WO2012165369A1 - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
WO2012165369A1
WO2012165369A1 PCT/JP2012/063608 JP2012063608W WO2012165369A1 WO 2012165369 A1 WO2012165369 A1 WO 2012165369A1 JP 2012063608 W JP2012063608 W JP 2012063608W WO 2012165369 A1 WO2012165369 A1 WO 2012165369A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
voltage
overshoot
crystal panel
display device
Prior art date
Application number
PCT/JP2012/063608
Other languages
French (fr)
Japanese (ja)
Inventor
亮 山川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012165369A1 publication Critical patent/WO2012165369A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/16Determination of a pixel data signal depending on the signal applied in the previous frame
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix

Definitions

  • the present invention relates to a liquid crystal display device used for a flat-screen television receiver or the like.
  • the liquid crystal display device includes a backlight unit that emits planar light, and a liquid crystal panel unit that adjusts a transmission amount (transmittance) of the planar light emitted from the backlight unit and forms an image.
  • the backlight unit Since the backlight unit has the advantages of downsizing (thinning), power saving, and long life, the use of LEDs as a light source is increasing.
  • the other is a direct type system in which a light source is arranged on a planar substrate.
  • the image display area of the liquid crystal panel unit is divided into a plurality of areas, and the liquid crystal panel unit is irradiated with light having a luminance according to the image displayed in the area.
  • the area active type backlight unit can increase the contrast of the image and reduce the power consumption of the backlight unit compared to the backlight unit that emits planar light with the same brightness on the entire surface. It is.
  • the liquid crystal panel unit has a structure in which two transparent substrates on which electrodes are formed are arranged in parallel, and a liquid crystal layer containing a liquid crystal material is arranged between the two transparent substrates. Since the liquid crystal material (liquid crystal molecules) has a dielectric anisotropy, applying a voltage to the liquid crystal layer changes the major axis direction of the liquid crystal molecules in the liquid crystal layer, and transmits polarized light. The direction is changing. Furthermore, polarizing plates are attached to both sides of the surface of the transparent substrate through which light is transmitted, so that the amount of light transmitted through the liquid crystal layer is changed according to the voltage. In the liquid crystal panel unit, by applying a voltage to each pixel, the light transmission degree (luminance) for each pixel is adjusted, and an image is displayed in the image display area of the liquid crystal panel unit.
  • the liquid crystal material liquid crystal molecules
  • polarizing plates are attached to both sides of the surface of the transparent substrate through which light is transmitted, so that the amount of light transmitted through the liquid crystal layer is changed according to the voltage
  • response time In the liquid crystal panel unit, it takes a certain amount of time (hereinafter referred to as response time) from when a voltage is applied to the liquid crystal layer until the liquid crystal layer has a transmittance corresponding to the voltage.
  • This response time is affected by the temperature of the liquid crystal layer. When the temperature of the liquid crystal layer is high, the response time is short (response is good), and when the temperature of the liquid crystal layer is low, the response time is long (response Is worse). This response time greatly affects the switching of the image of the liquid crystal display device.
  • the display image is switched in time series to express the motion.
  • the response is poor, the light transmission of each pixel is not sufficiently switched before and after the image switching, and the remaining (afterimage) of the previous image is displayed, and the display quality of the moving image is deteriorated.
  • a voltage (overvoltage) that is higher than a voltage to be applied (in other words, a voltage necessary for displaying an image) is to be applied.
  • An “overshoot control” is applied to apply a shoot voltage).
  • the backlight unit using an LED as a light source generates less heat than a backlight unit using a fluorescent tube that has been conventionally used. For this reason, the temperature distribution of the light guide plate in the edge light type backlight unit has a high temperature near the light source, and the temperature tends to decrease as the distance increases. Since the temperature of the light guide plate is transmitted to the liquid crystal panel unit, a similar temperature distribution occurs in the liquid crystal panel unit. Accordingly, in the liquid crystal panel unit, the temperature of the liquid crystal material is high in the region close to the light source, and the response speed is increased. Further, in the region away from the light source, the temperature of the liquid crystal material is difficult to increase, and the response speed is slow.
  • the LED when used as the light source in the area active type backlight unit, the brightness of the incident light is different for each region. That is, in a region where the brightness of the display image of the liquid crystal panel unit is high, high brightness light is incident and the temperature is high. Further, in a region where the luminance of the display image of the liquid crystal panel unit is low, light with low luminance is incident and the temperature is lowered. As described above, a temperature difference (temperature distribution) is generated in the liquid crystal material between the region where the luminance of the display image is high and the region where the luminance is low. As a result, as in the case of the edge light type backlight unit, the response speed varies depending on the area, such that the response speed of the liquid crystal material is high in the high temperature area and the response speed is low in the low temperature area.
  • the amount of overshoot of the voltage applied to the liquid crystal material is determined by the gradation of the image, and the same overshoot amount according to the change of the gradation regardless of the response speed of the liquid crystal material. Overshoot control is performed. As a result, the response speed of the liquid crystal material cannot be sufficiently increased in the low temperature part, and the image quality is deteriorated. In the high temperature part, excessive power consumption is applied by applying an excessive overshoot amount. It will become.
  • an object of the present invention is to provide a liquid crystal display device capable of reducing power consumption without deteriorating the display quality of an image.
  • the present invention provides a liquid crystal panel having pixel electrodes opposed to each pixel, a liquid crystal panel driving means for driving the liquid crystal panel, and a rear surface of the liquid crystal panel.
  • a liquid crystal display device including a backlight wherein the liquid crystal panel driving means applies a voltage higher than a voltage required for driving when applying a voltage to the pixel electrode, and displays Voltage determining means for determining a driving voltage necessary for driving the pixel electrode of the liquid crystal panel based on image information, and an overshoot voltage to be added to the driving voltage based on the temperature of the pixel electrode and the driving voltage. Overshoot voltage determining means for determining.
  • the variation in the response speed of the liquid crystal material in each pixel can be reduced regardless of the temperature of the liquid crystal panel by changing the voltage value of the LED based on the driving of the LED in the backlight. .
  • power consumption can be reduced without degrading the display quality of the image.
  • the liquid crystal panel driving unit further includes an overshoot voltage determining table having a plurality of overshoot parameters for determining the overshoot voltage, and the overshoot voltage determining unit includes the overshoot voltage determining unit.
  • the overshoot voltage may be determined based on the shoot parameter.
  • the liquid crystal panel driving means includes time measuring means for measuring a predetermined time from the moment when the frame is switched, and the liquid crystal panel driving means is a predetermined time from the moment when the frame is switched.
  • a voltage obtained by adding the drive voltage and the overshoot voltage may be applied to the pixel electrode during the interval, and then the drive voltage may be applied to the pixel electrode.
  • the time measuring means is included in the overshoot voltage determining means, and the overshoot voltage determining means outputs a voltage obtained by adding the overshoot voltage to the drive voltage immediately after the frame is switched,
  • the drive voltage may be output as it is after a predetermined time has elapsed.
  • the backlight may be one in which the LEDs are two-dimensionally arranged on the back surface of the liquid crystal panel.
  • the backlight may be one in which LEDs are arranged so that the density is high in the central part and the density is low in the edge part.
  • the backlight may include a light guide plate having a light incident surface on which light from the LED is incident on a side surface.
  • the overshoot voltage determination table may include the overshoot parameter in accordance with the temperature distribution of the liquid crystal panel.
  • the overshoot voltage determination table may divide the liquid crystal panel into a plurality of regions for each temperature level, and may include an overshoot parameter for each region.
  • the backlight is divided into a plurality of areas, and includes a backlight controller that can independently adjust the luminance of the LEDs included in the area, and obtains luminance information for each frame of the LEDs in each area. And a synchronization means for sending to the overshoot voltage determination means, wherein the overshoot voltage determination means is based on the luminance information of the LED that emits light incident on the pixel in the previous frame, and May be determined.
  • the variation of the response speed of the liquid crystal material in each pixel can be achieved regardless of the temperature of the liquid crystal panel by changing the voltage value when performing the overshoot control based on the driving of the light source in the backlight. It is possible to provide a liquid crystal display device that can reduce power consumption without reducing the image display quality.
  • FIG. 4 is a diagram illustrating the relationship between the brightness of overshoot drive when the temperature is high in the same pixel as in FIG. 3 and the voltage applied to the pixel electrode and time.
  • FIG. 4 is a disassembled perspective view of the other example of the liquid crystal display device concerning this invention. It is the schematic which shows the temperature distribution of a liquid crystal panel.
  • FIG. 7 is an overshoot voltage determination LUT showing overshoot parameters in each region shown in FIG. 6. It is a disassembled perspective view of the liquid crystal display device concerning this invention. It is a temperature distribution of the liquid crystal panel of the liquid crystal display device shown in FIG. It is a table
  • FIG. 1 is an exploded perspective view of an example of a liquid crystal display device according to the present invention
  • FIG. 2 is a block diagram showing a schematic configuration of the liquid crystal display device shown in FIG.
  • the liquid crystal display device A includes a liquid crystal panel unit 1 and a backlight unit 2 (backlight).
  • the liquid crystal display device A has a horizontally long rectangular shape as a whole, and is integrally held by a frame-like bezel (not shown) or the like.
  • the liquid crystal display device A includes an image data acquisition unit 3, an image signal processing unit 4, a liquid crystal controller 5 (liquid crystal panel driving means), A synchronization circuit 6 and the like are provided.
  • the liquid crystal panel unit 1 has a rectangular shape in plan view, and a pair of glass substrates are bonded together with a predetermined gap therebetween, and liquid crystal is sealed between the glass substrates.
  • a liquid crystal panel 12 is provided.
  • One glass substrate is provided with a switching element (for example, TFT (thin film transistor)) connected to a source wiring and a gate wiring orthogonal to each other, a pixel electrode connected to the switching element, an alignment film, and the like.
  • the other glass substrate is provided with a color filter in which colored portions such as R (red), G (green, and B (blue)) are arranged in a predetermined arrangement, a common electrode, and an alignment film. Further, a polarizing plate is disposed on the outside of both substrates.
  • the liquid crystal panel unit 1 is provided with color pixels of 1920 ⁇ 1080 dots, for example, for high vision.
  • Each pixel is divided into subcells that emit red (R), green (G), and blue (B) light.
  • R red
  • G green
  • B blue
  • the transmittance of each subcell By adjusting the transmittance of each subcell, the color and brightness of each pixel are divided. It is the composition which adjusts.
  • the liquid crystal panel unit 1 includes a liquid crystal driver 11 and a liquid crystal panel 12. Then, the liquid crystal driver 11 applies a voltage to the pixel electrode using the switching element of each pixel of the liquid crystal panel 12 based on the signal received from the liquid crystal controller 5. Thereby, the liquid crystal panel 12 adjusts the voltage of each pixel electrode in accordance with the image data, drives the liquid crystal arranged in each pixel (subcell), and adjusts the light transmission degree (luminance) of each pixel (subcell). Is done.
  • the subcell of the liquid crystal panel 12 emits RGB light of a predetermined gradation, and each pixel has Light of a predetermined color and brightness is emitted. Thereby, an image corresponding to the image data is displayed in the image display area of the liquid crystal panel unit 1.
  • the backlight unit 2 is an illuminating device that is driven by an LED control signal generated by an LED controller 21 described later and irradiates the liquid crystal panel unit 1 with planar light.
  • the backlight unit 2 includes an LED panel (LED mounting board) 20, an LED controller 21 (backlight controller), an LED driver 22, an LED (Light Emitting Diode) 23, an optical member 24 such as a diffusion plate or an optical sheet, and the like. It has.
  • the LED panel 20 has the LED 23 mounted on the mounting surface facing the liquid crystal panel unit 1.
  • the LED panel 20 has a configuration in which a plurality of areas 200 are arranged vertically and horizontally.
  • the area 200 is set so as to include at least one LED 23.
  • the LED panel 20 includes 16 areas ⁇ 9 areas (144 in total).
  • the LED driver 22 drives the LED 23 for each area 200 (light emission driving). Note that the LED data signal and the luminance data generated based on the LED data signal (details will be described later) are data provided for each area 200.
  • the LED 23 forms, for example, an LED unit in which LED chips that emit light of wavelengths of red, green, and blue (R, G, B) are gathered.
  • the LED unit becomes white light as a whole by emitting light of each wavelength.
  • another aspect may be sufficient.
  • a white LED such as a pseudo white LED or a high color rendering white LED may be used instead of the LED unit described above, and an LED that emits light having a yellow (Y) wavelength in addition to the RGB described above.
  • a concentrated LED unit may be used.
  • the light emission time of the LED 23 is controlled by PWM (pulse width modulation) control.
  • the brightness of the LED 23 is adjusted by adjusting the light emission time, and the LED 23 becomes brighter as the light emission time is longer.
  • the rate at which the LED 23 is turned on (emits light) per unit time is referred to as a light emission duty ratio, and the light emission of the LED 23 is controlled by the light emission duty ratio.
  • the LED controller 21 generates a light emission duty ratio (hereinafter referred to as luminance data) used for PWM control based on the LED data signal.
  • the backlight unit 2 can adjust the luminance of the LED 23 mounted on the LED panel 20 for each area 200. That is, the backlight unit 2 is a so-called area active type backlight unit that can irradiate the liquid crystal panel unit 1 with planar light (with a luminance distribution) adjusted in luminance for each area 200.
  • the LED 23 emits light in accordance with the luminance of the image displayed on the liquid crystal panel unit 1, that is, the luminance is high in a portion where the luminance of the image is high and low in a low portion. Thereby, power consumption can be reduced without reducing the contrast of the video.
  • the image data acquisition unit 3 is an interface for inputting an image signal from the outside. Here, a television broadcast signal is received, the received signal is converted into an image signal, and transmitted to the image processing unit 4.
  • the image processing unit 4 generates an LCD data signal for driving the liquid crystal panel unit 1 and an LED data signal for driving the backlight unit 2 based on the input image signal.
