WO2010097495A1 - Marcadores genéticos del riesgo de sufrir reestenosis - Google Patents

Marcadores genéticos del riesgo de sufrir reestenosis Download PDF

Info

Publication number
WO2010097495A1
WO2010097495A1 PCT/ES2010/070102 ES2010070102W WO2010097495A1 WO 2010097495 A1 WO2010097495 A1 WO 2010097495A1 ES 2010070102 W ES2010070102 W ES 2010070102W WO 2010097495 A1 WO2010097495 A1 WO 2010097495A1
Authority
WO
WIPO (PCT)
Prior art keywords
genotype
restenosis
risk
gene
snp1
Prior art date
Application number
PCT/ES2010/070102
Other languages
English (en)
French (fr)
Inventor
Vicente ANDRÉS GARCÍA
Carlos Silvestre Roig
Patricia Fernandez Ferri
Pedro Luis Sanchez Fernandez
Francisco Fernandez Aviles
Felipe Javier Chaves Martinez
Original Assignee
Fina Biotech, S.L.U.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fina Biotech, S.L.U. filed Critical Fina Biotech, S.L.U.
Priority to CA2753460A priority Critical patent/CA2753460A1/en
Priority to CN2010800088953A priority patent/CN102388147A/zh
Priority to EP10745851A priority patent/EP2402458A4/en
Priority to JP2011550613A priority patent/JP2012521744A/ja
Publication of WO2010097495A1 publication Critical patent/WO2010097495A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention has its application within the health sector, in the field of Ia
  • this invention is directed to a method of diagnosing the risk of restenosis after revascularization by stent implantation based on the detection of single base polymorphisms (SNPs).
  • SNPs single base polymorphisms
  • APCT transluminal percutaneous angioplasty
  • restenosis consisting of excessive reocclusion of the intervened vessel.
  • the restenosis has a high health and socio-economic impact, since it requires repeating the APCT or subjecting the affected patient to alternative revascularization therapies (for example, aortocoronary bypass).
  • alternative revascularization therapies for example, aortocoronary bypass.
  • the restenotic lesion In comparison with the native atheromatous lesion, characterized by a slow development (typically over decades), the restenotic lesion usually grows during the first 4-12 months after the APCT
  • Restenosis is a multifactorial process involving various cell types, mainly platelets, monocytes / macrophages, endothelial cells (ECs), and smooth muscle cells (CMLs). It is accepted that the growth of the restenotic lesion, also called neointimal lesion, is a process initiated by the mechanical damage caused by the stent implantation (Andrés, "Control of vascular cell proliferation and migration by cyclin-dependent kinase signalling: new perspectives and therapeutic potential ", Cardiovasc Res 2004, 63, 11-21, Costa and Simón," Molecular basis of restenosis and drug-eluting stents ", Circulation 2005, 111, 2257-73).
  • the initial acute phase of restenosis involves platelet activation and localized thrombosis, accompanied by the recruitment of monocytes, neutrophils and circulating lymphocytes in the damaged arterial surface.
  • These cell types trigger a chronic inflammatory response characterized by the activation of CMLs resident in the middle tunic, which adopt a "synthetic" phenotype characterized by morphological changes, expression of embryonic isoforms of contractile proteins, high capacity to respond to growth stimuli. and chemotactic, and abundant synthesis of extracellular matrix.
  • thrombogenic factors for example, the tissue factor, thrombin receptor
  • cell adhesion molecules for example, VCAM, ICAM
  • LFA-1, Mac-1 signal transducers (for example, PI3K, MEK / ERK), transcription factors (for example, NF- ⁇ B, E2F, AP-1, c-myc, c-myb, YY1, Gax), proteins cell cycle regulators (e.g., pRb, p21, p27, CDK2, CDC2, cyclin B1, PCNA), growth factors (e.g., PDGF-BB, TGF ⁇ , FGF, IGF, EGF, VEGF), inflammatory cytokines (for for example, TNF ⁇ ), chemotaxis factors (for example, CCR2, MCP-1), and metalloproteases (for example, MMP-2, MMP-9).
  • signal transducers for example, PI3K, MEK / ERK
  • transcription factors for example, NF- ⁇ B, E2F, AP-1, c-myc, c-myb, YY1, Gax
  • proteins cell cycle regulators e
  • CDK inhibitors CDK inhibitors
  • CKIs CDK inhibitors
  • INK4 INK4
  • ST-DA antiproliferative drug-releasing stents
  • sirolimus-releasing stents also called rapamycin or rapamune
  • paclitaxel also called taxol
  • SNP single nucleotide polymorphism
  • SNPs have been identified in various human genes that are associated with the susceptibility to develop restenosis, including the beta2-adrenergic receptor gene, CD14, colony stimulation factor (CSF: colony stimulating factor), eotaxin, caspase- 1, P2RY12 receptor, interleukin-10 that have shown an association with greater or lesser risk of restenosis (Monraats et al. "Inflammation and apoptosis genes and the risk of restenosis after percutaneous coronary intervention", Pharmacogenet Genomics 2006, 16, 747-754 ; Monraats et al. "Interleukin 10: a new risk marker for the development of restenosis after percutaneous coronary intervention",
  • the authors of the present invention after an important research work, have identified different SNPs in various regulatory genes of the cell cycle with potential diagnosis of the risk of restenosis. Specifically, they have identified the SNPs rs164390, rs350099, rs350104, rs875459, in the CCNB1 gene (cyclin B1 protein); rs228241 1, in the CCNA1 gene (cyclin A1 protein) and rs733590, in the CDKN1A gene (p21 Kip1 / Cip1 protein) as diagnostic markers of the risk of restenosis.
  • FIG. 1 Summary table of the 25 polymorphisms analyzed in cyclin genes.
  • FIG. 2 Summary table of the 22 polymorphisms analyzed in cell growth suppressor genes.
  • FIG. 3 Summary table of the 6 SNPs associated in a statistically significant way with risk of restenosis after stent implantation.
  • FIG. 4 Table of the results of the logistic regression analysis using the SNPStat program of the SNPs associated with risk of restenosis after stent implantation.
  • FIG. 5 Scheme of the location of SNPs rs350099 (SNP1) and rs350104 (SNP2) and
  • FIG. 6 List of probes used in the delayed electrophoretic mobility tests ("Electrophoretic Mobility ShiftAssaf, EMSA).
  • FIG. 7 EMSA test resulting from the incubation of the NF-Ycons, SNP1-T and SNP1-C probes radioactively labeled and extracts of the soluble nuclear fraction of human cells derived from cervical cancer (HeLa).
  • the "supershift” (super-delay) tests were carried out by incubation with the anti-NF-YB and anti-CREBII antibodies (the latter used as a specificity control).
  • FIG. 9 Competition test carried out by means of the EMSA technique resulting from the incubation of extracts of the soluble nuclear fraction of human cells derived from cervical cancer (HeLa) with the NF-Y probe (-30 / - 10) radioactively labeled and an excess of the double stranded oligonucleotides NF-Y (-30 / -10), SNP1-T and SNP1-C not radiolabelled.
  • FIG. 10 a) Competition test carried out by means of the EMSA technique resulting from the incubation of extracts from the soluble nuclear fraction of human osteosarcoma epithelial cells ("Human Bone Osteosarcoma Epithelial CeIIs", U2OS) with the AP-1 probe cons radioactively labeled and an excess of the double-chain oligonucleotides AP-1cons, SNP2-C and SNP2-T not radiolabelled, b) Relative intensities of DNA-protein complexes of an average of five EMSAs and statistical analysis by ANOVA of a Bonferroni factor and correction, * p ⁇ 0.05, ** p ⁇ 0.01, band intensity in test with competitor versus band intensity without competitor.
  • FIG. 11 Nucleotide sequences adjacent to the 6 SNPs that show statistically significant association with risk of restenosis after stent implantation.
  • FIG. 12 Dissociation curves of SNP1. a) Representation of the normal and altered curves by the presence of the polymorphism (depending on the temperature), b) Representation of the difference between normal and altered curves by the presence of the polymorphism (depending on the temperature). The differences in the dissociation curves are the result of the differences between variations in the sequence of the PCR products, the samples being grouped according to each genotype.
  • FIG. 13 Dissociation curves of SNP2. a) Representation of the normal and altered curves by the presence of the polymorphism (depending on the temperature), b) Representation of the difference between normal and altered curves by the presence of the polymorphism (depending on the temperature). The differences in the dissociation curves are the result of the differences between variations in the sequence of the PCR products, the samples being grouped according to each genotype.
  • FIG. 14 Dissociation curves of SNP3. a) Representation of the normal and altered curves by the presence of the polymorphism (depending on the temperature), b) Representation of the difference between normal and altered curves by the presence of the polymorphism (depending on the temperature). The differences in the dissociation curves are the result of the differences between variations in the sequence of the PCR products, the samples being grouped according to each genotype.
  • FIG. 15 Dissociation curves of SNP4. a) Representation of the normal and altered curves by the presence of the polymorphism (depending on the temperature), b) Representation of the difference between normal and altered curves by the presence of the polymorphism (depending on the temperature).
  • the differences in the dissociation curves are the result of the differences between variations in the sequence of the PCR products, the samples being grouped according to each genotype.
  • FIG. 16 Dissociation curves of SNP5. a) Representation of the normal and altered curves by the presence of the polymorphism (depending on the temperature), b) Representation of the difference between normal and altered curves by the presence of the polymorphism (depending on the temperature). The differences in the dissociation curves are the result of the differences between variations in the sequence of the PCR products, the samples being grouped according to each genotype.
  • FIG. 17 Dissociation curves of SNP6. a) Representation of normal and altered curves due to the presence of polymorphism (depending on the temperature), b)
  • the object of the invention is a method for determining the risk of an individual suffering from restenosis after implantation of a stent based on the analysis of a sample to determine the genotype in at least one single base polymorphism (SNP) selected from rs350099, rs350104, rs164390 and rs875459, in the CCNB1 gene. and, optionally of rs228241 1 and / or rs733590, in the genes CCNA1 and CDKN1 A. respectively, where the presence of certain alleles in any of these polymorphisms, as indicated below, is indicative of the risk of restenosis.
  • SNP single base polymorphism
  • kits for carrying out said method comprising a set of probes and reagents suitable for the determination of the genotype of the polymorphisms mentioned.
  • the object of the invention is the use of one or more of the aforementioned polymorphisms, rs350099, rs350104, rs164390, rs875459 and, optionally, rs228241 1 and rs733590, as markers of an individual's risk of restenosis after implantation of a stent .
  • a method for determining the risk of an individual suffering from restenosis after implantation of a stent comprising: a) obtaining the genomic DNA of a sample of the individual; b) analyze the DNA of the sample to determine the genotype of at least one single base polymorphism (SNP) in the CCNB1 gene. selected from rs350099 (SNP1), rs350104
  • SNP2 rs164390
  • SNP3 rs875459
  • SNP4 rs875459
  • step b) comprises analyzing the DNA of the sample to determine the combination of genotypes of the SNP1 and SNP2 polymorphisms.
  • the rs350099 Polymorphism (SNP1) (See figure 3), is located in the promoter region, at -957 from the beginning of the transcription of the CCNB1 gene, which codes for the cyclin B1 protein, a positive regulator essential for cell proliferation in various contexts pathophysiological ⁇ Santamar ⁇ a and Ortega, "Cyclins and CDKS in development and cancer: lessons from genetically modified mice", Front Biosci 2006, 11, 1164-88), including the development of the neointimal lesion induced by mechanical vascular damage (Mor ⁇ shita, Gibbons, Kaneda, Ogihara and Dzau, "Pharmacokinetics of antisense oligodeoxyribonucleotides (cyclin B1 and CDC 2 kinase) in the vessel wall in vivo: enhanced therapeutic utility for restenosis by HVJ-liposome delivery", Gene 1994, 149,
  • the position -957 corresponds in turn with the base in position 36 of the sequence of 1,172 base pairs (bp) of the CCNB1 gene (access number U22364 in the GenBank database). Its use as a diagnostic marker of risk of restenosis after stent implantation in a human being, is determined by the detection of the T allele in homozygosis (T / T genotype) of this SNP (See Figure 4).
  • the NF-Y transcription factor through its binding to two cis-regulatory sequences located in the -150 to +182 region of the human CCNB1 gene promoter, is essential for its transcriptional activation in cells with high proliferative rate (Sciortino, Gurtner, Manni, Fontemaggi, Dey, Sacchi, Ozato and Piaggio, "The cyclin B1 gene is actively transcribed during mitosis in HeLa cells", EMBO Rep 2001, 2, 1018-23, Fari ⁇ a, Manni, Fontemaggi, Tiainen, Cenciarelli, Bellorini , Mantovani, Sacchi and Piaggio,
  • Figure 5 shows a scheme of the promoter region of the human CCNB1 gene with the location of the SNPs studied by the EMSA assay (SNP1 and SNP2).
  • the NF-Ybs box represents the CCAAT region, the binding site of the NF-Y transcriptional factor, located in the -21 / -17 position of the promoter.
  • the beginning of the transcription is designated with the value +1 and is represented by the curved arrow.
  • the rs350104 polymorphism (SNP2), (See Figure 3), is located in the promoter region, at -475 from the beginning of the transcription of the CCNB1 gene, which codes for the cyclin B1 protein. Position -475 corresponds in turn to the base at position 519 of the sequence of 1,172 bp of the CCNB1 gene (Accession number U22364 in the GenBank database). Its use as a diagnostic marker of the risk of restenosis after implantation of a sient in a human being, is determined by the detection of the C allele in homozygosis (genotype C / C) of this SNP (See Figure 4). In addition, the authors of the invention have identified in the sequence with the C allele an AP-1 binding site of greater affinity with respect to the sequence with the T allele (See Figure 10).
  • AP-1 is a transcription factor widely related to the regulatory processes of activation of large numbers of cell cycle genes, including cyclin (Shaulian and Karin, "AP-1 in cell proliferation and survival", Oncogene 2001, 20, 2390- 400)
  • the rs164390 polymorphism (SNP3), (See Figure 3), is located in the +102 position, 5 'untranslated region, of the CCNB1 gene, which codes for the cyclin B1 protein.
  • the position +102 corresponds in turn with the base in position 104 of the sequence of 1 1 160 bp of the CCNB1 gene (Accession number NC_000005 in the GenBank database). Its use as a diagnostic marker of the risk of restenosis is determined by the detection of the G allele in homozygosis (genotype G / G) of this SNP (See Figure 4).
  • the rs875459 Polymorphism (See Figure 3), is located at +7010 with respect to the beginning of the transcription of the CCNB1 gene, which codes for the cyclin B1 protein.
  • the position +7010 corresponds in turn with the base in position 7012 of the sequence of 1 1 160 bp of the CCNB1 gene (Accession number NC_000005 in the GenBank database). Its use as a diagnostic marker of the risk of restenosis after implantation of a stent in a human being is determined by the detection of the G allele in homozygosis (G / G genotype) of this SNP (See Figure 4).
  • step b) of the method further comprises determining the genotype of the rs228241 1 (SNP5) polymorphism of the CCNA1 gene, as defined in Figure 3.
  • the Polymorphism rs228241 1 (SNP5), (See Figure 3), is located at +7733 with respect to the start of the transcription of the CCNA1 gene, which codes for the Cyclin A1 protein, also a positive regulator of the cell cycle (Santamar ⁇ a and Ortega, " Cyclins and
  • Position +7733 corresponds in turn to the base at position 7735 of the 10376 bp sequence of the CCNA1 gene (Number of access NC_000013 of the GenBank database.) Its use as a diagnostic marker of the risk of restenosis after stent implantation in a human being, is determined by the detection of the T allele in homozygosis or heterozygosis (TT or CT genotypes), in a codominance model, or the detection of the G allele in homozygosis in a dominance model (GG genotype), of this SNP (See figure 4).
  • step b) of the method further comprises determining the genotype of the rs733590 (SNP6) polymorphism of the CDKN1 A gene, as defined in Figure 3.
