WO2010095464A1 - 低水位差大流量発電装置 - Google Patents

低水位差大流量発電装置 Download PDF

Info

Publication number
WO2010095464A1
WO2010095464A1 PCT/JP2010/001124 JP2010001124W WO2010095464A1 WO 2010095464 A1 WO2010095464 A1 WO 2010095464A1 JP 2010001124 W JP2010001124 W JP 2010001124W WO 2010095464 A1 WO2010095464 A1 WO 2010095464A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
water
valve
water level
opening
Prior art date
Application number
PCT/JP2010/001124
Other languages
English (en)
French (fr)
Inventor
池村正博
Original Assignee
Ikemura Masahiro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ikemura Masahiro filed Critical Ikemura Masahiro
Priority to US13/202,912 priority Critical patent/US20120248777A1/en
Publication of WO2010095464A1 publication Critical patent/WO2010095464A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • F03B13/268Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy making use of a dam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention is a development example of Japanese Patent Application No. 2005-154588.
  • Hydroelectric power generation that uses this water level difference by creating a high water level water source by inflowing high tide and creating a low water level water source by flowing out to low tide.
  • rivers create water sources with different water levels and perform hydroelectric power generation.
  • JP 10-37841 A Japanese Patent Application No. 2005-154588
  • the present invention realizes hydroelectric power generation with a low water level difference, low cost, high efficiency, and large flow rate.
  • Tank only indicates all applicable tank types of the present invention.
  • the term “said” refers to what precedes the claims. “The” indicates the preceding statement in the claim.
  • Water refers to a liquid.
  • Valves refers to all applicable valves of the present invention.
  • Water supply / drainage valve refers to both a water supply valve and a drainage valve.
  • Water source refers to both high and low water sources.
  • the “airway” indicates all the gas passages, and the “airway valve” indicates a valve provided in the airway.
  • Tank space refers to the portion of gas in the tank. “Water” is also expressed as “water” for a device that can be driven outside the water and at a position lower than the water surface.
  • “Submersible valves” refers to all valves that open and close the water channels of the pressure generator.
  • “Sluice” includes valves.
  • “Lock valve” means that the locking protrusion protrudes into the area that prevents the opening of the submersible valve and closes it. It is a submersible valve characterized in that the power of opening is driven by the water pressure of the water level difference in the water closing part, and the opening is performed with less energy.
  • the “locking protrusion” is a part of the locking valve, and is a part that projects and closes the region that prevents the locking valve from being opened.
  • the “water supply opening / closing plug” closes the drain valve of the corresponding tank, opens the water supply valve, supplies water, and fills the tank with water.
  • the “drain plug” closes the water supply valve of the corresponding tank, opens the drain valve, drains the water, and reduces the tank water.
  • Specific gravity means “mass / volume” in water, which is the original definition of specific gravity, and “weight / volume in water” in the present invention.
  • the “specific gravity valve” is a valve in which the specific gravity of the submersible valve is close to the specific gravity of water, and is a valve that moves with a slight flow of water.
  • the “water source production valve” is a valve that produces a water source of the pressure generating device of the locking valve.
  • a “forced closing valve” is a submersible valve that is double attached to a water supply valve or a drain valve of a pressure generator and can close a runaway water flow.
  • the “runaway water flow” is a water flow in which the lock valve cannot be closed due to the flow when the water supply valve of the high water source and the drain valve of the low water source are opened at the same time.
  • a “valve sensor” is a sensor that detects the open / close state of a valve.
  • crank means that the mutual structure of meshing or bending in the form of locking of the locking valve is closed by supporting the force in the compression direction in a linear arrangement, and the form of releasing the lock breaks the linear arrangement It is a structure that opens with a.
  • “Selective drive” refers to the total capacity of a turbine that has a plurality of communication passages with turbines in a single tank, selects a turbine that converts the work from among the turbines, and can convert the work to the work. It is to obtain energy, and when the pressure is converted from work to work by the turbine, it is set as “valid”, and when it is not converted from pressure to work, it is set as “invalid”. “Aggregating rotational force” means that the rotational forces of a plurality of turbines are aggregated and output as a single rotational force.
  • Communication passage indicates both the input / output air passage and the inter-tank air passage.
  • the “communication valve” is a valve that opens and closes the communication path.
  • the “return airway” is an airway that connects the inlet and the outlet of the turbine.
  • a valve provided in the return air passage is a “return valve”.
  • a valve that switches communication between the return air passage and the communication passage is a “switching valve”.
  • “Rotational coupling” is a structure through which rotational force is transmitted. There are many methods such as shafts, gears, belts, chains, etc., excluding the identification of the structure.
  • the “displacement optimization program” changes the total capacity of the turbine according to the change in pressure due to the water level difference between the tank water level of the first tank to the third tank and the water source on the open side by selective driving. This is a program that equalizes the amount of work that occurs.
  • High pressure generator is a device in which the input / output air paths of multiple sets of third tanks are connected in series. Input / output air paths at both ends of the series connection are used as input / output ports, and each submerged valve generates high pressure. It is a device that generates a high-pressure in series connection that is controlled by the procedure and added to the input / output airway.
  • the “high pressure generation procedure” is an operation procedure of the high pressure generator. By controlling the respective submersible valves of the high pressure generator, the polarity of the third tank set of the set is such that one is full and the other is full. This shows the process of generating this high pressure, which can be operated as a generator of the added pressure by the series connection of the third tanks of this set in the water reduction setting.
  • the "outflow pump procedure” and the “inflow pump procedure” connect the input / output air passage of the outflow tank or the inflow tank to the input / output air passage at one end of the high-pressure generator, This is a process for controlling the pressure and causing the pump operation with the added pressure.
  • Drainage pit is a pit that is connected to the downstream of the river at the same water level as the low-water source, and is lower than the bottom of the downstream of the river, and a tank drain valve is provided in the water of the pit.
  • “Recovery-unnecessary water level difference” means that the water level difference between the water level in the tank and the water source on the open side of the tank or the mutual water level in the third tank of the submerged set is reduced. It shows the difference in water level where energy is reduced and recovery is unnecessary.
  • the “time supply / drainage program” is a program that executes the operation of the submersible valve and airway valve at the estimated time based on the opening time of the tank supply / drainage valve, even if there is no valve sensor and water level sensor. It is possible to electronically control the pressure generator.
  • Pressure load is a device connected to the input / output air passages of the first tank to the third tank and acting by pressure, such as a turbine or a piston.
  • phase difference smoothing program is a program for operating a plurality of first to third tanks in parallel by shifting the period of water supply and drainage of each tank to open and close the submersible valves and reduce the amount of energy generated. It is characterized by doing.
  • the “open airtight” dredging is due to the airtightness of the tank space, which allows this phenomenon to occur when the tank is at the water supply tap and the water level in the tank rises, and at the drainage tap the water level in the tank drops. It shows the state of communication inside and outside the tank. However, when the air passage between tanks is communicated by “opening airtight” from the communication state, “releasing release of airtight” is communication.
  • a low water level water source a high water level water source, a tank placed between the water sources, a water supply valve that is a locking valve opened and closed between the tank and the high water level water source, the tank and the low water level It is equipped with a drain valve that is a lock valve that opens and closes with a water level water source, an input / output air passage that communicates between the tank space and the outside, and serves as an input / output port for pressure.
  • a pressure generating device characterized in that a positive pressure is generated in an output air passage, and a negative pressure is generated in the input / output air passage by a drain opening / closing plug, wherein the locking valve has a locking projection, It is possible to move alternately between the blocking position and the position where opening is possible, and the opening is locked.
  • the above is the first tank of the first configuration, and the first tank is the second configuration.
  • the two tanks are equipped with a turbine in the air passage between the tanks communicating with the tank spaces of both the first tanks.
  • the turbine can be driven in forward rotation by a water supply opening / closing stopper of one second tank and a drain opening / closing stopper of the other second tank of the second tank of the set.
  • the turbine can be driven in reverse rotation by the drain opening / closing stopper of the second tank and the water supply opening / closing stopper of the latter second tank.
  • the subway valve is opened, the input / output air path of the former third tank is positive pressure, The input / output air passage of the latter third tank has a negative pressure.
  • the first tank to the third tank are provided with an electronic control device that controls opening and closing of the submersible valve, and pressure is generated by opening and closing the submersible valve by the electronic control device. Device.
  • the locking specific gravity valve device is characterized in that the locking valves of the first to third tanks have a specific gravity valve structure and are opened and closed with less energy.
  • the submersible valves of the first tank to the third tank have a specific gravity valve structure, and the first specific gravity valve has a movable structure in which the submersible valve is driven in the opening and closing direction and connected to the water, and the movable structure is extended.
  • a counterweight is provided with a pulley or a seesaw, and the underwater valve's underwater weight and the underwater weight are balanced to approximate the underwater specific gravity of the underwater valve to the specific gravity of water.
  • the second specific gravity valve is characterized in that the submersible valve has a hollow structure that approximates the specific gravity of water, and the specific gravity of the submersible valve approximates the specific gravity of water.
  • the specific gravity valve device is characterized in that, by the structure of the valve and the second specific gravity valve, the driving trouble of opening and closing due to its own weight is reduced, and it is movable with a slight water flow.
  • a specific gravity valve drive characterized in that the specific gravity valve device includes a power unit that operates the movable part in a movable part that is driven in the opening and closing direction of the specific gravity valve and is connected to the water, and opens and closes the specific gravity valve with less energy. Device.
  • a single tank of the first tank to the third tank is provided, and both or one of the water supply and drainage valves is provided with a double valve structure forced close valve, and in the case of runaway water flow, the forced close valve is electronically connected. It is a pressure generating device characterized by closing by control.
  • the locking protrusion of the locking structure of the crank is provided at the opening position of the locking valve, and the locking valve is a locking that prevents the opening when the crank of the locking protrusion is straight.
  • the crank locking device is characterized in that the locking valve is unlocked in the form of breaking the crank of the locking projection that can be opened, and the locking valve is locked and unlocked as described above.
  • the locking valve has a device for driving the locking and unlocking of the locking projection connected to the water, and an electronic control device for controlling the driving of the locking and unlocking on the water, the electronic control device using the locking valve It is a valve locking device characterized by locking and unlocking.
  • an underwater channel exhaust valve is provided in a submerged channel between the water surface of the high water level water source and the water surface of the low water level water source.
  • a water supply opening / closing stopper of a third tank that is provided with an underwater passage exhaust passage and communicates with the underwater passage exhaust passage, and that allows the air in the underwater passage to be exhausted by opening the underwater passage exhaust valve.
  • the submerged channel above the water surface of the low water level water source is provided with a submerged channel exhaust channel having a submerged channel exhaust pump, and the submerged channel exhaust pump is driven to It is an exhaust device capable of exhausting air and exhausting air in the underwater passage by the first exhaust device or the second exhaust device.
  • the first tank to the third tank are provided with a water level sensor for measuring the water level in the high water level water source, the low water level water source, and the first tank to the third tank, and based on the data of each water level sensor,
  • a water level sensor for measuring the water level in the high water level water source, the low water level water source, and the first tank to the third tank, and based on the data of each water level sensor,
  • Each of the submersible valves is opened and closed by the electronic control unit.
  • the first tank and the third tank each include a plurality of parallel input / output air passages each having a turbine, and a second pressure generating device.
  • the second tank of the set includes a plurality of parallel tank air passages each having a turbine, and by selectively driving each turbine of the first pressure generating device and the second pressure generating device, This is a selective driving pressure generating device that obtains collective energy and selectively drives each turbine by an electronically controlled displacement optimization program.
  • a clutch is provided to extend the driving of the rotating shaft of each turbine of the selective driving pressure generating device, and a communication valve is provided in the communication passage of the turbine
  • the combined rotational force via the clutch is used as an output, the opening of the communication valve and the rotational coupling of the clutch are interlocked to enable selective driving, and the closing of the communication valve and the opening of the clutch are interlocked to perform selective driving.
  • the rotational shafts of all the turbines of the selective driving pressure generating device are rotationally coupled, all the turbines are provided with return air passages, and the turbine's
  • a communication valve is provided in the communication path, and a return valve is provided in all the return air passages.
  • the opening of the communication valve and the closing of the feedback valve are effective in selective driving because rotational force is generated in the turbine.
  • the turbine is connected to the turbine by the turbine.
  • the third driving force collecting device is rotationally coupled to the rotating shafts of all the turbines of the selected driving pressure generating device, and the turbine is provided with the return air passages.
  • a switching valve is provided for switching communication between the communication passage and communication of the return air passage. Switching between the communication passage and the closing of the return air passage is effective in generating a rotational force in the turbine and enabling selective driving.
  • the communication passage is closed and the communication of the return air passage is switched, so that the turbine idles and the selective drive is invalid.
  • a generator is provided on the rotating shaft, and further, a power storage device for storing the power of the generator and its wiring are provided, and the power storage by the generator is enabled for selective driving, and the power storage disabled by the generator is disabled for selective driving.
  • the first rotational force collecting device At optimum third rotational force set apparatus and a fourth energy collection device, the exhaust amount optimization program of the electronic control, an energy collection apparatus characterized by obtaining energy has been set.
  • the input / output air path at one end of the high-pressure generator and the input / output air path of the first tank are connected, and the water level of the high water level water source from the water of the first tank is configured as an outflow pump.
  • a higher water tank is provided with an outflow pipe provided with a check valve that flows in the push-out direction, and the first tank is used as an outflow tank.
  • An inflow pipe provided with a check valve that flows in the pulling direction is provided in a water tank lower than the water level of the water source, and the first tank is used as an inflow tank.
  • the pump device is characterized in that the pump operation is performed by opening and closing each submerged valve by electronic control according to an inflow pump procedure.
  • the specific gravity valve is a water source production valve, the water source production valve in which water flows in the inflow direction between the tide level and the high water level water source, and the water source production in which water flows in the outflow direction between the tide level and the low water level water source
  • a water source manufacturing apparatus that includes a valve and uses the high water level water source that has flowed water from high tide and the low water level water source that has flowed water to low tide as the water source of the pressure generator.
  • the cross section of the flow path of the water source manufacturing valve is provided with a structure that expands with distance to the sea side, emphasizes the height of the waves applied to the water source manufacturing valve by wave swell, and flows to the water source manufacturing valve
  • a water source head increasing device characterized by increasing a flow rate and increasing a head of the water source.
  • the high pressure water source of the pressure generator installed in the river is a river high water tank, a sluice is provided between the upstream of the river and the high water tank of the river, and a drainage depression is provided at the downstream of the river.
  • the water source device includes the low water level water source, and allows the high water level water to be taken in from the upstream of the river by opening the water gate, which is used as the water source of the pressure generating device.
  • the first to third tanks are provided with the forced closing valve, and the first tank to the third tank are provided with a water level sensor and a water flow sensor. Or when the water level in the third tank is not accompanied by a change in the water level, this is a runaway water flow, and the forced shut-off valve is closed by electronic control to stop the runaway water flow.
  • all the submersible valves of the first to third tanks are provided with the valve sensor, and any one of the first to third tanks is used.
  • the water supply valve and the drain valve are both opened as the first detection, the forced closure valve of the tank is used as the first detection forced closure valve, and the second detection is performed as the second detection.
  • Opening of the submersible valve of three tanks, opening of the water supply valve of one third tank and opening of the drainage valve of the other third tank constitute a second detection.
  • the first detection or the second detection is generated by the valve sensor.
  • the former is the first detection forced closure valve
  • the latter is the second detection forced closure valve.
  • plugging the control a forced closing valve control method characterized by stopping the runaway water flow.
  • a method for discharging air in the underwater passage of the first exhaust device wherein the water supply on / off plug of the third tank communicates with the underwater passage exhaust passage of the underwater passage of the first exhaust device Open the submerged channel exhaust valve of the submerged channel exhaust channel, exhaust the air present in the submerged channel, close the submerged channel exhaust valve after the end of the exhaust, and air in the submerged channel
  • a driving method of the first tank to the third tank wherein the first tank to the third tank are provided with a pressure release valve, and the water level in the tanks of the first tank and the second tank, and the opening side
  • the difference in water level with the water level of the water source is the first water level difference
  • the submersible valve of the third tank of the set is opened
  • the water level difference in the third tank is the second water level difference.
  • the submersible valve of the third tank of the set is closed, and the difference in water level between the water level in the tank and the water source on the open side of either one of the third tanks is defined as a third water level difference.
  • the pressure release method is characterized in that the pressure relief valve is opened by electronic control and the water supply / drainage in the tank is quickly completed. .
  • a method of driving the first tank to the third tank including a method in which a pressure load is provided in a communication path of the first tank to the third tank and an air passage valve is provided.
  • the pressure generating method is characterized in that the submersible valve and the airway valve of the first tank to the third tank are opened and closed by electronic control of a time supply / drainage program based on the stopper time.
  • a driving method of the first tank to the third tank wherein the turbine is provided in the communication path of the plurality of first tanks, the plurality of sets of second tanks, or the plurality of sets of third tanks,
  • the energy of the rotational force of the plurality of turbines is collected, and in the parallel operation of the tanks, the plurality of first tanks, the plurality of second tanks, or the plurality of third tanks
  • the energy recovery method is characterized in that the underwater valve is electronically controlled by a phase difference smoothing program to shift the opening and closing cycle of the underwater valve to reduce the energy spots that can be recovered.
  • a method for driving the selective driving pressure generator wherein the turbines of the plurality of parallel communication paths provided in the first tank to the third tank are provided with an appropriate displacement amount in the selective driving pressure generator.
  • This is an energy recovery method in which the selective drive is performed by electronic control of a computer program and the amount of recoverable energy is reduced by the change in the total capacity of the turbine.
  • the polarity of the set of third tanks in the order of series connection of the high pressure generators is set as a third tank A on one side and a third tank B on the other side. All the submerged valve valves of the high-pressure generator, the airtight opening of all the tanks, the water supply opening / closing plugs of all the third tanks A, and all the third tanks B The drainage opening / closing plugs are closed, all the water supply / drainage valves are closed, and the release state of the above airtightness is set to be ready for high pressure generation, the communication of all the communication passages connected in series, and all the underwater passages By opening the valve, the negative pressure added to the input / output air path of the third tank A at the end of the series connection and the input / output air path of the third tank B at the other end were added.
  • This is a high pressure generation method that generates a positive pressure and uses this as a high pressure generation procedure.
  • the polarity of the set of third tanks in the sequence of the spill pumps connected in series is the third tank B on the spill tank side and the third tank A on the other side.
  • Closing all the subway valves of the spill pump, opening the airtightness of all the tanks, the water supply opening / closing plugs of the spill tank and all the third tanks A, and all the third Perform the drainage open / close valve of tank B, close all the water supply / drainage valves, and release the above-mentioned airtight release, and complete the preparation for pump operation, and the communication of all the communication passages in the series connection,
  • This is an outflow pump control method in which water is sent out from the outflow pipe to a water tank having a water level higher than the water level of the high water level water source, and this is used as an outflow pump procedure.
  • the polarity of the set of third tanks in the order of series connection of the inflow pumps is set such that the inflow tank side is the third tank B and the other side is the third tank A.
  • the water supply open / close valve of the tank B is opened, all the water supply / drainage valves are closed, and the release state of the above airtightness is set to be ready for high pressure generation, the communication of all the communication paths in the series connection, By opening the subway valve,
  • a method for manufacturing the water source of a pressure generator comprising: a water level sensor for detecting a tide level; and a sluice gate that is opened and closed by an electronic control device between the tide level and the water source, and the information of the water level sensor indicates the high water level at a high water level. Opening the sluice gate of the water source, closing the sluice gate of the high water level water source other than at the time of high water level, and information on the water level sensor, opening the sluice gate of the low water level water source at low water level, and at low water level.
  • the water source manufacturing method of manufacturing the water source from the tide level by opening and closing both the sluices by the electronic control device by closing the sluice of the low water level water source.
  • a method for manufacturing the water source of a pressure generator comprising the sluice that is opened and closed by an electronic control device between a tide level and the water source, and the high water level water source in a set high tide time zone in the control by the time of the electronic control device Opening the sluice of the high water level other than the high tide time, closing the sluice of the high water level water source, opening the sluice of the low water level water source during the set low tide time zone, and lowering the low tide other than the low tide time zone
  • the power generation efficiency of the air turbine is advantageous if the hydroelectric power generation is the same.
  • the characteristics of the generator are high-speed rotation and good power generation efficiency.
  • the rotational force of high-speed rotation suitable for the characteristics of the generator can be easily obtained by setting the capacity and load of the air turbine.
  • the water flow is a low-speed flow, so that a water turbine with a large flow rate is required, and energy loss occurs due to the weight of the water turbine.
  • the maintenance cost of the turbine is high.
  • the water level difference of hydroelectric power generation by dam is assumed to be 100m and the tidal difference power generation is assumed to be 2m water level difference, the water level difference is 50 times, and 50 times to make the work equivalent to dam. Is required. It can be said that it is easy to use 50 times the flow rate at the water source by the tide level. Furthermore, there is a characteristic that the tide level fluctuation is twice a day and the water level difference of the water source is recovered.
  • the effects of the present invention are various and very many. The effects and characteristics are listed below. 1. It is a natural energy generator that has great potential for evolution without exhaustion. 2. Because the tide level difference is available, enormous energy can be obtained. 3. A power plant close to the energy consumption area can be installed. 4. Can be installed even at high water level differences. 5. Compared with wind power generation and solar power generation, the amount of power generation can be controlled. 6. A wide range of power generators from large to small are possible. 7. It can be used not only for power generation but also as power (pressure) for the factory. 8. Can be applied to rivers. 9. The water source is applicable to flood damage countermeasures. 10. Can be used in combination with coastal facilities. 11. The water gate equipment for water source production can be used together with the breakwater. 12. It can be installed on a small island. 13. Since the device can be made of concrete, high durability and low cost are possible.
  • the cost can be reduced by extending the life of concrete.
  • Drinking water is made from seawater.
  • Rare metals can be recovered from seawater.
  • the present invention can generate electric power with a slight difference in water level, there are many advantages of installation.
  • the area of land where hydroelectric power generation using rivers can be installed is enormous. Power generation is possible wherever there is a large drop in water flow. In addition, it can generate electricity anywhere on the coast. That is, installation close to the place where power is supplied becomes possible. Wind power generation and solar power generation are unstable in power generation timing, but with low water level difference power generation, the amount of stored water is used, so the power generation amount can be set as required.
  • the present invention is a low-pressure device, an advanced structure is not required, and the control device can be a compact device.
  • the present invention there is a non-powered pump, and an additional high water tank and an additional low water tank are positively produced during the high tide period, and the above additional high water tank and additional low water tank are actively used during the low tide period. It is possible.
  • the water source of the present invention when installed in a river, when heavy rain is predicted, the water source is emptied in advance, and when the river water level reaches the peak, It can function as a river inundation prevention device. Also, the water source by the tide level adjacent to the estuary can have the same function.
  • the upper part of the power generation tank can be a building or the like, and can be used together with a facility, so that a coastal facility or an airfield on the sea can be a power generation device. It also makes it possible to create power plants and factories on small islands that are difficult to operate.
