Bp ′, and the frame image signal (second frame image data) Bp. Send 'to the source driver.
  • the panel processed color video signals (RSp, GSp, BSp) corresponding to the frame image signal Ap ′, the interpolated frame image signal Ap′Bp ′, the frame image signal Bp ′, and the like are also given “ ⁇ ”.
  • the frame image signals generated from the basic color video signals correspond to the frame image signals Ap ′, the frame image signals Bp ′,..., And the frame image signals A, B, C. It may be expressed. Therefore, when the block diagram of FIG. 1 is simplified and various frame image signals are schematically shown together, they are shown in FIG.
  • the gate driver / source driver control unit (G / S control unit) 36 receives a clock signal CLK, a vertical synchronization signal VS, a horizontal synchronization signal HS, and the like transmitted from the video signal processing unit 52.
  • a timing signal for controlling the gate driver and the source driver is generated (a timing signal corresponding to the gate driver is “G-TS”, and a timing signal corresponding to the source driver is “S-TS”).
  • the liquid crystal display panel controller 31 generates panel processed color video signals (RSp ′, GSp ′, BSp ′) and timing signals (G-TS / S-TS).
  • the liquid crystal display panel 89 is controlled by this signal.
  • the main microcomputer (main microcomputer) 12 controls various controls related to the backlight unit 79, the liquid crystal display panel 89, and the like.
  • the main microcomputer 12 and the LED controller 13 controlled thereby are sometimes collectively referred to as a microcomputer unit 11.
  • the LED controller 13 transmits various control signals to the LED driver 55 under the management (control) of the main microcomputer 12.
  • the LED controller 13 includes an LED controller setting register group 14, an LED driver control unit 15, a serial / parallel conversion unit (S / P conversion unit) 41, a pulse width modulation unit 42, a frame light adjustment unit 21, and a color temperature correction.
  • the LED controller setting register group 14 temporarily holds various control signals from the main microcomputer 12. In other words, the main microcomputer 12 once controls various members inside the LED controller 13 via the LED controller setting register group 14.
  • the LED driver control unit 15 transmits the light source color video signals (RSd, GSd, BSd) from the video signal processing unit 52 to the S / P conversion unit 41.
  • the LED driver control unit 15 is a synchronization signal (clock signal CLK, vertical synchronization signal VS, horizontal synchronization signal HS, etc.) from the video signal processing unit 52, and a lighting timing signal L of the LED 62 (specifically, the LED chip 63). Generate a TS and send it to the LED driver 55.
  • the S / P converter 41 converts the light source color video signal transmitted as serial data from the LED driver controller 15 into parallel data.
  • the pulse width modulation unit 42 adjusts the light emission time of the LED 62 based on the color video signal for the light source by a pulse width modulation (PWM) method.
  • PWM pulse width modulation
  • a signal value used for such pulse width modulation is referred to as a PWM signal (PWM value).
  • PWM value A signal value used for such pulse width modulation is referred to as a PWM signal (PWM value).
  • the frame light adjustment unit 21 associates the light source color video signal (RSd, GSd, BSd) with the frame image signal and the interpolated frame image signal generated from the panel processed color video signal (RSp, GSp, BSp). Adjust to signal. Details will be described later.
  • the color temperature adjusting unit 43 performs correction for bringing the color temperature of the white light emitted from the LED 62 close to a desired value.
  • the color temperature adjusting unit 43 uses each data (red) constituting white light by using a data table including the temperature of each LED chip (63R, 63G, 63B) and the luminance of each LED chip corresponding to the temperature.
  • the brightness of white light is calculated from the brightness ratio of light, green light, and blue light (the temperature of each LED chip 63 is measured by the thermistor 65).
  • the color temperature adjusting unit 43 adjusts the calculated brightness of the white light so as to approach the brightness of the desired white light. Specifically, the color temperature adjusting unit 43 changes the value of the current flowing through each LED 62.
  • the method of adjusting the color temperature by the color temperature adjusting unit 43 is not limited to the above-described method, and other methods of adjusting the color temperature may be used.
  • a data table composed of the temperature of each LED chip (63R, 63G, 63B) and the brightness of each LED chip is stored in the built-in memory 44.
  • the built-in memory 44 stores, for example, a data table required for color temperature adjustment as described above.
  • the built-in memory 44 also stores a look-up table (LUT) required by the individual variation correction unit 45, the temperature correction unit 46, and the aging deterioration correction unit 47 subsequent to the color temperature adjustment unit 43.
  • LUT look-up table
  • the individual variation correction unit 45 confirms the individual performance of the LED 62 in advance and performs correction to eliminate the individual error.
  • the brightness of the LED 62 is measured in advance with a specific PWM value. More specifically, the LED chips 63R, 63G, and 63B that emit red light in each LED 62 are turned on, and each LED chip 63 can generate white light having a desired color. The specific PWM value corresponding to is corrected.
  • the plurality of LEDs 62 are turned on, and the PWM values corresponding to the respective LEDs 62 (LED chips 63R, 63G, and 63B) are further corrected so as to eliminate luminance unevenness as planar light. Thereby, the individual difference (individual variation in luminance, and consequently luminance unevenness of the planar light) in the plurality of LEDs 62 is corrected.
  • correction processing using a general lookup table is employed. That is, the individual variation correction unit 45 performs correction processing using the LUT for individual variation of the LED 62 stored in the built-in memory 44.
  • the temperature correction unit 46 performs correction in consideration of a decrease in luminance of the LED 62 due to a temperature increase accompanying light emission of the LED 62.
  • the temperature correction unit 46 acquires the temperature data of the LED 62 (essentially, the LED chips 63R, 63G, and 63B) with the thermistor 65 once a second, and stores the LUT corresponding to the temperature data from the built-in memory 44. Acquisition is performed, and correction processing (that is, change of PWM values corresponding to the LED chips 63R, 63G, and 63B) that suppresses uneven luminance of the planar light is performed.
  • the temporal deterioration correction unit 47 performs correction in consideration of a decrease in luminance of the LED 62 due to deterioration of the LED 62 over time. For example, the temporal deterioration correction unit 47 acquires the luminance data of the LEDs 62 (in short, LED chips 63R, 63G, and 63B) by the photosensor 66 once a year, and stores the LUT corresponding to the luminance data in the built-in memory 44.
  • the correction processing that is, the change of the PWM value corresponding to the LED chips 63R, 63G, and 63B) that suppresses the luminance unevenness of the planar light is performed.
  • the P / S conversion unit 48 converts the color image signal for light source, which has been subjected to various correction processes transmitted as parallel data, into serial data.
  • the LED driver 55 controls the lighting of the LED 62 based on a signal (PWM signal, timing signal) from the LED controller 13.
  • the LED 62 includes one LED chip 63R, two LED chips 63G, and one LED chip 63B. These LED chips (light emitting chips) 53 are controlled to be turned on by the LED driver 55 in a pulse width modulation method.
  • the frame light adjustment unit 21 includes an LED frame memory 22, an LED double speed conversion unit 23, and an LED light adjustment unit 24 (note that the frequency 60 Hz shown in FIG. 3 is an example) But not limited to this).
  • the LED frame memory 22 stores one frame of the light source color video signal (RSd, GSd, BSd) ⁇ note that the light source color video signal corresponding to the frame is referred to as a frame-type LED control signal ⁇ .
  • the frame frequency is, for example, 60 Hz
  • the LED frame memory 22 reads the stored light source color video signal for 60 frames per second and delays it by one frame period (one vertical scanning period). , To the LED double speed conversion unit 23.
  • the LED double speed conversion unit 23 does not go through the LED frame memory 22, and doubles the undelayed light source color video signal (normal light source color video signal) and is transmitted from the LED frame memory 22. Doubles the delayed color video signal for the light source. Then, these doubled signals (a signal obtained by doubling the non-delayed panel processed color video signal and a signal obtained by doubling the delayed panel processed color video signal) are converted by the LED double speed conversion unit 23. It is transmitted to the LED light adjusting unit 24.
  • the LED light adjustment unit 24 adjusts the two types of signals transmitted at double speed to signals corresponding to the frame image signal adjusted by the liquid crystal display panel controller 31 and the interpolated frame image signal. More specifically, the LED light adjusting unit 24 inserts the light source color video signal corresponding to the interpolation frame image signal between the light source color video signals corresponding to the normal frame image signal (in addition, the normal frame image).
  • the light source color video signal corresponding to the signal is referred to as a frame type LED control signal
  • the light source color video signal corresponding to the interpolation frame image signal is referred to as an interpolation frame type LED control signal).
  • the frame type LED control signal (frame type light amount adjustment data, first light amount adjustment data) corresponding to the frame image signal Ap ′ is “Ad ′”, and the frame type LED control signal ( Frame type light amount adjustment data and second light amount adjustment data) are set to “Bd ′”.
  • an interpolation frame type LED control signal (interpolation frame type light amount adjustment data) corresponding to the interpolation frame image signal Ap′Bp ′ is set to “Ad′Bd ′”.
  • FIG. 3 shows the frame type LED control signal Ad ′, the interpolated frame type LED control signal Ad′Bd ′, the frame type LED control signal Bd ′, and the like.
  • the LED light adjusting unit 24 generates a frame type LED control signal Ad′Bd ′ corresponding to the interpolated frame image signal Ap′Bp ′, and converts the interpolated frame type LED control signal Ad′Bd ′ into the frame type LED. It is inserted between the control signal Ad ′ and the frame type LED control signal Bd ′. Then, the LED light adjustment unit 24 transmits these signals (interpolated frame type LED control signal and frame type LED control signal) to the color temperature adjustment unit 43.
  • the microcomputer unit 11 synchronizes the frame type LED control signal Ad ′ with the frame image signal Ap ′, for example, and interpolates the interpolated frame type LED control signal Ad′Bd ′.
  • the frame type LED control signal Bd ′ is synchronized with the frame image signal Bp ′ in synchronization with the frame image signal Ap′Bp ′. That is, the microcomputer unit 11 synchronizes the frame type LED control signal / interpolated frame type LED control signal and the frame image signal / interpolated frame image signal that are in a corresponding relationship.
  • the light source color video signals (RSd, GSd, BSd) corresponding to the frame type LED control signal Ad ′, the interpolated frame type LED control signal Ad′Bd ′, the frame type LED control signal Bd ′, etc. are also “ ] ⁇ Color image signal for light source (RSd ′, GSd ′, BSd ′) ⁇ . That is, a light source color video signal (RSd, GSd, BSd) that is a signal that has been processed by the frame light adjustment unit 21 is marked with “'” (note that the light source color video signal after such processing has been processed). Is also referred to as light intensity adjustment data).
  • the frame light adjustment unit 21 of the LED controller 13 is a basic color image that is the basis of the panel processed color video signal (panel control data) and the light source color video signal (light source control data). From the signal (image data), a color video signal for light source (RSd, GSd, BSd) is received for processing.
  • the LED controller 13 Under the control of the main microcomputer 12, the LED controller 13 (that is, the microcomputer unit 11) corresponds to two frame image signals arranged in time series based on the processed color video signals (RSp, GSp, BSp) for the panel. Two frame-type LED control signals are generated. Further, the LED controller 13 generates an interpolated frame type LED control signal corresponding to the interpolated frame image signal that is a time series intermediate between the two frame type image signals from the two frame type LED control signals.
  • the LED controller 13 under the control of the main microcomputer 12, the LED controller 13 has two frame image signals Ap ′ arranged in time series based on the processed color video signals for panels (RSp, GSp, BSp), and In correspondence with the frame image signal Bp ′, two frame type LED control signals Ad ′ and a frame type LED control signal Bd ′ are generated.
  • the LED controller 13 interpolates the two frame image signals Ap ′ and the interpolated frame type LED control signal Ad′Bd ′ corresponding to the interpolated frame image signal Ap′Bp ′ that is a time series intermediate to the frame image signal Bp ′. Is generated from the two frame-type LED control signals Ad ′ and the frame-type LED control signal Bd ′.
  • FIG. 4 is an explanatory diagram in which Bp ′ and the frame image signal Bp ′ are associated with each other.
  • FIG. 4 shows various signals arranged in time series with the horizontal axis as the time axis (seconds; s). It is an explanatory diagram ⁇ .
  • RSp, GSp, BSp and these processed color video signals for panels (RSp, GSp, BSp) constitute basic color video signals (FRS, FGS, FBS).
  • RSd, GSd, BSd and the color video signals for light sources (RSd, GSd, BSd) also constitute the basic color video signals (FRS, FGS, FBS).
  • the signals having the same configuration group are highly related to each other, and as a result, the frame image signals Ap ′, Bp ′, Cp ′, Dp ′,.
  • the type LED control signals Ad ′, Bd ′, Cd ′, Dd ′... Have good compatibility (matching).
  • the compatibility refers to, for example, a frame so that, when a frame image signal is displayed on the liquid crystal display panel 89, light (backlight light) is generated so as not to cause image blurring, moving image failure (flicker feeling), etc. as much as possible.
  • Type LED control signal is functioning.
  • interpolation frame type LED control signals Ad'Bd ', Bd' are the same as the interpolation frame type LED control signals Ad'Bd ', Bd' in the same timing in time with the interpolation frame image signals Ap'Bp ', Bp'Cp', Cp'Dp '. Cd ′, Cd′Dd ′...
  • These interpolated frame type LED control signals Ad′Bd ′, Bd′Cd ′, Cd′Dd ′ are not frame type LED control signals Ad ′, Bd ′, Cd ′, Dd ′. It is a signal generated based on the signals Ad ′, Bd ′, Cd ′, Dd ′.
  • the interpolated frame type LED control signal is generated based on one and the other of the frame type LED control signals arranged in time series.
  • the interpolated frame image signal Ap′Bp ′ is generated based on the frame image signal Ap ′ and the frame image signal Bp ′.
  • the interpolated frame type LED control signal Ad′Bd ′ Type LED control signal Ad ′ and frame type LED control signal Bd ′.
  • the interpolated frame image signal Ap′Bp ′ based on the frame image signal Ap ′ and the frame image signal Bp ′ is a frame type LED control signal Ad ′ and a frame that are compatible with the frame image signal Ap ′ and the frame image signal Bp ′.
  • the interpolated frame image signal and the interpolated frame type LED control signal for controlling the LED 62 that shines at the same timing as the interpolated frame signal are related to each other.
  • the compatibility with the frame type LED control signal is also relatively high.
  • the display image is also a relatively high quality image as in the case where the frame image signal is displayed on the liquid crystal display panel 89.
  • interpolation predicting and creating a suitable frame image signal between these two frame image signals from the preceding and following frame image signals
  • a frame-type LED This is also performed for the control signal.
  • a frame-type LED control signal suitable between the two frame-type LED control signals is predicted and created from the preceding and following frame-type LED control signals. Since the compatibility between the frame image signal and the frame type LED control signal is good, the compatibility between the interpolated frame image signal and the interpolated frame type LED control signal is also improved.
  • an image signal (frame image signal and interpolated frame image signal) displayed on the liquid crystal display panel 89 and an LED control signal (frame type LED control signal and interpolated frame type LED control) for controlling the backlight light of the backlight unit 79.
  • an LED control signal frame type LED control signal and interpolated frame type LED control
  • the contribution ratio (for example, ⁇ , ⁇ , ⁇ %) Between one of the two frame type LED control signals and the other may be changed as appropriate.
  • FIG. 5 shows the contribution ratio ⁇ , ⁇ , ⁇ (where ⁇ , ⁇ , ⁇ ... Are natural numbers of 1 or less) of the frame type LED control signal with respect to the interpolated frame type LED control signal in the explanatory diagram of FIG. It is explanatory drawing.
  • the interpolation frame type LED control signal Ad′Bd ′ includes ( ⁇ ⁇ 100)% of the frame type LED control signal Ad ′ and ((1 ⁇ ⁇ ) ⁇ 100)%.
  • the contribution rate ⁇ is appropriately changed according to the interpolated frame image signal Ap′Bp ′.
  • the interpolated frame type LED control signal Ad′Bd ′ is also the frame type. It is preferable that the frame-type LED control signal Ap ′ is generated more greatly than the LED control signal Bp ′ (that is, the relationship ⁇ > (1- ⁇ ) is satisfied).
  • the contribution ratio (for example, ⁇ , ⁇ , ⁇ %) May be appropriately changed for each of the LED chips 63R, 63G, and 63B. This is because an interpolated frame type LED control signal that is more compatible with the interpolated frame image signal is generated.
  • the present invention is not limited to this, and in the case of the LED 63 as shown in FIG. 12B, the contribution ratio may be appropriately changed for each LED 63.
  • the frame frequency 60 Hz in the NTSC (National Television System Committee) system is taken as an example, but the frame frequency is not limited to this.
  • the frame frequency may be 50 Hz in the PAL (Phase Alternate Line) method.
  • the panel double speed converter 34 in the liquid crystal display panel controller 31 and the LED double speed converter 23 in the LED controller 13 are double the signal speed.
  • the double speed units 34 and 23 may achieve a signal quadruple speed (60 Hz ⁇ 240 Hz) or a double speed higher than that.
  • interpolated frame image signals are arranged between two frame image signals arranged in time series (for example, frame image signal Ap ′ and frame image signal Bp ′).
  • frame image signal Ap′Bp ′ [1]
  • interpolated frame image signal Ap′Bp ′ [2] interpolated frame image signal Ap′Bp ′ [3]).
  • interpolated frame type LED control signals are arranged between two frame type LED control signals arranged in time series (for example, between the frame type LED control signal Ad ′ and the frame type LED control signal Bd ′).
  • interpolated frame type LED control signal Ad′Bd ′ [1] interpolated frame type LED control signal Ad′Bd ′ [2]
  • the interpolated frame image signal and the interpolated frame type LED control signal at the same timing correspond to each other (for example, the interpolated frame type image control signal Ap′Bp ′ [1] and the interpolated frame type LED control signal Ad′Bd ′ [1]
  • the interpolated frame image signal Ap′Bp ′ [2] and the interpolated frame type LED control signal Ad′Bd ′ [2] correspond to the interpolated frame image signal Ap′Bp ′ [3] and the interpolated frame type LED control.
  • Signal Ad'Bd '[3] ).
  • a compatible relationship is established between the frame type LED control signal and the interpolated frame type LED control signal. As a result, the quality of the image displayed on the liquid crystal display panel 89 is improved.
  • the contribution ratio (for example, ⁇ 1 to ⁇ 3..., ⁇ 1 to ⁇ 3... Is a natural number of 1 or less) between one and the other of the two frame-type LED control signals may be changed as appropriate. This is because when such a contribution rate is appropriately changed, an interpolated frame type LED control signal having better compatibility is generated in the interpolated frame image signal.
  • This moving image flicker is a phenomenon in which, when a display image displayed on the liquid crystal display panel 89 overlaps with a plurality of illumination areas SA, if the brightness of each illumination area SA varies abruptly, the brightness fluctuation becomes conspicuous.
  • the backlight unit 79 that generates the interpolated frame type LED control signal suppresses moving image flicker.
  • the luminance levels corresponding to the frame type LED control signals Ad ′, Bd ′, Cd ′, Dd ′ are La, Lb, Lc, Ld. Is set to La> Lb> Lc> Ld...
  • the difference between La and Lb, the difference between Lb and Lc, and the difference between Lc and Ld are such differences that cause luminance flicker. Then, for example, if the LED control signal causes a luminance fluctuation as indicated by a one-dot chain line, luminance flicker occurs.
  • the backlight unit 79 that generates the interpolated frame type LED control signal is easier to supply the backlight light that suppresses the luminance variation than the backlight unit 79 that cannot generate the interpolated frame type LED control signal.
  • the liquid crystal display panel 89 that receives light from the backlight unit 79 is less likely to cause moving image flicker.
  • the receiving unit 51, video signal processing unit 52, liquid crystal display panel controller 31, and microcomputer unit 11 main microcomputer 12 and LED controller 13 shown in FIG. It may be mounted on the backlight unit 79. In short, these members may be mounted on the liquid crystal display device 99. However, when the brightness correction control described above is performed by the backlight unit 79 alone, at least the receiving unit 51, the video signal processing unit 52, and the microcomputer unit 11 are mounted on the backlight unit 79.
  • the LED controller 13 (more specifically, the frame light adjustment unit 21) in the microcomputer unit 11 generates the interpolated frame type LED control signal
  • the light source color video signal (RSd, GSd, BSd) is used. Since this signal is a 60 Hz signal and is not subjected to special processing, the control burden on the LED controller 13 is relatively light.
  • the signal transmitted to the LED controller 13 and processed by the frame light adjustment unit 21 is, for example, a panel processed color video signal (RSp ′, GSp ′, BSp ′) processed by the liquid crystal display panel controller 31.
  • a panel processed color video signal (RSp ′, GSp ′, BSp ′) processed by the liquid crystal display panel controller 31.
  • the processed color video signal (RSp) for the panel which is a signal divided by the video signal processing unit 52, is used.
  • GSp, BSp is processed by the liquid crystal display panel controller 31
  • the light source color video signals (RSd, GSd, BSd) are processed by the LED controller 13.
  • control burden on the LED controller 13 can be relatively light.
  • control burden is light, the cost of various circuits (for example, ASIC; Application Specific Integrated Circuit) which becomes the microcomputer unit 11 is also reduced.
  • circuit configuration itself is simplified.
  • the interpolated frame image signal in the process for generating the interpolated frame image signal, various signals are generated depending on the contribution ratio (for example, ⁇ , ⁇ %) Between one of the two frame image signals arranged in time series and the other. Generated. Then, the interpolated frame image signal may be generated with a contribution rate (maximum contribution rate) of 100% of one frame image signal.
  • the microcomputer unit 11 when the interpolation frame image signal substantially disappears, the microcomputer unit 11 generates the interpolation frame type LED control signal as follows. That is, the microcomputer unit 11 generates an interpolation frame type LED control signal by setting the contribution rate of the frame type LED control signal corresponding to one frame image signal having a contribution rate of 100% to 100% (maximum contribution rate). To do.
  • the interpolated frame image signal Ap'Bp ' is substantially the same as the frame image signal Ap', it is generated by the contribution of the frame type LED control signal Ad 'and the frame type LED control signal Bd'.
  • the interpolation frame type LED control signal Ad′Bd ′ (see FIG. 9B) is substantially the same as the frame type LED control signal Ad ′ as shown in FIG. 9C (interpolation frame type LED control signal Ad).
  • the microcomputer unit 11 (specifically, the panel light adjustment unit 21 of the LED controller 13) is also an interpolation frame type.
  • the frame type LED control signal is repeated without generating the LED control signal.
  • the so-called direct-type backlight unit 79 has been described as an example. However, it is not limited to this.
  • a backlight unit (tandem backlight unit) 69 on which a tandem light guide plate 77gr formed by spreading wedge-shaped light guide pieces 77 may be used.
  • the receiving unit 51 receives a video / audio signal such as a television broadcast signal
  • the video signal processing unit 52 processes the video signal in the received signal. Therefore, it can be said that a receiving device equipped with such a liquid crystal display device 99 is a television broadcast receiving device (so-called liquid crystal television).
  • the video signal processed by the liquid crystal display device 99 is not limited to television broadcasting. For example, it may be a video signal contained in a recording medium on which content such as a movie is recorded, or a video signal transmitted via the Internet.
  • various correction processes including the luminance correction process by the microcomputer unit 11 are realized by a data generation program.
  • the data generation program is a computer-executable program and may be recorded on a computer-readable recording medium. This is because the program recorded on the recording medium becomes portable.
  • Examples of the recording medium include a tape system such as a separated magnetic tape and a cassette tape, a disk system of an optical disk such as a magnetic disk and a CD-ROM, a card system such as an IC card (including a memory card) and an optical card. Or a semiconductor memory system such as a flash memory.
  • a tape system such as a separated magnetic tape and a cassette tape
  • a disk system of an optical disk such as a magnetic disk and a CD-ROM
  • a card system such as an IC card (including a memory card) and an optical card.
  • a semiconductor memory system such as a flash memory.
  • the microcomputer unit 11 may acquire the data generation program by communication from the communication network.
  • the communication network includes the Internet, infrared communication, etc. regardless of wired wireless.
  • Microcomputer unit (control unit) 12 Main microcomputer (part of control unit) 13 LED controller (part of control unit) 14 LED controller registers (part of control unit) 15 LED driver controller (part of control unit) 21 Frame light adjustment unit (part of control unit) 22 LED frame memory (part of control unit) 23 LED double speed converter (part of control unit) 24 LED light adjustment unit (part of control unit) 31 liquid crystal display panel controller 32 panel frame memory 33 motion detection unit 34 panel double speed conversion unit 35 panel image adjustment unit 36 G / S control unit 51 reception unit 52 video signal processing unit 55 LED driver MJ LED module 62 LED (light source) ) 63 LED chip (light emitting chip) 65 Thermistor (temperature measurement unit) 66 Photosensor 79 Backlight unit (lighting device) 89 Liquid crystal display panel (display panel) 99 Liquid crystal display device (display device)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