  • the image processing unit 4 includes a Y / C separation circuit 41 that separates an image signal into a luminance signal Y and a color signal C, a signal adjustment circuit 42 that independently adjusts the luminance signal Y and the color signal C, and adjusted luminance.
  • a color demodulation circuit 43 that demodulates the signal Y and the color signal C into an RGB signal
  • a contrast adjustment circuit 44 that performs contrast adjustment
  • a gamma correction circuit 45 that performs gamma correction
  • an LED data signal and an LCD from the gamma-corrected RGB signal
  • a signal generation circuit 46 for generating a data signal.
  • the LED data signal generated by the signal generation circuit 46 is transmitted to the LED controller 21, and the LCD data signal is transmitted to the liquid crystal controller 5. Further, the signal generation circuit 46 inputs the gradation information contained in the video signal to the LED controller 21 as a gradation signal.
  • the liquid crystal controller 5 is a control circuit that generates a signal for driving the liquid crystal panel 12 based on the LCD data signal and transmits the signal to the liquid crystal driver 11.
  • the liquid crystal controller 5 includes a drive voltage determination circuit 51 (voltage determination means), an overshoot voltage determination circuit 52 (overshoot voltage determination means), and a memory 53.
  • the LCD data signal includes RGB gradation data for each pixel of the liquid crystal panel 12. Based on the LCD data signal, the drive voltage determination circuit 51 determines the light transmittance in the RGB subcell of each pixel, and calculates the voltage applied to the switching element to obtain the light transmittance.
  • the luminance of the pixel is a combination of the light transmittance of the liquid crystal panel 12 and the luminance of the LED 23, and the light transmittance of the liquid crystal panel 12 needs to be synchronized with the luminance of the LED 23. Therefore, the synchronizing circuit 6 is used to synchronize the luminance of the LED 23 and the light transmittance of the liquid crystal panel 12 and control each pixel to have a luminance corresponding to the image data. Specifically, the synchronization circuit 6 receives the light emission luminance data of the LED 23 for each area 200 for each frame, and sends the light emission luminance data to the drive voltage determination circuit 51.
  • the drive voltage determination circuit 51 includes drive voltage data including the drive voltage of the switching element of each pixel (subcell) based on the LCD data signal and the light emission luminance data of the LED 23 so that each pixel (subcell) has a desired luminance. It is generated and sent to the overshoot voltage determination circuit 52.
  • each pixel has a desired luminance by applying a voltage between the pixel electrodes of each pixel.
  • a voltage applied when a voltage is applied, a certain time is required until the luminance of the pixel is switched to a desired luminance.
  • the liquid crystal panel 12 has a characteristic that the luminance is switched faster as the difference in applied voltage is larger. Therefore, in the liquid crystal panel unit 1, a voltage applied to each pixel of the liquid crystal panel 1 is temporarily applied with a voltage higher than a voltage for obtaining a necessary luminance, and then a voltage for obtaining a desired luminance. In other words, so-called overshoot driving is performed.
  • FIG. 3 is a diagram showing the relationship between the luminance and the voltage applied to the pixel electrode and time when performing overshoot driving at a low temperature.
  • FIG. 3 illustrates one pixel among the plurality of pixels of the liquid crystal panel 1, but it is assumed that the same overshoot drive is performed in all the pixels.
  • the voltage necessary for obtaining the brightness of the previous frame (referred to as the first frame Fr1) is V1
  • the voltage required for obtaining the brightness of the next frame (referred to as the second frame Fr2).
  • the voltage V2 is V2
  • a voltage V3 obtained by adding an overshoot voltage ⁇ V1 to V2 is applied to the pixel electrode.
  • the applied voltage is changed from V3 to V2 after a lapse of a predetermined time from frame switching.
  • the speed of change in luminance becomes faster. Therefore, at the time of frame switching, a voltage V3 obtained by adding the overshoot voltage ⁇ V1 to the required voltage V2 is applied to rapidly change the luminance of the pixel (the inclination of the inclined portion in the figure becomes steep). Thereby, the time (response time) until the luminance is switched can be shortened, and the display quality of the image of the liquid crystal display device A can be improved.
  • the liquid crystal panel 1 has a characteristic that the change rate of brightness (response speed) changes depending on the temperature. That is, when the pixel temperature is high, the luminance is switched (rise of the sloped portion in the drawing) faster than when the pixel temperature is low. Therefore, when the pixel temperature is high, the luminance switching speed can be made equal even if the overshoot voltage value is smaller than when the pixel temperature is low.
  • FIG. 4 is a diagram showing the luminance of overshoot drive when the temperature is high in the same pixel as in FIG. 3, and the relationship between the voltage applied to the pixel electrode and time.
  • the overshoot voltage ⁇ V2 is lower than the overshoot voltage ⁇ V1. That is, when switching from the first frame Fr1 to the second frame Fr2, the voltage V4 applied to the pixel electrode is lower than the applied voltage V3 at low temperature.
  • the change in luminance in the pixel can be made constant (substantially constant).
  • the overshoot drive according to the temperature the luminance switching of the liquid crystal panel 1 can be made constant, and the display quality of the image of the liquid crystal display device A can be improved.
  • the overshoot voltage determination circuit 52 determines the overshoot voltage of each pixel based on such characteristics of the liquid crystal panel 1.
  • the overshoot voltage determination circuit 52 refers to the overshoot voltage determination LUT 531 provided in the memory 53 and determines an overshoot voltage for each pixel.
  • the overshoot voltage determination circuit 52 adds the determined overshoot voltage to the drive voltage data.
  • the memory 53 includes a readable / writable RAM, a read-only ROM, and the like, and is a storage device that can hold information.
  • the drive voltage determination circuit 51 and the overshoot voltage determination circuit 52 are configured to always access the memory 53.
  • the overshoot voltage determination LUT 531 (overshoot voltage determination table) stored in the memory 53 includes a first overshoot parameter used when the pixel is at a low temperature and a second overshoot parameter used when the pixel is at a high temperature. It has.
  • the first overshoot parameter is a larger value than the second overshoot parameter.
  • the overshoot voltage determination circuit 52 will be described in detail.
  • the overshoot voltage determination circuit 52 calls the first overshoot parameter or the second overshoot parameter from the overshoot voltage determination LUT 531 based on the pixel information in the previous frame.
  • the backlight unit 2 of the liquid crystal display device A is an area active type backlight, and adjusts the luminance of the LED 23 in the area corresponding to the pixel in accordance with the luminance of the pixel.
  • the luminance of the pixel is a combination of the light transmittance of the liquid crystal panel 12 and the luminance of the LED 23, and the pixel temperature is not uniquely determined by the luminance.
  • the luminance of the LED 23 may be high and the temperature may be high, and even if the luminance of the pixel is high, the luminance of the LED 23 may be low and the temperature may be low.
  • the overshoot voltage determination circuit 52 acquires the light emission luminance data of the LED 23 arranged in the area 200 corresponding to each pixel in the frame before the synchronization circuit 6, and based on the light emission luminance data of the LED 23, Select one overshoot parameter or second overshoot parameter. That is, when the emission luminance of the LED 23 in the area 200 corresponding to the pixel is low in the previous frame, the overshoot voltage determination circuit 52 determines that the pixel temperature is low and selects the first overshoot parameter. On the contrary, when the light emission luminance of the LED 23 is high in the previous frame, it is determined that the pixel temperature is high, and the second overshoot parameter is selected.
  • the overshoot parameter is given as a ratio to the drive voltage, and the overshoot voltage determination circuit 52 determines the overshoot voltage from the drive voltage data and the overshoot parameter.
  • the overshoot voltage determination circuit 52 includes a timer circuit therein, and controls the time for sending drive voltage data obtained by adding the overshoot voltage in the timer circuit. That is, the overshoot voltage determination circuit 52 sends drive voltage data obtained by adding the overshoot voltage to the drive voltage data to the liquid crystal driver 11 for a predetermined time from the frame switching, and after the predetermined time has elapsed, The drive voltage data not added is sent to the liquid crystal driver 11.
  • the timer circuit may be provided outside the overshoot voltage determination circuit 52, and the overshoot voltage determination circuit 52 may confirm the time.
  • the drive voltage determination circuit 51 sends the overshoot voltage determination circuit 52 to the overshoot voltage determination circuit 52 for a predetermined time from the frame switching timing. Data may be sent out.
  • a timer circuit may be provided inside the drive voltage determination circuit 51, or may be disposed outside the drive voltage determination circuit 51 and the overshoot voltage determination circuit 52 inside the liquid crystal controller 5. .
  • the liquid crystal driver 11 applies a voltage to the switching element of each pixel (subcell) based on the drive voltage data sent from the liquid crystal controller 5 to control the light transmittance of each pixel.
  • Apparatus A can display images with high accuracy.
  • the overshoot voltage determination LUT 531 is provided with two types of overshoot parameters, but is not limited to two types, and is further classified according to the luminance of the LED 23. Also good. Different overshoot parameters may be provided depending on the voltage difference between the previous frame and the subsequent frame.
  • the overshoot voltage determination circuit 52 extracts the overshoot parameter from the overshoot voltage determination LUT 531 and determines the overshoot voltage.
  • the present invention is not limited to this.
  • the overshoot voltage determination circuit 52 may determine the overshoot voltage by calculation from the temperature of the liquid crystal panel 12 and the voltage value determined by the drive voltage determination circuit 51.
  • the overshoot voltage determination circuit 52 determines the overshoot voltage and adds the overshoot voltage to the drive voltage data, but is not limited to this. For example, the overshoot voltage determination circuit 52 multiplies the drive voltage data by a parameter including a predetermined weight, thereby treating the drive voltage data in the same manner as adding the overshoot voltage to the drive voltage data. 1 may be driven.
  • FIG. 5 is an exploded perspective view of another example of the liquid crystal display device according to the present invention.
  • the liquid crystal display device B has the same configuration as the liquid crystal display device A except that the backlight unit 2b is different, and substantially the same parts are denoted by the same reference numerals. Detailed description of the same part is omitted.
  • the backlight unit 2b As shown in FIG. 5, in the backlight unit 2b, LEDs 23 are arranged on the LED panel 20b.
  • the backlight unit 2b has a high installation density in the central part, and the LED 23 is arranged so that the installation density decreases as it approaches the edge part, in accordance with the characteristics of the human eye that is difficult to recognize the luminance of the edge part. .
  • the backlight unit 2b all the LEDs 23 emit light with a constant light emission luminance. That is, the planar light emitted from the backlight unit 2b has a luminance distribution with a high center portion and a low edge portion. Yes. Further, since the backlight unit 2b does not perform active area driving, the liquid crystal display device B does not require the synchronization circuit 6. Since the liquid crystal panel unit 1 is irradiated with the planar light emitted from the backlight unit 2b, the pixels in the central portion of the liquid crystal panel 12 of the liquid crystal panel unit 1 become high temperature, and the pixels in the peripheral portion are The temperature distribution becomes low. Therefore, an overshoot voltage determination LUT 532 stored in the memory 53 of the liquid crystal controller 5 is provided corresponding to the temperature distribution of the liquid crystal panel 12.
  • FIG. 6 is a schematic diagram showing the temperature distribution of the liquid crystal panel
  • FIG. 7 is an overshoot voltage determination LUT showing overshoot parameters in each region shown in FIG.
  • the liquid crystal panel 12 is divided into five temperature ranges. In FIG. 6, hatching is performed so that each region can be easily recognized.
  • the first region Ar1 to the fifth region Ar5 are formed concentrically from the central portion.
  • the density of the LED 23 and the temperature distribution of the liquid crystal panel 12 have a correlation, that is, the temperature of the liquid crystal panel 12 is high in a portion where the LED 23 is high and the density of the LED 23 is low. The temperature of the liquid crystal panel 12 is also lowered.
  • the overshoot voltage determination LUT 532 corresponds to the density of the LEDs 23 of the backlight unit 2b. That is, when the backlight unit 2b is used, the temperature of the liquid crystal panel 12 has the following relationship.
  • the first region Ar1 at the center of the liquid crystal panel 12 is a region having a temperature of T1 or higher.
  • a second region Ar2 adjacent to the outer periphery of the first region Ar1 is a region having a temperature of T2 or more and less than T1.
  • the third region Ar3 adjacent to the outer periphery of the second region has a temperature of T3 or higher and lower than T2
  • the fourth region Ar4 adjacent to the outer periphery of the third region has a temperature of T4 or higher and lower than T3, and is the fifth outermost region Ar5. Is a region where the temperature is lower than T4.
  • the overshoot voltage determination LUT 532 has different overshoot parameters depending on the temperature distribution of the liquid crystal panel 12 in each of the first region Ar1 to the fifth region Ar5. That is, the overshoot voltage determination LUT 532 has an overshoot parameter Op1 in the first region Ar1, an overshoot parameter Op2 in the second region Ar2, an overshoot parameter Op3 in the third region Ar3, and an overshoot parameter Op3 in the fourth region Ar4.
  • the overshoot parameter Op5 is given to the shoot parameter Op4 and the fifth region Ar5, respectively.
  • the overshoot parameter is larger as the temperature is lower, and is smaller as the temperature is higher. That is, Op1 ⁇ Op2 ⁇ Op3 ⁇ Op4 ⁇ Op5.
  • the overshoot voltage determination circuit 52 confirms which region the pixel is in, acquires an overshoot parameter corresponding to the region, and calculates an overshoot voltage. For example, when calculating the overshoot voltage of the pixel in the first region Ar1, the overshoot voltage determination circuit 52 acquires the overshoot parameter Op1 corresponding to the first region Ar1 from the overshoot voltage determination LUT 531. The overshoot voltage is calculated by this method.
  • the area is divided into five areas, but the present invention is not limited to this. The area is further finer or coarser depending on the size of the liquid crystal display device A (liquid crystal panel 12) and the density change of the LEDs 23. It may be divided.
  • FIG. 8 is an exploded perspective view of the liquid crystal display device according to the present invention.