  • the coastal low water level water source can be set in a tidal flat that is considered good for the marine environment.
  • the apparatus can be constructed of inexpensive and highly durable concrete, and no special material is required. Therefore, the apparatus can be easily manufactured.
  • the durability of concrete has been improved in recent years, it is possible to design a highly durable power generator. Since the evaluation calculation of the cost of the power generation device divides the total cost by the useful life, if the durability of the concrete is improved, this power generation device becomes an inexpensive device.
  • seawater circulates as the source of tidal power generation, it can also be used as a resource recovery device for rare metals such as vanadium, titanium, and uranium contained in seawater.
  • the above-mentioned combined device is also a high-value usage, it can be said that the greatest advantage of the present invention is that terrain can be used.
  • terrain can be used.
  • the bays As a tentative example where the effect is close to the maximum, there are two adjacent bays with small entrances. One of the bays is set as a low water source and the other is set as a high water source. If the water level of the high water source is moved to the low water source by the power generation tank, the energy of the bay area will be extracted. Comparing the size of the power generation tank and the bay, even if the power generation tank is very small, it is possible to absorb the energy of the water level difference in the large bay by increasing the number of repetitions of water supply and drainage.
  • the present invention is a promising device because there are inexhaustible energy sources on the sea surface.
  • FIG. 6 is a cross-sectional view in which the water supply / drainage of FIG. 5 is reversed and the turbine is in a reverse rotation state. Sectional drawing of the state which is supplying and draining water for the pressure generation of a 3rd tank.
  • Sectional drawing of the standby state of the pressure generation of a 3rd tank Sectional drawing at the time of installing the underwater path of the 3rd tank on the water. Sectional drawing where the flow runs away from the high water level water source to the low water level water source in the first tank. Sectional drawing with which the forced closing valve of the 1st tank closed. Sectional drawing where the flow runs away from the high water level water source to the low water level water source via the submersible valve in the third tank of the set. Sectional drawing in which the first tank has a high water level. Sectional drawing in which a 1st tank is a middle water level. Sectional drawing of the water level difference which a 1st tank has a low water level and does not need collection
  • FIG. 19 shows the time and pressure waveforms of the individual tanks in FIG. Waveform of time and total work in FIG. Sectional drawing of the small capacity turbine of a 1st tank driving. Sectional drawing of the large-capacity turbine of the first tank driven.
  • FIG. 5 is a cross-sectional view of driving of all turbines in the first tank. Waveform of time and work decrease for each capacity turbine. Selective drive time and total workload waveform.
  • Flow chart of tank control example including water source management
  • Sectional drawing of closure of the specific gravity valve of a uniform water level Sectional drawing of the water level inflow of the high water level water source at the time of high tide.
  • Sectional drawing which comprises a crank by mesh
  • Sectional drawing in which the specific gravity of the submersible valve in the tank was adjusted by a water weight using a shaft.
  • Sectional drawing of a pressure drive structure in which the specific gravity of the submersible valve is adjusted by a water weight by a shaft Sectional drawing of a pressure drive structure in which the specific gravity of the submersible valve is adjusted by a water weight using a wire.
  • Sectional drawing of a gear drive structure in which the specific gravity of the submersible valve is adjusted with a water weight by a shaft Sectional drawing of a wire winding structure in which the specific gravity of a submerged valve is adjusted by a water weight using a wire.
  • Sectional drawing of motor driving on water with specific gravity valve driving structure of gear The block diagram of the electronically controlled water source manufacturing apparatus. Sectional drawing of an outflow pump. Sectional drawing of an inflow pump.
  • FIG. 3 is a cross-sectional view of a newly designed turbine suitable for the present invention according to an angle.
  • the present invention relates to a supplementary device of Japanese Patent Application No. 2005-154588.
  • the tanks of FIGS. 1 to 4 and FIGS. 7 to 9 are used as a power source that drives a pressure load (U1) outside the pressure generator with the pressure generated in the input / output air passage (D1).
  • the tank shown in FIGS. 1 to 9 can obtain a rotational force intermittently by repeatedly supplying and discharging water when a bidirectionally movable turbine is used in the communication path.
  • the first tank (T1) shown in FIGS. 1 to 4 is a basic form of the principle of the present invention.
  • the water source in the figure is very large compared to the tank.
  • the depiction in the figure where the valve is not visible in the flow path indicates the open state of the valve. In the figure, the same water sources drawn separately are connected.
  • the first tank (T1) is disposed between the high water level water source (W1) and the low water level water source (W2).
  • water is supplied by closing the drain valve (S2) and opening the water supply valve (S1), and positive pressure is generated in the input / output air passage (D1) and acts on the pressure load (U1).
  • the operation of this water supply / drainage valve is used as a water supply opening / closing stopper.
  • drainage occurs when the water supply valve (S1) is closed and the drain valve (S2) is opened, and negative pressure is generated in the input / output air passage (D1) and acts on the pressure load (U1).
  • the operation of this water supply / drainage valve is used as a drain open / close stopper.
  • the second tank (T2) in the pair is configured such that the pressure generated in the inter-tank air passage (D2) is 1 unit by the interlocking operation in which the water supply opening / closing stopper and the drain opening / closing stopper are reversed.
  • the turbine (TU1) can be driven at twice the pressure. Then, the turbine (TU1) is driven while the positive and negative pressures are repeatedly reversed by replacing the water supply and discharge valves and the drain switch and plugs of the second tank (T2). This device intermittently obtains rotational force.
  • the third tank (T3) can be supplied and drained in the same manner as the first tank (T1) by closing the submersible valve (S3).
  • One third tank (T3) of the third tank (T3) in the set is depleted, and the other third tank (T3) is full, and all submersible valves (S1, S2, S3) are closed.
  • the input / output air passage (D1) of one third tank (T3) is driven by the pressure of the mutual water level difference in the third tank (T3) of the set. Positive pressure and negative pressure in the other input / output air passage (D1).
  • the input / output air passages (D1) of the third tank (T3) of the set are connected in series, it can be applied as a device for adding pressure as shown in FIGS.
  • the underwater channel (D3) can be disposed at a position higher than the water surface of the low water level water source (W2).
  • W2 low water level water source
  • air may be mixed in the underwater channel (D3), and a device for removing the mixed air is required. This is because if there is air in the underwater channel (D3), a failure occurs in the flow of water.
  • the underwater channel (D3) When the underwater channel (D3) is located higher than the low water level water source (W2) and lower than the high water level water source (W1), the underwater channel (D3) is provided with an underwater channel exhaust valve (V11) ( D6) is provided, the third tank (T3) to which the water is connected is filled with water, and the submersible exhaust valve (V11) is opened to discharge the air. After the discharge of air is completed, the submersible exhaust valve (V11) is closed. Then, there will be no air in the underwater channel (D3), and it will serve as a water channel.
  • the submerged channel exhaust channel (D6) equipped with the submerged channel exhaust pump (TU5) is provided to discharge the air in the submerged channel (D3). It becomes possible to do.
  • the pressure in the input / output air passage (D1) varies depending on the water level in the first tank (T1). That is, the water level difference between the water level (W2) of the water source on the opening side and the tank water level (W3) is proportional to the tank pressure (Pt).
  • FIG. 16 shows a waveform of the relationship between the water level difference and the tank internal pressure (Pt).
  • FIG. 17 shows a waveform when a pressure load is connected instead of the pressure sensor (U2) and the passage of time between the water supply opening / closing stopper and the drain opening / closing stopper is examined.
  • a positive pressure is generated at the time of water supply, and a negative pressure is generated at the time of drainage. Therefore, the waveform (7) is reversed.
  • cycle 1 first tank to cycle 3 first tank (T7, T8, T9) are operated in parallel by electronic control.
  • the cycle is divided into 1/3, and the water supply / drainage valves (S1, S1) of the cycle 1 first tank to cycle 3 first tank (T7, T8, T9)
  • S1, S1 the water supply / drainage valves
  • S2 the work that can be taken out
  • This electronic control program is a phase difference smoothing program.
  • this phase difference smoothing program detects the water level of each water surface with a water level sensor, detects the open / closed state of each submersible valve with a valve sensor, and comprehensively electronically controls the submersible valve based on these information Further, as another method, there is a method executed by a program composed of time based on the water level in the tank estimated by the time from opening of the water supply / drainage valves (S1, S2).
  • FIG. 21 to FIG. 23 show the operation of the turbines (TU7 to TU9) having different capacities by opening / closing the communication valves (V2 to V4) because the tank pressure (Pt) changes at the first tank water level (W3). Is selected to equalize the work amount.
  • the capacity (A, B, C) of the operating turbine is selected, the total capacity of the turbine is changed, and the equalized work of water supply and drainage is obtained.
  • the waveform of FIG. Further, the fact that the end portions of the water supply and drainage in the waveform of FIG. 25 are cut off is due to the operation of the pressure release valve of FIGS. Selecting and driving the above turbine is referred to as selective driving of the turbine.
  • the electronic control program using this method is the displacement optimization program. An apparatus for collecting the work of the turbine is shown in FIGS.
  • ⁇ It is possible to obtain a further smoothed work amount by combining both the phase difference smoothing program and the displacement optimization program.
  • the pressure generator of the present invention is established only by electronic control, and is established by the peripheral devices shown in FIGS. 26 to 29 being attached.
  • the forced closing valve (S5) of FIG. 29 is omitted in FIGS.
  • the valve sensor and the valve driver are used together.
  • Each of the first to third tanks has a step for supplying and discharging water, and a basic example of the step is described below.
  • FIG. 26 an example of steps of continuous operation of electronic control of the first tank (T1) is shown below.
  • the pressure generation point is an input / output air passage (D1), and a pressure load (U1) is connected thereto.
  • the pressure generation point is an input / output air passage (D1), and a pressure load (U1) is connected thereto.
  • the pressure release valve (V1) and drain valve (S2). 2. Positive pressure is generated when the water supply valve (S1) is opened. 3. Open the pressure release valve (V1) due to the water level difference not required for recovery. 4. Water supply completed. 5. Close the pressure release valve (V1) and the water supply valve (S1). 6. When the drain valve (S2) is opened, negative pressure is generated. 7. Open the pressure release valve (V1) due to the water level difference that is not required for recovery. 8. Complete drainage. Repeat steps 9, 1 to 8.
  • FIG. 28 An example of electronic control steps for the third tank (T21, T22) in the set of FIG. 28 is shown below.
  • 1. Close the submersible valve (S3), water supply valve A (S15), and drain valve B (S18). 2. Open both pressure release valves (V0, V1), drain valve A (S16) and water supply valve B (S17). 3. The third tank A (T21) is depleted and the third tank B (T22) is full. 4. Close both the pressure release valves (V0, V1), the drain valve A (S16), and the water supply valve B (S17). This is ready for pressure generation. 5. Opening the submersible valve (S3) generates a positive pressure in the input / output air path A (D7) and a negative pressure in the input / output air path B (D8).
  • FIG. 29 An example of the electronic control step of the forced closing valve (S5) of the third tank (T21, T22) of FIG. 28 equipped with the forced closing valve of FIG. 29 is shown below. 1. Detection of opening of water supply valve A (S15) and drain valve A (S16) at the same time. 2. Detection of simultaneous opening of water supply valve B (S17) and drain valve B (S18). 3. Detection of opening of the water valve (S3), water supply valve A (S15) and drain valve B (S18) at the same time. 4. Detection of simultaneous opening of the submersible valve (S3), drain valve A (S16), and water supply valve B (S17). 5. Close the compulsory closing valve (S5) on the corresponding water supply valve side or drainage valve side detected in 5, 1 to 4.
  • the communication valves (V2 to V4) of the turbines (TU7 to TU9) having a capacity difference are selectively driven.
  • Small capacity turbine (TU7) A
  • medium capacity turbine (TU8) B
  • large capacity turbine (TU9) C
  • the water level difference between the water level in the first tank (W3) and the water source on the opening side is set to “water level 1 to 7” in the descending order, and “water level 8” is set as the recovery unnecessary water level difference.
  • the lower part of the first tank (T1) omitted in the figure is the same as that in FIG.
  • the displacement optimization program executes the example A (1 to 10) of the previous step.
  • the apparatus of FIG. 30 is mounted on the upper part of the three first tanks (T7 to T9) of FIG. 1.
  • the following steps 1 to 3 are executed in the same manner by replacing the water supply and drainage with the period 4/6 to the period 6/6.
  • the first tanks (T7 to T9) whose periods are shifted are operated synchronously while maintaining this period.
  • the total capacity of the turbines (TU7 to TU9) is proportional to the rotational force. If the pressure applied to the turbines (TU7 to TU9) is stopped with a valve and the rotary coupling is disconnected or the turbines (TU7 to TU9) are idled, they are not selectively driven. 31 and 32, it is assumed that the shafts of the turbines (TU7 to TU9) are rotationally coupled to the rotary connecting shaft (31). When any of the turbines rotates, all the turbines (TU7 to TU9) rotate.
  • the return air passage (D10) When the return air passage (D10) communicates, the load applied to the turbine is eliminated, and the selective drive becomes invalid due to idling.
  • the return air passage (D10) When the return air passage (D10) is closed and the input / output air passage (D1) is in communication, pressure is applied to the turbine, rotational force is generated, and selective driving becomes effective.
  • the input / output air path (D1) and the return air path (D10) are switched by switching valves (V5 to V7), thereby enabling selective driving.
  • the input / output air passage (D1) and the return air passage (D10) can be selectively driven by switching the communication valves (V12 to V14) and the feedback valves (V8 to V10) in conjunction with each other. It is.
  • the rotational force of the turbine (TU7 to TU9) is switched in conjunction with the communication valve (V2 to V4) and the electric clutch (28).
  • the selective drive is effective by opening and closing the communication valves (V2 to V4), and the selective drive is disabled by releasing the clutch and closing the communication valves (V2 to V4).
  • the turbine has characteristics such that when the rotation of the turbine is stopped due to the characteristics of the turbine, there is no need for a communication valve for stopping the communication path of the supply and exhaust, and the configuration of the apparatus becomes another configuration. It is. There are various methods for gathering rotational force.
  • valve drivers (8, 22, 24, 25) in FIGS. 26 to 38 indicate drivers that operate electronically controlled valves with a computer, and are configured by relays, semiconductor elements, or the like. .
  • the above control details are as follows: If the water level difference of the water source, the cross-sectional area of the submersible valve opening, and the capacity of the tank and turbine are constant, the water level in the tank is determined by the time from the start of water supply or drainage. Is done. Even if the capacity of the turbine changes, the water level is determined by time if the selected turbine capacity and period are determined. Therefore, even if there is no water level sensor or valve sensor, it is possible to operate this apparatus only by time control.
  • FIG. 35 to FIG. 38 are block diagrams showing the basic configuration of a device that performs electronic control of the first tank to the third tank.
  • a specific gravity valve (S23) is provided in a fluctuating water level environment in which a water level difference occurs, for example, a submerged wall between a tide level and a water source.
  • the specific gravity valve (S23) is provided with a specific gravity adjustment float (S24), and the specific gravity is slightly heavier than water.
  • the specific gravity valve (S23) closes slowly with its own weight, and when there is a slight water flow in the opening direction, the specific gravity valve (S23) is pushed by the flow and opens. For this reason, the specific gravity valve (S23) can be a check valve that reacts with a slight difference in water level.
  • this specific gravity valve (S23) is provided between the water source and the tide level, and the direction of opening is set to the water source side, the water level flows into the highest water level at high tide, and the cap is closed when the highest water level falls, so the high water level water source (W1) Can be manufactured.
  • the direction of opening the specific gravity valve (S23) is set to the tide level side, the water level flows out to the lowest water level at low tide, and the water level is closed when the lowest water level rises, so that a low water level water source (W2) can be produced. That is, this specific gravity valve (S23) serves as a water source production valve.
  • the specific gravity valve (S23) can create the environment of the water source of the first tank to the third tank of the present invention.
  • the specific gravity valve (S23) with adjusted specific gravity shown in FIGS. 39 and 40 can be used for the lock specific gravity valve (S27) for water supply / drainage of FIG.
  • This locking specific gravity valve (S27) has a structure for locking the opening.
  • the locking specific gravity valve (S27) on which the pressure on the high water level is applied is supported by a linear arrangement of the tip of the locking rotary piston (S28) and the locking rotary shaft (S29).
  • the locking specific gravity valve (S27) is unlocked by applying a negative pressure to the locking cylinder (44).
  • This locking specific gravity valve (S27) can be closed by its own weight when the water flow flows in at a high water pressure just by removing the lock, the locking specific gravity valve (S27) is opened, and the water flow stops when the water supply / drainage is completed. is there.
  • a positive pressure is applied to the locking cylinder (44) to drive the locking rotary piston (S28) and lock it.
  • the submersible valve in power generation with a low water level difference according to the present invention cannot obtain large electric power unless it is an opening having a large flow rate. With this locking specific gravity valve (S27), it is possible to configure a submersible valve with a large flow rate.
  • the locking and release by the locking rotary piston (S28) can be driven from the water using the water locking shaft (S26).
  • crank in the present invention means that when two rods are arranged in contact with each other in a straight line, the force is strong against the force in the compression direction from both ends. Is a phenomenon that moves.
  • the bar can have the same effect in other shapes, and excludes the specification of the shape. Since the hydraulic pressure is applied when the locking specific gravity valve (S27) is opened, a large force is applied to the locking structure, and a large amount of work is required for unlocking. If the energy consumption at the time of opening the locking specific gravity valve is reduced, the power generation efficiency of the present invention is improved.
  • FIGS. 49 to 55 show the locking mechanism shown in FIGS. 47 and 48 as a crank structure.
  • the locking structure of the crank locking specific gravity valve (S30) supports the pressure of the water level difference of the crank locking specific gravity valve (S30) by the structure supported by the straight line of the locking protrusion (S33) and the crank locking rotary piston (S35). Is.
  • the crank can be bent and unlocked with a weak force.
  • the locking projection (S33) is driven on the water by the crank water lock shaft (S41) to lock and unlock.
  • crank portion 53 have a structure in which the crank portion is meshed at the time of locking and separated at the time of unlocking. 53 and 54, the crank water lock shaft (S41) is attached to the crank lock specific gravity valve (S30) side, and can be unlocked and locked by driving on the water.
  • the submersible valve (S3) of the submersible channel (D3) of the third tank of the set has a usage method in which the flow is only one direction, but there is also a bidirectional usage method.
  • the locking specific gravity valve (S27) of FIG. 56 can be opened and closed in both directions.
  • the locking specific gravity valve (S27) is locked in both directions to prevent opening, and can be opened and closed in both directions.
  • 61 to 66 of the above structure can be opened and closed by a driving force on water, and the driving device on water is advantageous for maintenance.
  • the fluctuation of the tide level is calculated, and how much the water level fluctuates at which time has already been predicted.
  • the high water level water source (W1) and the low water level water source (W2) can be secured by opening and closing the water source production valves (S54, S55) according to time.
  • the high water level water source (W1) secures the high water level water source (W1) by opening the water source production valve (S54) during the time when the tide level rises and closing the water source production valve (S54) when the tide level is fully raised. Can do.
  • the low water level water source (W2) secures the low water level water source (W2) by opening the water source production valve (S55) at the time when the tide level falls and closing the water source production valve (S55) at the time when the tide level has been lowered. Can do.
  • the water level is measured by a tide level water level sensor, and when the tide level rises above the high water level water source (W1), the water source production valve (S54) is opened. By closing (S54), the high water level water source (W1) can be secured.
  • the water source production valve (S55) is opened, and when the tide level has been lowered, the water source production valve (S55) is closed to secure the water source.
  • it is a water source production valve (S54, S55) in the drawing, the same function is possible in a sluice gate.
  • FIG. 67 shows a structure in which the input / output air paths of the third tank of the two-stage set are connected in series, and the input / output air path at the end of this series connection is connected to the input / output air path of the outflow tank (T25).
  • the third tank A (T21) is filled with water by opening and closing the water supply.
  • the third tank B (T22) is closed and drained to reduce water.
  • the third tank C (T23) is filled with water to open and close.
  • the third tank D (T24) is drained and opened to reduce water.
  • the spill tank (T25) is filled with water by opening and closing the water supply. After the above water supply / drainage is completed, all of the water supply / drainage valves are closed and all of the pressure release valves are closed (release of airtight release). This state is the completion of the preparation of the spill pump.
  • the outflow pipe (D67) can stop the generation of a series of tank pressures.
  • the water is pushed out to the addition high water tank (64) with the pressure added from.
  • This operating procedure is the outflow pump procedure.
  • the above spill pump system is an spill pump.
  • the series connection of the third tanks in FIG. 67 has two stages, but this connection can be increased.
  • the operation procedure of the water supply / drainage valve with the increased connection is a procedure in which the repeated portion of the item for the increased number of third tanks is increased. “h” is the difference in water level between the third tanks in the set.
  • the initial extrusion pressure in the apparatus of FIG. 67 is such that the water level in the tank via the input / output airway valve (V67) becomes atmospheric pressure, the third tank adds 1 h of positive pressure in one set, and the high water level water source It is pushed out from the water surface with a pressure of 2 h.
  • the water level of the added high water level water source (W15) is held by the check valve (S57).
  • the input / output air paths of the third tank of the two-stage set are connected in series, and the input / output air path at one end of the series connection and the input / output air path of the first tank (T1) are connected.
  • the input / output air path at the other end of the series connection is connected to the input / output air path of the inflow tank (T26).
  • the water in the additional low water tank (65) at a position lower than the low water level water source (W2) is obtained by the inflow pipe (D68) provided with the check valve (S58) flowing in the intake direction. It is taken in.
  • the first tank (T1) is filled with water by opening and closing the water supply.
  • the third tank A (T21) is closed and drained to reduce water.
  • the third tank B (T22) is filled with water by opening and closing the water supply.
  • the third tank C (T23) is closed and drained to reduce water.
  • the third tank D (T24) is filled with water by opening and closing the water supply.
  • the inflow tank (T26) is opened and closed with drainage and water is reduced. After the above water supply / drainage is completed, all of the water supply / drainage valves are closed and all of the pressure release valves are closed (release of airtight release).
  • This state is the preparation of the inflow pump.
  • the drainage valve (S2), the inter-tank airway valve (V68, V69), and the submersible valve (S3) of the first tank (T1) which can stop the generation of pressure in the series of tanks, are all opened, Water is drawn from the added low water tank (65) with the negative pressure added from the pipe (D68).
  • the operation procedure excluding the operation of the first tank (T1) is an inflow pump procedure.
  • the inflow pump system excluding the first tank (T1) in FIG. 68 is an inflow pump.
  • the connection of the third tank in the set in FIG. 68 is two stages, but this connection can be increased.
  • the operation procedure of the water supply / drainage valve with the increased connection is a procedure in which the repeated portion of the item for the increased number of third tanks is increased.
  • the first tank (T1) is provided in the first stage as compared with FIG. “h” is the difference in water level between the third tanks in the set. It is assumed that the water level difference between the third tanks of each set is equal.
  • the initial pulling pressure in the apparatus of FIG. 68 is that the water level difference of the first tank (T1) is 1 h, the low water level water source (W2) that is opened (S2) is at atmospheric pressure, and the third tank is A negative pressure of 1 h is added as a set, and the pressure is raised from the surface of the low water level water source by a pressure of 3 h.
  • the water level of the added low water level water source (W16) pulled up is held by the check valve (S58). As shown in FIGS. 69 and 70, the high water tank and the low water tank with large heads can be used as water sources for high pressure and high efficiency power generation.
  • the operation procedure of the high pressure generator is a procedure that excludes the operation of the outflow tank (T25) and the inflow tank (T26) in the outflow pump procedure and the inflow pump procedure, and is a positive pressure generation method in which the outflow pump procedure is added.
  • the above spill pump and spill pump can be used not only for water but also as a device for handling a large amount of liquid.
  • FIG. 71 and FIG. 72 are devices that use water to increase the water level difference of the water source in securing the water source due to the tide level difference.
  • the sea swell is such that the water level changes more when the destination suddenly becomes narrow due to the movement of swell water at the beach.
  • S23 inflow specific gravity valve
  • the water level flows in when the water level at the time of undulation becomes higher, and closes when the water level falls.
  • a higher high water level water source (W1) can be obtained.
  • the bottom of the drainage depression (73) is a lower position than the bottom of the river downstream, and is a depression having a structure in which water is always accumulated.
  • the lock specific gravity valve (S27) is constantly in water, and the performance can be maintained.
  • the power generated by the generator (75) is converted by the rectifier (76). It converts to direct current and charges the battery (77).
  • the charged electric power is converted into an AC power source by a DC / AC converter (U15).
  • the above is a conventional method, but expands the applicability of the present invention as an energy recovery method.
  • a conventional device that rotates by pressure is the structural example of the turbine (TU1) of FIG. 75, but the operating principle is that the stationary rotating blade (TU15) does not start with pressure. This is because the pressure (Pt) is equally applied to the rotation of the rotating blade (TU15). However, once the rotation starts, the flow rate becomes a rotational force, so that it functions as a turbine. Since the rotational direction of the turbine is reversed in the present invention, a device for converting pressure from a stationary state of the turbine into a rotational point force is required.
  • FIG. 76 is devised as an air turbine according to the present invention, and is a rotational force caused by a change in volume of the sealed space (83), so that pressure can be converted into rotational force from a stationary state of the turbine.
  • the turbine two rotating bodies (TU17) are meshed with each other with gears, the rotation shaft has an air supply / exhaust port (TU18), and the sealed space (83) continues to increase (decrease) in volume according to the rotation angle. Therefore, pressure can be converted into rotational force at 360 degrees. That is, it is an important device for the present invention in which the pressure is reversed.
  • the low-pressure pressure generating apparatus of the present invention can obtain a rotational force with high efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