Under control of a main microcomputer (12), an LED controller (13) generates two frame-type LED control signals corresponding to two frame image signals arranged in time series in accordance with a panel processing color video signal.  Furthermore, the LED controller (13) generates from two frame-type LED control signals, a frame-type LED control signal corresponding to an interpolation frame image signal temporally between the two frame image signals.

Description

照明装置、表示装置、データ生成方法、データ生成プログラム、および、記録媒体LIGHTING DEVICE, DISPLAY DEVICE, DATA GENERATION METHOD, DATA GENERATION PROGRAM, AND RECORDING MEDIUM
 本発明は、例えばバックライトユニットのような照明装置、および照明装置を搭載する表示装置(液晶表示装置等)に関する。また、本発明は、照明装置の光源を制御する光量調整データのデータ生成方法、および光量調整データのデータ生成プログラム、さらに、そのデータ生成プログラムを記憶する記憶媒体にも関する。 The present invention relates to an illumination device such as a backlight unit and a display device (liquid crystal display device or the like) on which the illumination device is mounted. The present invention also relates to a data generation method of light amount adjustment data for controlling a light source of a lighting device, a data generation program for light amount adjustment data, and a storage medium for storing the data generation program.
 最近、液晶表示装置のような表示装置では、液晶表示パネルを制御する液晶表示パネルコントローラが、補間フレーム画像信号の生成機能を有する(特許文献1参照)。補間フレームの生成機能とは、画像信号(画像データ)の一部で、液晶表示パネルコントローラに送信されてくる信号(パネル制御データ)に基づいたフレーム画像信号から、各フレーム画像信号を補間する補間フレーム画像信号を生成し、その生成された補間フレーム画像信号を、フレーム画像信号データ同士の間に挿入させることである。 Recently, in a display device such as a liquid crystal display device, a liquid crystal display panel controller that controls the liquid crystal display panel has a function of generating an interpolated frame image signal (see Patent Document 1). The interpolation frame generation function is a part of the image signal (image data), and is an interpolation that interpolates each frame image signal from the frame image signal based on the signal (panel control data) transmitted to the liquid crystal display panel controller. A frame image signal is generated, and the generated interpolated frame image signal is inserted between the frame image signal data.
 この機能を簡単に図示したものが、図13Aになる。詳説すると、図13Aは、フレーム画像信号(フレーム画像データ)ap’、bp’、cp’…と、それらフレーム画像信号から生成される補間フレーム画像信号(補間フレーム画像データ)ap’bp’、bp’cp’…とを、時系列に並べた図である(なお、例えば、補間フレーム画像信号ap’bp’は、フレーム画像信号ap’とフレーム画像信号bp’とによって生成されることを意味する)。 FIG. 13A shows a simple illustration of this function. More specifically, FIG. 13A shows frame image signals (frame image data) ap ′, bp ′, cp ′... And interpolated frame image signals (interpolated frame image data) ap′bp ′, bp generated from these frame image signals. 'cp' ... are arranged in time series (for example, the interpolated frame image signal ap'bp 'means that the frame image signal ap' and the frame image signal bp 'are generated) ).
 このような補間フレーム画像信号がフレーム画像信号同士の間に内挿されている場合、通常、液晶表示パネルの表示画像は、フレーム画像信号のみを表示する表示画像に比べて、高品質な画像になる。 When such an interpolated frame image signal is interpolated between frame image signals, the display image on the liquid crystal display panel is usually a higher quality image than a display image that displays only the frame image signal. Become.
特開2008-11197号公報JP 2008-11197 A
 ところで、画像信号には、液晶表示パネルコントローラに送信される信号以外にも、バックライトユニットに搭載される光源{例えば、LED(Light Emitting Diode)}を制御する信号(光源制御データ)も含まれる。そして、この信号に対する種々処理後の信号(光量調整データ)に応じて、LEDの発光は制御される(なお、このような種々処理を行う部材をマイコンユニットとする)。 By the way, the image signal includes a signal (light source control data) for controlling a light source {for example, LED (Light Emitting Diode)} mounted on the backlight unit in addition to a signal transmitted to the liquid crystal display panel controller. . Then, the light emission of the LED is controlled in accordance with the signal (light quantity adjustment data) after various processing with respect to this signal (a member that performs such various processing is a microcomputer unit).
 詳説すると、マイコンユニット(制御ユニット)は、フレーム(1画面)に対応させた信号として、LEDを制御する信号(光源制御データ)に基づき、フレーム型LED制御信号(フレーム対応型の光量調整データ)を生成する。特に、マイコンユニットは、フレーム型LED制御信号を、フレーム画像信号に対応させる。例えば、図13Bに示すように、フレーム画像信号ap’、bp’、cp’…に対応するフレーム型LED制御信号として、フレーム型LED制御信号ad’、bd’、cd’…が生成される。 More specifically, the microcomputer unit (control unit), as a signal corresponding to the frame (one screen), is based on a signal (light source control data) for controlling the LED, and a frame type LED control signal (frame-corresponding light amount adjustment data). Is generated. In particular, the microcomputer unit makes the frame type LED control signal correspond to the frame image signal. For example, as shown in FIG. 13B, frame type LED control signals ad ', bd', cd '... are generated as frame type LED control signals corresponding to the frame image signals ap', bp ', cp' ....
 ただし、この図13Aおよび図13Bに示すように、フレーム画像信号ap’、bp’、cp’…および補間フレーム画像信号ap’bp’、bp’cp’…は、フレーム周波数60Hzを倍速した信号である。そこで、マイコンユニットも、フレーム画像信号ap’、bp’、cp’…および補間フレーム画像信号ap’bp’、bp’cp’…に同期させるべく、フレーム型LED制御信号を倍速させる。通常、図13Bに示すように、マイコンユニットは、フレーム型LED制御信号ad’、bd’、cp’…を単純に倍速させる。 However, as shown in FIGS. 13A and 13B, the frame image signals ap ′, bp ′, cp ′, and the interpolated frame image signals ap′bp ′, bp′cp ′, are signals obtained by multiplying the frame frequency 60 Hz. is there. Therefore, the microcomputer unit also doubles the frame-type LED control signal in order to synchronize with the frame image signals ap ′, bp ′, cp ′... And the interpolated frame image signals ap′bp ′, bp′cp ′. Normally, as shown in FIG. 13B, the microcomputer unit simply doubles the frame type LED control signals ad ', bd', cp ',.
 すると、例えば、同期するフレーム画像信号ap’とフレーム型LED制御信号ad’とは、対応関係が成立するものの、補間フレーム画像信号ap’bp’は、フレーム型LED制御信号ad’とは対応しない。そのため、補間フレーム画像信号に基づく液晶表示パネルの表示画像は、対応関係のないフレーム型LED制御信号に基づく光(バックライト光)を受けることになる。そのため、この表示画像には、映像ボケ、動画障害(フリッカ)等が生じやすい。 Then, for example, a correspondence relationship is established between the synchronized frame image signal ap ′ and the frame type LED control signal ad ′, but the interpolated frame image signal ap′bp ′ does not correspond to the frame type LED control signal ad ′. . Therefore, the display image of the liquid crystal display panel based on the interpolated frame image signal receives light (backlight) based on a frame-type LED control signal having no corresponding relationship. For this reason, the display image is likely to cause image blur, moving image failure (flicker), and the like.
 本発明は、上記の問題点を解決するためになされたものである。そして、例えば、液晶表示パネルの表示画像を高品質にさせる光を供給する照明装置等を提供することにある。 The present invention has been made to solve the above problems. Then, for example, it is to provide an illuminating device or the like that supplies light that makes a display image of a liquid crystal display panel high quality.
 照明装置は、光量調整データに応じて発光する複数の光源と、パネル制御データおよび光源制御データの基である画像データから、光源制御データに対して処理をすることで、光量調整データを生成する制御ユニットと、を含む。 The lighting device generates light amount adjustment data by processing the light source control data from the plurality of light sources that emit light according to the light amount adjustment data and the image data that is the basis of the panel control data and the light source control data. A control unit.
 そして、この照明装置では、制御ユニットが、パネル制御データに基づいて時系列に並ぶ2つのフレーム画像データに対応させて、2つのフレーム型の光量調整データを生成する。さらに、制御ユニットは、2つのフレーム画像データに対する時系列的な中間である補間フレーム画像データに対応する補間フレーム型の光量調整データを、2つのフレーム型の光量調整データから生成する。 In this lighting apparatus, the control unit generates two frame-type light amount adjustment data in association with two frame image data arranged in time series based on the panel control data. Further, the control unit generates interpolated frame type light amount adjustment data corresponding to the interpolated frame image data that is a time series intermediate between the two frame image data from the two frame type light amount adjustment data.
 このようになっていると、2つフレーム画像データに基づいた補間フレーム画像データに相性の良い補間フレーム型の光量調整データが生成される。なぜなら、この補間フレーム型の光量調整データは、2つのフレーム画像データに相性の良い2つのフレーム型の光量調整データに基づいて生成されるためである。 If this is the case, interpolated frame type light amount adjustment data that is compatible with the interpolated frame image data based on the two frame image data is generated. This is because the interpolated frame type light amount adjustment data is generated based on two frame type light amount adjustment data having good compatibility with the two frame image data.
 すなわち、フレーム画像データに対して一般的に行われる“補間”が、フレーム型の光量調整データに対しても行われる。そのため、フレーム画像データとフレーム型の光量調整データとに相性の良い対応関係があると、補間フレーム画像データと補間フレーム型の光量調整データにも相性の良い対応関係が成立する。 That is, “interpolation” generally performed on frame image data is also performed on frame-type light amount adjustment data. Therefore, if there is a compatible correspondence between the frame image data and the frame-type light amount adjustment data, a compatible relationship is also established between the interpolation frame image data and the interpolation frame-type light amount adjustment data.
 そして、照明装置は、補間フレーム画像データに基づく画像を表示する液晶表示パネル等に対して、その補間フレーム画像データに相性の良いフレーム型の光量調整データに基づく光を供給する。すると、液晶表示パネル等に映る表示画像には、映像ボケ、動画障害(フリッカ感)等が生じにくい。つまり、この照明装置は、液晶表示パネル等に映る表示画像に、映像ボケ、動画障害(フリッカ感)等を生じさせない光を供給できる。 The lighting device supplies light based on frame-type light amount adjustment data compatible with the interpolated frame image data to a liquid crystal display panel or the like that displays an image based on the interpolated frame image data. As a result, the display image displayed on the liquid crystal display panel or the like is less likely to cause image blur, moving image failure (flickering), or the like. That is, the lighting device can supply light that does not cause video blurring, moving image failure (flickering), or the like to a display image displayed on a liquid crystal display panel or the like.
 なお、制御ユニットは、2つのフレーム型の光量調整データの一方と他方との寄与率を変えて、補間フレーム型の光量調整データを生成すると望ましい。 It is desirable that the control unit generates the interpolated frame type light amount adjustment data by changing the contribution ratio between one of the two frame type light amount adjustment data and the other.
 また、補間フレーム画像データが、時系列に並ぶ2つのフレーム画像データの一方と他方とにおいて、一方の最高寄与率によって生成されている場合、制御ユニットは、補間フレーム型の光量調整データを、一方のフレーム画像データに対応する一方の光量調整データの最高寄与率によって生成すると望ましい。 In addition, when the interpolated frame image data is generated with the highest contribution ratio of one of the two frame image data arranged in time series and the other, the control unit converts the interpolated frame type light amount adjustment data into one It is desirable to generate the maximum amount of contribution of one light quantity adjustment data corresponding to the frame image data.
 また、制御ユニットは、補間フレーム型の光量調整データを、単数または複数生成すると望ましい。 Also, it is desirable that the control unit generates one or a plurality of interpolation frame type light amount adjustment data.
 なお、以上の照明装置と、画像データに応じて画像表示する表示パネルと、を含む表示装置も本発明といえる。詳説すると、この表示装置は以下のとおりである。 It should be noted that a display device including the above lighting device and a display panel that displays an image according to image data can also be said to be the present invention. More specifically, this display device is as follows.
 すなわち、表示装置は、制御ユニットに加えて、映像信号処理部および液晶表示パネルコントローラを含む。映像信号処理部は、画像データを、パネル制御データと光源制御データとに分ける。液晶表示パネルコントローラは、パネル制御データに対して処理をすることで、2つのフレーム画像データとして、時系列で並ぶ第1フレーム画像データおよび第2フレーム画像データを生成するとともに、第1フレーム画像データおよび第2フレーム画像データから補間フレーム画像データを生成する。 That is, the display device includes a video signal processing unit and a liquid crystal display panel controller in addition to the control unit. The video signal processing unit divides the image data into panel control data and light source control data. The liquid crystal display panel controller generates first frame image data and second frame image data arranged in time series as two frame image data by processing the panel control data, and the first frame image data Then, interpolated frame image data is generated from the second frame image data.
 そして、制御ユニットは、光源制御データに対して処理をすることで、時系列に並ぶ2つのフレーム型の光量調整データとして、第1フレーム画像データに対応する第1光量調整データと、第2フレーム画像データに対応する第2光量調整データと、を生成する。さらに、制御ユニットは、補間フレーム型の光量調整データを、第1光量調整データと第2光量調整データとから生成する。 Then, the control unit processes the light source control data, so that the first light quantity adjustment data corresponding to the first frame image data and the second frame are obtained as two frame type light quantity adjustment data arranged in time series. Second light amount adjustment data corresponding to the image data is generated. Furthermore, the control unit generates interpolation frame type light amount adjustment data from the first light amount adjustment data and the second light amount adjustment data.
 また、照明装置にて、複数の光源の発光制御に要する光量調整データを、パネル制御データおよび光源制御データの基である画像データから、光源制御データに対して処理をすることで、光量調整データを生成するデータ生成方法にあって、以下のような方法も本発明といえる。 In the lighting device, light amount adjustment data required for light emission control of a plurality of light sources is processed from the image data that is the basis of the panel control data and the light source control data to the light source control data. The following method can also be said to be the present invention.
 すなわち、パネル制御データに基づいて時系列に並ぶ2つのフレーム画像データに対応させて、2つのフレーム型の光量調整データを生成するとともに、2つのフレーム画像データに対する時系列的な中間である補間フレーム画像データに対応する補間フレーム型の光量調整データを、2つのフレーム型の光量調整データから生成するデータの生成方法である。 That is, two frame-type light amount adjustment data are generated in correspondence with two frame image data arranged in time series based on the panel control data, and an interpolation frame that is a time series intermediate between the two frame image data This is a data generation method for generating interpolated frame type light amount adjustment data corresponding to image data from two frame type light amount adjustment data.
 また、照明装置にて、光量調整データに応じて発光する複数の光源と、パネル制御データおよび光源制御データの基である画像データから、光源制御データに対して処理をすることで、光量調整データを生成する制御ユニットと、を含む照明装置での光量制御データのデータ生成プログラムにあって、以下のようなプログラムも本発明といえる。 Further, the lighting device processes the light source control data from the plurality of light sources that emit light according to the light amount adjustment data and the image data that is the basis of the panel control data and the light source control data, thereby adjusting the light amount adjustment data In the data generation program of the light amount control data in the illumination device including the control unit, the following program can be said to be the present invention.
 すなわち、パネル制御データに基づいて時系列に並ぶ2つのフレーム画像データに対応させて、2つのフレーム型の光量調整データを生成するとともに、2つのフレーム画像データに対する時系列的な中間である補間フレーム画像データに対応する補間フレーム型の光量調整データを、2つのフレーム型の光量調整データから生成するデータ生成プログラムを、制御ユニットに実行させるデータ生成プログラムである。 That is, two frame-type light amount adjustment data are generated in correspondence with two frame image data arranged in time series based on the panel control data, and an interpolation frame that is a time series intermediate between the two frame image data A data generation program that causes a control unit to execute a data generation program that generates interpolated frame-type light amount adjustment data corresponding to image data from two frame-type light amount adjustment data.
 なお、以上のデータ生成プログラムを記録しているコンピュータ読み取り可能な記録媒体も本発明といえる。 It should be noted that a computer-readable recording medium in which the above data generation program is recorded can also be said to be the present invention.
 本発明によると、画像データに含まれるパネル制御データに対して、一般的に行われる“補間”が、画像データに含まれる光源制御データ基づく光量調整データに対しても行われる。そして、パネル制御データに基づく2つのフレーム画像データから生成された補間フレーム画像データと、光源制御データに基づく2つのフレーム型の光量調整データから生成された補間フレーム型の光量調整データとに、相性の良い対応関係が成立する。 According to the present invention, “interpolation” that is generally performed on the panel control data included in the image data is also performed on the light amount adjustment data based on the light source control data included in the image data. The interpolated frame image data generated from the two frame image data based on the panel control data and the interpolated frame type light amount adjustment data generated from the two frame type light amount adjustment data based on the light source control data are compatible with each other. A good correspondence is established.
 すると、照明装置は、補間フレーム画像データに基づく画像を表示する液晶表示パネル等に対して、その補間フレーム画像データに相性の良いフレーム型の光量調整データに基づく光を供給することになり、それに起因して、液晶表示パネル等に映る表示画像に、輝度ムラおよび色ムラ等が生じない。つまり、この照明装置は、液晶表示パネル等に映る表示画像に、映像ボケ、動画障害(フリッカ感)等を生じさせない光分布(映像)を供給する。 Then, the lighting device supplies light based on frame-type light amount adjustment data compatible with the interpolation frame image data to a liquid crystal display panel or the like that displays an image based on the interpolation frame image data. As a result, luminance unevenness, color unevenness and the like do not occur in a display image displayed on a liquid crystal display panel or the like. In other words, this lighting device supplies a light distribution (video) that does not cause video blurring, moving picture failure (flickering), or the like on a display image displayed on a liquid crystal display panel or the like.