  • the rs733590 Polymorphism (SNP6), (See Figure 3), is located in the promoter region, at -1284 of the start of the transcription of the CDKN1A gene, which codes for the p2i protein K ⁇ p1 / C ⁇ p1 !
  • the base in position 57 of the sequence of 10907 bp of the CDKN1 A gene (Accession number: AF497972 of the GenBank database). Its use as a diagnostic marker of the risk of restenosis after stent implantation in a human being, includes the detection of the T allele in homozygosis (TVT genotype), both in a dominant and codominant model, of this SNP (See Figure 4).
  • Figure 1 1 shows the 6 nucleotide sequences (SEQ ID NO 1-6) adjacent to the 6 SNPs (SNP1-SNP6), according to information recorded in the public GenBank database ("National Center of Biotechnology Information”). NCBI). The two polymorphic variants of each SNP are shown in brackets.
  • the method can be applied to DNA obtained from different patient samples, such as saliva, blood or leukocytes purified from blood.
  • the genotyping of the SNPs object of this invention is used in the development of a diagnostic kit for the risk of restenosis after stent implantation.
  • the most appropriate methodologies for the determination of SNPs are mini-sequencing (use of probes prior to polymorphisms and extension with fluorescently labeled ddNTPs to visualize them in an automatic sequencer); The quantitative PCR (amplification of the region where each polymorphism is found and identify them either by different types of probes, or by dissociation curves); The PCR and restriction digestion (use as primers in the PCR reaction modified oligonucleotides to create restriction sites to amplify the region where the polymorphism is and digestion with the restriction enzyme appropriate for viewing with an automatic sequencer, agarose gels, etc.); and the allele-specific amplification and visualization in a sequencer, agarose gels, etc.
  • the methodology of dissociation curves has been used by means of the "high resolution melting curves" system, in which the DNA of the region where the polymorphisms of interest are located is amplified and analyzed the dissociation curves in a quantitative thermal cycler. It is a simple, fast and reliable methodology, consisting of amplification with suitable oligonucleotides of the region containing the polymorphisms, the latter being subsequently identified by dissociation curves obtained by subjecting the product obtained to a temperature ramp according to the characteristics of the system used This allows simple and reliable diagnostic tests.
  • the kit for carrying out the method of the invention comprising a set of oligonucleotides and reagents suitable for the determination of the genotype of a polymorphism of the CCNB1 gene, selected from SNP1, SNP2, SNP3 , SNP4, and their combinations.
  • the pair of oligonucleotides (primers) used for the genotyping of SNP1 has the sequences SEQ ID NO 7 (sense) and SEQ ID NO 8 (antisense) (See table 3).
  • the pair of oligonucleotides used for the genotyping of SNP2 has the sequences SEQ ID NO 9 (sense) and SEQ ID NO 10 (antisense) (See table 3).
  • the pair of oligonucleotides used for the genotyping of SNP3 has the sequences SEQ ID NO 1 1 (sense) and SEQ ID NO 12 (antisense) (See table 3).
  • the oligonucleotide pair used for the genotyping of SNP4 has the sequences SEQ ID NO 13 (sense) and SEQ ID NO 14
  • the kit may further include oligonucleotides suitable for genotyping of SNP5, of the CCNA1 gene.
  • the oligonucleotides used have the sequences SEQ ID NO 15 (sense) and 16 (antisense) (See table 3).
  • the kit may also include oligonucleotides suitable for genotyping of SNP6, of the CDKN1 A gene.
  • the oligonucleotides used have the sequences SEQ ID NO 17 (sense) and 18 (antisense) (See table 3) .
  • Another main aspect of the invention refers to the use of one or more of the polymorphisms SNP1, SNP2, SNP3, SNP4 and, optionally, SNP5 and SNP6, as defined in Figure 3, as risk markers of a individual suffering from restenosis after stent implantation.
  • Plasma levels of total cholesterol, HDL cholesterol (fraction associated with high density lipoproteins), LDL cholesterol (fraction associated with low density lipoproteins) and triglycerides were determined by enzymatic techniques.
  • the glomerular filtration rate estimated feGFR was calculated using the formula derived from the MDRD study ("Modified of Diet in Renal Disease"). Chronic renal disease was considered when the eGFR was less than 60 ml / min / 1 .73m 2 .
  • Plasma samples were taken from the patients before the percutaneous coronary intervention. All samples were collected in tubes with trisodium citrate as anticoagulant and placed on ice immediately. At the maximum period of one hour after the extraction, blood samples were centrifuged at 4000 rpm (1400g) for 20 minutes and the plasma was collected and stored in aliquots at - 80 0 C until analysis.
  • MLD minimum luminal diameter
  • LAD anterior descending left artery
  • LCx circumflex left artery
  • RCA right coronary artery.
  • 47 SNPS located in 8 human genes regulating the cell cycle were analyzed, including proliferation activators (cyclin A1, E1, B1, and D1) (See Figure 1) and cell growth suppressors (p21, p27, p57, and p53) (See figure 2).
  • Figure 1 shows the 25 SNPs analyzed for the cell cycle activating genes and the protein that encode in brackets: CCNA1 (Cyclin A1), CCNE1 (Cyclin E1), CCNB1 (Cyclin B1) and CCND1 (Cyclin D1).
  • the "Polymorphism” column includes the position and the alleles associated with said polymorphisms. The position of the polymorphism is shown with respect to the start of gene transcription, identified as
  • the polymorphism that is found before the start of transcription is specified with a negative number and with a positive number when it is located at a later position.
  • the "Location” column the situation of the polymorphism with respect to the functional structure of the gene is represented.
  • the "promoter region” location specifies that the polymorphism is located in the regulatory region of the gene transcript located before the start of transcription (+1).
  • the “Exon” location specifies that the polymorphism is located in the coding region of the gene.
  • the "Intron” location specifies that the polymorphism is located in a non-coding intronic region of the gene.
  • the UTR 3 'and UTR 5' locations specify that the polymorphism is located in a sequence not translated in the 3 'or 5' region, respectively.
  • Figure 2 shows the 22 SNPs analyzed for the cell cycle inhibitor genes and the protein that encode in brackets: CDKN1A (p21 Kip1 / Cip1), CDKN1 B (p27 Kip1 / Cip1), CDKN1 C (p57 Kip1 / Cip1) v TP53 (p53).
  • Genotyping of the 47 SNPs was performed on samples of purified DNA from circulating leukocytes of 284 patients undergoing stent implantation, of which 168 were not affected by restenosis and 1,16 suffered from this disease. (Defining as restenosis a reduction in the internal diameter of the lumen of the vessel greater than 50% with respect to the lumen of the segment immediately adjacent to the intervened area, after Angiographic evaluation carried out in the period of 6 to 9 months after the intervention).
  • Figure 3 summarizes the 6 SNPs that showed statistically significant association with the risk of restenosis after stent implantation.
  • Figure 4 shows the results of the logistic regression analysis using the SNPStat program (SoIe, Wink, VaIIs, Iniesta and Moreno, "SNPStats: a web tool for the analysis of association studies", Bioinformatics 2006, 22, 1928-9 ) of SNPs associated with risk of restenosis after stent implantation and corrected for age and sex.
  • the LightCycler 480 Scanning software and the LightCycler 480 High Resolution Melting Master kit were used to detect the polymorphisms and genotyping of the samples.
  • the kit mixture contained the LightCycler 480 Resoüght fluorophore, which binds homogeneously to the double strand of DNA and thanks to its chemical characteristics can be used in high concentrations without inhibiting the amplification reaction.
  • the formation of the amplified fragments was monitored. Samples with variations in their sequence were distinguished by discrepancies in the fusion curves. Using this technique it was possible to differentiate between homozygous and heterozygous samples and even between wild and mutant homozygotes.
  • the melting temperature was indicated around 62 ° C and the size of the amplicons between 100-250 bps.
  • the High Resolution the LightCycler® 480 Master kit from Roche Applied Science was used.
  • the mixture was 2X and contained FastStart Taq DNA polymerase and LightCycler 480 ResoLight fluorophore in the reaction buffer without MgCl 2 . This mixture is compatible with the DMSO addition to improve the amplification of sequences rich in GC.
  • FastStart Taq DNA polymerase is a chemically modified thermostable enzyme that shows no activity at temperatures up to 75 ° C. The enzyme is activated only at high temperatures, where the primers cannot be nonspecifically bound to the sequence.
  • Table 4 lists the reagents used in each amplification reaction, the initial and final concentrations and the necessary volumes.
  • Table 5 shows the conditions for the amplification reaction after the optimization of different parameters.
  • the estimated time of the trial was 75 min for the PCR and 15 min for the denaturation curve (High Resolution Melting).
  • the reaction can be done in a conventional thermocycler and then read in a LightCycler 480 system.
  • a microliter of a standard sample was added to each well Wild homozygous genotype for each polymorphism and the denaturation step was taken. In this way it was possible to distinguish clearly between the two homozygotes.
  • the LightCycler® 480 Gene Scanning Software was used to determine heteroduplex structures in the samples by analyzing the experimental data generated using the LightCycler® 480 High Resolution Melting system.
  • the software analyzed the shapes of the individual curves and grouped the samples with a similar fusion curve.
  • the fusion curves of SNP1 and SNP2, respectively, are observed in Figures 12 and 13.
  • the two fragments of the CCNB1 gene that contained both polymorphisms were amplified in different human genomic DNA samples using the "LightCycler 480 High Resolution Melting Master” kit and analyzed by the "LightCycler 480 Scanning” software.
  • This software detects differences in the fusion curves, result of the differences between variations in the sequence of the PCR products and grouping the samples according to each genotype. Both genotypes clearly distinguish each genotype, especially homozygous variants (red and green).
  • Figures 14, 15, 16 and 17 show the normalized fusion curves, using the same methodology described in the previous paragraph, for the rest of the polymorphisms studied: the SNP3 (figure 14) and SNP4 (figure 15) polymorphisms of the CCNB1 gene.
  • SNP5 polymorphism of the CCNA1 gene (figure 16) and SNP6 of the CDKN1 A gene (figure 17).
  • NF-Y and AP-1 binding sites for the nucleotide sequences containing the T and C alleles of the SNP1 and SNP2 polymorphisms respectively.
  • the study of the DNA binding activity of the NF-Y and AP-1 transcriptional factors to the corresponding allelic variants was carried out by means of the EMSA technique.
  • SNP2 did not predict such a binding site.
  • the data obtained in the study confirmed a higher AP-1 DNA binding activity when the C allele of SNP2 in position -475 is present in the sequence with respect to the sequence containing the T allele corresponding to the same polymorphism (See figure 10) .
  • EMSA radioactive marking of the probe was performed by incubating 1 pmol of the double-chain oligonucleotides, at 65 ° C for 10 min in a final volume of 10 ⁇ l_ to destabilize the possible secondary structures. It was then cooled rapidly on ice and 1 ⁇ l_ T4-polynucleotide kinase and 1 ⁇ L of [ ⁇ 32 P] -dATP (1 OmCiAnL) was added by incubating the tidal reaction at 37 ° C for 30 min. The reaction was stopped on ice, the probe was purified on a Sephadex G-50 column and brought to a final volume of 100 ⁇ L.
  • Figure 6 shows the detailed relationship of the double chain oligonucleotides used as probes for EMSA assays.
  • sequence the sequences of the two complementary chains of each probe are shown. The detailed description of the sequence contained in the probe is shown in the column
  • the proteins of the soluble nuclear fraction of human cell nuclear extracts (3 ⁇ g) were pre-incubated for 10 min on ice in a final volume of 17 ⁇ L of EMSA Buffer (Tris-HCl pH: 7.8 mM 20, 5% glycerol, 3mM MgCI2, KCI 6OmM, 0.5mM EDTA, 0.1 mM DTT, 50 ⁇ g / mL poly (d (1C)), then 1 ⁇ l of radiolabeled double stranded oligonucleotide probe was added and incubated for 30 min on ice.
  • EMSA Buffer Tris-HCl pH: 7.8 mM 20, 5% glycerol, 3mM MgCI2, KCI 6OmM, 0.5mM EDTA, 0.1 mM DTT, 50 ⁇ g / mL poly (d (1C)
  • the gels were dried under vacuum at a temperature of 80 ° C for 2 hours and analyzed by autoradiography (See Figures 7- 10) For the competition trials an exc was added that of double chain oligonucleotides not radioactively labeled during the preincubation phase, before the addition of the radioactively labeled probe.
  • the test was performed by incubating 10 fmoles of the probes, NF-Ycons, SNP1-T and SNP1-C radiolabeled and extracts of the soluble nuclear fraction of HeLa cells (3 ⁇ g, 12 ⁇ g and 12 ⁇ g of protein, respectively) .
  • the samples were run on polyacrylamide gel and the DNA-protein complexes were determined by autoradiography.
  • the controls of the binding reaction were incubated in the absence of nuclear extract (Lanes 1, 5 and 9).
  • the supershift tests were carried out with the pre-incubation for 30 minutes with the anti-NF-YB and anti-CREB-ll antibodies (the latter used as a specificity control).
  • Figure 8 shows how an excess of SNP1-T probe, but not SNP1-C, competes the DNA binding activity associated with the NF-Y sequence of the NF-Ycons probe.
  • the competition test was performed using the EMSA technique performed by incubating 10 fmoles of the NF-Ycons probe radiolabelled with 3 ⁇ g of protein extract of the soluble nuclear fraction of HeLa cells and an excess of the probes not radioactively labeled (probe "cold").
  • the non-radioactively labeled probes used in competition trials are (the excess is shown in brackets): NF-Ycons (Lane 3: 100x), NF-Ymut (Lane 4: 100x), SNP1 -T (Lane 5 : 100x; Lane 6: 300x; Lane 7: 900x), and SNP1 -T (Lane 8: 100x; Lane 9: 300x; Lane 10: 900x).
  • the samples were run on polyacrylamide gel and the DNA-protein complexes were visualized by autoradiography.
  • Figure 9 shows how an excess of SNP1-T probe, but not SNP1 -C, competes the DNA binding activity associated with the NF-Y sequence of the -30 / -10 region of the CCNB1 human gene promoter.
  • the analysis of the activity of the NF-Y binding sequence of the region -27 / -17 of the CCNB1 promoter is shown
  • NF-Y probe (-30 / -10) competed with an excess of the "cold” probes SNP1 -T and SNP1 - C.
  • the competition study was carried out using the EMSA technique incubating 10 fmoles of the radioactively labeled NF-Y probe (-30 / -10), 8 ⁇ g of protein extract of the soluble nuclear fraction of HeLa cells and an excess of the "cold" NF-Y (-30 / -10) probes ( Lane 3: 20x; Lane 4: 60x), SNP1-T (Lane 5: 20x; Lane 6: 60x), and SNP1 -C (Lane 7: 20x; Lane 8: 60x). The samples were run on polyacrylamide gel and the DNA-protein complexes were visualized by autoradiography.
  • Figure 10 shows how an excess of SNP2-C probe (polymorphic variant with the C allele of SNP2) competes more effectively with the DNA binding activity associated with the AP-1 consensus probe (AP-1 cons), with respect to Ia SNP2-T probe (polymorphic variant with the T allele of SNP2).
  • the test was carried out by means of the EMSA technique by incubating soluble nuclear extract of cells derived from human osteosarcoma ("Human Bone Osteosarcoma Epithelial CeIIs", U2OS) and the AP-1 probe cons radioactively labeled.
  • the competition experiments were performed by incubating an excess of 25 times the AP-1 probe (Lane 3), 25 to 200 times the SNP2-C probe (Lanes 4-7) and 25 to 200 times the SNP2-T probe (Lanes 8 -1 1), not radioactively marked.
  • the figure shows a representative EMSA of a total of five.
  • the relative band intensity of the DNA-protein complexes in each EMSA analyzed independently was quantified by means of a computerized image analysis ⁇ "Metamorph software") and the values are represented in the graph as mean ⁇ SEM.
  • the statistical analysis of the results was performed using a one-way ANOVA and a Bonferroni multiple comparison test. Comparisons with respect to the control (without competitor) are represented as: * p ⁇ 0.05, ** p ⁇ 0.01.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