低水位差で大流量の発電を実現する。潮位から一方方向に流れる水門にて、流入する高水位水源と、流出する低水位水源を作る。この水源の間にタンクを置き、高水位からの給水と、低水位への排水の繰返しによる、タンク内圧力でタービンを回転させて発電をする。効率向上の手法として、2基のタンクの間の気路にタービンを設け、給排水が逆の連動で倍の電力を得る。また、並列動作のタンクの給排水の周期をずらすことで電力の斑を解消する。さらに、タンク内水位に対応して、並列駆動の容量差のタービンの選択駆動で均一化した発電量を得る。この装置を大流量の水中弁で開閉すると、大きな電力を得ることが可能になる。比重を水に近づけた水中弁に施錠構造を設け、開栓時に施錠を解除し、水流が止まった給排水終了時に自重で閉栓する弁により、大流量で省エネルギー駆動させるものである。

Description

低水位差大流量発電装置
 本発明は特願2005-154588の展開例である。
 満潮を流入して高水位水源を作り、干潮に流出して低水位水源を作り、この水位差を利用する水力発電である。また、河川でも水位差のある水源を作り、水力発電を行うものである。
 従来、低水位差では、水車は流体摩擦が大きく、大流量を扱うことができなくて、効率やコスト面で実用的な発電装置を作ることができなかった。タンクに付けたエアータービンによる発電において、本出願の少ないエネルギーで駆動する大流量水中弁により大電力の発電装置が可能となるものである。
特開平10-37841 特願2005-154588
 河川では、低水位差の水源を作れる環境は非常に多く存在するため、低水位差で大流量の発電をローコストで実現できれば、利用可能なエネルギーは拡大できることになる。海岸であれば、潮位変動は無尽蔵に存在するために、潮位変動を利用可能なエネルギーにできると、エネルギー源は大規模に拡大できることになる。本発明は低水位差で、ローコストで、高効率で、大流量の水力発電を実現するものである。
 本発明の記載において、以下に用語の定義を設定し本件を明確にするものである。その定義は本発明特有となる定義を含むものである。
 "タンク"のみの表現は、該当する本発明の全ての種類のタンクを示すものである。"前記"とは、記載請求項より前を示すものである。"該"とは、記載請求項内の前記載を示すものである。"水"とは、液体を示すものである。"弁"とは、該当する本発明の全ての弁を示す。"給排水弁"とは、給水弁と排水弁の両方を示すものである。"水源"とは、高水位水源と低水位水源の両方を示すものである。"気路"とは、気体の通路の全てを示すもので、"気路弁"は、この気路に設けられる弁を示す。"タンク空間"とはタンク内の気体の部分を示す。
 "水上"は、水の外部で、且つ、水面より低い位置で駆動可能な装置に対しても"水上"と表現をする。
 "水中弁"とは、圧力発生装置の水中の水路を開閉する、全ての弁を示すものである。また、"水門"は弁を含むものとする。
 "施錠弁"とは、水中弁の開栓を妨げる領域に施錠突起を突出して、閉栓するものであり、開栓の場合は、施錠突起を水中弁の開栓可能な領域に移動し、開栓するもので、開栓の動力は閉水部の水位差の水圧を駆動力とするものであり、少ないエネルギーで開栓することを特徴とする水中弁である。
 "施錠突起"とは施錠弁の一部であり、施錠弁の開栓を妨げる領域に突出して、閉栓する部分である。
 "給水開閉栓"は、該当するタンクの、排水弁を閉じ、給水弁を開き、給水し、該タンクを満水にすることとする。"排水開閉栓"は、該当するタンクの、給水弁を閉じ、排水弁を開き、排水し、該タンクを減水にすることとする。
 "比重"とは、本来の比重の定義の、水中での「質量/体積」を、本発明では「水中での重さ/体積」とする。"比重弁"とは、水中弁の比重を水の比重に近くしてある弁で、僅かの水流で動く弁である。"水源製造弁"とは、施錠弁の圧力発生装置の水源を製造する弁である。
 "強制閉鎖弁"とは、圧力発生装置の給水弁もしくは排水弁に2重に取り付けられ、暴走水流を閉栓できる水中弁である。
 "暴走水流"とは、高水位水源の給水弁と低水位水源の排水弁が、同時に開栓した場合に、流れの勢いで施錠弁が閉栓できい状態の水流のことである。
 "弁センサー"とは、弁の開閉の状態を検知するセンサーである。
 "クランク"とは、施錠弁の施錠の形態の、噛合いもしくは折れ曲りの相互構造が、直線配置で圧縮方向の力を支えて閉栓し、施錠の解除の形態は、該直線配置を崩すことで開栓する構造のことである。
 "選択駆動"とは、単体のタンクに、タービンを有する複数の連通路を備え、その複数のタービンの中から仕事量に変換するタービンを選択し、その仕事量に変換できるタービンの総容量でエネルギーを得ることであり、タービンにより、圧力から仕事量に変換された場合を"有効"とし、圧力から仕事量に変換されない場合を"無効"とする。
 "集合回転力"とは、複数のタービンの回転力を集合させ、1つの回転力として出力することである。
 "連通路" は、入出力気路とタンク間気路の両方を示す。"連通弁"は、連通路を開閉する弁である。"帰還気路"は、タービンの入口と出口を連通する気路である。この帰還気路に設ける弁が"帰還弁"である。該帰還気路と該連通路の連通を切替える弁が"切替弁"である。
 "回転結合"は、回転力が伝わる構造である。シャフト、ギヤ、ベルト、チェンなど多くの手法があり、構造の特定を除外する。
 "排気量適化プログラム"は、選択駆動により、第1タンク乃至第3タンクのタンク内水位と、開栓側の水源の、水位差による圧力の変化に合わせて、タービンの総容量を変化させて、発生する仕事量を均等化するプログラムである。
 "高圧発生装置"とは、複数の組の第3タンクの入出力気路を直列接続した装置で、その直列接続の両端の入出力気路を入出力口とし、それぞれの水中弁を高圧発生手順で制御し、入出力気路に加算された直列接続の高圧を発生させる装置である。 
 "高圧発生手順" とは、高圧発生装置の操作手順であり、該高圧発生装置のそれぞれの水中弁を制御することで、組の第3タンクの組の極性が、一方が満水と、他方が減水の設定で、この組の第3タンクの直列接続の連続により、加算された圧力の発生装置として動作させることが可能であり、この高圧を発生させる工程を示すものである。
 "流出ポンプ手順"と"流入ポンプ手順"は、前記高圧発生装置の、その一方の端の入出力気路に、流出タンクもしくは流入タンクの入出力気路を接続し、水中弁や気路弁を制御し、加算された圧力でポンプ動作をさせる、工程を示すものである。
 "排水くぼみ"とは、低水位水源と同水位で河川下流に水路が繋がり、該河川下流の底より低い位置のくぼみであり、くぼみの水中にタンクの排水弁が設けられるものである。
 "回収不要水位差"とは、タンク内の水位と該タンクの開栓側の水源の水位、もしくは、水中の繋がった組の第3タンク内の相互の水位の、水位差が少なくなり、回収エネルギーが低下した、回収不要な水位差を示すものである。
 "時間給排水プログラム" は、タンクの給排水弁の開栓開始の時間を基準に、水中弁および気路弁の作動を、推定した時間で実行するプログラムであり、弁センサーおよび水位センサーが無くとも、圧力発生装置の電子制御を可能とすることを特徴とする。
 "圧力負荷"は、第1タンク乃至第3タンクの入出力気路に繋がり、圧力により作用させる装置であり、タービンやピストンなどが該当するものである。
 "位相差平滑プログラム"は、複数の第1タンク乃至第3タンクを、個々のタンクの給排水の周期をずらして水中弁を開閉させ、平行運行させるプログラムであり、エネルギーの発生量の斑を少なくすることを特徴とする。
 "気密の開放" は、タンクが給水開閉栓で該タンク内水位が上昇し、また、排水開閉栓で該タンク内水位が降下する、この現象を可能にする、該タンク空間の気密に起因するタンク内外の連通の状態を示すものである。ただし、タンク間気路が、連通状態から"気密の開放"で連通させる場合、"気密の開放の解除"は連通とする。
 上記の用語の定義により、明確された内容によって、以下に課題を解決するための手段を記載する。
 低水位水源と高水位水源と、該水源の間に置かれたタンクと、該タンクと該高水位水源との間で開閉される、施錠弁であることの給水弁と、該タンクと該低水位水源との間で開閉される、該施錠弁であることの排水弁と、タンク空間と外部を連通し、圧力の入出力口となる入出力気路とを備え、給水開閉栓により該入出力気路に正の圧力が発生し、排水開閉栓により該入出力気路に負の圧力が発生することを特徴とする圧力発生装置であり、該施錠弁は、施錠突起が、開栓を妨げる位置と開栓可能な位置への交互の移動が可能で、開栓を施錠するものであり、上記を第1の構成の、第1タンクとし、第2の構成として、上記第1タンクが2基でなり、この両第1タンクのタンク空間を連通するタンク間気路にタービンを備え、これを組の第2タンクとし、該組の第2タンクの、一方の第2タンクの給水開閉栓と、他方の第2タンクの排水開閉栓により、該タービンを順回転で駆動させることが可能であり、さらに、前者の第2タンクの排水開閉栓と、後者の第2タンクの給水開閉栓により、該タービンを逆回転で駆動させることが可能であることを特徴とするものであり、第3の構成として、上記第1タンクが2基でなり、この両第1タンクの水中を連通する、水中路弁を有する水中路を備え、これを組の第3タンクとし、該組の第3タンクの、該給排水弁が全て閉栓され、一方が減水の第3タンクと、他方が増水の第3タンクの状態で、該水中路弁の開栓をすると、前者の第3タンクの入出力気路は正の圧力、後者の第3タンクの入出力気路は負の圧力になることを特徴とするものであり、上記の第1タンク乃至第3タンクに、上記水中弁の開閉を制御する電子制御装置を備え、該電子制御装置による該水中弁の開閉により圧力を発生させることを特徴とする圧力発生装置である。
 前記第1タンク乃至第3タンクの前記施錠弁が、比重弁の構造を備え、少ないエネルギーで開閉することを特徴とする施錠比重弁装置である。
 前記第1タンク乃至第3タンクの前記水中弁が比重弁の構造を備え、第一の比重弁として、該水中弁が開閉方向に駆動され水上に繋がる可動構造を備え、該可動構造の延長が滑車もしくはシーソーで釣合い構造の錘を備え、該水中弁の水中の重量と水上の該錘が均衡することで、該水中弁の水中での比重を水の比重に近似することを特徴とするものであり、第二の比重弁として、該水中弁が水の比重に近似させる中空構造を備え、該水中弁の比重を水の比重に近似することを特徴するものであり、上記第一の比重弁と第二の比重弁との構造により、自重による開閉の駆動障害を低減し、僅かな水流で可動であることを特徴とした比重弁装置である。
 前記比重弁装置が、前記比重弁の開閉方向に駆動され水上に繋がる可動部に、該可動部を作動させる動力装置を備え、少ないエネルギーで該比重弁を開閉することを特徴とする比重弁駆動装置である。
 前記第1タンク乃至第3タンクのタンク単体に付き、前記給排水弁の両方もしくはどちらか一方に、2重の弁構造の強制閉鎖弁を備え、暴走水流の発生の場合、該強制閉鎖弁を電子制御にて閉栓することを特徴とする圧力発生装置である。
 前記施錠弁の開栓を妨げる構造において、該施錠弁の開栓位置に、クランクの施錠構造の前記施錠突起を備え、該施錠弁を、該施錠突起の該クランクが直線で開栓を妨げる施錠で閉栓し、該施錠弁を、開栓可能な該施錠突起の該クランクを崩す形体にして開錠し、上記により該施錠弁を施錠および開錠することを特徴とするクランク施錠装置である。
 前記施錠弁の、前記施錠突起が水上に繋がる施錠及び開錠を駆動する装置を備え、水上にその施錠及び開錠の駆動を制御する電子制御装置を備え、該電子制御装置により、該施錠弁に施錠及び開錠させることを特徴とする弁施錠装置である。
 前記組の第3タンクの前記水中路の、第一の排気装置として、前記高水位水源の水面と、前記低水位水源の水面の、間の高さの水中路に、水中路排気弁を有する水中路排気路を備え、該水中路排気路と連通している第3タンクの給水開閉栓と、該水中路排気弁の開栓により該水中路内の空気を排気することを可能とするものであり、第二の排気装置として、前記低水位水源の水面より上の該水中路に、水中路排気ポンプを有する水中路排気路を備え、該水中路排気ポンプの駆動により該水中路内の空気を排気することを可能とするものであり、上記の第一の排気装置もしくは第二の排気装置により該水中路内の空気を排気することを特徴とする排気装置である。
 前記第1タンク乃至第3タンクが、前記高水位水源と前記低水位水源と該第1タンク乃至第3タンク内の、水位を計測する水位センサーを備え、各該水位センサーのデータに基づいて、前記電子制御装置により各該水中弁を開閉することを特徴とする圧力発生装置である。
 前記第1タンク乃至第3タンクの、第一の圧力発生装置として、前記第1タンク、第3タンクが、個々にタービンを有する複数で並列の入出力気路を備え、第二の圧力発生装置として、前記組の第2タンクが、個々にタービンを有する複数で並列のタンク間気路を備え、上記の第一の圧力発生装置および第二の圧力発生装置の、各タービンの選択駆動により、集合したエネルギーを得るもので、電子制御の排気量適化プログラムより、各タービンの選択駆動をすることを特徴とする選択駆動圧力発生装置である。
 前記選択駆動圧力発生装置の、第一の回転力集合装置として、該選択駆動圧力発生装置の、各タービンの回転軸の駆動の延長にクラッチを設け、該タービンの前記連通路に連通弁を設け、該クラッチを経由した集合回転力を出力とし、該連通弁の開栓とクラッチの回転結合とが連動で選択駆動を有効とし、該連通弁の閉栓とクラッチの開放とが連動で選択駆動を無効とするものであり、第二の回転力集合装置として、該選択駆動圧力発生装置の全ての前記タービンの回転軸を回転結合し、全ての該タービンに帰還気路を設け、該タービンの前記連通路に連通弁と、全ての該帰還気路に帰還弁とを設け、該連通弁の開栓と該帰還弁の閉栓は、該タービンに回転力が発生し選択駆動が有効で、該連通弁の閉栓と該帰還弁の開栓は、該タービンが空転で選択駆動が無効であり、第三の回転力集合装置として、該選択駆動圧力発生装置の全ての前記タービンの回転軸を回転結合し、全ての該タービンに該帰還気路を設け、該連通路の連通と、該帰還気路の連通とを切替える切替弁を設け、該連通路の連通と、該帰還気路の閉栓の切替えは、該タービンに回転力が発生し選択駆動が有効で、該連通路の閉栓と、該帰還気路の連通の切替は、該タービンが空転し選択駆動が無効であり、第四にエネルギー集合装置として、該選択駆動圧力発生装置の全ての前記タービンの回転軸に発電機を設け、さらに、それらの該発電機の電力を貯める蓄電装置と、その配線を設け、発電機による蓄電を選択駆動の有効とし、発電機による蓄電不能を選択駆動の無効とするもので、上記第一の回転力集合装置乃至第三の回転力集合装置及び第四のエネルギー集合装置にて、電子制御の排気量適化プログラムより、集合したエネルギー得ることを特徴とするエネルギー集合装置である。
 複数の前記組の第3タンクの両端の前記入出力気路を繋ぐ、直列接続をし、該直列接続の一方の端の入出力気路と、他方の端の入出力気路の、両方もしくは一方を入出力口とし、高圧発生手順による電子制御により、それぞれの第3タンクの前記水中弁を開閉し、該直列接続の一方の端の入出力気路に加算された正の圧力、他方の入出力気路に加算された負の圧力を発生すること特徴とする高圧発生装置である。
 前記高圧発生装置の一方の端の前記入出力気路と、前記第1タンクの前記入出力気路とを接続し、流出ポンプの構成として、該第1タンクの水中から前記高水位水源の水位より高い水槽に、押し出し方向に流れる逆止弁が設けられた流出配管を設け、この該第1タンクを流出タンクとするもので、流入ポンプの構成として、該第1タンクの水中から前記低水位水源の水位より低い水槽に、引き上げ方向に流れる逆止弁が設けられた流入配管を設け、この該第1タンクを流入タンクとするもので、上記の流出ポンプと流入ポンプを、流出ポンプ手順及び流入ポンプ手順による電子制御にて、それぞれの前記水中弁を開閉して、ポンプ動作することを特徴とするポンプ装置である。
 前記比重弁を水源製造弁にし、潮位と前記高水位水源との間に流入方向に水が流れる該水源製造弁と、潮位と前記低水位水源との間に流出方向に水が流れる該水源製造弁とを備え、満潮から水を流入した該高水位水源と、干潮へ水を流出した該低水位水源とを、圧力発生装置の該水源にする水源製造装置である。
 前記水源製造装置において、前記水源製造弁の流路の断面が、海側に距離と共に広がる構造を設け、波のうねりにより該水源製造弁に掛かる波の高低を強調し、該水源製造弁に流れる流量を増大させ、該水源の落差を増大させることを特徴とする水源落差増加装置である。
 河川に設置される前記圧力発生装置の、前記高水位水源を河川高水位水槽とし、河川の上流と該河川高水位水槽の間に水門を設け、該河川の下流に排水可能な排水くぼみを有する前記低水位水源を備え、該水門の開門により河川上流から高水位の水を取込むことを可能とし、これを該圧力発生装置の該水源とする水源装置である。
 前記強制閉鎖弁の制御方法において、前記第1タンク乃至第3タンクに該強制閉鎖弁を備え、該第1タンク乃至第3タンク内に水位センサー及び水流センサーを備えたもので、該第1タンク乃至第3タンク内の水位が、水位変化を伴わない水流が発生した場合、これを暴走水流とし、電子制御により該強制閉鎖弁を閉栓し該暴走水流を停止させる強制閉鎖弁制御方法である。
 前記強制閉鎖弁の制御方法において、前記第1タンク乃至第3タンクの全ての前記水中弁に前記弁センサーを備えたもので、前記第1タンク乃至第3タンクのうち、いずれかの単体のタンクの、該給水弁と該排水弁の両方が開栓の状態を第一の検知とし、このタンクの強制閉鎖弁を第一の検知の強制閉鎖弁とし、第二の検知として、前記組の第3タンクの、前記水中路弁の開栓と、一方の第3タンクの前記給水弁と他方の第3タンクの前記排水弁の開栓とが、第二の検知とし、この該給水弁と該排水弁に2重となる強制閉鎖弁のどちらか一方を、第二の検知の強制閉鎖弁とし、上記の該弁センサーにより、該第一の検知、もしくは、該第二の検知が発生した場合に、前者は第一の検知の強制閉鎖弁を、後者は第二の検知の強制閉鎖弁を、電子制御により閉栓し、暴走水流を停止させることを特徴とする強制閉鎖弁制御方法である。