は、液晶表示装置に含まれる種々部材を示すブロック図である。These are block diagrams which show the various members contained in a liquid crystal display device. は、時系列に並ぶフレーム画像信号と補間フレーム画像信号とを模式化した説明図である。These are schematic diagrams of frame image signals and interpolated frame image signals arranged in time series. は、図1のブロック図を簡易化させ、各種信号を模式化して併記した説明図である。FIG. 2 is an explanatory diagram that simplifies the block diagram of FIG. 1 and schematically shows various signals. は、横軸を時間軸にして、時系列に各種信号を並べた説明図である(ただし、フレーム周波数を2倍速している)。These are explanatory diagrams in which various signals are arranged in time series with the horizontal axis as the time axis (however, the frame frequency is doubled). は、図4の説明図に、補間フレーム型LED制御信号に対するフレーム型LED制御信号の寄与率を併記した説明図である。FIG. 5 is an explanatory diagram in which the contribution rate of the frame-type LED control signal to the interpolated frame-type LED control signal is shown together with the explanatory diagram of FIG. 4. は、横軸を時間軸にして、時系列に各種信号を並べた説明図である(ただし、フレーム周波数を4倍速している)。These are explanatory diagrams in which various signals are arranged in time series with the horizontal axis as the time axis (however, the frame frequency is quadruple speed). は、図6の説明図に、補間フレーム型LED制御信号に対するフレーム型LED制御信号の寄与率を併記した説明図である。FIG. 7 is an explanatory diagram in which the contribution ratio of the frame-type LED control signal to the interpolated frame-type LED control signal is shown in the explanatory diagram of FIG. 6. は、フレーム型LED制御信号に対応する光の輝度レベルを示す説明図である。These are explanatory drawings which show the brightness | luminance level of the light corresponding to a frame type LED control signal. は、図5の説明図に、補間フレーム画像信号に対するフレーム画像信号の寄与率を併記した説明図である。FIG. 6 is an explanatory diagram in which the contribution ratio of the frame image signal to the interpolated frame image signal is shown together with the explanatory diagram of FIG. 5. は、図9Aにおける補間フレーム画像信号が実質的にフレーム画像信号であることを示す説明図である。FIG. 9B is an explanatory diagram showing that the interpolated frame image signal in FIG. 9A is substantially a frame image signal. は、図9Bにおける補間フレーム型LED制御信号が実質的にフレーム型LED制御信号であることを示す説明図である。FIG. 9B is an explanatory diagram showing that the interpolated frame type LED control signal in FIG. 9B is substantially a frame type LED control signal. は、液晶表示装置の分解斜視図である。FIG. 3 is an exploded perspective view of a liquid crystal display device. は、液晶表示装置の分解斜視図である。FIG. 3 is an exploded perspective view of a liquid crystal display device. は、複数のLEDチップを搭載するLEDを示す正面図である。These are front views which show LED which mounts a some LED chip. は、単数のLEDチップを搭載するLEDを示す正面図である。These are front views which show LED which mounts a single LED chip. は、従来の液晶表示パネルコントローラの生成するフレーム画像信号および補間フレーム画像信号を時系列に並べた説明図である。FIG. 6 is an explanatory diagram in which frame image signals and interpolation frame image signals generated by a conventional liquid crystal display panel controller are arranged in time series. は、フレーム画像信号および補間フレーム画像信号に対応するフレーム型LED制御信号を時系列に並べた説明図である。These are explanatory drawings which arranged the frame type LED control signal corresponding to a frame image signal and an interpolation frame image signal in time series.
 [実施の形態1]
 実施の一形態について、図面に基づいて説明すれば、以下の通りである。なお、便宜上、部材符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。また、断面図ではないが、便宜上、ハッチングを付す場合がある。また、記載される数値実施例は、一例にすぎず、その数値に限定されるものではない。
[Embodiment 1]
The following describes one embodiment with reference to the drawings. For convenience, member codes and the like may be omitted, but in such a case, other drawings are referred to. Further, although not a cross-sectional view, hatching may be given for convenience. The numerical examples described are only examples and are not limited to the numerical values.
 図11は、液晶表示装置(表示装置)99を示す分解斜視図である。この図11に示すように、液晶表示装置99は、液晶表示パネル(表示パネル)89と、バックライトユニット(照明装置)79と、それらを挟むハウジングHG(HG1・HG2)を含む。 FIG. 11 is an exploded perspective view showing a liquid crystal display device (display device) 99. As shown in FIG. 11, the liquid crystal display device 99 includes a liquid crystal display panel (display panel) 89, a backlight unit (illumination device) 79, and a housing HG (HG1 and HG2) sandwiching them.
 液晶表示パネル89は、アクティブマトリックス方式を採用する。そのため、この液晶表示パネル89では、不図示のTFT(Thin Film Transistor)等のアクティブ素子を取り付けられるアクティブマトリックス基板81と、このアクティブマトリックス基板81に対向する対向基板82とで、液晶(不図示)を挟み込む。つまり、アクティブマトリックス基板81および対向基板82は、液晶を挟むための基板であり、透明なガラス等で形成される。 The liquid crystal display panel 89 adopts an active matrix method. Therefore, in this liquid crystal display panel 89, liquid crystal (not shown) is composed of an active matrix substrate 81 to which an active element such as a TFT (Thin Film Transistor) (not shown) is attached and a counter substrate 82 facing the active matrix substrate 81. Is inserted. That is, the active matrix substrate 81 and the counter substrate 82 are substrates for sandwiching liquid crystal, and are formed of transparent glass or the like.
 なお、アクティブマトリックス基板81と対向基板82との外縁には、不図示のシール材が取り付けられ、このシール材が液晶を封止する。また、アクティブマトリックス基板81および対向基板82を挟むように、偏光フィルム83・83が取り付けられる。また、この液晶表示パネル89の表示画像は、TFTにつながる不図示のゲートドライバーおよびソースドライバーによって、制御される。 A sealing material (not shown) is attached to the outer edge of the active matrix substrate 81 and the counter substrate 82, and this sealing material seals the liquid crystal. Further, polarizing films 83 and 83 are attached so as to sandwich the active matrix substrate 81 and the counter substrate 82. The display image on the liquid crystal display panel 89 is controlled by a gate driver and a source driver (not shown) connected to the TFT.
 この液晶表示パネル89は非発光型の表示パネルなので、バックライトユニット79からの光(バックライト光)を受光することで表示機能を発揮する。そのため、バックライトユニット79からの光が液晶表示パネル89の全面を均一に照射できれば、液晶表示パネル89の表示品位が向上する。 Since the liquid crystal display panel 89 is a non-light-emitting display panel, the display function is exhibited by receiving light from the backlight unit 79 (backlight light). Therefore, if the light from the backlight unit 79 can uniformly irradiate the entire surface of the liquid crystal display panel 89, the display quality of the liquid crystal display panel 89 is improved.
 そして、このようなバックライトユニット79は、LEDモジュールMJ、サーミスタ(温度測定部)65、フォトセンサ66、反射シート71、拡散シート72、プリズムシート73・74を含む。 The backlight unit 79 includes an LED module MJ, a thermistor (temperature measurement unit) 65, a photo sensor 66, a reflection sheet 71, a diffusion sheet 72, and prism sheets 73 and 74.
 LEDモジュールMJは、実装基板61およびLED(Light Emitting Diode)62を含む。実装基板61は、不図示の電極を面状(例えば、マトリックス状)に配置し、それらの電極上に、LED(光源、発光素子)62を実装する。そして、実装基板61は、不図示の電源から流れる電流を、電極を介してLED62に供給する。 The LED module MJ includes a mounting substrate 61 and an LED (Light Emitting Diode) 62. The mounting substrate 61 has electrodes (not shown) arranged in a planar shape (for example, a matrix), and an LED (light source, light emitting element) 62 is mounted on the electrodes. Then, the mounting substrate 61 supplies a current flowing from a power source (not shown) to the LED 62 via the electrode.
 LED62は、電流供給を受けて発光する点状の光源であり、実装基板61の実装面における電極に対応して配置される(なお、LED62の発光面の向きは、電極を敷き詰めた実装面の向きと同じ向きである)。その結果、LED62は、実装基板61実装面上にて面状で配置され、面状光を生成する。なお、LED62の配置の一例として、矩形状かつマトリックス状の面状配置が挙げられ、便宜上、矩形の長手方向をX方向、短手方向をY方向とする。 The LED 62 is a point light source that emits light upon receiving a current supply, and is arranged corresponding to the electrode on the mounting surface of the mounting substrate 61 (Note that the direction of the light emitting surface of the LED 62 is the same as that of the mounting surface on which the electrodes are spread. Is the same orientation). As a result, the LEDs 62 are arranged in a planar shape on the mounting surface of the mounting substrate 61, and generate planar light. An example of the arrangement of the LEDs 62 is a rectangular and matrix planar arrangement. For convenience, the longitudinal direction of the rectangle is the X direction and the short direction is the Y direction.
 また、LED62の種類は、特に限定されるものではない。一例として、図12AのLED62の正面図に示すように、1個の赤色発光(R)のLEDチップ63R、2個の緑色発光(G)のLEDチップ63G、および1個の青色発光(B)のLEDチップ63Bを並列させ、混色により白色光を生成するLED62が挙げられる。 Further, the type of the LED 62 is not particularly limited. As an example, as shown in the front view of the LED 62 in FIG. 12A, one red light emitting (R) LED chip 63R, two green light emitting (G) LED chips 63G, and one blue light emitting (B). LED62 which parallelizes LED chip 63B and produces | generates white light by color mixing is mentioned.
 なお、別例としては、図12BのLED62の正面図に示すように、青色発光のLEDチップ63Bと、青色光を受けて黄色発光する蛍光体54と、を組み合わせたLED62が挙げられる(なお、以降の説明では、明記しない限り、混色により白色光を生成するLED62が使用されているものとする)。 As another example, as shown in the front view of the LED 62 in FIG. 12B, there is an LED 62 in which a blue light emitting LED chip 63B and a phosphor 54 that receives blue light and emits yellow light are combined (note that In the following description, it is assumed that the LED 62 that generates white light by color mixture is used unless otherwise specified).
 また、このようなLEDモジュールMJは、LED62毎に発光制御できる。そのため、液晶表示パネル89の表示領域を部分的に照射可能になる。そこで、図11は、各LED62で制御可能な照明領域SAを破線で示す。つまり、点線領域の1区画(マトリックス状に並ぶ複数の区画の1つ)が、1つのLED62によって制御可能な照明領域SAとなる。 Further, such LED module MJ can control light emission for each LED 62. Therefore, the display area of the liquid crystal display panel 89 can be partially irradiated. Therefore, FIG. 11 shows the illumination area SA that can be controlled by each LED 62 by broken lines. That is, one section of the dotted line area (one of a plurality of sections arranged in a matrix) becomes an illumination area SA that can be controlled by one LED 62.
 サーミスタ65は、LED62の温度を測定するための温度センサであり、4個のLED62に対して1個の割合で、実装基板61に実装される(詳説すると、実装基板61にて、4個のLED62で囲まれる領域の中心付近に、サーミスタ65は実装される)。 The thermistor 65 is a temperature sensor for measuring the temperature of the LEDs 62, and is mounted on the mounting board 61 at a ratio of one to the four LEDs 62 (specifically, the mounting board 61 has four The thermistor 65 is mounted near the center of the area surrounded by the LED 62).
 フォトセンサ66は、LED62の輝度を測定するための測光センサであり、サーミスタ65同様に、4個のLED62に対して1個の割合で、実装基板61に実装される。 The photo sensor 66 is a photometric sensor for measuring the luminance of the LED 62, and is mounted on the mounting substrate 61 at a rate of one for the four LEDs 62, similarly to the thermistor 65.
 反射シート71は、LED62、サーミスタ65、およびフォトセンサ66を避けて、実装基板61の実装面に貼り付けられた反射部材であり、LED62の発光側と同じ側に、反射面を有する。これにより、LED62からの光の一部が、実装基板61の実装面に向かって進行してきたとしても、その光は反射シート71の反射面によって反射することになる。 The reflection sheet 71 is a reflection member that is affixed to the mounting surface of the mounting substrate 61, avoiding the LED 62, the thermistor 65, and the photo sensor 66, and has a reflection surface on the same side as the light emitting side of the LED 62. Thereby, even if a part of the light from the LED 62 travels toward the mounting surface of the mounting substrate 61, the light is reflected by the reflecting surface of the reflecting sheet 71.
 拡散シート72は、マトリックス状に並ぶLED62を覆うように位置し、複数のLED62からの光で形成される面状光を拡散させて、液晶表示パネル89全域に光をいきわたらせている{なお、この拡散シート72とプリズムシート73・74とを、まとめて光学シート群(72~74)とも称する}。 The diffusion sheet 72 is positioned so as to cover the LEDs 62 arranged in a matrix, diffuses the planar light formed by the light from the plurality of LEDs 62, and spreads the light throughout the liquid crystal display panel 89. The diffusion sheet 72 and the prism sheets 73 and 74 are collectively referred to as an optical sheet group (72 to 74)}.
 プリズムシート73・74は、例えばシート面内にプリズム形状を有し、光の放射特性を偏向させる光学シートであり、拡散シート72を覆うように位置する。そのため、このプリズムシート73・74は、拡散シート72から進行してくる光を集光させ、輝度を向上させる。なお、プリズムシート73とプリズムシート74とによって集光される各光の発散方向は交差する関係にある。 The prism sheets 73 and 74 are, for example, optical sheets that have a prism shape in the sheet surface and deflect light emission characteristics, and are positioned so as to cover the diffusion sheet 72. Therefore, the prism sheets 73 and 74 collect the light traveling from the diffusion sheet 72 and improve the luminance. In addition, the divergence direction of each light condensed by the prism sheet 73 and the prism sheet 74 has a relation of crossing.
 そして、以上のようなバックライトユニット79では、LED62からの面状光は光学シート群(72~74)を通過することで輝度を高めたバックライト光になって出射する。そして、このバックライト光が、液晶表示パネル89に到達し、そのバックライト光によって、液晶表示パネル89は画像を表示させる。 In the backlight unit 79 as described above, the planar light from the LED 62 passes through the optical sheet group (72 to 74) and is emitted as backlight light with increased brightness. The backlight light reaches the liquid crystal display panel 89, and the liquid crystal display panel 89 displays an image by the backlight light.
 次に、ハウジングHGについて説明する。ハウジングHGである表ハウジングHG1と裏ハウジングHG2とは、以上のバックライトユニット79およびそのバックライトユニット79を覆う液晶表示パネル89を挟み込みつつ固定する(なお、固定の仕方は、特に限定されるものではない)。すなわち、表ハウジングHG1は、バックライトユニット79および液晶表示パネル89を裏ハウジングHG2とともに挟み込み、これにより、液晶表示装置99が完成する。 Next, the housing HG will be described. The front housing HG1 and the back housing HG2, which are the housings HG, are fixed while sandwiching the above-described backlight unit 79 and the liquid crystal display panel 89 covering the backlight unit 79 (how to fix are particularly limited) is not). That is, the front housing HG1 sandwiches the backlight unit 79 and the liquid crystal display panel 89 together with the back housing HG2, thereby completing the liquid crystal display device 99.
 なお、裏ハウジングHG2は、LEDモジュールMJ、反射シート71、拡散シート72、プリズムシート73・74を、この順で積み重ねつつ収容するが、この積み重なる方向をZ方向と称する(なお、X方向、Y方向、Z方向は、互いに直交する関係であると望ましい)。 The back housing HG2 accommodates the LED module MJ, the reflection sheet 71, the diffusion sheet 72, and the prism sheets 73 and 74 while being stacked in this order, and this stacking direction is referred to as the Z direction (note that the X direction, Y The direction and the Z direction are preferably orthogonal to each other.
 ところで、以上のようにマトリックス状に複数のLED62を配置するバックライトユニット79は、LED62毎に出射光を制御できるために、液晶表示パネル89の表示領域を部分的に照射できる。そのため、このようなバックライトユニット79は、アクティブエリア方式のバックライトユニット79ともいえる。 Incidentally, as described above, the backlight unit 79 in which the plurality of LEDs 62 are arranged in a matrix can control the emitted light for each LED 62, and therefore can partially irradiate the display area of the liquid crystal display panel 89. Therefore, it can be said that such a backlight unit 79 is also an active area type backlight unit 79.
 そこで、このようなアクティブエリア方式のバックライトユニット79による発光制御について説明する。図1は、液晶表示装置99に含まれる種々部材を示すブロック図である(なお、この図1に示されるLED62は、複数有るLED62のうちの1つである)。 Therefore, light emission control by such an active area type backlight unit 79 will be described. FIG. 1 is a block diagram showing various members included in the liquid crystal display device 99 (note that the LED 62 shown in FIG. 1 is one of a plurality of LEDs 62).
 この図1に示すように、液晶表示装置99は、受信部51、映像信号処理部52、液晶表示パネルコントローラ31、メインマイクロコンピュータ(メインマイコン)12、LEDコントローラ13、サーミスタ65、フォトセンサ66、LEDドライバー55、およびLED62を含む。 As shown in FIG. 1, the liquid crystal display device 99 includes a receiving unit 51, a video signal processing unit 52, a liquid crystal display panel controller 31, a main microcomputer (main microcomputer) 12, an LED controller 13, a thermistor 65, a photo sensor 66, An LED driver 55 and an LED 62 are included.
 受信部51は、例えば、テレビの放送信号(白色矢印参照)のような映像音声信号を受信する(なお、以降では、映像音声信号に含まれる映像信号について主体的に説明していく)。そして、受信部51は、受信した映像信号を映像信号処理部52に送信する。 The receiving unit 51 receives a video / audio signal such as a television broadcast signal (see white arrow), for example (hereinafter, the video signal included in the video / audio signal will be mainly described). Then, the reception unit 51 transmits the received video signal to the video signal processing unit 52.
 なお、映像信号処理部52に送信される映像信号を、便宜上、基礎映像信号(画像データ)とし、この基礎映像信号に含まれる色映像信号のうち、赤色を示す信号を基礎赤色映像信号FRS、緑色を示す信号を基礎緑色映像信号FGS、青色を示す信号を基礎青色映像信号FBS、とする。 For convenience, the video signal transmitted to the video signal processing unit 52 is a basic video signal (image data), and among the color video signals included in the basic video signal, a signal indicating red is a basic red video signal FRS, A green signal is a basic green video signal FGS, and a blue signal is a basic blue video signal FBS.
 映像信号処理部52は、受信した基礎映像信号(画像データ)に基づいて、加工映像信号を生成する。そして、映像信号処理部52は、加工映像信号を、液晶表示パネルコントローラ31とLEDコントローラ13とに送信する。 The video signal processing unit 52 generates a processed video signal based on the received basic video signal (image data). Then, the video signal processing unit 52 transmits the processed video signal to the liquid crystal display panel controller 31 and the LED controller 13.
 なお、加工映像信号は、例えば、基礎色映像信号(基礎赤色映像信号FRS、基礎緑色映像信号FGS、基礎青色映像信号FBS等)を加工処理した加工色映像信号(加工赤色映像信号RS、加工緑色映像信号GS、加工青色映像信号BS)、および加工色映像信号に関する同期信号(クロック信号CLK、垂直同期信号VS、水平同期信号HS等)である。 The processed video signal is, for example, a processed color video signal (processed red video signal RS, processed green) obtained by processing a basic color video signal (basic red video signal FRS, basic green video signal FGS, basic blue video signal FBS, etc.). A video signal GS, a processed blue video signal BS), and synchronization signals (clock signal CLK, vertical synchronization signal VS, horizontal synchronization signal HS, etc.) relating to the processed color video signal.
 ただし、液晶表示パネルコントローラ31に送信される加工色映像信号と、LEDコントローラ13に送信される加工色映像信号とは異なる。そこで、これらの加工色映像信号を区別すべく、液晶表示パネルコントローラ31に送信される加工色映像信号(パネル制御データ)を、パネル用加工赤色映像信号RSp、パネル用加工緑色映像信号GSp、パネル用加工青色映像信号BSpとする。 However, the processed color video signal transmitted to the liquid crystal display panel controller 31 and the processed color video signal transmitted to the LED controller 13 are different. Therefore, in order to distinguish these processed color video signals, the processed color video signals (panel control data) transmitted to the liquid crystal display panel controller 31 are processed panel red video signal RSp, processed green video signal GSp for panel, and panel. The processed blue video signal BSp.
 一方で、LEDコントローラ13に送信される加工色映像信号(光源制御データ)を、光源用赤色映像信号RSd、光源用緑色映像信号GSd、光源用青色映像信号BSdとする{なお、詳説すると、光源用色映像信号(RSd、GSd、BSd)は補間等の処理をされた後に、LEDドライバー55に送信されるが、それについての詳細は後述する}。 On the other hand, the processed color video signal (light source control data) transmitted to the LED controller 13 is a red video signal RSd for a light source, a green video signal GSd for a light source, and a blue video signal BSd for a light source. The color video signals (RSd, GSd, BSd) are subjected to processing such as interpolation and then transmitted to the LED driver 55, details of which will be described later.
 液晶表示パネルコントローラ31は、パネル用加工赤色映像信号RSp、パネル用加工緑色映像信号GSp、パネル用加工青色映像信号BSpと、これら信号に関する同期信号とに基づいて、液晶表示パネル89の画素を制御する。 The liquid crystal display panel controller 31 controls the pixels of the liquid crystal display panel 89 based on the processed red video signal RSp for panel, the processed green video signal GSp for panel, the processed blue video signal BSp for panel, and the synchronization signal related to these signals. To do.
 なお、液晶表示パネルコントローラ31は、連続するある1画面(1フレーム)と次の1画面との間に、別の画面を挿入する機能、いわゆる補間フレームの生成機能を有する。このような機能を有するために、液晶表示パネルコントローラ31は、図1に示すように、パネル用フレームメモリ32、動き検出部33、パネル用倍速変換部34、パネル画像調整部35、およびゲートドライバー/ソースドライバー制御部(G/S制御部)36を含む。 The liquid crystal display panel controller 31 has a function of inserting another screen between one continuous screen (one frame) and the next screen, that is, a so-called interpolation frame generation function. In order to have such a function, the liquid crystal display panel controller 31 includes a panel frame memory 32, a motion detection unit 33, a panel double speed conversion unit 34, a panel image adjustment unit 35, and a gate driver as shown in FIG. A source driver control unit (G / S control unit) 36 is included.