  • the liquid crystal display device C shown in FIG. 8 has the same configuration as the liquid crystal display device shown in FIGS. 1 and 2, etc., except that the backlight unit 2c is different. Detailed description of the same part is omitted.
  • the backlight unit 2 c includes a light guide plate 25 and a plurality of LEDs 23 mounted side by side on the LED panel 20.
  • the light guide plate 25 is a rectangular plate-like transparent plate similar to the liquid crystal panel 12, and the LED panel 20 is disposed close to both of the pair of short sides of the light guide plate 25. More specifically, the LED panel 20 is disposed so that the mounting surface of the LED 23 faces the short side of the light guide plate 25. The light emitted from the LED 23 enters the light guide plate 25 from the light incident surfaces formed on both short sides of the light guide plate 25, and is emitted from the exit slope which is one main surface.
  • FIG. 9 is a temperature distribution diagram of the liquid crystal panel of the liquid crystal display device shown in FIG. 8, and FIG. 10 is a table showing an example of an overshoot voltage determination LUT.
  • the LED 23 is disposed in the vicinity of the short side of the light guide plate 25.
  • the temperature of the light guide plate 25 has a distribution such that the temperature is higher in the portion near the short side and lower as it is closer to the center.
  • the liquid crystal panel 12 disposed adjacent to the light guide plate 25 also has a high temperature in the vicinity of the short side and a low temperature in the center (see FIG. 9).
  • the overshoot parameter Opc1 of the first region Cr1 close to the short side is lower than the overshoot parameter Opc2 of the second region Cr2 at the center. (See FIG. 10).
  • the overshoot voltage determination circuit 52 refers to the overshoot voltage determination LUT 533.
  • the overshoot parameter Opc1 is used, and when the pixel is included in the second region Cr2, the overshoot voltage is determined.
  • the parameter Opc2 is acquired and the overshoot voltage is calculated.
  • the period until switching from the previous frame to the next frame is constant (almost constant) in all regions. It is possible to improve the display quality of the video.
  • the liquid crystal panel 12 is divided into two regions according to the temperature, but the present invention is not limited to this, and the liquid crystal panel 12 may be further divided according to the temperature distribution.
  • the light incident surface of the light guide plate 25 is a surface with both short sides, but is not limited to this, and as long as it is a side surface, it may be only one surface, and all three surfaces or all four surfaces may enter. It may be formed as an optical surface.
  • the backlight unit which has a light-guide plate which has a light-incidence surface in a side surface. In such a case as well, an overshoot voltage determining LUT having an overshoot parameter corresponding to the temperature distribution of the light guide plate may be provided.
  • the liquid crystal controller 5 acquires an overshoot parameter from the overshoot voltage determination LUT and determines an overshoot voltage until a predetermined time elapses after the power is turned on. As the fixed time elapses, the temperature of the liquid crystal panel approaches uniform, and the response speed of the pixels becomes equal. Accordingly, the overshoot voltage may be determined using the same overshoot parameter for all pixels.
  • a sensor for detecting the temperature of the central portion and the edge portion of the liquid crystal panel is attached, and an overshoot voltage determination LUT is used for each pixel until the difference value of the detected temperature becomes a certain value or less. After the overshoot voltage is determined and the temperature difference value becomes a certain value or less, the overshoot voltage may be determined using the same overshoot parameter for all the pixels.
  • the present invention can be used as a display device for devices such as a thin television device, a thin display device, and a mobile phone.

Abstract

The purpose of the present invention is to provide a liquid crystal display device capable of decreasing power consumption without lowering the image display quality. This liquid crystal display device is provided with a liquid crystal panel (12) having a pixel electrode arranged oppositely of each pixel, a liquid crystal controller (5) driving the liquid crystal panel, and a backlight (2) arranged on the back surface of the liquid crystal panel and having LEDs (23) as the light source. The liquid crystal controller (5) includes a drive voltage determination circuit (51) which, on the basis of the image information to be displayed, determines the drive voltage necessary to drive the pixel electrodes of the liquid crystal panel, an overshoot voltage determination circuit (52) which determines, on the basis of the aforementioned drive voltage and the temperature of the aforementioned pixel electrodes, the overshoot voltage to be added to the drive voltage, and an overshoot voltage determination LUT (531) having multiple overshoot parameters for determining the overshoot voltage.

Description

液晶表示装置Liquid crystal display
 薄型テレビジョン受像機等に用いられる液晶表示装置に関するものである。 The present invention relates to a liquid crystal display device used for a flat-screen television receiver or the like.
 液晶表示装置は、面状光を出射するバックライトユニットと、前記バックライトユニットから出射された面状光の透過量(透過率)を調整し、画像を形成する液晶パネルユニットとを備えている。前記バックライトユニットにおいて、小型(薄型)化、省電力化、長寿命化のメリットがあるため、光源として、LEDの利用が増えてきている。また、前記バックライトユニットには主に2つの方式がある。1つは透光性を有する板状の導光板の側面の受光面に光源からの光を入射させ、主面の一方である出光面より面状光を出射するエッジライト方式である。そして、もう1つは平面状の基板に光源を配置した直下型方式である。 The liquid crystal display device includes a backlight unit that emits planar light, and a liquid crystal panel unit that adjusts a transmission amount (transmittance) of the planar light emitted from the backlight unit and forms an image. . Since the backlight unit has the advantages of downsizing (thinning), power saving, and long life, the use of LEDs as a light source is increasing. There are mainly two types of backlight units. One is an edge light system in which light from a light source is incident on a light receiving surface on a side surface of a light-transmitting plate-shaped light guide plate, and planar light is emitted from a light output surface which is one of main surfaces. The other is a direct type system in which a light source is arranged on a planar substrate.
 前記直下型方式のバックライトユニットでは、前記液晶パネルユニットの画像表示領域を複数個に分割し、その領域で表示される画像に合わせた輝度の光を前記液晶パネルユニットに照射するエリアアクティブ方式のバックライトユニットがある。前記エリアアクティブ方式のバックライトユニットでは、全面で同じ輝度の面状光を出射するバックライトユニットに比べて、画像のコントラストを高めることができるとともに、バックライトユニットの消費電力を低減することが可能である。 In the direct type backlight unit, the image display area of the liquid crystal panel unit is divided into a plurality of areas, and the liquid crystal panel unit is irradiated with light having a luminance according to the image displayed in the area. There is a backlight unit. The area active type backlight unit can increase the contrast of the image and reduce the power consumption of the backlight unit compared to the backlight unit that emits planar light with the same brightness on the entire surface. It is.
 一方、前記液晶パネルユニットは、電極が形成された2枚の透明基板を平行に配置し、前記2枚の透明基板の間に液晶材料を含む液晶層を配置した構造を有している。前記液晶材料(液晶分子)は誘電異方性を有しているので、前記液晶層に電圧を印加することで、前記液晶層内の液晶分子の長軸方向が変化し、透過する光の偏光方向を変化させている。さらに、前記透明基板の光が透過する面の両側に、偏光板が取り付けられていることで、電圧に対応して、前記液晶層を透過する光の光量を変化させている。前記液晶パネルユニットでは、画素毎に電圧を印加することで、画素毎の光の透過度合(輝度)を調整し、前記液晶パネルユニットの前記画像表示領域に画像を表示している。 On the other hand, the liquid crystal panel unit has a structure in which two transparent substrates on which electrodes are formed are arranged in parallel, and a liquid crystal layer containing a liquid crystal material is arranged between the two transparent substrates. Since the liquid crystal material (liquid crystal molecules) has a dielectric anisotropy, applying a voltage to the liquid crystal layer changes the major axis direction of the liquid crystal molecules in the liquid crystal layer, and transmits polarized light. The direction is changing. Furthermore, polarizing plates are attached to both sides of the surface of the transparent substrate through which light is transmitted, so that the amount of light transmitted through the liquid crystal layer is changed according to the voltage. In the liquid crystal panel unit, by applying a voltage to each pixel, the light transmission degree (luminance) for each pixel is adjusted, and an image is displayed in the image display area of the liquid crystal panel unit.
 前記液晶パネルユニットにおいて、前記液晶層に電圧を印加してから、前記液晶層が電圧に対応した透過率となるまでに、ある程度の時間(以下、応答時間と称する)がかかる。この応答時間は、前記液晶層の温度に影響されるものであり、前記液晶層の温度が高いと応答時間が短く(応答が良く)、前記液晶層の温度が低いと応答時間が長く(応答が悪く)なる。この応答時間は、前記液晶表示装置の画像の切り替わりに大きく影響している。 In the liquid crystal panel unit, it takes a certain amount of time (hereinafter referred to as response time) from when a voltage is applied to the liquid crystal layer until the liquid crystal layer has a transmittance corresponding to the voltage. This response time is affected by the temperature of the liquid crystal layer. When the temperature of the liquid crystal layer is high, the response time is short (response is good), and when the temperature of the liquid crystal layer is low, the response time is long (response Is worse). This response time greatly affects the switching of the image of the liquid crystal display device.
 例えば、前記液晶表示装置で動きのある画像(動画)を表示する場合、表示画像を時系列で切り替え、動きを表現する。このような画像の切り替えを行う場合、応答が悪いと画像の切り替え前後で各画素の光透過が十分に切り替わらず前画像の残り(残像)が表示され、動画の表示品位が低下する。 For example, when a moving image (moving image) is displayed on the liquid crystal display device, the display image is switched in time series to express the motion. When such an image switching is performed, if the response is poor, the light transmission of each pixel is not sufficiently switched before and after the image switching, and the remaining (afterimage) of the previous image is displayed, and the display quality of the moving image is deteriorated.
 このような残像を抑制するため、前記液晶パネルユニットでは前記液晶層に電圧を印加するとき、本来、印加すべき電圧(換言すると、画像を表示するために必要な電圧)よりも大きな電圧(オーバーシュート電圧と称する)を印加する「オーバーシュート制御」が行われている。 In order to suppress such an afterimage, in the liquid crystal panel unit, when a voltage is applied to the liquid crystal layer, a voltage (overvoltage) that is higher than a voltage to be applied (in other words, a voltage necessary for displaying an image) is to be applied. An “overshoot control” is applied to apply a shoot voltage).
 また、前記液晶表示装置の各画素において、前表示と後表示との階調の変化が大きいと前記液晶層の光透過率の変化が十分でなく、残像が発生することがある。そこで、前表示と後表示との階調の変化量によって、前記オーバーシュート量を調整し、各画素における前記液晶層の光透過率を迅速に変化させる制御を行う液晶表示装置が提案されている(例えば、特開2007-233061号公報)。 Also, in each pixel of the liquid crystal display device, if the change in gradation between the pre-display and the post-display is large, the light transmittance of the liquid crystal layer is not sufficiently changed, and an afterimage may occur. In view of this, a liquid crystal display device has been proposed in which the amount of overshoot is adjusted according to the amount of gradation change between the front display and the rear display, and the light transmittance of the liquid crystal layer in each pixel is quickly changed. (For example, JP 2007-233301 A).
特開2007-233061号公報JP 2007-233301 A
 光源にLEDが用いられた前記バックライトユニットでは、従来利用されていた蛍光管を用いたバックライトユニット比べて、発熱量が小さい。このことから、前記エッジライト方式のバックライトユニットにおける前記導光板の温度分布は、光源に近い部分で温度が高く、離れほど温度が低くなりやすい。この導光板の温度が前記液晶パネルユニットに伝達されるので、前記液晶パネルユニットでも同様の温度分布が発生する。これにより、前記液晶パネルユニットにおいて、光源に近い領域では液晶材料の温度が高く、応答速度は速くなる。また、光源から離れた領域では液晶材料の温度は上がりにくく、応答速度は遅くなる。 The backlight unit using an LED as a light source generates less heat than a backlight unit using a fluorescent tube that has been conventionally used. For this reason, the temperature distribution of the light guide plate in the edge light type backlight unit has a high temperature near the light source, and the temperature tends to decrease as the distance increases. Since the temperature of the light guide plate is transmitted to the liquid crystal panel unit, a similar temperature distribution occurs in the liquid crystal panel unit. Accordingly, in the liquid crystal panel unit, the temperature of the liquid crystal material is high in the region close to the light source, and the response speed is increased. Further, in the region away from the light source, the temperature of the liquid crystal material is difficult to increase, and the response speed is slow.
 また、前記エリアアクティブ方式のバックライトユニットでLEDを光源として用いる場合、領域ごとに入射する光の輝度が異なる。すなわち、液晶パネルユニットの表示画像の輝度が高い領域では高輝度の光が入射しており温度が高くなる。また、液晶パネルユニットの表示画像の輝度が低い領域では低輝度の光が入射しており温度が低くなる。このように、表示画像の輝度が高い領域と低い領域とで液晶材料に温度差(温度分布)ができる。これにより、前記エッジライト方式のバックライトユニットと同様、高温の領域では液晶材料の応答速度が高く、低温の領域では応答速度が低くなるといった、領域によって応答速度にばらつきが発生する。 Further, when the LED is used as the light source in the area active type backlight unit, the brightness of the incident light is different for each region. That is, in a region where the brightness of the display image of the liquid crystal panel unit is high, high brightness light is incident and the temperature is high. Further, in a region where the luminance of the display image of the liquid crystal panel unit is low, light with low luminance is incident and the temperature is lowered. As described above, a temperature difference (temperature distribution) is generated in the liquid crystal material between the region where the luminance of the display image is high and the region where the luminance is low. As a result, as in the case of the edge light type backlight unit, the response speed varies depending on the area, such that the response speed of the liquid crystal material is high in the high temperature area and the response speed is low in the low temperature area.