 前記第一の排気装置の前記水中路内の空気の排出方法であり、該第一の排気装置の、排気をする前記水中路の前記水中路排気路と連通した前記第3タンクの給水開閉栓をし、該水中路排気路の前記水中路排気弁を開栓し、該水中路内に在る空気を排気させ、この排気終了後に該水中路排気弁を閉栓し、該水中路内の空気の排出する水中路空気排出方法である。
 前記第1タンク乃至第3タンクの駆動方法であり、該第1タンク乃至第3タンクに圧力開放弁を備えるものであり、該第1タンク、該第2タンクのタンク内水位と、開栓側の前記水源の水位との、水位差を第一の水位差とし、該組の第3タンクの前記水中路弁が開栓で、相互の該第3タンク内の水位差を第二の水位差とし、該組の第3タンクの該水中路弁が閉栓で、どちらか一方の第3タンクの、タンク内水位と開栓側の前記水源との水位差を第三の水位差とし、上記第一の水位差乃至第三の水位差が回収不要水位差である場合、電子制御により該圧力開放弁を開栓し、タンク内の給排水を迅速に完了することを特徴とする圧力発生方法である。
 前記第1タンク乃至第3タンクの駆動方法であり、該第1タンク乃至第3タンクの連通路に圧力負荷を備え、気路弁が備えられているものを含むものとし、各前記水中弁の開栓の時間を基準にし、該第1タンク乃至第3タンクの該水中弁及び該気路弁を、時間給排水プログラムの電子制御により開閉することを特徴とする圧力発生方法である。
 前記第1タンク乃至第3タンクの駆動方法であり、複数の該第1タンク、もしくは複数の組の第2タンク、もしくは複数の組の第3タンクの、前記連通路に前記タービンが設けられ、この複数の該タービンの回転力のエネルギーは集約されるものであり、この該タンクの並行動作において、複数の該第1タンク、もしくは複数の組の第2タンク、もしくは複数の組の第3タンクの、前記水中弁を、位相差平滑プログラムによる電子制御にて、該水中弁の開閉の周期をずらし、回収できるエネルギーの斑を減少させることを特徴とするエネルギー回収方法である。
 前記選択駆動圧力発生装置の駆動方法であり、該選択駆動圧力発生装置において、前記第1タンク乃至第3タンクに設けられた複数の並列の前記連通路の、それぞれの前記タービンを、排気量適化プログラムの電子制御にて選択駆動をし、該タービンの総容量の変化により、回収できるエネルギーの斑を減少させるエネルギー回収方法である。
 前記高圧発生装置の駆動方法であり、該高圧発生装置の直列接続の順序の、組の第3タンクの組の極性を、一方側を第3タンクAとし、もう一方側を第3タンクBとするものであり、該高圧発生装置の全ての前記水中路弁の閉栓と、全てのタンクの気密の開放と、全ての該第3タンクAの給水開閉栓と、全ての該第3タンクBの排水開閉栓とを行い、全ての給排水弁の閉栓と、上記の気密の開放の解除の状態を、高圧発生の準備完了とし、直列接続の全ての前記連通路の連通と、全ての該水中路弁の開栓により、直列接続の端にある第3タンクAの該入出力気路に加算された負の圧力と、もう一方端にある第3タンクBの該入出力気路に加算された正の圧力を発生するもので、これを高圧発生手順とする高圧発生方法である。
 前記流出ポンプの駆動方法であり、該流出ポンプの直列接続の順序の、組の第3タンクの組の極性を、前記流出タンク側を第3タンクBとし、もう一方側を第3タンクAとするものであり、該流出ポンプの全ての前記水中路弁の閉栓と、全てのタンクの気密の開放と、該流出タンクと全ての該第3タンクAの給水開閉栓と、全ての該第3タンクBの排水開閉栓を行い、全ての給排水弁の閉栓と、上記の気密の開放の解除の状態を、ポンプ動作の準備完了とし、該直列接続の全ての前記連通路の連通と、全ての該水中路弁の開栓により、
 前記高水位水源の水位より高い水位の水槽に、前記流出配管より水を送り出すもので、これを流出ポンプ手順とする流出ポンプ制御方法である。
 前記流入ポンプの駆動方法であり、該流入ポンプの直列接続の順序の、組の第3タンクの組の極性を、前記流入タンク側を第3タンクBとし、もう一方側を第3タンクAとするものであり、該流入ポンプの全ての前記水中路弁の閉栓と、全てのタンクの気密の開放と、該流入タンクと全ての該第3タンクAの排水開閉栓と、全ての該第3タンクBの給水開閉栓を行い、全ての給排水弁の閉栓と、上記の気密の開放の解除の状態を、高圧発生の準備完了とし、該直列接続の全ての前記連通路の連通と、全ての該水中路弁の開栓により、
 前記低水位水源の水位より低い水位の水槽から、前記流入配管より水を取り込むもので、これを流入ポンプ手順とする流入ポンプ制御方法である。
 圧力発生装置の前記水源の製造方法であり、潮位を検出する水位センサーと、潮位と該水源の間に電子制御装置で開閉する水門が備わり、該水位センサーの情報が、高水位時に該高水位水源の該水門の開栓と、高水位時以外に該高水位水源の該水門の閉栓と、該水位センサーの情報が、低水位時に該低水位水源の該水門の開栓と、低水位時以外に該低水位水源の該水門の閉栓とで、上記の電子制御装置による上記の両水門の開閉により、潮位から該水源を製造する水源製造法である。
 圧力発生装置の前記水源の製造方法であり、潮位と該水源の間に電子制御装置で開閉する前記水門が備わり、電子制御装置の時刻による制御において、設定された満潮時間帯の該高水位水源の該水門の開栓と、満潮時間帯以外の該高水位水源の該水門の閉栓と、設定された干潮時間帯の該低水位水源の該水門の開栓と、干潮時間帯以外の該低水位水源の該水門の閉栓とで、電子制御装置による上記の両水門の開閉により、潮位から該水源を製造する水源製造法である。
 低水位差の発電の場合、エアータービンは水車より流体摩擦が少ないので、同じ水力発電であるなら、エアータービンの発電効率は有利になる。発電機の特性は高速回転で発電効率が良いものである。本発明の場合、エアータービンの容量と負荷の設定により、発電機の特性に合った、高速回転の回転力が容易に得られる。低水位差発電で、本発明と同様のことを水車で代用した場合は、水流が低速流であるため、大きな流量の水車が必要になり、水車の自重でエネルギーの損失が発生する。さらに、水車のメンテナンス費用が高額になる。すなわち、大きな発電量が必要な場合は、水車の低水位差発電は非現実的である。
 低水位差発電での発電量を多くするには、低速流の流量を多くすることであり、本発明であれば可能である。
 ダムによる水力発電の水位差が100mと仮定して、潮位差発電が2mの水位差と仮定して比較するなら、水位差は50倍であり、ダムと同等の仕事量にするには50倍の流量が必要になる。潮位による水源で50倍の流量を利用することは容易であるといえる。さらに、潮位変動は1日に2回あり、水源の水位差が回復する特性がある。
 位置エネルギーの方程式"E=mgh"の「g=重力加速度」は定量である。本発明では「h=高さ」は小さくても、水の「質量=m」を大きくできる条件の、地の利が多く存在するために、容易に発電エネルギーを大きくすることが可能である。
 本発明の効果は多様で非常に多くあり、その効果及び特徴を羅列すると以下である。
 1、枯渇の無い進化性を秘めた可能性の大きい自然エネルギーの発電装置である。2、潮位差が利用可能のために莫大なエネルギーが得られる。3、エネルギー消費地に近い発電所が設置できる。4、高水位差でも設置可能である。5、風力発電、太陽光発電と比較すると、発電量のコントロールが可能である。6、大規模から小規模まで幅広い発電装置が可能である。7、発電だけではなく、工場の動力(圧力)として使える。8、河川に応用が可能である。9、水源が水害対策に応用可能である。10、海岸施設との併用が可能である。11、水源製造用の水門の設備が防波堤との併用が可能である。12、小さな島で設置が可能である。13、コンクリートで装置を構成できるため、高耐久、ローコスト化が可能である。
 さらに、近年の技術を組み合わせると以下の3つの特徴がある。14、コンクリートの長寿命化でローコスト化ができる。15、海水から、飲料水ができる。16、海水から、レアメタルの回収ができる。
 上記特徴の詳しい内容を以下に説明する。
 本発明は僅かの水位差で発電が可能であるため、設置できる地の利が多い。河川を利用した水力発電の設置可能な地の利の領域も膨大である。大量の水の流れの落差のあるところであれば、どこでも発電が可能である。また、海岸があればどこでも発電できる。すなわち、電力の供給場所に近い設置が可能となる。
 風力発電および太陽光発電は発電時期が不安定であるが、低水位差発電であれば、貯めた水量を使うため、発電量を必要に応じて設定することが可能である。
 本発明は低圧力の装置であるため、高度な構造など必要なく、制御装置などはコンパクトな装置も可能である。
 本発明には、無動力のポンプがあり、大潮期に積極的に加算高水位水槽と加算低水位水槽を作り、小潮期に積極的に上記の加算高水位水槽と加算低水位水槽を利用することが可能である。
 また、本発明の水源を河川に設置した場合の水害対策として、大雨が予測される時に、事前に水源を空にしておき、河川の水位がピークに達した時に河川の水量を取り込むことで、河川の氾濫防止装置としての機能が可能である。また、河口に隣接した潮位による水源も同様な機能を持てる。
 本発明は、発電タンクの上部を建物などにすることができて、施設等と併用ができるために、海岸施設や海上の飛行場などが発電装置になることも可能になる。また、発電の運用に難のある、小さな島に発電所や工場を作ることが可能になる。また、海岸の低水位水源は海洋環境に良いとされている干潟に設定することが可能である。
 本発明は、安価で高耐久なコンクリートで装置が構成でき、特殊な材料を必要としないため、容易に装置を作ることが可能である。また、近年コンクリートの耐久性が向上しているために、耐久性の高い発電装置の設計が可能である。発電装置のコストの評価計算は、総費用を耐用年数で割るため、コンクリートの耐久性が向上すると、この発電装置は安価な装置になる。
 また近年、海水から逆浸透圧法による飲料水製造技術が進歩しており、本発明の圧力と海水を利用して、飲料水を無電力で製造することが可能である。
 さらに近年、一部の海流からのレアメタルの回収技術が進歩している。潮位差発電の水源は海水が巡回するために、海水中に含まれるバナジウム、チタン、ウランなどの希少金属の資源回収装置としての併用を果たすことも可能である。
 上記の併用装置も価値の高い利用法であるが、本発明は地形を利用できることが最大の利点と云える。その、効果が最大に近い仮の例として、入り口の小さな隣接する2つの湾があったとする。その湾の一つを低水位水源とし、もう一つの湾を高水位水源に設定する。発電タンクにより、高水位水源の水位を低水位水源に移したとすると、湾の面積の非常に大きなエネルギーを取り出すことになる。発電タンクと湾の大きさを比較し、発電タンクが非常に小さくても、給排水の、繰返し回数を多くして、大きい湾の水位差のエネルギーを吸収することが可能である。理論的ではないが、エネルギーの大きさを判断する上で、解かり易い表現として、湾と同じ面積の街をまるごと、2m持ち上げるエネルギーがあるといえる。
 すなわち、海面のエネルギー源が無尽蔵に存在するために、本発明は期待できる装置である。
第1タンクが減水状態の断面図。 第1タンクが給水開閉栓で正の圧力が発生した断面図。 第1タンクが満水状態の断面図。 第1タンクが排水開閉栓で負の圧力が発生した断面図。 第2タンクの連動動作でタービンが回転状態の断面図。 図5の給排水が逆でタービンが逆回転状態の断面図。 第3タンクの圧力発生のために給排水をしている状態の断面図。 第3タンクの圧力発生の待機状態の断面図。 第3タンクの水中路を水上に設置した場合の断面図。 第1タンクで高水位水源から低水位水源に流れが暴走している断面図。 第1タンクの強制閉鎖弁が閉栓した断面図。 組の第3タンクで水中路弁を経由し高水位水源から低水位水源に流れが暴走している断面図。 第1タンクが高水位の断面図。 第1タンクが中水位の断面図。 第1タンクが低水位で回収不要水位差の断面図。 第1タンク内水位と圧力の波形。 第1タンクに圧力負荷を接続した時間と圧力の波形。 3基の第1タンクの並列動作の動作周期をずらした装置の構成図。 図18の個々のタンクの時間と圧力の波形。 図18の時間と総仕事量の波形。 第1タンクの小容量タービンが駆動の断面図。 第1タンクの大容量タービンが駆動の断面図。 第1タンクの全てのタービンが駆動の断面図。 各容量のタービンの時間と仕事量の減少の波形。 選択駆動の時間と総仕事量の波形。 第1タンクに電子制御装置が備えられた構成図。(強制閉鎖弁省略) 第2タンクに電子制御装置が備えられた構成図。(強制閉鎖弁省略) 第3タンクに電子制御装置が備えられた構成図。(強制閉鎖弁省略) 第1タンクに強制閉鎖弁が備えられた電子制御装置の構成図。 選択駆動を連通弁で電子制御する装置の構成図。 切替弁による選択駆動の回転力集合装置の構成図。 連通弁と帰還弁による選択駆動の回転力集合装置の構成図。 電動クラッチと連通弁による選択駆動の回転力集合装置の構成図。 水源の管理を含めたタンクの制御例のフローチャート 第1タンクの電子制御の基本形のブロック図。 第2タンクの電子制御の基本形のブロック図。 第3タンクの電子制御の基本形のブロック図。 3基の第1タンクの選択駆動の電子制御の基本形のブロック図。 小水位差の比重弁の開栓の断面図。 均等水位の比重弁の閉栓の断面図。 満潮時の高水位水源の水位流入の断面図。 干潮時の低水位水源の水位流出の断面図。 干潮時の高水位水源の水位保持の断面図。 満潮時の低水位水源の水位保持の断面図。 第1タンクの高水位水源利用時の断面図。 第1タンクの低水位水源利用時の断面図。 比重弁の施錠構造が回転ピストンの断面図。 図47の施錠と開錠の水上駆動構造の断面図。 比重弁の施錠がクランク構造の見取図。 比重弁の施錠がクランク構造の閉栓状態の断面図。 比重弁の施錠がクランク構造の開栓状態の断面図。 比重弁の施錠のクランク部が水上駆動構造の断面図。 比重弁の水上駆動構造と回転シリンダーの噛合いでクランクを構成する断面図。 比重弁の水上駆動構造がクランクの施錠構造の断面図。 比重弁の施錠構造が水上圧力駆動の断面図。 水中路弁が双方向施錠構造の断面図。 水中弁がシャフトによる水上錘で比重調整された断面図。 水中弁がワイヤーによる水上錘で比重調整された断面図。 タンク内の水中弁がシャフトによる水上錘で比重調整された断面図。 タンク内水中弁がシャフトによるタンク外水上錘で比重調整された断面図。 水中弁がシャフトによる水上錘で比重調整され圧力駆動構造の断面図。 水中弁がワイヤーによる水上錘で比重調整され圧力駆動構造の断面図。 水中弁がシャフトによる水上錘で比重調整されギア駆動構造の断面図。 水中弁がワイヤーによる水上錘で比重調整されワイヤー巻取構造の断面図。 比重弁がギヤの駆動構造の水上のモーター駆動の断面図。 電子制御の水源製造装置の構成図。 流出ポンプの断面図。 流入ポンプの断面図。 潮位による加算高水位水槽の製造の断面図。 潮位による加算低水位水槽の製造の断面図。 波を利用した高水位水源の落差増加装置の見取図。 波を利用した低水位水源の落差増加装置の見取図。 河川の勾配を利用した水源の見取図。 従来の電力の充電および交流変換回路。 従来のタービンの初動の圧力の影響の断面図。 本発明に適した新考案のタービンの角度による断面図。
 本発明は特願2005-154588の補足の装置に関するものである。
 図1乃至図4、図7乃至図9のタンクは入出力気路(D1)に発生する圧力で、圧力発生装置の外部の圧力負荷(U1)を駆動する動力源の用途がある。図1乃至図9のタンクは連通路に双方向に可動のタービンを用いると、給水と排水の繰り返しで断続的に回転力を得ることができる。
 図1乃至図4の第1タンク(T1)は本発明の原理の基本形となるものである。図中の水源はタンクに比べて非常に大きいものとする。図中の弁が流路で見えなくなる描写は、弁の開栓状態を示す。図中において、分離して描画した同じ水源は繋がっている。
 図1乃至図4において、第1タンク(T1)は、高水位水源(W1)と低水位水源(W2)の間に配置される。図2は、排水弁(S2)の閉栓と給水弁(S1)の開栓で給水となり、入出力気路(D1)に正の圧力が発生し圧力負荷(U1)に作用する。この給排水弁の動作を給水開閉栓とする。図4は、給水弁(S1)の閉栓と排水弁(S2)の開栓で排水となり、入出力気路(D1)に負の圧力が発生し圧力負荷(U1)に作用する。この給排水弁の動作を排水開閉栓とする。
 図5、図6において、組の第2タンク(T2)は、給水開閉栓と排水開閉栓が逆で連動の動作を行うことにより、タンク間気路(D2)に発生する圧力は、1基の第1タンク(T1)と比較し、2倍の圧力でタービン(TU1)を駆動することができる。そして、相互の第2タンク(T2)の給水開閉栓と排水開閉栓を入替えて、正と負の圧力の逆転を繰返しながら、タービン(TU1)を駆動する。この装置は断続的に回転力を得るものである。
 図7乃至図9において、水中路弁(S3)の閉栓により、それぞれの第3タンク(T3)は第一タンク(T1)と同様な給排水が可能である。組の第3タンク(T3)の、一方の第3タンク(T3)を減水に、他方の第3タンク(T3)を満水の状態にして、全ての水中弁(S1、S2、S3)を閉栓した状態から、水中路弁(S3)の開栓をすると、組の第3タンク(T3)内の相互の水位差の圧力で、一方の第3タンク(T3)の入出力気路(D1)には正の圧力、他方の入出力気路(D1)には負の圧力が発生する。
 組の第3タンク(T3)の入出力気路(D1)を直列に接続すると、図67,図68のように、圧力を加算する装置として応用することができる。