 パネル用フレームメモリ32は、パネル用加工色映像信号(RSp、GSp、BSp)の1フレーム分を記憶する{なお、フレームに対応するパネル用加工色映像信号を、フレーム画像信号(フレーム画像データ)と称する}。そして、フレーム周波数が例えば60Hzの場合、パネル用フレームメモリ32は、記憶されたパネル用加工色映像信号を、毎秒60フレーム分だけ読み出し、1フレーム期間(1回の垂直走査期間)だけ遅延させて、動き検出部33およびパネル用倍速変換部34に送信する。 The panel frame memory 32 stores one frame of the panel processed color video signal (RSp, GSp, BSp) {Note that the panel processed color video signal corresponding to the frame is converted into a frame image signal (frame image data). }. When the frame frequency is, for example, 60 Hz, the panel frame memory 32 reads the stored panel processed color video signal by 60 frames per second and delays it by one frame period (one vertical scanning period). And transmitted to the motion detection unit 33 and the panel double speed conversion unit 34.
 動き検出部33は、パネル用フレームメモリ32を介さずに送信されてきたパネル用加工色映像信号と、パネル用フレームメモリ32を介して送信されてきた遅延したパネル用加工色映像信号とを用い、ブロックマッチング法によって、動きベクトルを示す信号(動きベクトル信号MS)を検出する。そして、動き検出部33は、その検出された動きベクトル信号MSをパネル用倍速変換部34に送信する。 The motion detector 33 uses the panel processed color video signal transmitted without passing through the panel frame memory 32 and the delayed panel processed color video signal transmitted through the panel frame memory 32. Then, a signal indicating a motion vector (motion vector signal MS) is detected by the block matching method. Then, the motion detection unit 33 transmits the detected motion vector signal MS to the panel double speed conversion unit 34.
 パネル用倍速変換部34は、パネル用フレームメモリ32から送信されるパネル用加工色映像信号を倍速させるとともに、動き検出部33から送信される動きベクトル信号MSを倍速させる。そして、これらの倍速された信号{パネル用加工色映像信号(RSp、GSp、BSp)を倍速した信号、および、動きベクトル信号MSを倍速した信号}は、パネル用倍速変換部34によって、パネル画像調整部35に送信される。 The panel double speed converter 34 doubles the panel processed color video signal transmitted from the panel frame memory 32 and doubles the motion vector signal MS transmitted from the motion detector 33. Then, these double-speed signals {the signal obtained by doubling the processed color video signal for panel (RSp, GSp, BSp) and the signal obtained by doubling the motion vector signal MS} are supplied to the panel image by the panel double-speed converter 34. It is transmitted to the adjustment unit 35.
 パネル画像調整部35は、動きベクトル信号MSに基づき、パネル用加工色映像信号(RSp、GSp、BSp)から補間フレーム画像の信号(補間画像)を生成するとともに、その補間フレーム画像信号を、通常のフレーム画像信号同士の間に挿入する。そして、これらの信号(補間フレーム画像信号、および、補間フレーム画像信号ではない通常のフレーム画像信号)を、パネル画像調整部35は、液晶表示パネル89のソースドライバーに送信する。 The panel image adjustment unit 35 generates an interpolated frame image signal (interpolated image) from the panel processed color video signal (RSp, GSp, BSp) based on the motion vector signal MS, and the interpolated frame image signal is Between the frame image signals. Then, the panel image adjustment unit 35 transmits these signals (interpolation frame image signal and normal frame image signal that is not the interpolation frame image signal) to the source driver of the liquid crystal display panel 89.
 例えば、図2に示すように、時系列に並んでいる、あるフレーム画像信号を“Ap’”とし、その次のフレーム画像信号を“Bp’”とすると、それらのフレーム画像信号Ap’とフレーム画像信号Bp’とを用いて、パネル画像調整部35は、フレーム画像信号Ap’とフレーム信号Bp’との間に挿入する補間フレーム画像信号を生成する(なお、このような補間フレーム画像信号は、フレーム画像信号Ap’とフレーム画像信号Bp’とに基づくことから、補間フレーム画像信号Ap’Bp’とされる)。 For example, as shown in FIG. 2, when a certain frame image signal arranged in time series is “Ap ′” and the next frame image signal is “Bp ′”, those frame image signals Ap ′ and frames Using the image signal Bp ′, the panel image adjustment unit 35 generates an interpolated frame image signal to be inserted between the frame image signal Ap ′ and the frame signal Bp ′. Based on the frame image signal Ap ′ and the frame image signal Bp ′, the interpolated frame image signal Ap′Bp ′ is used).
 そして、パネル画像調整部35は、これらフレーム画像信号(第1フレーム画像データ)Ap’、補間フレーム画像信号(補間フレーム画像データ)Ap’Bp’、およびフレーム画像信号(第2フレーム画像データ)Bp’をソースドライバーに送信する。 The panel image adjustment unit 35 then sends the frame image signal (first frame image data) Ap ′, the interpolation frame image signal (interpolation frame image data) Ap′Bp ′, and the frame image signal (second frame image data) Bp. Send 'to the source driver.
 なお、フレーム画像信号Ap’、補間フレーム画像信号Ap’Bp’、およびフレーム画像信号Bp’等に対応するパネル用加工色映像信号(RSp、GSp、BSp)にも、「 ’」が付される{パネル用加工色映像信号(RSp’、GSp’、BSp’)}。すなわち、液晶表示パネルコントローラ31によって、処理を受けた信号であるパネル用加工色映像信号(RSp、GSp、BSp)には「 ’」が付される。 It should be noted that the panel processed color video signals (RSp, GSp, BSp) corresponding to the frame image signal Ap ′, the interpolated frame image signal Ap′Bp ′, the frame image signal Bp ′, and the like are also given “「 ”. {Processed color video signal for panel (RSp ', GSp', BSp ')}. That is, the panel processed color video signal (RSp, GSp, BSp), which is a signal that has been processed by the liquid crystal display panel controller 31, is assigned with “′”.
 また、基礎色映像信号(FRS、FGS、FBS)から生成されるフレーム画像信号は、フレーム画像信号Ap’、フレーム画像信号Bp’…に対応させて、フレーム画像信号A、B、C・・・表現してもよい。そこで、図1のブロック図を簡易化させ、種々のフレーム画像信号を模式化して併記すると、図3のように示される。 The frame image signals generated from the basic color video signals (FRS, FGS, FBS) correspond to the frame image signals Ap ′, the frame image signals Bp ′,..., And the frame image signals A, B, C. It may be expressed. Therefore, when the block diagram of FIG. 1 is simplified and various frame image signals are schematically shown together, they are shown in FIG.
 ゲートドライバー/ソースドライバー制御部(G/S制御部)36は、図1に示すように、映像信号処理部52から送信されてくるクロック信号CLK、垂直同期信号VS、水平同期信号HS等から、ゲートドライバーおよびソースドライバーを制御するタイミング信号を生成する(なお、ゲートドライバーに対応するタイミング信号を“G-TS”、ソースドライバーに対応するタイミング信号を“S-TS”とする)。 As shown in FIG. 1, the gate driver / source driver control unit (G / S control unit) 36 receives a clock signal CLK, a vertical synchronization signal VS, a horizontal synchronization signal HS, and the like transmitted from the video signal processing unit 52. A timing signal for controlling the gate driver and the source driver is generated (a timing signal corresponding to the gate driver is “G-TS”, and a timing signal corresponding to the source driver is “S-TS”).
 つまり、液晶表示パネルコントローラ31は、図1に示されるように、パネル用加工色映像信号(RSp’、GSp’、BSp’)およびタイミング信号(G-TS・S-TS)を生成し、それらの信号によって、液晶表示パネル89を制御する。 That is, as shown in FIG. 1, the liquid crystal display panel controller 31 generates panel processed color video signals (RSp ′, GSp ′, BSp ′) and timing signals (G-TS / S-TS). The liquid crystal display panel 89 is controlled by this signal.
 メインマイクロコンピュータ(メインマイコン)12は、バックライトユニット79、液晶表示パネル89等に関する種々の制御を統括するものである。なお、メインマイコン12と、これにより制御されるLEDコントローラ13とは、まとめて、マイコンユニット11と称される場合がある。 The main microcomputer (main microcomputer) 12 controls various controls related to the backlight unit 79, the liquid crystal display panel 89, and the like. The main microcomputer 12 and the LED controller 13 controlled thereby are sometimes collectively referred to as a microcomputer unit 11.
 LEDコントローラ13は、メインマイコン12の管理(制御)の下、LEDドライバー55に種々の制御信号を送信するものである。そして、このLEDコントローラ13は、LEDコントローラ設定用レジスタ群14、LEDドライバー制御部15、シリアルパラレル変換部(S/P変換部)41、パルス幅変調部42、フレーム光調整ユニット21、色温度補正部43、内蔵メモリ44、個体バラツキ補正部45、温度補正部46、経時劣化補正部47、および、パラレルシリアル変換部(P/S変換部)48を含む。 The LED controller 13 transmits various control signals to the LED driver 55 under the management (control) of the main microcomputer 12. The LED controller 13 includes an LED controller setting register group 14, an LED driver control unit 15, a serial / parallel conversion unit (S / P conversion unit) 41, a pulse width modulation unit 42, a frame light adjustment unit 21, and a color temperature correction. Unit 43, built-in memory 44, individual variation correction unit 45, temperature correction unit 46, aging deterioration correction unit 47, and parallel-serial conversion unit (P / S conversion unit) 48.
 LEDコントローラ設定用レジスタ群14は、メインマイコン12からの種々制御信号を一時的に保持する。いいかえると、メインマイコン12は、一旦、LEDコントローラ設定用レジスタ群14を介して、LEDコントローラ13内部の種々部材を制御する。 The LED controller setting register group 14 temporarily holds various control signals from the main microcomputer 12. In other words, the main microcomputer 12 once controls various members inside the LED controller 13 via the LED controller setting register group 14.
 LEDドライバー制御部15は、映像信号処理部52からの光源用色映像信号(RSd、GSd、BSd)を、S/P変換部41に送信する。また、LEDドライバー制御部15は、映像信号処理部52からの同期信号(クロック信号CLK、垂直同期信号VS、水平同期信号HS等)で、LED62(詳説すると、LEDチップ63)の点灯タイミング信号L-TSを生成して、LEDドライバー55に送信する。 The LED driver control unit 15 transmits the light source color video signals (RSd, GSd, BSd) from the video signal processing unit 52 to the S / P conversion unit 41. The LED driver control unit 15 is a synchronization signal (clock signal CLK, vertical synchronization signal VS, horizontal synchronization signal HS, etc.) from the video signal processing unit 52, and a lighting timing signal L of the LED 62 (specifically, the LED chip 63). Generate a TS and send it to the LED driver 55.
 S/P変換部41は、LEDドライバー制御部15からシリアルデータで送信されてくる光源用色映像信号をパラレルデータに変換する。 The S / P converter 41 converts the light source color video signal transmitted as serial data from the LED driver controller 15 into parallel data.
 パルス幅変調部42は、パルス幅変調(Pulse Width Modulation;PWM)方式で、光源用色映像信号に基づいて、LED62の発光時間を調整する。また、このようなパルス幅変調に使用される信号値をPWM信号(PWM値)と称する。なお、パルス幅変調方式とは、周知であり、例えば、1秒を128の区間に分け、各区間にて点灯させる時間幅を変化させる方式のことである(例えば、12bit=0~4095のPWM値で発光時間を変化させる)。 The pulse width modulation unit 42 adjusts the light emission time of the LED 62 based on the color video signal for the light source by a pulse width modulation (PWM) method. A signal value used for such pulse width modulation is referred to as a PWM signal (PWM value). The pulse width modulation method is well known, for example, a method in which 1 second is divided into 128 sections, and the time width for lighting in each section is changed (for example, PWM of 12 bits = 0 to 4095). The light emission time is changed by the value).
 フレーム光調整ユニット21は、光源用色映像信号(RSd、GSd、BSd)を、パネル用加工色映像信号(RSp、GSp、BSp)から生成されるフレーム画像信号および補間フレーム画像信号に対応させた信号に調整する。なお、詳細については、後述する。 The frame light adjustment unit 21 associates the light source color video signal (RSd, GSd, BSd) with the frame image signal and the interpolated frame image signal generated from the panel processed color video signal (RSp, GSp, BSp). Adjust to signal. Details will be described later.
 色温度調整部43は、LED62から発せられる白色光の色温度を所望の値に近づけるための補正を行う。例えば、色温度調整部43は、各LEDチップ(63R・63G・63B)の温度とその温度に応じた各LEDチップの輝度とから成るデータテーブルを用いて、白色光を構成する各光(赤色光・緑色光・青色光)の輝度比率から、白色光の輝度を算出する(なお、各LEDチップ63の温度は、サーミスタ65で測定される)。 The color temperature adjusting unit 43 performs correction for bringing the color temperature of the white light emitted from the LED 62 close to a desired value. For example, the color temperature adjusting unit 43 uses each data (red) constituting white light by using a data table including the temperature of each LED chip (63R, 63G, 63B) and the luminance of each LED chip corresponding to the temperature. The brightness of white light is calculated from the brightness ratio of light, green light, and blue light (the temperature of each LED chip 63 is measured by the thermistor 65).
 そして、色温度調整部43は、算出された白色光の輝度を、所望の白色光の輝度に近づけるように調整する。具体的には、色温度調整部43は、各LED62に流れる電流値を変化させる。ただし、色温度調整部43による色温度調整の仕方は、上述のものに限定されるわけではなく、他の色温度調整の仕方であってもかまわない。なお、各LEDチップ(63R・63G・63B)の温度と各LEDチップの輝度とから成るデータテーブルは、内蔵メモリ44に記憶されている。 Then, the color temperature adjusting unit 43 adjusts the calculated brightness of the white light so as to approach the brightness of the desired white light. Specifically, the color temperature adjusting unit 43 changes the value of the current flowing through each LED 62. However, the method of adjusting the color temperature by the color temperature adjusting unit 43 is not limited to the above-described method, and other methods of adjusting the color temperature may be used. A data table composed of the temperature of each LED chip (63R, 63G, 63B) and the brightness of each LED chip is stored in the built-in memory 44.
 内蔵メモリ44は、例えば、上述したような色温度調整に要するデータテーブルを記憶する。また、内蔵メモリ44は、色温度調整部43の後段の個体バラツキ補正部45、温度補正部46、および経時劣化補正部47で要するルックアップテーブル(LUT)も記憶する。 The built-in memory 44 stores, for example, a data table required for color temperature adjustment as described above. The built-in memory 44 also stores a look-up table (LUT) required by the individual variation correction unit 45, the temperature correction unit 46, and the aging deterioration correction unit 47 subsequent to the color temperature adjustment unit 43.
 個体バラツキ補正部45は、LED62の個別の性能を予め確認しておき、個体誤差を無くすための補正を行う。例えば、予め、特定のPWM値で、LED62の輝度を測定する。詳説すると、各LED62における赤色発光のLEDチップ63R、緑色発光のLEDチップ63G、青色発光のLEDチップ63B、が点灯され、所望の色味を有する白色光を生成可能なように、各LEDチップ63に対応する特定のPWM値が補正される。 The individual variation correction unit 45 confirms the individual performance of the LED 62 in advance and performs correction to eliminate the individual error. For example, the brightness of the LED 62 is measured in advance with a specific PWM value. More specifically, the LED chips 63R, 63G, and 63B that emit red light in each LED 62 are turned on, and each LED chip 63 can generate white light having a desired color. The specific PWM value corresponding to is corrected.
 次に、複数のLED62が点灯され、面状光としての輝度ムラを無くすように、各LED62(LEDチップ63R・63G・63B)に対応するPWM値がさらに補正される。これにより、複数有るLED62における個体差(輝度の個体バラツキ、ひいては面状光の輝度ムラ)が補正される。 Next, the plurality of LEDs 62 are turned on, and the PWM values corresponding to the respective LEDs 62 ( LED chips 63R, 63G, and 63B) are further corrected so as to eliminate luminance unevenness as planar light. Thereby, the individual difference (individual variation in luminance, and consequently luminance unevenness of the planar light) in the plurality of LEDs 62 is corrected.
 なお、このような補正処理の仕方は種々有るが、一般的なルックアップテーブル(LUT)を用いた補正処理が採用される。すなわち、個体バラツキ補正部45は、内蔵メモリ44に記憶されているLED62の個体バラツキ用のLUTで、補正処理を行う。 Although there are various methods for such correction processing, correction processing using a general lookup table (LUT) is employed. That is, the individual variation correction unit 45 performs correction processing using the LUT for individual variation of the LED 62 stored in the built-in memory 44.
 温度補正部46は、LED62の発光にともなう温度上昇に起因するLED62の輝度低下を考慮する補正を行う。例えば、温度補正部46は、1秒間に1回、サーミスタ65で、LED62(要は、LEDチップ63R・63G・63B)の温度データを取得し、その温度データに対応するLUTを内蔵メモリ44から取得し、面状光の輝度ムラを抑える補正処理(すなわち、LEDチップ63R・63G・63Bに対応するPWM値の変更)を行う。 The temperature correction unit 46 performs correction in consideration of a decrease in luminance of the LED 62 due to a temperature increase accompanying light emission of the LED 62. For example, the temperature correction unit 46 acquires the temperature data of the LED 62 (essentially, the LED chips 63R, 63G, and 63B) with the thermistor 65 once a second, and stores the LUT corresponding to the temperature data from the built-in memory 44. Acquisition is performed, and correction processing (that is, change of PWM values corresponding to the LED chips 63R, 63G, and 63B) that suppresses uneven luminance of the planar light is performed.
 経時劣化補正部47は、LED62の経時劣化に起因するLED62の輝度低下を考慮する補正を行う。例えば、経時劣化補正部47は、1年に1回、フォトセンサ66によるLED62(要は、LEDチップ63R・63G・63B)の輝度データを取得し、その輝度データに対応するLUTを内蔵メモリ44から取得し、面状光の輝度ムラを抑える補正処理(すなわち、LEDチップ63R・63G・63Bに対応するPWM値の変更)を行う。 The temporal deterioration correction unit 47 performs correction in consideration of a decrease in luminance of the LED 62 due to deterioration of the LED 62 over time. For example, the temporal deterioration correction unit 47 acquires the luminance data of the LEDs 62 (in short, LED chips 63R, 63G, and 63B) by the photosensor 66 once a year, and stores the LUT corresponding to the luminance data in the built-in memory 44. The correction processing (that is, the change of the PWM value corresponding to the LED chips 63R, 63G, and 63B) that suppresses the luminance unevenness of the planar light is performed.
 P/S変換部48は、パラレルデータで送信されてくる種々の補正処理を経た光源用色映像信号を、シリアルデータに変換する。 The P / S conversion unit 48 converts the color image signal for light source, which has been subjected to various correction processes transmitted as parallel data, into serial data.
 LEDドライバー55は、LEDコントローラ13からの信号(PWM信号、タイミング信号)に基づいて、LED62を点灯制御する。 The LED driver 55 controls the lighting of the LED 62 based on a signal (PWM signal, timing signal) from the LED controller 13.
 LED62は、上述したとおり、1個のLEDチップ63R、2個のLEDチップ63G、1個のLEDチップ63Bを含む。そして、これらのLEDチップ(発光チップ)53は、LEDドライバー55によって、パルス幅変調方式で点灯制御される。 As described above, the LED 62 includes one LED chip 63R, two LED chips 63G, and one LED chip 63B. These LED chips (light emitting chips) 53 are controlled to be turned on by the LED driver 55 in a pulse width modulation method.
 ここで、フレーム光調整ユニット21について、図1~図8を用いて詳説する。フレーム光調整ユニット21は、図1および図3に示すように、LED用フレームメモリ22、LED用倍速変換部23、およびLED光調整部24を含む(なお、図3に示される周波数60Hzは一例であって、これに限定されるものではない)。 Here, the frame light adjustment unit 21 will be described in detail with reference to FIGS. As shown in FIGS. 1 and 3, the frame light adjustment unit 21 includes an LED frame memory 22, an LED double speed conversion unit 23, and an LED light adjustment unit 24 (note that the frequency 60 Hz shown in FIG. 3 is an example) But not limited to this).
 LED用フレームメモリ22は、光源用色映像信号(RSd、GSd、BSd)の1フレーム分を記憶する{なお、フレームに対応する光源用色映像信号を、フレーム型LED制御信号と称する}。そして、フレーム周波数が、例えば60Hzの場合、LED用フレームメモリ22は、記憶された光源用色映像信号を、毎秒60フレーム分だけ読み出し、1フレーム期間(1回の垂直走査期間)だけ遅延させて、LED用倍速変換部23に送信する。 The LED frame memory 22 stores one frame of the light source color video signal (RSd, GSd, BSd) {note that the light source color video signal corresponding to the frame is referred to as a frame-type LED control signal}. When the frame frequency is, for example, 60 Hz, the LED frame memory 22 reads the stored light source color video signal for 60 frames per second and delays it by one frame period (one vertical scanning period). , To the LED double speed conversion unit 23.
 LED用倍速変換部23は、LED用フレームメモリ22を介さないことで、遅延していない光源用色映像信号(通常の光源用色映像信号)を倍速させるとともに、LED用フレームメモリ22から送信されてきた遅延した光源用色映像信号を倍速させる。そして、これらの倍速された信号(遅延されていないパネル用加工色映像信号を倍速した信号、および、遅延されたパネル用加工色映像信号を倍速した信号)は、LED用倍速変換部23によって、LED光調整部24に送信される。 The LED double speed conversion unit 23 does not go through the LED frame memory 22, and doubles the undelayed light source color video signal (normal light source color video signal) and is transmitted from the LED frame memory 22. Doubles the delayed color video signal for the light source. Then, these doubled signals (a signal obtained by doubling the non-delayed panel processed color video signal and a signal obtained by doubling the delayed panel processed color video signal) are converted by the LED double speed conversion unit 23. It is transmitted to the LED light adjusting unit 24.