 また、従来の液晶表示装置では、画像の階調によって液晶材料に印加する電圧のオーバーシュート量を決定しており、液晶材料の応答速度に関係なく、階調の変化にあわせて同じオーバーシュート量でオーバーシュート制御がなされる。これにより、温度が低い部分では液晶材料の応答速度を十分に上げることができず画像の品位が低下してしまったり、温度が高い部分では過剰なオーバーシュート量を印加することで電力消費が多くなってしまったりする。 Also, in the conventional liquid crystal display device, the amount of overshoot of the voltage applied to the liquid crystal material is determined by the gradation of the image, and the same overshoot amount according to the change of the gradation regardless of the response speed of the liquid crystal material. Overshoot control is performed. As a result, the response speed of the liquid crystal material cannot be sufficiently increased in the low temperature part, and the image quality is deteriorated. In the high temperature part, excessive power consumption is applied by applying an excessive overshoot amount. It will become.
 そこで本発明は、画像の表示品位を低下させることなく、消費電力を低減することができる液晶表示装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a liquid crystal display device capable of reducing power consumption without deteriorating the display quality of an image.
 上記目的を達成するために本発明は、画素ごとに対向配置された画素電極を有する液晶パネルと、前記液晶パネルを駆動する液晶パネル駆動手段と、前記液晶パネルの背面に配置され、LEDを光源とするバックライトとを備えた液晶表示装置であって、前記液晶パネル駆動手段は、前記画素電極に電圧を印加するときに駆動に必要な電圧よりも高い電圧を印加するものであり、表示する画像情報に基づいて前記液晶パネルの前記画素電極の駆動に必要な駆動電圧を決定する電圧決定手段と、前記画素電極の温度及び前記駆動電圧とに基づいて前記駆動電圧に加算するオーバーシュート電圧を決定するオーバーシュート電圧決定手段とを備えている。 In order to achieve the above object, the present invention provides a liquid crystal panel having pixel electrodes opposed to each pixel, a liquid crystal panel driving means for driving the liquid crystal panel, and a rear surface of the liquid crystal panel. A liquid crystal display device including a backlight, wherein the liquid crystal panel driving means applies a voltage higher than a voltage required for driving when applying a voltage to the pixel electrode, and displays Voltage determining means for determining a driving voltage necessary for driving the pixel electrode of the liquid crystal panel based on image information, and an overshoot voltage to be added to the driving voltage based on the temperature of the pixel electrode and the driving voltage. Overshoot voltage determining means for determining.
 この構成によると、バックライトにおけるLEDの駆動に基づいて、LEDの電圧値を変化させることで、液晶パネルの温度に関係なく、各画素での液晶材料の応答速度のばらつきを低減することができる。これにより、画像の表示品位を低下させることなく、消費電力を低減することができる。 According to this configuration, the variation in the response speed of the liquid crystal material in each pixel can be reduced regardless of the temperature of the liquid crystal panel by changing the voltage value of the LED based on the driving of the LED in the backlight. . Thereby, power consumption can be reduced without degrading the display quality of the image.
 上記構成において、前記液晶パネル駆動手段は、前記オーバーシュート電圧を決定するための複数個のオーバーシュートパラメータを有するオーバーシュート電圧決定用テーブルをさらに備えており、前記オーバーシュート電圧決定手段は、前記オーバーシュートパラメータに基づいてオーバーシュート電圧を決定するものであってもよい。 In the above configuration, the liquid crystal panel driving unit further includes an overshoot voltage determining table having a plurality of overshoot parameters for determining the overshoot voltage, and the overshoot voltage determining unit includes the overshoot voltage determining unit. The overshoot voltage may be determined based on the shoot parameter.
 上記構成において、前記液晶パネル駆動手段は、フレームが切り替わった瞬間から予め決められた時間を計時する計時手段を備えており、前記液晶パネル駆動手段は、フレームが切り替わった瞬間から予め決められた時間の間前記画素電極に、駆動電圧と前記オーバーシュート電圧とを加算した電圧を印加し、その後、前記画素電極に、前記駆動電圧を印加するようにしてもよい。 In the above configuration, the liquid crystal panel driving means includes time measuring means for measuring a predetermined time from the moment when the frame is switched, and the liquid crystal panel driving means is a predetermined time from the moment when the frame is switched. A voltage obtained by adding the drive voltage and the overshoot voltage may be applied to the pixel electrode during the interval, and then the drive voltage may be applied to the pixel electrode.
 上記構成において、前記計時手段は、前記オーバーシュート電圧決定手段に含まれており、前記オーバーシュート電圧決定手段は前記フレームが切り替わった直後、前記駆動電圧にオーバーシュート電圧を加算した電圧を出力し、予め決められた時間が経過したのち、前記駆動電圧をそのまま出力するようにしてもよい。 In the above configuration, the time measuring means is included in the overshoot voltage determining means, and the overshoot voltage determining means outputs a voltage obtained by adding the overshoot voltage to the drive voltage immediately after the frame is switched, The drive voltage may be output as it is after a predetermined time has elapsed.
 上記構成において、前記バックライトが前記LEDを前記液晶パネルの背面に2次元配列されているものであってもよい。 In the above configuration, the backlight may be one in which the LEDs are two-dimensionally arranged on the back surface of the liquid crystal panel.
 上記構成において、前記バックライトは、中央部分が密度が高く辺縁部分が密度が低くなるようにLEDを配置しているものであってもよい。 In the above configuration, the backlight may be one in which LEDs are arranged so that the density is high in the central part and the density is low in the edge part.
 上記構成において、前記バックライトが側面に前記LEDからの光が入射される入光面を有する導光板を備えているものであってもよい。 In the above-described configuration, the backlight may include a light guide plate having a light incident surface on which light from the LED is incident on a side surface.
 上記構成において、前記オーバーシュート電圧決定用テーブルは、前記液晶パネルの温度分布にあわせて、前記オーバーシュートパラメータを備えていてもよい。 In the above configuration, the overshoot voltage determination table may include the overshoot parameter in accordance with the temperature distribution of the liquid crystal panel.
 上記構成において、前記オーバーシュート電圧決定用テーブルは、前記液晶パネルを温度レベルごとに複数の領域に分割し、前記領域ごとにオーバーシュートパラメータを備えていてもよい。 In the above configuration, the overshoot voltage determination table may divide the liquid crystal panel into a plurality of regions for each temperature level, and may include an overshoot parameter for each region.
 上記構成において、前記バックライトは複数のエリアに分割されており、前記エリアに含まれるLEDの輝度を独立して調整できるバックライトコントローラを備え、前記各エリアのLEDのフレームごとの輝度情報を取得し、前記オーバーシュート電圧決定手段に送出する同期手段を備えており、前記オーバーシュート電圧決定手段は、前フレームでの画素に入射する光を出射するLEDの輝度情報をもとに、画素の温度を決定するものであってもよい。 In the above configuration, the backlight is divided into a plurality of areas, and includes a backlight controller that can independently adjust the luminance of the LEDs included in the area, and obtains luminance information for each frame of the LEDs in each area. And a synchronization means for sending to the overshoot voltage determination means, wherein the overshoot voltage determination means is based on the luminance information of the LED that emits light incident on the pixel in the previous frame, and May be determined.
 本発明によると、バックライトにおける光源の駆動に基づいて、オーバーシュート制御を行うときの電圧値を変化させることで、液晶パネルの温度に関係なく、各画素での液晶材料の応答速度のばらつきを低減し、画像の表示品位を低下させることなく、消費電力を低減することができる液晶表示装置を提供することができる。 According to the present invention, the variation of the response speed of the liquid crystal material in each pixel can be achieved regardless of the temperature of the liquid crystal panel by changing the voltage value when performing the overshoot control based on the driving of the light source in the backlight. It is possible to provide a liquid crystal display device that can reduce power consumption without reducing the image display quality.
本発明にかかる液晶表示装置の一例の分解斜視図である。It is a disassembled perspective view of an example of the liquid crystal display device concerning this invention. 図1に示す液晶表示装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the liquid crystal display device shown in FIG. 低温時のオーバーシュート駆動を行うときの輝度及び画素電極に印加する電圧と時間の関係を示す図である。It is a figure which shows the relationship between the brightness | luminance at the time of overshoot drive at the time of low temperature, and the voltage applied to a pixel electrode, and time. 図3と同じ画素で温度が高いときのオーバーシュート駆動の輝度及び画素電極に印加する電圧と時間の関係を示す図である。FIG. 4 is a diagram illustrating the relationship between the brightness of overshoot drive when the temperature is high in the same pixel as in FIG. 3 and the voltage applied to the pixel electrode and time. 本発明にかかる液晶表示装置の他の例の分解斜視図である。It is a disassembled perspective view of the other example of the liquid crystal display device concerning this invention. 液晶パネルの温度分布を示す概略図である。It is the schematic which shows the temperature distribution of a liquid crystal panel. 図6に示す各領域でのオーバーシュートパラメータを示すオーバーシュート電圧決定用LUTである。7 is an overshoot voltage determination LUT showing overshoot parameters in each region shown in FIG. 6. 本発明にかかる液晶表示装置の分解斜視図である。It is a disassembled perspective view of the liquid crystal display device concerning this invention. 図8に示す液晶表示装置の液晶パネルの温度分布である。It is a temperature distribution of the liquid crystal panel of the liquid crystal display device shown in FIG. オーバーシュート電圧決定用LUTの一例を示す表である。It is a table | surface which shows an example of LUT for overshoot voltage determination.
(第1の実施形態)
 図1は本発明にかかる液晶表示装置の一例の分解斜視図であり、図2は図1に示す液晶表示装置の概略構成を示すブロック図である。図1に示すように、液晶表示装置Aは、液晶パネルユニット1、バックライトユニット2(バックライト)とを備えている。液晶表示装置Aは、全体として横長の方形を成し、枠状をなすベゼル(不図示)などにより一体的に保持されている。また、図2に示すように、液晶表示装置Aは、液晶パネルユニット1及びバックライトユニット2以外にも、画像データ取得部3、画像信号処理部4、液晶コントローラ5(液晶パネル駆動手段)、同期回路6等を備えている。
(First embodiment)
FIG. 1 is an exploded perspective view of an example of a liquid crystal display device according to the present invention, and FIG. 2 is a block diagram showing a schematic configuration of the liquid crystal display device shown in FIG. As shown in FIG. 1, the liquid crystal display device A includes a liquid crystal panel unit 1 and a backlight unit 2 (backlight). The liquid crystal display device A has a horizontally long rectangular shape as a whole, and is integrally held by a frame-like bezel (not shown) or the like. In addition to the liquid crystal panel unit 1 and the backlight unit 2, the liquid crystal display device A includes an image data acquisition unit 3, an image signal processing unit 4, a liquid crystal controller 5 (liquid crystal panel driving means), A synchronization circuit 6 and the like are provided.
 図1に示すように、液晶パネルユニット1は、平面視矩形状をなしており、一対のガラス基板が所定のギャップを隔てた状態で貼り合わせられるとともに、両ガラス基板間に液晶が封入された液晶パネル12を有している。 As shown in FIG. 1, the liquid crystal panel unit 1 has a rectangular shape in plan view, and a pair of glass substrates are bonded together with a predetermined gap therebetween, and liquid crystal is sealed between the glass substrates. A liquid crystal panel 12 is provided.
 一方のガラス基板には、互いに直交するソース配線とゲート配線とに接続されたスイッチング素子(例えばTFT(薄膜トランジスタ))と、そのスイッチング素子に接続された画素電極、さらには配向膜等が設けられ、他方のガラス基板には、R(赤色)、G(緑色、B(青色)等の各着色部が所定配列で配置されたカラーフィルターや共通電極、さらには配向膜等が設けられている。なお、両基板の外側にはさらに偏光板が配されている。 One glass substrate is provided with a switching element (for example, TFT (thin film transistor)) connected to a source wiring and a gate wiring orthogonal to each other, a pixel electrode connected to the switching element, an alignment film, and the like. The other glass substrate is provided with a color filter in which colored portions such as R (red), G (green, and B (blue)) are arranged in a predetermined arrangement, a common electrode, and an alignment film. Further, a polarizing plate is disposed on the outside of both substrates.
 このような構成によって、液晶パネルユニット1は、例えば、ハイビジョン用の、1920×1080ドットのカラー画素が形成されている。また、各画素は赤色(R)、緑色(G)、青色(B)のそれぞれの光を出射するサブセルに分割されており、各サブセルの透過率を調整することで、各画素の色及び輝度を調整する構成となっている。 With such a configuration, the liquid crystal panel unit 1 is provided with color pixels of 1920 × 1080 dots, for example, for high vision. Each pixel is divided into subcells that emit red (R), green (G), and blue (B) light. By adjusting the transmittance of each subcell, the color and brightness of each pixel are divided. It is the composition which adjusts.
 図2に示すように、液晶パネルユニット1は、液晶ドライバ11と、液晶パネル12とを備えている。そして、液晶ドライバ11が、液晶コントローラ5から受け取った信号に基づいて液晶パネル12の各画素のスイッチング素子を利用して画素電極に電圧を印加する。これにより、液晶パネル12は画像データに応じて各画素電極の電圧が調整され、各画素(サブセル)に配置された液晶が駆動され、各画素(サブセル)の光の透過度合(輝度)が調整される。液晶表示装置Aにおいて、液晶パネルユニット1の背面よりバックライトユニット2からの面状光を入射させることで、液晶パネル12のサブセルは、所定の階調のRGBの光を出射し、各画素は所定の色及び輝度の光を出射する。これにより、液晶パネルユニット1の画像表示領域には画像データに対応した画像が表示される。 As shown in FIG. 2, the liquid crystal panel unit 1 includes a liquid crystal driver 11 and a liquid crystal panel 12. Then, the liquid crystal driver 11 applies a voltage to the pixel electrode using the switching element of each pixel of the liquid crystal panel 12 based on the signal received from the liquid crystal controller 5. Thereby, the liquid crystal panel 12 adjusts the voltage of each pixel electrode in accordance with the image data, drives the liquid crystal arranged in each pixel (subcell), and adjusts the light transmission degree (luminance) of each pixel (subcell). Is done. In the liquid crystal display device A, when the planar light from the backlight unit 2 is incident from the back surface of the liquid crystal panel unit 1, the subcell of the liquid crystal panel 12 emits RGB light of a predetermined gradation, and each pixel has Light of a predetermined color and brightness is emitted. Thereby, an image corresponding to the image data is displayed in the image display area of the liquid crystal panel unit 1.