 図9において、水中路(D3)は低水位水源(W2)の水面より高い位置に配置することができる。水上に配置すると水中路弁(S3)のメンテナンスが容易になる長所がある。
 上記は、水中路(D3)内に空気が混入する場合があり、混入した空気を抜く装置が必要になる。水中路(D3)内に空気があると、水の流れに障害が発生するためである。
 水中路(D3)が低水位水源(W2)より高く、高水位水源(W1)より低い位置にある場合は、水中路(D3)に水中路排気弁(V11)が備わった水中路排気路(D6)を設け、水中が繋がっている第3タンク(T3)を満水にし、水中路排気弁(V11)を開栓すると空気が排出される。空気の排出が完了後、水中路排気弁(V11)を閉栓する。すると、水中路(D3)に空気が無い状態になり、水路としての役目を果たすことになる。
 水中路(D3)が高水位水源(W1)より高くなる場合は、水中路排気ポンプ(TU5)が備わった水中路排気路(D6)を設けることにより、水中路(D3)内の空気を排出することが可能になる。
 図10乃至図12において、給排水弁(S1、S2)が施錠比重弁(図47乃至図56)である場合には、閉水部を開閉するための動力が無いため、施錠比重弁(図47乃至図56)は、水流が流れ続けている状態では閉栓することができない。すなわち、給水弁(S1)と排水弁(S2)の両方が同時期に開栓した場合に、高水位水源(W1)から低水位水源(W2)に通り抜ける暴走水流が発生し、この流れを止めることができなくなる。
 この場合は、図10、図11の、給水弁(S1)もしくは排水弁(S2)に2重に設けられた、水流の中で閉栓能力のある強制閉鎖弁(S5)の、給水側もしくは排水側の、どちらか一方を閉栓すると、暴走水流を止めることができる。
 図12において、水中路弁(S3)が開栓していると、組の第3タンク(T3)のうち一方の給水弁(S1)と他方の第3タンク(T3)の排水弁(S2)が開いていると、暴走水流が発生することになる。この対策も、上記の強制閉鎖弁(S5)にて閉栓すると、暴走水流を止めることができる。
 この暴走水流の発生は、水中弁の開閉状態で検知できるが、それ以外でも、流れの強い水流や、水位変化の伴わない水流や、想定外のタンク内水位などで検知することができる。本発明の装置が、弁センサーを装備しない構成でも暴走水流の検知が可能である。
 図13乃至図15において、入出力気路(D1)の圧力は、第1タンク(T1)内の水位で変化する。すなわち、開栓側の水源の水位(W2)と、タンク内水位(W3)との水位差がタンク内圧力(Pt)と比例する。この水位差とタンク内圧力(Pt)の関係の波形を図16に示す。
 圧力センサー(U2)の代わりに圧力負荷を接続し、給水開閉栓と排水開閉栓との時間経過を診た場合の波形が、図17である。第1タンク(T1)の、給水時には正の圧力が発生し、排水時には負の圧力が発生するため、波形(7)は反転する。
 図13乃至図15において、圧力センサー(U2)の代わりに圧力負荷が接続された場合、タンク内水位(W3)と開栓側の水源(W2)との水位差が少なくなると流れの勢いが弱くなり、さらに圧力負荷が水流を制限するために、タンク内水位(W3)と開栓側の水源(W2)との水位差が揃うまでの時間が長くなる。
 そのために圧力開放連絡路(D5)の圧力開放弁(V1)を開栓して、第1タンク(T1)内の圧力を開放して、僅かな水位差の給排水を速やかに完了させるものである。
 図中の圧力センサー(U2)の代わりにタービンと、該タービンに繋がる発電機が接続された場合、僅かな水位差では回転数が低くなり発電効率が悪くなる。そのため、速やかに発電を終了し、次の発電に移行した方が、発電量が向上することになる。
 この僅かな水位差のことを、回収不要水位差とする。
 図8において、水中路(D3)の繋がった組の第3タンクの相互のタンク内水位(W3)の水位差が少ない場合は、同様に回収不要水位差となるものである。
 図18において、周期1第1タンク乃至周期3第1タンク(T7、T8、T9)は電子制御により並列動作しているものである。給水と排水が入替わる周期を1/2周期とすると、その期間を1/3に分割して、周期1第1タンク乃至周期3第1タンク(T7、T8、T9)の給排水弁(S1、S2)の開栓のタイミングを1/6周期ずらし駆動することにより、図19、図20のように、取り出せる仕事量(W)を均一化するものである。この手法の電子制御のプログラムを位相差平滑プログラムとする。
 また、この位相差平滑プログラムは、各水面の水位を水位センサーで検出し、各水中弁の開閉状態を弁センサーで検出し、これらの情報を基に総合的に水中弁を電子制御する手法と、さらに別の手法として、給排水弁(S1、S2)の開栓からの時間で推測されるタンク内水位を基に、時間で構成されたプログラムで実行される手法とがある。
 図21乃至図23において、動作させるタービン(TU7乃至TU9)の容量が変わると、単位時間あたりに取り出せるエネルギー(仕事量)が変わるものである。そのため、動作させるタービンを、水位差による圧力変化に合わせて選ぶと、取り出せる仕事量を均一化することが可能である。図31乃至図33では回転力を集合しているが、個々のタービン(TU7乃至TU9)に図74の発電機(75)と整流器(76)を設け、バッテリー(77)に接続すると、電力の集合は可能である。すなわち、タービン(TU7乃至TU9)により集合できるものは回転力だけではなくエネルギーである。
 図74の装置が、図18や図31乃至図33の様に応用される装置は、装置の組合せであり図面は省略される。
 図21乃至図23は、第1タンク内水位(W3)でタンク内圧力(Pt)が変化するため、連通弁(V2乃至V4)の開閉で、容量差のあるタービン(TU7乃至TU9)の作動を選択して、仕事量を均一化するものである。各タービン(TU7乃至TU9)のそれぞれが単独で、第1タンク(T1)から仕事量を得た場合の波形を図24に示す。(この図は、タービンの容量の大小の比較であり、下記の比率ではない。)
 小容量タービン(TU7)=A、中容量タービン(TU8)=B、大容量タービン(TU9)=Cとし、各タービンの1回転の容量をA=1、B=2、C=4と仮定する。これらのタービンの選択の組合せの容量は、A=1、B=2、A+B=3、C=4、A+C=5、B+C=6、A+B+C=7となり、7段の容量が設定できる様になる。
 第1タンク(T1)内の水位に対応して、動作するタービンの容量(A,B,C)を選択し、タービンの総容量を変化させ、給水及び排水の、均等化した仕事量を得ると図25の波形となる。また、図25波形の給水と排水の終了部分が断ち切れているのは、図13乃至図15の圧力開放弁の動作によるものである。
 上記のタービンを選択して駆動させることを、タービンの選択駆動とする。また、この手法での電子制御のプログラムを排気量適化プログラムとする。
 上記のタービンの各仕事量を集合させる装置を図31乃至図33に示す。
 位相差平滑プログラムと排気量適化プログラムの両方を合わせた動作でさらに平滑化した仕事量を得ることは可能である。
 本発明の圧力発生装置は、電子制御によってのみ成立するもので、図26乃至図29の周辺装置が付属していることで成立するものである。
 図面が煩雑になるために図26乃至図28では、図29の強制閉鎖弁(S5)が省略してある。また、図面における、弁センサーと弁ドライバーは兼用とする。
 第1タンク乃至第3タンクには、それぞれ給排水をさせるためのステップがあり、そのステップの基本的な例を以下に記載するものである。
 図26において、第1タンク(T1)の電子制御の連続動作のステップの例を以下に示す。圧力発生箇所は入出力気路(D1)であり、圧力負荷(U1)が接続されている。
 1、圧力開放弁(V1)と排水弁(S2)を閉栓する。2、給水弁(S1)を開栓すると正の圧力が発生。3、回収不要水位差で圧力開放弁(V1)を開栓する。4、給水完了。5、圧力開放弁(V1)と給水弁(S1)を閉栓する。6、排水弁(S2)を開栓すると負の圧力が発生。7、回収不要水位差で圧力開放弁(V1)を開栓する。8、排水完了。9、1乃至8を繰り返す。
 図27の組の第2タンク(T11、T12)の電子制御の連続動作のステップの例を以下に示す。
 1、両圧力開放弁(V0,V1)と、排水弁A(S12)と給水弁B(S13)とを閉栓する。2、給水弁A(S11)と排水弁B(S14)を開栓するとタービン(TU1)が回転する。3、回収不要水位差で両圧力開放弁(V0,V1)を開栓する。4、給排水完了。5、両圧力開放弁(V0,V1)と、給水弁A(S11)と排水弁B(S14)とを閉栓する。6、排水弁A(S12)と給水弁B(S13)を開栓するとタービン(TU1)が回転する。7、回収不要水位差で両圧力開放弁(V0,V1)を開栓する。8、給排水完了。9、1乃至8を繰り返す。
 図28の組の第3タンク(T21,T22)の電子制御のステップの例を以下に示す。
 1、水中路弁(S3)と給水弁A(S15)と排水弁B(S18)を閉栓する。2、両圧力開放弁(V0,V1)と排水弁A(S16)と給水弁B(S17)を開栓する。3、第3タンクA(T21)が減水、第3タンクB(T22)が満水になる。4、両圧力開放弁(V0,V1)と、排水弁A(S16)と給水弁B(S17)を閉栓する。これを、圧力発生の準備完了とする。5、水中路弁(S3)の開栓で入出力気路A(D7)は正の圧力、入出力気路B(D8)は負の圧力が発生する。
 図29の強制閉鎖弁が装備されている図26、図27の、第1タンク(T1)と単体の第2タンク(T11もしくはT12)の強制閉鎖弁(S5)の電子制御のステップの例を以下に示す。ただし、第2タンクについては、気路を無視できるので第1タンク(T1)と同等とする。
 1、給水弁(S1)と排水弁(S2)の同時期の開栓を検知。2、給水弁(S1)側もしくは排水弁(S2)側の強制閉鎖弁(S5)を閉栓する。
 図29の強制閉鎖弁が装備されている図28の、組の第3タンク(T21,T22)の強制閉鎖弁(S5)の電子制御のステップの例を以下に示す。
 1、給水弁A(S15)と排水弁A(S16)の同時期の開栓を検知。2、給水弁B(S17)と排水弁B(S18)の同時期の開栓を検知。3、水中路弁(S3)と給水弁A(S15)と排水弁B(S18)の同時期の開栓を検知。4、水中路弁(S3)と排水弁A(S16)と給水弁B(S17)の同時期の開栓を検知。5、1乃至4で検知された、該当する給水弁側もしくは排水弁側の強制閉鎖弁(S5)を閉栓する。
 図30において、容量差のあるタービン(TU7乃至TU9)の連通弁(V2乃至V4)を選択駆動させる。
 小容量タービン(TU7)=A、中容量タービン(TU8)=B、大容量タービン(TU9)=Cとし、容量をA=1、B=2、C=4としてA、B,Cを選択駆動する。第1タンク内水位(W3)と開栓側の水源との水位差の、大きい順より"水位1乃至7"とし、"水位8"を回収不要水位差とする。図中に省略された第1タンク(T1)下部は図26と同様である。第1タンク(T1)内の水位は、水位センサーもしくは給排水弁の開栓からの時間で割り出したものとする。
 この選択駆動は、排気量適化プログラムであり、この電子制御のステップの例A(1乃至10)を以下に示す。
 1、圧力開放弁(V1)と排水弁(S2)を閉栓し、給水弁(S1)を開栓すると入出力気路(D1)に正の圧力が発生。2、水位1でAを選択駆動。3、水位2でBを選択駆動。4、水位3でA、Bを選択駆動。5、水位4でCを選択駆動。6、水位5でA、Cを選択駆動。7、水位6でB,Cを選択駆動。8、水位7でA、B,Cを選択駆動。9、水位8で圧力開放弁(V1)開栓し、選択駆動をリセット。10、給水完了。
 以下は、給排水を入れ替えて同様の連通弁(V2乃至V4)の選択駆動となる。この選択駆動の仕事量は図25の波形になる。
 前記の排気量適化プログラムと位相差平滑プログラムの両方を平行運用した、電子制御のステップの例を以下に示す。排気量適化プログラムは、前項のステップの例A(1乃至10)を実行するものである。装置の構成は、図30の装置が図18の3基の第1タンク(T7乃至T9)の上部に装備されているとする。
 1、周期0/6で第1タンク(T7)の排気量適化プログラムの例Aの実行。2、周期1/6で第1タンク(T8)の排気量適化プログラムの例Aの実行。3、周期2/6で第1タンク(T9)の排気量適化プログラムの例Aの実行。
 以下は、給排水を入れ替えて同様に、周期4/6乃至周期6/6として、上記の1乃至3のステップを実行する。
 周期がずれたこの第1タンク(T7乃至T9)は、この周期を保ちながら同期運転される。
 選択駆動の回転力の集合の例を図31乃至図33に示す。
 選択駆動によって、いずれかのタービン(TU7乃至TU9)が回転結合している場合は、タービン(TU7乃至TU9)の総容量が回転力に比例する。
 タービン(TU7乃至TU9)に掛かる圧力を弁で止め回転結合を切り離すか、もしくは、タービン(TU7乃至TU9)を空転させると選択駆動されないことになる。
 図31、図32は、各タービン(TU7乃至TU9)の軸は回転連結シャフト(31)に回転結合しているものとする。いずれかのタービンが回転すると、全てのタービン(TU7乃至TU9)が回転するものである。帰還気路(D10)が連通するとタービンに掛かる負荷が無くなり空転で選択駆動が無効となる。帰還気路(D10)が閉鎖で、入出力気路(D1)が連通だと、タービンに圧力が掛かり、回転力が発生し選択駆動が有効となる。
 図31は、入出力気路(D1)と帰還気路(D10)を、切替弁(V5乃至V7)で、切替えることで選択駆動を可能にするものである。
 図32は、入出力気路(D1)と帰還気路(D10)とを、連通弁(V12乃至V14)と帰還弁(V8乃至V10)の、連動で切替えることで選択駆動を可能にするものである。
 図33は、タービン(TU7乃至TU9)の回転力を、連通弁(V2乃至V4)と電動クラッチ(28)の連動で切替えるものである。この装置は、連通弁(V2乃至V4)の開栓とクラッチ結合で選択駆動が有効で、クラッチ切離しと連通弁(V2乃至V4)の閉栓で選択駆動が無効となるものである。
 また、タービンの特性で、タービンの回転を止めると、閉栓をするような特性のタービンであれば、給排気の連通路を止める連通弁の必要が無くなり、装置の構成も別の構成になるものである。回転力を集合させる装置には多様な方式がある。
 図26乃至図38の弁ドライバー(8、22,24,25)とは、電子制御の弁をコンピューターで動作させるドライバーを示すもので、リレーや半導体素子などで構成されたものを示すものである。
 上記の制御内容は、水源の水位差と、水中弁の開口の断面積と、タンクとタービンの容量が一定であれば、タンク内の水位は、給水もしくは排水の開始からの時間で水位が決定される。たとえタービンの容量が変化しても、選択するタービン容量と期間が決まっていれば、水位が時間で決定される。そのため水位センサーや弁センサーがなくとも時間による制御のみで、本装置を動作させることも可能である。
 水源の水位の検知を含めたタンクの電子制御の例として、図34のフローチャートのソフトウエアの流れが挙げられる。
 第1タンク乃至第3タンクの電子制御を行う装置の、基本の構成となるブロック図を、図35乃至図38に表すものである。
 図39,図40で示す様に、水位差の発生する変動水位環境、たとえば、潮位と水源の間の水中壁に比重弁(S23)を設ける。この比重弁(S23)には比重調整フロート(S24)が設けられ、比重が僅かに水より重いとする。水流の無い場合、比重弁(S23)はゆっくり自重で閉じ、また、開栓方向の僅かな水流があると、比重弁(S23)は流れに押されて開くものである。このため、比重弁(S23)は僅かの水位差で反応する逆止弁となることができる。この比重弁(S23)を水源と潮位の間に設け、開栓する向きを水源側にすると、満潮の最高水位まで水位を流入し、最高水位が下がると閉栓するので高水位水源(W1)が製造できる。比重弁(S23)の開栓する向きを潮位側にすると、干潮の最低水位まで水位を流出し、最低水位が上がると閉栓するので低水位水源(W2)が製造できる。すなわち、この比重弁(S23)は水源製造弁となるものである。
 上記により、図41乃至図46のように、比重弁(S23)は、本発明の第1タンク乃至第3タンクの水源の環境を作ることができる。
 図39,図40に示す比重の調整された比重弁(S23)は、図47のタンクの給排水用の施錠比重弁(S27)に用いることが可能である。本発明のタンクの給排水の特徴において、開栓時の給排水弁の閉水部の相対面には水位差があり、圧力の掛かった状態で開栓がおこなわれる。また、閉栓時は、給排水が完了しており、水位差が無くなった状態になる。
 この施錠比重弁(S27)は、開栓を施錠する構造になる。高水位側の圧力のかかっている施錠比重弁(S27)を、施錠回転ピストン(S28)の先と施錠回転軸(S29)との直線配置で支えるものである。開栓するには、施錠シリンダー(44)に負の圧力をかけることで、施錠比重弁(S27)の施錠を解除することになる。この施錠比重弁(S27)は、施錠を外すだけで高水位側の圧力で水流が流れ込み、施錠比重弁(S27)を開栓し、給排水の完了で水流が止まると、自重で閉栓できるものである。閉栓した後に施錠シリンダー(44)に正の圧力をかけ、施錠回転ピストン(S28)を駆動させ、施錠するものである。
 本発明の低水位差の発電での水中弁は、大流量の大きい開口部でなければ、大きい電力を得ることができないものである。この施錠比重弁(S27)であれば、大流量の水中弁が構成できる。
 図48の様に施錠回転ピストン(S28)による施錠と解除は、水上施錠軸(S26)を用いて水上から駆動することが可能である。
 本発明における"クランク"とは、棒が2本、直線状に接して配置された場合、両端からの圧縮方向の力には強く、一旦直線の形態が崩れると、弱い圧縮方向の力で棒が動く現象を示すものである。棒は、他の形状でも同様な効果が可能であり、形状の特定を除外するものである。