 LED光調整部24は、送信されてくる倍速された2種類の信号を、液晶表示パネルコントローラ31で調整されたフレーム画像信号と補間フレーム画像信号とに対応させた信号に調整する。詳説すると、LED光調整部24は、通常のフレーム画像信号に対応する光源用色映像信号同士の間に、補間フレーム画像信号に対応する光源用色映像信号を挿入する(なお、通常のフレーム画像信号に対応する光源用色映像信号をフレーム型LED制御信号、補間フレーム画像信号に対応する光源用色映像信号を補間フレーム型LED制御信号と称する)。 The LED light adjustment unit 24 adjusts the two types of signals transmitted at double speed to signals corresponding to the frame image signal adjusted by the liquid crystal display panel controller 31 and the interpolated frame image signal. More specifically, the LED light adjusting unit 24 inserts the light source color video signal corresponding to the interpolation frame image signal between the light source color video signals corresponding to the normal frame image signal (in addition, the normal frame image The light source color video signal corresponding to the signal is referred to as a frame type LED control signal, and the light source color video signal corresponding to the interpolation frame image signal is referred to as an interpolation frame type LED control signal).
 例えば、フレーム画像信号Ap’に対応するフレーム型LED制御信号(フレーム型の光量調整データ、第1光量調整データ)を“Ad’”と、フレーム画像信号Bp’に対応するフレーム型LED制御信号(フレーム型の光量調整データ、第2光量調整データ)を“Bd’”とする。 For example, the frame type LED control signal (frame type light amount adjustment data, first light amount adjustment data) corresponding to the frame image signal Ap ′ is “Ad ′”, and the frame type LED control signal ( Frame type light amount adjustment data and second light amount adjustment data) are set to “Bd ′”.
 さらに、補間フレーム画像信号Ap’Bp’に対応する補間フレーム型LED制御信号(補間フレーム型の光量調整データ)を“Ad’Bd’”とする。そして、フレーム型LED制御信号Ad’、補間フレーム型LED制御信号Ad’Bd’、フレーム型LED制御信号Bd’等を図示したものが、図3である。 Furthermore, an interpolation frame type LED control signal (interpolation frame type light amount adjustment data) corresponding to the interpolation frame image signal Ap′Bp ′ is set to “Ad′Bd ′”. FIG. 3 shows the frame type LED control signal Ad ′, the interpolated frame type LED control signal Ad′Bd ′, the frame type LED control signal Bd ′, and the like.
 すなわち、LED光調整部24は、補間フレーム画像信号Ap’Bp’に対応するフレーム型LED制御信号Ad’Bd’を生成するとともに、その補間フレーム型LED制御信号Ad’Bd’を、フレーム型LED制御信号Ad’とフレーム型LED制御信号Bd’との間に挿入する。そして、これらの信号(補間フレーム型LED制御信号およびフレーム型LED制御信号)を、LED光調整部24は、色温度調整部43に送信する。 That is, the LED light adjusting unit 24 generates a frame type LED control signal Ad′Bd ′ corresponding to the interpolated frame image signal Ap′Bp ′, and converts the interpolated frame type LED control signal Ad′Bd ′ into the frame type LED. It is inserted between the control signal Ad ′ and the frame type LED control signal Bd ′. Then, the LED light adjustment unit 24 transmits these signals (interpolated frame type LED control signal and frame type LED control signal) to the color temperature adjustment unit 43.
 なお、図3および後述の図4に示すように、マイコンユニット11は、例えば、フレーム型LED制御信号Ad’をフレーム画像信号Ap’に同期させ、補間フレーム型LED制御信号Ad’Bd’を補間フレーム画像信号Ap’Bp’に同期させ、フレーム型LED制御信号Bd’をフレーム画像信号Bp’に同期させる。つまり、マイコンユニット11は、対応関係にあるフレーム型LED制御信号・補間フレーム型LED制御信号とフレーム画像信号・補間フレーム画像信号とを同期させる。 As shown in FIG. 3 and FIG. 4 described later, the microcomputer unit 11 synchronizes the frame type LED control signal Ad ′ with the frame image signal Ap ′, for example, and interpolates the interpolated frame type LED control signal Ad′Bd ′. The frame type LED control signal Bd ′ is synchronized with the frame image signal Bp ′ in synchronization with the frame image signal Ap′Bp ′. That is, the microcomputer unit 11 synchronizes the frame type LED control signal / interpolated frame type LED control signal and the frame image signal / interpolated frame image signal that are in a corresponding relationship.
 また、フレーム型LED制御信号Ad’、補間フレーム型LED制御信号Ad’Bd’、およびフレーム型LED制御信号Bd’等に対応する光源用色映像信号(RSd、GSd、BSd)にも、「 ’」が付される{光源用色映像信号(RSd’、GSd’、BSd’)}。すなわち、フレーム光調整ユニット21によって処理を受けた信号である光源用色映像信号(RSd、GSd、BSd)には「 ’」が付される(なお、このような処理後の光源用色映像信号も、光量調整データとも称される)。 In addition, the light source color video signals (RSd, GSd, BSd) corresponding to the frame type LED control signal Ad ′, the interpolated frame type LED control signal Ad′Bd ′, the frame type LED control signal Bd ′, etc. are also “ ] {Color image signal for light source (RSd ′, GSd ′, BSd ′)}. That is, a light source color video signal (RSd, GSd, BSd) that is a signal that has been processed by the frame light adjustment unit 21 is marked with “'” (note that the light source color video signal after such processing has been processed). Is also referred to as light intensity adjustment data).
 以上を総括すると、以下のとおりである。すなわち、メインマイコン12の管理下で、LEDコントローラ13のフレーム光調整ユニット21は、パネル用加工色映像信号(パネル制御データ)および光源用色映像信号(光源制御データ)の基となる基礎色映像信号(画像データ)から、処理を行うべく、光源用色映像信号(RSd、GSd、BSd)を受信する。 The above is summarized as follows. That is, under the control of the main microcomputer 12, the frame light adjustment unit 21 of the LED controller 13 is a basic color image that is the basis of the panel processed color video signal (panel control data) and the light source color video signal (light source control data). From the signal (image data), a color video signal for light source (RSd, GSd, BSd) is received for processing.
 そして、メインマイコン12の管理下で、LEDコントローラ13(すなわち、マイコンユニット11)は、パネル用加工色映像信号(RSp、GSp、BSp)に基づいて時系列に並ぶ2つのフレーム画像信号に対応させて、2つのフレーム型LED制御信号を生成する。さらに、LEDコントローラ13は、2つのフレーム画像信号に対する時系列的な中間である補間フレーム画像信号に対応する補間フレーム型LED制御信号を、2つのフレーム型LED制御信号から生成する。 Under the control of the main microcomputer 12, the LED controller 13 (that is, the microcomputer unit 11) corresponds to two frame image signals arranged in time series based on the processed color video signals (RSp, GSp, BSp) for the panel. Two frame-type LED control signals are generated. Further, the LED controller 13 generates an interpolated frame type LED control signal corresponding to the interpolated frame image signal that is a time series intermediate between the two frame type image signals from the two frame type LED control signals.
 具体的な一例を挙げると、メインマイコン12の管理下で、LEDコントローラ13は、パネル用加工色映像信号(RSp、GSp、BSp)に基づいて時系列に並ぶ2つのフレーム画像信号Ap’および、フレーム画像信号Bp’に対応させて、2つのフレーム型LED制御信号Ad’および、フレーム型LED制御信号Bd’を生成する。 As a specific example, under the control of the main microcomputer 12, the LED controller 13 has two frame image signals Ap ′ arranged in time series based on the processed color video signals for panels (RSp, GSp, BSp), and In correspondence with the frame image signal Bp ′, two frame type LED control signals Ad ′ and a frame type LED control signal Bd ′ are generated.
 さらに、LEDコントローラ13は、2つのフレーム画像信号Ap’および、フレーム画像信号Bp’に対する時系列的な中間である補間フレーム画像信号Ap’Bp’に対応する補間フレーム型LED制御信号Ad’Bd’を、2つのフレーム型LED制御信号Ad’および、フレーム型LED制御信号Bd’から生成する。 Further, the LED controller 13 interpolates the two frame image signals Ap ′ and the interpolated frame type LED control signal Ad′Bd ′ corresponding to the interpolated frame image signal Ap′Bp ′ that is a time series intermediate to the frame image signal Bp ′. Is generated from the two frame-type LED control signals Ad ′ and the frame-type LED control signal Bd ′.
 そして、一例として挙げられたフレーム型LED制御信号Ad’、補間フレーム型LED制御信号Ad’Bd’、および、フレーム型LED制御信号Bd’等と、フレーム画像信号Ap’、補間フレーム画像信号Ap’Bp’、および、フレーム画像信号Bp’等と、を対応させた説明図が図4になる{図4は、横軸を時間軸(秒;s)にして、時系列に各種信号を並べた説明図である}。 The frame-type LED control signal Ad ′, the interpolated frame-type LED control signal Ad′Bd ′, the frame-type LED control signal Bd ′, and the like given as an example, the frame image signal Ap ′, and the interpolated frame image signal Ap ′. FIG. 4 is an explanatory diagram in which Bp ′ and the frame image signal Bp ′ are associated with each other. FIG. 4 shows various signals arranged in time series with the horizontal axis as the time axis (seconds; s). It is an explanatory diagram}.
 通常、時系列に並ぶフレーム画像信号Ap’、Bp’、Cp’、Dp’…となるパネル用加工色映像信号(RSp’、GSp’、BSp’)は、基がパネル用加工色映像信号(RSp、GSp、BSp)であり、それらパネル用加工色映像信号(RSp、GSp、BSp)は、基礎色映像信号(FRS、FGS、FBS)を構成する。 Normally, the processed color video signals for panels (RSp ′, GSp ′, BSp ′) that become the frame image signals Ap ′, Bp ′, Cp ′, Dp ′,. RSp, GSp, BSp), and these processed color video signals for panels (RSp, GSp, BSp) constitute basic color video signals (FRS, FGS, FBS).
 一方で、時系列に並ぶフレーム型LED制御信号Ad’、Bd’、Cd’、Dd’…となる光源用色映像信号(RSd’、GSd’、BSd’)は、基が光源用色映像信号(RSd、GSd、BSd)であり、それら光源用色映像信号(RSd、GSd、BSd)も、基礎色映像信号(FRS、FGS、FBS)を構成する。 On the other hand, the light source color video signals (RSd ′, GSd ′, BSd ′) that become the frame-type LED control signals Ad ′, Bd ′, Cd ′, Dd ′. (RSd, GSd, BSd), and the color video signals for light sources (RSd, GSd, BSd) also constitute the basic color video signals (FRS, FGS, FBS).
 このように構成基を同じにした信号同士の関連性は高いといえ、それに起因して、時系列に並ぶフレーム画像信号Ap’、Bp’、Cp’、Dp’…と、時系列に並ぶフレーム型LED制御信号Ad’、Bd’、Cd’、Dd’…とは、相性(マッチング)がよい。相性とは、例えば、フレーム画像信号が液晶表示パネル89に表示された場合に、映像ボケ、動画障害(フリッカ感)等を、極力生じさせないような光(バックライト光)になるように、フレーム型LED制御信号が機能することである。 Thus, it can be said that the signals having the same configuration group are highly related to each other, and as a result, the frame image signals Ap ′, Bp ′, Cp ′, Dp ′,. The type LED control signals Ad ′, Bd ′, Cd ′, Dd ′... Have good compatibility (matching). The compatibility refers to, for example, a frame so that, when a frame image signal is displayed on the liquid crystal display panel 89, light (backlight light) is generated so as not to cause image blurring, moving image failure (flicker feeling), etc. as much as possible. Type LED control signal is functioning.
 図4をみればわかるように、フレーム画像信号Ap’、Bp’、Cp’、Dp’…と、フレーム型LED制御信号Ad’、Bd’、Cd’、Dd’…とは、時間的に同タイミングである(同期している)。したがって、フレーム画像信号Ap’、Bp’、Cp’、Dp’…が液晶表示パネル89に表示される場合、その表示画像は、フレーム画像信号Ap’、Bp’、Cp’、Dp’…に相性の良いフレーム型LED制御信号Ad’、Bd’、Cd’、Dd’…に基づく光を受けるので、比較的高品質な画像になる。 As can be seen from FIG. 4, the frame image signals Ap ′, Bp ′, Cp ′, Dp ′... And the frame type LED control signals Ad ′, Bd ′, Cd ′, Dd ′. Timing (synchronized). Therefore, when the frame image signals Ap ′, Bp ′, Cp ′, Dp ′... Are displayed on the liquid crystal display panel 89, the display images are compatible with the frame image signals Ap ′, Bp ′, Cp ′, Dp ′. Since the light based on the good frame type LED control signals Ad ′, Bd ′, Cd ′, Dd ′... Is received, a relatively high quality image is obtained.
 また、補間フレーム画像信号Ap’Bp’、Bp’Cp’、Cp’Dp’…に、時間的に同タイミングな補間フレーム型LED制御信号は、補間フレーム型LED制御信号Ad’Bd’、Bd’Cd’、Cd’Dd’…である。これらの補間フレーム型LED制御信号Ad’Bd’、Bd’Cd’、Cd’Dd’…は、フレーム型LED制御信号Ad’、Bd’、Cd’、Dd’…そのものではなく、フレーム型LED制御信号Ad’、Bd’、Cd’、Dd’…に基づいて生成された信号である。 Also, the interpolation frame type LED control signals Ad'Bd ', Bd' are the same as the interpolation frame type LED control signals Ad'Bd ', Bd' in the same timing in time with the interpolation frame image signals Ap'Bp ', Bp'Cp', Cp'Dp '. Cd ′, Cd′Dd ′... These interpolated frame type LED control signals Ad′Bd ′, Bd′Cd ′, Cd′Dd ′... Are not frame type LED control signals Ad ′, Bd ′, Cd ′, Dd ′. It is a signal generated based on the signals Ad ′, Bd ′, Cd ′, Dd ′.
 そして、補間フレーム画像信号の生成と同様に、時系列に並ぶフレーム型LED制御信号の一方と他方とに基づいて、補間フレーム型LED制御信号は生成される。例えば、補間フレーム画像信号Ap’Bp’は、フレーム画像信号Ap’とフレーム画像信号Bp’とに基づいて生成されるが、これと同様に、補間フレーム型LED制御信号Ad’Bd’は、フレーム型LED制御信号Ad’とフレーム型LED制御信号Bd’とに基づいて生成される。 Then, similarly to the generation of the interpolated frame image signal, the interpolated frame type LED control signal is generated based on one and the other of the frame type LED control signals arranged in time series. For example, the interpolated frame image signal Ap′Bp ′ is generated based on the frame image signal Ap ′ and the frame image signal Bp ′. Similarly, the interpolated frame type LED control signal Ad′Bd ′ Type LED control signal Ad ′ and frame type LED control signal Bd ′.
 つまり、フレーム画像信号Ap’とフレーム画像信号Bp’とに基づく補間フレーム画像信号Ap’Bp’は、フレーム画像信号Ap’およびフレーム画像信号Bp’に相性の良いフレーム型LED制御信号Ad’およびフレーム型LED制御信号Bd’に基づく補間フレーム型LED制御信号Ad’Bd’に対応する。 That is, the interpolated frame image signal Ap′Bp ′ based on the frame image signal Ap ′ and the frame image signal Bp ′ is a frame type LED control signal Ad ′ and a frame that are compatible with the frame image signal Ap ′ and the frame image signal Bp ′. This corresponds to the interpolated frame type LED control signal Ad′Bd ′ based on the type LED control signal Bd ′.
 そのため、補間フレーム画像信号と、その補間フレーム信号に同タイミングで光るLED62を制御する補間フレーム型LED制御信号とは、関連性を有することになり、それに起因して、補間フレーム画像信号と、補間フレーム型LED制御信号との相性も比較的高くなる。その結果、補間フレーム画像信号が液晶表示パネル89に表示される場合、その表示画像も、フレーム画像信号が液晶表示パネル89に表示される場合同様、比較的高品質な画像になる。 For this reason, the interpolated frame image signal and the interpolated frame type LED control signal for controlling the LED 62 that shines at the same timing as the interpolated frame signal are related to each other. The compatibility with the frame type LED control signal is also relatively high. As a result, when the interpolated frame image signal is displayed on the liquid crystal display panel 89, the display image is also a relatively high quality image as in the case where the frame image signal is displayed on the liquid crystal display panel 89.
 要は、フレーム画像信号に対して一般的に行われる“補間(前後のフレーム画像信号から、それら両フレーム画像信号の間に適したフレーム画像信号を予想かつ作成すること)”が、フレーム型LED制御信号に対しても行われる。 In short, “interpolation (predicting and creating a suitable frame image signal between these two frame image signals from the preceding and following frame image signals)” that is generally performed on the frame image signal is a frame-type LED. This is also performed for the control signal.
 詳説すると、前後のフレーム型LED制御信号から、それら両フレーム型LED制御信号の間に適したフレーム型LED制御信号を予想かつ作成することが行われる。そして、フレーム画像信号とフレーム型LED制御信号との相性が良いので、補間フレーム画像信号と補間フレーム型LED制御信号との相性も良くなる。 More specifically, a frame-type LED control signal suitable between the two frame-type LED control signals is predicted and created from the preceding and following frame-type LED control signals. Since the compatibility between the frame image signal and the frame type LED control signal is good, the compatibility between the interpolated frame image signal and the interpolated frame type LED control signal is also improved.
 すなわち、液晶表示パネル89に表示される画像信号(フレーム画像信号および補間フレーム画像信号)と、バックライトユニット79のバックライト光を制御するLED制御信号(フレーム型LED制御信号および補間フレーム型LED制御信号)との間では、相性の良い対応関係が成立する。その結果、このような“補間”という処理だけで、液晶表示パネル89に表示される画像の品質が向上する。 That is, an image signal (frame image signal and interpolated frame image signal) displayed on the liquid crystal display panel 89 and an LED control signal (frame type LED control signal and interpolated frame type LED control) for controlling the backlight light of the backlight unit 79. Signal), a compatible relationship is established. As a result, the quality of the image displayed on the liquid crystal display panel 89 is improved only by such processing of “interpolation”.
 なお、補間フレーム型LED制御信号を生成するための処理では、2つのフレーム型LED制御信号の一方と他方との寄与率(例えば、α、β、γ…)が適宜変わってよい。図5は、図4の説明図に、補間フレーム型LED制御信号に対するフレーム型LED制御信号の寄与率α、β、γ…(ただし、α、β、γ…は1以下の自然数)を併記した説明図である。 In the process for generating the interpolated frame type LED control signal, the contribution ratio (for example, α, β, γ...) Between one of the two frame type LED control signals and the other may be changed as appropriate. FIG. 5 shows the contribution ratio α, β, γ (where α, β, γ... Are natural numbers of 1 or less) of the frame type LED control signal with respect to the interpolated frame type LED control signal in the explanatory diagram of FIG. It is explanatory drawing.
 この図5に示すように、例えば、補間フレーム型LED制御信号Ad’Bd’は、フレーム型LED制御信号Ad’の(α×100)%と、フレーム型LED制御信号Bd’の((1-α)×100)%と、の和で構成される。そして、この寄与率αは、補間フレーム画像信号Ap’Bp’に応じて適宜変更される。 As shown in FIG. 5, for example, the interpolation frame type LED control signal Ad′Bd ′ includes (α × 100)% of the frame type LED control signal Ad ′ and ((1− α) × 100)%. The contribution rate α is appropriately changed according to the interpolated frame image signal Ap′Bp ′.
 例えば、補間フレーム画像信号Ap’Bp’が、フレーム画像信号Bp’よりもフレーム画像信号Ap’の寄与を大きく受けて生成されている場合、補間フレーム型LED制御信号Ad’Bd’も、フレーム型LED制御信号Bp’よりもフレーム型LED制御信号Ap’の寄与を大きく受けて生成されるとよい(すなわち、α>(1-α)の関係が成立するとよい)。 For example, when the interpolated frame image signal Ap′Bp ′ is generated with a larger contribution of the frame image signal Ap ′ than the frame image signal Bp ′, the interpolated frame type LED control signal Ad′Bd ′ is also the frame type. It is preferable that the frame-type LED control signal Ap ′ is generated more greatly than the LED control signal Bp ′ (that is, the relationship α> (1-α) is satisfied).
 このようになっていると、補間フレーム画像信号に相性の良い補間フレーム型LED制御信号が生成される。そのため、このような補間フレーム型LED制御信号に対応する補間フレーム画像信号に基づく液晶表示パネル89の表示画像は、相性の良い補間フレーム型LED制御信号に基づくバックライトユニット光を受けることになり、高品質になる。 If this is the case, an interpolation frame type LED control signal compatible with the interpolation frame image signal is generated. Therefore, the display image of the liquid crystal display panel 89 based on the interpolated frame image signal corresponding to such an interpolated frame type LED control signal will receive the backlight unit light based on the compatible interpolated frame type LED control signal, Become high quality.
 なお、寄与率(例えば、α、β、γ…)は、LEDチップ63R・63G・63B毎に、適宜変わっていてもよい。このようになっていれば、補間フレーム画像信号に、より一層相性の良い補間フレーム型LED制御信号が生成されるためである。ただし、これに限らず、図12Bに示すようなLED63の場合、LED63毎に、寄与率が適宜変わっていてもよい。 The contribution ratio (for example, α, β, γ...) May be appropriately changed for each of the LED chips 63R, 63G, and 63B. This is because an interpolated frame type LED control signal that is more compatible with the interpolated frame image signal is generated. However, the present invention is not limited to this, and in the case of the LED 63 as shown in FIG. 12B, the contribution ratio may be appropriately changed for each LED 63.
 ところで、フレーム周波数の一例として、NTSC(National Television System Committee)方式での60Hzを例に挙げたが、これに限定されるものではない。例えば、フレーム周波数は、PAL(Phase Alternating Line)方式での50Hzであってもかまわない。 By the way, as an example of the frame frequency, 60 Hz in the NTSC (National Television System Committee) system is taken as an example, but the frame frequency is not limited to this. For example, the frame frequency may be 50 Hz in the PAL (Phase Alternate Line) method.
 また、図3に示すように、液晶表示パネルコントローラ31におけるパネル用倍速変換部34、および、LEDコントローラ13(詳説すると、フレーム光調整ユニット21)におけるLED用倍速変換部23は、信号の2倍速(60Hz→120Hz)を図っていたが、これに限定されるものではない。例えば、両倍速部34・23は、信号の4倍速(60Hz→240Hz)やそれ以上の倍速を図ってもよい。 As shown in FIG. 3, the panel double speed converter 34 in the liquid crystal display panel controller 31 and the LED double speed converter 23 in the LED controller 13 (specifically, the frame light adjustment unit 21) are double the signal speed. Although (60 Hz → 120 Hz) was intended, the present invention is not limited to this. For example, the double speed units 34 and 23 may achieve a signal quadruple speed (60 Hz → 240 Hz) or a double speed higher than that.