 バックライトユニット2は、後述のLEDコントローラ21で生成されたLED制御信号によって、駆動され、面状光を液晶パネルユニット1に照射する照明装置である。バックライトユニット2は、LEDパネル(LED実装基板)20、LEDコントローラ21(バックライトコントローラ)、LEDドライバ22、LED(Light Emitting Diode:発光ダイオード)23、拡散板や光学シート等の光学部材24等を備えている。バックライトユニット2において、LEDパネル20は液晶パネルユニット1に向く実装面にLED23が実装されている。 The backlight unit 2 is an illuminating device that is driven by an LED control signal generated by an LED controller 21 described later and irradiates the liquid crystal panel unit 1 with planar light. The backlight unit 2 includes an LED panel (LED mounting board) 20, an LED controller 21 (backlight controller), an LED driver 22, an LED (Light Emitting Diode) 23, an optical member 24 such as a diffusion plate or an optical sheet, and the like. It has. In the backlight unit 2, the LED panel 20 has the LED 23 mounted on the mounting surface facing the liquid crystal panel unit 1.
 図1に示すように、LEDパネル20は、複数個のエリア200が縦横に配列された構成となっている。そして、エリア200は、少なくとも1つのLED23が含まれるように設定されている。バックライトユニット2において、LEDパネル20は横16個×縦9個(合計144個)のエリア200を備えている。LEDドライバ22はLED23をエリア200ごとに駆動(発光駆動)する。なお、LEDデータ信号、LEDデータ信号に基づいて生成された輝度データ(詳細は後述する)は、エリア200毎に与えられるデータである。 As shown in FIG. 1, the LED panel 20 has a configuration in which a plurality of areas 200 are arranged vertically and horizontally. The area 200 is set so as to include at least one LED 23. In the backlight unit 2, the LED panel 20 includes 16 areas × 9 areas (144 in total). The LED driver 22 drives the LED 23 for each area 200 (light emission driving). Note that the LED data signal and the luminance data generated based on the LED data signal (details will be described later) are data provided for each area 200.
 LED23は例えば、赤、緑、青(R、G、B)の波長の光を出射するLEDチップを集結したLEDユニットを形成している。なお、LEDユニットは各波長の光が出射されることにより、全体として白色光となる。また、LED23の構成(種類、色及び組み合わせ等)については、他の態様であってもよい。例えば、上述したLEDユニットのかわりに疑似白色LEDや高演色白色LED等の白色LEDが用いられていてもよいし、上述のRGBに加えて、黄色(Y)の波長の光を出射するLEDが集結したLEDユニットが用いられてもよい。 The LED 23 forms, for example, an LED unit in which LED chips that emit light of wavelengths of red, green, and blue (R, G, B) are gathered. The LED unit becomes white light as a whole by emitting light of each wavelength. Moreover, about the structure (a kind, a color, a combination, etc.) of LED23, another aspect may be sufficient. For example, a white LED such as a pseudo white LED or a high color rendering white LED may be used instead of the LED unit described above, and an LED that emits light having a yellow (Y) wavelength in addition to the RGB described above. A concentrated LED unit may be used.
 また、LED23の発光時間はPWM(パルス幅変調)制御によって制御されている。LED23の輝度は発光時間を調整することで調整され、LED23は発光時間が長いほど高輝度となる。単位時間当たりのLED23がオンになる(発光する)割合を発光デューティ比と称し、LED23は発光デューティ比によって発光制御される。LEDコントローラ21は、LEDデータ信号に基づいてPWM制御に用いる発光デューティ比(以下輝度データ)を生成する。 Also, the light emission time of the LED 23 is controlled by PWM (pulse width modulation) control. The brightness of the LED 23 is adjusted by adjusting the light emission time, and the LED 23 becomes brighter as the light emission time is longer. The rate at which the LED 23 is turned on (emits light) per unit time is referred to as a light emission duty ratio, and the light emission of the LED 23 is controlled by the light emission duty ratio. The LED controller 21 generates a light emission duty ratio (hereinafter referred to as luminance data) used for PWM control based on the LED data signal.
 以上示したように、バックライトユニット2はLEDパネル20に実装されたLED23の輝度をエリア200ごとに調整できる。つまり、バックライトユニット2はエリア200ごとに輝度を調整した面状光(輝度分布のある)を、液晶パネルユニット1に照射することが可能な、いわゆる、エリアアクティブ方式のバックライトユニットである。エリアアクティブ方式のバックライトユニット2では、液晶パネルユニット1で表示する映像の輝度に合わせて、すなわち、映像の輝度が高い部分では輝度が高く、低い部分では低くなるようにLED23を発光させる。これにより、映像のコントラスト感を低下させることなく、消費電力を低減することができる。 As described above, the backlight unit 2 can adjust the luminance of the LED 23 mounted on the LED panel 20 for each area 200. That is, the backlight unit 2 is a so-called area active type backlight unit that can irradiate the liquid crystal panel unit 1 with planar light (with a luminance distribution) adjusted in luminance for each area 200. In the area active type backlight unit 2, the LED 23 emits light in accordance with the luminance of the image displayed on the liquid crystal panel unit 1, that is, the luminance is high in a portion where the luminance of the image is high and low in a low portion. Thereby, power consumption can be reduced without reducing the contrast of the video.
 画像データ取得部3は、外部からの画像信号を入力するためのインターフェースである。なお、ここでは、テレビ放送の信号を受信し受信信号を画像信号に変換し画像処理部4に送信している。 The image data acquisition unit 3 is an interface for inputting an image signal from the outside. Here, a television broadcast signal is received, the received signal is converted into an image signal, and transmitted to the image processing unit 4.
 画像処理部4は、入力された画像信号に基づいて、液晶パネルユニット1を駆動するLCDデータ信号と、バックライトユニット2を駆動するLEDデータ信号とを生成する。画像処理部4は、画像信号を輝度信号Yと色信号Cに分離するY/C分離回路41と、輝度信号Y及び色信号Cを独立して調整する信号調整回路42と、調整された輝度信号Y及び色信号CからRGB信号に復調する色復調回路43と、コントラスト調整を行うコントラスト調整回路44と、ガンマ補正を施すガンマ補正回路45と、ガンマ補正されたRGB信号よりLEDデータ信号及びLCDデータ信号を生成する信号生成回路46とを備えている。 The image processing unit 4 generates an LCD data signal for driving the liquid crystal panel unit 1 and an LED data signal for driving the backlight unit 2 based on the input image signal. The image processing unit 4 includes a Y / C separation circuit 41 that separates an image signal into a luminance signal Y and a color signal C, a signal adjustment circuit 42 that independently adjusts the luminance signal Y and the color signal C, and adjusted luminance. A color demodulation circuit 43 that demodulates the signal Y and the color signal C into an RGB signal, a contrast adjustment circuit 44 that performs contrast adjustment, a gamma correction circuit 45 that performs gamma correction, an LED data signal and an LCD from the gamma-corrected RGB signal And a signal generation circuit 46 for generating a data signal.
 そして、信号生成回路46で生成されたLEDデータ信号はLEDコントローラ21に送信され、LCDデータ信号は液晶コントローラ5に送信される。また、信号生成回路46は映像信号に含まれている階調情報を階調信号としてLEDコントローラ21に入力する。 Then, the LED data signal generated by the signal generation circuit 46 is transmitted to the LED controller 21, and the LCD data signal is transmitted to the liquid crystal controller 5. Further, the signal generation circuit 46 inputs the gradation information contained in the video signal to the LED controller 21 as a gradation signal.
 液晶コントローラ5は、LCDデータ信号に基づいて、液晶パネル12を駆動するための信号を生成し、液晶ドライバ11に送信する制御回路である。液晶コントローラ5は、駆動電圧決定回路51(電圧決定手段)と、オーバーシュート電圧決定回路52(オーバーシュート電圧決定手段)と、メモリ53とを備えている。 The liquid crystal controller 5 is a control circuit that generates a signal for driving the liquid crystal panel 12 based on the LCD data signal and transmits the signal to the liquid crystal driver 11. The liquid crystal controller 5 includes a drive voltage determination circuit 51 (voltage determination means), an overshoot voltage determination circuit 52 (overshoot voltage determination means), and a memory 53.
 LCDデータ信号は、液晶パネル12の画素ごとのRGB階調のデータを備えている。駆動電圧決定回路51は、このLCDデータ信号に基づいて、各画素のRGBのサブセルでの光の透過率を決定し、その光透過率を得るためにスイッチング素子に印加する電圧を算出する。 The LCD data signal includes RGB gradation data for each pixel of the liquid crystal panel 12. Based on the LCD data signal, the drive voltage determination circuit 51 determines the light transmittance in the RGB subcell of each pixel, and calculates the voltage applied to the switching element to obtain the light transmittance.
 液晶表示装置Aにおいて、画素の輝度は、液晶パネル12の光透過率とLED23の輝度とを組み合わせたものであり、液晶パネル12の光透過率はLED23の輝度と同期させる必要がある。そこで、同期回路6を利用し、LED23の輝度と液晶パネル12の光透過率を同期させ、各画素を画像データに応じた輝度となるように制御している。具体的には、同期回路6は、エリア200ごとのLED23の発光輝度データをフレームごとに受け取り、その発光輝度データを駆動電圧決定回路51に対し送出している。 In the liquid crystal display device A, the luminance of the pixel is a combination of the light transmittance of the liquid crystal panel 12 and the luminance of the LED 23, and the light transmittance of the liquid crystal panel 12 needs to be synchronized with the luminance of the LED 23. Therefore, the synchronizing circuit 6 is used to synchronize the luminance of the LED 23 and the light transmittance of the liquid crystal panel 12 and control each pixel to have a luminance corresponding to the image data. Specifically, the synchronization circuit 6 receives the light emission luminance data of the LED 23 for each area 200 for each frame, and sends the light emission luminance data to the drive voltage determination circuit 51.
 駆動電圧決定回路51は、LCDデータ信号とLED23の発光輝度データに基づいて、各画素(サブセル)が所望の輝度となるように、各画素(サブセル)のスイッチング素子の駆動電圧を含む駆動電圧データ生成し、オーバーシュート電圧決定回路52に送る。 The drive voltage determination circuit 51 includes drive voltage data including the drive voltage of the switching element of each pixel (subcell) based on the LCD data signal and the light emission luminance data of the LED 23 so that each pixel (subcell) has a desired luminance. It is generated and sent to the overshoot voltage determination circuit 52.
 ここで、オーバーシュート電圧決定回路52の説明を容易にするため、液晶の応答速度の温度特性について説明する。液晶パネル12では、各画素の画素電極間に電圧を印加することで、各画素を所望の輝度にしている。液晶パネル12では電圧を印加したときに、画素の輝度が所望の輝度に切り替わるまでに一定の時間が必要である。また、液晶パネル12は印加電圧の差が大きいほど、輝度が速く切り替わる特性を有している。そこで、液晶パネルユニット1では、液晶パネル1の各画素に印加する電圧を、一時的に、必要な輝度を得るための電圧よりも高い電圧を印加し、その後、所望の輝度を得るための電圧に変更する、いわゆる、オーバーシュート駆動が行われている。 Here, in order to facilitate the description of the overshoot voltage determination circuit 52, the temperature characteristics of the response speed of the liquid crystal will be described. In the liquid crystal panel 12, each pixel has a desired luminance by applying a voltage between the pixel electrodes of each pixel. In the liquid crystal panel 12, when a voltage is applied, a certain time is required until the luminance of the pixel is switched to a desired luminance. Further, the liquid crystal panel 12 has a characteristic that the luminance is switched faster as the difference in applied voltage is larger. Therefore, in the liquid crystal panel unit 1, a voltage applied to each pixel of the liquid crystal panel 1 is temporarily applied with a voltage higher than a voltage for obtaining a necessary luminance, and then a voltage for obtaining a desired luminance. In other words, so-called overshoot driving is performed.
 オーバーシュート駆動の詳細について図面を参照して説明する。図3は低温時のオーバーシュート駆動を行うときの輝度及び画素電極に印加する電圧と時間の関係を示す図である。なお、図3は液晶パネル1の複数の画素のうち、一つの画素について説明しているものであるがすべての画素で同様のオーバーシュート駆動が行われるものとする。 Details of overshoot drive will be described with reference to the drawings. FIG. 3 is a diagram showing the relationship between the luminance and the voltage applied to the pixel electrode and time when performing overshoot driving at a low temperature. FIG. 3 illustrates one pixel among the plurality of pixels of the liquid crystal panel 1, but it is assumed that the same overshoot drive is performed in all the pixels.
 図3に示しているように、前のフレーム(第1フレームFr1とする)の輝度を得るために必要な電圧をV1、次のフレーム(第2フレームFr2とする)の輝度を得るために必要な電圧をV2とすると、第1フレームFr1から第2フレームFr2に切り替わるとき、画素電極には、V2にオーバーシュート電圧ΔV1を加えた電圧V3が印加される。フレームの切り替わりから所定の時間経過後に印加電圧をV3からV2に変更している。 As shown in FIG. 3, the voltage necessary for obtaining the brightness of the previous frame (referred to as the first frame Fr1) is V1, and the voltage required for obtaining the brightness of the next frame (referred to as the second frame Fr2). Assuming that the voltage V2 is V2, when switching from the first frame Fr1 to the second frame Fr2, a voltage V3 obtained by adding an overshoot voltage ΔV1 to V2 is applied to the pixel electrode. The applied voltage is changed from V3 to V2 after a lapse of a predetermined time from frame switching.