 上記の施錠比重弁(S27)の開栓時には水圧のため、施錠構造にも大きな力が掛かっていて、開錠するには大きな仕事量が必要になるものである。施錠比重弁の開栓時の消費エネルギーを少なくすると、本発明の発電効率は向上するものである。
 図47、図48の施錠機構をクランク構造にするものが図49乃至図55である。図49の、クランク施錠比重弁(S30)の施錠構造は、施錠突起(S33)とクランク施錠回転ピストン(S35)の直線で支える構造により、クランク施錠比重弁(S30)の水位差の圧力を支えるものである。また、開栓時はクランクの折れ曲がりにより、弱い力で開錠することが可能となる。図50、図51では、施錠シリンダー(44)に正の圧力をかけると開錠になる。
 図52は、クランク水上施錠軸(S41)により、水上で施錠突起(S33)を駆動し、施錠と開錠をすることになる。
 図53に示す、クランク部の比重弁付施錠軸(S44)と噛合い施錠回転ピストン(S45)は、施錠時にクランク部が噛合い状態で、開錠時に切り離される構造である。
 図53と図54は、クランク施錠比重弁(S30)側にクランク水上施錠軸(S41)が取付けられ、水上の駆動で開錠と施錠ができるものである。
 組の第3タンクの水中路(D3)の水中路弁(S3)は、流れが一方向のみの使用方法もあるが、双方向の使用方法もある。図56の施錠比重弁(S27)は、双方向に開閉が可能である。施錠比重弁(S27)は、双方向から開栓防止の施錠がなされ、双方向に開閉することが可能となる。
 上記の、水中弁の比重調整フロート(S24)以外に、水中弁の比重を水の比重に近似させる別の方法がある。滑車もしくはシーソー構造の水上の錘(S52、S56)で、水中弁を開栓方向に駆動させる機構を設け、水中弁が水より重い重量と釣合う錘に設定すると、比重弁を構成することが可能となるものである。図57乃至図64、図66にその構造を示す。
 前記構造の図61乃至図66は、水上の駆動力により開閉できるもので、水上の駆動装置はメンテナンスに有利になるものである。
 図66に示す水源の製造法において、潮位の変動は計算で、どの時刻に、どれだけの水位が変動するかはすでに予測されている。時刻による水源製造弁(S54、S55)の開閉で高水位水源(W1)と低水位水源(W2)の確保は可能なものである。高水位水源(W1)は潮位が上がる時間帯に水源製造弁(S54)を開き、潮位が上がりきった時間で水源製造弁(S54)を閉じることで、高水位水源(W1)を確保することができる。低水位水源(W2)は潮位が下がる時間帯に水源製造弁(S55)を開き、潮位が下がりきった時間に水源製造弁(S55)を閉じることで、低水位水源(W2)を確保することができる。
 上記と別の水源の製造法として、潮位の水位センサーにより水位を測定して、潮位が高水位水源(W1)より上がると水源製造弁(S54)を開き、潮位が上がりきった時に水源製造弁(S54)を閉じることで高水位水源(W1)を確保することができる。潮位が低水位水源(W2)より下がると水源製造弁(S55)を開き、潮位が下がりきった時に水源製造弁(S55)を閉じることで水源を確保することができる。
 図面では水源製造弁(S54、S55)であるが、水門でも同機能が可能である。
 図67乃至図70の装置は、水中弁を駆動するエネルギーを除けば、無動力でポンプの働きをするものである。
 図67は、2段の組の第3タンクの入出力気路を直列接続し、この直列接続の端の入出力気路と、流出タンク(T25)の入出力気路とを接続した構造になる。流出タンク(T25)の水中から、送り出し方向に流れる逆止弁(S57)が設けられた流出配管(D67)により、高水位水源(W1)より高位置の加算高水位水槽(64)へ水が送られる。
 その操作手順は、水中路弁(S3)を全て閉じ、図中では省略されている圧力開放弁の全てを開栓する(気密の開放)。第3タンクA(T21)を給水開閉栓し、満水にする。第3タンクB(T22)を排水開閉栓し、減水にする。第3タンクC(T23)を給水開閉栓し、満水にする。第3タンクD(T24)を排水開閉栓し、減水にする。流出タンク(T25)を給水開閉栓し、満水にする。上記の給排水が完了後に、給排水弁の全てを閉栓し、圧力開放弁の全てを閉栓する(気密の開放の解除)。この状態を流出ポンプの準備完了とする。一連のタンクの圧力の発生を止めることが可能な、入出力気路弁(V67)、タンク間気路弁(V68、V69)、水中路弁(S3)を全て開くと、流出配管(D67)から加算された圧力で加算高水位水槽(64)に水が押し出される。この操作手順を、流出ポンプ手順とする。
 上記の流出のポンプシステムを流出ポンプとする。
 図67の、組の第3タンクの直列の連結は、2段であるが、この連結は増やすことが可能である。連結を増やした給排水弁の操作手順は、増やした組の第3タンク分の、項目の繰り返し部分が増える手順となる。
 "h"は、組の第3タンクの相互の水位差とする。それぞれの組の第3タンクの水位差を等しいとする。
 図67の装置での初期の押出し圧力は、入出力気路弁(V67)経由のタンク内水面が大気圧になり、第3タンクは一組で1hの正の圧力を加算し、高水位水源の水面より、2h分の圧力で押し出されることになる。押出した加算高水位水源(W15)の水位は逆止弁(S57)により保持される。
 図68は、2段の組の第3タンクの入出力気路を直列接続し、この直列接続の一方端の入出力気路と、第1タンク(T1)の入出力気路とが接続され、この直列接続のもう一方端の入出力気路と、流入タンク(T26)の入出力気路とを接続した構造になる。流入タンク(T26)の水中から、取り込み方向に流れる逆止弁(S58)が設けられた流入配管(D68)により、低水位水源(W2)より低位置の加算低水位水槽(65)の水が取込まれる。
 その操作手順は、水中路弁(S3)を全て閉じ、図中では省略されている圧力開放弁の全てを開栓する(気密の開放)。第1タンク(T1)を給水開閉栓し、満水にする。第3タンクA(T21)を排水開閉栓し、減水にする。第3タンクB(T22)を給水開閉栓し、満水にする。第3タンクC(T23)を排水開閉栓し、減水にする。第3タンクD(T24)を給水開閉栓し、満水にする。流入タンク(T26)を排水開閉栓し、減水にする。上記の給排水が完了後に、給排水弁の全てを閉栓し、圧力開放弁の全てを閉栓する(気密の開放の解除)。この状態を流入ポンプの準備完了とする。一連のタンクの圧力の発生を止めることが可能な、第1タンク(T1)の排水弁(S2)、タンク間気路弁(V68、V69)、水中路弁(S3)を全て開くと、流入配管(D68)から加算された負の圧力で加算低水位水槽(65)から水が引込まれる。上記の第1タンク(T1)の操作を除いた、操作手順を流入ポンプ手順とする。
 図68の第1タンク(T1)を除いた、流入のポンプシステムを流入ポンプとする。
 図68の、組の第3タンクの連結は、2段であるが、この連結は増やすことが可能である。連結を増やした給排水弁の操作手順は、増やした組の第3タンク分の、項目の繰り返し部分が増える手順となる。
 図68は、図67と比較して初段に第1タンク(T1)が設けられている。
 "h"は、組の第3タンクの相互の水位差とする。それぞれの組の第3タンクの水位差を等しいとする。
 図68の装置での初期の引上げ圧力は、第1タンク(T1)の水位差は1hで、開栓(S2)している低水位水源(W2)が大気圧になり、第3タンクは一組で1hの負の圧力を加算し、低水位水源の水面より、3h分の圧力で引き上げることになる。引上げられた加算低水位水源(W16)の水位は逆止弁(S58)により保持される。
 図69、図70の様に、この落差の大きい高水位水槽と低水位水槽を水源として、より高圧で効率の高い発電に利用することも可能になるものである。
 図67、図68の、前記流出ポンプと流入ポンプの流出タンク(T25)と流入タンク(T26)を取り外し、入出力気路弁(V69)を入出力口として使用した場合、この入出力気路弁(V69)の直列接続の反対端に在る開放された水面が大気圧の基準となり、この入出力気路弁(V69)に加算された圧力が発生するため、高圧発生装置として利用することができる。
 この高圧発生装置の操作手順は前記の流出ポンプ手順と流入ポンプ手順の流出タンク(T25)と流入タンク(T26)の操作を除いた手順となり、流出ポンプ手順が加算された正の圧力発生方法に該当し、流入ポンプ手順が加算された負の圧力発生方法に該当する。また、組の第3タンクのみの直列接続の両端を出力とした場合、一方が加算された正の圧力、もう一方が加算された負の圧力となる。この高圧発生装置の操作手順を高圧発生手順とする。
また、図中に省略されている圧力開放弁はタンクの"気密の開放"をして、給排水を早く完了するものであるが、図67、図68のタンク間気路弁(V68)が開栓で、タンク間気路で連通された双方のタンクの水位変化が上下対称の水位変化をする給排水であれば、圧力開放弁としての役割を果たすものであり、この場合も"気密の開放"とする。
 しかし、上記の双方のタンクの水位変化が上下対称のタンク間気路において、"気密の開放"をする前が連通であることは、上記の高圧発生手順では正常な運用である。すると"気密の開放"も連通になる。そのため、この場合の"気密の開放の解除"は連通であるとする。
 また、タンクがタービンを経由し大気に繋がる場合、時間はかかるが圧力開放弁としての役割を果たすものである。
 また、上記の流出ポンプと流出ポンプは用途が水だけではなく、大量の液体を扱う場合の装置としても利用することが可能である。
 図71,図72は、潮位差による水源確保において、波を利用して水源の水位差をより大きくする装置である。海のうねりは、波打ち際でうねりの水の移動で急に移動先が狭くなると、水位変化がより大きくなるものである。岩場の海岸で波しぶきが異常に高くなる光景があるが、この原理によるものである。図71の流入用の比重弁(S23)の流路断面が外海方向に広くなる形状にすることにより、波打ち際の水位がより高くなった時に水位を流入し、水位が下がると閉じるものである。この装置により、より高い高水位水源(W1)が得られるものである。
 低水位水源(W2)も同様で、図72の流出用の比重弁(S23)の流路断面が外海方向に広くなる形状にすることにより、波打ち際の水位がより低くなった時に水位を流出し、水位が上がると閉じるものである。この装置により、より低い低水位水源(W2)が得られるものである。
 この装置を、水源の落差増加装置とする。
 自然の地形で低水位差の水源を作る環境は多くあり、河川で低水位差の水源を作るには、図73の様に河川に勾配(W21)のある箇所であれば、容易に水位差のある水源を作ることができるものである。河川上流(W20)より水流を取込み、河川高水位水槽(72)に水量を確保し、河川下流を低水位水源(W22)とすることで容易に本発明を可動させることができる。
 圧力発生装置の排水は水中に排水するものであるが、河川に水がなくなっても、圧力発生装置を動作させる必要があるため、タンクの排水側に排水くぼみ(73)を設けるものである。この排水くぼみ(73)の底は、河川下流の底より低い位置になり、常時、水が溜まる構造のくぼみである。
 常時、水が溜まるこの装置により、施錠比重弁(S27)は絶えず水中となり、性能を維持することが可能となるものである。
 図74の電力の変換装置は風力発電などに使われる、従来の手法であり、不規則なエネルギー発生での電気エネルギー回収方法として、発電機(75)で発電された電力を整流器(76)により直流に変換し、バッテリー(77)に充電するものである。充電された電力はDC/ACコンバーター(U15)によりAC電源に変換されるものである。上記は、従来の手法であるが、エネルギーの回収方法として、本発明の応用性を拡大するものである。
 従来の、圧力で回転する装置は、図75のタービン(TU1)が、構造例として挙げられるが、動作原理は、静止状態の回転羽(TU15)は圧力では始動しない特性がある。回転羽(TU15)に圧力(Pt)が回転に対し均等に掛かるためである。ただ一旦、回転を始めると流量が回転力となるために、タービンとしての機能になるものである。
 本発明はタービンの回転方向が逆転するため、タービンの静止状態から圧力を回転点力に変換する装置が必要である。
 図76は、本発明のエアータービンとして考案されたものであり、密閉空間(83)の体積変化による回転力であるため、タービンの静止状態から圧力を回転力に変換できるものである。そのタービンとは、2つの回転体(TU17)は歯車で噛合っており、回転軸に給排気口(TU18)があり、密閉空間(83)は回転角度に応じて体積増加(減少)を続けるために、360度で圧力を回転力に変換できるものである。すなわち、圧力が逆転する本発明にとって重要な装置である。
 この、(日本)特願2006-84161、(米国)12/230、884のタービンであれば、本発明の低圧力での圧力発生装置において、効率の良く回転力が得られるものである。
1、水流矢印
2、タービン回転方向矢印
3、気流矢印
5、暴走水流矢印
6、圧力と水位差の波形
7、圧力負荷接続の圧力と水位差の波形
8、水中弁ドライバー(弁センサー)
9、 周期1の圧力の波形(T7)
10、周期2の圧力の波形(T8)
11、周期3の圧力の波形(T9)
12、集合した仕事量の波形
16、小容量タービンの単独の仕事量の波形
17、中容量タービンの単独の仕事量の波形
18、大容量タービンの単独の仕事量の波形
19、選択駆動の集合した仕事量の波形
21、水位センサー
22、圧力開放弁ドライバー
24、強制閉鎖弁ドライバー
25、連通弁ドライバー
27、ギア結合
28、電動クラッチ(ドライバー含む)
30、回転負荷(もしくは発電機)
31、回転連結シャフト
32、シャフト回転矢印
44、施錠シリンダー
52、水上シリンダー
59、ギヤ結合
60、動力源
61、ワイヤー巻取り軸
63、高さ基準
64、加算高水位水槽
65、加算低水位水槽
66、流出ポンプ
67、流入ポンプ
68、浪打際流路形状
69、満潮時平均水位
70、波方向(うねりの移動方向)
71、干潮時平均水位
72、河川高水位水槽
73、排水くぼみ
75、発電機
76、整流器
77、バッテリー
83、密閉空間
W、仕事量(エネルギー)
W1、高水位水源
W2、低水位水源
W3、タンク内水位
W5、微小高水位
W6、微小低水位
W7、同等水位
W11、満潮水位(満潮水面)
W12、干潮水位(干潮水面)
W15、加算高水位水源
W16、加算低水位水源
W20、河川上流
W21、河川勾配
W22、河川下流(低水位水源)
S1、給水弁
S2、排水弁
S3、水中路弁
S5、強制閉鎖弁
S6、強制閉鎖弁ガイド
S7、強制閉鎖弁ガイド受部
S11、給水弁A(第2タンクA)
S12、排水弁A(第2タンクA)
S13、給水弁B(第2タンクB)
S14、排水弁B(第2タンクB)
S15、給水弁A(第3タンクA)
S16、排水弁A(第3タンクA)
S17、給水弁B(第3タンクB)
S18、排水弁B(第3タンクB)
S23、比重弁
S24、比重調整フロート
S25、比重弁回転軸
S26、水上施錠軸
S27、施錠比重弁
S28、施錠回転ピストン(施錠突起)
S29、施錠回転軸
S30、クランク施錠比重弁
S33、施錠突起
S34、施錠突起クランク軸
S35、クランク施錠回転ピストン
S36、クランク施錠ピストン回転軸
S40、施錠回転軸
S41、クランク水上施錠軸
S43、比重弁取付軸
S44、比重弁付施錠軸(施錠突起)
S45、噛合い施錠回転ピストン
S46、比重弁付施錠支持部(施錠突起)
S49、タンク内外密閉版(水平方向に可動)
S50、水上錘比重弁
S51、水中弁駆動軸
S52、水上比重調整錘
S53、水中弁駆動ワイヤー
S54、水源製造弁(水上錘比重弁)
S55、水源製造弁(水上錘比重弁)
S56、弁駆動装置(水上比重調整錘)
S57、逆止弁(流出配管)
S58、逆止弁(流入配管)
S61、給水弁A(第3タンクA)
S62、給水弁B(第3タンクB)
S63、給水弁C(第3タンクC)
S64、給水弁D(第3タンクD)
S65、給水弁O(流出ポンプ)
S66、給水弁I(流入ポンプ)
S71、排水弁A(第3タンクA)
S72、排水弁B(第3タンクB)
S73、排水弁C(第3タンクC)
S74、排水弁D(第3タンクD)
S75、排水弁O(流出ポンプ)
S76、排水弁I(流入ポンプ)
S77、給水水門
S78、排水水門
T1、第1タンク
T2、第2タンク
T3、第3タンク
T5、強制閉鎖弁装備タンク
T7、(周期1)第1タンク
T8、(周期2)第1タンク
T9、(周期3)第1タンク
T11、第2タンクA
T12、第2タンクB
T21、第3タンクA
T22、第3タンクB
T23、第3タンクC
T24、第3タンクD
T25、流出タンク
T26、流入タンク
U1、圧力負荷
U2、圧力センサー
U5、電子制御装置
U10、圧力制御装置
U15、DC/ACコンバーター
V0、圧力開放弁
V1、圧力開放弁
V2、連通弁(小容量)
V3、連通弁(中容量)
V4、連通弁(大容量)
V5、切替弁(小容量)
V6、切替弁(中容量)
V7、切替弁(大容量)
V8、帰還弁(小容量)
V9、帰還弁(中容量)
V10、帰還弁(大容量)
V11、水中路排気弁
V12、連通弁(小容量)
V13、連通弁(中容量)
V14、連通弁(大容量)
V67、入出力気路弁
V68、タンク間気路弁
V69、タンク間気路弁(入出力気路弁)
TU1、タービン
TU2、周期1タービン
TU3、周期2タービン
TU4、周期3タービン
TU5、水中路排気ポンプ
TU7、(小容量)タービン
TU8、(中容量)タービン
TU9、(大容量)タービン
TU12、タービン
TU15、回転羽
TU16、外壁
TU17、回転体
TU18、回転軸給排口
Ph、高水位水源圧力
Pt、タンク内圧力
D1、入出力気路
D2、タンク間気路
D3、水中路
D4、圧力配管
D5、圧力開放連絡路
D6、水中路排気路
D7、入出力気路A
D8、入出力気路B
D10,帰還気路
D67、流出配管
D68、流入配管

Claims (28)

  1.  低水位水源と高水位水源と、該水源の間に置かれたタンクと、
     該タンクと該高水位水源との間で開閉される、施錠弁であることの給水弁と、
     該タンクと該低水位水源との間で開閉される、該施錠弁であることの排水弁と、
     タンク空間と外部を連通し、圧力の入出力口となる入出力気路とを備え、
     給水開閉栓により該入出力気路に正の圧力が発生し、排水開閉栓により該入出力気路に負の圧力が発生することを特徴とする圧力発生装置であり、
     該施錠弁は、施錠突起が、開栓を妨げる位置と開栓可能な位置への交互の移動が可能で、開栓を施錠するものであり、
     上記を第1の構成の、第1タンクとし、
     第2の構成として、上記第1タンクが2基でなり、この両第1タンクのタンク空間を連通するタンク間気路にタービンを備え、これを組の第2タンクとし、
     該組の第2タンクの、一方の第2タンクの給水開閉栓と、他方の第2タンクの排水開閉栓により、該タービンを順回転で駆動させることが可能であり、さらに、前者の第2タンクの排水開閉栓と、後者の第2タンクの給水開閉栓により、該タービンを逆回転で駆動させることが可能であることを特徴とするものであり、
     第3の構成として、上記第1タンクが2基でなり、この両第1タンクの水中を連通する、水中路弁を有する水中路を備え、これを組の第3タンクとし、
     該組の第3タンクの、該給排水弁が全て閉栓され、一方が減水の第3タンクと、他方が増水の第3タンクの状態で、該水中路弁の開栓をすると、前者の第3タンクの入出力気路は正の圧力、後者の第3タンクの入出力気路は負の圧力になることを特徴とするものであり、
     上記の第1タンク乃至第3タンクに、上記水中弁の開閉を制御する電子制御装置を備え、該電子制御装置による該水中弁の開閉により圧力を発生させることを特徴とする圧力発生装置。
  2.  請求項1記載の前記第1タンク乃至第3タンクの前記施錠弁が、比重弁の構造を備え、少ないエネルギーで開閉することを特徴とする施錠比重弁装置。
  3.  請求項1記載の前記第1タンク乃至第3タンクの前記水中弁が比重弁の構造を備え、
     第一の比重弁として、該水中弁が開閉方向に駆動され水上に繋がる可動構造を備え、該可動構造の延長が滑車もしくはシーソーで釣合い構造の錘を備え、該水中弁の水中の重量と水上の該錘が均衡することで、該水中弁の水中での比重を水の比重に近似することを特徴とするものであり、
     第二の比重弁として、該水中弁が水の比重に近似させる中空構造を備え、該水中弁の比重を水の比重に近似することを特徴するものであり、
     上記第一の比重弁と第二の比重弁との構造により、自重による開閉の駆動障害を低減し、僅かな水流で可動であることを特徴とした比重弁装置。
  4.  請求項2及び請求項3記載の前記比重弁装置が、前記比重弁の開閉方向に駆動され水上に繋がる可動部に、該可動部を作動させる動力装置を備え、少ないエネルギーで該比重弁を開閉することを特徴とする比重弁駆動装置。
  5.  前記第1タンク乃至第3タンクのタンク単体に付き、前記給排水弁の両方もしくはどちらか一方に、2重の弁構造の強制閉鎖弁を備え、
     暴走水流の発生の場合、該強制閉鎖弁を電子制御にて閉栓することを特徴とする請求項1記載の圧力発生装置。
  6.  請求項1記載の前記施錠弁の開栓を妨げる構造において、該施錠弁の開栓位置に、クランクの施錠構造の前記施錠突起を備え、
     該施錠弁を、該施錠突起の該クランクが直線で開栓を妨げる施錠で閉栓し、該施錠弁を、開栓可能な該施錠突起の該クランクを崩す形体にして開錠し、
     上記により該施錠弁を施錠および開錠することを特徴とするクランク施錠装置。
  7.  請求項1及び請求項6記載の前記施錠弁の、前記施錠突起が水上に繋がる施錠及び開錠を駆動する装置を備え、水上にその施錠及び開錠の駆動を制御する電子制御装置を備え、該電子制御装置により、該施錠弁に施錠及び開錠させることを特徴とする弁施錠装置。
  8.  請求項1の前記組の第3タンクの前記水中路の、
     第一の排気装置として、前記高水位水源の水面と、前記低水位水源の水面の、間の高さの水中路に、水中路排気弁を有する水中路排気路を備え、
     該水中路排気路と連通している第3タンクの給水開閉栓と、該水中路排気弁の開栓により該水中路内の空気を排気することを可能とするものであり、
     第二の排気装置として、前記低水位水源の水面より上の該水中路に、水中路排気ポンプを有する水中路排気路を備え、該水中路排気ポンプの駆動により該水中路内の空気を排気することを可能とするものであり、
     上記の第一の排気装置もしくは第二の排気装置により該水中路内の空気を排気することを特徴とする排気装置。
  9.  前記第1タンク乃至第3タンクが、前記高水位水源と前記低水位水源と該第1タンク乃至第3タンク内の、水位を計測する水位センサーを備え、
     各該水位センサーのデータに基づいて、前記電子制御装置により各該水中弁を開閉することを特徴とする請求項1記載の圧力発生装置。
  10.  請求項1の前記第1タンク乃至第3タンクの、
     第一の圧力発生装置として、前記第1タンク、第3タンクが、個々にタービンを有する複数で並列の入出力気路を備え、
     第二の圧力発生装置として、前記組の第2タンクが、個々にタービンを有する複数で並列のタンク間気路を備え、
     上記の第一の圧力発生装置および第二の圧力発生装置の、各タービンの選択駆動により、集合したエネルギーを得るもので、
     電子制御の排気量適化プログラムより、各タービンの選択駆動をすることを特徴とする選択駆動圧力発生装置。
  11.  請求項10記載の前記選択駆動圧力発生装置の、
     第一の回転力集合装置として、該選択駆動圧力発生装置の、各タービンの回転軸の駆動の延長にクラッチを設け、該タービンの前記連通路に連通弁を設け、該クラッチを経由した集合回転力を出力とし、該連通弁の開栓とクラッチの回転結合とが連動で選択駆動を有効とし、該連通弁の閉栓とクラッチの開放とが連動で選択駆動を無効とするものであり、
     第二の回転力集合装置として、該選択駆動圧力発生装置の全ての前記タービンの回転軸を回転結合し、全ての該タービンに帰還気路を設け、該タービンの前記連通路に連通弁と、全ての該帰還気路に帰還弁とを設け、該連通弁の開栓と該帰還弁の閉栓は、該タービンに回転力が発生し選択駆動が有効で、該連通弁の閉栓と該帰還弁の開栓は、該タービンが空転で選択駆動が無効であり、
     第三の回転力集合装置として、該選択駆動圧力発生装置の全ての前記タービンの回転軸を回転結合し、全ての該タービンに該帰還気路を設け、該連通路の連通と、該帰還気路の連通とを切替える切替弁を設け、該連通路の連通と、該帰還気路の閉栓の切替えは、該タービンに回転力が発生し選択駆動が有効で、該連通路の閉栓と、該帰還気路の連通の切替は、該タービンが空転し選択駆動が無効であり、
     第四にエネルギー集合装置として、該選択駆動圧力発生装置の全ての前記タービンの回転軸に発電機を設け、さらに、それらの該発電機の電力を貯める蓄電装置と、その配線を設け、発電機による蓄電を選択駆動の有効とし、発電機による蓄電不能を選択駆動の無効とするもので、
     上記第一の回転力集合装置乃至第三の回転力集合装置及び第四のエネルギー集合装置にて、電子制御の排気量適化プログラムより、集合したエネルギー得ることを特徴とするエネルギー集合装置。
  12.  請求項1、請求項9記載の複数の前記組の第3タンクの両端の前記入出力気路を繋ぐ、直列接続をし、該直列接続の一方の端の入出力気路と、他方の端の入出力気路の、両方もしくは一方を入出力口とし、
     高圧発生手順による電子制御により、それぞれの第3タンクの前記水中弁を開閉し、該直列接続の一方の端の入出力気路に加算された正の圧力、他方の入出力気路に加算された負の圧力を発生すること特徴とする高圧発生装置。
  13.  請求項12の前記高圧発生装置の一方の端の前記入出力気路と、請求項1の前記第1タンクの前記入出力気路とを接続し、
     流出ポンプの構成として、該第1タンクの水中から前記高水位水源の水位より高い水槽に、押し出し方向に流れる逆止弁が設けられた流出配管を設け、この該第1タンクを流出タンクとするもので、
     流入ポンプの構成として、該第1タンクの水中から前記低水位水源の水位より低い水槽に、引き上げ方向に流れる逆止弁が設けられた流入配管を設け、この該第1タンクを流入タンクとするもので、
     上記の流出ポンプと流入ポンプを、流出ポンプ手順及び流入ポンプ手順による電子制御にて、それぞれの前記水中弁を開閉して、ポンプ動作することを特徴とするポンプ装置。
  14.  請求項3の前記比重弁を水源製造弁にし、潮位と前記高水位水源との間に流入方向に水が流れる該水源製造弁と、潮位と前記低水位水源との間に流出方向に水が流れる該水源製造弁とを備え、
     満潮から水を流入した該高水位水源と、干潮へ水を流出した該低水位水源とを、請求項1、請求項9記載の圧力発生装置の該水源にする水源製造装置。
  15.  請求項14の前記水源製造装置において、前記水源製造弁の流路の断面が、海側に距離と共に広がる構造を設け、波のうねりにより該水源製造弁に掛かる波の高低を強調し、該水源製造弁に流れる流量を増大させ、該水源の落差を増大させることを特徴とする水源落差増加装置。
  16.  河川に設置される請求項1、請求項9記載の前記圧力発生装置の、前記高水位水源を河川高水位水槽とし、河川の上流と該河川高水位水槽の間に水門を設け、該河川の下流に排水可能な排水くぼみを有する前記低水位水源を備え、
     該水門の開門により河川上流から高水位の水を取込むことを可能とし、これを該圧力発生装置の該水源とする水源装置。
  17.  請求項5の前記強制閉鎖弁の制御方法において、前記第1タンク乃至第3タンクに該強制閉鎖弁を備え、該第1タンク乃至第3タンク内に水位センサー及び水流センサーを備えたもので、
     該第1タンク乃至第3タンク内の水位が、水位変化を伴わない水流が発生した場合、これを暴走水流とし、電子制御により該強制閉鎖弁を閉栓し該暴走水流を停止させる強制閉鎖弁制御方法。
  18.  請求項5の前記強制閉鎖弁の制御方法において、前記第1タンク乃至第3タンクの全ての前記水中弁に前記弁センサーを備えたもので、
     前記第1タンク乃至第3タンクのうち、いずれかの単体のタンクの、該給水弁と該排水弁の両方が開栓の状態を第一の検知とし、このタンクの強制閉鎖弁を第一の検知の強制閉鎖弁とし、
     第二の検知として、前記組の第3タンクの、前記水中路弁の開栓と、一方の第3タンクの前記給水弁と他方の第3タンクの前記排水弁の開栓とが、第二の検知とし、この該給水弁と該排水弁に2重となる強制閉鎖弁のどちらか一方を、第二の検知の強制閉鎖弁とし、
     上記の該弁センサーにより、該第一の検知、もしくは、該第二の検知が発生した場合に、前者は第一の検知の強制閉鎖弁を、後者は第二の検知の強制閉鎖弁を、電子制御により閉栓し、暴走水流を停止させることを特徴とする強制閉鎖弁制御方法。
  19.  請求項8の前記第一の排気装置の前記水中路内の空気の排出方法であり、
     該第一の排気装置の、排気をする前記水中路の前記水中路排気路と連通した前記第3タンクの給水開閉栓をし、該水中路排気路の前記水中路排気弁を開栓し、該水中路内に在る空気を排気させ、この排気終了後に該水中路排気弁を閉栓し、該水中路内の空気の排出する水中路空気排出方法。
  20.  請求項1、請求項9、請求項10、請求項12、請求項13記載の前記第1タンク乃至第3タンクの駆動方法であり、該第1タンク乃至第3タンクに圧力開放弁を備えるものであり、
     該第1タンク、該第2タンクのタンク内水位と、開栓側の前記水源の水位との、水位差を第一の水位差とし、
     該組の第3タンクの前記水中路弁が開栓で、相互の該第3タンク内の水位差を第二の水位差とし、
     該組の第3タンクの該水中路弁が閉栓で、どちらか一方の第3タンクの、タンク内水位と開栓側の前記水源との水位差を第三の水位差とし、
     上記第一の水位差乃至第三の水位差が回収不要水位差である場合、電子制御により該圧力開放弁を開栓し、タンク内の給排水を迅速に完了することを特徴とする圧力発生方法。
  21.  請求項1、請求項10乃至請求項13記載の前記第1タンク乃至第3タンクの駆動方法であり、該第1タンク乃至第3タンクの連通路に圧力負荷を備え、気路弁が備えられているものを含むものとし、
     各前記水中弁の開栓の時間を基準にし、該第1タンク乃至第3タンクの該水中弁及び該気路弁を、時間給排水プログラムの電子制御により開閉することを特徴とする圧力発生方法。
  22.  請求項1、請求項9,請求項10記載の前記第1タンク乃至第3タンクの駆動方法であり、複数の該第1タンク、もしくは複数の組の第2タンク、もしくは複数の組の第3タンクの、前記連通路に前記タービンが設けられ、この複数の該タービンの回転力のエネルギーは集約されるものであり、この該タンクの並行動作において、
     複数の該第1タンク、もしくは複数の組の第2タンク、もしくは複数の組の第3タンクの、前記水中弁を、位相差平滑プログラムによる電子制御にて、該水中弁の開閉の周期をずらし、回収できるエネルギーの斑を減少させることを特徴とするエネルギー回収方法。
  23.  請求項10、請求項11記載の前記選択駆動圧力発生装置の駆動方法であり、該選択駆動圧力発生装置において、前記第1タンク乃至第3タンクに設けられた複数の並列の前記連通路の、それぞれの前記タービンを、排気量適化プログラムの電子制御にて選択駆動をし、該タービンの総容量の変化により、回収できるエネルギーの斑を減少させるエネルギー回収方法。
  24.  請求項12の前記高圧発生装置の駆動方法であり、該高圧発生装置の直列接続の順序の、組の第3タンクの組の極性を、一方側を第3タンクAとし、もう一方側を第3タンクBとするものであり、
     該高圧発生装置の全ての前記水中路弁の閉栓と、全てのタンクの気密の開放と、全ての該第3タンクAの給水開閉栓と、全ての該第3タンクBの排水開閉栓とを行い、全ての給排水弁の閉栓と、上記の気密の開放の解除の状態を、高圧発生の準備完了とし、
     直列接続の全ての前記連通路の連通と、全ての該水中路弁の開栓により、
     直列接続の端にある第3タンクAの該入出力気路に加算された負の圧力と、もう一方端にある第3タンクBの該入出力気路に加算された正の圧力を発生するもので、これを高圧発生手順とする高圧発生方法。
  25.  請求項13の前記流出ポンプの駆動方法であり、該流出ポンプの直列接続の順序の、組の第3タンクの組の極性を、前記流出タンク側を第3タンクBとし、もう一方側を第3タンクAとするものであり、
     該流出ポンプの全ての前記水中路弁の閉栓と、全てのタンクの気密の開放と、該流出タンクと全ての該第3タンクAの給水開閉栓と、全ての該第3タンクBの排水開閉栓を行い、全ての給排水弁の閉栓と、上記の気密の開放の解除の状態を、ポンプ動作の準備完了とし、
     該直列接続の全ての前記連通路の連通と、全ての該水中路弁の開栓により、
     前記高水位水源の水位より高い水位の水槽に、前記流出配管より水を送り出すもので、これを流出ポンプ手順とする流出ポンプ制御方法。
  26.  請求項13の前記流入ポンプの駆動方法であり、該流入ポンプの直列接続の順序の、組の第3タンクの組の極性を、前記流入タンク側を第3タンクBとし、もう一方側を第3タンクAとするものであり、
     該流入ポンプの全ての前記水中路弁の閉栓と、全てのタンクの気密の開放と、該流入タンクと全ての該第3タンクAの排水開閉栓と、全ての該第3タンクBの給水開閉栓を行い、全ての給排水弁の閉栓と、上記の気密の開放の解除の状態を、高圧発生の準備完了とし、
     該直列接続の全ての前記連通路の連通と、全ての該水中路弁の開栓により、
     前記低水位水源の水位より低い水位の水槽から、前記流入配管より水を取り込むもので、これを流入ポンプ手順とする流入ポンプ制御方法。
  27.  請求項1,請求項9、請求項10、請求項12、請求項13記載の圧力発生装置の前記水源の製造方法であり、潮位を検出する水位センサーと、潮位と該水源の間に電子制御装置で開閉する水門が備わり、
     該水位センサーの情報が、高水位時に該高水位水源の該水門の開栓と、高水位時以外に該高水位水源の該水門の閉栓と、
     該水位センサーの情報が、低水位時に該低水位水源の該水門の開栓と、低水位時以外に該低水位水源の該水門の閉栓とで、
     上記の電子制御装置による上記の両水門の開閉により、潮位から該水源を製造する水源製造法。
  28.  請求項1,請求項9、請求項10、請求項12、請求項13記載の圧力発生装置の前記水源の製造方法であり、潮位と該水源の間に電子制御装置で開閉する前記水門が備わり、
     電子制御装置の時刻による制御において、
     設定された満潮時間帯の該高水位水源の該水門の開栓と、満潮時間帯以外の該高水位水源の該水門の閉栓と、
     設定された干潮時間帯の該低水位水源の該水門の開栓と、干潮時間帯以外の該低水位水源の該水門の閉栓とで、
     電子制御装置による上記の両水門の開閉により、潮位から該水源を製造する水源製造法。
PCT/JP2010/001124 2009-02-23 2010-02-22 低水位差大流量発電装置 WO2010095464A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/202,912 US20120248777A1 (en) 2009-02-23 2010-02-22 Device for power generation with large flow rate by small water-level difference