 例えば、4倍速の場合、図6に示すように、時系列に並ぶ2つのフレーム画像信号の間には、3つの補間フレーム画像信号が並ぶ(例えば、フレーム画像信号Ap’とフレーム画像信号Bp’との間には、補間フレーム画像信号Ap’Bp’[1]、補間フレーム画像信号Ap’Bp’[2]、補間フレーム画像信号Ap’Bp’[3]、が並ぶ)。 For example, in the case of quadruple speed, as shown in FIG. 6, three interpolated frame image signals are arranged between two frame image signals arranged in time series (for example, frame image signal Ap ′ and frame image signal Bp ′). Are interpolated frame image signal Ap′Bp ′ [1], interpolated frame image signal Ap′Bp ′ [2], and interpolated frame image signal Ap′Bp ′ [3]).
 同様に、時系列に並ぶ2つのフレーム型LED制御信号の間には、3つの補間フレーム型LED制御信号が並ぶ(例えば、フレーム型LED制御信号Ad’とフレーム型LED制御信号Bd’との間には、補間フレーム型LED制御信号Ad’Bd’[1]、補間フレーム型LED制御信号Ad’Bd’[2]、補間フレーム型LED制御信号Ad’Bd’[3]、が並ぶ)。 Similarly, three interpolated frame type LED control signals are arranged between two frame type LED control signals arranged in time series (for example, between the frame type LED control signal Ad ′ and the frame type LED control signal Bd ′). Are interpolated frame type LED control signal Ad′Bd ′ [1], interpolated frame type LED control signal Ad′Bd ′ [2], and interpolated frame type LED control signal Ad′Bd ′ [3].
 そして、同タイミングの補間フレーム画像信号と補間フレーム型LED制御信号とは対応する(例えば、補間フレーム画像信号Ap’Bp’[1]と補間フレーム型LED制御信号Ad’Bd’[1]とが対応し、補間フレーム画像信号Ap’Bp’[2]と補間フレーム型LED制御信号Ad’Bd’[2]とが対応し、補間フレーム画像信号Ap’Bp’[3]と補間フレーム型LED制御信号Ad’Bd’[3]とが対応する)。 The interpolated frame image signal and the interpolated frame type LED control signal at the same timing correspond to each other (for example, the interpolated frame type image control signal Ap′Bp ′ [1] and the interpolated frame type LED control signal Ad′Bd ′ [1] Correspondingly, the interpolated frame image signal Ap′Bp ′ [2] and the interpolated frame type LED control signal Ad′Bd ′ [2] correspond to the interpolated frame image signal Ap′Bp ′ [3] and the interpolated frame type LED control. Signal Ad'Bd '[3]).
 つまり、このようにフレーム周波数が4倍速されたとしても、液晶表示パネル89に表示される画像信号(フレーム画像信号および補間フレーム画像信号)と、バックライトユニット79からの光を制御するLED制御信号(フレーム型LED制御信号および補間フレーム型LED制御信号)との間では、相性の良い対応関係が成立する。その結果、液晶表示パネル89に表示される画像の品質が向上する。 That is, even when the frame frequency is quadrupled in this way, the image signal (frame image signal and interpolated frame image signal) displayed on the liquid crystal display panel 89 and the LED control signal for controlling the light from the backlight unit 79. A compatible relationship is established between the frame type LED control signal and the interpolated frame type LED control signal. As a result, the quality of the image displayed on the liquid crystal display panel 89 is improved.
 なお、図7に示すように、2つのフレーム型LED制御信号の一方と他方との寄与率(例えば、α1~α3…、β1~β3…は1以下の自然数}が適宜変わってよい。なぜなら、このような寄与率が適宜変更されると、補間フレーム画像信号に、一層相性の良い補間フレーム型LED制御信号が生成されるためである。 7, the contribution ratio (for example, α1 to α3..., Β1 to β3... Is a natural number of 1 or less) between one and the other of the two frame-type LED control signals may be changed as appropriate. This is because when such a contribution rate is appropriately changed, an interpolated frame type LED control signal having better compatibility is generated in the interpolated frame image signal.
 ところで、アクティブエリア方式のバックライトユニット79の場合、液晶表示パネル89の解像度(画素数)よりもバックライトユニット79の解像度(照射領域SAの個数)が低いことに起因する動画フリッカと呼ばれる現象が生じやすい。この動画フリッカとは、液晶表示パネル89に映る表示画像が複数の照明領域SAに重なっている場合に、各々の照明領域SAの輝度が急激に変動すると、その輝度変動が目立つという現象である。 Incidentally, in the case of the active area type backlight unit 79, a phenomenon called moving image flicker is caused by the fact that the resolution (number of irradiation areas SA) of the backlight unit 79 is lower than the resolution (number of pixels) of the liquid crystal display panel 89. Prone to occur. This moving image flicker is a phenomenon in which, when a display image displayed on the liquid crystal display panel 89 overlaps with a plurality of illumination areas SA, if the brightness of each illumination area SA varies abruptly, the brightness fluctuation becomes conspicuous.
 しかしながら、補間フレーム型LED制御信号を生成するバックライトユニット79は、動画フリッカを抑制する。例えば、図8に示すように、フレーム型LED制御信号Ad’、Bd’、Cd’、Dd’…に対応する輝度のレベルをLa、Lb、Lc、Ld…、とし、それら輝度La~Ld…の大小関係を、La>Lb>Lc>Ld…とする。 However, the backlight unit 79 that generates the interpolated frame type LED control signal suppresses moving image flicker. For example, as shown in FIG. 8, the luminance levels corresponding to the frame type LED control signals Ad ′, Bd ′, Cd ′, Dd ′... Are La, Lb, Lc, Ld. Is set to La> Lb> Lc> Ld...
 そして、LaとLbとの差、LbとLcとの差、LcとLdとの差が、輝度フリッカを引き起こす程度の差であったとする。すると、例えば、一点鎖線で示すような輝度変動を引き起こすLED制御信号だと、輝度フリッカが生じることになる。 Suppose that the difference between La and Lb, the difference between Lb and Lc, and the difference between Lc and Ld are such differences that cause luminance flicker. Then, for example, if the LED control signal causes a luminance fluctuation as indicated by a one-dot chain line, luminance flicker occurs.
 しかしながら、実線で示すような輝度変動を引き起こすLED制御信号(フレーム型LED制御信号・補間フレーム型LED制御信号)の場合、輝度変動が比較的緩やかである。なぜなら、補間フレーム型LED制御信号Ad’Bd’に対応する輝度Labは、輝度Laよりも低いものの輝度Lbよりも高く、補間フレーム型LED制御信号Bd’Cd’に対応する輝度Lbcは、輝度Lbよりも低いものの輝度Lcよりも高く、補間フレーム型LED制御信号Cd’Dd’に対応する輝度Lcdは、輝度Lcよりも低いものの輝度Ldよりも高いためである。 However, in the case of an LED control signal (frame type LED control signal / interpolated frame type LED control signal) that causes luminance fluctuations as indicated by the solid line, the luminance fluctuations are relatively gradual. This is because the luminance Lab corresponding to the interpolated frame type LED control signal Ad′Bd ′ is lower than the luminance La but higher than the luminance Lb, and the luminance Lbc corresponding to the interpolated frame type LED control signal Bd′Cd ′ is equal to the luminance Lb. This is because the luminance Lcd corresponding to the interpolation frame type LED control signal Cd′Dd ′ is lower than the luminance Lc but higher than the luminance Ld.
 そして、このように輝度の変動が細やかになると(輝度変動の解像度が比較的高くなると)、異なる輝度同士の境目が目立たなくなる。そのため、補間フレーム型LED制御信号を生成するバックライトユニット79は、補間フレーム型LED制御信号を生成できないバックライトユニット79に比べて、輝度変動を抑制したバックライト光を供給しやすい。そして、このバックライトユニット79からの光を受ける液晶表示パネル89には、動画フリッカが生じにくくなる。 Then, when the luminance variation becomes fine (the luminance variation resolution becomes relatively high), the boundary between the different luminances becomes inconspicuous. Therefore, the backlight unit 79 that generates the interpolated frame type LED control signal is easier to supply the backlight light that suppresses the luminance variation than the backlight unit 79 that cannot generate the interpolated frame type LED control signal. The liquid crystal display panel 89 that receives light from the backlight unit 79 is less likely to cause moving image flicker.
 ところで、図1に示される受信部51、映像信号処理部52、液晶表示パネルコントローラ31、およびマイコンユニット11(メインマイコン12およびLEDコントローラ13)のうち、一部または全部の部材は、液晶表示パネル89に搭載されていても、バックライトユニット79に搭載されていてもよい。要は、これら部材は、液晶表示装置99に搭載されていればよい。ただし、上述してきた輝度補正制御を、バックライトユニット79単体で行う場合、少なくとも受信部51、映像信号処理部52、およびマイコンユニット11は、バックライトユニット79に搭載される。 By the way, some or all of the receiving unit 51, video signal processing unit 52, liquid crystal display panel controller 31, and microcomputer unit 11 (main microcomputer 12 and LED controller 13) shown in FIG. It may be mounted on the backlight unit 79. In short, these members may be mounted on the liquid crystal display device 99. However, when the brightness correction control described above is performed by the backlight unit 79 alone, at least the receiving unit 51, the video signal processing unit 52, and the microcomputer unit 11 are mounted on the backlight unit 79.
 また、マイコンユニット11におけるLEDコントローラ13(詳説すると、フレーム光調整ユニット21)が、補間フレーム型LED制御信号を生成させる場合、光源用色映像信号(RSd、GSd、BSd)を用いる。この信号は60Hzの信号であり、特別な処理を施されていないので、LEDコントローラ13にかかる制御負担は比較的軽い。 Further, when the LED controller 13 (more specifically, the frame light adjustment unit 21) in the microcomputer unit 11 generates the interpolated frame type LED control signal, the light source color video signal (RSd, GSd, BSd) is used. Since this signal is a 60 Hz signal and is not subjected to special processing, the control burden on the LED controller 13 is relatively light.
 しかしながら、LEDコントローラ13に送信され、フレーム光調整ユニット21にて処理する信号が、例えば、液晶表示パネルコントローラ31にて処理されたパネル用加工色映像信号(RSp’、GSp’、BSp’)のように、複雑な処理を経た信号である場合、LEDコントローラ13の制御負担は重くならざるを得ない。その上、回路構成も複雑になる。 However, the signal transmitted to the LED controller 13 and processed by the frame light adjustment unit 21 is, for example, a panel processed color video signal (RSp ′, GSp ′, BSp ′) processed by the liquid crystal display panel controller 31. Thus, in the case of a signal that has undergone complicated processing, the control burden on the LED controller 13 must be heavy. In addition, the circuit configuration is complicated.
 しかしながら、図1に示すように、バックライトユニット79(ひいては、液晶表示装置99)に搭載される回路構成では、映像信号処理部52にて分けられた信号であるパネル用加工色映像信号(RSp、GSp、BSp)に対しては、液晶表示パネルコントローラ31が処理し、光源用色映像信号(RSd、GSd、BSd)に対しては、LEDコントローラ13が処理する。 However, as shown in FIG. 1, in the circuit configuration mounted on the backlight unit 79 (and thus the liquid crystal display device 99), the processed color video signal (RSp) for the panel, which is a signal divided by the video signal processing unit 52, is used. , GSp, BSp) is processed by the liquid crystal display panel controller 31, and the light source color video signals (RSd, GSd, BSd) are processed by the LED controller 13.
 そのため、LEDコントローラ13(ひいては、マイコンユニット11)の制御負担は比較的軽くてすむ。その上、制御負担が軽いことから、マイコンユニット11となる種々回路(例えば、ASIC;Application Specific Integrated Circuit)のコストも下がる。また、回路構成自体も簡素化される。 Therefore, the control burden on the LED controller 13 (and thus the microcomputer unit 11) can be relatively light. In addition, since the control burden is light, the cost of various circuits (for example, ASIC; Application Specific Integrated Circuit) which becomes the microcomputer unit 11 is also reduced. In addition, the circuit configuration itself is simplified.
 [その他の実施の形態]
 ところで、本発明は上記の実施の形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能である。例えば、以下のようなバックライトユニット79(ひいては、液晶表示装置99)も考えられる。
[Other embodiments]
By the way, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, the following backlight unit 79 (and thus the liquid crystal display device 99) can be considered.
 図9Aに示すように、補間フレーム画像信号を生成するための処理では、時系列に並ぶ2つのフレーム画像信号の一方と他方との寄与率(例えば、δ、ε…)によって、種々の信号が生成される。すると、補間フレーム画像信号は、一方のフレーム画像信号の100%の寄与率(最高寄与率)によって、生成されることもある。 As shown in FIG. 9A, in the process for generating the interpolated frame image signal, various signals are generated depending on the contribution ratio (for example, δ, ε...) Between one of the two frame image signals arranged in time series and the other. Generated. Then, the interpolated frame image signal may be generated with a contribution rate (maximum contribution rate) of 100% of one frame image signal.
 例えば、補間フレーム画像信号Ap’Bp’が、δ=1とする寄与率(最高寄与率)によって生成される場合、図9Bに示すように、その補間フレーム画像信号Ap’Bp’(図9A参照)は、実質的には、フレーム画像信号Ap’と同じになる(補間フレーム画像信号Ap’Bp’=1×Ap’+(1-1)×Bp’=Ap’)。 For example, when the interpolated frame image signal Ap′Bp ′ is generated with a contribution rate (maximum contribution rate) of δ = 1, as shown in FIG. 9B, the interpolated frame image signal Ap′Bp ′ (see FIG. 9A). ) Is substantially the same as the frame image signal Ap ′ (interpolated frame image signal Ap′Bp ′ = 1 × Ap ′ + (1-1) × Bp ′ = Ap ′).
 このように、実質的に、補間フレーム画像信号が消失する場合、マイコンユニット11は、以下のようにして、補間フレーム型LED制御信号を生成する。すなわち、マイコンユニット11は、100%の寄与率となった一方のフレーム画像信号に対応するフレーム型LED制御信号の寄与率を100%(最高寄与率)にして、補間フレーム型LED制御信号を生成する。 Thus, when the interpolation frame image signal substantially disappears, the microcomputer unit 11 generates the interpolation frame type LED control signal as follows. That is, the microcomputer unit 11 generates an interpolation frame type LED control signal by setting the contribution rate of the frame type LED control signal corresponding to one frame image signal having a contribution rate of 100% to 100% (maximum contribution rate). To do.
 例えば、補間フレーム画像信号Ap’Bp’が、実質的には、フレーム画像信号Ap’と同じになっている場合、フレーム型LED制御信号Ad’とフレーム型LED制御信号Bd’との寄与によって生成される補間フレーム型LED制御信号Ad’Bd’は、フレーム画像信号Ap’に対応するフレーム型LED制御信号Ad’の100%の寄与率(α=1)で、生成される。すると、補間フレーム型LED制御信号Ad’Bd’(図9B参照)は、図9Cに示すように、実質的には、フレーム型LED制御信号Ad’と同じになる(補間フレーム型LED制御信号Ad’Bd’=1×Ad’+(1-1)×Bd’=Ad’)。 For example, when the interpolated frame image signal Ap'Bp 'is substantially the same as the frame image signal Ap', it is generated by the contribution of the frame type LED control signal Ad 'and the frame type LED control signal Bd'. The interpolated frame type LED control signal Ad′Bd ′ is generated at a contribution rate (α = 1) of 100% of the frame type LED control signal Ad ′ corresponding to the frame image signal Ap ′. Then, the interpolation frame type LED control signal Ad′Bd ′ (see FIG. 9B) is substantially the same as the frame type LED control signal Ad ′ as shown in FIG. 9C (interpolation frame type LED control signal Ad). 'Bd' = 1 × Ad ′ + (1-1) × Bd ′ = Ad ′).
 つまり、液晶表示パネルコントローラ31が、実質的に補間フレーム画像信号を生成せず、フレーム画像信号を繰り返す場合、マイコンユニット11(詳説すると、LEDコントローラ13のパネル光調整ユニット21)も、補間フレーム型LED制御信号を生成せず、フレーム型LED制御信号を繰り返す。 That is, when the liquid crystal display panel controller 31 does not substantially generate the interpolation frame image signal and repeats the frame image signal, the microcomputer unit 11 (specifically, the panel light adjustment unit 21 of the LED controller 13) is also an interpolation frame type. The frame type LED control signal is repeated without generating the LED control signal.
 そのため、例えば、図9Cに示すように、各フレーム画像信号Ap’、Ap’、Bp’、Bp’、Cp’…と、各フレーム型LED制御信号Ad’、Ad’、Bd’、Bd’、Cd’…とは、時系列的に同タイミングとなり、かつ、相性の良い対応関係が成立する。したがって、フレーム画像信号が液晶表示パネル89に表示される場合、その表示画像が比較的高品質な画像になる。 Therefore, for example, as shown in FIG. 9C, each frame image signal Ap ′, Ap ′, Bp ′, Bp ′, Cp ′... And each frame type LED control signal Ad ′, Ad ′, Bd ′, Bd ′, Cd ′... Has the same timing in time series and has a compatible relationship. Therefore, when the frame image signal is displayed on the liquid crystal display panel 89, the display image becomes a relatively high quality image.
 ところで、以上では、いわゆる直下型のバックライトユニット79を例挙げて説明してきた。しかし、これに限定されるものではない。例えば、図10に示すように、くさび形の導光片77を敷き詰めて形成されるタンデム型の導光板77grを搭載するバックライトユニット(タンデム方式バックライトユニット)69であってもよい。 In the above description, the so-called direct-type backlight unit 79 has been described as an example. However, it is not limited to this. For example, as shown in FIG. 10, a backlight unit (tandem backlight unit) 69 on which a tandem light guide plate 77gr formed by spreading wedge-shaped light guide pieces 77 may be used.
 また、以上では、受信部51がテレビ放送信号のような映像音声信号を受信し、その信号における映像信号を、映像信号処理部52が処理していた。そのため、このような液晶表示装置99を搭載する受信装置は、テレビ放送受信装置(いわゆる液晶テレビジョン)といえる。しかし、液晶表示装置99が処理する映像信号は、テレビ放送に限定されるものではない。例えば、映画等のコンテンツ録画した記録媒体に含まれる映像信号でも、インターネットを介して送信される映像信号であってもかまわない。 In the above description, the receiving unit 51 receives a video / audio signal such as a television broadcast signal, and the video signal processing unit 52 processes the video signal in the received signal. Therefore, it can be said that a receiving device equipped with such a liquid crystal display device 99 is a television broadcast receiving device (so-called liquid crystal television). However, the video signal processed by the liquid crystal display device 99 is not limited to television broadcasting. For example, it may be a video signal contained in a recording medium on which content such as a movie is recorded, or a video signal transmitted via the Internet.
 また、マイコンユニット11による輝度補正処理を含む種々の補正処理は、データ生成プログラムで実現される。そして、このデータ生成プログラムは、コンピュータにて実行可能なプログラムであり、コンピュータに読み取り可能な記録媒体に記録されてもよい。なぜなら、記録媒体に記録されたプログラムは、持ち運び自在になるためである。 Further, various correction processes including the luminance correction process by the microcomputer unit 11 are realized by a data generation program. The data generation program is a computer-executable program and may be recorded on a computer-readable recording medium. This is because the program recorded on the recording medium becomes portable.
 なお、この記録媒体としては、例えば分離される磁気テープやカセットテープ等のテープ系、磁気ディスクやCD-ROM等の光ディスクのディスク系、ICカード(メモリカードを含む)や光カード等のカード系、あるいはフラッシュメモリ等による半導体メモリ系が挙げられる。 Examples of the recording medium include a tape system such as a separated magnetic tape and a cassette tape, a disk system of an optical disk such as a magnetic disk and a CD-ROM, a card system such as an IC card (including a memory card) and an optical card. Or a semiconductor memory system such as a flash memory.
 また、マイコンユニット11は、通信ネットワークからの通信でデータ生成プログラムを取得してもよい。なお、通信ネットワークとしては、有線無線を問わず、インターネット、赤外線通等が挙げられる。 Further, the microcomputer unit 11 may acquire the data generation program by communication from the communication network. The communication network includes the Internet, infrared communication, etc. regardless of wired wireless.
    11    マイコンユニット(制御ユニット)
    12    メインマイコン(制御ユニットの一部)
    13    LEDコントローラ(制御ユニットの一部)
    14    LEDコントローラ用レジスタ群(制御ユニットの一
          部)
    15    LEDドライバー制御部(制御ユニットの一部)
    21    フレーム光調整ユニット(制御ユニットの一部)
    22    LED用フレームメモリ(制御ユニットの一部)
    23    LED用倍速変換部(制御ユニットの一部)
    24    LED光調整部(制御ユニットの一部)
    31    液晶表示パネルコントローラ
    32    パネル用フレームメモリ
    33    動き検出部
    34    パネル用倍速変換部
    35    パネル用画像調整部
    36    G/S制御部
    51    受信部
    52    映像信号処理部
    55    LEDドライバー
    MJ    LEDモジュール
    62    LED(光源)
    63    LEDチップ(発光チップ)
    65    サーミスタ(温度測定部)
    66    フォトセンサ
    79    バックライトユニット(照明装置)
    89    液晶表示パネル(表示パネル)
    99    液晶表示装置(表示装置)
11 Microcomputer unit (control unit)
12 Main microcomputer (part of control unit)
13 LED controller (part of control unit)
14 LED controller registers (part of control unit)
15 LED driver controller (part of control unit)
21 Frame light adjustment unit (part of control unit)
22 LED frame memory (part of control unit)
23 LED double speed converter (part of control unit)
24 LED light adjustment unit (part of control unit)
31 liquid crystal display panel controller 32 panel frame memory 33 motion detection unit 34 panel double speed conversion unit 35 panel image adjustment unit 36 G / S control unit 51 reception unit 52 video signal processing unit 55 LED driver MJ LED module 62 LED (light source) )
63 LED chip (light emitting chip)
65 Thermistor (temperature measurement unit)
66 Photosensor 79 Backlight unit (lighting device)
89 Liquid crystal display panel (display panel)
99 Liquid crystal display device (display device)