 液晶パネル1は、印加電圧の差が大きいほど、輝度の変化の速度が速くなる。そのため、フレームの切り替わり時に、必要とする電圧V2にオーバーシュート電圧ΔV1を加算した電圧V3を印加し、画素の輝度を急激に変化させる(図中傾斜部の傾斜が急になる)。これにより、輝度が切り替わるまでの時間(応答時間)を短くすることができ、液晶表示装置Aの映像の表示品質を高めることが可能である。 In the liquid crystal panel 1, as the difference in applied voltage is larger, the speed of change in luminance becomes faster. Therefore, at the time of frame switching, a voltage V3 obtained by adding the overshoot voltage ΔV1 to the required voltage V2 is applied to rapidly change the luminance of the pixel (the inclination of the inclined portion in the figure becomes steep). Thereby, the time (response time) until the luminance is switched can be shortened, and the display quality of the image of the liquid crystal display device A can be improved.
 また、液晶パネル1では、温度によって輝度の変化速度(応答速度)が変化する特性を有している。すなわち、画素の温度が高い場合、低い場合に比べて輝度の切り替わり(図の傾斜部の立ち上がり)が速くなる。そこで、画素の温度が高いときは、低いときに比べてオーバーシュート電圧の値を小さくても輝度の切り替わり速度を同等とすることができる。 In addition, the liquid crystal panel 1 has a characteristic that the change rate of brightness (response speed) changes depending on the temperature. That is, when the pixel temperature is high, the luminance is switched (rise of the sloped portion in the drawing) faster than when the pixel temperature is low. Therefore, when the pixel temperature is high, the luminance switching speed can be made equal even if the overshoot voltage value is smaller than when the pixel temperature is low.
 図4は、図3と同じ画素で温度が高いときのオーバーシュート駆動の輝度及び画素電極に印加する電圧と時間の関係を示す図である。図4に示すように、画素の温度が高いので第1フレームFr1から第2フレームFr2に切り替わるときの輝度の切り替わりが速い。そのため、オーバーシュート電圧ΔV2がオーバーシュート電圧ΔV1よりも低くなっている。すなわち、第1フレームFr1から第2フレームFr2に切り替わるときに、画素電極に印加される電圧V4は、低温時の印加電圧V3よりも低くなっている。このように、温度によってオーバーシュート電圧の値を変化させることで、画素における輝度の変化を一定(略一定)にすることができる。このように、温度によってオーバーシュート駆動を変化させることで、液晶パネル1の輝度の切り替わりを一定にでき、液晶表示装置Aの映像の表示品質を高めることが可能である。 FIG. 4 is a diagram showing the luminance of overshoot drive when the temperature is high in the same pixel as in FIG. 3, and the relationship between the voltage applied to the pixel electrode and time. As shown in FIG. 4, since the temperature of the pixel is high, the luminance is rapidly switched when switching from the first frame Fr1 to the second frame Fr2. Therefore, the overshoot voltage ΔV2 is lower than the overshoot voltage ΔV1. That is, when switching from the first frame Fr1 to the second frame Fr2, the voltage V4 applied to the pixel electrode is lower than the applied voltage V3 at low temperature. As described above, by changing the value of the overshoot voltage depending on the temperature, the change in luminance in the pixel can be made constant (substantially constant). Thus, by changing the overshoot drive according to the temperature, the luminance switching of the liquid crystal panel 1 can be made constant, and the display quality of the image of the liquid crystal display device A can be improved.
 オーバーシュート電圧決定回路52は、このような、液晶パネル1の特性に基づいて、各画素のオーバーシュート電圧を決定している。オーバーシュート電圧決定回路52は、メモリ53に備えられたオーバーシュート電圧決定用LUT531を参照し、画素ごとにオーバーシュート電圧を決定する。また、オーバーシュート電圧決定回路52は、決定されたオーバーシュート電圧を駆動電圧データに加算する。 The overshoot voltage determination circuit 52 determines the overshoot voltage of each pixel based on such characteristics of the liquid crystal panel 1. The overshoot voltage determination circuit 52 refers to the overshoot voltage determination LUT 531 provided in the memory 53 and determines an overshoot voltage for each pixel. The overshoot voltage determination circuit 52 adds the determined overshoot voltage to the drive voltage data.
 メモリ53は、読書き可能なRAMや読み出し専用のROM等を備え、情報を保持することができる記憶装置である。駆動電圧決定回路51、オーバーシュート電圧決定回路52は常時メモリ53にアクセス可能な構成となっている。 The memory 53 includes a readable / writable RAM, a read-only ROM, and the like, and is a storage device that can hold information. The drive voltage determination circuit 51 and the overshoot voltage determination circuit 52 are configured to always access the memory 53.
 メモリ53に収納されているオーバーシュート電圧決定用LUT531(オーバーシュート電圧決定用テーブル)は、画素が低温のときに用いる第1オーバーシュートパラメータと、画素が高温のときに用いる第2オーバーシュートパラメータとを備えている。第1オーバーシュートパラメータは第2オーバーシュートパラメータに比べて大きな値となっている。 The overshoot voltage determination LUT 531 (overshoot voltage determination table) stored in the memory 53 includes a first overshoot parameter used when the pixel is at a low temperature and a second overshoot parameter used when the pixel is at a high temperature. It has. The first overshoot parameter is a larger value than the second overshoot parameter.
 オーバーシュート電圧決定回路52について詳しく説明する。オーバーシュート電圧決定回路52は、前のフレームにおける画素の情報をもとに、オーバーシュート電圧決定用LUT531から、第1オーバーシュートパラメータまたは第2オーバーシュートパラメータを呼び出す。 The overshoot voltage determination circuit 52 will be described in detail. The overshoot voltage determination circuit 52 calls the first overshoot parameter or the second overshoot parameter from the overshoot voltage determination LUT 531 based on the pixel information in the previous frame.
 液晶表示装置Aのバックライトユニット2は、エリアアクティブ方式のバックライトであり、画素の輝度に合わせて画素に対応したエリアのLED23の輝度を調整している。このような液晶表示装置Aにおいて、LED23の輝度が高いとそのLED23が配置されているエリア200に対応する画素の温度が高くなり、低いと低くなる。一方、画素の輝度は、液晶パネル12の光透過率とLED23の輝度とを組み合わせたものであり、輝度によって画素の温度は一義的に決まるものではない。すなわち、画素の輝度が低くてもLED23の輝度が高く、温度が高い場合もあるし、画素の輝度が高くても、LED23の輝度が低く、温度が低くなっている場合もある。 The backlight unit 2 of the liquid crystal display device A is an area active type backlight, and adjusts the luminance of the LED 23 in the area corresponding to the pixel in accordance with the luminance of the pixel. In such a liquid crystal display device A, when the luminance of the LED 23 is high, the temperature of the pixel corresponding to the area 200 in which the LED 23 is arranged increases, and when the luminance is low, the temperature decreases. On the other hand, the luminance of the pixel is a combination of the light transmittance of the liquid crystal panel 12 and the luminance of the LED 23, and the pixel temperature is not uniquely determined by the luminance. That is, even if the luminance of the pixel is low, the luminance of the LED 23 may be high and the temperature may be high, and even if the luminance of the pixel is high, the luminance of the LED 23 may be low and the temperature may be low.
 そのため、オーバーシュート電圧決定回路52は、同期回路6より前のフレームでの各画素に対応するエリア200に配置されたLED23の発光輝度データを取得し、そのLED23の発光輝度データに基づいて、第1オーバーシュートパラメータまたは第2オーバーシュートパラメータを選択する。すなわち、オーバーシュート電圧決定回路52は、前のフレームにおいて、画素に対応するエリア200のLED23の発光輝度が低いとき、画素の温度は低いと判断し第1オーバーシュートパラメータを選択する。逆に、前のフレームでLED23の発光輝度が高い場合、画素の温度は高いと判断し第2オーバーシュートパラメータを選択する。 Therefore, the overshoot voltage determination circuit 52 acquires the light emission luminance data of the LED 23 arranged in the area 200 corresponding to each pixel in the frame before the synchronization circuit 6, and based on the light emission luminance data of the LED 23, Select one overshoot parameter or second overshoot parameter. That is, when the emission luminance of the LED 23 in the area 200 corresponding to the pixel is low in the previous frame, the overshoot voltage determination circuit 52 determines that the pixel temperature is low and selects the first overshoot parameter. On the contrary, when the light emission luminance of the LED 23 is high in the previous frame, it is determined that the pixel temperature is high, and the second overshoot parameter is selected.
 オーバーシュートパラメータは、駆動電圧に対する比率で与えられるものであり、オーバーシュート電圧決定回路52は、駆動電圧データとオーバーシュートパラメータとから、オーバーシュート電圧を決定している。 The overshoot parameter is given as a ratio to the drive voltage, and the overshoot voltage determination circuit 52 determines the overshoot voltage from the drive voltage data and the overshoot parameter.
 そして、オーバーシュート電圧決定回路52は内部にタイマー回路を備えており、タイマー回路でオーバーシュート電圧を加算した駆動電圧データを送出する時間を制御している。すなわち、オーバーシュート電圧決定回路52は、フレームの切り替わりから所定時間の間、駆動電圧データにオーバーシュート電圧を加えた駆動電圧データを液晶ドライバ11に対して送出し、所定時間経過後、オーバーシュート電圧を加算していない駆動電圧データを液晶ドライバ11に対して送出する。なお、タイマー回路はオーバーシュート電圧決定回路52の外部に備えられており、オーバーシュート電圧決定回路52が時間を確認する構成であってもよい。 The overshoot voltage determination circuit 52 includes a timer circuit therein, and controls the time for sending drive voltage data obtained by adding the overshoot voltage in the timer circuit. That is, the overshoot voltage determination circuit 52 sends drive voltage data obtained by adding the overshoot voltage to the drive voltage data to the liquid crystal driver 11 for a predetermined time from the frame switching, and after the predetermined time has elapsed, The drive voltage data not added is sent to the liquid crystal driver 11. The timer circuit may be provided outside the overshoot voltage determination circuit 52, and the overshoot voltage determination circuit 52 may confirm the time.
 また、フレームの切り替わりのタイミングから所定の時間の間、駆動電圧決定回路51からオーバーシュート電圧決定回路52に送出し、所定時間経過後は、駆動電圧決定回路51から直接液晶ドライバ11に対し駆動電圧データを送出するようにしてもよい。この場合、タイマー回路を駆動電圧決定回路51の内部に備えるようにしてもよいし、液晶コントローラ5の内部で、駆動電圧決定回路51及びオーバーシュート電圧決定回路52の外部に配置していてもよい。 In addition, the drive voltage determination circuit 51 sends the overshoot voltage determination circuit 52 to the overshoot voltage determination circuit 52 for a predetermined time from the frame switching timing. Data may be sent out. In this case, a timer circuit may be provided inside the drive voltage determination circuit 51, or may be disposed outside the drive voltage determination circuit 51 and the overshoot voltage determination circuit 52 inside the liquid crystal controller 5. .
 液晶ドライバ11は、液晶コントローラ5より送出される駆動電圧データに基づいて、各画素(サブセル)のスイッチング素子に電圧を印加し、各画素の光透過率の制御を行っている。 The liquid crystal driver 11 applies a voltage to the switching element of each pixel (subcell) based on the drive voltage data sent from the liquid crystal controller 5 to control the light transmittance of each pixel.
 以上示したように、画素の温度によってオーバーシュート電圧を変更することで、前のフレームの輝度や次のフレームの輝度にかかわらず、一定の期間でオーバーシュートを終了させることができるので、液晶表示装置Aは高精度で映像表示を行うことが可能となっている。 As shown above, by changing the overshoot voltage according to the pixel temperature, the overshoot can be terminated in a certain period regardless of the brightness of the previous frame or the brightness of the next frame. Apparatus A can display images with high accuracy.
 なお、上記実施形態では、オーバーシュート電圧決定用LUT531として、2種のオーバーシュートパラメータを備えているものとしているが、2種に限定されるものではなく、LED23の輝度によってさらに細かく分類していてもよい。また、前フレームと後フレームとの電圧差によって、異なるオーバーシュートパラメータを備えるようにしてもよい。また、オーバーシュート電圧決定回路52はオーバーシュート電圧決定用LUT531よりオーバーシュートパラメータを取り出し、オーバーシュート電圧を決定しているが、これに限定されるものではない。例えば、オーバーシュート電圧決定回路52は、液晶パネル12の温度及び駆動電圧決定回路51で決定された電圧値より演算にてオーバーシュート電圧を決定するものであってもよい。 In the above embodiment, the overshoot voltage determination LUT 531 is provided with two types of overshoot parameters, but is not limited to two types, and is further classified according to the luminance of the LED 23. Also good. Different overshoot parameters may be provided depending on the voltage difference between the previous frame and the subsequent frame. The overshoot voltage determination circuit 52 extracts the overshoot parameter from the overshoot voltage determination LUT 531 and determines the overshoot voltage. However, the present invention is not limited to this. For example, the overshoot voltage determination circuit 52 may determine the overshoot voltage by calculation from the temperature of the liquid crystal panel 12 and the voltage value determined by the drive voltage determination circuit 51.
 また、液晶コントローラ5において、オーバーシュート電圧決定回路52は、オーバーシュート電圧を決定し、駆動電圧データにオーバーシュート電圧を加算しているが、これに限定されるものではない。例えば、オーバーシュート電圧決定回路52は、駆動電圧データに所定の重みを含むパラメータを乗算することで、上述の駆動電圧データにオーバーシュート電圧を加算したものと同様に扱い、この電圧で液晶パネルユニット1を駆動するようにしてもよい。 In the liquid crystal controller 5, the overshoot voltage determination circuit 52 determines the overshoot voltage and adds the overshoot voltage to the drive voltage data, but is not limited to this. For example, the overshoot voltage determination circuit 52 multiplies the drive voltage data by a parameter including a predetermined weight, thereby treating the drive voltage data in the same manner as adding the overshoot voltage to the drive voltage data. 1 may be driven.