La presente invención contempla un método para la determinación del riesgo de un individuo de sufrir reestenosis tras la implantación de un stent basado en el análisis de una muestra para determinar el genotipo en al menos un polimorfismo de base única (SNP) seleccionado entre rs350099, rs350104, rs164390 y rs875459, en el gen CCNB1. y, opcionalmente de rs228241 1 y/o rs733590, en los genes CCNA1 y CDKN1 A, respectivamente, donde la presencia de determinados alelos en alguno de estos polimorfismos es indicativa del riesgo de sufrir reestenosis.

Description

MARCADORES GENÉTICOS DEL RIESGO DE SUFRIR REESTENOSIS
CAMPO DE LA INVENCIÓN
La presente invención tiene su aplicación dentro del sector sanitario, en el campo de Ia
Biología Molecular. En concreto, esta invención está dirigida a un método de diagnóstico del riesgo de sufrir reestenosis tras revascularización mediante implantación de stent basado en Ia detección de polimorfismos de base única (SNPs).
ANTECEDENTES DE LA INVENCIÓN
El tratamiento más frecuentemente utilizado en clínica para Ia revascularización de vasos afectados de arteriosclerosis es Ia angioplastia percutánea transluminal (APCT). Un proceso patológico frecuentemente asociado a esta intervención es Ia reestenosis, consistente en Ia reoclusión excesiva del vaso intervenido. La reestenosis tiene un elevado impacto sanitario y socio-económico, pues obliga a repetir Ia APCT o a someter al paciente afectado a terapias alternativas de revascularización (por ejemplo, "by-pass" aortocoronario). En comparación con Ia lesión ateromatosa nativa, caracterizada por un lento desarrollo (típicamente a Io largo de décadas), Ia lesión reestenótica suele crecer durante los primeros 4-12 meses después de Ia APCT
(Serruys, Kutryk and Ong, "Coronary-artery stents", N Engl J Med 2006, 354, 483-95). Actualmente más del 90% de las APCT utilizan endoprótesis metálicas de soporte denominadas stents que aumentan Ia seguridad del procedimiento de intervención y han reducido las tasas de reestenosis a un 15-30%, comparado con tasas del 25-50% típicamente asociadas a APCT convencional {Serruys, Kutryk and Ong, "Coronary- artery stents", N Engl J Med 2006, 354, 483-95, Andrés, "Control of vascular cell proliferation and migration by cyclin-dependent kinase signalling: new perspectives and therapeutic potential", Cardiovasc Res 2004, 63, 11-21). Las tasas de reestenosis se reducen aún más con el uso de stents liberadores de fármacos.
La reestenosis es un proceso multifactorial en el que intervienen diversos tipos celulares, principalmente plaquetas, monocitos/macrófagos, células endoteliales (CEs), y células musculares lisas (CMLs). Se acepta que el crecimiento de Ia lesión reestenótica, también llamada lesión neoíntima, es un proceso iniciado por el daño mecánico que provoca Ia implantación del stent (Andrés, "Control of vascular cell proliferation and migration by cyclin-dependent kinase signalling: new perspectives and therapeutic potential", Cardiovasc Res 2004, 63, 11-21, Costa and Simón, "Molecular basis of restenosis and drug-eluting stents", Circulation 2005, 111, 2257-73). La fase aguda inicial de Ia reestenosis supone una activación plaquetaria y trombosis localizada, acompañada del reclutamiento de monocitos, neutrófilos y linfocitos circulantes en Ia superficie arterial dañada. Estos tipos celulares desencadenan una respuesta inflamatoria crónica caracterizada por Ia activación de las CMLs residentes en Ia túnica media, las cuales adoptan un fenotipo "sintético" caracterizado por cambios morfológicos, expresión de isoformas embrionarias de proteínas contráctiles, alta capacidad de respuesta a estímulos de crecimiento y quimiotácticos, y síntesis abundante de matriz extracelular. Una plétora de factores quimiotácticos y mitogénicos producidos por las células de Ia lesión neointima provoca una primera fase proliferativa de las CMLs de Ia media y su migración hacia Ia lesión, seguida por una segunda respuesta hiperplásica de las CMLs de Ia lesión neoíntima [Andrés, "Control of vascular cell proliferation and migration by cyclin-dependent kinase signalling: new perspectives and therapeutic potential", Cardiovasc Res 2004, 63, 11-21, Costa and Simón, "Molecular basis of restenosis and drug-eluting stents", Circulation 2005, 111, 2257-
73). La resolución de Ia inflamación y cicatrización de Ia lesión vascular en etapas posteriores de Ia APCT va acompañada de Ia restauración del fenotipo contráctil de las CMLs de Ia neoíntima y cambios en Ia composición de Ia matriz extracelular que se asemeja más a Ia pared arterial no dañada. Como se ha indicado anteriormente, si Ia reestenosis es excesiva reaparecen los síntomas clínicos obligando a una nueva intervención revascularizante.
Entre los reguladores de Ia hiperplasia de Ia neoíntima identificados en estudios animales y humanos se incluyen factores trombogénicos (por ejemplo, el factor tisular, receptor de Ia trombina), moléculas de adhesión celular (por ejemplo, VCAM, ICAM,
LFA-1 , Mac-1 ), transductores de señales (por ejemplo, PI3K, MEK/ERK), factores de transcripción (por ejemplo, NF-κB, E2F, AP-1 , c-myc, c-myb, YY1 , Gax), proteínas reguladoras del ciclo celular (por ejemplo, pRb, p21 , p27, CDK2, CDC2, ciclina B1 , PCNA), factores de crecimiento (por ejemplo, PDGF-BB, TGFβ, FGF, IGF, EGF, VEGF), citoquinas inflamatorias (por ejemplo, TNFα), factores de quimiotaxis (por ejemplo, CCR2, MCP-1 ), y metaloproteasas (por ejemplo, Ia MMP-2, MMP-9).
El carácter esencialmente hiperproliferativo de Ia reestenosis ha generado un gran interés en el estudio del papel que pueden jugar en este proceso patológico los genes reguladores del ciclo celular. En mamíferos, el ciclo celular se regula positivamente por holoenzimas compuestos por una subunidad catalítica denominada quinasa dependiente de ciclina (CDK, cyclin-dependent kinase) y una subunidad reguladora denominada ciclina (Ekholm and Reed, "Regulation of G(1) cyclin-dependent kinases in the mammalian cell cycle", Curr Opin CeII Biol 2000, 12, 676-84). La activación secuencial de las CDK/ciclinas permite diversos eventos de fosforilación de substratos celulares implicados en Ia proliferación celular. Por otro lado, existen proteínas inhibidoras de CDKs/ciclinas denominadas CKIs (CDK inhibitors), las cuales se subdividen en las subfamilias CIP/KIP (p21 , p27 y p57) e INK4 (p15, p16, p18, y p19). La acumulación de CKIs en respuesta a estímulos anti-mitogénicos provoca Ia inhibición reversible de los complejos CDK/ciclina. La importancia de estas moléculas en el desarrollo de Ia lesión neoíntima se ha puesto de manifiesto gracias a estudios de expresión y experimentos de terapia génica. Así, el análisis de lesiones vasculares obstructivas inducidas por daño mecánico en modelos animales y humanos de angioplastia ha revelado alteraciones en Ia expresión de genes reguladores del ciclo celular (por ejemplo, CDKs, ciclinas, CKIs, p53, pRb), y numerosos estudios en animales experimentales han demostrado que Ia inactivación de CDKs y ciclinas (por ejemplo, ciclina B, CDK2, CDK1 ), o Ia sobreexpresión de supresores de crecimiento
(por ejemplo p21 , p27, pRb, p53) inhibe el desarrollo de lesiones vasculares obstructivas tras angioplastia {Andrés, "Control of vascular cell proliferation and migration by cyclin-dependent kinase signalling: new perspectives and therapeutic potential", Cardiovasc Res 2004, 63, 11-21, Nabel, "CDKs and CKIs: molecular targets for tissue remodelling", Nat Rev Drug Discov 2002, 1, 587-98, Dzau, Braun-Dullaeus and Sedding, "Vascular proliferation and atherosclerosis: new perspectives and therapeutic strateg íes", Nat Med 2002, 8, 1249-56). Numerosos abordajes terapéuticos de carácter sistémico para Ia prevención o tratamiento de Ia reestenosis que mostraron resultados alentadores en modelos animales no han dado resultados satisfactorios en ensayos clínicos. Sin embargo, Ia reciente introducción de los stents liberadores de drogas antiproliferativas (ST-DA) ha revolucionado Ia cardiología intervencionista. Cabe destacar el uso de stents liberadores de sirolimus (también llamado rapamicina o rapamune) y de paclitaxel (también llamado taxol), fármacos lipofílicos que tienen como diana Ia ruta final común de Ia proliferación celular, el ciclo de Ia célula eucariota. Estos dispositivos liberan dosis elevadas del fármaco de un modo localizado en Ia pared arterial dañada y su uso ha reducido muy significativamente las tasas de reestenosis {Costa and Simón, "Molecular basis of restenosis and drug-eluting stents", Circulation 2005, 111, 2257-73, Wessely, Schomig and Kastrati, "Sirolimus and Paclitaxel on polymer-based drug-eluting stents: similar but different", JAm CoII Cardiol 2006, 47, 708-14). Por este motivo, actualmente en Europa se implantan 2 ST-DAs de cada 3 stents implantados {Baz, Mauri, Albarran and Pinar, "[Spanish Cardiac Catheterization and Coronan/ Intervention Registry. 16th
Official Report of the Spanish Society of Cardiology Working Group on Cardiac Catheterization and Interventional Cardiology (1990-2006)]", Rev Esp Cardiol 2007, 60, 1273-89). Entre los inconvenientes del uso de ST-DA respecto a los stents convencionales destacan su elevado coste (2-3 veces superior) y Ia necesidad de prolongar el tratamiento antiplaquetario para evitar eventos adversos asociados a trombosis tardía (revisado en Lázaro y de Mercado, "Stents recubiertos de fármacos: eficacia, efectividad, eficiencia y evidencia", Revista Española de Cardiología 2004, 57, 608-12).
Debido al elevado impacto sanitario y socio-económico de Ia reestenosis, resultaría de gran utilidad disponer de biomarcadores que pudieran cuantificarse de un modo reproducible, fiable y costo-efectivo en pacientes necesitados de revascularización. La posibilidad de estimar el riesgo de reestenosis en estos pacientes podría ayudar a tomar decisiones terapéuticas, por ejemplo, implantación de stent versus "by-pass" ortocoronario, o uso de stent convencional versus ST-DA (más caros y con riesgo aumentado de trombosis tardía). Los polimorfismos de base única (SNP: single nucleotide polymorphism) son variantes genéticas presentes por millones a Io largo del genoma humano. En los últimos años se han identificado SNPs en diversos genes humanos que se asocian con Ia susceptibilidad a desarrollar reestenosis, incluyendo el gen del receptor beta2- adrenérgico, CD14, factor de estimulación de colonias (CSF: colony stimulating factor), eotaxina, caspasa-1 , receptor P2RY12, interleuquina-10 que han mostrado asociación con mayor o menor riesgo de sufrir reestenosis (Monraats et al. "Inflammation and apoptosis genes and the risk of restenosis after percutaneous coronary intervention", Pharmacogenet Genomics 2006, 16, 747-754; Monraats et al. "Interleukin 10: a new risk marker for the development of restenosis after percutaneous coronary intervention ",
Genes Immun 2007, 8, 44-50; Monraats et al. "Genetic inflammatory factors predict restenosis after percutaneous coronary interventions", Circulation 2005, 112, 2417-25; Rudez et al. "Platelet receptor P2RY12 haplotypes predict restenosis after percutaneous coronary interventions", Hum Mutat 2008, 29, 375-80).
Sin embargo, hasta el momento no se ha descrito ningún tipo de asociación genotipo- fenotipo que relacione SNPs en genes reguladores del ciclo celular con mayor o menor riesgo de desarrollar reestenosis.
Los autores de Ia presente invención, tras una importante labor de investigación, han identificado diferentes SNPs en diversos genes reguladores del ciclo celular con potencial diagnóstico del riesgo de sufrir reestenosis. Concretamente, han identificado los SNPs rs164390, rs350099, rs350104, rs875459, en el gen CCNB1 (proteína ciclina B1 ); rs228241 1 , en el gen CCNA1 (proteína ciclina A1 ) y rs733590, en el gen CDKN1A (proteína p21 Kip1/Cip1 ) como marcadores de diagnóstico del riesgo de sufrir reestenosis.
Estos marcadores constituyen un avance muy importante en Ia toma de decisiones terapéuticas. Por ejemplo, los pacientes con bajo riesgo relativo de reestenosis podrían recibir un stent convencional, mientras que el uso de ST-DA (más caros y con mayor riesgo de trombosis tardía) podría limitarse a los pacientes con mayor riesgo. En base a estos hallazgos, los autores de Ia invención han desarrollado un método para determinar el riesgo de reestenosis tras Ia implantación de un stent basado en Ia detección de estos 6 SNPs como marcadores de diagnóstico de dicho riesgo. Asimismo, han desarrollado un kit para llevar a cabo dicho diagnóstico.
BREVE DESCRIPCIÓN DE LAS FIGURAS
FIG.1 : Tabla resumen de los 25 polimorfismos analizados en genes de ciclinas.
FIG.2: Tabla resumen de los 22 polimorfismos analizados en genes supresores de crecimiento celular.
FIG.3: Tabla resumen de los 6 SNPs asociados de forma estadísticamente significativa con riesgo de reestenosis tras Ia implantación de un stent.
FIG.4: Tabla de los resultados del análisis de regresión logística utilizando el programa SNPStat de los SNPs asociados con riesgo de reestenosis tras Ia implantación de un stent.
FIG.5: Esquema de Ia localización de los SNPs rs350099 (SNP1 ) y rs350104 (SNP2) y
Ia secuencia de unión a NF-Y (NF-Y bs) en el promotor del gen CCNB1 humano,
FIG.6: Relación de sondas utilizadas en los ensayos de movilidad electroforética retardada (" Electrophoretic Mobility ShiftAssaf, EMSA).