Claims (9)

  1.  光量調整データに応じて発光する複数の光源と、
     パネル制御データおよび光源制御データの基である画像データから、上記光源制御データに対して処理をすることで、上記光量調整データを生成する制御ユニットと、
    を含む照明装置にあって、
     上記制御ユニットは、
    上記パネル制御データに基づいて時系列に並ぶ2つのフレーム画像データに対応させて、2つのフレーム型の上記光量調整データを生成するとともに、
    2つの上記フレーム画像データに対する時系列的な中間である補間フレーム画像データに対応する補間フレーム型の上記光量調整データを、2つのフレーム型の上記光量調整データから生成する照明装置。
    A plurality of light sources that emit light according to the light amount adjustment data;
    A control unit that generates the light amount adjustment data by processing the light source control data from the image data that is the basis of the panel control data and the light source control data;
    Including a lighting device,
    The control unit is
    Based on the panel control data, corresponding to the two frame image data arranged in chronological order, the two frame-type light amount adjustment data are generated,
    An illumination device that generates the interpolated frame-type light amount adjustment data corresponding to the interpolated frame image data that is intermediate in time series with respect to the two frame image data from the two frame-type light amount adjustment data.
  2.  上記制御ユニットは、
    2つのフレーム型の上記光量調整データの一方と他方との寄与率を変えて、補間フレーム型の上記光量調整データを生成する請求項1に記載の照明装置。
    The control unit is
    The lighting device according to claim 1, wherein the light amount adjustment data of the interpolation frame type is generated by changing a contribution ratio between one of the two frame type light amount adjustment data and the other.
  3.  上記補間フレーム画像データが、時系列に並ぶ2つの上記フレーム画像データの一方と他方とにおいて、一方の最高寄与率によって生成されている場合、
     上記制御ユニットは、
    補間フレーム型の上記光量調整データを、一方の上記フレーム画像データに対応する一方の上記光量調整データの最高寄与率によって生成する請求項2に記載の照明装置。
    In the case where the interpolated frame image data is generated with one highest contribution rate in one and the other of the two frame image data arranged in time series,
    The control unit is
    The illumination device according to claim 2, wherein the light amount adjustment data of an interpolated frame type is generated based on a highest contribution ratio of one of the light amount adjustment data corresponding to one of the frame image data.
  4.  上記制御ユニットは、
    補間フレーム型の上記光量調整データを、単数または複数生成する請求項1~3のいずれか1項に記載の照明装置。
    The control unit is
    The illumination device according to any one of claims 1 to 3, wherein one or a plurality of interpolated frame type light amount adjustment data are generated.
  5.  請求項1~4のいずれか1項に記載の照明装置と、
     上記画像データに応じて画像表示する表示パネルと、
    を含む表示装置。
    The lighting device according to any one of claims 1 to 4,
    A display panel for displaying an image according to the image data;
    Display device.
  6.  上記画像データを、上記パネル制御データと上記光源制御データとに分ける映像信号処理部と、
     上記パネル制御データに対して処理をすることで、2つの上記フレーム画像データとして、時系列で並ぶ第1フレーム画像データおよび第2フレーム画像データを生成するとともに、上記第1フレーム画像データおよび上記第2フレーム画像データから補間フレーム画像データを生成する液晶表示パネルコントローラと、
    を含み、
     上記制御ユニットは、
    上記光源制御データに対して処理をすることで、時系列に並ぶ2つの上記のフレーム型の光量調整データとして、上記第1フレーム画像データに対応する第1光量調整データと、上記第2フレーム画像データに対応する第2光量調整データと、を生成し、
    上記補間フレーム型の光量調整データを、上記第1光量調整データと上記第2光量調整データとから生成する請求項5に記載の表示装置。
    A video signal processing unit for dividing the image data into the panel control data and the light source control data;
    By processing the panel control data, first frame image data and second frame image data arranged in time series are generated as the two frame image data, and the first frame image data and the first frame image data are generated. A liquid crystal display panel controller for generating interpolated frame image data from two-frame image data;
    Including
    The control unit is
    By processing the light source control data, the first light amount adjustment data corresponding to the first frame image data and the second frame image as two frame type light amount adjustment data arranged in time series. Second light amount adjustment data corresponding to the data,
    The display device according to claim 5, wherein the interpolated frame type light amount adjustment data is generated from the first light amount adjustment data and the second light amount adjustment data.
  7.  複数の光源の発光制御に要する光量調整データを、パネル制御データおよび光源制御データの基である画像データから、上記光源制御データに対して処理をすることで、上記光量調整データを生成するデータ生成方法にあって、
     上記パネル制御データに基づいて時系列に並ぶ2つのフレーム画像データに対応させて、2つのフレーム型の上記光量調整データを生成するとともに、
    2つの上記フレーム画像データに対する時系列的な中間である補間フレーム画像データに対応する補間フレーム型の上記光量調整データを、2つのフレーム型の上記光量調整データから生成するデータの生成方法。
    Data generation for generating the light amount adjustment data by processing the light amount adjustment data required for the light emission control of a plurality of light sources from the panel control data and the image data which is the basis of the light source control data, with respect to the light source control data In the way,
    Based on the panel control data, corresponding to the two frame image data arranged in chronological order, the two frame-type light amount adjustment data are generated,
    A data generation method for generating the interpolated frame type light amount adjustment data corresponding to the interpolated frame image data, which is a time-series intermediate between the two frame image data, from the two frame type light amount adjustment data.
  8.  光量調整データに応じて発光する複数の光源と、
     パネル制御データおよび光源制御データの基である画像データから、上記光源制御データに対して処理をすることで、上記光量調整データを生成する制御ユニットと、
    を含む照明装置での上記光量制御データのデータ生成プログラムにあって、
     上記パネル制御データに基づいて時系列に並ぶ2つのフレーム画像データに対応させて、2つのフレーム型の上記光量調整データを生成するとともに、
    2つの上記フレーム画像データに対する時系列的な中間である補間フレーム画像データに対応する補間フレーム型の上記光量調整データを、2つのフレーム型の上記光量調整データから生成するデータ生成プログラムを、上記制御ユニットに実行させるデータ生成プログラム。
    A plurality of light sources that emit light according to the light amount adjustment data;
    A control unit that generates the light amount adjustment data by processing the light source control data from the image data that is the basis of the panel control data and the light source control data;
    In the data generation program of the light quantity control data in the illumination device including
    Based on the panel control data, corresponding to the two frame image data arranged in chronological order, the two frame-type light amount adjustment data are generated,
    A data generation program that generates the interpolated frame type light amount adjustment data corresponding to the interpolated frame image data that is intermediate in time series with respect to the two frame image data from the two frame type light amount adjustment data, the control Data generation program to be executed by the unit.
  9.  請求項8に記載のデータ生成プログラムを記録しているコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium in which the data generation program according to claim 8 is recorded.
PCT/JP2009/068868 2009-02-25 2009-11-05 Illumination device, display device, data generation method, data generation program, and recording medium WO2010097987A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801550824A CN102292762A (en) 2009-02-25 2009-11-05 Illumination device, display device, data generation method, data generation program, and recording medium
US13/138,103 US20110267384A1 (en) 2009-02-25 2009-11-05 Illumination device, display device, data generation method, data generation program, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-041716 2009-02-25
JP2009041716 2009-02-25