(第2の実施形態)
 本発明にかかる液晶表示装置の他の例について図面を参照して説明する。図5は本発明にかかる液晶表示装置の他の例の分解斜視図である。図5に示すように、液晶表示装置Bは、バックライトユニット2bが異なる以外は、液晶表示装置Aと同じ構成を有しており、実質上同じ部分には、同じ符号が付してあるとともに、同じ部分の詳細な説明は省略する。
(Second Embodiment)
Another example of the liquid crystal display device according to the present invention will be described with reference to the drawings. FIG. 5 is an exploded perspective view of another example of the liquid crystal display device according to the present invention. As shown in FIG. 5, the liquid crystal display device B has the same configuration as the liquid crystal display device A except that the backlight unit 2b is different, and substantially the same parts are denoted by the same reference numerals. Detailed description of the same part is omitted.
 図5に示すように、バックライトユニット2bは、LEDパネル20bにLED23が配列されている。辺縁部の輝度を認識しにくい人間の目の特性に合わせ、バックライトユニット2bは中央部の設置密度が高く、辺縁部に近づくにしたがって設置密度が低くなるようにLED23を配置している。 As shown in FIG. 5, in the backlight unit 2b, LEDs 23 are arranged on the LED panel 20b. The backlight unit 2b has a high installation density in the central part, and the LED 23 is arranged so that the installation density decreases as it approaches the edge part, in accordance with the characteristics of the human eye that is difficult to recognize the luminance of the edge part. .
 バックライトユニット2bでは、すべてのLED23を一定の発光輝度で発光している、つまり、バックライトユニット2bより出射される面状光は、中央部分が高く辺縁部分が低い輝度分布を有している。また、バックライトユニット2bはアクティブエリア駆動を行わないので、液晶表示装置Bでは同期回路6が不要である。そして、液晶パネルユニット1にはバックライトユニット2bから出射された面状光が照射されているので、液晶パネルユニット1の液晶パネル12では中央部分の画素は高温になり、辺縁部分の画素は低温になるような温度分布となる。そこで、液晶コントローラ5のメモリ53に格納されているオーバーシュート電圧決定用LUT532として、液晶パネル12の温度分布に対応したものを備えている。 In the backlight unit 2b, all the LEDs 23 emit light with a constant light emission luminance. That is, the planar light emitted from the backlight unit 2b has a luminance distribution with a high center portion and a low edge portion. Yes. Further, since the backlight unit 2b does not perform active area driving, the liquid crystal display device B does not require the synchronization circuit 6. Since the liquid crystal panel unit 1 is irradiated with the planar light emitted from the backlight unit 2b, the pixels in the central portion of the liquid crystal panel 12 of the liquid crystal panel unit 1 become high temperature, and the pixels in the peripheral portion are The temperature distribution becomes low. Therefore, an overshoot voltage determination LUT 532 stored in the memory 53 of the liquid crystal controller 5 is provided corresponding to the temperature distribution of the liquid crystal panel 12.
 オーバーシュート電圧決定用LUT532について図面を参照して説明する。図6は液晶パネルの温度分布を示す概略図であり、図7は図6に示す各領域でのオーバーシュートパラメータを示すオーバーシュート電圧決定用LUTである。図6では、液晶パネル12を5段階の温度域で分割している。なお、図6では、各領域を容易に認識できるように、ハッチングを施している。 The overshoot voltage determination LUT 532 will be described with reference to the drawings. FIG. 6 is a schematic diagram showing the temperature distribution of the liquid crystal panel, and FIG. 7 is an overshoot voltage determination LUT showing overshoot parameters in each region shown in FIG. In FIG. 6, the liquid crystal panel 12 is divided into five temperature ranges. In FIG. 6, hatching is performed so that each region can be easily recognized.
 図6に示しているように、液晶パネル12では、中央部分から同心上に第1領域Ar1~第5領域Ar5が形成されている。バックライトユニット2bを用いる場合、LED23の密度と、液晶パネル12の温度分布とは相関関係があり、すなわち、LED23の密度が高い部分では液晶パネル12の温度が高く、LED23の密度が低い部分では液晶パネル12の温度も低くなる。 As shown in FIG. 6, in the liquid crystal panel 12, the first region Ar1 to the fifth region Ar5 are formed concentrically from the central portion. When the backlight unit 2b is used, the density of the LED 23 and the temperature distribution of the liquid crystal panel 12 have a correlation, that is, the temperature of the liquid crystal panel 12 is high in a portion where the LED 23 is high and the density of the LED 23 is low. The temperature of the liquid crystal panel 12 is also lowered.
 これらのことから、オーバーシュート電圧決定用LUT532は、バックライトユニット2bのLED23の密度と対応しているものともいえる。すなわち、バックライトユニット2bを用いる場合、液晶パネル12の温度は以下の関係が成り立っている。液晶パネル12の中央の第1領域Ar1は温度がT1以上の領域である。第1領域Ar1の外周に隣接した第2領域Ar2は、温度がT2以上T1未満の領域である。同様に、第2領域の外周に隣接した第3領域Ar3は温度がT3以上T2未満、第3領域の外周に隣接した第4領域Ar4は温度がT4以上T3未満、最外周の第5領域Ar5は温度がT4未満の領域である。 From these, it can be said that the overshoot voltage determination LUT 532 corresponds to the density of the LEDs 23 of the backlight unit 2b. That is, when the backlight unit 2b is used, the temperature of the liquid crystal panel 12 has the following relationship. The first region Ar1 at the center of the liquid crystal panel 12 is a region having a temperature of T1 or higher. A second region Ar2 adjacent to the outer periphery of the first region Ar1 is a region having a temperature of T2 or more and less than T1. Similarly, the third region Ar3 adjacent to the outer periphery of the second region has a temperature of T3 or higher and lower than T2, and the fourth region Ar4 adjacent to the outer periphery of the third region has a temperature of T4 or higher and lower than T3, and is the fifth outermost region Ar5. Is a region where the temperature is lower than T4.
 図7に示すように、オーバーシュート電圧決定用LUT532は、第1領域Ar1~第5領域Ar5のそれぞれに、換言すると、液晶パネル12の温度分布によって、異なるオーバーシュートパラメータを備えている。つまり、オーバーシュート電圧決定用LUT532は、第1領域Ar1にはオーバーシュートパラメータOp1、第2領域Ar2にはオーバーシュートパラメータOp2、第3領域Ar3にはオーバーシュートパラメータOp3、第4領域Ar4にはオーバーシュートパラメータOp4、第5領域Ar5にはオーバーシュートパラメータOp5がそれぞれ与えられている。 As shown in FIG. 7, the overshoot voltage determination LUT 532 has different overshoot parameters depending on the temperature distribution of the liquid crystal panel 12 in each of the first region Ar1 to the fifth region Ar5. That is, the overshoot voltage determination LUT 532 has an overshoot parameter Op1 in the first region Ar1, an overshoot parameter Op2 in the second region Ar2, an overshoot parameter Op3 in the third region Ar3, and an overshoot parameter Op3 in the fourth region Ar4. The overshoot parameter Op5 is given to the shoot parameter Op4 and the fifth region Ar5, respectively.
 なお、第1領域Ar1~第5領域Ar5の温度は、T1>T2>T3>T4の条件で決定されているので、オーバーシュートパラメータは上述したように温度が低いほど大きく、温度が高いほど小さくなっている、すなわち、Op1<Op2<Op3<Op4<Op5となっている。 Since the temperatures of the first region Ar1 to the fifth region Ar5 are determined under the condition of T1> T2> T3> T4, the overshoot parameter is larger as the temperature is lower, and is smaller as the temperature is higher. That is, Op1 <Op2 <Op3 <Op4 <Op5.
 オーバーシュート電圧決定回路52は、画素がどの領域に入っているかを確認し、その領域に対応したオーバーシュートパラメータを取得し、オーバーシュート電圧を算出する。例えば、第1領域Ar1内部の画素のオーバーシュート電圧を算出する場合、オーバーシュート電圧決定回路52は、オーバーシュート電圧決定用LUT531より、第1領域Ar1に対応したオーバーシュートパラメータOp1を取得し、前述の方法で、オーバーシュート電圧を算出する。 The overshoot voltage determination circuit 52 confirms which region the pixel is in, acquires an overshoot parameter corresponding to the region, and calculates an overshoot voltage. For example, when calculating the overshoot voltage of the pixel in the first region Ar1, the overshoot voltage determination circuit 52 acquires the overshoot parameter Op1 corresponding to the first region Ar1 from the overshoot voltage determination LUT 531. The overshoot voltage is calculated by this method.
 このように、領域ごとにオーバーシュートパラメータを決定することで、すべての領域で前のフレームから次のフレームに切り替わるまでの期間を一定(ほぼ一定)とすることができ、映像の表示品質を高めることが可能である。なお、本実施形態では、領域を5個に分けているが、これに限定されるものではなく、液晶表示装置A(液晶パネル12)の大きさや、LED23の密度の変化によってさらに細かく或いはさらに粗く分割してもよい。 In this way, by determining the overshoot parameter for each region, the period until switching from the previous frame to the next frame in all regions can be made constant (almost constant), and the display quality of the video is improved. It is possible. In the present embodiment, the area is divided into five areas, but the present invention is not limited to this. The area is further finer or coarser depending on the size of the liquid crystal display device A (liquid crystal panel 12) and the density change of the LEDs 23. It may be divided.
(第3の実施形態)
 本発明にかかる液晶表示装置のさらに他の例について図面を参照して説明する。図8は本発明にかかる液晶表示装置の分解斜視図である。図8に示す液晶表示装置Cはバックライトユニット2cが異なる以外、図1、図2等に示す液晶表示装置と同じ構成を有しており、実質上同じ部分には同じ符号を付し、さらに同じ部分の詳細な説明は省略する。
(Third embodiment)
Still another example of the liquid crystal display device according to the present invention will be described with reference to the drawings. FIG. 8 is an exploded perspective view of the liquid crystal display device according to the present invention. The liquid crystal display device C shown in FIG. 8 has the same configuration as the liquid crystal display device shown in FIGS. 1 and 2, etc., except that the backlight unit 2c is different. Detailed description of the same part is omitted.
 図8に示すように、バックライトユニット2cは、導光板25と、LEDパネル20に並んで実装された複数個のLED23とを備えている。図8に示すように導光板25は液晶パネル12と類似の長方形の板状の透明板であり、LEDパネル20は導光板25の一対の短辺の両方と近接して配置されている。さらに詳しく説明すると、LEDパネル20はLED23の実装面が、導光板25の短辺と対向するように配置されている。そして、LED23から出射された光は、導光板25の両短辺に形成された入光面より導光板25に入射し、一方の主面である出斜面より出射される。 As shown in FIG. 8, the backlight unit 2 c includes a light guide plate 25 and a plurality of LEDs 23 mounted side by side on the LED panel 20. As shown in FIG. 8, the light guide plate 25 is a rectangular plate-like transparent plate similar to the liquid crystal panel 12, and the LED panel 20 is disposed close to both of the pair of short sides of the light guide plate 25. More specifically, the LED panel 20 is disposed so that the mounting surface of the LED 23 faces the short side of the light guide plate 25. The light emitted from the LED 23 enters the light guide plate 25 from the light incident surfaces formed on both short sides of the light guide plate 25, and is emitted from the exit slope which is one main surface.
 導光板の温度分布について図面を参照して説明する。図9は図8に示す液晶表示装置の液晶パネルの温度分布図であり、図10はオーバーシュート電圧決定用LUTの一例を示す表である。 The temperature distribution of the light guide plate will be described with reference to the drawings. 9 is a temperature distribution diagram of the liquid crystal panel of the liquid crystal display device shown in FIG. 8, and FIG. 10 is a table showing an example of an overshoot voltage determination LUT.
 バックライトユニット2cでは、導光板25の短辺に近接してLED23が配置されている。そのため、導光板25の温度は、短辺に近い部分で高く中央によるほど低くなるような分布を有している。そして、導光板25と隣接して配置される液晶パネル12も短辺の近傍の温度が高く中央部の温度が低くなる(図9参照)。 In the backlight unit 2 c, the LED 23 is disposed in the vicinity of the short side of the light guide plate 25. For this reason, the temperature of the light guide plate 25 has a distribution such that the temperature is higher in the portion near the short side and lower as it is closer to the center. The liquid crystal panel 12 disposed adjacent to the light guide plate 25 also has a high temperature in the vicinity of the short side and a low temperature in the center (see FIG. 9).
 そこで、液晶コントローラ5のメモリ53に備えられたオーバーシュート電圧決定用LUT533は、短辺に近い第1領域Cr1のオーバーシュートパラメータOpc1が、中央部の第2領域Cr2のオーバーシュートパラメータOpc2よりも低くなっている(図10参照)。 Therefore, in the overshoot voltage determination LUT 533 provided in the memory 53 of the liquid crystal controller 5, the overshoot parameter Opc1 of the first region Cr1 close to the short side is lower than the overshoot parameter Opc2 of the second region Cr2 at the center. (See FIG. 10).
 オーバーシュート電圧決定回路52は、オーバーシュート電圧決定用LUT533を参照し、画素が第1領域Cr1に含まれている場合はオーバーシュートパラメータOpc1を、第2領域Cr2に含まれている場合はオーバーシュートパラメータOpc2を取得し、オーバーシュート電圧を算出する。 The overshoot voltage determination circuit 52 refers to the overshoot voltage determination LUT 533. When the pixel is included in the first region Cr1, the overshoot parameter Opc1 is used, and when the pixel is included in the second region Cr2, the overshoot voltage is determined. The parameter Opc2 is acquired and the overshoot voltage is calculated.
 このように、導光板25の温度で領域を分割し、その領域ごとにオーバーシュートパラメータを決定することで、すべての領域で前のフレームから次のフレームに切り替わるまでの期間を一定(ほぼ一定)とすることができ、映像の表示品質を高めることが可能である。 In this way, by dividing the region by the temperature of the light guide plate 25 and determining the overshoot parameter for each region, the period until switching from the previous frame to the next frame is constant (almost constant) in all regions. It is possible to improve the display quality of the video.
 なお、本実施形態において、液晶パネル12を温度によって2つの領域に分けているが、これに限定されるものではなく、温度分布に合わせてさらに細かく分けていてもよい。また、導光板25の入光面として両短辺の面としているが、これに限定されるものではなく、側面であれば、1面だけであってもよく、3面あるいは4面すべてが入光面として形成されていてもよい。またこれらに限定されるものではなく、側面に入光面を有する導光板を有するバックライトユニットを利用することも可能である。その場合も、導光板の温度分布に対応した、オーバーシュートパラメータを備えたオーバーシュート電圧決定用LUTを備えるようにすればよい。 In the present embodiment, the liquid crystal panel 12 is divided into two regions according to the temperature, but the present invention is not limited to this, and the liquid crystal panel 12 may be further divided according to the temperature distribution. In addition, the light incident surface of the light guide plate 25 is a surface with both short sides, but is not limited to this, and as long as it is a side surface, it may be only one surface, and all three surfaces or all four surfaces may enter. It may be formed as an optical surface. Moreover, it is not limited to these, It is also possible to utilize the backlight unit which has a light-guide plate which has a light-incidence surface in a side surface. In such a case as well, an overshoot voltage determining LUT having an overshoot parameter corresponding to the temperature distribution of the light guide plate may be provided.
 (その他の実施形態)
 液晶表示装置では、電源投入直後に液晶パネルに温度分布が発生しやすく、長時間駆動しているうちに、熱がいきわたり、液晶パネルの温度は均一に近づく。そこで、液晶コントローラ5は、電源投入から一定時間経過するまで、オーバーシュート電圧決定用LUTよりオーバーシュートパラメータを取得し、オーバーシュート電圧を決定する。一定時間経過することで、液晶パネルの温度が均一に近づくので、画素の応答速度が等しくなる。これにより、すべての画素で同じオーバーシュートパラメータを用いてオーバーシュート電圧を決定するようにしてもよい。
(Other embodiments)
In the liquid crystal display device, a temperature distribution is likely to occur in the liquid crystal panel immediately after the power is turned on, and heat is applied or the temperature of the liquid crystal panel approaches a uniform temperature while being driven for a long time. Therefore, the liquid crystal controller 5 acquires an overshoot parameter from the overshoot voltage determination LUT and determines an overshoot voltage until a predetermined time elapses after the power is turned on. As the fixed time elapses, the temperature of the liquid crystal panel approaches uniform, and the response speed of the pixels becomes equal. Accordingly, the overshoot voltage may be determined using the same overshoot parameter for all pixels.
 また、液晶パネルの中央部分及び辺縁部分の温度を検出するセンサを取り付けておき、検出された温度の差分値が一定の値以下になるまで、オーバーシュート電圧決定用LUTを用いて画素ごとにオーバーシュート電圧を決定し、温度の差分値が一定値以下となった後、すべての画素で同じオーバーシュートパラメータを用いてオーバーシュート電圧を決定するようにしてもよい。 In addition, a sensor for detecting the temperature of the central portion and the edge portion of the liquid crystal panel is attached, and an overshoot voltage determination LUT is used for each pixel until the difference value of the detected temperature becomes a certain value or less. After the overshoot voltage is determined and the temperature difference value becomes a certain value or less, the overshoot voltage may be determined using the same overshoot parameter for all the pixels.
 以上、本発明の実施形態について説明したが、本発明はこの内容に限定されるものではない。また本発明の実施形態は、発明の趣旨を逸脱しない限り、種々の改変を加えることが可能である。 As mentioned above, although embodiment of this invention was described, this invention is not limited to this content. The embodiments of the present invention can be variously modified without departing from the spirit of the invention.
 本発明は、薄型テレビジョン装置、薄型ディスプレイ装置、携帯電話等の機器の表示装置として利用することができる。 The present invention can be used as a display device for devices such as a thin television device, a thin display device, and a mobile phone.
1 液晶パネル
11 液晶ドライバ
12 液晶パネル
2 バックライト
20 LEDパネル
21 LEDコントローラ
22 LEDドライバ
23 LED
3 画像データ取得部
4 画像信号処理部
41 Y/C分離回路
42 信号処理回路
43 色復調回路
44 コントラスト調整回路
45 ガンマ補正回路
46 信号生成回路
5 液晶コントローラ
51 駆動電圧決定回路
52 オーバーシュート電圧決定回路
53 メモリ
DESCRIPTION OF SYMBOLS 1 Liquid crystal panel 11 Liquid crystal driver 12 Liquid crystal panel 2 Backlight 20 LED panel 21 LED controller 22 LED driver 23 LED
3 image data acquisition unit 4 image signal processing unit 41 Y / C separation circuit 42 signal processing circuit 43 color demodulation circuit 44 contrast adjustment circuit 45 gamma correction circuit 46 signal generation circuit 5 liquid crystal controller 51 drive voltage determination circuit 52 overshoot voltage determination circuit 53 memory

Claims (10)

  1.  画素ごとに対向配置された画素電極を有する液晶パネルと、
     前記液晶パネルを駆動する液晶パネル駆動手段と、
     前記液晶パネルの背面に配置され、LEDを光源とするバックライトとを備えた液晶表示装置であって、
     前記液晶パネル駆動手段は、前記画素電極に電圧を印加するときに駆動に必要な電圧よりも高い電圧を印加するものであり、
     表示する画像情報に基づいて前記液晶パネルの前記画素電極の駆動に必要な駆動電圧を決定する電圧決定手段と、
     前記画素電極の温度及び前記駆動電圧とに基づいて前記駆動電圧に加算するオーバーシュート電圧を決定するオーバーシュート電圧決定手段とを備えている液晶表示装置。
    A liquid crystal panel having pixel electrodes arranged opposite to each other;
    Liquid crystal panel driving means for driving the liquid crystal panel;
    A liquid crystal display device disposed on the back surface of the liquid crystal panel and provided with a backlight having an LED as a light source;
    The liquid crystal panel driving means applies a voltage higher than a voltage necessary for driving when applying a voltage to the pixel electrode,
    Voltage determining means for determining a driving voltage necessary for driving the pixel electrode of the liquid crystal panel based on image information to be displayed;
    A liquid crystal display device comprising overshoot voltage determining means for determining an overshoot voltage to be added to the drive voltage based on the temperature of the pixel electrode and the drive voltage.
  2.  前記液晶パネル駆動手段は、前記オーバーシュート電圧を決定するための複数個のオーバーシュートパラメータを有するオーバーシュート電圧決定用テーブルをさらに備えており、
     前記オーバーシュート電圧決定手段は、前記オーバーシュートパラメータに基づいてオーバーシュート電圧を決定する請求項1に記載の液晶表示装置。
    The liquid crystal panel driving means further includes an overshoot voltage determination table having a plurality of overshoot parameters for determining the overshoot voltage,
    The liquid crystal display device according to claim 1, wherein the overshoot voltage determining unit determines an overshoot voltage based on the overshoot parameter.
  3.  前記液晶パネル駆動手段は、フレームが切り替わった瞬間から予め決められた時間を計時する計時手段を備えており、
     前記液晶パネル駆動手段は、フレームが切り替わった瞬間から予め決められた時間の間前記画素電極に、駆動電圧と前記オーバーシュート電圧とを加算した電圧を印加し、
     その後、前記画素電極に、前記駆動電圧を印加する請求項1または請求項2に記載の液晶表示装置。
    The liquid crystal panel driving means includes time measuring means for measuring a predetermined time from the moment when the frame is switched,
    The liquid crystal panel driving means applies a voltage obtained by adding the driving voltage and the overshoot voltage to the pixel electrode for a predetermined time from the moment when the frame is switched,
    3. The liquid crystal display device according to claim 1, wherein the driving voltage is applied to the pixel electrode.
  4.  前記計時手段は、前記オーバーシュート電圧決定手段に含まれており、
     前記オーバーシュート電圧決定手段は前記フレームが切り替わった直後、前記駆動電圧にオーバーシュート電圧を加算した電圧を出力し、予め決められた時間が経過したのち、前記駆動電圧をそのまま出力する請求項3に記載の液晶表示装置。
    The time measuring means is included in the overshoot voltage determining means,
    The overshoot voltage determining means outputs a voltage obtained by adding an overshoot voltage to the drive voltage immediately after the frame is switched, and outputs the drive voltage as it is after a predetermined time has elapsed. The liquid crystal display device described.
  5.  前記バックライトが前記LEDを前記液晶パネルの背面に2次元配列されている請求項1から請求項4のいずれかに記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 4, wherein the backlight has the LEDs arranged two-dimensionally on the back surface of the liquid crystal panel.
  6.  前記バックライトは、中央部分の密度が高く、辺縁部分の密度が低くなるように前記LEDを配置している請求項5に記載の液晶表示装置。 6. The liquid crystal display device according to claim 5, wherein the backlight is configured such that the LEDs are arranged so that the density of the central portion is high and the density of the peripheral portion is low.
  7.  前記バックライトが側面に前記LEDからの光が入射される入光面を有する導光板を備えている請求項1から請求項4のいずれかに記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 4, wherein the backlight includes a light guide plate having a light incident surface on a side surface on which light from the LED is incident.
  8.  前記オーバーシュート電圧決定用テーブルは、前記液晶パネルの温度分布にあわせて、前記オーバーシュートパラメータを備えている請求項1から請求項7のいずれかに記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the overshoot voltage determination table includes the overshoot parameter in accordance with a temperature distribution of the liquid crystal panel.
  9.  前記オーバーシュート電圧決定用テーブルは、前記液晶パネルを温度レベルごとに複数の領域に分割し、
     前記領域ごとにオーバーシュートパラメータを備えている請求項8に記載の液晶表示装置。
    The overshoot voltage determination table divides the liquid crystal panel into a plurality of regions for each temperature level,
    The liquid crystal display device according to claim 8, wherein an overshoot parameter is provided for each region.
  10.  前記バックライトは複数のエリアに分割されており、前記エリアに含まれるLEDの輝度を独立して調整できるバックライトコントローラを備え、
     前記各エリアのLEDのフレームごとの輝度情報を取得し、前記オーバーシュート電圧決定手段に送出する同期手段を備えており、
     前記オーバーシュート電圧決定手段は、前フレームでの画素に入射する光を出射するLEDの輝度情報をもとに、画素の温度を決定する請求項5に記載の液晶表示装置。
    The backlight is divided into a plurality of areas, and includes a backlight controller that can independently adjust the luminance of the LEDs included in the area,
    The apparatus includes a synchronization unit that acquires luminance information for each LED frame in each area and sends the luminance information to the overshoot voltage determination unit.
    The liquid crystal display device according to claim 5, wherein the overshoot voltage determining unit determines the temperature of the pixel based on luminance information of an LED that emits light incident on the pixel in the previous frame.
PCT/JP2012/063608 2011-06-02 2012-05-28 Liquid crystal display device WO2012165369A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-124432 2011-06-02
JP2011124432 2011-06-02

Publications (1)

Publication Number Publication Date
WO2012165369A1 true WO2012165369A1 (en) 2012-12-06

Family

ID=47259225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063608 WO2012165369A1 (en) 2011-06-02 2012-05-28 Liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2012165369A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061999A1 (en) * 2016-09-29 2018-04-05 シャープ株式会社 Liquid crystal display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060972A (en) * 2008-09-05 2010-03-18 Sharp Corp Liquid crystal display device
JP2010072103A (en) * 2008-09-16 2010-04-02 Sharp Corp Image display, image display method, image display processing program, and computer readable recording medium with image display processing program recorded thereon
JP2010282911A (en) * 2009-06-08 2010-12-16 Victor Co Of Japan Ltd Backlight device and image display device
WO2011024498A1 (en) * 2009-08-31 2011-03-03 シャープ株式会社 Illuminating apparatus and display apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060972A (en) * 2008-09-05 2010-03-18 Sharp Corp Liquid crystal display device
JP2010072103A (en) * 2008-09-16 2010-04-02 Sharp Corp Image display, image display method, image display processing program, and computer readable recording medium with image display processing program recorded thereon
JP2010282911A (en) * 2009-06-08 2010-12-16 Victor Co Of Japan Ltd Backlight device and image display device
WO2011024498A1 (en) * 2009-08-31 2011-03-03 シャープ株式会社 Illuminating apparatus and display apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061999A1 (en) * 2016-09-29 2018-04-05 シャープ株式会社 Liquid crystal display device

Similar Documents

Publication Publication Date Title
KR100712471B1 (en) Field Sequential Liquid Crystal Display Device and Method for Color Image Display the same
JP4550638B2 (en) Surface illumination device and liquid crystal display device including the same
KR100885285B1 (en) Liquid crystal display apparatus and image display method used therein
JP5070331B2 (en) LIGHTING DEVICE AND DISPLAY DEVICE HAVING THE SAME
JP5368465B2 (en) Power control method for light emitting device for image display, light emitting device for image display, display device, and television receiver
JP2004191490A (en) Liquid crystal display device
US8358293B2 (en) Method for driving light source blocks, driving unit for performing the method and display apparatus having the driving unit
US9852700B2 (en) Liquid crystal display and method for driving the same
WO2012147651A1 (en) Multi-display device and image display device
JP4191674B2 (en) Display device and driving method thereof
JP2010044180A (en) Liquid crystal display device and video signal processing method used for the same
JP2008304908A (en) Liquid crystal display, and image display method used therefor
US20140111560A1 (en) Liquid crystal display device
JP2009042652A (en) Liquid crystal display device and image display method thereof
WO2007066435A1 (en) Illumination device and display apparatus provided with the same
WO2010073792A1 (en) Liquid crystal display apparatus and television receiver apparatus
JP2010113099A (en) Display device and display control method
US20110063338A1 (en) Image display device and method of its operation
JP2009042650A (en) Liquid crystal display device and image display method thereof
JP2009042651A (en) Liquid crystal display device and image display method thereof
WO2012165369A1 (en) Liquid crystal display device
JP5743782B2 (en) Image display device
US20150212371A1 (en) Light emitting apparatus, backlight apparatus, and display apparatus
JP2006030783A (en) Liquid crystal display device
JP2011022360A (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12793348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP