WO2010091547A1 - 分配非连续频域资源的方法及基站 - Google Patents

分配非连续频域资源的方法及基站 Download PDF

Info

Publication number
WO2010091547A1
WO2010091547A1 PCT/CN2009/070396 CN2009070396W WO2010091547A1 WO 2010091547 A1 WO2010091547 A1 WO 2010091547A1 CN 2009070396 W CN2009070396 W CN 2009070396W WO 2010091547 A1 WO2010091547 A1 WO 2010091547A1
Authority
WO
WIPO (PCT)
Prior art keywords
chunk
chunks
contiguous
constraint
allocated
Prior art date
Application number
PCT/CN2009/070396
Other languages
English (en)
French (fr)
Inventor
李超君
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2009/070396 priority Critical patent/WO2010091547A1/zh
Publication of WO2010091547A1 publication Critical patent/WO2010091547A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0041Frequency-non-contiguous
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to wireless communication technologies, and more particularly to techniques for allocating non-contiguous frequency domain resources.
  • LTE-A Long Term Evolution Advanced
  • Rel-8 Release 8
  • LTE-A uplink introduces discontinuous frequency domain resource allocation (RA, Resource).
  • RA discontinuous frequency domain resource allocation
  • the multiple access method is non-contiguous based on discrete Fourier transform-based orthogonal frequency division multiplexing (DFT-s-OFDMA, Discrete Fourier Transform- Spread-Orthogonal Frequency Division) Multiple Access), also known as CL-DFT-S-OFDMA.
  • DFT-s-OFDMA discrete Fourier transform-based orthogonal frequency division multiplexing
  • CL-DFT-S-OFDMA discrete Fourier transform-based orthogonal frequency division multiplexing
  • LTE Rel-8 considers the efficiency of power amplifier (PA), that is, the lower the value of Cubic Metric (CM), the higher the power that can be transmitted, which is beneficial to the coverage of cell edge users, so it only supports continuous Frequency domain resource allocation, the multiple access mode is continuous DFT-s-OFDMA, that is, SC-FDMA.
  • PA power amplifier
  • CM Cubic Metric
  • PUSCH Physical Uplink Shared Channel
  • PC Power Control
  • the corpse H ⁇ , 10 log 10 ( PUSCH ()) + corpse 0 - p ⁇ C + a (j) ⁇ PL + ⁇ ⁇ () + / () ⁇ [dBm]
  • Vx is the user
  • M PUSCH (0 is the number of RBs allocated by the PUSCH .
  • - PUSCH is a configurable parameter, composed of cell-specific and UE-specific factors
  • P is the path loss, "for the path loss compensation factor, cell level configuration.
  • a TF (0 and / () is the closed-loop PC adjustment.
  • the PDCCH (Physical Downlink Control Channel) of LTE Rel-8 may transmit four types of information, namely: scheduling information of downlink data transmission, scheduling information of uplink data transmission, uplink power control command, and some broadcast signaling.
  • the downlink control information (DCI, Downlink Control Information) format includes Format 0, Format 1, Format 1 A, Format IB, Format 1C, Format ID, Format 2, Format 2A, Format 3, Format 3A.
  • the DCI format 0 indicates the scheduling information of the PUSCH (UL scheduling Grant), and the continuous frequency domain resource indication mode is adopted.
  • the downlink frequency domain resource allocation types of LTE Rel-8 are RAtypeO, RAtypel, and RAtype2.
  • the RAType O is a resource block group (RBGs) that are allocated by the scheduled UEs by using a bit map.
  • RBG resource block group
  • RA type 1 is divided into P resource block group subsets according to the system bandwidth. As shown in Table 1, each subset is composed of several RBGs in RA type 0, so "log 2 (P) is required.
  • the signaling of the bit indicates which resource block group is scheduled by the UE, and the lbit indicates whether the starting position of the frequency domain resource allocation in the subset of the resource block group is offset.
  • the resource allocation signaling indicates the starting virtual resource block (VRB) serial number and the continuously allocated VRB number information.
  • the base station within each uplink component carrier, the base station (eNodeB) can schedule multiple non- A continuous chunk is given to a UE.
  • the schemes of the downlink RA type O and the RA type 1 in the foregoing prior art may be adopted. Therefore, the number of RBs included in each chunk may be not limited as long as the minimum granularity of resource allocation is met.
  • the inventors of the present invention have found in the process of implementing the present invention that if the allocation of discontinuous frequency domain resources based on DFT-S-OFDMA is performed according to the scheme in the prior art, the range of variation of the CM value will be relatively large, and It is difficult to find a stable law to measure the change in CM value. If the range of CM changes is large and irregular, it will lead to instability of power control.
  • Embodiments of the present invention provide a method and a base station for allocating a discontinuous frequency domain resource based on DFT-S-OFDMA, which are used to converge a range of variation of a CM value, thereby stabilizing power control.
  • An embodiment of the present invention provides a method for allocating a discontinuous frequency domain resource based on DFT-S-OFDMA, including: according to a set of the number of non-contiguous chunks allowed to be allocated, and a preset number of non-contiguous chunks and a chunk containing a correspondence between the constraints of the number of RBs, determining a constraint condition of the number of RBs included in the chunk corresponding to the set of the number of non-contiguous chunks allowed to be allocated; and a constraint condition according to the number of RBs included in the determined chunk And the channel resources that the UE can be scheduled to allocate non-contiguous chunks.
  • An embodiment of the present invention provides a base station, including: a constraint determining unit, configured to use, according to a set of the number of non-contiguous chunks that are allowed to be allocated, and a pre-set number of non-contiguous chunks and a constraint of the number of RBs included in the chunk Corresponding relationship, determining a constraint condition of the number of RBs included in the chunk corresponding to the set of the number of non-contiguous chunks allowed to be allocated; an allocating unit, and a constraint condition for the number of RBs included in the chunk determined by the constraint determining unit And the channel resources that the UE can be scheduled to allocate non-contiguous chunks.
  • a constraint determining unit configured to use, according to a set of the number of non-contiguous chunks that are allowed to be allocated, and a pre-set number of non-contiguous chunks and a constraint of the number of RBs included in the chunk Corresponding relationship, determining a constraint condition
  • the embodiment of the present invention considers the influence of the number of non-contiguous chunks and the number of RBs containing RBs on the CM value, and constrains the allocation of non-contiguous chunks, which not only converges the CM value, but also facilitates power control and scheduling. System performance is stable and edge coverage is improved.
  • the embodiment of the present invention does not limit the frequency domain location where the chunk is located, so the frequency domain resource allocation is flexible.