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009065173A JP2012112244A (ja) 2009-02-23 2009-02-23 低水位差大流量発電装置
JP2009-065173 2009-02-23

Publications (1)

Publication Number Publication Date
WO2010095464A1 true WO2010095464A1 (ja) 2010-08-26

Family

ID=42633751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001124 WO2010095464A1 (ja) 2009-02-23 2010-02-22 低水位差大流量発電装置

Country Status (3)

Country Link
US (1) US20120248777A1 (ja)
JP (1) JP2012112244A (ja)
WO (1) WO2010095464A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013537954A (ja) * 2010-09-27 2013-10-07 ネイチャー アンド ピープル ファースト 補助電気エネルギーを生産するための方法および設備
CN107593578A (zh) * 2017-11-02 2018-01-19 青岛大学 一种防倒流式自动进水单向控制装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM381681U (en) * 2010-01-12 2010-06-01 shi-xiong Chen Seesaw type water wave electric generator
US8723352B2 (en) * 2011-05-04 2014-05-13 Nanda Gopal Kumjula Reddy Systems for optimizing wave energy for renewable energy generation
NO20140762A1 (no) * 2014-06-17 2015-12-18 Oerjavik Harald Bølgekraftanlegg
US20170121924A1 (en) * 2014-06-17 2017-05-04 Harald ORJAVIK Wave-power plant
JP5826354B1 (ja) * 2014-10-02 2015-12-02 株式会社東産商 発電装置
GB201417538D0 (en) * 2014-10-03 2014-11-19 Tse Kwong S Tidal power generation system and method of constructing a reservoir for such a system
CN104632518B (zh) * 2014-12-15 2017-04-12 蔡乃成 拦海蓄水海洋潮汐发电站
TWI713451B (zh) * 2015-06-05 2020-12-21 丁景信 洋流發電系統
US20190234369A1 (en) * 2015-06-05 2019-08-01 Ghing-Hsin Dien Ocean current power generation system
ES2611582B1 (es) * 2016-08-31 2018-02-16 Sebastián Enrique Bendito Vallori Sistema neumático submarino modular propulsor de turbinas en espiral doble que transforma el oleaje en electricidad y gases a presión.
CN106840905B (zh) * 2017-04-20 2023-04-07 重庆科技学院 油气管道压力综合教学实验装置
RU2732359C1 (ru) * 2019-10-02 2020-09-15 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Приливная гэс
RU2757047C1 (ru) * 2021-02-11 2021-10-11 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Бесплотинная приливная гэс

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56132473A (en) * 1980-03-19 1981-10-16 Takenaka Komuten Co Ltd Air-turbine-type wave power generating equipment using positive and negative pressure stock chambers
JPS57174510A (en) * 1981-04-22 1982-10-27 Shimizu Constr Co Ltd Dam unit for wave power generation
JPS5891373A (ja) * 1981-11-25 1983-05-31 Fuji Electric Co Ltd 波力発電設備
JPS6197422U (ja) * 1984-11-28 1986-06-23
JPS6272334U (ja) * 1985-10-23 1987-05-09
JP2000328545A (ja) * 1999-05-19 2000-11-28 Asahi Tekkosho:Kk オートゲート
JP2005154588A (ja) * 2003-11-26 2005-06-16 Dainippon Ink & Chem Inc 注型成形用樹脂組成物及び注型成形品
JP2006097418A (ja) * 2004-09-30 2006-04-13 Hitachi Zosen Corp 起伏式ゲート
JP2006307818A (ja) * 2005-04-25 2006-11-09 Masahiro Ikemura タンク給排水式水力発電及び潮位差発電

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4103490A (en) * 1977-03-28 1978-08-01 Alexander Moiseevich Gorlov Apparatus for harnessing tidal power
US5222833A (en) * 1991-05-08 1993-06-29 Northeastern University Shutter for hydro-pneumatic current flow harnessing system
US5713202A (en) * 1994-04-04 1998-02-03 Energy Conservation Partnership, Ltd. Methods for producing hydro-electric power
US7579700B1 (en) * 2008-05-28 2009-08-25 Moshe Meller System and method for converting electrical energy into pressurized air and converting pressurized air into electricity
US8890352B2 (en) * 2008-09-05 2014-11-18 Derek James Wallace McMinn Power generator for extracting energy from a liquid flow

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56132473A (en) * 1980-03-19 1981-10-16 Takenaka Komuten Co Ltd Air-turbine-type wave power generating equipment using positive and negative pressure stock chambers
JPS57174510A (en) * 1981-04-22 1982-10-27 Shimizu Constr Co Ltd Dam unit for wave power generation
JPS5891373A (ja) * 1981-11-25 1983-05-31 Fuji Electric Co Ltd 波力発電設備
JPS6197422U (ja) * 1984-11-28 1986-06-23
JPS6272334U (ja) * 1985-10-23 1987-05-09
JP2000328545A (ja) * 1999-05-19 2000-11-28 Asahi Tekkosho:Kk オートゲート
JP2005154588A (ja) * 2003-11-26 2005-06-16 Dainippon Ink & Chem Inc 注型成形用樹脂組成物及び注型成形品
JP2006097418A (ja) * 2004-09-30 2006-04-13 Hitachi Zosen Corp 起伏式ゲート
JP2006307818A (ja) * 2005-04-25 2006-11-09 Masahiro Ikemura タンク給排水式水力発電及び潮位差発電

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013537954A (ja) * 2010-09-27 2013-10-07 ネイチャー アンド ピープル ファースト 補助電気エネルギーを生産するための方法および設備
CN107593578A (zh) * 2017-11-02 2018-01-19 青岛大学 一种防倒流式自动进水单向控制装置
CN107593578B (zh) * 2017-11-02 2023-07-25 青岛大学 一种防倒流式自动进水单向控制装置

Also Published As

Publication number Publication date
JP2012112244A (ja) 2012-06-14
US20120248777A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
WO2010095464A1 (ja) 低水位差大流量発電装置
US7199483B2 (en) Tidal power generation
Tousif et al. Tidal power: an effective method of generating power
CN107228042B (zh) 一种基于水锤泵的近岸波浪能发电系统和方法
US20090072539A1 (en) Device, system, and method for harnessing fluid energy
US7432612B2 (en) Water power generator
CN109555637A (zh) 一种潮汐发电装置
CN111120208A (zh) 一种水力恒压储释能系统与智能调控方法
BR112021012689A2 (pt) Sistema de energia hidrelética por momento com base na gravidade avançado
CN104153937A (zh) 一种适应潮位变化的波浪能收集装置
CN104746475A (zh) 一种利用风力潮汐发电蓄水引流处理河道污水装置及方法
EP2302202B1 (en) Hydraulic propulsion for increases of hydroelektric power station capacity
CN101413476B (zh) 海底抽排尾水式水力发电系统
WO2023087815A1 (zh) 一种海上蓄水与潮汐蓄水双用发电站
CN103452744B (zh) 一种可移动安装的海洋潮汐落差泵水储能发电系统
CN100430595C (zh) 轮索式海浪能量转换装置
GB2488158A (en) Water driven reciprocating engine
KR20120013472A (ko) 가변 증속 기능을 가진 파력발전기
KR20230062564A (ko) 유체로부터 에너지를 추출하기 위한 개선된 장치 및 방법
KR100559085B1 (ko) 조력발전장치
CN106958506A (zh) 利用中和压头压力泵用于流体动力能量生成的协同方法
JP6591626B1 (ja) 浮力体を用いた発電プラント及びその発電方法
TW202113224A (zh) 將波浪動能轉換成位能的構造
CN109209744A (zh) 一种浪潮发电系统及施工方法
US12055122B2 (en) Tidal energy converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

WWE Wipo information: entry into national phase

Ref document number: 13202912

Country of ref document: US