WO2010093019A1 - Rotational electric device and method of cooling a rotational electric device - Google Patents

Rotational electric device and method of cooling a rotational electric device Download PDF

Info

Publication number
WO2010093019A1
WO2010093019A1 PCT/JP2010/052089 JP2010052089W WO2010093019A1 WO 2010093019 A1 WO2010093019 A1 WO 2010093019A1 JP 2010052089 W JP2010052089 W JP 2010052089W WO 2010093019 A1 WO2010093019 A1 WO 2010093019A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil end
electrical machine
rotating electrical
cooling
coil
Prior art date
Application number
PCT/JP2010/052089
Other languages
French (fr)
Japanese (ja)
Inventor
崇志 阿部
Original Assignee
株式会社 明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 明電舎 filed Critical 株式会社 明電舎
Publication of WO2010093019A1 publication Critical patent/WO2010093019A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present invention relates to a rotating electrical machine such as a motor and a generator and a cooling method for the rotating electrical machine, and in particular, can greatly improve the cooling efficiency.
  • a rotating electric machine such as a motor or a generator supports a rotating shaft provided with a rotor having magnetic force on an outer peripheral surface so as to be rotatable inside the frame, and attaches a stator with a coil wound around a core to the inner surface of the frame, for example,
  • a rotational force can be obtained by passing an electric current through the stator coil and rotating the rotor to rotate the rotating shaft.
  • the rotor is rotated by rotating the rotating shaft. By rotating the, the current can be taken out from the coil of the stator.
  • stator since the stator generates heat due to the current flowing through the stator coil, and the operation efficiency such as power generation efficiency and rotation efficiency is reduced, the stator is cooled.
  • a supply pipe that supplies cooling oil to the coil end of the coil of the stator by supplying the cooling oil is provided inside the frame, and a groove for guiding the circulation of the cooling oil. Is formed on the surface of the coil end of the stator coil, and the cooling oil supplied from the nozzle is circulated along the groove in the coil end of the stator coil so that the stator can be efficiently cooled with the cooling oil.
  • a rotating electrical machine is proposed.
  • an object of the present invention is to provide a rotating electrical machine and a method for cooling the rotating electrical machine that can exhibit high cooling capacity with a minimum structural change.
  • a rotating electrical machine includes a rotor provided on an outer surface of a rotating shaft and a core disposed to face the outer surface of the rotor at a predetermined interval.
  • a rotating electrical machine comprising a stator around which a coil is wound and a coolant supply means for supplying coolant to the coil end of the coil, the end of the coil end protrudes radially outward of the rotating shaft.
  • a cooling liquid supply means for supplying the cooling liquid to the core side of the coil end rather than the flange.
  • the rotating electrical machine according to the present invention is characterized in that, in the rotating electrical machine described above, the coolant feeding means feeds the coolant from above the coil end.
  • the cooling method for a rotating electrical machine according to the present invention is a cooling method for a rotating electrical machine using the above-described rotating electrical machine, and the flange portion of the coil end from above the coil end by the coolant supply means. Further, the cooling liquid is supplied to the core side to contact the outer peripheral surface of the coil end without leaking the cooling liquid to the outside of the coil end.
  • the coolant can be brought into contact with most of the outer peripheral surface without leaking to the outside of the coil end. Since the surface area required for heat exchange between the coolant and the stator can be made larger than before, and the cooling efficiency can be improved as compared with the conventional one, a high cooling capacity can be expressed with a minimum structural change.
  • FIG. 1 is an axial sectional view showing a schematic structure of a rotating electrical machine.
  • a rotary shaft 12 in a horizontal axial direction is rotatably supported via a bearing 12a inside a sealed frame 11 that is cylindrical in the horizontal axial direction.
  • the shaft 12 penetrates the frame 11 so that at least one end side protrudes to the outside of the frame 11.
  • a rotor 13 having a magnetic force is attached to the outer peripheral surface of the rotary shaft 12 inside the frame 11.
  • Bolts are arranged on the inner peripheral surface of the frame 11 so that a stator 14 in which a coil made of a copper wire is wound around a core made of a cylindrical iron core faces the outer surface of the rotor 13 with a predetermined distance. ) Is attached through.
  • the rotating shaft 12 is located more than on the inner side in the axial direction of the rotating shaft 12.
  • the flanges 14b projecting radially outward are provided over the entire circumferential length of the rotating shaft 12 (the entire circumference in the rotational direction).
  • the flange portion 14b can be variously formed by molding the end portion of the coil end 14a of the coil or by separately attaching a member to the end portion of the coil end 14a of the coil. By this means, it can be provided at the end of the coil end 14a of the coil.
  • a supply pipe 15 is attached to the upper end of the frame 11 near the both ends in the axial direction.
  • the supply pipes 15 have their tips directed to the core side (in the axial direction of the rotary shaft 12) from the flange 14b of the coil end 14a. ing.
  • Discharge pipes 16 that connect the inside and the outside of the frame 11 are respectively attached to both ends of the lowermost axial direction of the frame 11.
  • the base end side of the supply pipe 15 is connected to a cooling oil feed outlet of a cooling oil temperature adjusting / feeding machine (not shown) that feeds the cooling oil 1 as a cooling liquid to a predetermined temperature.
  • the base end side of the discharge pipe 16 is connected to the cooling oil receiving port of the cooling oil temperature control feeder.
  • the supply pipe 15, the discharge pipe 16, the cooling oil temperature adjusting / feeding machine, and the like constitute a coolant supply means.
  • the cooling oil 1 flowing down the coil end 14a was collected from the inside of the frame 11 via the discharge pipe 16 to the cooling oil temperature adjusting machine, and the temperature was adjusted by the cooling oil temperature adjusting machine. It is recycled by being fed again through the supply pipe 15 later.
  • the flange portion 14b is provided only at the end portion of the coil end 14a (the axially outer side of the rotating shaft 12).
  • the cooling oil 1 does not leak to the outside in the axial direction of the rotating shaft 12 over almost the entire length of the outer peripheral surface of the coil end 14 a in the axial direction of the rotating shaft 12. Since they can be brought into contact with each other, the surface area required for heat exchange between the cooling oil 1 and the stator 14 can be made larger than before, and the cooling efficiency can be improved as compared with the conventional case.
  • a high cooling capacity can be expressed with a minimum structural change.
  • the rotating electrical machine and the cooling method of the rotating electrical machine according to the present invention have improved cooling efficiency than before and can exhibit a high cooling capacity with a minimum structural change. It can be used very effectively in the industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