FIG.7: Ensayo de EMSA resultado de Ia incubación de las sondas NF-Ycons, SNP1 -T y SNP1 -C marcadas radiactivamente y extractos de Ia fracción nuclear soluble de células humanas derivadas de cáncer cervical (HeLa). Los ensayos de "supershift" (super-retardo) se realizaron mediante Ia incubación con los anticuerpos anti-NF-YB y anti-CREBII (este último utilizado como control de especificidad). FIG.8: Ensayo de competición realizado mediante Ia técnica de EMSA resultado de Ia incubación de extractos de Ia fracción nuclear soluble de células humanas derivadas de cáncer cervical (HeLa) con Ia sonda NF-Y cons marcada radiactivamente y un exceso de los oligonucleótidos de doble cadena NF-Ycons, NF-Ymut, SNP1 -T y SNP1 - C no marcadas radiactivamente.
FIG.9: Ensayo de competición realizado mediante Ia técnica de EMSA resultado de Ia incubación de extractos de Ia fracción nuclear soluble de células humanas derivadas de cáncer cervical (HeLa) con Ia sonda NF-Y (-30/- 10) marcada radiactivamente y un exceso de los oligonucleótidos de doble cadena NF-Y (-30/-10), SNP1 -T y SNP1 -C no marcadas radiactivamente.
FIG.10: a) Ensayo de competición realizado mediante Ia técnica de EMSA resultado de Ia incubación de extractos de Ia fracción nuclear soluble de células epiteliales de osteosarcoma humano ("Human Bone Osteosarcoma Epithelial CeIIs", U2OS) con Ia sonda AP-1 cons marcada radiactivamente y un exceso de los oligonucleótidos de doble cadena AP-1cons, SNP2-C y SNP2-T no marcadas radiactivamente, b) Intensidades relativas de los complejos ADN-proteína de una media de cinco EMSAs y el análisis estadístico mediante ANOVA de un factor y corrección de Bonferroni, *p<0.05, **p<0.01 , intensidad de banda en ensayo con competidor versus intensidad de banda sin competidor.
FIG.11 : Secuencias de nucleótidos adyacentes a los 6 SNPs que muestran asociación estadísticamente significativa con riesgo de reestenosis tras Ia implantación de un stent.
FIG.12: Curvas de disociación del SNP1 . a) Representación de las curvas normales y alteradas por Ia presencia del polimorfismo (en función de Ia temperatura), b) Representación de Ia diferencia entre curvas normales y alteradas por Ia presencia del polimorfismo (en función de Ia temperatura). Las diferencias en las curvas de disociación son resultado de las diferencias entre variaciones en Ia secuencia de los productos de PCR, agrupándose las muestras en función de cada genotipo. FIG.13: Curvas de disociación del SNP2. a) Representación de las curvas normales y alteradas por Ia presencia del polimorfismo (en función de Ia temperatura), b) Representación de Ia diferencia entre curvas normales y alteradas por Ia presencia del polimorfismo (en función de Ia temperatura). Las diferencias en las curvas de disociación son resultado de las diferencias entre variaciones en Ia secuencia de los productos de PCR, agrupándose las muestras en función de cada genotipo.
FIG.14: Curvas de disociación del SNP3. a) Representación de las curvas normales y alteradas por Ia presencia del polimorfismo (en función de Ia temperatura), b) Representación de Ia diferencia entre curvas normales y alteradas por Ia presencia del polimorfismo (en función de Ia temperatura). Las diferencias en las curvas de disociación son resultado de las diferencias entre variaciones en Ia secuencia de los productos de PCR, agrupándose las muestras en función de cada genotipo.
FIG.15: Curvas de disociación del SNP4. a) Representación de las curvas normales y alteradas por Ia presencia del polimorfismo (en función de Ia temperatura), b) Representación de Ia diferencia entre curvas normales y alteradas por Ia presencia del polimorfismo (en función de Ia temperatura). Las diferencias en las curvas de disociación son resultado de las diferencias entre variaciones en Ia secuencia de los productos de PCR, agrupándose las muestras en función de cada genotipo.
FIG.16: Curvas de disociación del SNP5. a) Representación de las curvas normales y alteradas por Ia presencia del polimorfismo (en función de Ia temperatura), b) Representación de Ia diferencia entre curvas normales y alteradas por Ia presencia del polimorfismo (en función de Ia temperatura). Las diferencias en las curvas de disociación son resultado de las diferencias entre variaciones en Ia secuencia de los productos de PCR, agrupándose las muestras en función de cada genotipo.
FIG.17: Curvas de disociación del SNP6. a) Representación de las curvas normales y alteradas por Ia presencia del polimorfismo (en función de Ia temperatura), b)
Representación de Ia diferencia entre curvas normales y alteradas por Ia presencia del polimorfismo (en función de Ia temperatura). Las diferencias en las curvas de disociación son resultado de las diferencias entre variaciones en Ia secuencia de los productos de PCR, agrupándose las muestras en función de cada genotipo.
OBJETO DE LA INVENCIÓN
Es objeto de Ia invención un método para Ia determinación del riesgo de un individuo de sufrir reestenosis tras Ia implantación de un stent basado en el análisis de una muestra para determinar el genotipo en al menos un polimorfismo de base única (SNP) seleccionado entre rs350099, rs350104, rs164390 y rs875459, en el gen CCNB1 . y, opcionalmente de rs228241 1 y/o rs733590, en los genes CCNA1 y CDKN1 A. respectivamente, donde Ia presencia de determinados alelos en alguno de estos polimorfismos, tal y como se indica más abajo, es indicativa del riesgo de sufrir reestenosis.
Es asimismo objeto de Ia invención un kit para llevar a cabo dicho método que comprende un set de sondas y reactivos adecuados para Ia determinación del genotipo de los polimorfismos citados.
Finalmente, es objeto de Ia invención el empleo de uno o más de los polimorfismos citados, rs350099, rs350104, rs164390, rs875459 y, opcionalmente, rs228241 1 y rs733590, como marcadores del riesgo de un individuo de sufrir reestenosis tras Ia implantación de un stent.
DESCRIPCIÓN DE LA INVENCIÓN
En un aspecto principal de Ia invención se contempla un método para Ia determinación del riesgo de un individuo de sufrir reestenosis tras Ia implantación de un stent que comprende: a) obtener el ADN genómico de una muestra del individuo; b) analizar el ADN de Ia muestra para determinar el genotipo de al menos un polimorfismo de base única (SNP) en el gen CCNB1 . seleccionado entre rs350099 (SNP1 ), rs350104
(SNP2), rs164390 (SNP3) y rs875459 (SNP4), tal y como se definen en Ia figura 3, donde Ia presencia de determinados alelos en alguno de estos polimorfismos, tal y como se definen a continuación, es indicativa del riesgo de sufrir reestenosis (Ver figura 4).
En una realización preferida, el paso b) comprende analizar el ADN de Ia muestra para determinar Ia combinación de genotipos de los polimorfismos SNP1 y SNP2.
El Polimorfismo rs350099 (SNP1 ) (Ver figura 3), está localizado en Ia región promotora, a -957 del inicio de Ia transcripción del gen CCNB1 , que codifica para Ia proteína ciclina B1 , un regulador positivo esencial para Ia proliferación celular en varios contextos fisiopatológicos {Santamaría and Ortega, "Cyclins and CDKS in development and cáncer: lessons from genetically modified mice", Front Biosci 2006, 11, 1164-88), incluyendo el desarrollo de Ia lesión neoíntima inducida por daño vascular mecánico (Moríshita, Gibbons, Kaneda, Ogihara and Dzau, "Pharmacokinetics of antisense oligodeoxyríbonucleotides (cyclin B1 and CDC 2 kinase) in the vessel wall in vivo: enhanced therapeutic utility for restenosis by HVJ-liposome delivery", Gene 1994, 149,
13-9). La posición -957 se corresponde a su vez con Ia base en posición 36 de Ia secuencia de 1 172 pares de bases (pb) del gen CCNB1 (número de acceso U22364 en Ia base de datos GenBank). Su uso como marcador diagnóstico de riesgo de sufrir reestenosis tras implantación de stent en un ser humano, viene determinado por Ia detección del alelo T en homocigosis (genotipo T/T) de este SNP (Ver figura 4).
Además, los autores de Ia presente invención, en Ia secuencia con el alelo T, han identificado una secuencia (CCAAT) que constituye un sitio de unión específico para el factor transcripcional NF-Y (Ver figuras 7-9)).
El factor de transcripción NF-Y, a través de su unión a dos secuencias cis-reguladoras localizadas en Ia región -150 a +182 del promotor del gen CCNB1 humano, es esencial para su activación transcripcional en células con elevada tasa proliferativa (Sciortino, Gurtner, Manni, Fontemaggi, Dey, Sacchi, Ozato and Piaggio, "The cyclin B1 gene is actively transcribed during mitosis in HeLa cells", EMBO Rep 2001 , 2, 1018-23, Fariña, Manni, Fontemaggi, Tiainen, Cenciarelli, Bellorini, Mantovani, Sacchi and Piaggio,
"Down-regulation of cyclin B1 gene transcription in terminally differentiated skeletal muscle cells is associated with loss of functional CCAAT-binding NF-Y complex", Oncogene 1999, 18, 2818-27).
La figura 5 muestra un esquema de Ia región promotora del gen CCNB1 humano con Ia localización de los SNPs estudiados mediante el ensayo de EMSA (SNP1 y SNP2). La caja NF- Ybs representa Ia región CCAAT, sitio de unión del factor transcripcional NF-Y, situado en Ia posición -21/-17 del promotor. El inicio de Ia transcripción se designa con el valor +1 y se encuentra representado con Ia flecha curvada.
El polimorfismo rs350104 (SNP2), (Ver figura 3), está localizado en Ia región promotora, a -475 del inicio de Ia transcripción del gen CCNB1 , que codifica para Ia proteína ciclina B1 . La posición -475 se corresponde a su vez con Ia base en posición 519 de Ia secuencia de 1 172 pb del gen CCNB1 (Número de acceso U22364 en Ia base de datos GenBank). Su uso como marcador diagnóstico del riesgo de sufrir reestenosis tras implantación de un sient en un ser humano, viene determinado por Ia detección del alelo C en homocigosis (genotipo C/C) de este SNP (Ver figura 4). Además, los autores de Ia invención han identificado en Ia secuencia con el alelo C un sitio de unión a AP- 1 de mayor afinidad respecto a Ia secuencia con el alelo T (Ver figura 10).
AP-1 es un factor de transcripción ampliamente relacionado con los procesos reguladores de activación de gran cantidad de genes de ciclo celular, incluyendo ciclinas (Shaulian and Karin, "AP-1 in cell proliferation and survival", Oncogene 2001 , 20, 2390-400)
El polimorfismo rs164390 (SNP3), (Ver figura 3), está localizado en Ia posición +102, región 5' no traducida, del gen CCNB1 , que codifica para Ia proteína ciclina B1. La posición +102 se corresponde a su vez con Ia base en posición 104 de Ia secuencia de 1 1 160 pb del gen CCNB1 (Número de acceso NC_000005 en Ia base de datos GenBank). Su uso como marcador diagnostico del riesgo de sufrir reestenosis viene determinado por Ia detección del alelo G en homocigosis (genotipo G/G) de este SNP (Ver figura 4). El Polimorfismo rs875459 (SNP4), (Ver figura 3), está localizado a +7010 respecto del inicio de Ia transcripción del gen CCNB1 , que codifica para Ia proteína ciclina B1 . La posición +7010 se corresponde a su vez con Ia base en posición 7012 de Ia secuencia de 1 1 160 pb del gen CCNB1 (Número de acceso NC_000005 en Ia base de datos GenBank). Su uso como marcador diagnóstico del riesgo de sufrir reestenosis tras implantación de un stent en un ser humano, viene determinado por Ia detección del alelo G en homocigosis (genotipo G/G) de este SNP (Ver figura 4).
En una realización particular, el paso b) del método comprende adicionalmente determinar el genotipo del polimorfismo rs228241 1 (SNP5), del gen CCNA1 , tal y como se define en Ia figura 3.
El Polimorfismo rs228241 1 (SNP5), (Ver figura 3), está localizado a +7733 respecto al inicio de Ia transcripción del gen CCNA1 , que codifica para Ia proteína Ciclina A1 , también un regulador positivo del ciclo celular (Santamaría and Ortega, "Cyclins and
CDKS in development and cáncer: lessons from genetically modified mice", Front Biosci 2006, 11, 1164-88). La posición +7733 se corresponde a su vez con Ia base en posición 7735 de Ia secuencia de 10376 pb del gen CCNA1 (Número de acceso NC_000013 de Ia base de datos GenBank). Su uso como marcador diagnóstico del riesgo de sufrir reestenosis tras implantación de stent en un ser humano, viene determinado por Ia detección del alelo T en homocigosis o en heterocigosis (genotipos TT o CT), en un modelo de codominancia, o bien Ia detección del alelo G en homocigosis en un modelo de dominancia (genotipo GG), de este SNP (Ver figura 4).
En otra realización particular, el paso b) del método comprende adicionalmente determinar el genotipo del polimorfismo rs733590 (SNP6), del gen CDKN1 A, tal y como se define en Ia figura 3.
El Polimorfismo rs733590 (SNP6), (Ver figura 3), está localizado en Ia región promotora, a -1284 del inicio de Ia transcripción del gen CDKN1A, que codifica para Ia proteína p2i Kιp1/Cιp1 ! un regulador negativo del ciclo celular en diversos contextos fisiopatológicos (Massague, "G1 cell-cycle control and cáncer", Nature 2004, 432, 298- 306), incluyendo el desarrollo de Ia lesión neoíntima inducida por daño vascular mecánico {Andrés, "Control of vascular cell proliferation and migration by cyclin- dependent kinase signalling: new perspectives and therapeutic potential", Cardiovasc Res 2004, 63, 11-21, Nabel, "CDKs and CKIs: molecular targets for tissue remodelling", Nat Rev Drug Discov 2002, 1, 587-98). La posición -1284 se corresponde a su vez con
Ia base en posición 57 de Ia secuencia de 10907 pb del gen CDKN1 A (Número de acceso: AF497972 de Ia base de datos GenBank). Su uso como marcador diagnóstico del riesgo de sufrir reestenosis tras implantación de stent en un ser humano, comprende Ia detección del alelo T en homocigosis (genotipo TVT), tanto en un modelo dominante como codominante, de este SNP (Ver figura 4).
