WO2010095169A1 - 情報推薦方法、そのシステム、及びサーバ - Google Patents

情報推薦方法、そのシステム、及びサーバ Download PDF

Info

Publication number
WO2010095169A1
WO2010095169A1 PCT/JP2009/000666 JP2009000666W WO2010095169A1 WO 2010095169 A1 WO2010095169 A1 WO 2010095169A1 JP 2009000666 W JP2009000666 W JP 2009000666W WO 2010095169 A1 WO2010095169 A1 WO 2010095169A1
Authority
WO
WIPO (PCT)
Prior art keywords
item
interest
unrecommended
boundary
indifference
Prior art date
Application number
PCT/JP2009/000666
Other languages
English (en)
French (fr)
Inventor
森靖英
三木良雄
加藤雅弘
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2011500357A priority Critical patent/JP5277307B2/ja
Priority to PCT/JP2009/000666 priority patent/WO2010095169A1/ja
Priority to US13/148,966 priority patent/US8635241B2/en
Publication of WO2010095169A1 publication Critical patent/WO2010095169A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/953Querying, e.g. by the use of web search engines
    • G06F16/9537Spatial or temporal dependent retrieval, e.g. spatiotemporal queries

Definitions

  • the present invention relates to a method for recommending information such as content, and more particularly to a technique for recommending an unexpected item that is of interest to a user but cannot be easily assumed.
  • a “collaborative filtering” method is known as a system for recommending information to be distributed when distributing information such as content (see Non-Patent Document 1).
  • This collaborative filtering is a method of estimating a user profile (what type a user belongs to, etc.) from the similarity of past user histories and determining the next recommended item.
  • Patent Document 1 a preference cluster and a non-preference cluster are created based on content that the user has viewed and content that has not been viewed, respectively, and are recommended in order from the one that is similar to the preference cluster and that is not similar to the non-preference cluster. The method is described.
  • JP 2008-210101 A Toshiyuki Masui, “City Corner of Interface (93)-Bookshelf Operation,” Unix Magazine, Vol. 20, No. 12, 2005
  • the collaborative filtering method is mainly a method of determining a recommended item with reference to an unrecommended part in the entire history of another user whose history is partially similar, and in general, an unexpected recommendation, that is, an interest to the user.
  • an unexpected recommendation that is, an interest to the user.
  • the recommendation degree is determined by referring to only the cluster of the content having the closest similarity, and when there are other similar clusters, it cannot be reflected. .
  • the recommendation results are the same regardless of whether the preference is the same.
  • the recommendation method is based on what is considered to be the most preferred, it is not possible to increase the recommendation order of content far from the preferred content. For this reason, it is difficult to make recommendations that are surprising.
  • it is not considered to reflect the background situation (physiological phenomenon, human relationship, etc.) that occurs in relation to user behavior in the recommended content.
  • An object of the present invention is to provide an information recommendation method capable of making a recommendation that is unexpected for a user, a system thereof, and the like.
  • Another object of the present invention is to provide an information recommendation method that can reflect the background situation that occurs in relation to user behavior in the recommended content, and its system.
  • a server including a processing unit and a storage unit is used, and the reaction of the user who has received information about the item is reflected in the selection criteria for the item to be recommended next.
  • An information recommendation method and an information recommendation system for recommending in which a processing unit collects information that a user has reacted and information that there has been no reaction, and an item of interest that the user has reacted to an unrecommended item
  • Information recommendation method and information recommendation system for determining the next recommended item to the user using the comparison result I will provide a.
  • the processing unit calculates the recent interest distance and the recent indifference distance for the unrecommended item, calculates the boundary divergence degree of the unrecommended item from the difference between the recent interest distance and the recent indifference distance, and the boundary divergence degree is the smallest.
  • An information recommendation method for determining an unrecommended item as the next recommended item is provided.
  • the processing unit extends the unrecommended item similar to the interested item and the indifferent item as the interested item and the indifferent item, so that it is a boundary between the interested item and the indifferent item in all items to be recommended.
  • an information recommendation method for estimating an indifference / interest boundary and determining an unrecommended item on the interest item side determined on or near the indifference / interest boundary or an unrecommended item on the indifference / interest boundary as a next recommended item.
  • the processing unit uses attribute information (referred to as a field context) about a user's physiological phenomenon and a human relationship with the accompanying person. Estimate and provide an information recommendation method that reflects the context of the place in the item recommendation.
  • attribute information referred to as a field context
  • primary recommendation is performed for recommending information based on action history and a fixed user profile, and not only items that have been reacted but also information on items that have not been reacted are used together. Narrow down the recommended items.
  • the result of primary recommendation is used to identify where the user's interest / indifference boundary is located in all items by similarity, and as a result, unrecommended items become user's interest / indifference. Identify where on the region. Then, as an item that is not particularly indifferent and maximizes the unexpectedness, an item near the boundary between interest and indifference is determined as a recommended item.
  • the present invention it is possible to make a recommendation that is surprising to the user, and it is possible to reflect the background situation that occurs in relation to the user behavior in the recommended content.
  • FIG. 1 is a diagram showing an overall system configuration in which a recommendation method and a recommendation system are executed.
  • a user 100 possesses a terminal 101 such as a mobile phone, and uses this terminal 101 to access a server 104 via a network 103 via a network connection device 102 such as a wireless communication device.
  • the server 104 incorporates a recommendation program, which will be described in detail later, and performs a recommendation / distribution process of contents and the like to the user 100.
  • the server 104 has a configuration in which a database such as the item / attribute information 105, the user profile 106, and the user action history 107 is externally attached or built in.
  • FIG. 2 is a diagram showing an example of the internal configuration of the terminal 101 in FIG.
  • a display 200, an input device 202, and an antenna 204 are connected to an internal bus 206 such as a data bus via a video display unit 201, an interface (IF) 203, and a wireless communication unit 205, respectively.
  • an arithmetic device 207 including a central processing unit (Central Processing Unit) and a memory 208 serving as a storage unit are connected to the internal bus 206.
  • the memory 208 stores a display program for generating data to be displayed on the display 200.
  • Central Processing Unit Central Processing Unit
  • FIG. 3 is a diagram showing an example of the internal configuration of the server 104 in FIG.
  • reference numerals 300, 301, 302, 303, 304, 305, 306, 307, 308 denote a display device, a video display unit, an input device, an interface (IF), an input device, an interface (IF), a data bus, etc.
  • the server 104 is an ordinary computer.
  • the server 104 is an arithmetic unit including a CPU, a memory, and a memory. The recommended program in the memory will be described in detail later.
  • the storage device 310 connected to the internal bus 306 via the interface (IF) 309 stores the item / attribute information 105, the user profile 106, and the user action history 107 shown in FIG. 1 as a database.
  • the server is connected to the network 103 via the communication unit 311.
  • the first embodiment is an example of a recommendation method and a recommendation system based on a vector space type item classification.
  • the similarity relationship expression of items is used as a spatial arrangement (vector) type, and an interest / indifference boundary region is calculated to recommend an item.
  • a vector space is generated by expressing all items as vectors according to their attributes, and an interest / indifference boundary is determined in the vector space using the primary recommendation result, and items existing on or near the boundary.
  • the server 104 having the system configuration shown in FIGS. 1 and 3 recommends various items such as contents to the terminal 101 possessed by the user 100 via the network, and further distributes them.
  • all items to be recommended / distributed are regarded as item vectors, and various items are arranged in a vector space.
  • the item vector is created using the item attributes as components.
  • each genre is expressed as a number from 1 to 10
  • price range is expressed as a number from 1 to 5
  • purchase layer is also expressed as a number from 1 to 5.
  • a set of three numbers is given to one item.
  • the genre is 7, the price range is 3, the purchase layer is 5, and so on.
  • the vector of the item is given by three components (three dimensions) of (7, 3, 5). It goes without saying that the same applies to the case of three or more components.
  • the vector (7, 3, 5) may be expressed by assuming that the vector (7, 3, 5) is arranged at a corresponding position in the three-dimensional space.
  • FIG. 4 is a diagram illustrating an overall flowchart in the server 104 of the recommendation system according to the first embodiment.
  • This flow is a processing flow in the arithmetic unit 307 which is a processing unit of the server 104.
  • an item vector is created based on the attributes of all recommended items as described above (401).
  • a similarity is calculated for each item, and primary recommendation using the similarity is performed (402).
  • the primary recommendation result one or more recommendations
  • the boundary divergence degree of the unrecommended data is determined using the accumulated data (403).
  • a secondary recommended item is determined using the boundary divergence degree (404), and the process ends (405).
  • the primary recommendation using the similarity may use, for example, conventional collaborative filtering.
  • the determination flow of the boundary divergence degree is started (500), the reaction data for each item that has been primarily recommended (402) is checked (501), and the presence / absence of an interest reaction within a certain time is checked (502).
  • the item is classified as an interested item (503).
  • the item is classified as an indifferent item (504) and accumulated, and all data are finished ( 505, 506), vectors of interest items and indifferent items in the item space are set as initial positions of interest and indifference areas (regions) (507).
  • the presence or absence of this reaction is the presence / absence of access to the access destination corresponding to the primary recommended item, the presence / absence of electronic payment of the product related to the primary recommended item, the download of the discount ticket etc. of the product corresponding to the primary recommended item, etc.
  • the processing unit can detect log information that can be regarded as a user's response to the primary recommended item.
  • the nearest interest distance (the nearest initial position of interest, that is, the distance to the nearest interest item vector) is calculated for each unrecommended item (508), and similarly, the most recently uninterested distance (recent (509) calculates a signed boundary divergence (the difference between the nearest interest distance and the most recent indifference distance) for each unrecommended item. Calculate (510) and end the step of determining the boundary divergence (511).
  • the Euclidean distance is used as the distance between the item vectors.
  • ⁇ ⁇ indicates the square root of the value in ⁇
  • ⁇ 2 indicates the square.
  • the closest distance among the initial positions of the interest data is selected and set as the latest interest distance as described above.
  • the closest distance among the initial positions of the indifference data is selected and set as the indifference distance recently. Then, by taking the difference between the two, a signed boundary divergence degree is obtained.
  • the sign is a sign of (Recently Indifference Distance-Recently interesting Distance).
  • different weights may be assigned to each. Giving a greater weight to the distance on the interested side sets a boundary closer to indifference.
  • FIG. 6 is a flowchart showing details of the step of determining the secondary recommended item.
  • the flow starts (600) first, data having the smallest absolute value of the signed boundary divergence is selected from the unrecommended items (601). It is determined whether there is only one item (602). If there are a plurality of items, selection is performed in the following order until there is one item (603). That is, only those with a positive sign of the signed boundary divergence degree are selected. (Recent distance of indifference)-(Recent distance of interest)> 0 If there is not one item, random number selection is performed and the selection result is determined as a recommended item (605).
  • step 602 If there is only one item in step 602, the item is determined as a secondary recommended item (604), and the process ends (606).
  • FIG. 7 is a diagram schematically showing an example of the relationship between the item vector and the interest / indifference boundary in this embodiment.
  • 700 ⁇ mark
  • 701 x mark
  • 702 ⁇ mark
  • Reference numerals 703 and 704 respectively indicate the recent interest distance and the latest indifference distance between the interested item 700 and the unrecommended item 702.
  • Reference numerals 705 and 706 denote interest / indifference boundaries and signed boundary deviation degrees, respectively.
  • the signed boundary divergence degree 706 is schematically illustrated in FIG. 7, but can be calculated as described above.
  • FIG. 8 is a diagram showing an example of item / attribute data used in this embodiment. This data is stored in the storage unit as item / attribute information 105 in FIG.
  • each row indicates each item, and each column indicates an attribute. Examples of the attribute include the genre, price range, purchase layer, season, and the like described above. Further, as shown in the rightmost column, whether or not it is related to a characteristic keyword can also be used as an attribute.
  • FIG. 9 is a diagram showing an example of item recommendation history data in the present embodiment.
  • Each row of the table 900 indicates each recommended item, and each column indicates the recommended time, content, and the like of the recommended item. The time, place, and user information can be used as background information for reference when making recommendations.
  • the rightmost column shows the user's response to the recommended recommendation item, where 1 indicates a response and 0 indicates no response, which is used as a result of the primary recommendation.
  • this table 900 is memorize
  • the similarity relation expression of items is a spatial arrangement type using vectors
  • the interest / indifference boundary region is calculated in the vector space
  • the items existing on or near the boundary are selected.
  • the evaluation value fluctuates greatly near the interest / indifference boundary.
  • the boundary divergence degree by using the boundary divergence degree, the evaluation is sequentially performed in the vicinity of the boundary. Items can be recommended from near the boundary.
  • a graph configuration type that is, a primary recommendation result is used, and an interest / indifference boundary and a boundary divergence degree of each item are calculated in the item graph. It is.
  • the response item and the non-reaction item which are the results of the primary recommendation, are used as the starting point to expand each item by following the links on the item graph.
  • FIG. 10 is a diagram showing an overall flowchart of the second embodiment. Needless to say, this flow is also executed in the server 104 having the system configuration shown in FIGS. 1 and 3 as in the first embodiment.
  • FIG. 10 when the processing flow is started (1000), an item graph is created based on the attributes of all recommended items (1001). Then, primary recommendation using similarity is executed (1002). Then, the interest / indifference boundary and the boundary divergence degree of each item are calculated in the item graph using the primary recommendation result (1003), the secondary recommended item is determined based on the result (1004), and the process ends (1005). ).
  • FIG. 11A is a flow showing details of the creation (1001) of the item graph of FIG.
  • the similarity between each item uses the normalized correlation between attribute vectors, for example.
  • Cor (x, y) (y1 ⁇ x1 + y2 ⁇ x2 +... + Yd ⁇ xd) / [ ⁇ ⁇ (x1) ⁇ 2+ (x2) ⁇ 2+... (Xd) ⁇ 2 ⁇ ⁇ ⁇ (y1) ⁇ 2+ (y2) ⁇ 2+... (Yd) ⁇ 2 ⁇ ] It becomes.
  • ⁇ ⁇ indicates the square root of the value in ⁇
  • ⁇ 2 indicates the square
  • indicates multiplication
  • / indicates division.
  • step 1103 for example, only a part having a similarity equal to or higher than a preset threshold (for example, 0.5) is assumed to be linked.
  • FIG. 11B to FIG. 11D schematically show the above-described processing of this embodiment.
  • 1 to 5 indicate item i.
  • FIG. 11C shows normalized correlation values 0.1 to 0.9, which are similarities between items 1-5.
  • FIG. 11D shows what is linked only to the above-described threshold (0.5) or more.
  • the boundary divergence degree calculating step 1003 in FIG. 10 will be described in detail.
  • a check is made on each reaction data for data that has been reacted by the user as a result of the primary recommendation (1201). First, it is checked whether or not there is an interest reaction within a certain time for each data (1202). If YES, the item is classified as an interested item (1203). If NO, the item is classified as an indifferent item. (1204). Then, it is confirmed whether or not all data has been completed (1205). If not, the next reaction data is checked (1206).
  • the node of the interested item and the node of the uninteresting item in the item graph are set as initial values of the interested and uninteresting areas, respectively (1207). Then, the interest / indifference area is expanded to each adjacent node on the graph by the adjacent relationship (1208).
  • one extension operation to adjacent nodes is referred to as (one) extension step.
  • the node was expanded for the first time in the previous expansion step, or was a node that had not been expanded until the previous time, and expansion from both the interested and indifferent sides overlapped in this expansion step.
  • the interest / indifference boundary item that is, the interest / indifference boundary divergence degree is set to zero (1209).
  • the interest / indifference boundary item determined above is expanded as an initial node, and the i-step expansion is performed, and the interest / disinterest boundary divergence degree of the first included node is set to i.
  • FIGS. 13A to 13D schematically show specific examples of Step 1207 to Step 1210.
  • FIG. 13A the nodes of the interested item and the uninterested item are set as initial values of the interested and indifferent areas, respectively.
  • the ⁇ mark, the X mark, and the ⁇ mark in the items indicate the primary recommended interest item 1300, the indifferent item 1301, and the unrecommended item 1302, respectively, as in FIG.
  • FIG. 13B the interest and indifference areas are expanded to adjacent nodes on the graph by the adjacency relationship.
  • the upper stage, middle stage, and lower stage of FIG. 13B show the state after the third expansion, the fourth expansion, and the fifth expansion, respectively.
  • items indicated by * and ⁇ at each node represent items 1303 and 1304 after the indifferent item and the item of interest are expanded, respectively.
  • FIG. 13C a node that has been expanded for the first time before or once but has not been expanded, and a node in which both expansion of interest and indifference overlap is set as an interest / indifference boundary item. That is, the interest / indifference boundary divergence degree is 0, and three items surrounded by a dotted line in FIG.
  • the numerical value other than the divergence degree 0 indicates the interest / indifference boundary divergence degree i of the node included for the first time by expanding i steps from the interest / indifference boundary item.
  • the numerical value N for determining the degree of divergence is a parameter given in advance.
  • the number of expansion steps may be different between the areas of interest and indifference, and one of them may be increased.
  • the number of steps from the unrecommended item to the node and expanded to reach the interested item and the uninterested item for the first time is set as “recent interest distance”, “ As the “recent indifference distance”, the difference may be defined by looking at the difference between them.
  • FIG. 14 is a diagram for explaining a modification of the secondary recommended item determination step 1005 of FIG. 10 in the present embodiment. Note that the item graph is the same as in FIG. 13C.
  • the recommendation is given priority on the vicinity of the boundary on the graph expression.
  • all items for example, three items
  • step 1406 the next processing is repeated until there is one item (1406).
  • step 1406 selects one with a small degree of interest / indifference boundary divergence.
  • step 1407 Selects the item with the maximum average number of distances from all recommended items.
  • step 1407 Selects the one with the smallest average number of separations of all reaction items.
  • step 1407 selects the selection result is determined as a recommended item (1407), and the process ends (1411).
  • the number of steps from the unrecommended item to the node is expanded to reach each of the interested item and the uninterested item for the first time.
  • the difference may be defined by looking at the difference between them.
  • the evaluation value largely fluctuates in the vicinity of the interest / indifference boundary.
  • the vicinity of the boundary can be recommended from the vicinity of the boundary sequentially by continuous evaluation.
  • the field context data is data whose basic information is a physiological phenomenon parameter, a human relationship parameter, and a user profile.
  • the “physiological phenomenon parameter” is a parameter related to human senses (requests to eat, rest, cold, hot, painful, dark pains, etc.) and emotion (healing pleasure). It means the time of the previous meal, estimated calorie intake, walking distance, and the type of service used recently (eg, movie genre or type).
  • the “human relationship parameter” is a parameter related to the human relationship of the user's companion, such as a lover, wife, husband, family, friend, and the like.
  • This parameter is estimated from, for example, the communication status (call frequency, mail frequency, common community participation frequency). Whether or not the user is accompanied by a companion is determined by whether or not position information obtained by a GPS or the like mounted on the information terminal held by the user is near a certain time.
  • the “user profile” can use information registered in advance such as sex, age, etc. when registering an information terminal.
  • FIG. 15 shows an example of the overall system configuration in which the recommendation system according to this embodiment is executed, and the same reference numerals as those in the system of FIG. 1 denote the same items.
  • the server 150 stores a field context application program therein, and a field context database 151 that details the contents later is added to the database storing various tables.
  • the configuration is the same as that of the system described with reference to FIGS.
  • the server 150 estimates the above-described user profile, organizing phenomenon parameter, and human relationship parameter (1601).
  • the profile uses information at the time of user registration or the like.
  • the physiological phenomenon parameter is estimated from the movement distance of the mobile terminal, the status of various sensors, the staying status in the facility, and the like.
  • the status of various sensors refers to physiological values such as pedigree value, body temperature, heart rate, and respiratory rate.
  • the human relationship parameter is estimated from the communication status (communication frequency, mail frequency, common community participation frequency). For example, it is estimated by applying a common sense rule such as “There is a friendship with the other party who frequently calls in a private time zone”.
  • each parameter obtained by estimation is digitized by a predetermined correspondence relationship to generate a context feature vector (1602).
  • a parameter digitization information table 1800 shown in FIG. 18A is used.
  • the 30s are “(0, 0, 1, 0, 0, 0)”
  • the man is “(1, 0)”
  • the physiological phenomenon parameter is the walking distance 10 km is “10”
  • human With the related parameters, the wife can be determined for each item such as “(1, 0, 0)”.
  • the vector generation method is the same as that described above using the definition.
  • FIG. 18B shows a parameter table 1801 of the context AZ.
  • the values before the parameters are digitized are shown for easy understanding, but it goes without saying that the corresponding numerical values are actually stored.
  • the generated context feature vector is compared with the similarity of each context in the context parameter table of the field context database 151, and the one with the highest similarity is selected and estimated as the current field context. (1603), the flow ends (1604).
  • normalized correlation or the like is used for the similarity.
  • each item importance is calculated using the weight (attribute importance) corresponding to the previously determined place context (1704).
  • the weight (attribute importance) corresponding to the context of this place is stored in advance in the context / attribute table.
  • FIG. 18C shows an example of an attribute weight table 1802 for storing context / attribute weights.
  • the calculation of the importance of each item in step 1704 is as follows.
  • the weight corresponding to the previously estimated field context corresponds to the weight of any row in FIG. 18c.
  • w has two subscripts, the left side shows the attribute number, and the right side shows the number assigned to each value that the attribute can take. Therefore, for example, the subscript ⁇ n1 ⁇ indicates the total number of values that the first attribute can take. The same applies to ⁇ n2 ⁇ and thereafter.
  • ⁇ _i a sum is taken so that i covers all the attribute numbers 1 to d.
  • ⁇ _j ⁇ ⁇ ni ⁇ indicates that j is summed so as to extend over the number numbers 1 to ⁇ ni ⁇ that the i-th attribute can take.
  • the present embodiment it is possible to make a recommendation from all the recommended items near the boundary by reflecting the priority weight according to the context of the field, and the background situation related to the user behavior is reflected in the recommended content. be able to.
  • DESCRIPTION OF SYMBOLS 100 ... User 101 ... Terminal 102 ... Network connection apparatus 103 ... Network 104 ... Server 105 ... Item / attribute information 106 ... User profile 107 ... User action history 206 ... Internal bus 207 ... Arithmetic device 306 ... Internal bus 308 ... Memory 309 ... Interface 310 ... Storage device 311 ... Communication unit 700 ... Interest item 701 ... Indifferent item 702 ... Unrecommended item 703 ... Recent interest distance 704 ... Recently indifference distance 705 ... Interest / indifference distance 706 ... Boundary deviation degree.

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

 ユーザにとって関心はあるが、容易に想定できない意外性のある項目を推薦することの可能な情報推薦システムを提供する。サーバは、ユーザプロファイル、行動履歴によって情報推薦を行う一次推薦を一回以上行い、反応のあった項目だけでなく、無反応であった項目の情報も併せて用いて、次に推薦する二次推薦項目の絞り込みを行う。絞込みでは、一次推薦の結果を用いてアイテム配置プログラムによってアイテムを配置し、類似度によって、全アイテム中で、ユーザの関心・無関心の境界がどこにあるかを境界算出プログラムによって特定する。そして、未推薦アイテムがユーザの関心・無関心領域上のどの位置にあるかを特定し、無関心でなく、かつ意外性を最大化するアイテムとして、関心・無関心の境界付近のアイテムを二次推薦アイテムとして決定する。

Description

情報推薦方法、そのシステム、及びサーバ
 本発明は、コンテンツなどの情報を推薦する方法、特にユーザにとって関心はあるが、容易に想定できない意外性のある項目を推薦する技術に関する。
 コンテンツなどの情報を配信する際に配信する情報を推薦するシステムとして、従来、「協調フィルタリング」方式が知られている(非特許文献1参照)。この協調フィルタリングとは、過去のユーザ履歴の類似性からユーザプロファイル(ユーザがどういったタイプに属するか、等)を推定し、次の推薦アイテムを決定する方式である。
 また、特許文献1において、ユーザが視聴したコンテンツと視聴しなかったコンテンツによってそれぞれ嗜好クラスタと非嗜好クラスタをつくり、嗜好クラスタに類似していて、非嗜好クラスタに類似していないものから順に推薦する方式が述べられている。
特開2008-210010号公報 増井俊之, "インタフェースの街角(93) - 本棚演算, " Unix Magazine, Vol.20, No.12,  2005
 協調フィルタリング方式では、部分的に履歴が類似した別ユーザの全履歴中、未推薦の部分を参照して推薦アイテムを決定する方式が主体であり、一般に、意外性のある推薦、即ちユーザにとって関心はあるが、容易に想定できない項目を推薦することは難しい。
 また、特許文献1に記載の推薦方法では、類似度が最も近いコンテンツのクラスタのみを参照して推薦度を決定しており、他にも近い類似度のクラスタがある場合に、それを反映できない。例えば、1番類似性が高いコンテンツと2番目のコンテンツが、それぞれ嗜好、非嗜好が異なっている場合でも、逆に共に嗜好で同じ場合でも、推薦度は同じ結果となる。また、最も嗜好していると思われるものから推薦する方式であるため、嗜好コンテンツから離れたコンテンツの推薦順位を高くできない。そのため、意外性のある推薦は難しい。更に、ユーザ行動に関連して起こる背景状況(生理現象や人間関係等)を推薦内容に反映させることは考慮されていない。
 本発明の課題は、ユーザにとって意外性のある推薦を行うことの出来る情報推薦方法、及びそのシステム等を提供することにある。
 また、本発明に他の課題は、ユーザ行動に関連して起こる背景状況を推薦内容に反映できる情報推薦方法、及びそのシステム等を提供することにある。
 上記の課題を解決するため、本発明においては、処理部と記憶部とを備えたサーバを用い、アイテムに関する情報を受け取ったユーザの反応を、次に推薦するアイテムの選択基準に反映し、別途推薦を行う情報推薦方法、並びに情報推薦システムであって、処理部は、ユーザが反応した情報と、無反応であったという情報を収集し、未推薦アイテムに対して、ユーザが反応した関心アイテムと、無反応であった無関心アイテム双方とのどちらのアイテムとの類似性が高いかを比較し、その比較結果を用いてユーザへの次の推薦アイテムを決定する情報推薦方法、並びに情報推薦システムを提供する。
 また、処理部は、未推薦アイテムについて、最近関心距離および最近無関心距離を算出し、最近関心距離および最近無関心距離の差から、未推薦アイテムの境界乖離度を算出し、境界乖離度が最小の未推薦アイテムを次の推薦アイテムに決定する情報推薦方法等を提供する。
 更に、処理部は、関心アイテムと無関心アイテムそれぞれに類似した未推薦アイテムを、関心アイテムと無関心アイテムとして拡張することにより、推薦対象である全てのアイテム中に、関心アイテムと無関心アイテムの境界である無関心・関心境界を推定し、無関心・関心境界上、またはその近傍、または、無関心・関心境界で決められる関心アイテム側の未推薦アイテムを次の推薦アイテムに決定する情報推薦方法等を提供する。
 更にまた、本発明においては、上記の課題を解決するため、処理部は、ユーザの生理現象、および、同伴行動している人との人間関係等についての属性情報(場のコンテキストと呼ぶ)を推定し、この場のコンテキストをアイテムの推薦に反映させる情報推薦方法等を提供する。
 本発明の好適な態様として、行動履歴、固定のユーザプロファイルによって情報推薦を行う一次推薦を行い、反応のあった項目だけでなく、無反応であった項目の情報を併せて用いて、二次推薦する項目の絞り込みを行う。この絞り込みにおいては、一次推薦の結果を用いて、類似度によって、全アイテム中で、ユーザの関心・無関心の境界がどこにあるかを特定し、その結果、未推薦アイテムが、ユーザの関心・無関心領域上のどの位置にあるかを特定する。そして、特に無関心でなく、且つ意外性を最大化するアイテムとして、関心・無関心の境界付近のアイテムを推薦アイテムとして決定する。
 更に、本発明のより好適な態様として、二次推薦アイテムの決定にあたって、人間の行動履歴や固定のユーザプロファイル以外に、現在の行動によって引き起こされた生理要因や、共同行動者の人間関係などの背景状況についての属性情報である場のコンテキストを推定する機能を用い、場のコンテキストを反映させた二次推薦を行う。
 本発明によれば、ユーザにとって意外性のある推薦を行うことの出来、更にユーザ行動に関連して起こる背景状況を推薦内容に反映することができる。
第1の実施例に係わる、推薦システムが実行される全体システム構成の一例を示す図である。 図1の推薦システム中の端末のハードウェア構成の一例を示す図である。 図1の推薦システム中のサーバのハードウェア構成の一例を示す図である。 第1の実施例に係わる推薦システムの全体フローチャートを示す図である。 第1の実施例に係わる推薦システムにおけるデータの境界乖離度を決定するフローチャートを示す図である。 第1の実施例に係わる、二次推薦アイテムを決定するフローチャートを示す図である。 第1の実施例に係わる、アイテムベクトルと関心・無関心境界を説明するための図である。 第1の実施例に係わる、アイテム・属性データテーブルの一例を示す図である。 第1の実施例に係わる、推薦履歴データテーブルの一例を示す図である。 第2の実施例に係わる推薦システムの全体フローチャートを示す図である。 第2の実施例に係わる、アイテムグラフ作成の流れを説明するフローチャートを示す図である。 第2の実施例に係わる、アイテムグラフ作成の流れを説明する模式図である。 第2の実施例に係わる、アイテムグラフ作成の流れを説明する模式図である。 第2の実施例に係わる、アイテムグラフ作成の流れを説明する模式図である。 第2の実施例に係わる、関心・無関心境界アイテムと境界乖離度を決定するフローチャートを示す図である。 第2の実施例に係わる、関心・無関心境界アイテムと境界乖離度を決定を説明する模式図である。 第2の実施例に係わる、関心・無関心境界アイテムと境界乖離度を決定を説明する模式図である。 第2の実施例に係わる、関心・無関心境界アイテムと境界乖離度を決定を説明する模式図である。 第2の実施例に係わる、関心・無関心境界アイテムと境界乖離度を決定を説明する模式図である。 第2の実施例に係わる、二次推薦アイテムを決定するフローチャートを示す図である。 第3の実施例に係わる、推薦システムが実行される全体システム構成の一例を示す図である。 第3の実施例に係わる、場のコンテキストの決定順序を説明するためのフローチャート図である。 第3の実施例に係わる、二次推薦アイテムを決定するフローチャートを示す図である。 第3の実施例に係わる、パラメータ数値化情報テーブルの一例を示す図である。 第3の実施例に係わる、コンテキスト・パラメータテーブルの一例を示す図である。 第3の実施例に係わる、コンテキスト・属性重みテーブルの一例を示す図である。
 以下、本発明を実施するための形態を図面に従い説明する。まず、推薦方法及び推薦システムが実行される全体システム構成の一例を説明する。
 図1は、推薦方法及び推薦システムが実行される全体システム構成を示す図である。同図において、ユーザ100が、携帯電話等の端末101を所持し、この端末101を使って無線通信機器等のネットワーク接続装置102を介してネットワーク103経由でサーバ104にアクセスする。このサーバ104内には後で詳述する推薦プログラムなどが内蔵され、ユーザ100に対しコンテンツなどの推薦・配信処理を行う。サーバ104には、アイテム・属性情報105、ユーザプロファイル106、ユーザ行動履歴107等のデータベースが外付け或いは内蔵される構成を有する。
 図2は図1の端末101の内部構成の一例を示す図である。同図において、ディスプレイ200、入力デバイス202、アンテナ204は、それぞれ映像表示部201、インターフェイス(IF)203、及び無線通信部205を介してデータバス等の内部バス206に接続される。また、内部バス206には通常のコンピュータと同様に、中央処理部(Central Processing Unit、CPU)からなる演算装置207、及び記憶部であるメモリ208が接続されている。このメモリ208にはディスプレイ200に表示するデータを生成する表示プログラムなどが記憶されている。
 図3は、同様に図1のサーバ104の内部構成の一例を示す図である。同図において、300、301、302、303、304、305、306,307、308は、それぞれ表示デバイス、映像表示部、入力デバイス、インターフェイス(IF)、入力デバイス、インターフェイス(IF)、データバス等の内部バス、CPUからなる演算装置、メモリを示しており、サーバ104とは通常のコンピュータである。メモリ内の推薦プログラム等は後で詳述する。インターフェイス(IF)309を介して、内部バス306に接続される記憶装置310には、データベースとして図1に示したアイテム・属性情報105、ユーザプロファイル106、及びユーザ行動履歴107が記憶されている。また、サーバは通信部311を介して、ネットワーク103に接続される。
 第1の実施例は、ベクトル空間タイプのアイテム分類による推薦方法及び推薦システムの例である。本実施例においては、アイテムの類似関係表現を空間配置(ベクトル)型として、関心・無関心境界領域を算出してアイテムを推薦する。すなわち、全てのアイテムをその属性によってベクトル表現してベクトル空間を生成し、一次推薦結果を用いて、ベクトル空間中に関心・無関心境界を決定し、この境界上、あるいは境界の付近に存在するアイテムを二次推薦する。
 実施例1においては、図1、図3のシステム構成のサーバ104はユーザ100が所持する端末101に対して、ネットワークを介してコンテンツなどの各種のアイテムを推薦し、更には配信を行う。本実施例においては、推薦・配信対象である全アイテムはアイテムベクトルとみなされ、各種アイテムはベクトル空間に配置される。アイテムベクトルは、アイテムの属性を成分として作成される。
 例えば、アイテムの属性として、ジャンル、価格帯、購買層の三つがあり、それぞれジャンルを1~10の数字に、価格帯を1~5の数字に、購買層も1~5の数字で表現する。すると、一つのアイテムに対して、3つの数字の組が与えられる。ジャンルが7、価格帯が3、購買層が5などである。このとき、アイテムのベクトルは(7、3、5)の3成分(3次元)で与えられる。3成分以上の場合も同様であることは言うまでのない。また、ベクトル(7、3、5)を3次元空間の対応する位置に配置されていると見なして表現することもある。なお、このように数値の列をベクトルと見なしてデータ処理を行う手法は、多変量解析やパターン認識などにおいて広く用いられている(例えば、石井健一郎、前田英作、上田修功、村瀬洋著、「わかりやすいパターン認識」、オーム社、1998年参照)。なお、成分をさらに正規化して用いたり、主成分分析等の公知の変換を施しても良い。
 図4は、実施例1の推薦システムのサーバ104における全体フローチャートを示す図である。このフローは、サーバ104の処理部である演算装置307での処理フローである。まず、スタート(ステップ400、以下「ステップ」を全て省略する)に続き、上述したように全推薦アイテムの属性によってアイテムベクトルを作成する(401)。そして各アイテムに対して類似度を算出し、類似度を用いた一次推薦を行う(402)。そして、一次推薦結果(一回以上の推薦)を記憶部であるメモリ308や記憶装置310に記憶しておき、この蓄積データを用いて、未推薦データの境界乖離度を決定する(403)。最後に、この境界乖離度を用いて二次推薦アイテムを決定し(404)、終了する(405)。なお、類似度を用いた一次推薦は、例えば従来の協調フィルタリングを用いても良い。
 次に、図5を用いて、図4における境界乖離度の決定(403)の詳細フローを説明する。境界乖離度の決定フローが開始される(500)と、一次推薦(402)された各アイテムについての、反応データをチェックし(501)、一定時間内での関心反応の有無を見(502)、一定時間内に関心反応があったとき、当該アイテムを関心アイテムに分類し(503)、関心反応がなかったとき、無関心アイテムに分類して(504)蓄積し、全てのデータを終了したら(505、506)、アイテム空間中の関心アイテムと無関心アイテムのベクトルそれぞれを関心、無関心エリア(領域)の初期位置とする(507)。
 なお、この反応の有無は、一次推薦アイテムに対応するアクセス先へのアクセスの有無、一次推薦アイテムと関連する商品の電子決済の有無、一次推薦アイテムに該当する商品の割引券などのダウンロード等、一次推薦アイテムに対するユーザの反応と見なせるログ情報を、処理部が参照することにより検出できる。
 続いて、各未推薦アイテムについて最近関心距離(最近傍の関心初期位置、すなわち最近傍の関心アイテムのベクトルとの距離)を算出し(508)、同様に各未推薦アイテムについて最近無関心距離(最近傍の無関心初期位置、すなわち最近傍の無関心アイテムのベクトルとの距離)を算出し(509)、各未推薦アイテムについて、符号付きの境界乖離度(最近関心距離と最近無関心距離との差)を算出し(510)、境界乖離度の決定ステップを終了する(511)。
 なお、アイテムベクトル間の距離は、例えばユークリッド距離を用いる。ユークリッド距離の定義は、次のとおりである。ベクトルx=(x1,x2, . . . xd)、ベクトルy=(y1,y2 . . . yd)のユークリッド距離D(x,y)は、
  D(x,y)=√{(y1-x1)2+(y2-x2) 2+ . . . (yd-xd) 2}
ここで、√{ }は、{ }の中の値の平方根を、2は、2乗を示す。
 これで算出されたユークリッド距離Dを用い、未推薦アイテムごとに、関心データの初期位置の中で最も距離が近いものを選択し、上述したように最近関心距離とする。また、各未推薦アイテムで、無関心データの初期位置の中で最も距離が近いものを選択し、最近無関心距離とする。そして、これら両者の差を取ることで、符号付きの境界乖離度とする。符号は便宜上(最近無関心距離-最近関心距離)の符号とする。なお、関心、無関心の距離の差を取る際、それぞれに異なった重みをつけても良い。関心側の距離に大きく重みをつけることは、より無関心に近いところに境界を設定することになる。
 続いて、図4のフロー中の二次推薦アイテムの決定(404)の詳細を説明する。図6は、二次推薦アイテムの決定ステップの詳細を示すフローである。フローがスタートすると(600)、まず未推薦アイテム中で符号付き境界乖離度の絶対値が最小のデータを選択する(601)。アイテムが一つのみか否かを判断し(602)、複数ある場合は、アイテムが一つとなるまで、次の順序で選択を行う(603)。すなわち、符号付き境界乖離度の符号が正であるものだけ選択する。
  (最近無関心距離)-(最近関心距離)>0
 アイテムが一つとならない場合、乱数選択を行い、選択結果を推薦アイテムに決定する(605)。
 また、ステップ602でアイテムが一つの場合、二次推薦アイテムに決定し(604)、終了する(606)。
 図7は本実施例におけるアイテムベクトルと関心・無関心境界の関係の一例を模式的に示す図である。同図において、700(●印)、701(×印),702(○印)は、それぞれベクトル空間上の関心アイテム、無関心アイテム、未推薦アイテムを示している。703、704はそれぞれ関心アイテム700と未推薦アイテム702との最近関心距離と、最近無関心距離を示す。また、705、706はそれぞれ関心・無関心境界、符号付き境界乖離度を示している。なおここでは、関心・無関心境界は明示的な算出の例示をしないが、算出自体は、「最近関心距離」と「最近無関心距離」の差が零のところで定義される。符号付き境界乖離度706は、図7では模式的に例示したが、先の説明の通りに算出できる。
 図8は、本実施例において用いられるアイテム・属性データの一例を示す図である。このデータは図1におけるアイテム・属性情報105として記憶部に記憶される。テーブル800は、各行が各アイテムを、各列が属性を示している。属性としては、先に説明したジャンル、価格帯、購買層や、季節などが例示されている。また、最右列に示すように、特徴的なキーワードに関係するか否か等も属性として利用できる。
 図9は、本実施例におけるアイテム推薦履歴のデータの一例を示す図である。テーブル900の各行が各推薦アイテムを示し、各列は推薦されたアイテムの推薦時刻や、内容等を示している。時間、場所、ユーザ情報は、背景情報としてレコメンドの際に参考として用いることもできる。最右列は推薦を受けたレコメンドアイテムに対するユーザの反応を示しており、1は反応有、0は反応無を示しており、一次推薦の結果として用いる。なお、このテーブル900は、図1のユーザ行動履歴107として記憶部に記憶される。
 以上説明した実施例1によれば、アイテムの類似関係表現をベクトルによる空間配置型とし、ベクトル空間で関心・無関心境界領域を算出し、この境界上、又はその付近に存在するアイテムを選定することにより、ユーザにとって関心はあるが、容易に想定できない意外性のある項目を推薦することが可能となる。特に、無関心・関心境界が、関心アイテムから十分遠い場合には、意外性ある情報アイテムが選択される可能性が高くなる。
 また、関心アイテムの最近傍のデータのみ用いると、関心・無関心境界付近で評価値の大きな変動が起きるが、本実施例によれば境界乖離度を用いることにより、境界付近では連続した評価で順に境界付近からアイテムの推薦が可能となる。
 続いて第2の実施例を図面に従い説明する。第2の実施例は、実施例1のベクトル空間配置型に代えて、グラフ構成タイプ、すなわち一次推薦結果を用い、アイテムグラフ中で関心・無関心境界と各アイテムの境界乖離度を算出する実施例である。本実施例においては、一次推薦の結果である反応アイテム、無反応アイテムを起点に、アイテムグラフ上のリンクをそれぞれ辿って拡張を行い、双方の領域が重なる部分のアイテム(一般には複数)を境界とする。
 図10は実施例2の全体フローチャートを示す図である。本フローも実施例1と同様、図1、図3に示したシステム構成のサーバ104において実行されることは言うまでもない。図10において、処理フローが開始(1000)されると、全推薦アイテムの属性によってアイテムグラフが作成される(1001)。そして、類似度を用いた一次推薦が実行される(1002)。そして、一次推薦結果を用いてアイテムグラフ中で関心・無関心境界と各アイテムの境界乖離度を算出し(1003)、その結果に基づき二次推薦アイテムを決定(1004)して、終了する(1005)。
 図11Aは図10のアイテムグラフの作成(1001)の詳細を示すフローである。アイテムグラフ作成がスタートすると(1100)、各アイテムi(i=0,1,2,…N)、について、ペア(i,j)(ここで、j>i)の類似度算出を行い(1101)、類似度>閾値か否かを判定し(1102)、YESの場合、i,j間にリンクあり(1103)、NOの場合、i,j間にリンクなし(1104)として、終了する(1105)。
 ここで、各アイテム間の類似度は、例えば、属性ベクトル間の正規化相関を用いる。その定義は、アイテムi,jの属性ベクトルをx=(x1,x2, . . . xd)、ベクトルy=(y1,y2 . . . yd)、正規化相関をCor(x,y)とすると、
  Cor(x,y)=(y1・x1 + y2・x2 + . . . + yd・xd)/
[√{(x1)2+(x2) 2+ . . . (xd) 2}・√{(y1)2+(y2) 2+ . . . (yd) 2}]
となる。ここで、先と同様、√{ }は、{ }の中の値の平方根を、2は2乗、・は掛け算、/は割り算を示す。そして、ステップ1103において、例えば、類似度があらかじめ設定した閾値(例えば0.5)以上の部分のみリンクありとする。
 図11B-図11Dに本実施例の上述の処理を模式化して示した。図11Bの1~5はアイテムiを示す。図11Cは、各アイテム1-5間の類似度である正規化相関の値0.1~0.9を示している。図11Dは上述した閾値(0.5)以上の部分のみリンクしたものを示している。
 続いて、図12により、図10の境界乖離度算出ステップ1003の詳細説明を行う。図12において、境界乖離度の算出・決定フローが開始されると(1200)、一次推薦の結果、ユーザから反応があったデータについて各反応データに付いてチェックを行う(1201)。まず、各データに対し一定時間内に関心反応があったか否かを調べ(1202)、YESの場合、当該アイテムを関心アイテムに分類し(1203)、NOの場合、当該アイテムを無関心アイテムに分類する(1204)。そして、全データが終了したか否かを確認し(1205)、否の場合、次の反応データに対してチェックを実行する(1206)。
 全データが終了した場合、アイテムグラフ中の関心アイテムのノードと無関心アイテムのノードをそれぞれ関心、無関心エリアの初期値とする(1207)。そして、関心・無関心エリアを隣接関係によってグラフ上で各々隣接ノードに拡張していく(1208)。以下、隣り合うノードへの一回の拡張作業を(一回の)拡張ステップと呼ぶ。この拡張ステップを繰り返した時、一回前の拡張ステップで初めて拡張されたか、もしくは一回前までは未拡張であったノードであって、今回の拡張ステップで関心・無関心両側からの拡張が重なったノードを関心・無関心境界アイテム、即ち、関心・無関心境界乖離度ゼロとする(1209)。
 最後に、上記で決定された関心・無関心境界アイテムを初期ノードとした拡張を行い、iステップ拡張して、初めて含まれたノードの関心・無関心境界乖離度をiとする。以上の操作をi=1からNまで繰り返して(1210)、終了する(1211)。
 図13A-13Dに、ステップ1207-ステップ1210の具体例を模式的に示した。まず、図13Aに示すように、関心アイテムと無関心アイテムのノードをそれぞれ関心、無関心エリアの初期値とする。アイテム中の●印、×印、○印は、図7同様、それぞれ一次推薦済の関心アイテム1300、無関心アイテム1301、未推薦アイテム1302を示している。
 続いて、図13Bに示すように、関心、無関心エリアを隣接関係によってグラフ上で各々隣接ノードに拡張する。図13Bの上段、中段、下段はそれぞれ3回拡張後、4回拡張後、5回拡張後の状態を示している。図13B中段において、各ノードで*印、□印を示すものが、それぞれ無関心アイテム、関心アイテムの拡張された後のアイテム1303、1304を表している。そして、図13Cに示すように、1回前に初めて拡張されたか、未拡張であったノードで、関心、無関心両拡張が重なったノードを関心・無関心境界アイテムとする。すなわち、関心・無関心境界乖離度0とし、同図の点線で囲った三つのアイテムが該当する。
 図13D中、乖離度0以外の数値は、関心・無関心境界アイテムからiステップ拡張して、初めて含まれたノードの関心・無関心境界乖離度iを示したものである。
 なお、乖離度をどこまで求めるかの数値Nはあらかじめ与えるパラメータである。拡張ステップの数を、関心、無関心エリアで違えて、一方を多くしても良い。また、別の方法として、実施例1の場合と同様に、各未推薦アイテムからノードをたどって拡張して、関心アイテム及び無関心アイテム各々に初めてたどり着くまでのステップ数を「最近関心距離」、「最近無関心距離」として、それらの差を見て、乖離度を定義しても良い。
 図14は、本実施例における図10の二次推薦アイテムの決定ステップ1005の変形例を説明するための図である。なお、アイテムグラフは、図13Cと同様であるとする。
 図14の変形例においては、グラフ表現上にて境界近傍を優先した推薦を行う。フローが開始されると(1400)、まず関心・無関心境界上にあるアイテム(例えば、3アイテム)を全て選択する(1401)。そして、未推薦アイテムが一つ以上あるか否かを検討する(1402)。無い場合には、i=1として(1403)、関心・無関心境界乖離度iのアイテムを全て選択し(1404)、未推薦アイテムが一つ以上あるか否かをチェックする(1405)。無ければ、iをカウントアップし(1408)、iがNになるまで繰り返し(1409)、推薦アイテムが無い場合(1410)、二次推薦アイテム決定処理を終了する(1411)。
 一方、ステップ1402、ステップ1405において、未推薦アイテムが1つ以上ある場合、アイテムが1つとなるまで次の処理を繰り返す(1406)。
  (1)関心・無関心境界乖離度が小さいものを選択。
  (2)全ての推薦済みアイテムとの隔たり数の平均値が最大のものを選択。
  (3)全ての反応アイテムの隔たり数の平均値が最小のものを選択。
  (4)乱数選択を行い選択。
そして、選択結果を推薦アイテムに決定し(1407)、終了する(1411)。
 なお、本変形例においても、先の実施例2のバリエーション同様、各未推薦アイテムからノードをたどって拡張して、関心アイテム及び無関心アイテム各々に初めてたどり着くまでのステップ数を、「最近関心距離」、「最近無関心距離」として、それらの差を見て乖離度を定義しても良い。
 以上、最近傍データのみを用いた場合、関心・無関心境界付近で評価値の大きな変動が起きるが、本実施例においても、境界付近は連続した評価で順次境界付近から推薦可能となる。
 続いて、第三の実施例として、「場のコンテキスト」データを用いて推薦を行う推薦システムを説明する。ここで、場のコンテキストデータとは、基情報が生理現象パラメータ、人間関係パラメータ、及びユーザプロファイルであるデータである。すなわち、「生理現象パラメータ」とは、人間の感覚(食べたい、休みたいという要求、寒い、暑い、痛い、暗い等の苦痛)、及び感情(喜怒快楽)に関連したパラメータであり、例えば、前の食事の時間と推定摂取カロリー、歩行距離、最近利用したサービスの種類(例、映画のジャンルや種類など)を意味する。また、「人間関係パラメータ」とは、ユーザの同伴者の人間関係に関するパラメータであり、例えば、恋人、妻、夫、家族、友人等である。このパラメータは、例えばコミュニケーション状況(通話頻度、メール頻度、共通コミュニティ参加頻度)から推定する。また、ユーザが同伴者を同伴しているかどうかは、ユーザが保持する情報端末に搭載したGPS等で得られた位置情報が一定時間近くにいるかどうかで判定する。また、「ユーザプロファイル」は、性別、年齢等、情報端末を加入登録する際などにあらかじめ登録しておいた情報を用いることができる。
 さて、図15は、本実施例に係わる、推薦システムが実行される全体システム構成の一例を示しており、図1のシステムと同一番号のものは同一物を示す。本システムにおいては、サーバ150は、その内部に場のコンテキスト適用プログラムを記憶しており、各種テーブルが記憶されるデータベースに、後でその内容を詳述する場のコンテキストデータベース151が追加されているほか、図1~図3で説明したシステムと同様の構成である。
 本実施例のシステムによって新たに追加された、場のコンテキストを決定する手順を、図16に従い説明する。
 まず決定フローが開始されると(1600)、サーバ150は、上述したユーザプロファイル、整理現象パラメータ、及び人間関係パラメータの推定を行う(1601)。この推定にあたっては、上述したようにプロファイルはユーザ登録などの際の情報を用いる。生理現象パラメータは、携帯端末の移動距離や、各種センサの状況、施設での滞留状況等から推定する。各種センサの状況とは、血統値、体温、心拍、呼吸数などの生理測定値などをいう。人間関係パラメータは、コミュニケーション状況(通信頻度、メール頻度、共通コミュニティ参加頻度)から推定する。例えば、「プライベートな時間帯に度々通話する相手とは交友関係がある。」のような常識ルールを適用して推定する。
 そして、推定して得た各パラメータをあらかじめ定めておいた対応関係で数値化して、コンテキスト特徴ベクトルを生成する(1602)。この数値化にあたっては、例えば、図18Aに示すパラメータ数値化情報テーブル1800を用いる。これにより、ユーザプロファイルで、30代は「(0,0,1,0,0,0)」、男は「(1,0)」、生理現象パラメータで、歩行距離10kmは「10」、人間関係パラメータで、妻は「(1,0,0)」など項目ごとに定めることができる。ベクトルの生成手法は先にその定義を用いて説明した場合と同様であり、あらかじめ決めておいた順に連結して並べると、一つのベクトルとなり、これをコンテキスト特徴ベクトルと呼ぶ。図18BにコンテキストA-Zのパラメータテーブル1801を示した。なお、パラメータテーブル1801中には、理解を容易にするため、パラメータを数値化する前の値を示したが、実際は該当数値が記憶されることは言うまでもない。
 最後に、生成したコンテキスト特徴ベクトルを、場のコンテキストデータベース151のコンテキスト・パラメータテーブル中の各コンテキストの類似度を比較して、類似度が最も高いものを選択して現在の場のコンテキストと推定し(1603)、フローを終了する(1604)。なお、類似度はアイテムベクトルの場合と同様、正規化相関などを用いる。
 次に、場のコンテキストを用いた、本実施例における二次推薦アイテムの決定処理を図17に従い説明する。決定フローが開始されると(1700)、実施例1と同様、未推薦アイテム中で符号付き境界乖離度の絶対値が一定の値以下のデータを選択する(1701)。そして、アイテムが一つのみか否かを判定し(1702)、アイテムが一つの場合、推薦アイテムとして決定する。
 アイテムが一つで無い場合、先に決定した場のコンテキストに対応する重み(属性重要度)を用いて各アイテム重要度を算出する(1704)。この場のコンテキストに対応する重み(属性重要度)は、コンテキスト・属性テーブルにあらかじめ記憶されている。図18Cにコンテキスト・属性重みを記憶する属性重みテーブルの一例を1802として示した。ステップ1704における各アイテムの重要度の算出は以下の通りとなる。先に推定された場のコンテキストに対応する重みは、図18cのいずれかの行の重みに相当する。
 コンテキスト・属性重みテーブルによって、現在のコンテキスト重みが、
  1番目の属性の重み … (w11,w12,…,w1{n1})
  2番目の属性の重み … (w21,w22,…,w2{n2})
  ……
  d番目の属性の重み … (wd1,wd2,…,wd{nd})
であるとする。ここで、wは2つの添え字を持ち、左側が属性の番号、右側が属性が取りうる値ごとにつけられた番号を示す。そのため例えば、添え字{n1}は、1番目の属性が取りうる値の総数を示す。{n2}以降も同様である。
あるアイテムxのd個の属性の値の番号が、(x1,x2,…,xd)の時の重要度は、
(アイテムの重要度)
=Σ_j∈{n1}δ(x1,j)w1j+Σ_j∈{n2}δ(x2,j)w2j+…
    +Σ_j∈{nd}δ(xd,j)wdj
=Σ_i Σ_j∈{ni}δ(xi,j)wij
と算出される。
  ここで、δ(x1,j)=“x1 = jの時1、そうでない時0”である。また、Σ_iでは、iが属性の番号1~d全てに渡るように和を取る。また、Σ_j∈{ni}は、jがi番目の属性がとりうる値の番号1~{ni}に渡るように和を取ることを示す。
 以上の式は、「アイテムの各属性が持つ属性重要度を足したもの」となり、これにより各アイテム重要度が算出され(1704)、アイテム重要度が最も大きいものを推薦することができ(1705)、本フローを終了する(1706)。
 本実施例によれば、境界付近の全ての推薦アイテムから、場のコンテキストによる優先度重みを反映して推薦を行うことが可能となり、ユーザ行動に関連して起こる背景状況を推薦内容に反映することができる。
 ユーザにとって関心はあるが、容易に想定できない意外性のある項目を推薦することが可能な情報推薦方法及びシステムを提供することができ、ネットワークを使った情報配信に有効である。
符号の説明
100…ユーザ
101…端末
102…ネットワーク接続装置
103…ネットワーク
104…サーバ
105…アイテム・属性情報
106…ユーザプロファイル
107…ユーザ行動履歴
206…内部バス
207…演算装置
306…内部バス
308…メモリ
309…インターフェイス
310…記憶装置
311…通信部
700…関心アイテム
701…無関心アイテム
702…未推薦アイテム
703…最近関心距離
704…最近無関心距離
705…関心・無関心距離
706…境界乖離度。

Claims (15)

  1. 処理部と記憶部とを備えたサーバを用い、アイテムに関する情報を受け取ったユーザの反応を次に推薦するアイテムの選択基準に反映し、別途推薦を行う情報推薦方法であって、
    前記処理部は、
    ユーザが反応した情報と、無反応であったという情報を収集し、未推薦アイテムに対して、前記ユーザが反応した関心アイテムと無反応であった無関心アイテム双方と、どちらのアイテムとの類似性が高いかを比較し、その比較結果を用いて前記ユーザへの次の推薦アイテムを決定する、
    ことを特徴とする情報推薦方法。
  2. 請求項1に記載の情報推薦方法であって、
    前記処理部は、
    前記未推薦アイテムについて、最近関心距離および最近無関心距離を算出し、前記最近関心距離および前記最近無関心距離の差から、前記未推薦アイテムの境界乖離度を算出し、前記境界乖離度が最小の前記未推薦アイテムを次の推薦アイテムに決定する、
    ことを特徴とする情報推薦方法。
  3. 請求項1に記載の情報推薦方法であって、
    前記処理部は、
    前記関心アイテムと前記無関心アイテムそれぞれに類似した未推薦アイテムを、前記関心アイテムと前記無関心アイテムに拡張することにより、推薦対象である全てのアイテム中に、前記関心アイテムと前記無関心アイテムの境界である無関心・関心境界を推定する、
    ことを特徴とする情報推薦方法。
  4. 請求項3に記載の情報推薦方法であって、
    前記処理部は、
    前記無関心・関心境界上あるいはその近傍の前記未推薦アイテム、または、前記無関心・関心境界で決められる前記関心アイテムを次の推薦アイテムに決定する、
    ことを特徴とする情報推薦方法。
  5. 請求項1に記載の情報推薦方法であって、
    前記処理部は、
    前記ユーザの生理現象、および、同伴行動している人との人間関係である場のコンテキストを推定し、前記場のコンテキストを前記アイテムの推薦に反映させる、
    ことを特徴とする情報推薦方法。
  6. ネットワークを介して端末に接続され、一次推薦アイテムに関する情報を受け取ったユーザの反応を、二次推薦アイテムの選択基準に反映し、別途推薦を行うサーバを用いた情報推薦システムであって、
    前記サーバは処理部と記憶部とを有し、
    前記処理部は、
    前記一次推薦アイテムに対し、ユーザが反応した情報と、無反応であったという情報を収集して前記記憶部に蓄積し、未推薦アイテムに対して、前記ユーザが反応した関心アイテムと、無反応であった無関心アイテム双方とのどちらのアイテムとの類似性が高いかを比較し、その比較結果を用いて前記ユーザへの二次推薦アイテムを決定する、
    ことを特徴とする情報推薦システム。
  7. 請求項6に記載の情報推薦システムであって、
    前記処理部は、
    前記未推薦アイテムについて、最近傍の前記関心アイテムとの距離である最近関心距離、および最近傍の前記無関心アイテムとの距離である最近無関心距離を算出し、前記最近関心距離および前記最近無関心距離の差から、前記未推薦アイテムの境界乖離度を算出し、前記境界乖離度が最小の前記未推薦アイテムを前記二次推薦アイテムに決定する、
    ことを特徴とする情報推薦システム。
  8. 請求項6に記載の情報推薦システムであって、
    前記処理部は、
    前記関心アイテムと前記無関心アイテムそれぞれに類似した未推薦アイテムを、前記関心アイテムと前記無関心アイテムに拡張することにより、推薦対象である全てのアイテム中に、前記関心アイテムと前記無関心アイテムの境界である無関心・関心境界を決定する、
    ことを特徴とする情報推薦システム。
  9. 請求項8に記載の情報推薦システムであって、
    前記処理部は、
    前記無関心・関心境界上、またはその近傍の前記未推薦アイテム、または、前記無関心・関心境界で決められる関心エリア側の前記未推薦アイテムを前記二次推薦アイテムに決定する、
    ことを特徴とする情報推薦システム。
  10. 請求項6に記載の情報推薦システムであって、
    前記処理部は、
    前記ユーザの生理現象、および、同伴行動している人との人間関係である場のコンテキストを推定し、前記場のコンテキストを前記未推薦アイテムの推薦に反映させる、
    ことを特徴とする情報推薦システム。
  11. 一次推薦アイテムに関する情報を受け取ったユーザの反応を、二次推薦アイテムの選択基準に反映して二次推薦を行うサーバであって、
    前記サーバは処理部と記憶部とを有し、
    前記処理部は、
    ユーザが反応した関心アイテムと、無反応であった無関心アイテムとに関する情報を前記記憶部に蓄積し、未推薦アイテムに対して、前記ユーザが反応した関心アイテムと、無反応であった無関心アイテム双方とのどちらのアイテムとの類似性が高いかを比較し、その比較結果を用いて前記ユーザへの前記二次推薦アイテムを決定する、
    ことを特徴とするサーバ。
  12. 請求項11に記載のサーバであって、
    前記処理部は、
    前記未推薦アイテムについて、最近傍の前記関心アイテムとの距離である最近関心距離、および最近傍の前記無関心アイテムとの距離である最近無関心距離を算出し、前記最近関心距離および前記最近無関心距離の差から、前記未推薦アイテムの境界乖離度を算出し、前記境界乖離度が最小の前記未推薦アイテムを前記二次推薦アイテムに決定する、
    ことを特徴とするサーバ。
  13. 請求項11に記載のサーバであって、
    前記処理部は、
    前記関心アイテムと前記無関心アイテムそれぞれに類似した未推薦アイテムを、前記関心アイテムと前記無関心アイテムに拡張することにより、推薦対象である全てのアイテム中に、前記関心アイテムと前記無関心アイテムの境界である無関心・関心境界を推定する、
    ことを特徴とするサーバ。
  14. 請求項13に記載のサーバであって、
    前記処理部は、
    前記無関心・関心境界上、あるいはその近傍の前記未推薦アイテム、または、前記無関心・関心境界で決められる前記関心エリアの前記未推薦アイテムを前記二次推薦アイテムに決定する、
    ことを特徴とするサーバ。
  15. 請求項11に記載のサーバであって、
    前記記憶部は、
    前記ユーザの生理現象パラメータ、および、同伴行動している人との人間関係パラメータを数値化するためのパラメータ数値化テーブルを記憶し、
    前記処理部は、
    前記パラメータ数値化テーブルを用いて、前記ユーザの生理現象、および同伴行動している人との人間関係である場のコンテキストを示すコンテキスト特徴ベクトルを算出し、前記コンテキスト特徴ベクトルに基づき、前記場のコンテキストを決定し、
    前記場のコンテキストを前記二次推薦アイテムの選定に反映させる、
    ことを特徴とするサーバ。
PCT/JP2009/000666 2009-02-18 2009-02-18 情報推薦方法、そのシステム、及びサーバ WO2010095169A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011500357A JP5277307B2 (ja) 2009-02-18 2009-02-18 情報推薦方法、そのシステム、及びサーバ
PCT/JP2009/000666 WO2010095169A1 (ja) 2009-02-18 2009-02-18 情報推薦方法、そのシステム、及びサーバ
US13/148,966 US8635241B2 (en) 2009-02-18 2009-02-18 Method of recommending information, system thereof, and server

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/000666 WO2010095169A1 (ja) 2009-02-18 2009-02-18 情報推薦方法、そのシステム、及びサーバ

Publications (1)

Publication Number Publication Date
WO2010095169A1 true WO2010095169A1 (ja) 2010-08-26

Family

ID=42633475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000666 WO2010095169A1 (ja) 2009-02-18 2009-02-18 情報推薦方法、そのシステム、及びサーバ

Country Status (3)

Country Link
US (1) US8635241B2 (ja)
JP (1) JP5277307B2 (ja)
WO (1) WO2010095169A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120059735A1 (en) * 2010-09-03 2012-03-08 Alibaba Group Holding Limited Product recommendations
JP2015099593A (ja) * 2013-11-18 2015-05-28 パロ・アルト・リサーチ・センター・インコーポレーテッドPalo Alto Research Center Incorporated 推薦エンジンに基づく汎用グラフ、ルール及び空間構造
JP2016143161A (ja) * 2015-01-30 2016-08-08 富士通株式会社 アイテム推薦プログラム、装置、及び方法
JP2017509947A (ja) * 2014-01-27 2017-04-06 アリババ・グループ・ホールディング・リミテッドAlibaba Group Holding Limited ネットワークサブジェクトの社会的関係タイプの取得
JP2019109739A (ja) * 2017-12-19 2019-07-04 富士ゼロックス株式会社 情報処理装置及びプログラム
JP2020149120A (ja) * 2019-03-11 2020-09-17 株式会社エヌ・ティ・ティ・データ 情報処理装置、情報処理方法およびプログラム
CN112035740A (zh) * 2020-08-19 2020-12-04 广州市百果园信息技术有限公司 项目使用时长预测方法、装置、设备及存储介质

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI525460B (zh) * 2013-10-07 2016-03-11 財團法人資訊工業策進會 電子計算裝置、其個人化資訊推薦方法及其電腦程式產品
KR101907008B1 (ko) * 2017-06-15 2018-10-15 한양대학교 산학협력단 단일 클래스 협업 필터링 환경에서 무관심 아이템 결정 방법 및 장치
CN108804492B (zh) * 2018-03-27 2022-04-29 阿里巴巴(中国)有限公司 用于多媒体对象推荐的方法及装置
KR102200340B1 (ko) * 2018-05-18 2021-01-08 한양대학교 산학협력단 표준화된 평점 기반의 아이템 추천 방법 및 장치
EP3598373A1 (en) * 2018-07-18 2020-01-22 Seulo Palvelut Oy Determining product relevancy
US20210065276A1 (en) * 2019-08-28 2021-03-04 Fuji Xerox Co., Ltd. Information processing apparatus and non-transitory computer readable medium
US12111870B2 (en) * 2021-03-26 2024-10-08 EMC IP Holding Company LLC Automatic discovery of related data records
CN113312563B (zh) * 2021-06-24 2022-09-16 北京三快在线科技有限公司 信息推荐方法、装置、设备及存储介质
CN115033798A (zh) * 2022-07-04 2022-09-09 贵州电网有限责任公司 基于大数据的活动推荐方法及系统
CN115618101A (zh) * 2022-09-21 2023-01-17 清华大学 基于负反馈的流媒体内容推荐方法、装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001142889A (ja) * 1999-11-11 2001-05-25 Matsushita Electric Ind Co Ltd 情報仲介装置および情報仲介方法
JP2001256253A (ja) * 2000-03-13 2001-09-21 Kddi Corp 文書フィルタリング方法および装置
JP2006146630A (ja) * 2004-11-22 2006-06-08 Sony Corp コンテンツ選択再生装置、コンテンツ選択再生方法、コンテンツ配信システムおよびコンテンツ検索システム
JP2006235716A (ja) * 2005-02-22 2006-09-07 Hitachi Ltd 文書フィルタリングシステム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204235A (ja) * 2007-02-21 2008-09-04 Hitachi Ltd 非類似アイテム推薦方法、推薦装置、及びプログラム
JP4947709B2 (ja) 2007-02-23 2012-06-06 Kddi株式会社 コンテンツ配信システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001142889A (ja) * 1999-11-11 2001-05-25 Matsushita Electric Ind Co Ltd 情報仲介装置および情報仲介方法
JP2001256253A (ja) * 2000-03-13 2001-09-21 Kddi Corp 文書フィルタリング方法および装置
JP2006146630A (ja) * 2004-11-22 2006-06-08 Sony Corp コンテンツ選択再生装置、コンテンツ選択再生方法、コンテンツ配信システムおよびコンテンツ検索システム
JP2006235716A (ja) * 2005-02-22 2006-09-07 Hitachi Ltd 文書フィルタリングシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUMIHIKO YAMAMOTO ET AL.: "WWW Page Kensaku ni Okeru Riyosha no Kyomi o Jido Chushutsu suru Hoho no Kento", DAI 8 KAI GODO KENKYUKAI, "AI SYMPOSIUM '97", SHIRYO (SIG-J-9701), 5 December 1997 (1997-12-05), pages 43 - 48 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120059735A1 (en) * 2010-09-03 2012-03-08 Alibaba Group Holding Limited Product recommendations
JP2015099593A (ja) * 2013-11-18 2015-05-28 パロ・アルト・リサーチ・センター・インコーポレーテッドPalo Alto Research Center Incorporated 推薦エンジンに基づく汎用グラフ、ルール及び空間構造
JP2017509947A (ja) * 2014-01-27 2017-04-06 アリババ・グループ・ホールディング・リミテッドAlibaba Group Holding Limited ネットワークサブジェクトの社会的関係タイプの取得
JP2016143161A (ja) * 2015-01-30 2016-08-08 富士通株式会社 アイテム推薦プログラム、装置、及び方法
JP2019109739A (ja) * 2017-12-19 2019-07-04 富士ゼロックス株式会社 情報処理装置及びプログラム
JP2020149120A (ja) * 2019-03-11 2020-09-17 株式会社エヌ・ティ・ティ・データ 情報処理装置、情報処理方法およびプログラム
JP7253410B2 (ja) 2019-03-11 2023-04-06 株式会社エヌ・ティ・ティ・データ 情報処理装置、情報処理方法およびプログラム
CN112035740A (zh) * 2020-08-19 2020-12-04 广州市百果园信息技术有限公司 项目使用时长预测方法、装置、设备及存储介质
CN112035740B (zh) * 2020-08-19 2024-06-04 广州市百果园信息技术有限公司 项目使用时长预测方法、装置、设备及存储介质

Also Published As

Publication number Publication date
JP5277307B2 (ja) 2013-08-28
US8635241B2 (en) 2014-01-21
US20110314040A1 (en) 2011-12-22
JPWO2010095169A1 (ja) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5277307B2 (ja) 情報推薦方法、そのシステム、及びサーバ
US8572017B2 (en) User-based collaborative filtering recommendation system and method for amending similarity using information entropy
US7707068B2 (en) Method and device for calculating trust values on purchases
US20130185294A1 (en) Recommender system, recommendation method, and program
Gogna et al. DiABlO: Optimization based design for improving diversity in recommender system
Xu et al. Integrated collaborative filtering recommendation in social cyber-physical systems
Zhang et al. Prediction uncertainty in collaborative filtering: Enhancing personalized online product ranking
CN102789462A (zh) 一种项目推荐方法及系统
CN113327151B (zh) 商品对象推荐方法、装置、计算机设备及存储介质
US20140046804A1 (en) Customizing online automotive vehicle searches
CN109165847A (zh) 一种基于推荐系统的项目推荐方法、装置及设备
US20180232794A1 (en) Method for collaboratively filtering information to predict preference given to item by user of the item and computing device using the same
KR20170116924A (ko) 상대 비교를 통한 상품 추천 서비스 방법 및 이를 위한 추천 서비스 장치와 프로그램
US20130097053A1 (en) Method and system for recommending a combined service by taking into account situation information on a target user and the degree of complementarity of a service
Mikeli et al. A multi-criteria recommendation method for interval scaled ratings
KR20140132033A (ko) 상품 추천 서비스 시스템 및 그 방법, 그리고 이에 적용되는 장치
WO2016046873A1 (ja) 情報処理装置、情報処理方法及びプログラム
Mao et al. Utilizing multi-source data in popularity prediction for shop-type recommendation
Özsoy et al. Multi-objective optimization based location and social network aware recommendation
CN111178951B (zh) 一种商品推荐方法及装置
CN111046285B (zh) 一种推荐排序确定方法、装置、服务器及存储介质
US8626772B2 (en) Double weighted correlation scheme
CN114065016A (zh) 一种推荐方法、装置、设备及计算机可读存储介质
JP2013029896A (ja) アイテム推薦装置及び方法及びプログラム
WO2010084629A1 (ja) 推薦システム、推薦方法、推薦プログラム及び情報記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840279

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011500357

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13148966

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09840279

Country of ref document: EP

Kind code of ref document: A1