Disclosed is a rotational electric device (10) comprising, inter alia, a rotor (13) provided at the outer surface of a rotary shaft (12), a stator (14) which comprises a coil wound around a core and is arranged so as to lie facing the outer surface of the rotor (13) with a specified gap therebetween, and a supply pipe (15) which conveys cooling oil (1) to the coil end (14a), wherein a flange part (14b) which projects diametrically outwards from the rotary shaft (12) is provided at the end of the coil end (14a) and the supply pipe (15) conveys the cooling oil (1) further towards the core side than the flange part (14b) of the coil end (14a).

Description

回転電機及び回転電機の冷却方法Rotating electrical machine and cooling method for rotating electrical machine
 本発明は、モータや発電機等の回転電機及び回転電機の冷却方法に関し、特に、冷却効率を大幅に向上できるものである。 The present invention relates to a rotating electrical machine such as a motor and a generator and a cooling method for the rotating electrical machine, and in particular, can greatly improve the cooling efficiency.
 モータや発電機等の回転電機は、磁力を有するロータを外周面に設けた回転軸をフレームの内部に回転可能に支持すると共に、コアにコイルを巻き付けたステータを当該フレームの内面に取り付け、例えば、モータの場合には、ステータのコイルに電流を流し、ロータを回転させて回転軸を回転させることにより、回転力を得ることができ、発電機の場合には、回転軸を回転させてロータを回転させることにより、ステータのコイルから電流を取り出すことができるようになっている。 A rotating electric machine such as a motor or a generator supports a rotating shaft provided with a rotor having magnetic force on an outer peripheral surface so as to be rotatable inside the frame, and attaches a stator with a coil wound around a core to the inner surface of the frame, for example, In the case of a motor, a rotational force can be obtained by passing an electric current through the stator coil and rotating the rotor to rotate the rotating shaft. In the case of a generator, the rotor is rotated by rotating the rotating shaft. By rotating the, the current can be taken out from the coil of the stator.
 このような回転電機においては、ステータのコイルに電流が流れることにより、ステータが発熱し、発電効率や回転効率等の運転作動効率が低下してしまうことから、ステータを冷却するようにしている。 In such a rotating electrical machine, since the stator generates heat due to the current flowing through the stator coil, and the operation efficiency such as power generation efficiency and rotation efficiency is reduced, the stator is cooled.
 このため、例えば、下記の特許文献1,2等においては、ステータのコイルのコイルエンドに冷却油を噴射等して供給する供給管をフレームの内部に設けると共に、冷却油の流通を案内する溝をステータのコイルのコイルエンドの表面に形成し、上記ノズルから供給された冷却油をステータのコイルのコイルエンドの上記溝に沿って流通させることにより、当該ステータを冷却油で効率よく冷却できるようにした回転電機を提案している。 For this reason, for example, in Patent Documents 1 and 2 below, a supply pipe that supplies cooling oil to the coil end of the coil of the stator by supplying the cooling oil is provided inside the frame, and a groove for guiding the circulation of the cooling oil. Is formed on the surface of the coil end of the stator coil, and the cooling oil supplied from the nozzle is circulated along the groove in the coil end of the stator coil so that the stator can be efficiently cooled with the cooling oil. A rotating electrical machine is proposed.
特開2005-012961号公報JP 2005-012961 A 特開2006-311750号公報JP 2006-31750 A
 しかしながら、前述したような特許文献1,2等に記載されている従来の回転電機においては、ステータのコイルのコイルエンドに形成した溝内に冷却油を流通させてステータを冷却するようにしているため、冷却油とステータとの熱交換にかかる表面積が比較的小さくなってしまい、冷却効率のさらなる向上が求められている。