En Ia figura 1 1 se muestran las 6 secuencias de nucleótidos (SEQ ID NO 1 -6) adyacentes a los 6 SNPs (SNP1 -SNP6), según información registrada en Ia base de datos pública GenBank ("Nacional Center of Biotechnology Information", NCBI). Las dos variantes polimórficas de cada SNP se muestran entre paréntesis.
El método puede aplicarse a ADN obtenido a partir de distintas muestras de los pacientes, como saliva, sangre o leucocitos purificados a partir de sangre.
El genotipado de los SNPs objeto de esta invención se utiliza en el desarrollo de un kit de diagnóstico del riesgo de sufrir reestenosis tras implantación de stent. Las metodologías más apropiadas para Ia determinación de los SNPs son Ia minisecuenciación (utilización de sondas previas a los polimorfismos y extensión con ddNTPs marcados fluorescentemente para visualizarlos en un secuenciador automático); Ia PCR cuantitativa (amplificación de Ia región donde se encuentra cada polimorfismo e identificarlos bien mediante diferentes tipos de sondas, o bien mediante curvas de disociación); Ia PCR y digestión por restricción (utilización como cebadores en Ia reacción de PCR oligonucleótidos modificados para crear sitios de restricción para amplificar Ia región donde está el polimorfismo y digestión con Ia enzima de restricción apropiada para su visualización con un secuenciador automático, geles de agarosa, etc.); y Ia amplificación alelo-específica y visualización en un secuenciador, geles de agarosa, etc. De forma preferida, para Ia determinación de estos polimorfismos se ha utilizado Ia metodología de curvas de disociación mediante el sistema de "high resolution melting curves", en Ia cual se amplifica el ADN de Ia región donde se encuentran los polimorfismos de interés y se analizan las curvas de disociación en un termociclador cuantitativo. Se trata de una metodología sencilla, rápida y fiable, consistente en Ia amplificación con oligonucleótidos adecuados de Ia región que contiene los polimorfismos, siendo estos últimos posteriormente identificados mediante curvas de disociación obtenidas al someter el producto obtenido a una rampa de temperatura según las características del sistema utilizado. Esto permite desarrollar de forma sencilla y fiable las pruebas diagnósticas.
Así, en otro aspecto principal de Ia invención se contempla el kit para llevar a cabo el método de Ia invención que comprende un set de oligonucleótidos y reactivos adecuados para Ia determinación del genotipo de un polimorfismo del gen CCNB1 , seleccionado entre SNP1 , SNP2, SNP3, SNP4, y sus combinaciones.
En una realización preferida, el par de oligonucleótidos (cebadores) empleado para el genotipado del SNP1 presenta las secuencias SEQ ID NO 7 (sentido) y SEQ ID NO 8 (antisentido) (Ver tabla 3).
En otra realización preferida, el par de oligonucleótidos empleado para el genotipado del SNP2 presenta las secuencias SEQ ID NO 9 (sentido) y SEQ ID NO 10 (antisentido) (Ver tabla 3).
En otra realización preferida, el par de oligonucleótidos empleado para el genotipado del SNP3 presenta las secuencias SEQ ID NO 1 1 (sentido) y SEQ ID NO 12 (antisentido) (Ver tabla 3).
En otra realización preferida, el par de oligonucleótidos empleado para el genotipado del SNP4 presenta las secuencias SEQ ID NO 13 (sentido) y SEQ ID NO 14
(antisentido) (Ver tabla 3). Opcionalmente, en una realización particular el kit puede incluir además oligonucleótidos adecuados para el genotipado del SNP5, del gen CCNA1 . De forma preferida, los oligonucleótidos empleados presentan las secuencias SEQ ID NO 15 (sentido) y 16 (antisentido) (Ver tabla 3).
En otra realización particular, el kit puede incluir además oligonucleótidos adecuados para el genotipado del SNP6, del gen CDKN1 A. De forma preferida, los oligonucleótidos empleados presentan las secuencias SEQ ID NO 17 (sentido) y 18 (antisentido) (Ver tabla 3).
Finalmente, otro aspecto principal de Ia invención se refiere al empleo de uno o más de los polimorfismos SNP1 , SNP2, SNP3, SNP4 y, opcionalmente, SNP5 y SNP6, tal y como se definen en Ia figura 3, como marcadores del riesgo de un individuo de sufrir reestenosis tras Ia implantación de un stent.
EJEMPLOS
Descripción de Ia cohorte de pacientes
Población de pacientes
Durante un periodo de 12 meses, todos los pacientes admitidos en forma consecutiva a Ia Clinica Mediterránea (Ñapóles, Italia) y que cumplieron los siguientes criterios de inclusión fueron incluidos en el estudio: 1 ) intervención coronaria percutánea en una arteria coronaria nativa, 2) tratamiento de una lesión de novo, 3) implante de un stent metálico, y 4) disponibilidad de realizar angiografía coronaria al cabo de 6-9 meses. El comité local de ética aprobó el protocolo del estudio y todos los pacientes firmaron el consentimiento informado.
De los 434 pacientes incluidos en el estudio, solamente se practicó el seguimiento angiográfico a los 6-9 meses a 284 (65%). Estos 284 pacientes representan Ia población de pacientes. Determinaciones bioquímicas
Los niveles plasmáticos de colesterol total, colesterol-HDL (fracción asociada a lipoproteínas de alta densidad), colesterol-LDL (fracción asociada a lipoproteínas de baja densidad) y triglicéridos fueron determinados mediante técnicas enzimáticas. El índice de filtrado glomerular estimado feGFR) fue calculado mediante Ia fórmula derivada del estudio MDRD ("Modificaron of Diet in Renal Disease"). Se consideró enfermedad crónica renal cuando el eGFR era menor a 60 ml/min/1 .73m2.
Muestras de sangre Se extrajeron muestras de sangre venosa de los pacientes antes de Ia intervención coronaria percutánea. Todas las muestras se recogieron en tubos con citrato trisódico como anticoagulante y se colocaron en hielo inmediatamente. En el periodo máximo de una hora después de Ia extracción, las muestras sanguíneas se centrifugaron a 4000 rpm (1400g) durante 20 minutos y el plasma fue recogido y guardado en alícuotas a - 800C hasta su posterior análisis.
Angioplastia coronaria percutánea
Los pacientes recibieron dinitrato de isosorbida (0.1 -0.3 mg) intracoronario antes de los angiogramas inicial y final para conseguir Ia vasodilatación máxima. Las medidas angiográficas se realizaron con un sistema automatizado y computerizado (QCA-CMS versión 3.0, MEDÍS, Leiden, The Netherlands). El seguimiento de Ia reestenosis fue realizado a los 6-9 meses después del implante del stent mediante Ia determinación del diámetro luminar mínimo (MLD). Además se analizaron las siguientes variables: ganancia aguda, definida como Ia diferencia de MLD después de Ia intervención menos el MLD antes de Ia intervención; pérdida tardía, definida como el MLD después de Ia intervención menos el MLD en el tiempo de seguimiento; e índice de pérdida, definido como el cociente medio entre Ia pérdida tardía y Ia ganancia aguda. Los pacientes se clasificaron como no afectados (sin reestenosis) o afectados (con reestenosis) según el grado de estenosis en el tiempo de seguimiento (<50% o ≥50%, respectivamente).
Análisis estadístico Las variables continuas se representan como media±desviación estándar (SD). Las diferencias en valores continuos en los dos grupos (definidos en función de Ia progresión de Ia lesión angiográfica) se analizaron mediante el test de Ia t de Student o el test de Ia U de Mann-Whitney cuando fue apropiado. Las variables categóricas se analizaron mediante el test chi-cuadrado. Los tests fueron realizados de forma bilateral y los datos fueron analizados mediante el programa SPSS para Windows, versión 13.0 (SPSS Inc., Chicago, Illinois).
Tabla 1. Características clínicas de los pacientes con o sin reestenosis tras implantación de stent coronario.
Figure imgf000018_0001
Figure imgf000019_0001
Tabla 2. Características angiográficas de los pacientes con o sin reestenosis tras implantación de stent coronario.
Figure imgf000020_0001
LAD=arteria izquierda descendente anterior; LCx=arteria izquierda circunfleja; RCA=arteria coronaria derecha. En el presente estudio se analizaron 47 SNPS localizados en 8 genes humanos reguladores del ciclo celular, incluyendo activadores de proliferación (ciclinas A1 , E1 , B1 , y D1 ) (Ver figura 1 ) y supresores de crecimiento celular (p21 , p27, p57, y p53) (Ver figura 2).
En Ia figura 1 se muestran los 25 SNPs analizados para los genes activadores de ciclo celular y Ia proteína que codifican entre paréntesis: CCNA1 (Ciclina A1 ), CCNE1 (Ciclina E1 ), CCNB1 (Ciclina B1 ) y CCND1 (Ciclina D1 ). La columna "Polimorfismo" incluye Ia posición y los alelos asociados a dichos polimorfismos. La posición del polimorfismo se muestra respecto al inicio de transcripción del gen, identificado como
Ia base nucleotídica +1. Se especifica con un número negativo el polimorfismo que se encuentra antes del inicio de transcripción y con un número positivo cuando se localiza en una posición posterior. En Ia columna "Localización" se representa Ia situación del polimorfismo respecto a Ia estructura funcional del gen. Más detalladamente, Ia localización "Región promotora", especifica que el polimorfismo se encuentra localizado en Ia región reguladora de Ia transcripción del gen localizada antes del inicio de transcripción (+1 ). La localización "Exón" especifica que el polimorfismo se encuentra localizado en Ia región codificante del gen. La localización "Intrón" especifica que el polimorfismo se encuentra localizado en una región intrónica no codificante del gen. Las localizaciones UTR 3' y UTR 5' especifican que el polimorfismo se encuentra localizado en una secuencia no traducida en Ia región 3' o 5', respectivamente.
En Ia figura 2 se muestran los 22 SNPs analizados para los genes inhibidores de ciclo celular y Ia proteína que codifican entre paréntesis: CDKN1A (p21 Kip1/Cip1 ), CDKN1 B (p27 Kip1/Cip1 ), CDKN1 C (p57 Kip1/Cip1 ) v TP53 (p53).
El genotipado de los 47 SNPs (descrito más adelante) se realizó en muestras de ADN purificado a partir de leucocitos circulantes de 284 pacientes sometidos a revascularización mediante implantación de stent, de los cuales 168 no se vieron afectados de reestenosis y 1 16 sufrieron esta enfermedad (definiéndose como reestenosis una reducción del diámetro interno de Ia luz del vaso superior al 50% con respecto a Ia luz del segmento inmediatamente adyacente a Ia zona intervenida, tras evaluación angiográfica efectuada en el periodo de 6 a 9 meses tras Ia intervención). El análisis estadístico para identificar aquellos polimorfismos que pueden aumentar el riesgo de desarrollar reestenosis se realizó mediante regresión logística utilizando el programa SNPStat {Solé, Guiño, VaIIs, Iniesta and Moreno, "SNPStats: a web tool for the analysis of association studies", Bioinformatics 2006, 22, 1928-9). Del total de 47
SNPs analizados, sólo se observó asociación estadísticamente significativa con mayor riesgo de reestenosis para los SNPs 1 -4, rs164390, rs350099, rs350104, rs875459, en el gen CCNB1 ; SNP5, rs228241 1 , en el gen CCNA1 y SNP6, rs733590, en el CDKN1 A.
La figura 3 resume los 6 SNPs que mostraron asociación estadísticamente significativa con el riesgo a sufrir reestenosis tras implantación de stent.
En Ia figura 4 se muestran los resultados del análisis de regresión logística utilizando el programa SNPStat (SoIe, Guiño, VaIIs, Iniesta and Moreno, "SNPStats: a web tool for the analysis of association studies", Bioinformatics 2006, 22, 1928-9) de los SNPs asociados con riesgo de reestenosis tras Ia implantación de un stent y corregidos por edad y sexo.
Los resultados mostraron que, respecto a SNP1 , los individuos portadores del alelo T en homocigosis (T/T) presentaban un aumento significativo de 1 .74 veces Ia probabilidad de sufrir reestenosis respecto a los individuos portadores del alelo C en homocigosis (C/C) o heterocigosis [CfT) (Ver figura 4).
Respecto a SNP2, los individuos portadores del alelo C en homocigosis (C/C) presentaron un riesgo de sufrir reestenosis aumentado 1.77 veces respecto a los individuos portadores del alelo T en homocigosis (T/T) o heterocigosis (T/C) (Ver figura 4).
Respecto a SNP3, los individuos portadores del alelo G en homocigosis (G/G) presentaban un riesgo de sufrir reestenosis aumentado 1 .81 veces respecto a los individuos portadores del alelo T en homocigosis (TfT) o heterocigosis (G/T) (Ver figura
4).
En relación con SNP4, los individuos portadores del alelo G en homocigosis (G/G) presentaron un riesgo de sufrir reestenosis aumentado 1.78 veces respecto a los individuos portadores del alelo T en homocigosis (TfT) o heterocigosis (G/T). El análisis de regresión logística aplicado al SNP4 tuvo en cuenta los factores reestenosis, sexo, edad y antecendentes familiares de los pacientes analizados (Ver figura 4).
Respecto a SNP5, en un modelo de codominancia, Ia presencia del alelo T en homocigosis (T/T) o en heterocigosis (CfT) respecto al alelo C en homocigosis (C/C) tienen 1.26 y 3.10 veces mayor riesgo de sufrir reestenosis, respectivamente. En un modelo de dominancia, Ia presencia del alelo G en homocigosis (G/G) se asocia con un aumento del riesgo de sufrir reestenosis de 1.78 veces con respecto al alelo T en homocigosis (T/T) o heterocigosis (G/T). El análisis de regresión logística aplicado al SNP5 tuvo en cuenta los factores reestenosis, sexo, edad y tipo de stent implantado en los pacientes analizados (Ver figura 4).
En relación con SNP6, en un modelo de codominancia, Ia presencia del alelo T en homocigosis (TfT) aumentó el riesgo de sufrir reestenosis 1.92 respecto al alelo C en heterocigosis (C/T) y 2.38 veces respecto al alelo C en homocigosis (C/C). En un modelo de dominancia, Ia presencia del alelo T en homocigosis (TfT) aumentó el riesgo de sufrir reestenosis 2.08 veces respecto al alelo C en heterocigosis (T/C) u homocigosis (C/C) (Ver figura 4).
Análisis de los genes
Para Ia detección de los polimorfismos y el genotipado de las muestras se empleó el software LightCycler 480 Scanning y el kit LightCycler 480 High Resolution Melting Master. La mezcla del kit contenía el fluoróforo LightCycler 480 Resoüght, que se une de forma homogénea a Ia doble cadena de ADN y gracias a sus características químicas puede ser utilizado en altas concentraciones sin inhibir Ia reacción de amplificación. Durante los ciclos de Ia reacción de PCR se monitorizó Ia formación de los fragmentos amplificados. Las muestras con variaciones en su secuencia se distinguieron por discrepancias en las curvas de fusión. Al utilizar esta técnica fue posible diferenciar entre muestras homocigotas y heterocigotas e incluso entre homocigotas salvajes y mutantes.
Diseño de cebadores
El diseño de cada pareja de cebadores, empleados en Ia reacción de PCR por gen, se realizó con el programa Primer 3 (Howard Hughes Medical Institute and National Institutes of Health, National Human Genome Research Institute http://frodo.wi. mit.edu/cgi-bin/primer3/primer3_www.cgi) (Ver tabla 3).
En el diseño de los cebadores (Ver tabla 3), Ia temperatura de fusión se indicó alrededor de 62 °C y el tamaño de los amplicones entre 100-250 pbs.
Figure imgf000024_0001
Sentido CTGGGCAGAGATTTCCAGACTC (SEQ ID NO 17) CDKN1A SN P6 rs733590
Antisentido AAAATTGCAGAGGATGGATTGTTC (SEQ ID NO 18)
Reacción de amplificación
Para Ia reacción de amplificación se utilizó el kit High Resolution the LightCycler® 480 Master de Roche Applied Science. La mezcla se encontraba a 2X y contenía ADN polimerasa FastStart Taq y el fluoróforo LightCycler 480 ResoLight en el tampón de reacción sin MgCI2. Esta mezcla es compatible con Ia adición DMSO para mejorar Ia amplificación de secuencias ricas en GC.
La ADN polimerasa FastStart Taq es una enzima termoestable, modificada químicamente, que no muestra actividad a temperaturas de hasta 75 °C. La enzima se activa sólo a altas temperaturas, donde los cebadores no se pueden unir de forma inespecífica a Ia secuencia.
a. Reactivos y Volúmenes.
En Ia tabla 4 se enumeran los reactivos empleados en cada reacción de amplificación, las concentraciones iniciales y finales y los volúmenes necesarios.
Figure imgf000025_0001
b. Condiciones de Ia Reacción.
Para optimizar Ia amplificación de los diferentes fragmentos, se determinaron los mejores parámetros de ciclos térmicos.
La tabla 5 muestra las condiciones para Ia reacción de amplificación tras Ia optimización de diferentes parámetros.
Figure imgf000026_0001
El tiempo estimado del ensayo fue de 75 min para Ia PCR y 15 min para Ia curva de desnaturalización (High Resolution Melting). La reacción se puede hacer en un termociclador convencional y luego leerse en un sistema LightCycler 480. En el caso concreto de los polimorfismos SNP1 , SNP3 y SNP4, tras Ia reacción de Ia amplificación, se añadió a cada pocilio un microlitro de una muestra estándar con genotipo homocigoto salvaje para cada polimorfismo y se procedió al paso de desnaturalización. De este modo se logró distinguir claramente entre los dos homocigotos.
Análisis de los resultados
Se utilizó el Software LightCycler® 480 Gene Scanning para determinar las estructuras heterodúplex en las muestras mediante el análisis de los datos experimentales generados utilizando el sistema LightCycler® 480 High Resolution Melting.
Después de que las muestras fueran amplificadas por PCR y desnaturalizadas para obtener las curvas de fusión, el software analizó las formas de las curvas individuales y agrupó las muestras con una curva de fusión similar.
En las figuras 12 y 13 se observan las curvas de fusión de SNP1 y SNP2, respectivamente. Los dos fragmentos del gen CCNB1 que contenían ambos polimorfismos fueron amplificados en diferentes muestras de ADN genómico humano usando el kit "LightCycler 480 High Resolution Melting Master" y analizado por el software "LightCycler 480 Scanning". Este software detecta diferencias en las curvas de fusión, resultado de las diferencias entre variaciones en Ia secuencia de los productos de PCR y agrupando las muestras en función de cada genotipo. En ambas figuras se distingue claramente cada genotipo, especialmente las variantes homocigotas (rojo y verde). En los paneles (a) se puede ver Ia representación de las curvas normales y alteradas por Ia presencia del polimorfismo (en función de Ia temperatura) mientras que en los paneles (b) se representa Ia diferencia entre curvas normales y alteradas por Ia presencia del polimorfismo (en función de Ia temperatura).
En las figuras 14, 15, 16 y 17 se muestran las curvas de fusión normalizadas, utilizando Ia misma metodología descrita en el párrafo anterior, para el resto de los polimorfismos estudiados: los polimorfismos SNP3 (figura 14) y SNP4 (figura 15) del gen CCNB1 . el polimorfismo SNP5 del gen CCNA1 (figura 16) y el SNP6 del gen CDKN1 A (figura 17). Estudios funcionales asociados a los polimorfismos SN P 1 y SNP2
Debido a Ia localización de los polimorfismos rs350099 (SNP1 ) y rs350104 (SNP2) en el promotor del gen CCNB1 humano, se estudió Ia posibilidad de que los alelos que mostraban una asociación estadísticamente significativa, con un mayor riesgo de reestenosis tras implantación de stent, podrían favorecer Ia unión de factores transcripcionales activadores y/o represores que pudieran modificar Ia actividad transcripcional del gen.
El estudio de las secuencias mediante el uso de Ia base de datos Transfac® 7.0 predijo
Ia existencia de sitios de unión NF-Y y AP-1 para las secuencias nucleotídicas que contenían los alelos T y C de los polimorfismos SNP1 y SNP2 respectivamente. El estudio de Ia actividad de unión a ADN de los factores transcripcionales NF-Y y AP-1 a las variantes alélicas correspondientes se llevó a cabo mediante Ia técnica de EMSA.
Así, el análisis de Ia secuencia con el alelo T del SNP1 predijo Ia existencia de Ia secuencia CCAAT, sitio de unión específico para el factor de transcripción NF-Y. Sin embargo el mismo tipo de análisis para el alelo C del SNP1 no predijo tal sitio de unión.
De acuerdo con estas predicciones, los datos obtenidos en el estudio confirmaron Ia unión eficiente y específica del factor NF-Y a Ia secuencia asociada a Ia presencia del alelo T respecto al alelo C en el SNP1 (Ver figuras 7-9).
Por otra parte, el análisis de Ia secuencia con el alelo C del SNP2 predijo Ia existencia de un sitio de unión AP-1. Sin embargo el mismo tipo de análisis para el alelo T del
SNP2 no predijo tal sitio de unión. Los datos obtenidos en el estudio confirmaron una mayor actividad AP-1 de unión a ADN cuando está presente en Ia secuencia el alelo C del SNP2 en posición -475 respecto a Ia secuencia que contiene el alelo T correspondiente al mismo polimorfismo (Ver figura 10).
Ensayo de Movilidad Electroforética Retardada (Εlectroforetic Mobility Shift-Assay,
EMSA) El mareaje radiactivo de Ia sonda se realizó incubando 1 pmol de los oligonucleótidos de doble cadena, a 65°C durante 10 min en un volumen final de 10 μl_ para desestabilizar las posibles estructuras secundarias. Seguidamente se enfrió rápidamente en hielo y se añadió 1 μl_ T4-polinucleótido quinasa y 1 μL de [γ32P]-dATP (1 OmCiAnL) incubando Ia reacción de mareaje a 37°C durante 30 min. La reacción se detuvo en hielo, se purificó Ia sonda en una columna de Sephadex G-50 y se llevó a un volumen final de 100 μL.
En Ia figura 6 se muestra Ia relación detallada de los oligonucleótidos de doble cadena utilizados como sondas para los ensayos de EMSA. En Ia columna de "Secuencia", se muestran las secuencias de las dos cadenas complementarias de cada sonda. La descripción detallada de Ia secuencia contenida en Ia sonda se muestra en Ia columna
"Descripción". Las secuencias predichas y consenso de unión a NF-Y y AP-1 se encuentran remarcadas en negrita y los alelos de los SNPs se muestran contenidos en las cajas blancas.
Las proteínas de Ia fracción nuclear soluble de extractos nucleares de células humanas (3μg) se preincubaron durante 10 min en hielo en volumen final de 17μL de Tampón de EMSA (Tris-HCl pH: 7.8 20 mM, 5% glicerol, MgCI2 3mM, KCI 6OmM, EDTA 0.5mM, DTT 0.1 mM, 50μg/mL de poli(d(l-C)). A continuación se añadió 1 μl de sonda de oligonucleótido de doble cadena marcada radiactivamente y se incubó durante 30 min en hielo. Finalmente se añadió a cada tubo 1 μl de tampón de carga y las muestras se separaron mediante electroforesis en geles nativos de poliacrilamida al 5%. La separación se llevó a cabo durante aproximadamente 2 horas a 20OmV en tampón TBE 0.5x (preparado a partir de un stock 5X) en un gel al 5% de poliacrilamida (80:1 , archilamida: bisacrilamida) preparado en tampón TBE 0.5X. Los geles se secaron al vacío con una temperatura de 80°C durante 2 horas y se analizaron por autorradiografía (Ver figuras 7-10). Para los ensayos de competición se añadió un exceso de oligonucleótidos de doble cadena no marcados radiactivamente durante Ia fase de preincubación, antes de Ia adición de Ia sonda marcada radiactivamente,. Para los ensayos de supershift (super retardo), previamente a Ia incubación con Ia sonda marcada, se realizó, durante 30 min, una incubación en hielo de 2 μg de anticuerpo específico (anti-NF-YB Santacruz Biotechnology, referencia sc-13045x) o no específico (anti-CREB-W, Santa Cruz Biotechnology, referencia sc-180x) con extracto nuclear La figura 7 muestra Ia identificación de actividad NF-Y asociada a Ia sonda SNP1 -T (variante porlimórfica con el alelo T del SNP1 ) pero no en Ia sonda SNP1 -C (variante polimórfica con el alelo C del SNP1 ), en células HeLa mediante un ensayo de EMSA.
El ensayo fue realizado mediante Ia incubación de 10 fmoles de las sondas, NF-Ycons, SNP1 -T y SNP1 -C marcadas radiactivamente y extractos de Ia fracción nuclear soluble de células HeLa (3μg, 12 μg y 12 μg de proteína, respectivamente). Las muestras fueron corridas en gel de poliacrilamida y los complejos DNA-proteína fueron determinados por autorradiografía. Los controles de Ia reacción de unión se incubaron en ausencia de extracto nuclear (Carriles 1 , 5 y 9). Los ensayos de supershift se realizaron con Ia preincubación durante 30 minutos con los anticuerpos anti-NF-YB y anti-CREB-ll (este último utilizado como control de especificidad).
La figura 8 muestra como un exceso de sonda SNP1 -T, pero no de SNP1 -C compite Ia actividad de unión a ADN asociada a Ia secuencia NF-Y de Ia sonda NF-Ycons. El ensayo de competición se realizó mediante Ia técnica de EMSA realizado mediante Ia incubación de 10 fmoles de Ia sonda NF-Ycons marcada radiactivamente con 3μg de extracto proteico de Ia fracción nuclear soluble de células HeLa y un exceso de las sondas no marcadas radiactivamente (sonda "fría"). Las sondas no marcadas radiactivamente utilizadas en los ensayos de competición son (el exceso se muestra entre paréntesis): NF-Ycons (Carril. 3: 100x), NF-Ymut (Carril. 4: 100x), SNP1 -T (Carril. 5: 100x; Carril. 6: 300x; Carril. 7: 900x), y SNP1 -T (Carril. 8: 100x; Carril. 9: 300x; Carril. 10: 900x). Las muestras fueron corridas en gel de poliacrilamida y los complejos ADN-proteína fueron visualizados por autorradiografía.
La figura 9 muestra como un exceso de sonda SNP1 -T, pero no de SNP1 -C compite Ia actividad de unión a ADN asociada a Ia secuencia NF-Y de Ia región -30/-10 del promotor del gen humano CCNB1 . Más detalladamente, se muestra el análisis de Ia actividad de Ia secuencia de unión a NF-Y de Ia región -27/-17 del promotor de CCNB1
(sonda NF-Y (-30/-10) competido con un exceso de las sondas "frías" SNP1 -T y SNP1 - C. El estudio de competición fue llevado cabo mediante Ia técnica de EMSA incubando 10 fmoles de la sonda NF-Y (-30/-10) marcada radiactivamente, 8μg de extracto proteico de Ia fracción nuclear soluble de células HeLa y un exceso de Ia sondas "frías" NF-Y (-30/-10) (Carril 3: 20x; Carril 4: 60x), SNP1 -T (Carril 5: 20x; Carril 6: 60x), y SNP1 -C (Carril 7: 20x; Carril 8: 60x). Las muestras fueron corridas en gel de poliacrilamida y los complejos ADN-proteína fueron visualizados por autorradiografía.
La figura 10 muestra como un exceso de sonda SNP2-C (variante polimórfica con el alelo C del SNP2) compite de forma más eficaz Ia actividad de unión a ADN asociada a Ia sonda AP-1 consenso (AP-1 cons), respecto a Ia sonda SNP2-T (variante polimórfica con el alelo T del SNP2). El ensayo fue llevado a cabo mediante Ia técnica de EMSA incubando extracto nuclear soluble de células derivadas de osteosarcoma humano ("Human Bone Osteosarcoma Epithelial CeIIs", U2OS) y Ia sonda AP-1 cons marcada radiactivamente. Los experimentos de competición se realizaron incubando un exceso de 25 veces Ia sonda AP-1 (Carril 3), 25 a 200 veces Ia sonda SNP2-C (Carriles 4-7) y 25 a 200 veces Ia sonda SNP2-T (Carriles 8-1 1 ), no marcadas radiactivamente. La figura muestra un EMSA representativo de un total de cinco. La intensidad de banda relativa de los complejos ADN-proteína en cada EMSA analizado indepedientemente se cuantificó mediante un análisis de imagen computerizado {"Metamorph software") y los valores se representan en Ia gráfica como media±SEM. El análisis estadístico de los resultados se realizó mediante ANOVA de un factor y un test de comparación múltiple de Bonferroni. Las comparaciones respecto al control (sin competidor) se representan como: * p<0.05, ** p<0.01.

Claims

REIVINDICACIONES
1. Método para Ia determinación del riesgo de un individuo de sufrir reestenosis tras Ia implantación de un stent que comprende: a) obtener el ADN de una muestra del individuo; b) analizar dicha muestra para determinar el genotipo de al menos un polimorfismo de base única (SNP) seleccionado entre SNP1 , SNP2, SNP3 y SNP4, en el gen CCNB1 . tal y como se definen en Ia figura 3, donde Ia presencia del genotipo TT de SNP1 , del genotipo CC de SNP2, del genotipo GG de SNP3 y del genotipo GG de SNP4, es indicativa del riesgo de sufrir reestenosis.
2. Método, según Ia reivindicación 1 , donde el paso b) comprende determinar el genotipo de los polimorfismos SNP1 y SNP2.
3. Método, según Ia reivindicación 1 , donde Ia muestra de ADN se obtiene de saliva, sangre o leucocitos purificados a partir de sangre.
4. Método, según cualquiera de las reivindicaciones anteriores, que comprende adicionalmente determinar el genotipo del polimorfismo SNP5, del gen CCNA1 , tal y como se define en figura 3, donde Ia presencia del genotipo TT o TC, en un modelo de codominancia, o del genotipo GG, en un modelo de dominancia, es indicativa del riesgo de sufrir reestenosis.
5. Método, según cualquiera de las reivindicaciones anteriores, que comprende adicionalmente determinar el genotipo del polimorfismo SNP6, del gen
CDKN1 A, tal y como se define en Ia figura 3, donde Ia presencia del genotipo TT, es indicativa del riesgo de sufrir reestenosis.
6. Kit para llevar a cabo el método de las reivindicaciones 1 -5 que comprende un set de oligonucleótidos y reactivos adecuados para Ia determinación del genotipo de al menos un SNP del gen CCNB1 , seleccionado entre SNP1 , SNP2, SNP3, SNP4, y sus combinaciones.
7. Kit, según Ia reivindicación 6, donde Ia determinación del genotipo de SNP1 se lleva a cabo mediante el par de oligonucleótidos de secuencias SEQ ID NO 7 y 8.
8. Kit, según Ia reivindicación 6, donde Ia determinación del genotipo de SNP2 se lleva a cabo mediante el par de oligonucleótidos de secuencias SEQ ID NO 9 y 10.
9. Kit, según Ia reivindicación 6, donde Ia determinación del genotipo de SNP3 se lleva a cabo mediante el par de oligonucleótidos de secuencias SEQ ID NO 1 1 y 12.
10. Kit, según Ia reivindicación 6, donde Ia determinación del genotipo de SNP4 se lleva a cabo mediante el par de oligonucleótidos de secuencias SEQ ID NO 13 y 14.
1 1 . Kit, según Ia reivindicación 6, que comprende adicionalmente oligonucleótidos adecuados para Ia determinación del genotipo de SNP5 del gen CCNA1 .
12. Kit, según Ia reivindicación 1 1 , donde Ia determinación del genotipo de SNP5 se lleva a cabo mediante el par de oligonucleótidos de secuencias SEQ ID NO 15 y 16.
13. Kit según Ia reivindicación 6, que comprende adicionalmente oligonucleótidos adecuados para Ia determinación del genotipo de SNP6 del gen CDKN1 A.
14. Kit, según Ia reivindicación 13, donde Ia determinación del genotipo de SNP6 se lleva a cabo mediante el par de oligonucleótidos de secuencias SEQ ID NO 17 y 18.
15. Empleo de uno o más de los polimorfismos SNP1 , SNP2, SNP3, SNP4 y, opcionalmente, SNP5 y SNP6, tal y como se definen en Ia figura 3, como marcadores del riesgo de un individuo de sufrir reestenosis tras Ia implantación de un stent.
PCT/ES2010/070102 2009-02-24 2010-02-24 Marcadores genéticos del riesgo de sufrir reestenosis WO2010097495A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2753460A CA2753460A1 (en) 2009-02-24 2010-02-24 Genetic markers of the risk of developing restenosis
CN2010800088953A CN102388147A (zh) 2009-02-24 2010-02-24 再狭窄发生风险的遗传标志物
EP10745851A EP2402458A4 (en) 2009-02-24 2010-02-24 GENETIC MARKERS FOR THE RISK OF RESTENOSIS DISEASE
JP2011550613A JP2012521744A (ja) 2009-02-24 2010-02-24 再狭窄発生リスクの遺伝子マーカー

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200900507 2009-02-24
ES200900507A ES2344396B1 (es) 2009-02-24 2009-02-24 Marcadores geneticos del riesgo de sufrir reestenosis.

Publications (1)

Publication Number Publication Date
WO2010097495A1 true WO2010097495A1 (es) 2010-09-02

Family

ID=42543362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070102 WO2010097495A1 (es) 2009-02-24 2010-02-24 Marcadores genéticos del riesgo de sufrir reestenosis

Country Status (6)

Country Link
EP (1) EP2402458A4 (es)
JP (1) JP2012521744A (es)
CN (1) CN102388147A (es)
CA (1) CA2753460A1 (es)
ES (1) ES2344396B1 (es)
WO (1) WO2010097495A1 (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103865986B (zh) * 2012-12-14 2015-10-28 益善生物技术股份有限公司 Cdkn1a基因突变检测特异性引物和液相芯片
TWI803994B (zh) * 2021-09-29 2023-06-01 國立成功大學 評估罹患動脈粥狀硬化相關疾病或病症風險的方法及套組

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1536001A1 (en) * 2002-08-09 2005-06-01 Nagoya Industrial Science Research Institute Method of diagnosing risk of restenosis after coronary angioplasty
WO2005083127A2 (en) * 2004-02-27 2005-09-09 Applera Corporation Genetic polymorphisms associated with stroke, methods of detection and uses thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007131202A2 (en) * 2006-05-04 2007-11-15 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Genomics of in-stent restenosis
CN101078025A (zh) * 2006-12-19 2007-11-28 四川大学华西医院 一种检测copd的snp的pcr试剂盒
KR101571523B1 (ko) * 2007-02-21 2015-11-24 디코드 제네틱스 이에이치에프 심혈관 질환과 연관된 유전적 감수성 변이

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1536001A1 (en) * 2002-08-09 2005-06-01 Nagoya Industrial Science Research Institute Method of diagnosing risk of restenosis after coronary angioplasty
WO2005083127A2 (en) * 2004-02-27 2005-09-09 Applera Corporation Genetic polymorphisms associated with stroke, methods of detection and uses thereof

Non-Patent Citations (25)

* Cited by examiner, † Cited by third party
Title
ANDRES: "Control of vascular cell proliferation and migration by cyclin-dependent kinase signalling: new perspectives and therapeutic potential", CARDIOVASC RES, vol. 63, 2004, pages 11 - 21
BAZ, MAURI, ALBARRAN, PINAR: "Spanish Cardiac Catheterization and Coronary Intervention Registry. 16th Official Report of the Spanish Society of Cardiology Working Group on Cardiac Catheterization and Interventional Cardiology (1990-2006", REV ESP CARDIOL, vol. 60, 2007, pages 1273 - 89
CHA ET AL.: "Association of CCR2 polymorphisms with the number of closed coronary artery vessels in coronary artery disease", CLINICA CHIMICA ACTA, vol. 382, no. 1-2, 24 May 2007 (2007-05-24), pages 129 - 133, XP022095250 *
COSTA, SIMON: "Molecular basis of restenosis and drug-eluting stents", CIRCULATION, vol. 111, 2005, pages 2257 - 73
DZAU, BRAUN-DULLAEUS, SEDDING: "Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies", NAT MED, vol. 8, 2002, pages 1249 - 56
EKHOLM, REED: "Regulation of G(1) cyclin-dependent kinases in the mammalian cell cycle", CURR OPIN CELL BIOL, vol. 12, 2000, pages 676 - 84
FARINA, MANNI, FONTEMAGGI, TIAINEN, CENCIARELLI, BELLORINI, MANTOVANI, SACCHI, PIAGGIO: "Down-regulation of cyclin B1 gene transcription in terminally differentiated skeletal muscle cells is associated with loss of functional CCAAT-binding NF-Y complex", ONCOGENE, vol. 18, 1999, pages 2818 - 27
LAZARO, DE MERCADO: "Stents recubiertos de fármacos: eficacia, efectividad, eficiencia y evidencia", REVISTA ESPANOLA DE CARDIOLOGIA, vol. 57, 2004, pages 608 - 12
MASSAGUE: "G1 cell-cycle control and cancer", NATURE, vol. 432, 2004, pages 298 - 306
MATARIN M. ET AL.: "A genome-wide genotyping study in patients with ischaemic stroke: initial analysis and data release", LANCET NEUROLOGY, vol. 6, no. 5, 12 April 2007 (2007-04-12), pages 414 - 420, XP022026463 *
MONRAATS ET AL.: "Genetic inflammatory factors predict restenosis after percutaneous coronary interventions", CIRCULATION, vol. 112, 2005, pages 2417 - 25
MONRAATS ET AL.: "Inflammation and apoptosis genes and the risk of restenosis after percutaneous coronary intervention", PHARMACOGENET GENOMICS, vol. 16, 2006, pages 747 - 754
MONRAATS ET AL.: "Interleukin 10: a new risk marker for the development of restenosis after percutaneous coronary intervention", GENES IMMUN, vol. 8, 2007, pages 44 - 50
MORISHITA, GIBBONS, KANEDA, OGIHARA, DZAU: "Pharmacokinetics of antisense oligodeoxyribonucleotides (cyclin B1 and CDC 2 kinase) in the vessel wall in vivo: enhanced therapeutic utility for restenosis by HVJ- liposome delivery", GENE, vol. 149, 1994, pages 13 - 9
NABEL: "CDKs and CKIs: molecular targets for tissue remodelling", NAT REV DRUG DISCOV, vol. 1, 2002, pages 587 - 98
RODRIGUEZ I. ET AL.: "Role of the CDKN1A/p21, CDKN1C/p57, and CDKN2A/pl6 genes in the risk of atherosclerosis and myocardial infarction", CELL CYCLE, vol. 6, no. 5, 1 March 2007 (2007-03-01), pages 620 - 625, XP055013234 *
RUDEZ ET AL.: "Platelet receptor P2RY12 haplotypes predict restenosis after percutaneous coronary interventions", HUM MUTAT, vol. 29, 2008, pages 375 - 80
SAMANI N.J. ET AL.: "Genomewide association analysis of coronary artery disease", THE NEW ENGLAND JOURNAL OF MEDICINE, vol. 327, no. 5, 2 August 2007 (2007-08-02), pages 443 - 453, XP002546308 *
SANTAMARIA, ORTEGA: "Cyclins and CDKS in development and cancer: lessons from genetically modified mice", FRONT BIOSCI, vol. 11, 2006, pages 1164 - 88
SCIORTINO, GURTNER, MANNI, FONTEMAGGI, DEY, SACCHI, OZATO, PIAGGIO: "The cyclin B1 gene is actively transcribed during mitosis in HeLa cells", EMBO REP, vol. 2, 2001, pages 1018 - 23
See also references of EP2402458A4
SERRUYS, KUTRYK, ONG: "Coronary-artery stents", N ENGL J MED, vol. 354, 2006, pages 483 - 95
SHAULIAN, KARIN: "AP-1 in cell proliferation and survival", ONCOGENE, vol. 20, 2001, pages 2390 - 400
SOLE, GUINO, VALLS, INIESTA, MORENO: "SNPStats: a web tool for the analysis of association studies", BIOINFORMATICS, vol. 22, 2006, pages 1928 - 9
WESSELY, SCHOMIG, KASTRATI: "Sirolimus and Paclitaxel on polymer-based drug-eluting stents: similar but different", J AM COLL CARDIOL, vol. 47, 2006, pages 708 - 14

Also Published As

Publication number Publication date
EP2402458A1 (en) 2012-01-04
ES2344396A1 (es) 2010-08-25
EP2402458A9 (en) 2012-06-13
ES2344396B1 (es) 2011-06-24
JP2012521744A (ja) 2012-09-20
CN102388147A (zh) 2012-03-21
EP2402458A4 (en) 2013-01-02
CA2753460A1 (en) 2010-09-02

Similar Documents

Publication Publication Date Title
Gomma et al. The endothelial nitric oxide synthase (Glu298Asp and–786T> C) gene polymorphisms are associated with coronary in-stent restenosis
Fabris et al. Tumor necrosis factor-alpha gene polymorphism in severe and mild-moderate rheumatoid arthritis.
US10337004B2 (en) Methods and compositions for treating a subject with a SMAD7 antisense oligonucleotide
Takeda et al. Clinical outcome for EML4-ALK-positive patients with advanced non-small-cell lung cancer treated with first-line platinum-based chemotherapy
IL200453A (en) Genetic variants associated with cardiovascular disease
KR20220153109A (ko) Rnaset2를 통한 염증성 장 질환의 진단 방법
US20160040239A1 (en) Methods for predicting cardiovascular risks and responsiveness to statin therapy using snps
Maia et al. Effects of BRCA2 cis-regulation in normal breast and cancer risk amongst BRCA2 mutation carriers
Onrat et al. Prevalence of myocardial infarction polymorphisms in Afyonkarahisar, Western Turkey
Lee et al. Association of tumor necrosis factor-α gene polymorphisms with advanced stage endometriosis
JP6353064B2 (ja) Nudt15遺伝子内の単一塩基多型マーカーを含むチオプリン誘導白血球減少症の発病危険予測用組成物
Hartel et al. Increased alternative splicing of the KLF6 tumour suppressor gene correlates with prognosis and tumour grade in patients with pancreatic cancer
Hashemi et al. Association of polymorphisms in PRKCI gene and risk of prostate cancer in a sample of Iranian Population
Guo et al. Genetic variations in the PI3K/AKT pathway predict platinum-based neoadjuvant chemotherapeutic sensitivity in squamous cervical cancer
Fu et al. Mutant single nucleotide polymorphism rs189037 in ataxia-telangiectasia mutated gene is significantly associated with ventricular wall thickness and human lifespan
Rudež et al. Platelet receptor P2RY12 haplotypes predict restenosis after percutaneous coronary interventions
WO2010097495A1 (es) Marcadores genéticos del riesgo de sufrir reestenosis
US8008015B2 (en) Genetic markers of the risk of developing restenosis
Furuyama et al. Single nucleotide polymorphisms and functional analysis of MxA promoter region in multiple sclerosis
KR20180132564A (ko) 항-tnf 제제에 대한 반응성 예측용 단일염기다형성 마커 조성물 및 이를 이용한 항-tnf 제제에 대한 반응성 예측 방법
KR20130027093A (ko) Klotho 유전자의 단일염기다형을 이용한 심혈관계 질환 예측 방법
Kamal et al. Association of genetic polymorphisms with plasma TFPI level: Boon or curse for DVT patients–Study from India
Nordskog et al. MMP-1 polymorphic expression in aortic endothelial cells: possible role in lesion development in smokers and nonsmokers
WO2002097123A2 (en) Diagnostic methods for cardiovascular disease, low hdl-cholesterol levels, and high triglyceride levels
Dogan et al. Unveiling APOL1 Haplotypes: A Novel Classification Through Probe-Independent Quantitative Real-Time PCR

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080008895.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10745851

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3287/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011550613

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2753460

Country of ref document: CA

Ref document number: 2010745851

Country of ref document: EP