WO2010092711A1 - 歯車加工方法及び該歯車加工方法で製造される歯車 - Google Patents
歯車加工方法及び該歯車加工方法で製造される歯車 Download PDFInfo
- Publication number
- WO2010092711A1 WO2010092711A1 PCT/JP2009/068251 JP2009068251W WO2010092711A1 WO 2010092711 A1 WO2010092711 A1 WO 2010092711A1 JP 2009068251 W JP2009068251 W JP 2009068251W WO 2010092711 A1 WO2010092711 A1 WO 2010092711A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gear
- shaving
- cutting
- cutter
- chamfering
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23F—MAKING GEARS OR TOOTHED RACKS
- B23F17/00—Special methods or machines for making gear teeth, not covered by the preceding groups
- B23F17/006—Special methods or machines for making gear teeth, not covered by the preceding groups using different machines or machining operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23F—MAKING GEARS OR TOOTHED RACKS
- B23F19/00—Finishing gear teeth by other tools than those used for manufacturing gear teeth
- B23F19/06—Shaving the faces of gear teeth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23F—MAKING GEARS OR TOOTHED RACKS
- B23F19/00—Finishing gear teeth by other tools than those used for manufacturing gear teeth
- B23F19/10—Chamfering the end edges of gear teeth
Definitions
- the present invention relates to a gear machining method in which a tooth surface is formed by a shaving process after chamfering an end face corner portion of a gear, and a gear manufactured by the gear machining method.
- Modern automobiles are required to be quiet and durable while having high output, and the gears used for power transmission (for example, transmissions) are more powerful so that power is reliably transmitted and noise is not generated.
- An accurate tooth surface is desired.
- gear processing generally rough cutting (hobbing) using a hob or gear shaver, chamfering, tooth surface shaping (shaving) using a shaving cutter, carburizing and quenching by heat treatment are performed.
- gear grinding and gear honing are performed.
- the configuration of the machining line is optimized based on the machining time (takt time) required for each process while maintaining and improving gear accuracy, that is, process organization. Increasing the rate is necessary to improve production efficiency.
- the shaving process by the shaving cutter is a process for finishing the tooth surface with high accuracy, and therefore, the required time tends to be long.
- the machining conditions are basically the specifications of the gear to be cut, the tool specifications and the machining requirement values ( Line tact etc.) are almost determined, and this machining condition greatly affects the tool life and quality accuracy.
- the productivity can be reduced by reducing the processing conditions, increasing the frequency of blade replacement, etc. It corresponds.
- the tact difference between processes is large, it respond
- Japanese Patent Laid-Open No. 2-262913 discloses a first shaving step for rough finishing, leaving a cutting allowance up to the target finish tooth surface, focusing on eliminating the above-described non-uniformity in product quality. And a second shaving step of further cutting the tooth surface to the target finish tooth surface is disclosed.
- the line tact is reduced in order to maintain or improve the cutting tool life and quality accuracy in the shaving process, the production efficiency is naturally lowered, and the cost and operating time are affected. Also, if the tool life or quality accuracy is reduced for some reason, the first step is to improve the tool specifications or reduce the line tact, and there will be a cost for new cutting tools, and the cost and operating time will be affected. become.
- the tact difference between the processes is large, that is, when the process organization rate is low, the process organization rate is improved by increasing the number of equipment to match the rate-limiting process, but the cost and operation time are affected.
- the present invention has been made in consideration of such problems, and can stabilize the quality and improve the production efficiency. Further, according to the situation, the balance between the stability of the quality and the improvement of the production efficiency can be achieved.
- An object is to provide a gear machining method that can be adjusted and a gear manufactured by the gear machining method.
- the gear machining method according to the present invention and the gear manufactured by the gear machining method have the following characteristics.
- 1st characteristic The chamfering process which chamfers the end face corner part of the cutting gear toothed from a raw material, the 1st shaving process which shape
- this method has a chamfering process, a first shaving process, and a second shaving process, and the processing time of the second shaving process, which takes a relatively long time, is the sum of the chamfering process and the first shaving process. It is set to require the same time or more as the machining time.
- the first shaving process can be performed using the idle time after the chamfering process, the tact time of each process is aligned and the process organization rate is improved and the production efficiency is improved while ensuring stable product quality. Improvement is possible.
- the first shaving step and the second shaving step can be performed in a state where the sharp portion of the end face corner portion of the work gear is eliminated by the chamfering step, the time required for each shaving step is reduced as much as possible. It is possible to further improve the production efficiency and the tooth surface accuracy of the product. Furthermore, by performing the chamfering process, the tooth surface can be molded with more stable accuracy in each shaving process, and the product quality can be further stabilized.
- a gear cutting step for cutting a material to obtain a work gear for cutting a material to obtain a work gear
- a chamfering step for chamfering an end face corner of the work gear after the gear cutting step
- a first shaving step of forming a tooth surface of a work gear
- a second shaving step of further forming a tooth surface of the work gear after the first shaving step, the chamfering step and the first chamfering step.
- the total machining time of the shaving process is set shorter than at least one of the machining times of the gear cutting process and the second shaving process.
- the total processing time of the chamfering process and the first shaving process is relatively time consuming. It is set shorter than at least one of the processing times of the second shaving process.
- the first shaving process can be performed using the idle time after the chamfering process, and the process organization rate and the production efficiency are improved by aligning the tact time of each process while ensuring stable product quality. Is possible.
- the hardness of the product gear can be improved by having a heat treatment step of heating the work gear after the second shaving step.
- the first shaving step includes an approach step in which the shaving cutter is advanced from a meshing position with the work gear to a cutting start position, and after the approach step, the shaving cutter is cut from the cutting start position.
- a cutting step of cutting the tooth surface while advancing to a cutting completion position, a first spark-out step of rotating the shaving cutter after holding the cutting position at the cutting completion position, and the first spark A back movement step of retracting the shaving cutter from the notch completion position to a predetermined release position after the out step; and a second rotation of the shaving cutter after the back movement step while holding the shaving cutter at the release position.
- the shave And configured to Gukatta and a reverse approach step of retracting to said engagement position, the tooth surface molding can be performed more accurately.
- the important items include the machining quality of the gear to be cut and the production efficiency to appropriately weight and balance the machining quality (quality accuracy) and the production efficiency. Can do.
- the parameter includes at least the reduction of the cutting amount in the second shaving process, it is possible to improve the processing accuracy and extend the tool life in the second shaving process.
- the cutting amount of the shaving cutter in the cutting process is reduced for the second shaving process, and the cutting is performed. It is effective to reduce the feeding speed of the shaving cutter in the process and further increase the spark-out time in the first spark-out process and the second spark-out process.
- Ninth feature When the production efficiency is selected as the item to be emphasized and the production efficiency is improved by extending the tool life, only the cutting amount of the second shaving step by the shaving cutter is used. It is effective to reduce it.
- Tenth feature When the production efficiency is selected as the item to be emphasized, and the production efficiency is improved by shortening the machining cycle time, the rate-determining process is disassembled, and the idle time process It is effective to perform a part of the rate-determining step.
- Steps obtained by disassembling the rate-limiting step are the first shaving step and the second shaving step, and when the first shaving step is performed in the idle time after the chamfering step, chamfering is performed.
- the first shaving process can be performed by effectively using the idle time after the process, and the production efficiency can be improved by improving the process organization rate.
- Twelfth feature In the first spark-out process, if the shaving cutter is rotated forward and reverse, uncut residue in the shaving process can be easily and reliably eliminated.
- a phrasing cutter used in the chamfering step and a shaving cutter used in the first shaving step are provided in a turret mechanism of the same processing apparatus, and the cutting gear is sequentially rotated by the rotation of the turret mechanism.
- the chamfering process and the first shaving process can be performed with a single gear machining apparatus by moving the gear to the meshing position and machining the gear to be cut. It is possible to improve production efficiency by reducing idle time.
- FIG. 3 is a schematic view in which a work gear and a shaving cutter are engaged with each other and developed along a circumferential surface on a pitch cylinder. It is a top view of the gear processing apparatus which concerns on a 1st example. It is a perspective view of the gear processing apparatus which concerns on a 2nd example.
- 3 is a flowchart of a gear machining method according to the present embodiment. It is a flowchart which shows the procedure of a shaving process. It is explanatory drawing which showed each process of the shaving process by the relationship between processing time and a cutting direction distance. It is explanatory drawing of the process line in the case of performing shaving process only by 1 process. It is explanatory drawing of the 1st process line in the case of performing shaving process by 2 processes. It is explanatory drawing of the 2nd process line in the case of performing shaving process by 2 processes.
- the gear machining method performs at least a chamfering process on a corner portion of the end face and a shaving process on the tooth surface with respect to the work gear that has finished the gear cutting process (coarse gear cutting process) by the hob.
- a predetermined gear is manufactured.
- This gear machining method is performed using, for example, a gear machining apparatus 10a (see FIG. 6), 10b (see FIG. 7), and 10c (see FIG. 8).
- the gear machining apparatuses 10a to 10c will be described first from a chamfering section 12 for machining a workpiece gear with a phrasing cutter and a shaving machining section 13 for machining a chamfered workpiece gear with a shaving cutter.
- the work gear 14 is, for example, a helical gear, and there are sharp portions 33 at the left and right end face corner portions 30 and 31 in a state in which rough cutting is performed from a material by a hob. Therefore, in the gear machining method according to the present embodiment, after chamfering the end face corners 30 and 31 by the chamfering part 12, the tooth surface 28 of the tooth 26 is cut by the shaving part 13.
- the work gear 14 to be machined by the gear machining method according to the present embodiment is not limited to a helical gear, and may be a spur gear or the like.
- the work gear 14 is, for example, a gear of a vehicle transmission.
- a gear machined by the gear machining method using the chamfering part 12 and the shaving part 13 is highly accurate, excellent in quietness and durability, and suitable for a vehicle transmission.
- FIG. 2 is a partially omitted perspective view of the chamfered portion 12.
- the chamfering portion 12 includes a shaft J ⁇ b> 1 as a workpiece support portion that pivotally supports the workpiece gear 14, a phrasing cutter 18 that is a chamfering tool, and a cutter support portion that pivotally supports the phrasing cutter 18.
- axis J2 can be rotated by a drive source (not shown).
- the axis J ⁇ b> 1 is rotated when the work gear 14 meshes with the phrasing cutter 18.
- the phrasing cutter 18 includes a piece having a group of chamfering processing teeth 32 a on one side in the thickness direction and a piece having a group of chamfering processing teeth 32 b on the other side, and these are fixed to the boss 36. This is a so-called three-piece structure.
- the shaft J2 pivotally supports the phrasing cutter 18 so as to mesh the phrasing cutter 18 with the work gear 14 provided on the shaft J1.
- the axis J2 meshes the phrasing cutter 18 with the workpiece gear 14 with a non-zero axis crossing angle ⁇ 1, and is provided at an angle at which the machining teeth 32a and 32b of the phrasing cutter 18 do not interfere with the tooth surface 28 of the workpiece gear 14. (See FIG. 3).
- the axis crossing angle ⁇ 1 is an angle formed by the axis J1 of the work gear 14 and the axis J2 of the phrasing cutter 18 (see FIG. 3).
- FIG. 3 shows the relative positional relationship between the teeth 26 of the work gear 14 and the machining teeth 32a and 32b of the phrasing cutter 18, and each of the work gear 14 and the phrasing cutter 18 is disposed along the circumferential surface. It is the expanded schematic diagram.
- the processing teeth 32a and the processing teeth 32b are separated according to the thickness of the work gear 14, and the phrasing cutter 18 and the work gear 14 rotate while meshing with each other.
- one processing tooth 32a presses against one end face corner 30 to crush the chamfered portion 33 and chamfers
- the other processing tooth 32b presses against the other end face corner 31 to obtain a sharp portion. Crush 33 and chamfer.
- the work gear 14 and the phrasing cutter 18 have an axis crossing angle ⁇ 1 and intersect at an angle. Accordingly, when the phrasing cutter 18 is driven to rotate, the work gear 14 rotates in the right direction (arrow A1 direction) in FIG. 3, and the phrasing cutter 18 rotates in the oblique direction (arrow A2 direction) by an angle ⁇ 1.
- the processed teeth 32a of the phrasing cutter 18 first mesh with the teeth 26 as shown by an arrow B1 in FIG. Subsequently, the processing teeth 32a mesh with each other as shown by an arrow B2 in FIG. Thereafter, the processed teeth 32a can mesh with each other as shown by an arrow B3 in FIG.
- the other end face corner portion 31 of the work gear 14 can be appropriately chamfered by the processing teeth 32b of the phrasing cutter 18 as in the case of the end face corner portion 30 described above.
- the phrasing cutter 18 meshes with the work gear 14 with the axis crossing angle ⁇ 1, so that the sharpened portion 33 is chamfered by crushing against the end face corner portions 30 and 31 of the work gear 14.
- the sliding between the surfaces including the lateral movement component occurs.
- production of the surplus swell in the location adjacent to a chamfering part among the tooth surfaces 28 can be prevented, or it can suppress.
- the axis crossing angle ⁇ 1 may be set in the range of 5 ° to 8 °, for example.
- FIG. 4 is a partially omitted perspective view of the shaving portion 13.
- the shaving processing unit 13 includes a shaft J ⁇ b> 1 as a work support unit that supports the work gear 14, a shaving cutter 20 that is a shaving tool, and a cutter support unit that supports the shaving cutter 20.
- a shaft J ⁇ b> 1 As an axis J3.
- the axis J3 can be rotated by a drive source (not shown).
- the axis J ⁇ b> 1 is the same as or similar to that of the chamfered portion 12, and rotates with the work gear 14 meshing with the shaving cutter 20.
- FIG. 5 shows the relative positional relationship between the teeth 26 of the work gear 14 and the machining teeth 44 of the shaving cutter 20.
- the work gear 14 and the shaving cutter 20 are engaged with each other on the circumferential surface of the pitch cylinder. It is the schematic diagram developed along.
- a plurality of serrations 46 serving as cutting blades are provided on the tooth surface of each processing tooth 44 of the shaving cutter 20.
- the serration 46 extends at a right angle to the tooth width direction, in other words, in a direction from the tooth bottom toward the tooth tip.
- the shaft J3 pivotally supports the shaving cutter 20 so that the shaving cutter 20 is engaged with the work gear 14 provided on the shaft J1.
- the axis J3 meshes the shaving cutter 20 with the work gear 14 at a non-zero axis crossing angle ⁇ 2 (see FIG. 5).
- the axis crossing angle ⁇ 2 is an angle formed by the axis J1 of the work gear 14 and the axis J3 of the shaving cutter 20 (see FIG. 5), and even if it is the same angle as the above axis crossing angle ⁇ 1 (see FIG. 3).
- the angle may be different, and may be set in the range of 4 ° to 20 °, for example, depending on the type of the work gear 14.
- the shaving cutter 20 When the shaving cutter 20 is driven to rotate, the shaving cutter 20 rotates in the upward direction (arrow A3 direction) in FIG. 5, and the work gear 14 rotates in an oblique direction (arrow A1 direction) by an angle ⁇ 2.
- the machining teeth 44 of the shaving cutter 20 and the teeth 26 of the work gear 14 relatively slide in the direction of the teeth of the teeth 26, and the tooth surface 28 is cut by the serrations 46. That is, the processing teeth 44 abut against the tooth surface 28 so as to rub in the lateral direction as indicated by the arrow C1 in FIG. 5, and the teeth 26 abut as indicated by the arrow C2 in FIG.
- the tooth surface 28 is formed with a predetermined accuracy by the serration 46.
- This cutting is for forming the tooth surface 28, and is classified as finish cutting, unlike rough cutting with a hob or the like.
- the gear machining apparatus 10a simultaneously performs chamfering and shaving of a plurality of work gears 14, and intermittently rotates the work gear 14 every 90 °.
- a carry-out stage 108 The feed table 101 rotates horizontally, for example.
- the feed table 101 includes four rotation shafts (work support portions) 110a, 110b, 110c, and 110d that can support the workpiece gear 14 at equal intervals (90 °) near the outer periphery, and each is rotated by a motor (not shown). Is possible.
- the four rotating shafts 110a to 110d may be rotated independently by four motors, or may be rotated by distributing driving force by one motor. Of the rotary shafts 110a to 110d, the one on the loading / unloading stage 108 is stopped for loading / unloading the work gear 14, and the corresponding motor is stopped or the clutch is disengaged.
- the first stage 102 is provided with a chamfering portion 12 (see FIG. 2) for chamfering the end face corner portions 30 and 31 of the work gear 14.
- the chamfered portion 12 has the phrasing cutter 18 and meshes the phrasing cutter 18 with the work gear 14 with the axis crossing angle ⁇ 1.
- the phrasing cutter 18 can advance and retreat in the radial direction (cutting direction) as viewed from the feed table 101.
- the second stage 104 is provided with a shaving processing portion 13 (see FIG. 4) for performing the first processing (first shaving processing) of the tooth surface 28 of the work gear 14.
- the shaving processing section 13 has the shaving cutter 20, and meshes the shaving cutter 20 with the work gear 14 with the axis crossing angle ⁇ 2.
- the shaving cutter 20 can advance and retreat in the radial direction (cutting direction) as viewed from the feed table 101.
- the shaving cutter 20 is engaged with the work gear 14 and when the feed table 101 is rotated, the shaving cutter 20 is moved outward. evacuate.
- the first shaving process of the second stage 104 corresponds to rough finishing.
- the third stage 106 is provided with a shaving cutter 20 for performing the second processing (second shaving processing) of the tooth surface 28 of the work gear 14.
- the shaving cutter 20 provided on the third stage 106 may be the same as the shaving cutter 20 of the second stage 104, or may be a different one suitable for precision finishing.
- the shaving cutter 20 can advance and retreat in the radial direction (cutting direction) as viewed from the feed table 101.
- the shaving cutter 20 is engaged with the workpiece gear 14, and when the feed table 101 is rotated, it is retracted outward. To do.
- the second shaving process of the third stage 106 corresponds to precision finishing.
- the rotary shafts 110a, 110b, 110c, and 110d that support the work gear 14 are configured to be vertical, while the tools of the first stage 102, the second stage 104, and the third stage 106 are It is preferable to provide it obliquely so as to have an axis crossing angle ⁇ 1 ( ⁇ 2). This angle should be adjustable.
- the work gear 14 that has been processed up to the third stage 106 is sent to the carry-in / carry-out stage 108, taken out from the gear processing apparatus 10a, and sent to a subsequent process (for example, heat treatment).
- the chamfering process is performed by the phrasing cutter 18 in the first stage 102 (chamfering process), and the second stage 104 (first shaving process) and the first stage.
- the tooth surface 28 can be shaved by the shaving cutter 20 in three stages 106 (second shaving step), which is efficient. That is, it is not necessary to convey the machined gear 14 between the chamfering process and the shaving process, and the chamfering process and each shaving process are integrated into one apparatus to save space.
- Rotating shafts 110a to 110d as work support portions are provided according to the first stage 102, the second stage 104, the third stage 106, and the carry-in / carry-out stage 108. Therefore, the three work gears 14 can be processed simultaneously by the first stage 102, the second stage 104, and the third stage 106.
- the shaving process generally takes more time than the chamfering process by the phrasing cutter 18, but the shaving process is performed by the second stage 104 and the third stage 106 (or the second process to the Nth process (N ⁇ 4)). ), The time difference from the chamfering process, which is the first process, can be reduced, and a wasteful waiting time after the first process can be reduced.
- the gear machining apparatus 10a has three machining stages except for the carry-in / carry-out stage 108.
- the number of machining stages is four, and a hobbing machining stage (gear cutting process) before the first stage 102 is performed. May be provided.
- the transverse direction is the X direction
- the depth direction is the Y direction
- the height direction is the Z direction.
- the gear machining apparatus 10 b includes a rotary table 202 provided on the base table 200, a work support unit 204 provided on the rotary table 202, a drive board 206, and the drive board 206. And a tool support 208 provided adjacent thereto.
- illustrations of an operation panel, a lubrication device, a hydraulic power source, a coolant, and the like of the gear machining device 10b are omitted.
- the workpiece support unit 204 includes an X slide base 210 provided on the rotary table 202, an X slider 212 that slides in the X direction with respect to the X slide base 210, and the work gear 14 on the X slider 212 from the left and right.
- the X slide base 210 is provided with a base rotation motor 222. Under the action of the base rotation motor 222, the X slide base 210 rotates with respect to the rotary table 202 in a horizontal plane.
- a mechanism for rotating the X slide base 210 with respect to the rotary table 202 for example, a worm wheel mechanism is used.
- the rotary table 202 is provided with a sensor (for example, a rotary encoder) 224 that accurately measures the amount of rotation of the X slide base 210, and by performing feedback of a fully closed system based on the signal of the sensor 224, the X slide base is provided.
- 210 can be accurately positioned and controlled. That is, since the rotation amount of the X slide base 210 is directly detected by the sensor 224 instead of indirect feedback based on the rotation amount of the base rotation motor 222 (so-called semi-closed control), precise control is possible.
- the rotary table 202 is provided with a plurality of (for example, four) clamps 226 for fixing the X slide base 210 for which positioning control has been completed.
- the clamps 226 are provided at equal intervals around the rotary table 202 (only one is shown in FIG. 7).
- the head stock 214 includes one of a sub-slider 230 in the X direction, a shaft support box 232 that can slide in the X direction with respect to the sub-slider 230, a stock motor 234 that drives the shaft support box 232, and one of the work gears 14. And a support shaft 236 that supports this side.
- the support shaft 236 corresponds to the axis J1. Since the tail stock 216 basically has a symmetrical configuration with respect to the head stock 214, the same reference numerals as those of the tail stock 216 are used and detailed description thereof is omitted.
- the head stock 214 and the tail stock 216 have different driving forces that move in the X direction.
- the head stock 214 has a larger driving force, and the head stock 214 defines the position of the work gear 14 in the X direction.
- the head stock 214 and the tail stock 216 approach and separate when the work gear 14 is attached and detached.
- the head stock 214 and the tail stock 216 are not provided with a drive source for rotating the work gear 14.
- the roller cutter unit 220 includes two roller cutters 228 arranged in parallel in the X direction, a roller cutter support base 240 that rotatably supports these roller cutters 228, a Y slide base 242, and a Y motor 244.
- the distance between the two roller cutters 228 is adjusted to match the tooth width of the work gear 14, and the flash can be removed by being applied to the work gear 14.
- the roller cutter unit 220 is not provided with a drive source for rotating the roller cutter 228, and the roller cutter 228 contacts the work gear 14 and removes the flash while rotating.
- the roller cutter unit 220 is provided on the slide base 210.
- the tool support unit 208 includes a Z slide base 250, a tool support mechanism box 252 that moves up and down in the Z direction with respect to the Z slide base 250, and a turret mechanism 254 that rotates intermittently with respect to the tool support mechanism box 252.
- the Z slide base 250 is provided adjacent to the drive board 206 and extends in the Z direction, and holds the tool support mechanism box 252 so as to be movable up and down in the Z direction.
- a Z motor 256 that raises and lowers the tool support mechanism box 252 is provided on the Z slide base 250.
- the tool support mechanism box 252 includes an index motor 258 that intermittently rotates the turret mechanism 254 every 60 ° and a spindle motor 260, and has a considerable weight.
- the tool support mechanism box 252 further includes a positioning pin mechanism and a clutch mechanism (not shown).
- the turret mechanism 254 can be accurately positioned by the positioning pin mechanism. Power transmission to the turret mechanism 254 can be controlled by the clutch mechanism.
- the turret mechanism 254 is hexagonal when viewed from the side, and rotates every 60 ° in the YZ plane under the action of the index motor 258. In the vicinity of each hexagonal apex of the turret mechanism 254, a first arm 262a, a second arm 262b, a third arm 262c, a fourth arm 262d, a fifth arm 262e, and a sixth arm 262f are respectively directed in the X direction. Is provided.
- Various tools such as the phrasing cutter 18 and the shaving cutter 20 can be attached to and detached from these arms 262a to 262f.
- the turret mechanism 254 is configured such that the lowermost one of the six arms 262a to 262f is arranged just above the workpiece gear 14.
- the six arms 262a to 262f are arranged at equal intervals (60 °), and a tool provided on any one of the arms arranged below so as to face the work gear 14 passes through a predetermined clutch mechanism. It can be rotated by a spindle motor 260.
- the turret mechanism 254 is provided with a tooth surface detection sensor (not shown), and the tool can be automatically engaged with the work gear 14 based on a signal from the tooth surface detection sensor.
- the first arm 262 a performs chamfering on the work gear 14 by the phrasing cutter 18, and the support shaft 236 (axis J ⁇ b> 1) of the workpiece support unit 204 changes the axis crossing angle ⁇ ⁇ b> 1 by turning the rotary table 202. Therefore, the chamfered portion 12 (see FIG. 2) is formed by the first arm 262a and the support shaft 236.
- the two roller cutters 228 are pressed against both ends of the work gear 14 under the action of the Y motor 244 to remove the flash at both ends.
- the turret mechanism 254 and the roller cutter unit 220 can approach the work gear 14 from different directions (Z direction and Y direction), respectively, and perform chamfering and deburring simultaneously.
- the processing time can be shortened. After deburring, the roller cutter 228 is returned to its original position.
- the third arm 262c performs the first shaving process (first shaving process) on the work gear 14, and the fifth arm 262e performs the second shaving process (first shaving process on the work gear 14). 2 shaving process).
- the support shaft 236 (axis J1) of the work support portion 204 has an axis crossing angle ⁇ 2 due to the turning of the rotary table 202, the shaving processing portion is formed by the third arm 262c (fifth arm 262e) and the support shaft 236. 13 (see FIG. 4) is formed.
- the second arm 262b, the fourth arm 262d, and the sixth arm 262f are spares.
- the third arm 262c is provided with a shaving cutter 20 for rough finishing
- the fifth arm 262e is provided with a shaving cutter 20 for precision finishing.
- the shaving cutters 20 for rough finishing and precision finishing may be the same or different suitable for each process.
- the balance of the turret mechanism 254 is improved by using every other spare.
- the processing time tends to be longer in the second shaving process in which the precision finishing is performed than in the first shaving process in which the rough finishing is performed. is there. Therefore, although details will be described later, for example, a system in which two gear machining apparatuses 10b are arranged side by side is constructed, and the chamfering process (chamfering process) and the first shaving process (first shaving process) are performed in one gear machining apparatus 10b. And the second gear shaving process (second shaving process) may be performed in the other gear machining apparatus 10b.
- the work gear 14 may be transferred between the two apparatuses using, for example, a robot (not shown).
- the gear machining apparatus 10b in charge of the chamfering process and the first shaving process is provided with only the phrasing cutter 18 and the shaving cutter 20 for rough finishing, and the gear machining apparatus 10b in charge of the second shaving process has a precision finish. Only the shaving cutter 20 for use may be provided to construct the system.
- the first arm 262a, the third arm 262c, and the fifth arm 262e are sequentially moved to a position facing the work gear 14 of the work support unit 204 by the rotation thereof, and the work gear 14 is processed. can do. That is, since each tool of the turret mechanism 254 can be lifted and lowered under the action of the Z motor 256, when the chamfering process or the shaving process of the work gear 14 is performed, the tool is lowered and meshed with the work gear 14 so that the turret mechanism When rotating 254, it rises and retreats.
- the work gear 14 rotates along with the engagement of the tool of the turret mechanism 254. Therefore, a drive source for rotating the work gear 14 is not required, and the configuration is simple. Since each tool connected to the turret mechanism 254 is larger than the work gear 14, the inertia is large, and the spindle motor 260 is necessarily large to some extent. By using such a large spindle motor 260, the time for accelerating / decelerating the work gear 14 through a tool can be shortened. In other words, since the work gear 14 has relatively small inertia, it easily follows the tool and accelerates or decelerates, and the machining time can be shortened.
- the weights of the tool support mechanism box 252 and the turret mechanism 254 are added to the work gear 14.
- the weights of the tool support mechanism box 252 and the turret mechanism 254 have a considerable weight, and even if the Z motor 256 does not generate an excessively large force (for example, the current of the Z motor 256 is 0). Even) a sufficient load can be efficiently applied to the work gear 14.
- machining can be performed while the workpiece gear 14 is being pressed appropriately, and the workpiece gear 14 can be prevented from being shaken or decentered during machining, and stable machining can be performed.
- the first arm 262a performs chamfering with the phrasing cutter 18, and the third arm 262c and the fifth arm 262e perform shaving.
- the shaving process of the tooth surface 28 by the cutter 20 can be performed, which is efficient.
- the workpiece support unit 204 is provided on the rotary table 202 that adjusts the direction with respect to the arms 262a to 262f, an appropriate axis crossing angle ⁇ 1 ( ⁇ 2) corresponding to the work gear 14 is set. be able to.
- the arms 262a to 262f of the turret mechanism 254 have an axis crossing angle ⁇ 1 ( ⁇ 2) with respect to the axis J1 of the workpiece support unit 204. That is, since the turret mechanism 254 itself is relatively inclined with respect to the axis J1, both the phrasing cutter 18 and the shaving cutter 20 are easily meshed with the work gear 14 with the axis crossing angle ⁇ 1 ( ⁇ 2). be able to.
- the axis crossing angle ⁇ 1 and the axis crossing angle ⁇ 2 are set to the same angle, individual angle adjustment for each processing step is unnecessary, and a simpler configuration can be obtained.
- various tooth surfaces can be formed on the work gear 14 by the simultaneous and coordinated operation of the X motor 219 and the Z motor 256.
- the gear machining apparatus 10c includes a turret mechanism 254 used in the chamfering process and the first shaving process, and a feed table 170 similar to the feed table 101 (see FIG. 6).
- the feed table 170 is provided with a plurality of (four in FIG. 8) work support portions 172 at equal intervals (90 ° intervals).
- the feed table 170 is rotated and the workpiece support portions 172 are moved to perform each process. That is, the gear machining apparatus 10 c drives the first stage 163 that performs chamfering and first shaving with the turret mechanism 254 and the shaving cutter 20 disposed on the next process side of the turret mechanism 254 with respect to the work gear 14.
- the second stage 164 that performs the second shaving process, and the third stage 168 and the fourth stage 169 that respectively carry out and carry in the work gear 14.
- the workpiece support 172 may be configured such that the axis crossing angle ⁇ 1 ( ⁇ 2) can be adjusted by the rotation of the tilting mechanism 174 on the table 170.
- the second stage 164 simultaneously performs the first stage 163.
- the second shaving step can be performed on the other work gear 14 that has undergone the process, and during that time, the work gear 14 can be carried out and carried in the third stage 168 and the fourth stage 169, respectively. That is, in the gear machining method according to the present embodiment in which at least the chamfering process, the first shaving process, and the second shaving process are performed, the chamfering process and the second shaving process are performed while the second shaving process having the longest time is performed.
- One shaving process can be performed.
- the first shaving process can be performed during a useless waiting time (idle time) after a relatively short chamfering process
- the second shaving is performed during the chamfering process and the first shaving process.
- the process can be performed and is efficient.
- gear cutting is performed on the material by a hob or the like in step S101 (gear cutting step).
- This gear cutting corresponds to the rough finish of the tooth surface, and thereby the approximate shape of the teeth 26 of the work gear 14 is formed.
- step S102 the chamfering processing unit 12 performs chamfering of the work gear 14 (chamfering process).
- the phrasing cutter 18 meshes with the work gear 14 with an axis crossing angle ⁇ 1 to chamfer. For this reason, it is possible not only to crush and chamfer the end face corner portions 30 and 31 of the work gear 14, but also to suppress the occurrence of surging due to the crushing, and the first shaving step of the next step In addition, cutting in the second shaving step is easy and highly accurate.
- This step S102 and the subsequent steps S103 and S104 are performed using, for example, the gear machining apparatuses 10a to 10c.
- step S103 the first shaving process (first shaving process) of the work gear 14 by the shaving process unit 13 is performed (first shaving process).
- the shaving cutter 20 meshes with the work gear 14 with an axis crossing angle ⁇ 2 to perform shaving, and the tooth surface is subjected to rough finish cutting until a predetermined machining allowance. Perform molding.
- step S111 the meshing position of the shaving cutter 20 with the work gear 14 (see point P1 and time t0 in FIG. 11) is the machining origin. Then, an approach process A is performed in which the shaving cutter 20 is advanced from the meshing position to the cutting start position (see point P2 and time t1 in FIG. 11) in the cutting direction by rapid feed.
- the cutting direction is, for example, the radial direction as viewed from the feed table 101 in the gear machining apparatus 10a, and the radial direction as viewed from the turret mechanism 254 in the gear machining apparatus 10b, that is, the shaving cutter 20 and the work gear 14 are in diameter. It is a direction that approaches each other in the direction.
- a cutting step C is performed in which the tooth surface 28 is cut while the shaving cutter 20 is advanced from the cutting start position to the cutting completion position (see point P3 and time t2 in FIG. 11) at a predetermined processing speed.
- the advance distance (cut distance) in the cutting direction is, for example, 0.06 mm
- the cutting speed is, for example, 0.8 mm / min.
- a first spark-out process T1 is performed in which the sparking is performed by rotating the shaving cutter 20 in the cutting-in position with the position in the cutting direction held (the points P3 to P5 in FIG. 11). And time t2 to time t3).
- the feeding of the shaving cutter 20 that has been cut is stopped in the cutting direction, and the shaving cutter 20 is rotated for a predetermined time at the stop position, so-called spark-out is performed. Eliminates unshaved tooth surfaces in one shaving process.
- the first spark-out step T1 in the first spark-out step T1, the first step T1a for rotating the shaving cutter 20 in the forward direction (rotation direction in the cutting step C) (see points P3 to P4 in FIG. 11). And a second step T1b (see points P4 to P5 in FIG. 11) for rotating once in the opposite opposite direction.
- the numbers of forward rotation and reverse rotation can be changed as appropriate, and can be set to only forward rotation or only reverse rotation.
- a back movement process BM is performed for retracting the shaving cutter 20 from the cut completion position to a predetermined disengagement position (see point P6 in FIG. 11, time t4).
- the back movement process BM is intended to remove elastic deformation of the work gear 14 that has occurred during cutting by the shaving cutter 20.
- the reverse speed (separation distance) in the separation direction (opposite to the cutting direction) is, for example, 0.03 mm, and the separation speed is, for example, 0.8 mm / min.
- a second spark-out step T2 is performed in which the position in the cutting direction of the shaving cutter 20 is held at the disengagement position and sparked out (points P6 to P7 in FIG. t4 to time t5).
- the second spark-out step T2 is substantially the same as the first spark-out step T1, but, for example, the shaving cutter 20 may be rotated twice in the positive direction, and naturally the number of rotations and the direction of rotation are appropriately changed. Is possible.
- step S116 a reverse approach process R is performed in which the shaving cutter 20 is retracted from the disengagement position to the engagement position by rapid return (see points P7 to P8 and time points t5 to t6 in FIG. 11).
- the first shaving process (see step S103 in FIG. 9) is completed.
- the shaving process unit 13 performs the second shaving process (second shaving process) of the work gear 14 (second shaving process). Also in the second shaving process, it is preferable to perform a shaving process substantially similar to the first shaving process shown in FIGS.
- the cutting speed in the cutting process C may be set to 0.6 to 0.8 mm / min, which is slightly slower than that in the first shaving process.
- the forward rotation is preferably 3 times in the first step T1a
- the reverse rotation is 3 times in the second step T1b
- the forward rotation is preferably 3 times in the second spark-out step T2. Since the second shaving process corresponds to precision finishing, the setting relating to the cutting speed and spark-out is changed as described above, thereby realizing more precise molding and avoiding uncut parts.
- step S105 carburization and quenching are performed by heat treatment of the work gear 14 (heat treatment step). This increases the hardness of the work gear 14.
- step S106 gear grinding of the work gear 14 is performed (gear grinding step).
- the gear grinding process is a process in which a grindstone (not shown) having a spiral line is meshed with the work gear 14 and rotated synchronously to finish the tooth surface 28 of the tooth 26.
- the work gear 14 is considerably hardened by the heat treatment, but since the chamfering is performed in the chamfering process and the occurrence of the raised portion is suppressed, an excessive load is not applied to the grindstone.
- step S107 gear honing of the work gear 14 is performed (honing process).
- the gear honing process is a process in which the tooth surface 28 of the tooth 26 is finished with higher accuracy by rotating the work gear 14 while meshing with an internal grindstone (not shown).
- the tooth surface finishing process after heat treatment is not limited to gear grinding and gear honing.
- any one or more of processes that can finish the tooth surface in a finishing hob process, a reamer process, and the like are performed. What is necessary is just to select according to conditions.
- steps S105 to S107 can be omitted depending on the required quality and type of the machined gear 14 after machining, which is a product.
- the chamfering process (step S102), the first shaving process (step S103), and the second shaving process (step S104) are performed, so that the processes in steps S105 to S107 are excluded. This is because a gear with sufficient accuracy can be manufactured depending on the required accuracy of the product gear.
- the machining method according to the above prior art does not have a chamfering process, there is a possibility that a sharp part, a flash, or the like remains at the corner of the end face of the work gear subjected to the shaving process. For this reason, a long time is required for the first and second shaving processes, resulting in a decrease in production efficiency. Furthermore, after the second shaving process, a predetermined heat treatment process, gear honing process, and the like are essential. In addition, the shaving cutter may be damaged due to the sharp part or flash.
- comparison line In the processing line illustrated in FIG. 12 (hereinafter referred to as “comparison line”), only one shaving process is performed, for example, 40 seconds for the gear cutting process, 20 seconds for the chamfering process, and 45 seconds for the shaving process. Processing time (tact time) is required.
- the quality accuracy of the work gear 14 is improved by disassembling the shaving process into a first shaving process and a second shaving process. While achieving both improvement and improvement in production efficiency, weighting for quality accuracy and production efficiency can be adjusted according to the situation and set in a balanced manner. That is, by performing the first shaving process and the second shaving process on the same processing line, it is selected whether to place importance on stabilizing the quality or improving production efficiency according to the situation.
- first machining line for example, 40 seconds for the gear cutting process, 20 seconds for the chamfering process, A processing time of 20 seconds is required for one shaving process and 40 seconds for a second shaving process.
- the second shaving process can shorten the processing time tb compared to the shaving process in the comparison line of FIG. The tact time can be suppressed to 40 seconds or less.
- the machining pattern of both processes is optimized to improve the quality accuracy and blade life according to the gear to be machined, and the cycle time is adjusted to adjust the process composition rate. Can be appropriately performed.
- step S104 when improvement of quality accuracy (improvement and stability of machining quality) is selected as an item to be regarded as important, in the second shaving process (step S104 in FIG. 9), the cutting process C (step S112 in FIG. 10). ) And the cutting speed is reduced, and the time of the first and second spark-out steps T1 and T2 (steps S113 and S115 in FIG. 10) (spark-out time). Set a longer time.
- the cutting process C is represented by points P2 to P3 ′ with respect to a standard solid line graph in which quality accuracy and production efficiency are well-balanced.
- the first spark-out process T1 is a first spark-out process T1 ′ (first process T1a ′, second process T1b ′) indicated by points P3 ′ to P4 ′ to P5 ′. Increase the time of the spark-out process.
- the second spark-out process T2 is changed to the second spark-out process T2 'indicated by points P6' to P7 ', and after the time of the second spark-out process is lengthened, points 7' to P8 '
- the second shaving process corresponds to precision finishing, by changing the settings related to the cutting amount, cutting speed, and spark-out as described above, more precise molding and avoidance of uncut residue are realized.
- the quality accuracy of gear processing can be improved.
- the parameter may be changed in the same way in the first shaving process to increase the cutting amount, etc., and to adjust and balance the entire processing line. .
- the second finish which is a precision finish of the work gear 14 is achieved. Since the processing accuracy in the shaving process can be further improved and homogenized, the gear quality accuracy (stabilization / improvement of processing accuracy) can be stabilized.
- the parameters may be set in substantially the same manner as in the case of improving the quality accuracy described above.
- the cutting amount in the second shaving process is further reduced. That is, the cutting process C ′′ indicated by the points P2 to P3 ′′ in FIG. 12 further reduces the amount of cutting in the second shaving process, thereby burdening the shaving cutter 20 that is a cutting tool.
- the service life can be extended and the cost required for gear processing can be reduced and the production efficiency can be improved.
- the first processing line shown in FIG. 14 is changed to the processing line shown in FIG. 14 (hereinafter referred to as “second processing line”).
- the processing time required for each process is the same as that in the first processing line (see FIG. 13), but the idle time ta (see FIG. 12) after the chamfering process is used.
- the tact time of each step can be substantially made uniform in 40 seconds.
- the cycle time is optimized and the line tact is greatly increased by configuring the gear cutting process to take a total of 40 seconds for the chamfering process and the first shaving process and 40 seconds for the second shaving process.
- the production efficiency can be greatly improved by setting the process organization rate to 100% under ideal conditions.
- the process by the second machining line is particularly effective when using an apparatus (equipment) capable of a combined process of a chamfering process and a shaving process, such as the gear machining apparatuses 10a to 10b shown in FIGS. Yes, that is, the first shaving process is performed in the free time in the chamfering process, the tact time of the second shaving process is reduced by the machining allowance, and the production organization rate of the entire line is combined to improve the production efficiency. it can.
- it is not necessary to increase the number of devices for the chamfering process, and the cost can be reduced and the space of the equipment can be saved.
- the shaving process is performed in only one process.
- a first shaving step is performed (see FIG. 14).
- the total machining time of the chamfering process and the first shaving process is greater than at least one of the machining times of the gear cutting process and the second shaving process, which are relatively time consuming.
- the processing time of the first shaving process is appropriately adjusted, and the processing time of the second shaving process is set so as to require the same time or more as the total processing time of the chamfering process and the first shaving process. If it does so, the process organization rate as a whole can be brought close to 100% as much as possible.
- product quality can be stabilized.
- the tooth surface can be rough-finished in the first shaving step before the second shaving step and the tooth surface can be cut with a predetermined machining allowance
- the second shaving step in charge of precision finishing is time-consuming. Therefore, the feeding speed of the shaving cutter 20 in the cutting process (see FIGS. 10 and 11) can be made gentle, and the tooth surface cutting accuracy can be improved.
- the shaving cutter used in the first and second shaving processes is optimized for each process, further improvement in accuracy and productivity can be achieved. This can improve the processing accuracy in gear grinding and gear honing, which is the tooth surface finishing process after heat treatment, and reduce the load on the tool used for gear grinding and gear honing, thereby extending its service life. can do.
- the chamfering process is performed as a pre-process of the first shaving process, the first shaving process and the second shaving process are performed in a state where the sharp part of the end face corner of the work gear is erased by the chamfering process.
- a process can be performed. For this reason, the time required for each shaving step can be shortened as much as possible, and the production efficiency and the tooth surface accuracy of the product can be further improved.
- the tooth surface can be molded with more stable accuracy in each shaving process, and the product quality can be further stabilized.
- the present invention is not limited to the above-described embodiment, and various configurations and processes can be adopted without departing from the gist of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Gear Processing (AREA)
Abstract
本発明は、歯車加工方法及び該歯車加工方法で製造される歯車に関し、先ず、素材から歯切りされた被削歯車(14)の端面角部(30、31)を面取りする面取り工程を行い、次に、被削歯車(14)の歯面(28)を成形する第1シェービング工程を行う。さらに、前記面取り工程及び前記第1シェービング工程の合計加工時間と同一時間以上を要して、被削歯車(14)の歯面(28)をさらに成形する第2シェービング工程を行う。これにより、面取り工程後の遊休時間に第1シェービング工程を行うと共に、第2シェービング工程に要する時間を低減し、各工程のタクトタイムを揃えて高い工程編成率で所定の精度の歯車を加工する。
Description
本発明は、歯車の端面角部を面取りした後、シェービング工程により歯面を成形する歯車加工方法及び該歯車加工方法で製造される歯車に関する。
近時の自動車は高出力でありながらも静粛性及び耐久性が要求されており、動力伝達(例えば変速機)に用いられる歯車には動力を確実に伝達すると共に騒音を発生しないように一層高精度な歯面が望まれている。
このような高精度の歯車の加工としては、一般的にホブやギアシェーバーによる粗切削加工(歯切り加工)、面取り加工、シェービングカッタによる歯面の成形(シェービング加工)、熱処理による浸炭及び焼入れを行い、さらに精度を向上させるために歯車研削加工やギアホーニング加工を行う。
上記したような複数の工程が実施される歯車加工では、歯車精度の維持向上を図りながらも、各工程に要する加工時間(タクトタイム)に基づき加工ラインの構成を最適化すること、つまり工程編成率を向上させることが生産効率向上に必要である。特に、シェービングカッタによるシェービング工程は、歯面の高精度に仕上げるための工程であることから、その所要時間が長い傾向にある。
このように、ホブやギアシェーバーによる前工程の歯切り加工から一発加工で歯面を出すシェービング工程では、その加工条件は基本的に被削歯車の緒元、刃具緒元及び加工要件値(ラインタクト等)でほとんど決まってしまい、この加工条件が刃具寿命や品質精度に大きく影響することになる。
例えば、シェービング加工での刃具寿命や品質精度を上げるためには、加工条件を下げたり、刃具交換の頻度を増やす等、生産性を低下させて、つまりラインタクトを落として生産量を下げることで対応している。また、工程間のタクト差が大きい場合には、設備台数を増加して対応し、工程編成率を合わせるということが行われている。
一方、シェービング工程を並列の2工程に分け、これにより加工時間を短縮することが提案されている。ところが、この方法では各工程で別々に製品が生産されることから、製品品質に不均一を生じる可能性がある。
そこで、日本国特開平2-262913号公報には、上記した製品品質の不均一の解消に着目し、目標仕上げ歯面までの切削代を残して粗仕上げする第1シェービング工程と、粗仕上げされた歯面を目標仕上げ歯面までさらに切削する第2シェービング工程とを実施する加工方法が開示されている。
上記のように、シェービング加工での刃具寿命や品質精度を現状維持又は向上させるためにラインタクトを落としてしまうと、当然ながら生産効率は低下し、コストや操業時間に影響が出る。また、何らかの理由で刃具寿命や品質精度が低下した場合、先ずは刃具仕様の改善かラインタクト低下しか対応策がなく、刃具新作費用が発生したり、コストや操業時間に影響が出たりすることになる。工程間のタクト差が大きい場合、つまり工程編成率が低い場合は、設備台数を増やして律速になっている工程に合わせることにより工程編成率は向上するが、コストや操業時間に影響が出る。
一方、上記の日本国特開平2-262913号公報に記載の加工方法では、前記第1及び第2シェービング工程を同一ライン上で実施することにより、得られる歯車の精度の均一化は図ることができるが、結果として加工時間を短縮することができず、場合によっては加工時間のさらなる増大を惹起する。
本発明はこのような課題を考慮してなされたものであり、品質を安定させると共に、生産効率の向上を図ることができ、さらに、状況に応じて品質の安定と生産効率の向上のバランスを調整することができる歯車加工方法及び該歯車加工方法で製造される歯車を提供することを目的とする。
本発明に係る歯車加工方法及び該歯車加工方法で製造される歯車は、以下の特徴を有する。
第1の特徴:素材から歯切りされた被削歯車の端面角部を面取りする面取り工程と、前記面取り工程の後、前記被削歯車の歯面を成形する第1シェービング工程と、前記第1シェービング工程の後、前記面取り工程及び前記第1シェービング工程の合計加工時間と同一時間以上を要して、前記被削歯車の歯面をさらに成形する第2シェービング工程とを有することを特徴とする。
この方法によれば、面取り工程、第1シェービング工程及び第2シェービング工程を有し、各工程のうち、比較的時間のかかる第2シェービング工程の加工時間が、面取り工程及び第1シェービング工程の合計加工時間と同一時間以上を要するように設定される。これにより、面取り工程後の遊休時間を利用して第1シェービング工程を行うことができることから、安定した製品品質を確保しつつ、各工程のタクトタイムを揃えて工程編成率の向上及び生産効率の向上が可能となる。しかも、面取り工程により被削歯車の端面角部の尖鋭部が消去された状態で第1シェービング工程及び第2シェービング工程を行うことができるため、各シェービング工程に要する時間を可及的に短縮させることができ、生産効率の一層の向上と、製品の歯面精度の一層の向上が可能となる。さらに、面取り工程を行うことにより、各シェービング工程での歯面の成形をより安定した精度で行うことができ、製品品質を一層安定させることができる。
第2の特徴:素材を歯切りして被削歯車を得る歯切り工程と、前記歯切り工程の後、前記被削歯車の端面角部を面取りする面取り工程と、前記面取り工程の後、前記被削歯車の歯面を成形する第1シェービング工程と、前記第1シェービング工程の後、前記被削歯車の歯面をさらに成形する第2シェービング工程とを有し、前記面取り工程及び前記第1シェービング工程の合計加工時間が、前記歯切り工程及び前記第2シェービング工程の各加工時間のうち、少なくとも一方よりも短く設定されることを特徴とする。
この方法によれば、歯切り工程、面取り工程、第1シェービング工程及び第2シェービング工程を有し、前記面取り工程及び前記第1シェービング工程の合計加工時間が、比較的時間のかかる歯切り工程及び第2シェービング工程の各加工時間のうち、少なくとも一方よりも短く設定される。これにより、面取り工程後の遊休時間を利用して第1シェービング工程を行うことができ、安定した製品品質を確保しつつ、各工程のタクトタイムを揃えて工程編成率の向上及び生産効率の向上が可能となる。
第3の特徴:前記第2シェービング工程の後、前記被削歯車を加熱する熱処理工程を有することにより、製品歯車の硬度を向上させることができる。
第4の特徴:前記第1シェービング工程は、シェービングカッタを前記被削歯車との噛合位置から切削開始位置まで前進させるアプローチ工程と、前記アプローチ工程の後、前記シェービングカッタを前記切削開始位置から切込完了位置まで前進させながら前記歯面を切削する切削工程と、前記切削工程の後、前記シェービングカッタを前記切込完了位置に保持した状態で回転させる第1スパークアウト工程と、前記第1スパークアウト工程の後、前記シェービングカッタを前記切込完了位置から所定の離脱位置まで後退させるバックムーブメント工程と、前記バックムーブメント工程の後、前記シェービングカッタを前記離脱位置に保持した状態で回転させる第2スパークアウト工程と、前記第2スパークアウト工程の後、前記シェービングカッタを前記噛合位置まで後退させる逆アプローチ工程とを有して構成されると、歯面成形を一層精度よく行うことができる。
第5の特徴:前記被削歯車の加工において重要視する項目に基づき、前記第2シェービング工程のパラメータを変更することにより、生産要求に柔軟に対応した加工が可能となる。
第6の特徴:前記重要視する項目には、前記被削歯車の加工品質と、生産効率とを含むことにより、加工品質(品質精度)と生産効率との重み付けやバランス調整を適切に行うことができる。
第7の特徴:前記パラメータには、少なくとも前記第2シェービング工程の切込量の低減が含まれると、第2シェービング工程での加工精度の向上や刃具寿命の延長が可能となる。
第8の特徴:前記重要視する項目として前記被削歯車の加工品質を選択した場合には、前記第2シェービング工程について、前記切削工程での前記シェービングカッタの切込量を低減し、該切削工程での前記シェービングカッタの送り速度を低速にし、さらに前記第1スパークアウト工程及び前記第2スパークアウト工程でのスパークアウト時間を長くすることが有効である。
第9の特徴:前記重要視する項目として前記生産効率を選択し、該生産効率を刃具寿命を延長することにより向上させる場合には、前記シェービングカッタによる前記第2シェービング工程の切込量のみを低減することが有効である。
第10の特徴:前記重要視する項目として前記生産効率を選択し、該生産効率を加工サイクルタイムを短縮することにより向上させる場合には、律速となっている工程を分解し、空き時間の工程に前記律速となっている工程の一部を行うことが有効である。
第11の特徴:前記律速となっている工程を分解した工程が前記第1シェービング工程及び前記第2シェービング工程であり、該第1シェービング工程を前記面取り工程後の前記空き時間に行うと、面取り工程後の空き時間を有効に利用して第1シェービング工程を行うことができ、工程編成率の向上による生産効率の向上が可能となる。
第12の特徴:前記第1スパークアウト工程では、前記シェービングカッタを正転及び逆転させると、シェービング工程での削り残しを容易に且つ確実になくすことができる。
第13の特徴:前記面取り工程で使用するフレージングカッタと前記第1シェービング工程で使用するシェービングカッタとが、同一の加工装置のターレット機構に設けられ、該ターレット機構の回転により順に前記被削歯車との噛合位置に移動させ、該被削歯車を加工することにより、1台の歯車加工装置で面取り工程と第1シェービング工程とを行うことができ、設備の省スペース化と、面取り工程後の無駄な遊休時間の削減による生産効率の向上とが可能となる。
第14の特徴:第1乃至第6の特徴に記載の歯車加工方法により製造される歯車によれば、高精度で品質の安定した歯車を得ることができる。
以下、本発明に係る歯車加工方法について実施の形態を挙げ、添付の図面を参照しながら詳細に説明する。
本実施の形態に係る歯車加工方法は、ホブによる歯切り工程(粗歯切り工程)を終了した被削歯車に対して、少なくとも端面角部の面取り加工と、歯面のシェービング加工とを行うことで所定の歯車を製造する方法である。この歯車加工方法は、例えば、歯車加工装置10a(図6参照)、10b(図7参照)、10c(図8参照)を用いて行われる。歯車加工装置10a~10cについて、先ず、被削歯車をフレージングカッタで加工する面取り加工部12と、面取り加工がなされた被削歯車をシェービングカッタで加工するシェービング加工部13とから説明する。
図1に示すように、被削歯車14は、例えば、はすば歯車であり、ホブにより素材から粗歯切りされた状態では、左右の端面角部30、31に尖鋭部33がある。そこで、本実施の形態に係る歯車加工方法では、面取り加工部12で端面角部30、31を面取りした後、シェービング加工部13で歯26の歯面28を切削する。
なお、本実施の形態に係る歯車加工方法で加工する被削歯車14は、はすば歯車に限られず、平歯車等であってもよい。被削歯車14は、例えば、車両用変速機の歯車である。面取り加工部12及びシェービング加工部13を用いて当該歯車加工方法により加工をした歯車は高精度であり、静粛性及び耐久性に優れ、車両用変速機に好適である。
図2は、面取り加工部12の一部省略斜視図である。
図2に示すように、面取り加工部12は、被削歯車14を軸支するワーク支持部としての軸J1と、面取り工具であるフレージングカッタ18と、該フレージングカッタ18を軸支するカッタ支持部としての軸J2とを有する。軸J2は図示しない駆動源により回転可能である。軸J1は、被削歯車14がフレージングカッタ18に噛合することにより連れ回りする。
フレージングカッタ18は、厚み方向の一方に面取り用の加工歯32aの一群を有するピースと、他方に面取り用の加工歯32bの一群を有するピースとを備え、これらがボス36に対して固定された、いわゆるスリーピース型の構造である。
軸J2は、軸J1に設けられた被削歯車14に対してフレージングカッタ18を噛合させるように該フレージングカッタ18を軸支する。軸J2は、フレージングカッタ18を被削歯車14に対して0でない軸交差角ψ1をもって噛合させ、且つフレージングカッタ18の加工歯32a、32bが被削歯車14の歯面28に干渉しない角度に設けられている(図3参照)。軸交差角ψ1は、被削歯車14の軸J1とフレージングカッタ18の軸J2とのなす角度である(図3参照)。
図3は、被削歯車14の歯26と、フレージングカッタ18の加工歯32a、32bとの相対的な位置関係を示すものであり、被削歯車14とフレージングカッタ18をそれぞれ周面に沿って展開した模式図である。
図2及び図3に示すように、加工歯32aと加工歯32bは、被削歯車14の厚みに応じて離間しており、フレージングカッタ18及び被削歯車14は噛合しながら回転する。これにより、一方の加工歯32aが一方の端面角部30に対して押圧して尖鋭部33を押しつぶして面取りし、他方の加工歯32bが他方の端面角部31に対して押圧して尖鋭部33を押しつぶして面取りする。
図3から明らかなように、被削歯車14とフレージングカッタ18とは軸交差角ψ1を有し、斜めに交わる。従って、フレージングカッタ18が回転駆動されると、被削歯車14は図3の右方向(矢印A1方向)に回転し、フレージングカッタ18は角度ψ1だけ斜め方向(矢印A2方向)に回転する。
これにより、フレージングカッタ18の加工歯32aは、先ず、図3中の矢印B1で示すように歯26と噛み合いし、端面角部30の略頂部に当接する。続いて、加工歯32aは、図3中の矢印B2で示すように噛み合いして歯26の略中間高さに当接される。その後、加工歯32aは、図3中の矢印B3で示すように噛み合いして歯26の略底部に当接し、端面角部30を全長にわたって面取りして尖鋭部33をなくすことができる。当然、被削歯車14の他方の端面角部31についても、上記の端面角部30の場合と同様に、フレージングカッタ18の加工歯32bによって適切に面取りすることができる。
この際、面取り加工部12では、フレージングカッタ18が軸交差角ψ1をもって被削歯車14に噛み合いすることから、被削歯車14の端面角部30、31に対して押し潰して尖鋭部33を面取りするだけでなく、横移動成分の含まれる面同士の摺動が発生する。これにより、歯面28のうち面取り部に隣接する箇所における余肉の盛り上がりの発生を防止し、又は抑制することができる。この軸交差角ψ1は、例えば、5°~8°の範囲で設定されるとよい。
図4は、シェービング加工部13の一部省略斜視図である。
図4に示すように、シェービング加工部13は、被削歯車14を軸支するワーク支持部としての軸J1と、シェービング工具であるシェービングカッタ20と、該シェービングカッタ20を軸支するカッタ支持部としての軸J3とを有する。軸J3は図示しない駆動源により回転可能である。軸J1は、面取り加工部12のものと同一又は同様であり、被削歯車14がシェービングカッタ20に噛合することにより連れ回りする。
図5は、被削歯車14の歯26と、シェービングカッタ20の加工歯44との相対的な位置関係を示すものであり、被削歯車14とシェービングカッタ20をそれぞれ噛み合いピッチ円筒上で周面に沿って展開した模式図である。
図4及び図5に示すように、シェービングカッタ20の各加工歯44の歯面には、切削刃としての複数のセレーション46が設けられている。セレーション46は、歯幅方向に対して直角で、換言すれば歯底から歯先に向かう方向に延在している。
軸J3は、軸J1に設けられた被削歯車14に対してシェービングカッタ20を噛合させるように該シェービングカッタ20を軸支する。軸J3は、シェービングカッタ20を被削歯車14に対して0でない軸交差角ψ2をもって噛合させる(図5参照)。軸交差角ψ2は、被削歯車14の軸J1とシェービングカッタ20の軸J3とのなす角度であり(図5参照)、上記の軸交差角ψ1(図3参照)と同一角度であっても異なる角度であってもよく、被削歯車14の種類にもよるが、例えば、4°~20°の範囲で設定されるとよい。
シェービングカッタ20が回転駆動されると、シェービングカッタ20は図5の上方向(矢印A3方向)に回転し、被削歯車14は角度ψ2だけ斜め方向(矢印A1方向)に回転する。これにより、シェービングカッタ20の加工歯44と被削歯車14の歯26とは、該歯26の歯すじ方向で相対的にすべり運動をして、歯面28がセレーション46によって切削される。すなわち、加工歯44は、図5中の矢印C1で示すように歯面28に対して横方向に擦れるように当接し、歯26は、図5中の矢印C2で示すように当接し、この結果、歯面28がセレーション46によって所定の精度に成形される。この切削は、歯面28を成形するためのものであり、ホブ等による粗切削とは異なり、仕上げ切削に分類される。
次に、基本的には以上のように構成される面取り加工部12及びシェービング加工部13を有する歯車加工装置10a、10b及び10cについて順に説明する。
図6に示すように、第1例に係る歯車加工装置10aは、複数の被削歯車14の面取り加工及びシェービング加工を同時に行うものであって、被削歯車14を90°毎に間欠回転させる送りテーブル101と、被削歯車14に対してフレージングカッタ18により面取り加工を行う第1ステージ102と、被削歯車14に対して1回目のシェービング加工(以下、第1シェービング加工、又はプリシェービング加工ともいう)を行う第2ステージ104と、被削歯車14に対して2回目のシェービング加工(以下、第2シェービング加工ともいう)を行う第3ステージ106と、被削歯車14の入れ換えを行う搬入搬出ステージ108とを有する。送りテーブル101は、例えば水平回転する。
送りテーブル101は、被削歯車14を軸支可能な4つの回転軸(ワーク支持部)110a、110b、110c及び110dを外周近傍に等間隔(90°)に備え、それぞれが図示しないモータにより回転可能である。4つの回転軸110a~110dは、4つのモータにより独立的に回転してもよいし、1つのモータで駆動力を分配して回転させてもよい。回転軸110a~110dのうち搬入搬出ステージ108にあるものは、被削歯車14の搬入搬出のために停止させ、対応するモータを停止させ又はクラッチを切っておく。
第1ステージ102には、被削歯車14の端面角部30、31の面取り加工を行うための面取り加工部12(図2参照)が設けられている。上記したように、面取り加工部12はフレージングカッタ18を有しており、該フレージングカッタ18を軸交差角ψ1を有して被削歯車14に噛合させる。該フレージングカッタ18は送りテーブル101からみて径方向(切り込み方向)に進退可能であり、被削歯車14の面取り加工をするときには該被削歯車14に噛み合い、送りテーブル101を回転させるときには、外方に退避する。
第2ステージ104には、被削歯車14の歯面28の1回目の加工(第1シェービング加工)を行うためのシェービング加工部13(図4参照)が設けられている。上記したように、シェービング加工部13はシェービングカッタ20を有しており、該シェービングカッタ20を軸交差角ψ2を有して被削歯車14に噛合させる。該シェービングカッタ20は送りテーブル101からみて径方向(切り込み方向)に進退可能であり、被削歯車14の加工をするときには該被削歯車14に噛み合い、送りテーブル101を回転させるときには、外方に退避する。第2ステージ104の第1シェービング加工は、粗仕上げに相当する。
第3ステージ106には、被削歯車14の歯面28の2回目の加工(第2シェービング加工)を行うためのシェービングカッタ20が設けられている。第3ステージ106に設けられるシェービングカッタ20は、第2ステージ104のシェービングカッタ20と同じものであってもよく、精密仕上げに適した異なるものであってもよい。シェービングカッタ20は送りテーブル101からみて径方向(切り込み方向)に進退可能であり、被削歯車14の加工をするときには該被削歯車14に噛み合い、送りテーブル101を回転させるときには、外方に退避する。第3ステージ106の第2シェービング加工は、精密仕上げに相当する。
被削歯車14を軸支する回転軸110a、110b、110c及び110dは垂直となるように構成し、これに対して、第1ステージ102、第2ステージ104及び第3ステージ106の各工具は、軸交差角ψ1(ψ2)を有するように斜めに設けるとよい。この角度は調整可能にするとよい。
第3ステージ106まで加工が終了した被削歯車14は搬入搬出ステージ108に送られ、歯車加工装置10aから取り出されて後工程(例えば、熱処理加工)に送られる。
このように構成される歯車加工装置10aによれば、1台の装置において、第1ステージ102(面取り工程)でフレージングカッタ18による面取り加工を行い、第2ステージ104(第1シェービング工程)及び第3ステージ106(第2シェービング工程)でシェービングカッタ20による歯面28のシェービング加工を行うことができ、効率的である。すなわち、面取り工程とシェービング工程との間で、被削歯車14の装置間搬送が不要であり、しかも面取り工程と各シェービング工程が1台の装置にまとまり省スペースである。
また、ワーク支持部としての回転軸110a~110dが、第1ステージ102、第2ステージ104、第3ステージ106及び搬入搬出ステージ108に応じて設けられる。このため、3つの被削歯車14を第1ステージ102、第2ステージ104及び第3ステージ106により同時に加工をすることができる。
詳細は後述するが、一般にシェービング加工は、フレージングカッタ18による面取り加工よりも時間がかかるが、シェービング加工を第2ステージ104及び第3ステージ106(又は第2工程~第N工程(N≧4))に分けて行うことにより、第1工程である面取り工程のとの時間差を小さくすることができ、該第1工程後の無駄な待ち時間を低減することができる。
歯車加工装置10aでは、搬入搬出ステージ108を除いて3つの加工ステージを有するが、例えば、加工ステージの数を4つにして、第1ステージ102の前にホブ切りの加工ステージ(歯切り工程)を設ける等してもよい。
次に、第2例に係る歯車加工装置10bについて説明する。この歯車加工装置10bの説明では、横手方向をX方向、奥行き方向をY方向、高さ方向をZ方向とする。
図7に示すように、歯車加工装置10bは、ベース台200に設けられた回転テーブル202と、該回転テーブル202上に設けられたワーク支持部204と、駆動盤206と、該駆動盤206に隣接して設けられた工具支持部208とを有する。図7においては、歯車加工装置10bの操作盤、潤滑装置、油圧源及びクーラント等の図示を省略している。
ワーク支持部204は、回転テーブル202上に設けられたXスライドベース210と、該Xスライドベース210に対してX方向にスライドするXスライダ212と、Xスライダ212上で被削歯車14を左右から回転自在に支持するヘッドストック214及びテールストック216と、Y方向奥に設けられ、被削歯車14のばり取りを行うローラカッタユニット220とを有する。Xスライダ212は、Xモータ219の作用下にXスライドベース210の長尺方向(ψ1(ψ2)=0のときはX方向である。以下、簡略的にX方向ともいう。)に移動可能である。
Xスライドベース210にはベース回転モータ222が設けられており、該ベース回転モータ222の作用下に、Xスライドベース210は回転テーブル202に対して水平面内で回転をする。回転テーブル202に対してXスライドベース210が回転をする機構は、例えばウォームホイール機構が用いられる。回転テーブル202にはXスライドベース210の回転量を精密に計測するセンサ(例えばロータリエンコーダ)224が設けられており、該センサ224の信号に基づいてフルクローズド方式のフィードバックを行うことによりXスライドベース210を正確に位置決め制御することができる。つまり、ベース回転モータ222の回転量に基づく間接的なフィードバック(いわゆるセミクローズド制御)ではなく、センサ224によりXスライドベース210の回転量を直接的に検出するので、精密な制御が可能である。
回転テーブル202には、位置決め制御の終了したXスライドベース210を固定する複数(例えば4台)のクランプ226が設けられている。クランプ226は、回転テーブル202の周囲に等間隔に設けられている(図7中では1台のみ示す)。Xスライドベース210の回転は軸交差角ψ1、ψ2に相当し、例えば±20°程度の回転が可能に構成される。基準状態の回転角度0°のときには、ψ1(ψ2)=0°で、被削歯車14の軸がX方向に一致するものとする。
ヘッドストック214は、X方向のサブスライダ230と、該サブスライダ230に対してX方向にスライド可能な軸支持ボックス232と、軸支持ボックス232を駆動するストックモータ234と、被削歯車14の一方の側を支持する支持軸236とを有する。支持軸236は、前記の軸J1に相当する。テールストック216はヘッドストック214に対して基本的に左右対称構成であることから、テールストック216の構成要素と同符号を付して詳細な説明を省略する。ヘッドストック214とテールストック216は、X方向に移動する駆動力が異なり、ヘッドストック214の方が駆動力が大きく設定され、該ヘッドストック214により被削歯車14のX方向位置が規定される。ヘッドストック214及びテールストック216は、被削歯車14の着脱時に接近及び離間をする。ヘッドストック214及びテールストック216には被削歯車14を回転させる駆動源は設けられていない。
ローラカッタユニット220は、X方向に並列した2枚のローラカッタ228と、これらのローラカッタ228を回転自在に支持するローラカッタ支持台240と、Yスライドベース242と、Yモータ244とを有する。Yモータ244は、Yスライドベース242に対してローラカッタ支持台240をXスライドベース210の短尺方向(ψ1(ψ2)=0のときはY方向である。以下、簡略的にY方向ともいう。)に進退させる。2枚のローラカッタ228の間隔は、被削歯車14の歯幅に合うように調整されており、被削歯車14に当ててばりを除去することができる。ローラカッタユニット220にはローラカッタ228を回転させる駆動源は設けられておらず、該ローラカッタ228は被削歯車14に当接して連れ回りしながらばりを除去する。ローラカッタユニット220はスライドベース210に設けられている。
次に、工具支持部208は、Zスライドベース250と、該Zスライドベース250に対してZ方向に昇降する工具支持機構ボックス252と、工具支持機構ボックス252に対して間欠回転するターレット機構254とを有する。
Zスライドベース250は、駆動盤206に隣接して設けられてZ方向に延在しており、工具支持機構ボックス252をZ方向に昇降自在に保持する。Zスライドベース250の上部には、工具支持機構ボックス252を昇降させるZモータ256が設けられている。
工具支持機構ボックス252は、ターレット機構254を60°毎に間欠回転させるインデックスモータ258と、スピンドルモータ260とを備え、相当程度の重量を有する。工具支持機構ボックス252は、さらに図示しない位置決ピン機構及びクラッチ機構を有する。位置決ピン機構により、ターレット機構254を正確に位置決めすることができる。クラッチ機構によりターレット機構254に対する動力伝達を制御することができる。
ターレット機構254は、側面視で六角形であり、インデックスモータ258の作用下にYZ平面内で60°毎の回転をする。ターレット機構254における六角形の各頂部近傍には、順に第1アーム262a、第2アーム262b、第3アーム262c、第4アーム262d、第5アーム262e及び第6アーム262fがそれぞれX方向を指向して設けられている。これらのアーム262a~262fはフレージングカッタ18やシェービングカッタ20等の各種工具が着脱可能となっている。
ターレット機構254は、6つのアーム262a~262fのうち最も下方のものが被削歯車14のちょうど上方に配置されるように構成されている。6つのアーム262a~262fは等間隔(60°)に配置され、被削歯車14に対向するように下方に配置されたいずれか1つのアームに設けられた工具が、所定のクラッチ機構を介してスピンドルモータ260により回転可能である。ターレット機構254には図示しない歯面検出センサが設けられており、該歯面検出センサの信号に基づいて工具を被削歯車14に対して自動的に噛合させることができる。
第1アーム262aは、被削歯車14に対してフレージングカッタ18により面取り加工を行うものであり、ワーク支持部204の支持軸236(軸J1)が、回転テーブル202の旋回によって軸交差角ψ1を有することから、第1アーム262aと支持軸236により面取り加工部12(図2参照)が形成される。
第1アーム262aによる面取り加工をしているときに、Yモータ244の作用下に2枚のローラカッタ228を被削歯車14の両端部に押し当てることにより、該両端部のばりを除去することができる。つまり、ターレット機構254とローラカッタユニット220とは、被削歯車14に対して異なる方向(Z方向とY方向)からそれぞれ接近して、面取り加工とばりとり加工とを同時に行うことが可能であり、加工時間の短縮を図ることができる。ばり取り加工後は、ローラカッタ228を元の位置に戻しておく。
第3アーム262cは、被削歯車14に対して1回目のシェービング加工(第1シェービング加工)をするものであり、第5アーム262eは、被削歯車14に対して2回目のシェービング加工(第2シェービング加工)をするものである。ここで、ワーク支持部204の支持軸236(軸J1)が、回転テーブル202の旋回によって軸交差角ψ2を有することから、第3アーム262c(第5アーム262e)と支持軸236によりシェービング加工部13(図4参照)が形成される。
第2アーム262b、第4アーム262d及び第6アーム262fは予備である。第3アーム262cには、粗仕上げ用のシェービングカッタ20が設けられ、第5アーム262eには精密仕上げ用のシェービングカッタ20が設けられている。これらの粗仕上げ用及び精密仕上げ用のシェービングカッタ20は、同一のものであっても、各工程に適した異なるものであってもよい。
このように、工具を3つ用いる場合には予備を1つおきとすることによりターレット機構254のバランスがよくなる。工具を2つ用いる場合には対向する位置に工具を設け、他を予備とするとよい。
なお、本実施の形態のようにシェービング加工を2工程に分けて実施する場合、粗仕上げを行う第1シェービング工程よりも精密仕上げを行う第2シェービング工程の方が、加工時間が長くなる傾向にある。そこで、詳細は後述するが、例えば、当該歯車加工装置10bを2台並設したシステムを構築し、一方の歯車加工装置10bでは面取り加工(面取り工程)及び第1シェービング加工(第1シェービング工程)を実施し、他方の歯車加工装置10bでは第2シェービング加工(第2シェービング工程)を実施するようにしてもよい。両装置間での被削歯車14の移送は、例えば、図示しないロボット等を用いて行えばよい。当然、面取り工程及び第1シェービング工程を担当する歯車加工装置10bには、フレージングカッタ18及び粗仕上げ用のシェービングカッタ20のみを設け、第2シェービング工程を担当する歯車加工装置10bには、精密仕上げ用のシェービングカッタ20のみを設けてシステムを構築してもよい。
ターレット機構254によれば、その回転により順に第1アーム262a、第3アーム262c及び第5アーム262eがワーク支持部204の被削歯車14と対面する位置に移動し、該被削歯車14を加工することができる。つまり、ターレット機構254の各工具は、Zモータ256の作用下に昇降可能であることから、被削歯車14の面取り加工やシェービング加工をするときには下降して該被削歯車14に噛み合い、ターレット機構254を回転させるときには上昇して退避する。
被削歯車14の加工をするときには、該被削歯車14はターレット機構254の工具が噛合することにより連れ回りで回転する。従って、被削歯車14を回転させる駆動源は不要であり、構成が簡便である。ターレット機構254に接続される各工具は被削歯車14と比較して大きいことから、イナーシャも大きく、必然的にスピンドルモータ260もある程度大型である。このような大きいスピンドルモータ260を用いることにより、工具を介して被削歯車14を加減速する時間を短くすることができる。つまり、被削歯車14はイナーシャが比較的小さいことから、工具に容易に追従して加減速するからであって、加工時間の短縮を図ることができる。
歯車加工装置10bでは、駆動箇所に応じて油圧駆動、空圧駆動及び電動を使い分けている。Xモータ219、ベース回転モータ222、Yモータ244及びZモータ256に係る各軸はNC制御で精密に位置決めされる。
被削歯車14の加工をするときには、工具支持機構ボックス252及びターレット機構254の重量は被削歯車14に加わる。これらの工具支持機構ボックス252及びターレット機構254の重量は相当程度の重量を有しており、Zモータ256が過度に大きい力を発生させなくても(例えば、Zモータ256の電流が0であっても)被削歯車14に対して十分な荷重を効率的に加えることができる。これにより、被削歯車14を適度に押しながらの加工が可能となり、加工時の被削歯車14のぶれや偏心を防止でき、安定した加工をすることができる。
このように構成される歯車加工装置10b(ターレット機構254)によれば、1台の装置において、第1アーム262aでフレージングカッタ18による面取り加工を行い、第3アーム262c及び第5アーム262eでシェービングカッタ20による歯面28のシェービング加工を行うことができ、効率的である。
また、ワーク支持部204は、各アーム262a~262fに対して向きを調整する回転テーブル202に設けられていていることから被削歯車14に応じた適切な軸交差角ψ1(ψ2)を設定することができる。これにより、ターレット機構254の各アーム262a~262fは、ワーク支持部204の軸J1に対して軸交差角ψ1(ψ2)を有する状態になる。つまり、ターレット機構254自体が軸J1に対して相対的に斜めになることから、フレージングカッタ18及びシェービングカッタ20のいずれも被削歯車14に対して容易に軸交差角ψ1(ψ2)をもって噛合させることができる。勿論、軸交差角ψ1と軸交差角ψ2を同一角度に設定する場合には、加工工程毎の個別の角度調整が不要で、より簡便な構成とすることができる。
歯車加工装置10bでは、Xモータ219及びZモータ256の同時協調的動作により、被削歯車14に対して種々の歯面を形成することも可能である。
図8に示すように、第3例に係る歯車加工装置10cは、面取り加工及び第1シェービング加工で使用されるターレット機構254と、前記送りテーブル101(図6参照)と同様な送りテーブル170とを有する。送りテーブル170には、複数(図8では4台)のワーク支持部172が等間隔(90°間隔)で設けられている。
歯車加工装置10cでは、送りテーブル170を回転させ、各ワーク支持部172を移動させて各工程を実施する。すなわち、歯車加工装置10cは、被削歯車14に対し、ターレット機構254により面取り加工及び第1シェービング加工を行う第1ステージ163と、ターレット機構254の次工程側に配置されたシェービングカッタ20を駆動して第2シェービング加工を行う第2ステージ164と、被削歯車14の搬出及び搬入をそれぞれ行う第3ステージ168及び第4ステージ169とを有する。ワーク支持部172は、テーブル170上の傾動機構174の回転により軸交差角ψ1(ψ2)を調整可能にしてもよい。
このような歯車加工装置10cによれば、第1ステージ163で所定の被削歯車14に面取り工程及び第1シェービング工程を連続して行っている間、同時に、第2ステージ164で第1ステージ163を経た他の被削歯車14に第2シェービング工程を行うことができ、その間、第3ステージ168及び第4ステージ169でそれぞれ被削歯車14の搬出及び搬入を行うことができる。すなわち、少なくとも面取り工程と、第1シェービング工程と、第2シェービング工程とを行う本実施の形態に係る歯車加工方法において、最も時間の長い第2シェービング工程を行っている間に、面取り工程及び第1シェービング工程を行うことができる。換言すれば、比較的短時間な面取り工程後の無駄な待ち時間(遊休時間)に第1シェービング工程を行うことができ、しかも、面取り工程及び第1シェービング工程を行っている間に第2シェービング工程を行うことができ、効率的である。
次に、本実施の形態に係る歯車加工方法について説明する。
図9に示すように、本実施の形態に係る歯車加工方法では、先ず、ステップS101において、素材に対してホブ等による歯切りを行う(歯切り工程)。この歯切りは歯面の粗仕上げに相当し、これにより被削歯車14の歯26の概略形状が形成される。
ステップS102において、面取り加工部12による被削歯車14の面取り加工を行う(面取り工程)。上記のように、面取り加工部12ではフレージングカッタ18が被削歯車14に対して軸交差角ψ1を有して噛合して面取りをする。このため、被削歯車14の端面角部30、31に対して押し潰して面取りをするだけでなく、押し潰しによる余肉の盛り上がりの発生を抑制することができ、次工程の第1シェービング工程や第2シェービング工程での切削が容易且つ高精度となる。このステップS102や以降のステップS103、S104は、例えば、歯車加工装置10a~10cを用いて行われる。
ステップS103において、シェービング加工部13による被削歯車14の1回目のシェービング加工(第1シェービング加工)を行う(第1シェービング工程)。上記のように、シェービング加工部13ではシェービングカッタ20が被削歯車14に対して軸交差角ψ2を有して噛合してシェービング加工をし、所定の取代まで歯面を粗仕上げ切削する歯面成形を行う。
図10に示すように、このような第1シェービング工程では、先ず、ステップS111において、シェービングカッタ20を被削歯車14との噛合位置(図11中の点P1及び時点t0参照)を加工原点とし、該シェービングカッタ20を前記噛合位置から切削開始位置(図11中の点P2及び時点t1参照)まで切り込み方向に早送りで前進させるアプローチ工程Aを行う。前記切り込み方向は、例えば、歯車加工装置10aでは送りテーブル101からみて径方向であり、歯車加工装置10bでは、ターレット機構254からみて径方向であり、つまりシェービングカッタ20と被削歯車14とが径方向で互いに近づく方向である。
ステップS112では、シェービングカッタ20を前記切削開始位置から切込完了位置(図11中の点P3及び時点t2参照)まで所定の加工速度で前進させながら歯面28を切削する切削工程Cを行う。この場合の切り込み方向への前進距離(切り込み距離)は、例えば0.06mmとし、切込速度は、例えば0.8mm/minとするとよい。
ステップS113では、シェービングカッタ20の切り込み方向での位置を前記切込完了位置に保持した状態で回転させてスパークアウトをする第1スパークアウト工程T1を行う(図11中の点P3~点P5、及び時点t2~時点t3参照)。この第1スパークアウト工程は、切削を終えたシェービングカッタ20の切り込み方向への送りを停止させ、その停止位置で、該シェービングカッタ20を所定時間回転させる、いわゆるスパークアウトを実施して、当該第1シェービング工程での歯面の削り残しをなくす。
図11に示すように、第1スパークアウト工程T1は、シェービングカッタ20を正方向(前記切削工程Cでの回転方向)に1回転させる第1工程T1a(図11中の点P3~P4参照)と、反対の逆方向に1回転させる第2工程T1b(図11中の点P4~P5参照)とを実施するとよい。勿論、正回転及び逆回転の数は適宜変更可能であり、正回転のみ又は逆回転のみと設定することもできる。
ステップS114では、シェービングカッタ20を前記切込完了位置から所定の離脱位置(図11中の点P6参照、時点t4参照)まで後退させるバックムーブメント工程BMを行う。該バックムーブメント工程BMは、シェービングカッタ20による切削時に発生した被削歯車14の弾性変形を除去する目的である。この場合の離脱方向(切り込み方向と逆方向)への後退速度(離脱距離)は、例えば、0.03mmとし、離脱速度は、例えば、例えば0.8mm/minとするとよい。
ステップS115では、シェービングカッタ20の切り込み方向での位置を前記離脱位置に保持した状態で回転させてスパークアウトをする第2スパークアウト工程T2を行う(図11中の点P6~点P7、及び時点t4~時点t5参照)。この第2スパークアウト工程T2は、上記第1スパークアウト工程T1と略同様であるが、例えば、シェービングカッタ20を前記正方向に2回転させるとよく、当然、その回転数や回転方向は適宜変更可能である。
ステップS116では、シェービングカッタ20を前記離脱位置から前記噛合位置まで早戻しで後退させる逆アプローチ工程Rを行う(図11中の点P7~P8、及び時点t5~t6参照)。以上によって、第1シェービング工程(図9のステップS103参照)が完了する。
次に、図9のステップS104において、シェービング加工部13による被削歯車14の2回目のシェービング加工(第2シェービング加工)を行う(第2シェービング工程)。この第2シェービング工程についても、図10及び図11に示す第1シェービング工程と略同様なシェービング加工を行うとよい。この場合、例えば、前記切削工程Cでの切込速度を第1シェービング工程の場合よりもやや遅い、0.6~0.8mm/minとするとよい。また、第1スパークアウト工程T1では、第1工程T1aで正回転を3回、第2工程T1bで逆回転を3回とし、第2スパークアウト工程T2では、正回転を3回とするとよい。当該第2シェービング工程は、精密仕上げに相当するため、切込速度やスパークアウトに関する設定を上記のように変更することで、一層精密な成形と削り残しの回避とを実現する。
ステップS105において、被削歯車14の熱処理による浸炭及び焼入を行う(熱処理工程)。これにより被削歯車14は硬度が高くなる。
ステップS106において、被削歯車14の歯車研削加工を行う(歯車研削工程)。歯車研削加工は、被削歯車14に対して螺旋条を有する砥石(図示せず)を噛合させながら同期回転させ、歯26の歯面28を仕上げる加工である。この時点では、熱処理によって被削歯車14は相当に硬くなっているが、面取り工程において面取りがなされるとともに盛り上がり部の発生が抑制されていることから、砥石に過度な負荷がかかることがない。
ステップS107において、被削歯車14のギアホーニング加工を行う(ホーニング工程)。ギアホーニング加工は、内歯砥石(図示せず)に対して被削歯車14を噛合させながら回転をして、歯26の歯面28をさらに高精度に仕上げる加工である。
なお、熱処理後の歯面仕上げ工程は、歯車研削加工及びギアホーニング加工に限られず、例えば、仕上げホブ工程及びリーマ工程等で、歯面を仕上げることのできる工程のうちのいずれか1つ以上を条件に応じて選択すればよい。また上記実施の形態では、明記した工程以外にも、必要に応じて端面切削工程、内径ホーニング工程等を行ってもよいことは勿論である。
上記ステップS105~S107での各工程は、製品である加工後の被削歯車14の要求品質や種類等によっては、省略することもできる。本実施の形態に係る歯車加工方法では、面取り工程(ステップS102)、第1シェービング工程(ステップS103)及び第2シェービング工程(ステップS104)を行うことにより、ステップS105~S107での各工程を除いた場合でも、製品歯車の要求精度等によっては十分な精度を持つ歯車を製造することができるからである。
これに対して、上記従来技術に係る加工方法では、面取り工程を持たないため、シェービング工程を受ける被削歯車の端面角部に尖鋭部やばり等が残っている可能性がある。このため、第1及び第2シェービング工程に長い時間が必要となり生産効率の低下を招き、さらには、第2シェービング工程の後、所定の熱処理工程やギアホーニング加工等が必須となる。また、シェービングカッタに前記尖鋭部やばり等による破損を生じる可能性もある。
次に、本実施の形態に係る歯車加工方法において、仮に、シェービング加工を1工程のみで行うものとした場合と、上記のように2工程に分けて行う場合の各加工ラインについて、図12~図14を参照して比較説明する。
図12に例示される加工ライン(以下、「比較ライン」と呼ぶ)では、シェービング加工が1工程のみ行われ、例えば、歯切り工程に40秒、面取り工程に20秒、シェービング工程に45秒の加工時間(タクトタイム)が必要となる。
この比較ラインでは、面取り工程とシェービング工程とのタクトタイム差の25秒間、面取り工程を受けた被削歯車は、無駄な待ち時間である遊休時間taを強いられる。従って、各工程のタクトタイムの合計時間を、全ての工程が最もタクトタイムが長い工程で行われると仮定した場合の合計時間で除し、百分率で表した工程編成率(%)は、(40+20+45)/(45×3)×100=約78%となる。このため、図12に示す比較ラインで工程編成率を向上させるためには、例えば、遊休時間taを解消すべく、面取り工程用の装置台数を増やす等の対応が必要となり、コストの増加や設備スペースの増大を惹起する。
さらに、この比較ラインにおいて、シェービング工程での刃具寿命(シェービングカッタの寿命)の延長や、被削歯車の品質精度の向上(加工品質の安定・向上)を達成するためには、生産性を低下させて、つまりラインタクトを落として生産量を下げて対応する必要があり、そうすると、生産効率の低下や、コストや操業時間への影響が出ることになる。
そこで、本実施の形態に係る歯車加工方法では、図13及び図14に示すように、シェービング工程を第1シェービング工程と第2シェービング工程とに分解することで、被削歯車14の品質精度の向上と、生産効率の向上とを両立しつつ、状況に応じて品質精度と生産効率とに対する重み付けを調整し、バランスよく設定することができる。つまり、第1シェービング工程と第2シェービング工程を同一加工ラインで実施することにより、状況に応じて品質を安定させることを重視するか、又は生産効率を向上させることを重視するかを選択する。
図13に例示される本実施の形態に係る歯車加工方法を適用した加工ライン(以下、「第1加工ライン」と呼ぶ)では、例えば、歯切り工程に40秒、面取り工程に20秒、第1シェービング工程に20秒、第2シェービング工程に40秒の加工時間を要する。ところが、図13から明らかなように、シェービング工程を2つに分けたことにより、第2シェービング工程は図12の比較ラインでのシェービング工程に比べて加工時間tbを短縮することができ、各工程のタクトタイムを40秒以下に抑えることができる。
このようにシェービング工程を2つに分けることで、両工程の加工パターンを最適化して被削歯車緒元に合わせた品質精度向上や刃具寿命向上を図ったり、サイクルタイムを調整して工程編成率を揃えたりすることを適切に行うことができる。
そこで、次に、図13の第1加工ラインにおいて重要視する項目として、品質精度向上と、生産効率の向上(刃具寿命向上・サイクルタイム調整による工程編成率向上)とを選択的に又はバランスよく実行するために、シェービング工程の各種パラメータ(加工取代バランスや切込速度、スパークアウト時間等)を変更・最適化することで、歯車加工での生産要求を達成する方法について説明する。
第1に、重要視する項目として品質精度の向上(加工品質を向上・安定)を選択した場合には、第2シェービング工程(図9のステップS104)において、切削工程C(図10のステップS112)での切込量(加工取代)を低減し、且つ切込速度を低速にし、さらに第1及び第2スパークアウト工程T1、T2(図10のステップS113、S115)の時間(スパークアウト時間)を長く設定する。
すなわち、図11中に破線グラフで例示されるように、品質精度及び生産効率をバランスよく設定した標準的設定の実線グラフに対し、切削工程Cを、点P2~点P3´で示す切削工程C´とすることで、第2シェービング工程での切込量の低減と切込速度の低速化を実施する。また、第1スパークアウト工程T1を、点P3´~点P4´~点P5´で示す第1スパークアウト工程T1´(第1工程T1a´、第2工程T1b´)とすることで、第1スパークアウト工程の時間を長くする。さらに、第2スパークアウト工程T2を、点P6´~点P7´で示す第2スパークアウト工程T2´とすることで、第2スパークアウト工程の時間を長くした後、点7´~点P8´で示す逆アプローチ工程Rを実行する。
当該第2シェービング工程は、精密仕上げに相当するため、切込量や切込速度、スパークアウトに関する設定を上記のように変更することで、一層精密な成形と削り残しの回避とを実現し、歯車加工の品質精度を向上することができる。勿論、このような第2シェービング工程のパラメータ変更に伴い、第1シェービング工程でも同様にパラメータを変更して、切込量の増大等を行い、加工ライン全体としての調整やバランスを図ってもよい。
上記のように、切削工程での切込量を低減し、切込速度を低速にし、さらに第1及び第2スパークアウト工程を長く設定することにより、被削歯車14の精密仕上げとなる第2シェービング工程での加工精度を一層向上させ、且つ一層均質化させることができるため、歯車の品質精度の向上(加工精度の安定・向上)安定が可能となる。
第2に、生産効率の向上を重要視する場合には、刃具寿命を延長することにより、刃具新作費用の抑制等によるコスト低減を行って生産効率を向上させる方法と、ラインタクトを短縮することにより工程編成率を高めることで生産効率を向上させる方法とがある。
先ず、重要視する項目として生産効率の向上を選択し、該生産効率を刃具寿命を延長することにより向上させる場合には、上記した品質精度を向上させる場合と略同様のパラメータ設定を行えばよいが、特に、第2シェービング工程での切込量をさらに低減する。すなわち、図12中の点P2~点P3´´で示す切削工程C´´とすることで、第2シェービング工程での切込量をさらに低減し、これにより刃具であるシェービングカッタ20の負担を低減して寿命を延長し、結果として歯車加工に要するコストを低減し、生産効率を向上させることができる。
次に、重要視する項目として生産効率の向上を選択し、該生産効率をサイクルタイム(加工時間)の短縮による工程編成率の向上によって向上させる場合には、図13に示す第1加工ラインを図14に示す加工ライン(以下、「第2加工ライン」と呼ぶ)に変更して実行する。
図14に示すように、第2加工ラインでは、各工程に要する加工時間は、第1加工ライン(図13参照)と同様であるが、面取り工程後の遊休時間ta(図12参照)を利用して第1シェービング工程を行うことにより、実質的に各工程のタクトタイムを40秒で揃えることができる。すなわち、歯切り工程に40秒、面取り工程及び第1シェービング工程に合計40秒、第2シェービング工程に40秒の加工時間をかけるように構成することで、サイクルタイムを最適化し、ラインタクトを大幅に短縮することができ、理想条件では工程編成率を100%として、生産効率を大幅に向上させることができる。この第2加工ラインによる工程は、図6~図8に示される歯車加工装置10a~10bのように、面取り工程とシェービング工程との複合工程が可能な装置(設備)を用いる場合に特に有効であり、つまり、面取り工程での空き時間で第1シェービング工程を行い、その加工取代分で第2シェービング工程のタクトタイムを低減し、ライン全体の工程編成率を合わせて生産効率を向上させることができる。しかも、面取り工程用の装置台数を増やす等が不要であり、コストの低減や設備の省スペース化を図ることができる。
このように、重要視する項目として生産効率の向上を選択し、該生産効率をサイクルタイム(加工時間)の短縮による工程編成率の向上によって向上させる場合には、シェービング加工を1工程のみで行う比較ライン(図12参照)で律速工程となっている工程、つまりシェービング工程を第1シェービング工程及び第2シェービング工程に分解し、空き時間のある面取り工程後に連続して分解した工程の一部(第1シェービング工程)を行う(図14参照)。これにより、空き時間のある面取り工程後に、第1シェービング工程を行って加工取代を稼ぐことができ、全体としての加工時間を削減すると共に、ライン全体の工程編成率を揃えて生産効率を向上させることができる。
以上のように、本実施の形態に係る歯車加工方法では、比較的時間のかかる歯切り工程及び第2シェービング工程の各加工時間の少なくとも一方よりも、面取り工程及び第1シェービング工程の合計加工時間を短く設定する。換言すれば、第1シェービング工程の加工時間を適宜調整し、第2シェービング工程の加工時間が、面取り工程及び第1シェービング工程の合計加工時間と同一時間以上を要するように設定する。そうすると、全体としての工程編成率を可及的に100%に近づけることができる。また、同一の加工ライン上で被削歯車の各工程を行うことができるため、製品品質を安定させることができる。
この場合、被削歯車14の加工において重要視する項目として、品質精度向上又は生産効率の向上(刃具寿命向上・サイクルタイム調整による工程編成率向上)を選択・調整し、これに応じてシェービング工程でのパラメータを変更することにより、上記のようにして生産要求を達成することができる。
また、第2シェービング工程の前に第1シェービング工程で歯面の粗仕上げを行い、歯面を所定の取代で切削しておくことができることから、精密仕上げを担当する第2シェービング工程は時間的に余裕を持つことができ、切削工程(図10及び図11参照)でのシェービングカッタ20の送り速度を緩やかにして、歯面の切削精度を向上させることができる。当然、第1及び第2シェービング工程で用いるシェービングカッタを各工程に最適化したものとすると、一層の精度向上や生産性の向上が可能となる。これにより、熱処理後の歯面仕上げ工程である歯車研削加工やギアホーニング加工における加工精度も向上させることができると共に、当該歯車研削加工やギアホーニング加工に用いる工具の負荷を減らしてその寿命を長くすることができる。
さらに、本実施の形態では、第1シェービング工程の前工程として面取り工程を行うため、当該面取り工程により被削歯車の端面角部の尖鋭部が消去された状態で第1シェービング工程及び第2シェービング工程を行うことができる。このため、各シェービング工程に要する時間を可及的に短縮させることができ、生産効率の一層の向上と、製品の歯面精度の一層の向上が可能となる。さらに、面取り工程を行うことにより、各シェービング工程での歯面の成形をより安定した精度で行うことができ、製品品質を一層安定させることができる。
本発明は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成乃至工程を採り得ることはもちろんである。
Claims (14)
- 素材から歯切りされた被削歯車(14)の端面角部(30、31)を面取りする面取り工程と、
前記面取り工程の後、前記被削歯車(30、31)の歯面(28)を成形する第1シェービング工程と、
前記第1シェービング工程の後、前記面取り工程及び前記第1シェービング工程の合計加工時間と同一時間以上を要して、前記被削歯車(14)の歯面をさらに成形する第2シェービング工程と、
を有することを特徴とする歯車加工方法。 - 素材を歯切りして被削歯車(14)を得る歯切り工程と、
前記歯切り工程の後、前記被削歯車(14)の端面角部(30、31)を面取りする面取り工程と、
前記面取り工程の後、前記被削歯車(14)の歯面(28)を成形する第1シェービング工程と、
前記第1シェービング工程の後、前記被削歯車(14)の歯面(28)をさらに成形する第2シェービング工程と、
を有し、
前記面取り工程及び前記第1シェービング工程の合計加工時間が、前記歯切り工程及び前記第2シェービング工程の各加工時間のうち、少なくとも一方よりも短く設定されることを特徴とする歯車加工方法。 - 請求項1又は2記載の歯車加工方法において、
前記第2シェービング工程の後、前記被削歯車(14)を加熱する熱処理工程を有することを特徴とする歯車加工方法。 - 請求項1~3のいずれか1項に記載の歯車加工方法において、
前記第1シェービング工程及び前記第2シェービング工程は、シェービングカッタ(20)を前記被削歯車(14)との噛合位置から切削開始位置まで前進させるアプローチ工程と、
前記アプローチ工程の後、前記シェービングカッタ(20)を前記切削開始位置から切込完了位置まで前進させながら前記歯面を切削する切削工程と、
前記切削工程の後、前記シェービングカッタ(20)を前記切込完了位置に保持した状態で回転させる第1スパークアウト工程と、
前記第1スパークアウト工程の後、前記シェービングカッタ(20)を前記切込完了位置から所定の離脱位置まで後退させるバックムーブメント工程と、
前記バックムーブメント工程の後、前記シェービングカッタ(20)を前記離脱位置に保持した状態で回転させる第2スパークアウト工程と、
前記第2スパークアウト工程の後、前記シェービングカッタ(20)を前記噛合位置まで後退させる逆アプローチ工程と、
を有することを特徴とする歯車加工方法。 - 請求項4記載の歯車加工方法において、
前記被削歯車(14)の加工において重要視する項目に基づき、前記第2シェービング工程のパラメータを変更することを特徴とする歯車加工方法。 - 請求項5記載の歯車加工方法において、
前記重要視する項目には、前記被削歯車(14)の加工品質と、生産効率とを含むことを特徴とする歯車加工方法。 - 請求項6記載の歯車加工方法において、
前記パラメータには、少なくとも前記第2シェービング工程の切込量の低減が含まれることを特徴とする歯車加工方法。 - 請求項7記載の歯車加工方法において、
前記重要視する項目として前記被削歯車(14)の加工品質を選択した場合には、前記第2シェービング工程について、前記切削工程での前記シェービングカッタ(20)の切込量を低減し、該切削工程での前記シェービングカッタ(20)の送り速度を低速にし、さらに前記第1スパークアウト工程及び前記第2スパークアウト工程でのスパークアウト時間を長くすることを特徴とする歯車加工方法。 - 請求項7記載の歯車加工方法において、
前記重要視する項目として前記生産効率を選択し、該生産効率を刃具寿命を延長することにより向上させる場合には、前記シェービングカッタ(20)による前記第2シェービング工程の切込量のみを低減することを特徴とする歯車加工方法。 - 請求項7記載の歯車加工方法において、
前記重要視する項目として前記生産効率を選択し、該生産効率を加工サイクルタイムを短縮することにより向上させる場合には、律速となっている工程を分解し、空き時間の工程に前記律速となっている工程の一部を行うことを特徴とする歯車加工方法。 - 請求項10記載の歯車加工方法において、
前記律速となっている工程を分解した工程が前記第1シェービング工程及び前記第2シェービング工程であり、該第1シェービング工程を前記面取り工程後の前記空き時間に行うことを特徴とする歯車加工方法。 - 請求項4~11のいずれか1項に記載の歯車加工方法において、
前記第1スパークアウト工程では、前記シェービングカッタ(20)を正転及び逆転させることを特徴とする歯車加工方法。 - 請求項1~12のいずれか1項に記載の歯車加工方法において、
前記面取り工程で使用するフレージングカッタ(18)と前記第1シェービング工程で使用するシェービングカッタ(20)とが、同一の加工装置(10b)のターレット機構(254)に設けられ、該ターレット機構(254)の回転により順に前記被削歯車(14)との噛合位置に移動させ、該被削歯車(14)を加工することを特徴とする歯車加工方法。 - 請求項1~13のいずれか1項に記載の歯車加工方法により製造されたことを特徴とする歯車。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009548514A JPWO2010092711A1 (ja) | 2009-02-12 | 2009-10-23 | 歯車加工方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009029701 | 2009-02-12 | ||
JP2009-029701 | 2009-02-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010092711A1 true WO2010092711A1 (ja) | 2010-08-19 |
Family
ID=42561560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/068251 WO2010092711A1 (ja) | 2009-02-12 | 2009-10-23 | 歯車加工方法及び該歯車加工方法で製造される歯車 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2010092711A1 (ja) |
WO (1) | WO2010092711A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014030875A (ja) * | 2012-08-02 | 2014-02-20 | Kanzaki Kokyukoki Mfg Co Ltd | 歯車加工装置 |
JP2021098247A (ja) * | 2019-12-20 | 2021-07-01 | マツダ株式会社 | 歯車のシェービング加工方法及びシェービング加工装置 |
JP7003315B1 (ja) | 2021-06-10 | 2022-01-20 | 豊精密工業株式会社 | 歯車製造装置及び歯車製造方法 |
JP2022522136A (ja) * | 2019-02-26 | 2022-04-14 | カップ ニレス ゲーエムベーハー アンド カンパニー ケージー | 研削盤またはつや出し盤で歯車または歯車に似たプロファイルを伴う工作物を研削またはつや出しするための方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01257512A (ja) * | 1988-04-06 | 1989-10-13 | Nachi Fujikoshi Corp | プランジカットシェービング加工法 |
JPH04365512A (ja) * | 1991-06-13 | 1992-12-17 | Honda Motor Co Ltd | 歯車のシェービング方法 |
WO2009017248A2 (en) * | 2007-08-02 | 2009-02-05 | Honda Motor Co., Ltd. | Gear machining apparatus and machining method |
-
2009
- 2009-10-23 WO PCT/JP2009/068251 patent/WO2010092711A1/ja active Application Filing
- 2009-10-23 JP JP2009548514A patent/JPWO2010092711A1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01257512A (ja) * | 1988-04-06 | 1989-10-13 | Nachi Fujikoshi Corp | プランジカットシェービング加工法 |
JPH04365512A (ja) * | 1991-06-13 | 1992-12-17 | Honda Motor Co Ltd | 歯車のシェービング方法 |
WO2009017248A2 (en) * | 2007-08-02 | 2009-02-05 | Honda Motor Co., Ltd. | Gear machining apparatus and machining method |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014030875A (ja) * | 2012-08-02 | 2014-02-20 | Kanzaki Kokyukoki Mfg Co Ltd | 歯車加工装置 |
JP2022522136A (ja) * | 2019-02-26 | 2022-04-14 | カップ ニレス ゲーエムベーハー アンド カンパニー ケージー | 研削盤またはつや出し盤で歯車または歯車に似たプロファイルを伴う工作物を研削またはつや出しするための方法 |
JP7474776B2 (ja) | 2019-02-26 | 2024-04-25 | カップ ニレス ゲーエムベーハー アンド カンパニー ケージー | 研削盤またはつや出し盤で歯車または歯車に似たプロファイルを伴う工作物を研削またはつや出しするための方法 |
JP2021098247A (ja) * | 2019-12-20 | 2021-07-01 | マツダ株式会社 | 歯車のシェービング加工方法及びシェービング加工装置 |
JP7375524B2 (ja) | 2019-12-20 | 2023-11-08 | マツダ株式会社 | 歯車のシェービング加工方法及びシェービング加工装置 |
JP7003315B1 (ja) | 2021-06-10 | 2022-01-20 | 豊精密工業株式会社 | 歯車製造装置及び歯車製造方法 |
WO2022259587A1 (ja) * | 2021-06-10 | 2022-12-15 | 株式会社ジェイテクトギヤシステム | 歯車製造装置、歯車製造方法、及びそれに用いられるねじ状工具 |
JPWO2022259587A1 (ja) * | 2021-06-10 | 2022-12-15 | ||
JP2022188979A (ja) * | 2021-06-10 | 2022-12-22 | 株式会社ジェイテクトギヤシステム | 歯車製造装置及び歯車製造方法 |
JP7304487B2 (ja) | 2021-06-10 | 2023-07-06 | 株式会社ジェイテクトギヤシステム | 歯車製造装置、歯車製造方法、及びそれに用いられるねじ状工具 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010092711A1 (ja) | 2012-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6757949B2 (en) | Combination gear hobber, chamfer/debur and shaver apparatus and method | |
JP5988872B2 (ja) | 歯車の面取りおよび(または)バリ取りをする装置 | |
US8596939B2 (en) | Apparatus and method for cutting teeth in workpieces and associated tool set | |
CN106715018B (zh) | 加工啮合齿的方法、加工工具以及机床 | |
US20140294530A1 (en) | Apparatus and method for chamfering a workpiece | |
US20060174464A1 (en) | Multiple operation gear manufacturing apparatus with common work axis | |
US11358233B2 (en) | Method for generating a toothed workpiece and control program, tools and tooth-cutting machine suitable therefor | |
KR20100047244A (ko) | 기어 가공 장치 및 가공 방법 | |
CN106573320B (zh) | 用于精加工硬齿面齿轮的方法 | |
CN108994552B (zh) | 齿轮加工方法以及齿轮加工装置 | |
CN109070249A (zh) | 用于在齿端边缘上产生材料移除的方法以及为此设计的装置 | |
EP1666200A1 (en) | Workpiece grinding method | |
JP4604122B2 (ja) | 再研磨方法 | |
WO2010092711A1 (ja) | 歯車加工方法及び該歯車加工方法で製造される歯車 | |
JP2007268664A (ja) | 工作物の研削方法及び研削装置 | |
JP2005096070A (ja) | まがりばかさ歯車用の創成方法及び機械 | |
JP4182137B1 (ja) | 歯車加工方法 | |
US20090060672A1 (en) | Multiple Operation Gear Manufacturing Apparatus With Common Work Axis | |
JP4538074B2 (ja) | 歯車加工方法 | |
JP4542189B2 (ja) | 歯車加工方法 | |
CN101780640A (zh) | 一种机械零件的加工方法及其设备 | |
JP4182138B1 (ja) | 歯車加工装置 | |
JP2009034785A (ja) | 歯車加工方法 | |
JP2009034787A (ja) | 歯車加工装置 | |
JPH06226531A (ja) | 歯車加工装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2009548514 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09840030 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09840030 Country of ref document: EP Kind code of ref document: A1 |