 このため、冷却効率を向上させるように回転電機の構造を大きく変更することが考えられるものの、構造を大きく変更するようになると、製造コストの上昇を招いてしまうばかりか、回転電機の特性にも影響してしまうおそれがあり、好ましくない。
However, in the conventional rotating electrical machines described in Patent Documents 1 and 2 and the like as described above, the stator is cooled by circulating cooling oil in a groove formed in the coil end of the stator coil. Therefore, the surface area required for heat exchange between the cooling oil and the stator becomes relatively small, and further improvement in cooling efficiency is demanded.
For this reason, it is conceivable to change the structure of the rotating electrical machine so as to improve the cooling efficiency. However, if the structure is significantly changed, not only will the manufacturing cost increase, but the characteristics of the rotating electrical machine may also be increased. There is a possibility that it may be affected.
 このようなことから、本発明は、最小限の構造変更で高い冷却能力を発現することができる回転電機及び回転電機の冷却方法を提供することを目的とする。 For this reason, an object of the present invention is to provide a rotating electrical machine and a method for cooling the rotating electrical machine that can exhibit high cooling capacity with a minimum structural change.
 前述した課題を解決するための、本発明に係る回転電機は、回転軸の外面に設けられたロータと、前記ロータの外面と所定の間隔を有して対向するように配設されてコアにコイルを巻き付けたステータと、前記コイルのコイルエンドに冷却液を送給する冷却液送給手段とを備えている回転電機において、前記コイルエンドの端部に、前記回転軸の径方向外側に突出する鍔部が設けられると共に、前記冷却液送給手段が、前記冷却液を前記コイルエンドの前記鍔部よりも前記コア側へ送給するものであることを特徴とする。 In order to solve the above-described problems, a rotating electrical machine according to the present invention includes a rotor provided on an outer surface of a rotating shaft and a core disposed to face the outer surface of the rotor at a predetermined interval. In a rotating electrical machine comprising a stator around which a coil is wound and a coolant supply means for supplying coolant to the coil end of the coil, the end of the coil end protrudes radially outward of the rotating shaft. And a cooling liquid supply means for supplying the cooling liquid to the core side of the coil end rather than the flange.
 また、本発明に係る回転電機は、上述した回転電機において、前記冷却液送給手段が、前記冷却液を前記コイルエンドの上方から送給するものであることを特徴とする。 Further, the rotating electrical machine according to the present invention is characterized in that, in the rotating electrical machine described above, the coolant feeding means feeds the coolant from above the coil end.
 また、本発明に係る回転電機の冷却方法は、上述した回転電機を利用する回転電機の冷却方法であって、前記冷却液送給手段によって、前記コイルエンドの上方から当該コイルエンドの前記鍔部よりも前記コア側へ前記冷却液を供給することにより、当該冷却液を当該コイルエンドの外側へ漏らすことなく当該コイルエンドの外周面に接触させることを特徴とする。 The cooling method for a rotating electrical machine according to the present invention is a cooling method for a rotating electrical machine using the above-described rotating electrical machine, and the flange portion of the coil end from above the coil end by the coolant supply means. Further, the cooling liquid is supplied to the core side to contact the outer peripheral surface of the coil end without leaking the cooling liquid to the outside of the coil end.
 本発明に係る回転電機及び回転電機の冷却方法によれば、コイルエンドに鍔部を設けることにより、冷却液をコイルエンドの外側へ漏らすことなく外周面の大部分に接触させることができることから、冷却液とステータとの熱交換にかかる表面積を従来よりも大きくすることができ、冷却効率が従来よりも向上するようになるので、最小限の構造変更で高い冷却能力を発現することができる。 According to the rotating electrical machine and the method for cooling a rotating electrical machine according to the present invention, by providing a flange on the coil end, the coolant can be brought into contact with most of the outer peripheral surface without leaking to the outside of the coil end. Since the surface area required for heat exchange between the coolant and the stator can be made larger than before, and the cooling efficiency can be improved as compared with the conventional one, a high cooling capacity can be expressed with a minimum structural change.
本発明に係る回転電機の第一番目の実施形態の概略構造を表す軸方向断面図である。It is an axial sectional view showing the schematic structure of the first embodiment of the rotating electrical machine according to the present invention.
 本発明に係る回転電機及び回転電機の冷却方法の実施形態を図面に基づいて以下に説明するが、本発明は図面に基づいて以下に説明する実施形態のみに限定されるものではない。 Embodiments of a rotating electrical machine and a cooling method for a rotating electrical machine according to the present invention will be described below based on the drawings, but the present invention is not limited to only the embodiments described below based on the drawings.
〈主な実施形態〉
 本発明に係る回転電機及び回転電機の冷却方法の主な実施形態を図1に基づいて説明する。図1は、回転電機の概略構造を表す軸方向断面図である。
<Main embodiment>
A main embodiment of a rotating electrical machine and a method for cooling a rotating electrical machine according to the present invention will be described with reference to FIG. FIG. 1 is an axial sectional view showing a schematic structure of a rotating electrical machine.
 図1に示すように、水平な軸方向に円筒状をなす密閉型のフレーム11の内部には、水平な軸方向の回転軸12が軸受12aを介して回転可能に支持されており、当該回転軸12は、少なくとも一端側が当該フレーム11の外部に突出するように当該フレーム11を貫通している。上記フレーム11の内部の回転軸12の外周面には、磁力を有するロータ13が取り付けられている。 As shown in FIG. 1, a rotary shaft 12 in a horizontal axial direction is rotatably supported via a bearing 12a inside a sealed frame 11 that is cylindrical in the horizontal axial direction. The shaft 12 penetrates the frame 11 so that at least one end side protrudes to the outside of the frame 11. A rotor 13 having a magnetic force is attached to the outer peripheral surface of the rotary shaft 12 inside the frame 11.
 前記フレーム11の内周面には、筒状の鉄心からなるコアに銅線からなるコイルを巻き付けたステータ14が前記ロータ13の外面と所定の間隔を有して対向するようにボルト(図示省略)を介して取り付けられている。上記ステータ14の前記回転軸12の軸方向両端側にそれぞれ位置するコイルエンド14aの端部(前記回転軸12の軸方向外側)には、当該回転軸12の軸方向内側よりも当該回転軸12の径方向外側に突出する鍔部14bが当該回転軸12の周方向全長(回転方向全周)にわたってそれぞれ設けられている。
 なお、上記鍔部14bは、前記コイルの前記コイルエンド14aの端部を成形加工することや、前記コイルの前記コイルエンド14aの端部に部材を別途取り付けて固定すること等のように、種々の手段によって、上記コイルの上記コイルエンド14aの端部に設けることが可能である。
Bolts (not shown) are arranged on the inner peripheral surface of the frame 11 so that a stator 14 in which a coil made of a copper wire is wound around a core made of a cylindrical iron core faces the outer surface of the rotor 13 with a predetermined distance. ) Is attached through. At the ends of the coil ends 14 a positioned on both axial ends of the rotating shaft 12 of the stator 14 (on the outer side in the axial direction of the rotating shaft 12), the rotating shaft 12 is located more than on the inner side in the axial direction of the rotating shaft 12. The flanges 14b projecting radially outward are provided over the entire circumferential length of the rotating shaft 12 (the entire circumference in the rotational direction).
The flange portion 14b can be variously formed by molding the end portion of the coil end 14a of the coil or by separately attaching a member to the end portion of the coil end 14a of the coil. By this means, it can be provided at the end of the coil end 14a of the coil.
 前記フレーム11の最上部の軸方向両端寄りには、前記コイルエンド14aの前記鍔部14bよりも前記コア側(前記回転軸12の軸方向内側)へ先端を向けた供給管15がそれぞれ取り付けられている。前記フレーム11の最下部の軸方向両端寄りには、当該フレーム11の内部と外部とを連通する排出管16がそれぞれ取り付けられている。 A supply pipe 15 is attached to the upper end of the frame 11 near the both ends in the axial direction. The supply pipes 15 have their tips directed to the core side (in the axial direction of the rotary shaft 12) from the flange 14b of the coil end 14a. ing. Discharge pipes 16 that connect the inside and the outside of the frame 11 are respectively attached to both ends of the lowermost axial direction of the frame 11.
 前記供給管15の基端側は、冷却液である冷却油1を所定の温度に調整して送給する冷却油温調送給機(図示省略)の冷却油送出口にそれぞれ接続している。前記排出管16の基端側は、上記冷却油温調送給機の冷却油受入口にそれぞれ接続している。 The base end side of the supply pipe 15 is connected to a cooling oil feed outlet of a cooling oil temperature adjusting / feeding machine (not shown) that feeds the cooling oil 1 as a cooling liquid to a predetermined temperature. . The base end side of the discharge pipe 16 is connected to the cooling oil receiving port of the cooling oil temperature control feeder.
 なお、本実施形態では、前記供給管15、前記排出管16、前記冷却油温調送給機等により、冷却液送給手段を構成している。 In the present embodiment, the supply pipe 15, the discharge pipe 16, the cooling oil temperature adjusting / feeding machine, and the like constitute a coolant supply means.
 このような本実施形態に係る回転電機10の作用を次に説明する。 Next, the operation of the rotating electrical machine 10 according to this embodiment will be described.
 モータとして利用する場合、前記ステータ14のコイルに電流を流すと、前記ロータ13が回転して前記回転軸12が回転することにより、回転力を得ることができる。他方、発電機として利用する場合、前記回転軸12に回転力を付与すると、前記ロータ13が回転することにより、前記ステータ14のコイルに電流が流れ、電流を取り出すことができる。 When used as a motor, when a current is passed through the coil of the stator 14, the rotor 13 rotates and the rotating shaft 12 rotates, so that a rotational force can be obtained. On the other hand, when used as a generator, when a rotational force is applied to the rotating shaft 12, the rotor 13 rotates, whereby a current flows through the coil of the stator 14, and the current can be taken out.
 そして、このようにして回転電機10を作動させる際に、前記冷却油温調送給機を作動させて前記供給管15に冷却油1を送給すると、当該供給管15に送給された冷却油1は、前記コイルエンド14aの前記鍔部14bよりも前記コア側(前記回転軸12の軸方向内側)へ送給され、当該コイルエンド14aの外周面の、前記回転軸12の軸方向のほとんど全長(前記鍔部14bよりも前記コア側のコイルエンド14aのすべて)にわたって接触し、当該コイルエンド14aの、上記回転軸12の軸方向外側へ漏れないように当該鍔部14bで案内されながら当該コイルエンド14aの外周面上を上記回転軸12の回転方向に沿って流下することにより、当該コイルエンド14aの外周面の、前記回転軸12の軸方向のほとんど全長と熱交換して、当該ステータ14を冷却する。 And when operating the rotary electric machine 10 in this way, if the cooling oil temperature adjusting and feeding machine is operated and the cooling oil 1 is supplied to the supply pipe 15, the cooling supplied to the supply pipe 15 The oil 1 is fed to the core side (inner side in the axial direction of the rotary shaft 12) from the flange portion 14b of the coil end 14a, and the outer peripheral surface of the coil end 14a in the axial direction of the rotary shaft 12 is supplied. While contacting almost the entire length (all of the coil end 14a on the core side than the flange 14b) and being guided by the flange 14b so that the coil end 14a does not leak outward in the axial direction of the rotary shaft 12. By flowing down the outer peripheral surface of the coil end 14a along the rotation direction of the rotary shaft 12, almost the entire length of the outer peripheral surface of the coil end 14a in the axial direction of the rotary shaft 12 and heat And conversion, cooling the stator 14.
 前記コイルエンド14aを流下した冷却油1は、前記フレーム11の内部から前記排出管16を介して前記冷却油温調送給機に回収され、当該冷却油温調送給機で温調された後に前記供給管15を介して再び送給されることにより、循環利用される。 The cooling oil 1 flowing down the coil end 14a was collected from the inside of the frame 11 via the discharge pipe 16 to the cooling oil temperature adjusting machine, and the temperature was adjusted by the cooling oil temperature adjusting machine. It is recycled by being fed again through the supply pipe 15 later.
 つまり、本実施形態に係る回転電機10では、前記コイルエンド14aの端部(前記回転軸12の軸方向外側)のみに、鍔部14bを設けるようにしたのである。 That is, in the rotating electrical machine 10 according to the present embodiment, the flange portion 14b is provided only at the end portion of the coil end 14a (the axially outer side of the rotating shaft 12).
 このため、本実施形態に係る回転電機10においては、前記コイルエンド14aの外周面の、前記回転軸12の軸方向のほとんど全長にわたって冷却油1を当該回転軸12の軸方向外側へ漏らすことなく接触させることができるので、冷却油1とステータ14との熱交換にかかる表面積を従来よりも大きくすることができ、冷却効率が従来よりも向上するようになる。 For this reason, in the rotating electrical machine 10 according to the present embodiment, the cooling oil 1 does not leak to the outside in the axial direction of the rotating shaft 12 over almost the entire length of the outer peripheral surface of the coil end 14 a in the axial direction of the rotating shaft 12. Since they can be brought into contact with each other, the surface area required for heat exchange between the cooling oil 1 and the stator 14 can be made larger than before, and the cooling efficiency can be improved as compared with the conventional case.
 したがって、本実施形態に係る回転電機10によれば、最小限の構造変更で高い冷却能力を発現することができる。 Therefore, according to the rotating electrical machine 10 according to the present embodiment, a high cooling capacity can be expressed with a minimum structural change.
 本発明に係る回転電機及び回転電機の冷却方法は、冷却効率が従来よりも向上し、最小限の構造変更で高い冷却能力を発現することができることから、モータや発電機等を始めとして、各種産業において極めて有効に利用することができる。 The rotating electrical machine and the cooling method of the rotating electrical machine according to the present invention have improved cooling efficiency than before and can exhibit a high cooling capacity with a minimum structural change. It can be used very effectively in the industry.
 1 冷却油
 10 回転電機
 11 フレーム
 12 回転軸
 12a 軸受
 13 ロータ
 14 ステータ
 14a コイルエンド
 14b 鍔部
 15 供給管
 16 排出管
DESCRIPTION OF SYMBOLS 1 Cooling oil 10 Rotating electric machine 11 Frame 12 Rotating shaft 12a Bearing 13 Rotor 14 Stator 14a Coil end 14b Eave part 15 Supply pipe 16 Discharge pipe

Claims (3)

  1.  回転軸の外面に設けられたロータと、
     前記ロータの外面と所定の間隔を有して対向するように配設されてコアにコイルを巻き付けたステータと、
     前記コイルのコイルエンドに冷却液を送給する冷却液送給手段と
     を備えている回転電機において、
     前記コイルエンドの端部に、前記回転軸の径方向外側に突出する鍔部が設けられると共に、
     前記冷却液送給手段が、前記冷却液を前記コイルエンドの前記鍔部よりも前記コア側へ送給するものである
     ことを特徴とする回転電機。
    A rotor provided on the outer surface of the rotating shaft;
    A stator that is disposed so as to face the outer surface of the rotor with a predetermined interval and has a coil wound around a core;
    In the rotating electrical machine comprising: a coolant supply means for supplying coolant to the coil end of the coil;
    At the end of the coil end is provided with a flange projecting radially outward of the rotating shaft,
    The rotating electrical machine characterized in that the cooling liquid supply means supplies the cooling liquid to the core side rather than the flange portion of the coil end.
  2.  請求項1に記載の回転電機において、
     前記冷却液送給手段が、前記冷却液を前記コイルエンドの上方から送給するものである
     ことを特徴とする回転電機。
    In the rotating electrical machine according to claim 1,
    The rotating electrical machine characterized in that the cooling liquid supply means supplies the cooling liquid from above the coil end.
  3.  請求項2に記載の回転電機を利用する回転電機の冷却方法であって、
     前記冷却液送給手段によって、前記コイルエンドの上方から当該コイルエンドの前記鍔部よりも前記コア側へ前記冷却液を供給することにより、当該冷却液を当該コイルエンドの外側へ漏らすことなく当該コイルエンドの外周面に接触させる
     ことを特徴とする回転電機の冷却方法。
    A method of cooling a rotating electrical machine using the rotating electrical machine according to claim 2,
    By supplying the coolant from above the coil end to the core side of the coil end from above the coil end by the coolant supply means, the coolant does not leak outside the coil end. A method for cooling a rotating electric machine, comprising contacting the outer peripheral surface of a coil end.
PCT/JP2010/052089 2009-02-13 2010-02-12 Rotational electric device and method of cooling a rotational electric device WO2010093019A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009030669A JP2010187489A (en) 2009-02-13 2009-02-13 Rotary electric machine
JP2009-030669 2009-02-13

Publications (1)

Publication Number Publication Date
WO2010093019A1 true WO2010093019A1 (en) 2010-08-19

Family

ID=42561859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052089 WO2010093019A1 (en) 2009-02-13 2010-02-12 Rotational electric device and method of cooling a rotational electric device

Country Status (2)

Country Link
JP (1) JP2010187489A (en)
WO (1) WO2010093019A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150207387A1 (en) * 2014-01-23 2015-07-23 Denso Corporation Rotary electric machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5892091B2 (en) * 2013-03-08 2016-03-23 株式会社デンソー Multi-gap rotating electric machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073351A (en) * 2003-08-22 2005-03-17 Toyota Motor Corp Cooling structure of rotating electric machine
JP2005229672A (en) * 2004-02-10 2005-08-25 Toyota Motor Corp Rotary electric machine
JP2005354821A (en) * 2004-06-11 2005-12-22 Honda Motor Co Ltd Motor
JP2006033915A (en) * 2004-07-12 2006-02-02 Nissan Motor Co Ltd Cooler of motor
JP2006197772A (en) * 2005-01-17 2006-07-27 Toyota Motor Corp Rotary electric machine
JP2007020323A (en) * 2005-07-08 2007-01-25 Nissan Motor Co Ltd Cooling device for motor stators

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005253263A (en) * 2004-03-08 2005-09-15 Toyota Motor Corp Cooling device for motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005073351A (en) * 2003-08-22 2005-03-17 Toyota Motor Corp Cooling structure of rotating electric machine
JP2005229672A (en) * 2004-02-10 2005-08-25 Toyota Motor Corp Rotary electric machine
JP2005354821A (en) * 2004-06-11 2005-12-22 Honda Motor Co Ltd Motor
JP2006033915A (en) * 2004-07-12 2006-02-02 Nissan Motor Co Ltd Cooler of motor
JP2006197772A (en) * 2005-01-17 2006-07-27 Toyota Motor Corp Rotary electric machine
JP2007020323A (en) * 2005-07-08 2007-01-25 Nissan Motor Co Ltd Cooling device for motor stators

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150207387A1 (en) * 2014-01-23 2015-07-23 Denso Corporation Rotary electric machine

Also Published As

Publication number Publication date
JP2010187489A (en) 2010-08-26

Similar Documents

Publication Publication Date Title
JP5386263B2 (en) Rotating electric machine
JP4563475B2 (en) Rotating electric machine
CN103814515B (en) Electromechanically integrated assembly
US8040000B2 (en) Stator cooling structure for superconducting rotating machine
JP2011099439A (en) Device for cooling electric machine
CN203086307U (en) Permanent magnet synchronous motor with ventilation structure
CN204349702U (en) Electric rotating machine
CN102823113A (en) Electrical motor incorporating internal rotor cooling
JP2006311750A (en) Cooling apparatus for rotating electric machine
CN104638814A (en) Rotation device
US20160380504A1 (en) Rotating electrical machine and cooling system of rotating electrical machine
KR102140101B1 (en) Synchronous generators of gearless wind power plants, methods for manufacturing synchronous generators and use of coils
CN103390942B (en) Generator is particularly used for the generator of wind turbine
JP2006033965A (en) Stator cooling structure of disk-type dynamo-electric machine
WO2010093019A1 (en) Rotational electric device and method of cooling a rotational electric device
JP2010187490A (en) Rotary electric machine
JP2009017700A (en) Cooling device of rotating electric machine
CN107482831A (en) Ventilated machine
TW201824708A (en) Electric motor
JP2009033898A (en) Cooling structure of rotating electrical machine
CN101272078A (en) Protection type brushless excitation synchronous motor
JP6624223B2 (en) Rotating electric machine
JP2016062681A (en) Induction heating roller device
CN107852043A (en) Annular stator, generator and there is its wind energy plant
CN102983645A (en) A brush motor, a fan, a motor rotor and a forming method for the motor rotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10741296

Country of ref document: EP

Kind code of ref document: A1