  • FIG. 1 is a flowchart of a method for allocating DFT-S-OFDMA-based discontinuous frequency domain resources according to an embodiment of the present invention
  • FIG. 2 is a flowchart of another method for allocating DFT-S-OFDMA-based discontinuous frequency domain resources according to an embodiment of the present invention
  • FIG. 1 is a flowchart of a method for allocating DFT-S-OFDMA-based discontinuous frequency domain resources according to an embodiment of the present invention
  • FIG. 2 is a flowchart of another method for allocating DFT-S-OFDMA-based discontinuous frequency domain resources according to an embodiment of the present invention
  • FIG. 1 is a flowchart of a method for allocating DFT-S-OFDMA-based discontinuous frequency domain resources according to an embodiment of the present invention
  • FIG. 2 is a flowchart of another method for allocating DFT-S-OFDMA-based discontinuous frequency domain resources according to an embodiment of the present invention
  • FIG. 1 is a flowchart of
  • FIG. 3 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • An embodiment of the present invention provides a method for allocating a non-contiguous frequency domain resource, including: in an evolved system, such as an LTE-A system, allocation of a non-contiguous chunk based on a multiple access mode such as DFT-S-OFDMA A limit is imposed to converge the range of CM values.
  • an evolved system such as an LTE-A system
  • allocation of a non-contiguous chunk based on a multiple access mode such as DFT-S-OFDMA
  • a multiple access mode such as DFT-S-OFDMA
  • the number of non-contiguous chunks allowed is divided into N levels, each level corresponding to a different maximum transmit power ( ⁇ ⁇ straight.
  • the level should As little as possible, to avoid the complexity of the power control process, of course, the number of levels and requirements can be designed by the person skilled in the art according to actual needs. Assume that three levels are set, and the specific settings of each level are as follows:
  • N chunks ⁇ , that is, the number of non-contiguous chunks is 1, which is essentially continuous frequency domain resource allocation, and its maximum transmit power is
  • the second level that is, the number of non-contiguous chunks can be either 2 or 3, and the maximum transmit power is
  • the third level N chunks ⁇ 4, that is, the number of non-contiguous chunks is not less than 4, and the maximum transmit power is ⁇ X.
  • the number of non-contiguous chunks corresponding to each level can be designed by a person skilled in the art according to actual needs. For example, for the second level, you can design ⁇ ⁇ ⁇ 2,3,4 ⁇ , and for the third level, N chunks ⁇ 5. It should also be noted that, due to the larger number of non-contiguous chunks, the larger the CM value, the smaller the maximum transmit power value, so ⁇ >> .
  • ⁇ [ ⁇ ] and ⁇ [ ⁇ ] represent a mathematical relationship, which can be a linear function, an exponential function, or a logarithmic function, etc.
  • the essence of this constraint is that The ratio of the maximum number of RBs contained in the chunk to the minimum number of RBs contained in the chunk in a mathematical relationship cannot exceed a certain threshold. It is assumed that three levels are set, and ⁇ [ ⁇ ] and ⁇ [ ⁇ ] are assumed.
  • N chunks
  • the chunk size is not subject to any restrictions, that is, the above C is positive infinity, which is the constraint A special case
  • the second level N ⁇ din fa e ⁇ 2,3 ⁇ , ⁇ ""4 ⁇ 2, ie, the maximum RB ⁇ U allowed by the chunk
  • the ratio of the number to the minimum number of RBs contained in the chunk cannot exceed 2; the third level: N chunks > 4, the chunk size is not subject to any restrictions, that is, C above is positive infinity, which is a special case of constraints.
  • the above method includes: S101: determining, according to a correspondence between a set of the number of non-contiguous chunks allowed to be allocated and a constraint quantity of the preset number of non-contiguous chunks and a constraint of the number of RBs included in the chunk, determining the set of the number of non-contiguous chunks allowed to be allocated. The constraint of the number of RBs contained in the corresponding chunk.
  • S102 Allocate the non-contiguous chunk according to the constraint condition of the number of RBs included in the block determined above and the channel resource that the UE can be scheduled.
  • the foregoing may be configured to: according to the channel quality measurement result and the scheduling algorithm, determine that the user equipment UE can be scheduled according to the constraint condition of the number of RBs included in the block determined by the foregoing, and the channel resource that the UE can be scheduled.
  • the channel resource is selected according to the constraint condition of the number of RBs included in the chunk, and the chunk is selected from the channel resources that can be scheduled to be allocated to the UE.
  • the embodiment of the present invention considers the influence of the number of non-contiguous chunks and the number of RBs containing RBs on the CM value, and constrains the distribution of non-continuous groups, which not only converges the CM value, but also facilitates power control and scheduling, so that the system Stable performance and improved edge coverage.
  • the embodiment of the present invention further provides a method for allocating a discontinuous frequency domain resource based on DFT-S-OFDMA as shown in FIG. 2, which specifically includes:
  • S201 Optionally, determine the minimum value of the maximum transmit power.
  • the maximum transmit power based on the path loss (PL, Path Loss) or geometry (geometry) SINR
  • the lower limit is also the minimum value that determines the maximum transmit power, ie ⁇ ⁇ ⁇ , where geometry refers to the function related to the distance, excluding the factors of small-scale fading. For example, the larger the PL,
  • S202 Optionally, determining a set of the number of non-contiguous chunks allowed to be allocated according to the minimum value of the maximum transmit power and the correspondence between the preset maximum transmit power and the number of non-contiguous chunks.
  • each maximum transmit power corresponds to a level of a number of non-contiguous chunks, and each level corresponds to at least one non-contiguous chunk number allowed to be allocated.
  • the set of non-contiguous chunks is determined to be ⁇ 1 , 2, 3 ⁇ .
  • S203 determining a chunk corresponding to the set of the non-contiguous chunks allowed to be allocated according to the foregoing relationship between the set of the number of non-contiguous chunks allowed to be allocated and the constraint condition of the number of non-contiguous chunks set in advance and the number of RBs included in the chunk. Constraints for the number of RBs included.
  • each level corresponds to at least one non-contiguous chunk quantity allowed to be allocated, and each level corresponds to a constraint condition.
  • the set of non-contiguous chunks allowed to be allocated is determined, it is naturally determined.
  • S204 Allocate the non-contiguous chunk according to the constraint of the number of RBs included in the determined chunk and the channel resource that the UE can be scheduled.
  • the step may include: determining, according to the channel quality measurement result and the scheduling algorithm, a channel resource that the UE can be scheduled; and selecting, according to the constraint condition of the number of RBs included in the chunk, the chunk to be allocated to the UE according to the configurable channel resource. .
  • the number of RBs may also be different.
  • the chunks of the three chunks selected to meet the constraints mentioned in (2) above are allocated to the UE, or after modifying the number of RBs included in a chunk, and then selecting from 3 chunks (including the modified chunk) A chunk that meets the constraints mentioned in (2) above is allocated to the UE.
  • the method provided in this embodiment not only the CM value is converged, but also the power control and scheduling are facilitated, the system performance is stabilized, and the edge coverage is improved.
  • an embodiment of the present invention further provides a base station.
  • the method includes: a constraint determining unit 303, configured to, according to a set of the number of non-contiguous chunks allowed to be allocated, and a constraint between a preset number of non-contiguous chunks and a constraint of the number of RBs included in the chunk a relationship determining a constraint condition of the number of RBs included in the chunk corresponding to the set of the number of non-contiguous chunks allowed to be allocated; the assigning unit 304, the constraint condition for the number of RBs included in the chunk determined by the constraint determining unit 303 And the channel resources that the UE can be scheduled to allocate non-contiguous chunks.
  • the device shown in FIG. 3 may further include: a block number determining unit 302, configured to determine, according to a minimum value of the maximum transmit power and a correspondence between a preset maximum transmit power and a number of non-contiguous chunks, A set of consecutive chunk numbers, and a determined set of the number of non-contiguous chunks allowed to be allocated is supplied to the above-described constraint determining unit 303.
  • a block number determining unit 302 configured to determine, according to a minimum value of the maximum transmit power and a correspondence between a preset maximum transmit power and a number of non-contiguous chunks, A set of consecutive chunk numbers, and a determined set of the number of non-contiguous chunks allowed to be allocated is supplied to the above-described constraint determining unit 303.
  • the apparatus shown in FIG. 3 may further include: a maximum transmit power determining unit 301 for determining a minimum value of the maximum transmit power, and providing the determined minimum value of the maximum transmit power to the block number determining unit 302.
  • the allocating unit 304 may allocate non-contiguous chunks according to the channel quality measurement result and the scheduling algorithm, in addition to the constraint condition of the number of RBs included in the block determined above.
  • the maximum transmit power determining unit 301 can determine the lower limit C of the maximum transmit power, that is, the minimum value of the maximum transmit power, that is, 5 ⁇ , according to the PL or geometry SINR or a similar long-term statistic related to the distance, where Refers to the function related to distance, excluding the factors of small-scale fading. For example, the larger the PL, the larger.
  • each maximum transmit power corresponds to a level of a number of non-contiguous chunks, and each level corresponds to at least one non-contiguous chunk number allowed to be allocated.
  • the chunk number determining unit 302 can find the level corresponding to the maximum transmit power according to the description of the level setting, thereby obtaining the number of non-contiguous chunks allowed to be allocated. set.
  • the correspondence between the maximum transmit power and the number of non-contiguous chunks may be preset in a storage unit (not shown) for storing data in the device shown in FIG. 3, when chunk When the number determining unit 302 needs the above correspondence, the storage unit may provide the above correspondence to the chunk number determining unit 302.
  • the above correspondence may also be set in other units in the apparatus shown in FIG. 3. As to which unit is set, it may be determined by those skilled in the art according to actual needs, and is not illustrated here.
  • each level corresponds to at least one non-contiguous chunk quantity allowed to be allocated, and each level corresponds to one constraint condition.
  • the constraint condition determining unit 303 can naturally determine the corresponding constraint condition.
  • the storage unit may The above correspondence relationship is supplied to the constraint determination unit 303.
  • the above correspondence may also be set in other units in the apparatus shown in FIG. 3. As to which unit is disposed, it may be determined by those skilled in the art according to actual needs, and is not illustrated here.
  • the allocating unit 304 may include: a determining module, configured to determine, according to the channel quality measurement result and the scheduling algorithm, a channel resource that the UE can be scheduled; and an allocation module, configured to use the chunk included by the constraint determining unit 303 to include The constraint of the number of RBs is selected from the UE schedulable channel resources determined by the determining module to be allocated to the UE. There may be more than one chunk contained in the scheduleable resource, and the number of RBs included in each chunk may also be different.
  • the allocation module When the allocation module allocates resources, it may directly select several or all chunks from the schedulable resources to allocate to the UE, and may also select several or all chunks to allocate to the UE after appropriately adjusting the number of RBs included in the chunk.
  • the result needs to meet the constraints mentioned in (2) above. For example, if the determining module determines that there are 3 chunks that the UE can be scheduled, one of the chunks contains 8 chunks. RB, one of the chunks contains 16 RBs, and one of the chunks contains 4 RBs. Then, when the allocation module allocates chunks, it needs to select chunks from the three chunks that meet the constraints mentioned in (2) above.
  • the UE is allocated to the UE, or after modifying the number of RBs included in a chunk, the chunks that meet the constraints mentioned in (2) above are allocated from the three chunks (including the modified chunks) to the UE.
  • the base station provided in this embodiment, not only the CM value is converged, but also the power control and scheduling are facilitated, the system performance is stabilized, and the edge coverage is improved.
  • each unit of the base station shown in FIG. 3 can be set or applied to other devices similar to the base station, for example, an access point (AP, Access Point). These units operate in the same manner as in the base station shown in Figure 3, and are not mentioned here.
  • AP access point
  • Access Point Access Point
  • the number of RBs included is not limited.
  • N ⁇ resume fa e ⁇ 2,3 ⁇ the constraint of chunk is to earn ⁇ 2 .
  • SiU is based on SRS measurement results.
  • the scheduling algorithm used determines that the three chunks of the UE can be scheduled, and the three chunks respectively include 8 RBs, 16 RBs, and 4 RBs.
  • the ratio of the chunk size of 16 RBs to the chunk size of 4 RBs will exceed 2, so if you do not modify the number of RBs contained in the chunk, you cannot allocate 3 chunks, but if you include 16
  • the chunk of the RB is adjusted to contain 8 RBs, then 3 chunks can be allocated. If two chunks are allocated, the above constraint can be met as long as the chunk containing 16 RBs and the chunk containing 4 RBs are not allocated at the same time.
  • the chunk size is not limited. Specifically, how to allocate the chunk can be designed by a person skilled in the art according to the actual situation.
  • the final allocation of 2 chunks points Do not include 8 RBs and 16 RBs.
  • the embodiment of the present invention considers the influence of the number of non-contiguous chunks and the number of chunks containing RBs on the CM value, and constrains the discontinuous chunk allocation, which not only converges the CM value, but also facilitates power control and scheduling. , to achieve stable system performance and improved edge coverage.
  • the embodiment of the present invention does not limit the frequency domain location where the chunk is located, so the frequency domain resource allocation is flexible.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

分配非连续频域资源的方法及基站 技术领域
本发明涉及无线通信技术, 尤其涉及分配非连续频域资源的技术。
背景技术
未来的无线通信系统对数据速率要求越来越高, 除了提高传输带宽外,频 谱效率也大幅度增力 p。例如,长期演进( LTE-A, Long Term Evolution Advanced ) 系统的上行峰值频谱效率目标比 LTE版本 8 (Rel-8, Release 8 )有了较大提 高, 为 15bps/Hz。
为了实现这一目标, LTE-A上行引入了非连续频域资源分配( RA, Resource
Allocation ), 即在一个单元载波(CC, Component Carrier)带宽内可以分配多 个非连续的频带,这里我们把每个频带对应的一个或多个频域上连续的资源块 (RB, Resource Block)统称为一个组块(chunk), 采用的多址方式为非连续 的 (non-contiguous)基于离散傅立叶变换的正交频分复用 ( DFT-s-OFDMA, Discrete Fourier Transform- Spread-Orthogonal Frequency Division Multiple Access), 也可以称为 CL-DFT-S-OFDMA。 与 LTE Rel-8的连续频域资源分配 相比, 可以获得更大的频域选择调度增益, 即性能得到提升。
LTE Rel-8考虑到功率放大器(PA, Power Amplifier )效率, 即立方量度 (CM, Cubic Metric)值越低, 可以发送的功率越大, 进而有利于小区边缘用 户的覆盖, 所以仅支持连续的频域资源分配, 其多址方式为连续的 DFT-s-OFDMA, 即 SC-FDMA。
LTE Rel-8 的物理上行链路共享信道(PUSCH, Physical Uplink Shared Channel) 功率控制 (PC, Power Control )是开环和闭环 PC相结合, 其第 个 子帧的 PC计算公式(请参见 3GppTS 36.213 V8.5.0)为:
尸置 H(0 = ^{ΡΜΑΧ , 10 log10 ( PUSCH ()) +尸0— p丽 C + a(j) · PL + ΔΤΡ() + /()} [dBm] 其中, Vx为用户设备(UE, User Equipment)最大允许的发射功率, 其 值由 UE的功率级别决定。 MPUSCH(0是 PUSCH分配的 RB个数。 。— PUSCH为可 配置参数, 由小区特定和 UE特定因素组成。 P 为路损, 《为路损补偿因子, 小区级配置。 ATF(0和 /()为闭环 PC调整量。 LTE Rel-8 的物理下行控制信 ( PDCCH , Physical Downlink Control Channel) 可能传输四种信息, 即: 下行数据传输的调度信息, 上行数据传输 的调度信息, 上行功率控制命令以及一些广播信令。 相应的, 下行控制信息 ( DCI, Downlink Control Information )格式包括 Format 0 , Format 1 , Format 1 A, Format IB, Format 1C, Format ID, Format 2 , Format 2A, Format 3 , Format 3A。 其中, DCI format 0指示的是 PUSCH的调度信息 ( UL scheduling Grant ), 采 用连续频域资源指示方式。
LTE Rel-8的下行频域资源分配类型有 RAtypeO、 RAtypel和 RAtype2。 RAType O是用比特映射(bitmap )指示被调度 UE分配的资源块组(RBGs, Resource Block Groups ),每个 RBG包含几个连续的物理资源块( PRB, Physical Resource Block ), 具体如表一所示。 如果系统带宽包含 Λ¾个 RB, 那么需要 NRBG = \ N^ / P I比特的信令来表示频域资源分配。 RA type 1根据系统带宽分成 P个资源块组子集( Resource Block Group Subsets ), 如表一所示, 每个子集由 RA type 0中的数个 RBGs构成, 所以需要「log2(P),比特的信令表示 UE被调度 的是哪个资源块组子集, lbit指示此资源块组子集里的频域资源分配的起始位 置是否有偏移,具体偏移量请参见 3Gpp TS 36.213 v8.5.0。所以, 用于指示 UE 被调度的 RB比特数目为 Λ^Ε1 =「Λ / ] - [log2( )l -1 ,每个比特明确指示了 这个资源块组子集中对应的 RB是否分配给 UE。 RAType 2中, 资源分配信令 指示起始虚拟资源块(VRB, Virtual Resource Block )序号和连续分配的 VRB 个数信息。
Figure imgf000004_0001
表一
上面提到过, 在每个上行单元载波内, 基站(eNodeB )可以调度多个非 连续的 chunk给一个 UE。可以采用上述现有技术中下行 RA typeO和 RA type 1 的方案, 这样, 每个 chunk包含的 RB的数量可以不做限制, 只要符合资源分 配的最小粒度即可。
本发明的发明人在实现本发明的过程中发现:如果按照现有技术中的方案 进行基于 DFT-S-OFDMA的非连续频域资源的分配, 那么 CM值的变化范围 会比较大, 而且很难找到一个稳定的规律来衡量 CM值的变化。如果 CM值的 变化范围大且无规律可循, 就会导致功率控制的不稳定。
发明内容
本发明实施例提供了分配基于 DFT-S-OFDMA 的非连续频域资源的方法 及基站, 用以收敛 CM值的变化范围, 从而使功率控制稳定。
本发明实施例提供一种分配基于 DFT-S-OFDMA的非连续频域资源的方 法, 包括:根据允许分配的非连续组块数量的集合以及预先设置的非连续组块 数量与组块包含的 RB数量的约束条件之间的对应关系 ,确定所述允许分配的 非连续组块数量的集合对应的组块包含的 RB数量的约束条件;根据所述确定 的组块包含的 RB数量的约束条件及 UE可被调度的信道资源 , 分配非连续组 块。
本发明实施例提供一种基站, 包括: 约束条件确定单元, 用于根据允许分 配的非连续组块数量的集合以及预先设置的非连续组块数量与组块包含的 RB 数量的约束条件之间的对应关系,确定上述允许分配的非连续组块数量的集合 对应的组块包含的 RB数量的约束条件; 分配单元, 用于根据上述约束条件确 定单元确定的组块包含的 RB数量的约束条件及 UE可被调度的信道资源 , 分 配非连续组块。
本发明实施例考虑了非连续组块的数量和组块包含 RB的数量对 CM值的 影响, 对非连续组块分配进行约束, 不仅使 CM值得到收敛, 还有利于功控和 调度, 使系统性能达到稳定, 提高了边缘覆盖率。 另外, 本发明实施例没有限 制组块所处的频域位置 , 因此频域资源分配较为灵活。
附图说明
图 1为本发明实施例的一种分配基于 DFT-S-OFDMA的非连续频域资源 的方法的流程图; 图 2为本发明实施例的另一种分配基于 DFT-S-OFDMA的非连续频域资 源的方法的流程图;
图 3为本发明实施例的一种基站的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚, 下面将对本发明实施方式 作进一步地伴细描述。 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部实施例。基于本发明中的实施例 ,本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供了一种分配非连续频域资源的方法, 包括: 在演进的系 统,例如 LTE-A系统,中,对基于 DFT-S-OFDMA这种多址方式的非连续 chunk 的分配进行限制 ,从而收敛 CM值的范围。对非连续 chunk的分配进行限制时 , 主要考虑非连续 chunk的数量及 chunk包含的 RB的数量对 CM值的影响。 为 此, 本发明实施例提出了对非连续的 chunk数量及 chunk包含的 RB的数量的 设置方案, 具体设置如下:
( 1 ) 设置非连续的 chunk数量( Nchunks ) 的级别。
考虑到非连续的 chunk的数量对 CM值的影响, 将允许的非连续的 chunk 数量划分成 N个级别,每个级别都对应着一个不同的最大发射功率( ΡΜΛΧ Μ直。 优选的, 级别应该尽量少, 以避免功控过程的复杂, 当然, 设置的级别数量和 要求可以由本领域技术人员根据实际需要而设计。假设设置了 3个级别,对每 个级别的具体设置说明如下:
第一个级别: Nchunks = \ , 即非连续 chunk的数量是 1 , 其实质是连续频域 资源分配, 其最大发射功率为
第二个级别:
Figure imgf000006_0001
, 即非连续 chunk的数量既可以是 2, 也可以是 3, 其最大发射功率为 ;
第三个级别: Nchunks≥4 , 即非连续 chunk的数量不少于 4个, 其最大发射 功率为^ X。
这里需要说明的是,每个级别对应的非连续的 chunk数量可以由本领域技 术人员根据实际需要而设计。 例如, 对于第二个级别, 可以设计 Λ^ Ε {2,3,4} , 对于第三个级别, Nchunks≥5。 还需要说明的是, 由于非连续 chunk的数量越大, CM值越大, 最大发射 功率值反而越小, 所以, ^> > 。
本实施例中通过设置非连续 chunk数量的级别以及与最大发射功率的绑 定, 不仅满足不同最大发射功率的场景需求, 而且可以更好地提高功放效率。
( 2 )限制 chunk大小的集合 即, 设置 chunk包含的 RB数量的约 束条件, 其中, {¾^}是指允许 chunk包含的 RB数量的集合, 例如, {1, 2} 表示一个 chunk既可以包括 1个 RB, 又可以包括 2个 RB。
具体的约束条件可以由本领域技术人员根据实际需要而定,这里提供的约 束条件为 ψ「 [丽 fi ]≤ c。 其中, C为常数, C的取值可以由本领域技术人员
Γ η „ 根据实际需要而设计, 这里不做限定。 Ψ[·]和 Γ[·]表示某数学关系, 可为一次函 数, 指数函数, 或对数函数等。 这个约束条件的实质是, 允许 chunk包含的最 大 RB的数量与 chunk包含的最小 RB的数量在某种数学关系下的比值不能超过 某个门限值。 还是假设设置了 3个级别, 并假设 Ψ[·]和 Γ[·]都为 X , 对约束条 件的具体设置说明如下: 第一个级别: Nchunks = \ , 为连续频域资源分配, chunk大小不受任何限制, 即上述的 C为正无穷, 这是约束条件的一个特例; 第二个级别: N^„fa e {2,3}, 丽 ^""4≤2 , 即, 允许 chunk包含的最大 RB 匪 U
的数量与 chunk包含的最小 RB的数量的比值不能超过 2; 第三个级别: Nchunks > 4 , chunk大小不受任何限制, 即上述的 C为正无穷, 这是约束条件的一个特例。
本实施例中通过设置 chunk包含的 RB数量的约束条件, 不仅在一定程度 上降低了 CM值, 而且可以使 CM值得到收敛, 有利于功控和调度。
下面结合图 1 ,对本发明实施例的一种分配基于 DFT-S-OFDMA的非连续 频域资源的方法进行伴细说明。 如图 1所示, 上述方法包括: S101 :根据允许分配的非连续组块数量的集合以及预先设置的非连续组块 数量与组块包含的 RB数量的约束条件之间的对应关系 ,确定上述允许分配的 非连续组块数量的集合对应的组块包含的 RB数量的约束条件。
假设允许分配的非连续 chunk数量的集合是 { 1 , 2, 3}, 那么通过上述(2 ) 可以确定出, 当 N^„fa = l时, chunk大小不受任何限制, 即上述的 C为正无穷; 当 Nchunks 、2,3~ , 允许 chunk包含的最大 RB的数量与 chunk包含的最小 RB的 数量的比值不能超过 2。
S102: 根据上述确定的组块包含的 RB数量的约束条件及 UE可被调度的 信道资源, 分配非连续组块。
上述根据上述确定的组块包含的 RB数量的约束条件及 UE可被调度的信 道资源,分配非连续组块,具体可以包括:根据信道质量测量结果及调度算法, 确定用户设备 UE可被调度的信道资源; 根据上述组块包含的 RB数量的约束 条件 , 从上述可被调度的信道资源中选择组块分配给 UE。
本发明实施例考虑了非连续组块的数量和组块包含 RB的数量对 CM值的 影响, 对非连续组分配进行约束, 不仅使 CM值得到收敛, 还有利于功控和调 度, 使系统性能达到稳定, 提高了边缘覆盖率。
本发明实施例还提供了如图 2所示的分配基于 DFT-S-OFDMA的非连续 频域资源的方法, 具体包括:
S201 : 可选的, 确定最大发射功率的最小值。
具体的, 可以根据路损 ( PL, Path Loss )或 geometry (几何学) SINR (信 干 p朶比 , Signal to Interference plus Noise Ratio )或类似的与距离有关的长期统 计量 , 确定最大发射功率 的下限 也就是确定最大发射功率的最小 值, 即 ΜΑΧ≥ ^ , 其中, geometry指的是与距离有关的函数, 不包括小尺度 衰落的因素。 例如, PL越大,
Figure imgf000008_0001
S202:可选的,根据上述最大发射功率的最小值以及预先设置的最大发射 功率与非连续 chunk数量之间的对应关系,确定允许分配的非连续 chunk数量 的集合。
上述(1 ) 中提到过, 每个最大发射功率都分别对应一个非连续 chunk数 量的级别,每个级别对应至少一个允许分配的非连续 chunk数量。确定最大发 射功率的最小值后, 就可以根据上述级别设置的说明,找到最大发射功率对应 的级别, 从而也就得到允许分配的非连续 chunk数量的集合。 例如, 假设确定 出 ίΑχ的下限是^ x, 由于非连续 chunk数量越少,发射功率越大, 所以确定 出最大发射功率对应的是 N^fa = 1和 {2,3}这两个级别 , 从而确定出非连 续 chunk数量的集合是 { 1 , 2, 3}。
S203:根据上述允许分配的非连续 chunk数量的集合以及预先设置的非连 续 chunk数量与 chunk包含的 RB数量的约束条件之间的对应关系, 确定上述 允许分配的非连续 chunk数量的集合对应的 chunk包含的 RB数量的约束条件。
上述(2 ) 中提到过, 每个级别对应至少一个允许分配的非连续 chunk数 量,每个级别又对应一个约束条件, 当确定出允许分配的非连续 chunk数量的 集合后, 自然就可以确定出对应的约束条件。例如,假设确定出的非连续 chunk 数量的集合是 {1 , 2, 3},那么通过上述(2 )可以确定出, 当 N^„fa = l时, chunk 大小不受任何限制, 即上述的 C为正无穷; 当 N^„fae {2,3}, 允许 chunk包含的 最大 RB的数量与 chunk包含的最小 RB的数量的比值不能超过 2。
S204: 根据确定的 chunk包含的 RB数量的约束条件及 UE可被调度的信 道资源, 分配非连续 chunk。
该步骤可以具体包括: 根据信道质量测量结果及调度算法, 确定 UE可被 调度的信道资源; 根据 chunk包含的 RB数量的约束条件, 从上述可被调度的 信道资源中选择组块分配给上述 UE。
上述可被调度的信道资源中包含的 chunk可能有多个,每个 chunk包含的
RB的数量也可能不同。 分配资源时, 可以从可被调度的信道资源中直接选择 几个或全部 chunk分配给 UE, 也可以在适当调整 chunk包含的 RB数量后, 再选择几个或全部 chunk分配给 UE, 当然, 分配结果需要符合上述(2 )中提 到的约束条件。例如,如果确定 UE可被调度的 chunk有 3个,其中的一个 chunk 包含 8个 RB, 其中的一个 chunk包含 16个 RB, 其中的一个 chunk包含 4个 RB , 那么在分配 chunk时, 就需要从这 3个 chunk中选择符合上述( 2 ) 中提 到的约束条件的 chunk分配给 UE, 或者, 在修改某个 chunk包含的 RB数量 后, 再从 3个 chunk (包括修改后的 chunk ) 中选择符合上述(2 ) 中提到的约 束条件的 chunk分配给 UE。 通过本实施例提供的方法, 不仅使 CM值得到收敛, 而且有利于功控和调 度, 使系统性能达到稳定, 提高了边缘覆盖率。
对应于图 1所示的方法, 本发明实施例还提供一种基站。 如图 3所示, 包 括: 约束条件确定单元 303 , 用于根据允许分配的非连续组块数量的集合以及 预先设置的非连续组块数量与组块包含的 RB数量的约束条件之间的对应关 系 ,确定上述允许分配的非连续组块数量的集合对应的组块包含的 RB数量的 约束条件; 分配单元 304, 用于根据上述约束条件确定单元 303确定的组块包 含的 RB数量的约束条件及 UE可被调度的信道资源 , 分配非连续组块。
图 3所示的装置还可以包括: 组块数量确定单元 302, 用于根据最大发射 功率的最小值以及预先设置的最大发射功率与非连续组块数量之间的对应关 系,确定允许分配的非连续组块数量的集合, 并将确定的允许分配的非连续组 块数量的集合提供给上述约束条件确定单元 303。
图 3所示的装置还可以包括: 最大发射功率确定单元 301 , 用于确定最大 发射功率的最小值,并将确定的最大发射功率的最小值提供给上述组块数量确 定单元 302。
分配单元 304除根据上述确定的组块包含的 RB数量的约束条件外,还可 以根据信道质量测量结果及调度算法分配非连续组块。
具体的, 最大发射功率确定单元 301可以根据 PL或 geometry SINR或类 似的与距离有关的长期统计量, 确定最大发射功率 的下限 C 也就是 确定最大发射功率的最小值, 即 5^ , 其中, geometry指的是与距离有 关的函数, 不包括小尺度衰落的因素。 例如, PL越大, 越大。
上述(1 ) 中提到过, 每个最大发射功率都分别对应一个非连续 chunk数 量的级别,每个级别对应至少一个允许分配的非连续 chunk数量。在最大发射 功率确定单元 301确定最大发射功率的最小值后, chunk数量确定单元 302就 可以根据上述级别设置的说明,找到最大发射功率对应的级别,从而也就得到 允许分配的非连续 chunk数量的集合。 例如, 假设最大发射功率确定单元 301 确定出 x的下限是 , 由于非连续 chunk数量越少,发射功率越大, 所以 chunk数量确定单元 302确定出最大发射功率对应的是 N fa = l和 N fa e {2,3} 这两个级别, 从而确定出非连续 chunk数量的集合是 { 1 , 2, 3}。 这里需要说 明的是,最大发射功率与非连续 chunk数量之间的对应关系可以预先设置在图 3所示的装置中的一个用于存储数据的存储单元(图中未绘示) 中, 当 chunk 数量确定单元 302需要上述对应关系时,存储单元可以将上述对应关系提供给 chunk数量确定单元 302。 当然, 上述对应关系也可以设置在图 3所示的装置 中的其他单元中 ,至于设置在哪个单元中可以由本领域技术人员根据实际需要 而定, 这里不再——举例说明。
上述(2 ) 中提到过, 每个级别对应至少一个允许分配的非连续 chunk数 量,每个级别又对应一个约束条件, 当 chunk数量确定单元 302确定出允许分 配的非连续 chunk数量的集合后,约束条件确定单元 303 自然就可以确定出对 应的约束条件。 例如, 假设 chunk数量确定单元 302确定出的非连续 chunk数 量的集合是 { 1 , 2, 3} , 那么约束条件确定单元 303通过上述(2 )可以确定出, 当 N^fa = 1时, chunk大小不受任何限制,即上述的 C为正无穷;当 Nchunk 2,3 , 允许 chunk包含的最大 RB的数量与 chunk包含的最小 RB的数量的比值不能 超过 2。 这里需要说明的是, 非连续 chunk数量与 chunk包含的 RB数量的约 束条件之间的对应关系可以预先设置在上述的存储单元中,当约束条件确定单 元 303需要上述对应关系时,存储单元可以将上述对应关系提供给约束条件确 定单元 303。 当然, 上述对应关系也可以设置在图 3所示的装置中的其他单元 中, 至于设置在哪个单元中可以由本领域技术人员根据实际需要而定,这里不 再——举例说明。
在具体实现时, 分配单元 304可以包括: 确定模块, 用于根据信道质量测 量结果及调度算法, 确定 UE可被调度的信道资源; 分配模块, 用于根据上述 约束条件确定单元 303确定的 chunk包含的 RB数量的约束条件, 从上述确定 模块确定的 UE可调度的信道资源中选择 chunk分配给上述 UE。 可被调度资 源中包含的 chunk可能有多个, 每个 chunk包含的 RB的数量也可能不同。 分 配模块分配资源时, 从可被调度的资源中直接选择几个或全部 chunk分配给 UE, 也可以在适当调整 chunk包含的 RB数量后, 再选择几个或全部 chunk 分配给 UE, 当然, 分配结果需要符合上述(2 )中提到的约束条件。 例如, 如 果确定模块确定 UE可被调度的 chunk有 3个, 其中的一个 chunk包含 8个 RB, 其中的一个 chunk包含 16个 RB, 其中的一个 chunk包含 4个 RB, 那么 分配模块在分配 chunk时, 就需要从这 3个 chunk中选择符合上述( 2 ) 中提 到的约束条件的 chunk分配给 UE, 或者, 在修改某个 chunk包含的 RB数量 后, 再从 3个 chunk (包括修改后的 chunk ) 中选择符合上述(2 ) 中提到的约 束条件的 chunk分配给 UE。
通过本实施例提供的基站, 不仅使 CM值得到收敛, 而且有利于功控和调 度, 使系统性能达到稳定, 提高了边缘覆盖率。
需要说明的是,图 3所示的基站的每个单元都可以设置或应用于其它功能 与基站类似的设备中, 例如: 接入点(AP, Access Point )。 这些单元在此类设 备中的工作方式与在图 3所示的基站中的工作方式大致相同, 这里不再赞述。
为使本领域技术人员更加清楚的理解本发明实施例,下面再介绍一个实施 例。
假设确定出 PMAX的下限 由上述( 1 )中的描述可以确定, Nchunks G {1,2,3} , 由 ^ {1,2,3}可以确定, 当 N^fa = l时, chunk包含 RB的数量不受限制, 当 N^„fa e {2,3}时, chunk的约束条件为賺 < 2。 再假设根据 SRS测量结果 匪 iU
以及使用的调度算法确定出 UE的 3个 chunk可被调度, 这 3个 chunk分别包 含 8个 RB、 16个 RB和 4个 RB。 考虑到 ≤2 ,如果分配 3个 chunk,
Figure imgf000012_0001
那么其中包含 16个 RB的 chunk大小与包含 4个 RB的 chunk大小的比值就会 超过 2, 所以, 如果不修改 chunk包含的 RB的数量, 就不能分配 3个 chunk, 但是, 如果把包含 16个 RB的 chunk调整为包含 8个 RB, 那么就可以分配 3 个 chunk。 如果分配 2个 chunk, 那么只要不同时分配包含 16个 RB的 chunk 和包含 4个 RB的 chunk, 就能够符合上述约束条件。 当然, 分配 1个 chunk 时, chunk大小不受限制。 具体如何分配 chunk, 可以由本领域技术人员根据 实际情况而设计, 这里考虑到最大地利用频域资源, 最终分配 2个 chunk, 分 别包含 8个 RB和 16个 RB。 综上所述, 本发明实施例考虑了非连续 chunk的数量和 chunk包含 RB的 数量对 CM值的影响 ,对非连续 chunk分配进行约束,不仅使 CM值得到收敛, 还有利于功控和调度, 使系统性能达到稳定, 提高了边缘覆盖率。 另外, 本发 明实施例没有限制 chunk所处的频域位置, 因此频域资源分配较为灵活。
需要特别说明的是, 上述 "chunk" 仅仅是为描述方便而采用的名称, 用 于表示每个频带对应的一个或多个频域上连续的资源块。这个名称不能够对本 发明实施例适用的范围进行限定, 即在某些系统中也许没有采用 "chunk" 的 名称,但是,不能由此认为本发明实施例中的技术方案不能够适用于这些系统。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成,上述的程序可存储于一计算 机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。 其中,上述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM )或随^ 1 储记忆体 ( Random Access Memory, RAM )等。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通 技术人员来说, 在不脱离本发明原理的前提下, 还可以作出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求
1.一种分配基于离散傅立叶变换的正交频分复用 DFT-S-OFDMA 的非连 续频域资源的方法, 其特征在于, 包括:
根据允许分配的非连续组块数量的集合以及预先设置的非连续组块数量 与组块包含的资源块 RB数量的约束条件之间的对应关系 ,确定所述允许分配 的非连续组块数量的集合对应的组块包含的 RB数量的约束条件;
根据所述确定的组块包含的 RB数量的约束条件及用户设备 UE可被调度 的信道资源, 分配非连续组块。
2.如权利要求 1所述的方法, 其特征在于, 还包括:
根据最大发射功率的最小值以及预先设置的最大发射功率与非连续组块 数量之间的对应关系 , 确定所述允许分配的非连续组块数量的集合。
3.如权利要求 2所述的方法, 其特征在于, 还包括:
根据路损或几何学信干噪比 geometry SINR或与距离有关的长期统计量, 确定所述最大发射功率的最小值。
4.如权利要求 2所述的方法, 其特征在于, 所述最大发射功率与非连续组 块数量之间的对应关系具体为:每个最大发射功率分别对应一个非连续组块数 量的级别 , 每个级别对应至少一个允许分配的非连续组块数量。
5.如权利要求 1所述的方法, 其特征在于, 所述非连续组块数量与组块包 含的 RB数量的约束条件之间的对应关系具体为:每个非连续组块数量的级别 对应一个约束条件。
6.如权利要求 1或 5所述的方法, 其特征在于, 所述约束条件为: 允许组 块包含的 RB的最大数量与允许组块包含的 RB的最小数量在一定数学关系下 的比值不超过预先设置的比值门限。
7.如权利要求 1所述的方法, 其特征在于, 所述根据所述确定的组块包含 的 RB数量的约束条件及 UE可被调度的信道资源, 分配非连续组块, 具体包 括:
根据信道质量测量结果及调度算法, 确定 UE可被调度的信道资源; 根据所述组块包含的 RB数量的约束条件,从所述可被调度的信道资源中 选择组块分配给所述 UE。
8.—种基站, 其特征在于, 包括:
约束条件确定单元,用于根据允许分配的非连续组块数量的集合以及预先 设置的非连续组块数量与组块包含的 RB数量的约束条件之间的对应关系 ,确 定所述允许分配的非连续组块数量的集合对应的组块包含的 RB数量的约束条 件;
分配单元,用于根据所述约束条件确定单元确定的组块包含的 RB数量的 约束条件及 UE可被调度的信道资源 , 分配非连续组块。
9.如权利要求 8所述的装置, 其特征在于, 还包括: 组块数量确定单元, 用于根据最大发射功率的最小值以及预先设置的最大发射功率与非连续组块 数量之间的对应关系,确定所述允许分配的非连续组块数量的集合, 并将确定 的所述允许分配的非连续组块数量的集合提供给所述约束条件确定单元。
10.如权利要求 9所述的装置, 其特征在于, 还包括: 最大发射功率确定 单元, 用于根据路损或 geometry SINR或与距离有关的长期统计量, 确定所述 最大发射功率的最小值,并将所述最大发射功率的最小值提供给所述组块数量 确定单元。
11.如权利要求 9所述的装置, 其特征在于, 所述最大发射功率与非连续 组块数量之间的对应关系具体为:每个最大发射功率分别对应一个非连续组块 数量的级别, 每个级别对应至少一个允许分配的非连续组块数量。
12.如权利要求 8所述的装置, 其特征在于, 所述非连续组块数量与组块 包含的 RB数量的约束条件之间的对应关系具体为:每个非连续组块数量的级 别对应一个约束条件。
13.如权利要求 8或 12所述的装置, 其特征在于, 所述约束条件为: 允许 组块包含的 RB的最大数量与允许组块包含的 RB的最小数量在一定数学关系 下的比值不超过预先设置的比值门限。
14.如权利要求 8所述的装置, 其特征在于, 所述分配单元包括: 确定模块, 用于根据信道质量测量结果及调度算法, 确定 UE可被调度的 信道资源;
分配模块,用于根据所述约束条件确定单元确定的组块包含的 RB数量的 约束条件,从所述确定模块确定的 UE可被调度的信道资源中选择组块分配给 所述 UE。
PCT/CN2009/070396 2009-02-11 2009-02-11 分配非连续频域资源的方法及基站 WO2010091547A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/070396 WO2010091547A1 (zh) 2009-02-11 2009-02-11 分配非连续频域资源的方法及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/070396 WO2010091547A1 (zh) 2009-02-11 2009-02-11 分配非连续频域资源的方法及基站

Publications (1)

Publication Number Publication Date
WO2010091547A1 true WO2010091547A1 (zh) 2010-08-19

Family

ID=42561366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070396 WO2010091547A1 (zh) 2009-02-11 2009-02-11 分配非连续频域资源的方法及基站

Country Status (1)

Country Link
WO (1) WO2010091547A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148813A1 (en) * 2006-06-20 2007-12-27 Nec Corporation Resource block scheduling in communication networks
EP1980042A2 (en) * 2006-01-18 2008-10-15 Motorola, Inc. Method and apparatus for conveying control channel information in ofdma systems
CN101340419A (zh) * 2008-08-12 2009-01-07 中兴通讯股份有限公司 多入多出-正交频分复用系统比特功率分配方法
CN101361339A (zh) * 2006-01-17 2009-02-04 诺基亚西门子通信有限责任两合公司 通信系统中的资源分配方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101361339A (zh) * 2006-01-17 2009-02-04 诺基亚西门子通信有限责任两合公司 通信系统中的资源分配方法
EP1980042A2 (en) * 2006-01-18 2008-10-15 Motorola, Inc. Method and apparatus for conveying control channel information in ofdma systems
WO2007148813A1 (en) * 2006-06-20 2007-12-27 Nec Corporation Resource block scheduling in communication networks
CN101340419A (zh) * 2008-08-12 2009-01-07 中兴通讯股份有限公司 多入多出-正交频分复用系统比特功率分配方法

Similar Documents

Publication Publication Date Title
US11363541B2 (en) Apparatus and method for transmitting a power headroom report in a wireless communication system supporting multi-carriers
CN108135028B (zh) 一种功率控制方法、装置及通信节点
JP5568557B2 (ja) 上りリンク電力を制御する方法、端末装置、基地局装置、およびプロセッサ
JP5878643B2 (ja) アップリンク電力制御方法及び装置
US9681401B2 (en) Enhanced power headroom reporting in wireless communication networks
KR101902579B1 (ko) 다수의 반송파들을 이용하는 무선 송수신기 유닛에 대한 업링크 전력을 제어하는 장치 및 방법
JP6376564B2 (ja) 端末装置、基地局装置、通信方法および集積回路
CN110337142B (zh) 动态上行链路功率控制
US8812040B2 (en) Communication system, user equipment, base station, transmit power deciding method, and program
JP6523278B2 (ja) 端末装置、基地局装置、および通信方法
JP6671173B2 (ja) 端末装置、基地局装置、通信方法、および集積回路
JP6410153B2 (ja) 端末装置、基地局装置、通信方法および集積回路
CN108811060B (zh) 一种功率控制方法和装置
WO2010129146A2 (en) Uplink scheduling support in multi-carrier wireless communication systems
JP6362114B2 (ja) 端末装置、基地局装置、および通信方法
TW201101908A (en) Uplink power headroom reporting for carrier aggregation
JP2011515911A (ja) マルチキャリア通信システムにおけるデータ送信をサポートするための方法および装置
JP2023130459A (ja) 基地局、通信方法及び集積回路
US20210160789A1 (en) Systems And Methods Of Performing Power Control Of A Physical Channel In A Communication System
JP2015523009A (ja) 公称パケットサイズに基づく電力コントロールの実行
JP2016005218A (ja) 端末装置
WO2015194430A1 (ja) 端末装置
WO2010091547A1 (zh) 分配非连续频域资源的方法及基站
CN108632967B (zh) 上行链路功率控制方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839870

Country of ref document: EP

Kind code of ref document: A1