Publications (1)

Publication Number Publication Date
WO2010097987A1 true WO2010097987A1 (en) 2010-09-02

Family

ID=42665208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068868 WO2010097987A1 (en) 2009-02-25 2009-11-05 Illumination device, display device, data generation method, data generation program, and recording medium

Country Status (3)

Country Link
US (1) US20110267384A1 (en)
CN (1) CN102292762A (en)
WO (1) WO2010097987A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118313A (en) * 2010-12-01 2012-06-21 Mitsumi Electric Co Ltd Luminance controller, display device with luminance controller, and illuminating device
WO2012165465A1 (en) * 2011-06-01 2012-12-06 シャープ株式会社 Liquid crystal display device
CN103957457A (en) * 2014-05-05 2014-07-30 福建星网视易信息系统有限公司 LED program play control device, system and method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5492583B2 (en) * 2010-01-29 2014-05-14 日立コンシューマエレクトロニクス株式会社 Video processing apparatus and video processing method
US20110197777A1 (en) * 2010-02-16 2011-08-18 Douglas Lowell Osterberg Variable print lithographic printing press
JP5782787B2 (en) * 2011-04-01 2015-09-24 ソニー株式会社 Display device and display method
JP2015092202A (en) * 2012-02-22 2015-05-14 シャープ株式会社 Display device and method of driving the same
US9804000B2 (en) * 2013-09-25 2017-10-31 Yun-Shan Chang Optical sensor array apparatus
US9804695B2 (en) * 2014-01-08 2017-10-31 Yun-Shan Chang Cursor control apparatus and method for the same
CN106455217B (en) * 2016-10-30 2017-11-14 深圳市裕明鑫科技有限公司 The control method and control system of high power wall washing lamp
CN111599318B (en) * 2020-05-29 2021-05-14 上海天马微电子有限公司 Display device and driving method thereof
CN112164374A (en) * 2020-11-05 2021-01-01 北京集创北方科技股份有限公司 Brightness adjusting method, brightness adjusting device, display panel and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008011476A (en) * 2006-06-30 2008-01-17 Toshiba Corp Frame interpolation apparatus and frame interpolation method
JP2008109528A (en) * 2006-10-27 2008-05-08 Sharp Corp Image display device and method, image processing device and method
JP2008160591A (en) * 2006-12-25 2008-07-10 Hitachi Ltd Television receiver and frame rate conversion method therefor
JP2008197394A (en) * 2007-02-13 2008-08-28 Sony Computer Entertainment Inc Image conversion apparatus and image conversion method
JP2008287118A (en) * 2007-05-18 2008-11-27 Semiconductor Energy Lab Co Ltd Liquid crystal display device and method for driving the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569388B2 (en) * 2005-05-31 2010-10-27 日本ビクター株式会社 Image display device
JP4231071B2 (en) * 2006-09-20 2009-02-25 株式会社東芝 Image display device, image display method, and image display program
KR101356248B1 (en) * 2010-02-19 2014-01-29 엘지디스플레이 주식회사 Image display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008011476A (en) * 2006-06-30 2008-01-17 Toshiba Corp Frame interpolation apparatus and frame interpolation method
JP2008109528A (en) * 2006-10-27 2008-05-08 Sharp Corp Image display device and method, image processing device and method
JP2008160591A (en) * 2006-12-25 2008-07-10 Hitachi Ltd Television receiver and frame rate conversion method therefor
JP2008197394A (en) * 2007-02-13 2008-08-28 Sony Computer Entertainment Inc Image conversion apparatus and image conversion method
JP2008287118A (en) * 2007-05-18 2008-11-27 Semiconductor Energy Lab Co Ltd Liquid crystal display device and method for driving the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118313A (en) * 2010-12-01 2012-06-21 Mitsumi Electric Co Ltd Luminance controller, display device with luminance controller, and illuminating device
WO2012165465A1 (en) * 2011-06-01 2012-12-06 シャープ株式会社 Liquid crystal display device
CN103957457A (en) * 2014-05-05 2014-07-30 福建星网视易信息系统有限公司 LED program play control device, system and method
CN103957457B (en) * 2014-05-05 2017-11-03 福建星网视易信息系统有限公司 LED programs broadcast control device, system and method

Also Published As

Publication number Publication date
US20110267384A1 (en) 2011-11-03
CN102292762A (en) 2011-12-21

Similar Documents

Publication Publication Date Title
WO2010097987A1 (en) Illumination device, display device, data generation method, data generation program, and recording medium
US20120086684A1 (en) Liquid Crystal Display Device And Light Source Control Method
JP4574057B2 (en) Display device
US7548030B2 (en) Color control for dynamic scanning backlight
JP4011104B2 (en) Liquid crystal display
US20120306942A1 (en) Illumination device, display device, data generation method, data generation program and recording medium
US8519937B2 (en) Digitally modulated image projection system
US20120086628A1 (en) Liquid crystal display device and light source control method
US20100066713A1 (en) Image display
WO2011001719A1 (en) Liquid crystal display device and light source control method
JP2009237510A (en) Liquid crystal display device
US20080204394A1 (en) Image display apparatus and method of adjusting brightness thereof
JP5957289B2 (en) Display device
WO2010092713A1 (en) Illumination device, display device, data generation method, data generation program, and recording medium
US20100225670A1 (en) Display device and method of providing illumination thereto
US20050062698A1 (en) Liquid crystal display apparatus and driving method thereof
JP5307834B2 (en) Backlight unit, liquid crystal display device, data generation method, data generation program, and recording medium
US11120760B2 (en) Liquid crystal display device
WO2012090809A1 (en) Display device and drive method for same
JP2007163520A (en) Display panel and display device
US20100061082A1 (en) Backlight device and display apparatus
US20190180670A1 (en) Liquid crystal driving apparatus and liquid crystal display apparatus
WO2012090808A1 (en) Drive method for display device
WO2012165369A1 (en) Liquid crystal display device
JP3693999B2 (en) Liquid crystal panel driving circuit and driving method for liquid crystal projector

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980155082.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840834

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13138103

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09840834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP