WO2010090273A1 - Operation management device for a vaporization device, fresh water generator provided with the operation management device, and operation management method and fresh water-generating method for vaporization devices - Google Patents

Operation management device for a vaporization device, fresh water generator provided with the operation management device, and operation management method and fresh water-generating method for vaporization devices Download PDF

Info

Publication number
WO2010090273A1
WO2010090273A1 PCT/JP2010/051640 JP2010051640W WO2010090273A1 WO 2010090273 A1 WO2010090273 A1 WO 2010090273A1 JP 2010051640 W JP2010051640 W JP 2010051640W WO 2010090273 A1 WO2010090273 A1 WO 2010090273A1
Authority
WO
WIPO (PCT)
Prior art keywords
solubility product
ionic strength
water
calcium sulfate
calculating
Prior art date
Application number
PCT/JP2010/051640
Other languages
French (fr)
Japanese (ja)
Inventor
良雄 谷口
鷹二 秋谷
茂 荒木
オスマン アハメド ハマド
エイ アル ラシード ラドワン
徹 神成
和人 前川
Original Assignee
財団法人造水促進センター
セイリーン ウォーター コンバージョン コーポレイション
株式会社ササクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人造水促進センター, セイリーン ウォーター コンバージョン コーポレイション, 株式会社ササクラ filed Critical 財団法人造水促進センター
Priority to CN201080001852.2A priority Critical patent/CN102066264B/en
Priority to KR1020107021163A priority patent/KR101666920B1/en
Priority to JP2010537069A priority patent/JP4743727B2/en
Publication of WO2010090273A1 publication Critical patent/WO2010090273A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/042Prevention of deposits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0082Regulation; Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/04Evaporators with horizontal tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/30Accessories for evaporators ; Constructional details thereof
    • B01D1/305Demister (vapour-liquid separation)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/88Concentration of sulfuric acid
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/02Softening water by precipitation of the hardness
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage

Definitions

  • the present invention relates to an operation management device for an evaporation device, a water producing device provided with the operation management device, an operation management method for the evaporation device, and a water production method.
  • the horizontal axis represents seawater components
  • the left vertical axis represents TDS (Total Dissolved Solids) and chlorine ion (Cl ⁇ ) concentrations (ppm)
  • the right vertical axis represents total hardness component concentrations (ppm). ppm).
  • Seawater is Saudi Arabian seawater, and TDS is changed from 45,460 ppm to 28,260 ppm, chlorine ion (Cl ⁇ ) is changed from 21,587 ppm to 16,438 ppm, and sulfate ion (SO 4 2 ⁇ ) is 3 by NF membrane treatment. From 100 ppm to 2 ppm or less, the total hardness (Total Hardness) is reduced from 7,500 ppm to 220 ppm, which shows that the composition ratio is significantly different from that of the raw seawater.
  • FIG. 9 a graph as shown in FIG. 9 has been adopted as a guideline for operation management of a seawater desalination apparatus.
  • This graph is introduced in Non-Patent Document 2 and summarizes the saturation solubility of calcium sulfate in seawater concentrated water along the relationship between the heating temperature and the concentration factor of standard seawater.
  • the X-axis of the graph in FIG. 9 indicates the heating temperature.
  • an operating temperature of 150 ° F. (65 ° C.) when seawater is concentrated twice or more, anhydrous calcium sulfate (anhydrite) is precipitated. ing.
  • the evaporation device when fresh water is generated by an evaporation device such as MSF or MED, in order to prevent the calcium sulfate scale from precipitating, the evaporation device is set so as to be equal to or lower than the saturation solubility of calcium sulfate in seawater concentrated water. It is necessary to adjust the heating temperature and concentration factor.
  • the graph of FIG. 9 is useful in predicting the concentration limit at which calcium sulfate precipitates, but ions such as sulfate ions and calcium in seawater were removed with an NF membrane or the like.
  • ions such as sulfate ions and calcium in seawater were removed with an NF membrane or the like.
  • the ratio of various ions dissolved in seawater will change greatly, so based on the data in the graph of FIG.
  • the present invention has been made to solve such a problem, and includes an operation management device and an operation management device for an evaporator that can efficiently produce fresh water while preventing calcium sulfate scale precipitation.
  • Another object of the present invention is to provide a fresh water generator, an operation management method for an evaporator, and a fresh water generation method.
  • the above object of the present invention is an operation management device for controlling the operating conditions of an evaporation device for evaporating and concentrating water to be treated containing calcium sulfate by heating, the ionic strength at a predetermined temperature and the saturated solubility product of calcium sulfate.
  • Saturated solubility product curve data determined in advance by the relationship, ionic strength calculating means for calculating ionic strength in the treated water, solubility product calculating means for calculating the solubility product of calcium sulfate in the treated water, By comparing the ionic strength value calculated by the ionic strength calculating means and the solubility product calculating means and the solubility product value of calcium sulfate with the saturated solubility product curve data, calcium sulfate relative to the ionic strength value of the water to be treated is obtained.
  • the operating condition calculation for calculating the operating condition of the evaporator whose solubility product value does not exceed the saturation solubility product value. It means, wherein the operating condition calculating means is achieved by the operation management device and a driving condition changing means for changing the operating conditions of the evaporator such that the calculated operating conditions.
  • the operation management device includes a total dissolved solid content calculating means for calculating the total dissolved solid content (TDS) of the water to be treated, and the ionic strength calculating means includes the total dissolved solid content (TDS), the ionic strength, It is preferable to calculate the ionic strength based on an ionic strength approximation formula determined in advance based on the above relationship.
  • a conductivity detecting means for detecting the conductivity of the water to be treated is provided, and the total dissolved solid content calculating means is a total dissolution determined in advance based on a relationship between the conductivity and the total dissolved solid content (TDS). It is preferable to calculate the total dissolved solid content (TDS) based on the solid content approximate expression.
  • the operating condition calculating means compares the ionic strength value calculated by the ionic strength calculating means and the solubility product calculating means and the solubility product value of calcium sulfate with the saturated solubility product curve data, thereby comparing the ionic strength.
  • the operating condition changing means is the saturated solubility product value calculated by the operating condition calculating means It is preferable to change the ionic strength of the water to be treated or the solubility product of calcium sulfate so that the ionic strength value does not exceed the value or the solubility product value of calcium sulfate.
  • a fresh water generator comprising an evaporation device that evaporates and concentrates by heating the water to be treated containing calcium sulfate, and any one of the above operation management devices.
  • Another object of the present invention is an operation management method for controlling operating conditions of an evaporation apparatus that evaporates and concentrates water to be treated containing calcium sulfate by heating, wherein the ion for calculating ion intensity in the water to be treated is obtained.
  • the solubility product value of calcium sulfate with respect to the ionic strength value of the water to be treated is the saturation solubility.
  • An operation condition calculation step for calculating the operation condition of the evaporator not exceeding the product value.
  • a total dissolved solid content calculating step for calculating the total dissolved solid content (TDS) of the water to be treated is provided, and the ionic strength calculating step includes the total dissolved solid content (TDS), the ionic strength, It is preferable to calculate the ionic strength based on an ionic strength approximation formula determined in advance based on the above relationship.
  • a conductivity detecting step for detecting the conductivity of the water to be treated is provided, and the total dissolved solid content calculating step is based on the relationship between the electrical conductivity and the total dissolved solid content (TDS). It is preferable to calculate the total dissolved solid content (TDS) based on the solid content approximate expression.
  • the said operation management method is provided with the electrical conductivity detection step which detects the electrical conductivity of the said to-be-processed water, and the said ion intensity calculation step is 2nd ion previously determined by the relationship between electrical conductivity and ion intensity. It is preferable to calculate the ion intensity based on the intensity approximate expression.
  • the operating condition calculating step compares the ionic strength value calculated by the ionic strength calculating means and the solubility product calculating means and the solubility product value of calcium sulfate with the saturated solubility product curve data, thereby comparing the ionic strength. Calculate the ionic strength value that does not exceed the saturation solubility product value of calcium sulfate or the solubility product value of calcium sulfate, and the operating condition changing means is the saturated solubility product calculated by the operating condition calculating means. It is preferable to change the ionic strength of the water to be treated or the solubility product of calcium sulfate so that the ionic strength value does not exceed the value or the solubility product value of calcium sulfate.
  • the above object of the present invention is achieved by a fresh water producing method for producing fresh water by evaporating and concentrating water to be treated containing calcium sulfate using the above operation management method.
  • the above-mentioned object of the present invention is a fresh water generator comprising an evaporation device that evaporates and concentrates water to be treated containing calcium sulfate by heating, and an operation management device that controls operating conditions of the evaporation device
  • the operation management device is a saturated solubility product curve data group in which saturated solubility product curve data determined in advance by a relationship between ionic strength at a predetermined temperature and a saturated solubility product of calcium sulfate is calculated at a plurality of temperatures, and Ion intensity calculating means for calculating ionic strength in the treated water, solubility product calculating means for calculating the solubility product of calcium sulfate in the treated water, ionic strength calculated by the ionic strength calculating means and the solubility product calculating means By comparing the value and solubility product value of calcium sulfate with the saturated solubility product curve data group, the treated water Operating condition calculation means for selecting a predetermined saturation solubility product curve data in which the so
  • the operation management apparatus of the evaporation apparatus which can produce
  • FIG. 1 is a schematic configuration diagram of a fresh water generator according to a first embodiment of the present invention.
  • the fresh water generator 1 concentrates a tank 2 in which raw water such as seawater is stored, a nanofiltration membrane device 3 a that removes scale components contained in the raw water, and nanofiltration permeated water (NFP).
  • RO membrane device reverse osmosis membrane device
  • evaporation device 4 condensation device 5
  • operation management device 6 that manages the operating conditions of evaporation device 4 are provided.
  • the nanofiltration membrane device 3a removes most of scale components, particularly sulfate ions (SO 4 2 ⁇ ), contained in raw water such as seawater stored in the tank 2.
  • the RO membrane device 3 b is a device that concentrates nanofiltration permeated water (NFP) and generates water to be treated that is evaporated by the evaporation device 4.
  • the nanofiltration membrane device 3 a and the RO membrane device 3 b are disposed between the tank 2 and the evaporation device 4.
  • the evaporation device 4 is a device that evaporates and concentrates the water to be treated by heating, and includes a sealed evaporation chamber 41, an indirect heater 42, and a spray nozzle 43 that sprays the water to be treated. Concentrated in the bottom of the evaporation chamber 41 is the concentrated water after a part of the water to be treated sprayed from the spray nozzle 43 to the heat transfer tube 421 is evaporated by the heat transfer action of the heat transfer tube 421 as water vapor.
  • a water storage unit 44 is configured. Further, a concentrated water discharge portion 45 for discharging the generated concentrated water to the outside is provided at the bottom of the evaporation chamber 41. In the upper part of the evaporation chamber 41, a steam discharge portion 46 is provided for discharging water vapor generated on the outer surface of the heat transfer tube 421 by the heat exchange action of the heat transfer tube 421 to the outside.
  • the indirect heater 42 includes a plurality of heat transfer tubes 421 provided in the evaporation chamber 41, and a first header 422 and a second header 423 connected to both ends of the plurality of heat transfer tubes 421, respectively.
  • the first header 422 includes a steam introduction portion 47 that guides steam into the heat transfer tube 421.
  • a driving steam line 90 that guides the driving steam generated in the steam generating means 7 such as a boiler is connected to the steam introducing portion 47.
  • the 2nd header 423 is provided with the fresh water discharge part 48 which discharges the fresh water produced
  • the spray nozzle 43 is disposed above the indirect heater 42 inside the evaporation chamber 41, and is connected to the RO membrane device 3b via the treated water supply pipe 91.
  • the spray nozzle 43 is a spray unit that sprays the water to be treated toward the outer surface of the heat transfer tube 421.
  • a steam discharge pipe 92 that guides steam to the condensing device 5 is connected to the steam discharge section 46 provided in the upper part of the evaporation chamber 41.
  • the condensing device 5 is a device that generates condensed water (fresh water) by indirectly cooling the water vapor guided through the steam outlet conduit 92 with cooling water guided from a cooling water supply conduit (not shown).
  • a cooling water supply conduit not shown.
  • the cooling water industrial water cooled by a cooling tower (not shown) or cold water (chiller water) cooled by a refrigeration apparatus can be used.
  • the operation management device 6 is a device that manages the operating conditions of the evaporator 4, and as shown in FIG. 1, a saturated solubility product curve data storage unit 61, an ionic strength calculator 62, a solubility product calculator 63, and the evaporator 4.
  • the operating condition calculating means 64 for calculating the operating conditions and the operating condition changing means 65 are provided.
  • the saturated solubility product curve data storage unit 61 is a storage medium that stores saturated solubility product curve data determined in advance based on the relationship of the saturated solubility product of calcium sulfate to the ionic strength at a predetermined temperature.
  • Saturated solubility product curve data is, for example, the literature value (Table 1) regarding the solubility of calcium sulfate reported in “Journal of Chemical and Engineering Data Vol.13 No.2, April, 1964”. It can be created by converting to ionic strength and solubility product.
  • FIG. 2 indicates the ionic strength, and the Y-axis indicates the saturated solubility product (Ksp) of calcium sulfate.
  • Ksp saturated solubility product
  • saturation solubility product curve data stored in the saturation solubility product curve data storage unit 61 is a literature value relating to the solubility of calcium sulfate reported in “Journal of Chemical and Engineering Data Vol.13 No.2, April, 1964” (Rather of creating this value by converting Table 1) to ionic strength and solubility product, for example, preparing a plurality of seawaters having different ionic strengths, evaporating them at different heating temperatures, It can also be created by confirming the concentration at which precipitation occurs.
  • the ionic strength calculating means 62 is a means for calculating the ionic strength of the water to be treated. For example, if the water to be treated is generated from seawater by the nanofiltration membrane device 3a and the RO membrane device 3b, main ion components (Na ions, Ca ions, Mg ions, K ions, The concentration of Cl ions, SO 4 ions, etc.) is measured by an ion analyzer 621 and calculated based on the following Equation 1.
  • the solubility product calculating means 63 is a means for calculating the solubility product of calcium sulfate contained in the water to be treated.
  • the solubility product calculating means 63 measures the concentration of Ca ions and SO 4 ions contained in the water to be treated by a calcium sulfate concentration meter 631 and calculates the concentration based on the following formula 2.
  • the operating condition calculation means 64 includes a relationship between the ionic strength value calculated by the ionic strength calculation means 62 and the solubility product calculation means 63 and the solubility product value of calcium sulfate, and the saturation solubility product curve stored in the saturation solubility product curve data storage unit 61. By comparing the data, it has a function of calculating the operating conditions of the evaporator 4 such that the solubility product of calcium sulfate with respect to the ionic strength of the water to be treated does not exceed the saturation solubility.
  • the relationship between the ionic strength value of the water to be treated and the calcium sulfate solubility product value calculated by the ionic strength calculation means 62 and the solubility product calculation means 63 is a saturated solubility product curve as shown by point A in FIG. If it exceeds the data, the relationship between the ionic strength value of the water to be treated and the solubility product value of calcium sulfate is the solubility product of calcium sulfate located in the area below the saturation solubility product curve data, or the value of ionic strength. Is calculated.
  • the solubility product or ionic strength value of calcium sulfate located in the area below the saturated solubility product curve data is the highest concentration of fresh water recovered by the evaporator 4 and the concentration of concentrated water produced in the evaporator 4. It can be obtained by back calculation from the brine concentration.
  • the solubility product of the highest brine concentration of calcium sulfate so that it does not exceed the saturation solubility product of calcium sulfate determined by the assumed maximum brine concentration and operating temperature.
  • the solubility product of calcium sulfate at the feed water concentration obtained from the set recovery rate should be controlled so as not to exceed the saturation solubility product of calcium sulfate determined by the ionic strength calculated from the feed water concentration at the predetermined operating temperature. is required.
  • the operating condition changing unit 65 is a unit that changes the operating condition of the evaporator 4 so that the operating condition calculated by the operating condition calculating unit 64 is obtained. Specifically, the ionic strength of the water to be treated or the solubility product of calcium sulfate so that the ionic strength does not exceed the saturation solubility product curve data calculated by the operating condition calculation means 64 or the solubility product of calcium sulfate. It has a function to adjust. In the present embodiment, an opening / closing command is issued to the valve 931 disposed in the middle of the pipe 93 connecting the RO membrane apparatus 3b and the evaporation apparatus 4 and the pipe 93 connecting the tank 2.
  • the ionic strength or the solubility product of calcium sulfate can be controlled by mixing seawater into the water to be treated.
  • the ionic strength or the solubility product of calcium sulfate may be controlled by mixing reverse osmosis membrane concentrated water or the like.
  • the operation management device 6 operates the evaporator 4 based on the relationship between the ionic strength and the saturated solubility product of calcium sulfate so that the solubility product of calcium sulfate does not exceed the saturated solubility product. Since the conditions are controlled, it is possible to reliably prevent the calcium sulfate scale from being deposited in the evaporator 4.
  • the ionic strength calculating means 62 measures the concentration of main ion components such as Na ions, Ca ions, Mg ions, etc. contained in the water to be treated and based on the above formula 1, although the ionic strength is configured to be calculated, the ionic strength calculating means 62 is based on an ionic strength approximation formula determined in advance by the relationship between the total dissolved solid content (TDS) of the water to be treated and the ionic strength. The ionic strength may be calculated.
  • TDS total dissolved solid content
  • the to-be-treated water supply pipe 91 is provided with a total dissolved solid content calculating means for calculating the total dissolved solid content (TDS) of to-be-treated water.
  • the total dissolved solid content (TDS) of the water to be treated can be calculated by measuring the weight of the total solids dissolved by evaporating and drying a certain amount of the water to be treated.
  • the ionic strength approximation formula is the composition of seawater, the composition of NF membrane treated seawater, the composition of seawater obtained by concentrating NF membrane treated seawater with RO membranes, the composition of various samples such as MED feed water and MED concentrated brine (Na ions). , Ca ions, Mg ions, K ions, Cl ions, SO 4 ions, TDS, conductivity), respectively, based on the ionic strength obtained by analyzing according to the above formula 1, It was found that the relational expression (Equation 3) between the ionic strength and TDS and the relational expression (Equation 4) between TDS and conductivity are established as follows.
  • FIG. 3 shows a graph of an approximate expression of ionic strength obtained from the relationship between ionic strength and total dissolved solid content (TDS).
  • coefficients a 1, a 2, a 3 in the above formula 3 will vary depending on the concentration level and its concentration rate of the liquid to be treated, it can be applied without problems by the following ranges.
  • Y is the ionic strength [mol / kg ⁇ H 2 O] of the water to be treated calculated by an approximate expression
  • X is the total dissolved solid content (TDS) [mg / L] of the water to be treated. is there.
  • the total dissolved solid content (TDS) calculated by the total dissolved solid content calculation means is added to the ionic strength approximate expression determined in advance by the relationship between the total dissolved solid content (TDS) of the water to be processed and the ionic strength.
  • TDS total dissolved solid content
  • the total dissolved solid content calculating means measures the total dissolved solid content (TDS) of the water to be treated by measuring the weight of the total solid dissolved by evaporating and drying a certain amount of the water to be treated.
  • TDS total dissolved solid content
  • the total dissolved solid content calculating means calculates the total dissolved solid content (TDS) of the water to be treated based on the total dissolved solid content approximate expression determined in advance by the relationship between the electrical conductivity and the total dissolved solid content (TDS). ) May be calculated.
  • the treated water supply pipe 91 is provided with a conductivity detecting means for detecting the conductivity of the treated water.
  • the total dissolved solid content approximate expression is also the composition of seawater, the composition of NF membrane-treated seawater, the composition of seawater obtained by concentrating NF membrane-treated seawater with the RO membrane, the MED water supply mixed with each, and the MED concentration.
  • TDS total dissolved solid content
  • FIG. 4 shows a graph of an approximate expression for total dissolved solid content obtained from the relationship between electrical conductivity and total dissolved solid content (TDS).
  • coefficients b 1 , b 2 , and b 3 in the above formula 4 vary depending on the concentration level of the liquid to be treated and its concentration rate, but can be applied without any problems in the following range.
  • Y is the total dissolved solid content (TDS) [mg / L] of the water to be treated calculated by the approximate expression
  • X is the conductivity [ ⁇ S of the water to be treated detected by the conductivity detecting means. / Cm].
  • the conductivity of the water to be treated detected by the conductivity detecting means is substituted into the total dissolved solid content approximation formula determined in advance by the relationship between the conductivity and the total dissolved solid content (TDS).
  • TDS total dissolved solid content
  • the fresh water generator 1 according to the second embodiment includes a tank 2, a nanofiltration membrane device 3 a, an RO membrane device 3 b, and an evaporation device 4, which are the first embodiment described above. Since it is the same as the apparatus with which the fresh water generator 1 which concerns on a form is provided, detailed description is abbreviate
  • the operation management device 6 in the fresh water generator 1 includes a saturated solubility product curve data group storage unit 66, an ionic strength calculation unit 62, a solubility product calculation unit 63, and an evaporation device 4.
  • the operating condition calculating means 64 for calculating the operating conditions and the operating condition changing means 65 are provided.
  • the ionic strength calculating means 62 and the solubility product calculating means 63 are the same as the configuration according to the first embodiment, and a detailed description thereof will be omitted.
  • the saturated solubility product curve data group storage unit 66 stores a saturated solubility product curve data group that is calculated in advance at a plurality of temperatures with respect to saturated solubility product curve data determined by the relationship between ionic strength and the saturated solubility product of calcium sulfate. Storage medium.
  • the saturated solubility product curve data in a plurality of temperatures is obtained from, for example, literature values relating to the solubility of calcium sulfate reported in “Journal of Chemical and Engineering Data Vol. 13 No. 2, April, 1964”. Table 1) can be adopted, and this value can be converted into an ionic strength and solubility product.
  • FIG. 6 shows a graph (saturated solubility product curve data group) schematically showing the relationship between the obtained ionic strength in the predetermined temperature range and the saturated solubility product of calcium sulfate.
  • the X axis of the graph in FIG. 6 represents the ionic strength
  • the Y axis represents the saturated solubility product (Ksp).
  • T1 ° C., 125 ° C., T2 ° C., and T3 ° C Each temperature of T1 ° C, 125 ° C, T2 ° C, and T3 ° C has a temperature relationship of T1 ⁇ 125 ° C ⁇ T2 ° C ⁇ T3 ° C.
  • Ksp saturated solubility product
  • the operating condition calculation unit 64 compares the ionic strength value and the solubility product value of calcium sulfate calculated by the ionic strength calculation unit 62 and the solubility product calculation unit 63 with the saturated solubility product curve data group, thereby obtaining water to be treated. Selects a predetermined saturation solubility product curve data in which the solubility product value of calcium sulfate with respect to the ionic strength value does not exceed the saturation solubility product value, and has a function of calculating a temperature corresponding to the selected predetermined saturation solubility product curve data. is doing.
  • the solubility product value of calcium sulfate with respect to the ionic strength value of the water to be treated calculated by the ionic strength calculating means 62 and the solubility product calculating means 63 is the point B in FIG. 6, these points B are T1 ° C. and 125 ° C.
  • the operating condition calculation means 64 is configured to calculate the maximum temperature T2 ° C among the temperatures of T1 ° C, 125 ° C and T2 ° C. Is done.
  • the operating condition changing means 65 is a steam sent from the steam generating means 7 such as a boiler to the evaporator 4 so that the driving temperature in the evaporator 4 becomes the temperature calculated by the operating condition calculating means 64 (for example, T2 ° C.). The amount of control.
  • the operation management apparatus 6 calculates the drive temperature conditions of the evaporator 4 which can prevent scale precipitation of calcium sulfate, and it evaporates under the temperature. Since it controls so that the apparatus 4 can be driven, scale precipitation can be prevented reliably and fresh water can be manufactured efficiently.
  • ionic strength calculation means 62 is based on the relationship between the total dissolved solid content (TDS) of treated water and ionic strength similarly to 1st Embodiment. You may comprise so that ion intensity may be calculated based on the ion intensity approximate expression (Formula 3) determined beforehand.
  • the total dissolved solid content calculating means for calculating the total dissolved solid content (TDS) of the water to be treated is a total dissolved solid content approximation formula (formula) determined in advance by the relationship between the electrical conductivity and the total dissolved solid content (TDS).
  • the total dissolved solid content (TDS) of the water to be treated may be calculated based on 4).
  • each evaporator 4 is configured to include the operation management device 6.
  • the ionic strength calculating means 62 and the solubility product calculating means 63 included in each operation management device 6 calculate the ionic strength and the solubility product of calcium sulfate, respectively, of the water to be treated sprayed by the spraying means in each evaporator 4. Constitute. With such a configuration, fresh water for beverages or the like can be efficiently produced while preventing the scale of calcium sulfate from being generated in each evaporator 4.
  • the conductivity detection means may calculate directly from the detected conductivity. With such a configuration, it is possible to calculate the ionic strength more quickly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Inorganic Chemistry (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

The disclosed operation management device (6) controls the operating conditions of a vaporization device (4) that evaporates and concentrates by heating the water being processed, which comprises calcium sulfate. The device is provided with an ionic strength-calculating means (62) that calculates saturation solubility product curve data that is predetermined from the relationship between ionic strength at prescribed temperatures and the calcium sulfate saturated solubility product, and the ionic strength in the water to be processed, a solubility product-calculating means (63) that calculates the calcium sulfate solubility product in said water to be processed, an operating conditions-calculating means (64) that calculates operating conditions for the vaporization device (4) such that the calcium sulfate solubility product with respect to said ionic strength of said water being processed does not exceed the saturation solubility product by comparison of the ionic strengths and calcium sulfate solubility products calculated by the ionic strength-calculating means (62) and the solubility product-calculating means (63) and said saturation solubility product curve data, and an operating conditions-modifying means (65) that changes the operating conditions of the vaporization device (4) to the operating conditions calculated by the operating conditions-calculating means (64). An operation management device for vaporization devices that can prevent calcium sulfate scale deposition while efficiently producing fresh water can thereby be provided

Description

蒸発装置の運転管理装置、運転管理装置を備えた造水装置、蒸発装置の運転管理方法及び造水方法Evaporator operation management device, fresh water generator with operation management device, evaporator operation management method and fresh water generation method
 本発明は、蒸発装置の運転管理装置、運転管理装置を備えた造水装置、蒸発装置の運転管理方法及び造水方法に関する。 The present invention relates to an operation management device for an evaporation device, a water producing device provided with the operation management device, an operation management method for the evaporation device, and a water production method.
 近年、海水淡水化装置で海水を濃縮する過程で析出する硫酸カルシウムのスケール防止法として原海水を予めナノろ過膜(NF膜)でろ過して海水中のスケール成分、特に硫酸イオン(SO 2―)の大部分を取り除いた海水を淡水化装置例えば蒸発式のMSF(多段フラッシュ型海水淡水化装置)またはMED(多重効用型海水淡水化装置)に給水するシステムが開発されてきた(例えば、特許文献1参照)。その方法の一例として特許文献1及び非特許文献1があり、その効果的運転例が示されている。 In recent years, as a method for preventing the scale of calcium sulfate that is precipitated in the process of concentrating seawater with a seawater desalination apparatus, raw seawater is previously filtered through a nanofiltration membrane (NF membrane) and scale components in seawater, particularly sulfate ions (SO 4 2). -) a system for supplying water to the majority of the removed seawater desalination apparatus e.g. evaporative MSF (multistage flash desalination equipment) or MED (multi-effect desalination apparatus) have been developed (for example, Patent Document 1). As an example of the method, there are Patent Document 1 and Non-Patent Document 1, and an effective operation example is shown.
 ここで、海水をNF膜で処理すると大幅に組成が変わることになる。この一例を非特許文献1におけるデータを引用して図8に示す。図8の横軸は海水の成分、左の縦軸はTDS(Total Dissolved Solids:全溶解固形分)と塩素イオン(Cl)の濃度(ppm) 、右の縦軸は全硬度成分の濃度(ppm)を表している。海水はサウジアラビアの海水であり、NF膜処理によりTDSは45,460ppmから28,260ppmに、塩素イオン(Cl)は21,587ppmから16,438ppmに、硫酸イオン(SO 2-)は3,100ppmから2ppm以下に、全硬度(Total Hardness)は7,500ppmから220ppmに低減し、原海水とは大幅に組成比率が変わっていることが判る。 Here, when seawater is treated with an NF membrane, the composition changes significantly. An example of this is shown in FIG. In FIG. 8, the horizontal axis represents seawater components, the left vertical axis represents TDS (Total Dissolved Solids) and chlorine ion (Cl ) concentrations (ppm), and the right vertical axis represents total hardness component concentrations (ppm). ppm). Seawater is Saudi Arabian seawater, and TDS is changed from 45,460 ppm to 28,260 ppm, chlorine ion (Cl ) is changed from 21,587 ppm to 16,438 ppm, and sulfate ion (SO 4 2− ) is 3 by NF membrane treatment. From 100 ppm to 2 ppm or less, the total hardness (Total Hardness) is reduced from 7,500 ppm to 220 ppm, which shows that the composition ratio is significantly different from that of the raw seawater.
 また、従来、海水淡水化装置の運転管理の指針として、図9に示すようなグラフが採用されてきた。このグラフは、非特許文献2に紹介されているものであり、海水濃縮水中における硫酸カルシウムの飽和溶解度について、加熱温度と標準海水の濃縮倍数との関係に沿ってまとめたものである。図9におけるグラフのX軸は加熱温度を示し、一例として150°F(65℃)の運転温度の場合、海水が2倍以上濃縮されると硫酸カルシウム無水塩(anhydrite)が析出することを表している。従って、例えば、MSFやMED等の蒸発装置により淡水を生成する場合、硫酸カルシウムのスケールが析出することを防止するためには、海水濃縮水中における硫酸カルシウムの飽和溶解度以下となるように、蒸発装置の加熱温度や濃縮倍数を調節する必要がある。 Conventionally, a graph as shown in FIG. 9 has been adopted as a guideline for operation management of a seawater desalination apparatus. This graph is introduced in Non-Patent Document 2 and summarizes the saturation solubility of calcium sulfate in seawater concentrated water along the relationship between the heating temperature and the concentration factor of standard seawater. The X-axis of the graph in FIG. 9 indicates the heating temperature. As an example, in the case of an operating temperature of 150 ° F. (65 ° C.), when seawater is concentrated twice or more, anhydrous calcium sulfate (anhydrite) is precipitated. ing. Therefore, for example, when fresh water is generated by an evaporation device such as MSF or MED, in order to prevent the calcium sulfate scale from precipitating, the evaporation device is set so as to be equal to or lower than the saturation solubility of calcium sulfate in seawater concentrated water. It is necessary to adjust the heating temperature and concentration factor.
特表2003-507183号公報Special table 2003-507183
 しかしながら、海水そのままを濃縮していく場合には、硫酸カルシウムが析出する濃度限界を予測する上で図9のグラフは役立つが、NF膜等で海水中の硫酸イオン、カルシウムなどのイオンを除去した海水を濃縮する場合には有効な指標にはならないという問題があった。つまり、NF膜等で海水中の硫酸イオン、カルシウムなどのイオンを除去した場合、海水に溶存している各種のイオン比率は大幅に変化することになるため、図9のグラフのデータに基づいて海水淡水化装置の運転管理を行ったとしても、硫酸カルシウムのスケールが発生することを効果的に防止することが難しいという問題があった。 However, when concentrating seawater as it is, the graph of FIG. 9 is useful in predicting the concentration limit at which calcium sulfate precipitates, but ions such as sulfate ions and calcium in seawater were removed with an NF membrane or the like. When concentrating seawater, there was a problem that it was not an effective index. That is, when ions such as sulfate ions and calcium in seawater are removed with an NF membrane or the like, the ratio of various ions dissolved in seawater will change greatly, so based on the data in the graph of FIG. Even if the operation management of the seawater desalination apparatus is performed, there is a problem that it is difficult to effectively prevent the generation of calcium sulfate scale.
 本発明は、このような問題を解決するためになされたものであって、硫酸カルシウムスケール析出を防止しつつ、効率よく淡水を生成することができる蒸発装置の運転管理装置、運転管理装置を備えた造水装置、蒸発装置の運転管理方法及び造水方法を提供することを目的とする。 The present invention has been made to solve such a problem, and includes an operation management device and an operation management device for an evaporator that can efficiently produce fresh water while preventing calcium sulfate scale precipitation. Another object of the present invention is to provide a fresh water generator, an operation management method for an evaporator, and a fresh water generation method.
 本発明の上記目的は、加熱することによって硫酸カルシウムを含む被処理水を蒸発濃縮する蒸発装置の運転条件を制御する運転管理装置であって、所定温度におけるイオン強度と硫酸カルシウムの飽和溶解度積との関係により予め決定される飽和溶解度積曲線データと、前記被処理水におけるイオン強度を算出するイオン強度算出手段と、前記被処理水における硫酸カルシウムの溶解度積を算出する溶解度積算出手段と、前記イオン強度算出手段及び前記溶解度積算出手段により算出したイオン強度値及び硫酸カルシウムの溶解度積値と、前記飽和溶解度積曲線データとを比較することにより、前記被処理水のイオン強度値に対する硫酸カルシウムの溶解度積値が、飽和溶解度積値を超えない前記蒸発装置の運転条件を算出する運転条件算出手段と、前記運転条件算出手段が算出した運転条件となるように前記蒸発装置の運転条件を変更する運転条件変更手段とを備えている運転管理装置により達成される。 The above object of the present invention is an operation management device for controlling the operating conditions of an evaporation device for evaporating and concentrating water to be treated containing calcium sulfate by heating, the ionic strength at a predetermined temperature and the saturated solubility product of calcium sulfate. Saturated solubility product curve data determined in advance by the relationship, ionic strength calculating means for calculating ionic strength in the treated water, solubility product calculating means for calculating the solubility product of calcium sulfate in the treated water, By comparing the ionic strength value calculated by the ionic strength calculating means and the solubility product calculating means and the solubility product value of calcium sulfate with the saturated solubility product curve data, calcium sulfate relative to the ionic strength value of the water to be treated is obtained. The operating condition calculation for calculating the operating condition of the evaporator whose solubility product value does not exceed the saturation solubility product value. It means, wherein the operating condition calculating means is achieved by the operation management device and a driving condition changing means for changing the operating conditions of the evaporator such that the calculated operating conditions.
 この運転管理装置において、前記被処理水の全溶解固形分(TDS)を算出する全溶解固形分算出手段を備えており、前記イオン強度算出手段は、全溶解固形分(TDS)とイオン強度との関係により予め決定されるイオン強度近似式に基づいて、イオン強度を算出することが好ましい。 The operation management device includes a total dissolved solid content calculating means for calculating the total dissolved solid content (TDS) of the water to be treated, and the ionic strength calculating means includes the total dissolved solid content (TDS), the ionic strength, It is preferable to calculate the ionic strength based on an ionic strength approximation formula determined in advance based on the above relationship.
 また、前記被処理水の導電率を検知する導電率検知手段を備えており、前記全溶解固形分算出手段は、導電率と全溶解固形分(TDS)との関係により予め決定される全溶解固形分近似式に基づいて、全溶解固形分(TDS)を算出することが好ましい。 In addition, a conductivity detecting means for detecting the conductivity of the water to be treated is provided, and the total dissolved solid content calculating means is a total dissolution determined in advance based on a relationship between the conductivity and the total dissolved solid content (TDS). It is preferable to calculate the total dissolved solid content (TDS) based on the solid content approximate expression.
 また、前記運転条件算出手段は、前記イオン強度算出手段及び前記溶解度積算出手段により算出したイオン強度値及び硫酸カルシウムの溶解度積値と、前記飽和溶解度積曲線データとを比較することにより、イオン強度に対する硫酸カルシウムの溶解度積が、飽和溶解度積値を超えないイオン強度値、或いは、硫酸カルシウムの溶解度積値を算出し、前記運転条件変更手段は、前記運転条件算出手段が算出した飽和溶解度積値を超えないイオン強度値、或いは、硫酸カルシウムの溶解度積値となるように、前記被処理水のイオン強度、或いは、硫酸カルシウムの溶解度積を変更することが好ましい。 Further, the operating condition calculating means compares the ionic strength value calculated by the ionic strength calculating means and the solubility product calculating means and the solubility product value of calcium sulfate with the saturated solubility product curve data, thereby comparing the ionic strength. Calculate the ionic strength value that the solubility product of calcium sulfate does not exceed the saturation solubility product value, or the solubility product value of calcium sulfate, and the operating condition changing means is the saturated solubility product value calculated by the operating condition calculating means It is preferable to change the ionic strength of the water to be treated or the solubility product of calcium sulfate so that the ionic strength value does not exceed the value or the solubility product value of calcium sulfate.
 また、本発明の上記目的は、硫酸カルシウムを含む被処理水を加熱することによって蒸発濃縮する蒸発装置と、上記いずれかの運転管理装置とを備える造水装置により達成される。 Also, the above object of the present invention is achieved by a fresh water generator comprising an evaporation device that evaporates and concentrates by heating the water to be treated containing calcium sulfate, and any one of the above operation management devices.
 また、本発明の上記目的は、加熱することによって硫酸カルシウムを含む被処理水を蒸発濃縮する蒸発装置の運転条件を制御する運転管理方法であって、前記被処理水におけるイオン強度を算出するイオン強度算出ステップと、前記被処理水における硫酸カルシウムの溶解度積を算出する溶解度積算出ステップと、前記イオン強度算出ステップ及び前記溶解度積算出ステップにより算出したイオン強度値及び硫酸カルシウムの溶解度積値と、所定温度におけるイオン強度及び硫酸カルシウムの飽和溶解度積の関係により予め決定される飽和溶解度積曲線データとを比較することにより、前記被処理水のイオン強度値に対する硫酸カルシウムの溶解度積値が、飽和溶解度積値を超えない前記蒸発装置の運転条件を算出する運転条件算出ステップと、前記運転条件算出ステップが算出した運転条件となるように前記蒸発装置の運転条件を変更する運転条件変更ステップとを備えている運転管理方法により達成される。 Another object of the present invention is an operation management method for controlling operating conditions of an evaporation apparatus that evaporates and concentrates water to be treated containing calcium sulfate by heating, wherein the ion for calculating ion intensity in the water to be treated is obtained. A strength calculation step, a solubility product calculation step for calculating a solubility product of calcium sulfate in the treated water, an ionic strength value calculated by the ionic strength calculation step and the solubility product calculation step, and a solubility product value of calcium sulfate, By comparing the saturation solubility product curve data determined in advance by the relationship between the ionic strength at a predetermined temperature and the saturation solubility product of calcium sulfate, the solubility product value of calcium sulfate with respect to the ionic strength value of the water to be treated is the saturation solubility. An operation condition calculation step for calculating the operation condition of the evaporator not exceeding the product value. When the operating condition calculation step is accomplished by the operation management method and a driving condition changing step of changing the operating conditions of the evaporator such that the calculated operating conditions.
 この運転管理方法において、前記被処理水の全溶解固形分(TDS)を算出する全溶解固形分算出ステップを備えており、前記イオン強度算出ステップは、全溶解固形分(TDS)とイオン強度との関係により予め決定されるイオン強度近似式に基づいて、イオン強度を算出することが好ましい。また、前記被処理水の導電率を検知する導電率検知ステップを備えており、前記全溶解固形分算出ステップは、導電率と全溶解固形分(TDS)との関係により予め決定される全溶解固形分近似式に基づいて、全溶解固形分(TDS)を算出することが好ましい。 In this operation management method, a total dissolved solid content calculating step for calculating the total dissolved solid content (TDS) of the water to be treated is provided, and the ionic strength calculating step includes the total dissolved solid content (TDS), the ionic strength, It is preferable to calculate the ionic strength based on an ionic strength approximation formula determined in advance based on the above relationship. In addition, a conductivity detecting step for detecting the conductivity of the water to be treated is provided, and the total dissolved solid content calculating step is based on the relationship between the electrical conductivity and the total dissolved solid content (TDS). It is preferable to calculate the total dissolved solid content (TDS) based on the solid content approximate expression.
 あるいは、上記運転管理方法は、前記被処理水の導電率を検知する導電率検知ステップを備えており、前記イオン強度算出ステップは、導電率とイオン強度との関係により予め決定される第2イオン強度近似式に基づいて、イオン強度を算出することが好ましい。 Or the said operation management method is provided with the electrical conductivity detection step which detects the electrical conductivity of the said to-be-processed water, and the said ion intensity calculation step is 2nd ion previously determined by the relationship between electrical conductivity and ion intensity. It is preferable to calculate the ion intensity based on the intensity approximate expression.
 また、前記運転条件算出ステップは、前記イオン強度算出手段及び前記溶解度積算出手段により算出したイオン強度値及び硫酸カルシウムの溶解度積値と、前記飽和溶解度積曲線データとを比較することにより、イオン強度に対する硫酸カルシウムの飽和溶解度積が、飽和溶解度積値を超えないイオン強度値、或いは、硫酸カルシウムの溶解度積値を算出し、前記運転条件変更手段は、前記運転条件算出手段が算出した飽和溶解度積値を超えないイオン強度値、或いは、硫酸カルシウムの溶解度積値となるように、前記被処理水のイオン強度、或いは、硫酸カルシウムの溶解度積を変更することが好ましい。 Further, the operating condition calculating step compares the ionic strength value calculated by the ionic strength calculating means and the solubility product calculating means and the solubility product value of calcium sulfate with the saturated solubility product curve data, thereby comparing the ionic strength. Calculate the ionic strength value that does not exceed the saturation solubility product value of calcium sulfate or the solubility product value of calcium sulfate, and the operating condition changing means is the saturated solubility product calculated by the operating condition calculating means. It is preferable to change the ionic strength of the water to be treated or the solubility product of calcium sulfate so that the ionic strength value does not exceed the value or the solubility product value of calcium sulfate.
 また、本発明の上記目的は、上記運転管理方法を用いて硫酸カルシウムを含む被処理水を蒸発濃縮することにより淡水を生成する造水方法により達成される。 Further, the above object of the present invention is achieved by a fresh water producing method for producing fresh water by evaporating and concentrating water to be treated containing calcium sulfate using the above operation management method.
 また、本発明の上記目的は、加熱することによって硫酸カルシウムを含む被処理水を蒸発濃縮する蒸発装置と、前記蒸発装置の運転条件を制御する運転管理装置とを備える造水装置であって、前記運転管理装置は、所定温度におけるイオン強度、及び、硫酸カルシウムの飽和溶解度積の関係により予め決定される飽和溶解度積曲線データを複数の温度下で予め算出した飽和溶解度積曲線データ群と、前記被処理水におけるイオン強度を算出するイオン強度算出手段と、前記被処理水における硫酸カルシウムの溶解度積を算出する溶解度積算出手段と、前記イオン強度算出手段及び前記溶解度積算出手段により算出したイオン強度値及び硫酸カルシウムの溶解度積値と、前記飽和溶解度積曲線データ群とを比較することにより、前記被処理水のイオン強度値に対する硫酸カルシウムの溶解度積値が、飽和溶解度積値を超えない所定の飽和溶解度積曲線データを選定すると共に、前記所定の飽和溶解度積曲線データに対応する温度を算出する運転条件算出手段と、前記運転条件算出手段が算出した温度となるように前記蒸発装置の加熱温度を変更する運転条件変更手段とを備えている造水装置により達成される。 The above-mentioned object of the present invention is a fresh water generator comprising an evaporation device that evaporates and concentrates water to be treated containing calcium sulfate by heating, and an operation management device that controls operating conditions of the evaporation device, The operation management device is a saturated solubility product curve data group in which saturated solubility product curve data determined in advance by a relationship between ionic strength at a predetermined temperature and a saturated solubility product of calcium sulfate is calculated at a plurality of temperatures, and Ion intensity calculating means for calculating ionic strength in the treated water, solubility product calculating means for calculating the solubility product of calcium sulfate in the treated water, ionic strength calculated by the ionic strength calculating means and the solubility product calculating means By comparing the value and solubility product value of calcium sulfate with the saturated solubility product curve data group, the treated water Operating condition calculation means for selecting a predetermined saturation solubility product curve data in which the solubility product value of calcium sulfate with respect to the ionic strength value does not exceed the saturation solubility product value and calculating a temperature corresponding to the predetermined saturation solubility product curve data And an operating condition changing means for changing the heating temperature of the evaporator so as to be the temperature calculated by the operating condition calculating means.
 本発明によれば、硫酸カルシウムスケール析出を防止しつつ、効率よく淡水を生成することができる蒸発装置の運転管理装置、運転管理装置を備えた造水装置、蒸発装置の運転管理方法及び造水方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the operation management apparatus of the evaporation apparatus which can produce | generate fresh water efficiently, preventing the calcium sulfate scale precipitation, the fresh water generator provided with the operation management apparatus, the operation management method of the evaporation apparatus, and fresh water generation A method can be provided.
本発明の第1の実施形態に係る造水装置を示す概略構成図である。It is a schematic structure figure showing the fresh water generator concerning a 1st embodiment of the present invention. イオン強度に対する硫酸カルシウムの飽和溶解度積曲線データを示すグラフである。It is a graph which shows the saturated solubility product curve data of calcium sulfate with respect to ionic strength. イオン強度と全溶解固形分(TDS)との関係により求めたイオン強度近似式を示すグラフである。It is a graph which shows the ionic strength approximate expression calculated | required by the relationship between ionic strength and total melt | dissolution solid content (TDS). 導電率と全溶解固形分(TDS)との関係により求めた全溶解固形分近似式を示すグラフである。It is a graph which shows the total melt | dissolution solid content approximate expression calculated | required by the relationship between electrical conductivity and total melt solid content (TDS). 本発明の第1の実施形態に係る造水装置を示す概略構成図である。It is a schematic structure figure showing the fresh water generator concerning a 1st embodiment of the present invention. イオン強度に対する硫酸カルシウムの飽和溶解度積曲線データを複数の温度下で予め算出した飽和溶解度積曲線データ群を示すグラフである。It is a graph which shows the saturated solubility product curve data group which computed the saturated solubility product curve data of the calcium sulfate with respect to ionic strength beforehand in several temperature. 本発明に係る造水装置の変形例を示す概略構成図である。It is a schematic block diagram which shows the modification of the fresh water generator which concerns on this invention. 海水をNF膜で処理した場合の海水の組成変化を説明するための説明図である。It is explanatory drawing for demonstrating the composition change of seawater at the time of processing seawater with an NF membrane. 海水濃縮水中における硫酸カルシウムの飽和溶解度について、加熱温度と濃縮倍数との関係に沿ってまとめたグラフである。It is the graph put together along the relationship between heating temperature and concentration multiple about the saturation solubility of calcium sulfate in seawater concentration water.
 以下、本発明に係る蒸発装置4の運転管理装置6、及びこれを備えた造水装置について添付図面を参照して説明する。図1は、本発明の第1の実施形態に係る造水装置の概略構成図である。 Hereinafter, the operation management device 6 of the evaporation device 4 according to the present invention and the fresh water generator having the same will be described with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of a fresh water generator according to a first embodiment of the present invention.
 図1に示すように、造水装置1は、海水等の原水が貯留されるタンク2と、原水に含まれるスケール成分を除去するナノ濾過膜装置3aと、ナノ濾過透過水(NFP)を濃縮するRO膜装置(逆浸透膜装置)3bと、蒸発装置4と、凝縮装置5と、蒸発装置4の運転条件を管理する運転管理装置6とを備えている。 As shown in FIG. 1, the fresh water generator 1 concentrates a tank 2 in which raw water such as seawater is stored, a nanofiltration membrane device 3 a that removes scale components contained in the raw water, and nanofiltration permeated water (NFP). RO membrane device (reverse osmosis membrane device) 3b, evaporation device 4, condensation device 5, and operation management device 6 that manages the operating conditions of evaporation device 4 are provided.
  ナノ濾過膜装置3aは、タンク2に貯留される海水等の原水に含まれるスケール成分、特に硫酸イオン(SO 2-)の大部分を除去する。RO膜装置3bは、ナノ濾過透過水(NFP)を濃縮し、蒸発装置4により蒸発する被処理水を生成する装置である。ナノ濾過膜装置3a及びRO膜装置3bは、タンク2と蒸発装置4との間に配置されている。 The nanofiltration membrane device 3a removes most of scale components, particularly sulfate ions (SO 4 2− ), contained in raw water such as seawater stored in the tank 2. The RO membrane device 3 b is a device that concentrates nanofiltration permeated water (NFP) and generates water to be treated that is evaporated by the evaporation device 4. The nanofiltration membrane device 3 a and the RO membrane device 3 b are disposed between the tank 2 and the evaporation device 4.
 蒸発装置4は、加熱することによって被処理水を蒸発濃縮する装置であり、密閉型の蒸発室41、間接式加熱器42および被処理水を散布する散布ノズル43を備えている。蒸発室41内の底部は、散布ノズル43から伝熱管421に散布された被処理水の一部が、伝熱管421の熱交換作用により水蒸気となって蒸発した後の濃縮水が貯留される濃縮水貯留部44を構成している。また、蒸発室41の底部には、生成された濃縮水を外部に排出するための濃縮水排出部45が設けられている。蒸発室41の上部には、伝熱管421の熱交換作用により伝熱管421の外表面において生成した水蒸気を外部に排出するための蒸気排出部46が設けられている。 The evaporation device 4 is a device that evaporates and concentrates the water to be treated by heating, and includes a sealed evaporation chamber 41, an indirect heater 42, and a spray nozzle 43 that sprays the water to be treated. Concentrated in the bottom of the evaporation chamber 41 is the concentrated water after a part of the water to be treated sprayed from the spray nozzle 43 to the heat transfer tube 421 is evaporated by the heat transfer action of the heat transfer tube 421 as water vapor. A water storage unit 44 is configured. Further, a concentrated water discharge portion 45 for discharging the generated concentrated water to the outside is provided at the bottom of the evaporation chamber 41. In the upper part of the evaporation chamber 41, a steam discharge portion 46 is provided for discharging water vapor generated on the outer surface of the heat transfer tube 421 by the heat exchange action of the heat transfer tube 421 to the outside.
 間接式加熱器42は、蒸発室41内に設けられる複数の伝熱管421と、これら複数の伝熱管421の両端にそれぞれ接続されている第1ヘッダ422、第2ヘッダ423とを備えている。第1ヘッダ422は、伝熱管421内に蒸気を導く蒸気導入部47を備えている。この蒸気導入部47には、ボイラ等の蒸気発生手段7において生成される駆動蒸気を導く駆動蒸気管路90が接続している。第2ヘッダ423は、伝熱管421の熱交換作用により伝熱管421内で生成した淡水を外部に排出する淡水排出部48を備えている。 The indirect heater 42 includes a plurality of heat transfer tubes 421 provided in the evaporation chamber 41, and a first header 422 and a second header 423 connected to both ends of the plurality of heat transfer tubes 421, respectively. The first header 422 includes a steam introduction portion 47 that guides steam into the heat transfer tube 421. A driving steam line 90 that guides the driving steam generated in the steam generating means 7 such as a boiler is connected to the steam introducing portion 47. The 2nd header 423 is provided with the fresh water discharge part 48 which discharges the fresh water produced | generated in the heat exchanger tube 421 by the heat exchange effect | action of the heat exchanger tube 421 outside.
 散布ノズル43は、蒸発室41の内部において間接式加熱器42の上方に配置されており、被処理水供給管路91を介してRO膜装置3bと接続している。この散布ノズル43は、被処理水を伝熱管421の外表面に向けて散布する散布手段である。 The spray nozzle 43 is disposed above the indirect heater 42 inside the evaporation chamber 41, and is connected to the RO membrane device 3b via the treated water supply pipe 91. The spray nozzle 43 is a spray unit that sprays the water to be treated toward the outer surface of the heat transfer tube 421.
 蒸発室41の上部に設けられる蒸気排出部46には、凝縮装置5に蒸気を導く蒸気取出管路92が接続している。凝縮装置5は、図示しない冷却水供給管路から導かれた冷却水によって、蒸気取出管路92を介して導かれた水蒸気を間接的に冷却して凝縮水(淡水)を生成する装置である。冷却水としては、図示しない冷却塔等で冷却された工業用水や冷凍装置で冷却された冷水(チラー水)等を使用できる。 A steam discharge pipe 92 that guides steam to the condensing device 5 is connected to the steam discharge section 46 provided in the upper part of the evaporation chamber 41. The condensing device 5 is a device that generates condensed water (fresh water) by indirectly cooling the water vapor guided through the steam outlet conduit 92 with cooling water guided from a cooling water supply conduit (not shown). . As the cooling water, industrial water cooled by a cooling tower (not shown) or cold water (chiller water) cooled by a refrigeration apparatus can be used.
 運転管理装置6は、蒸発装置4の運転条件を管理する装置であり、図1に示すように、飽和溶解度積曲線データ記憶部61、イオン強度算出手段62、溶解度積算出手段63、蒸発装置4の運転条件を算出する運転条件算出手段64、及び、運転条件変更手段65を備えている。 The operation management device 6 is a device that manages the operating conditions of the evaporator 4, and as shown in FIG. 1, a saturated solubility product curve data storage unit 61, an ionic strength calculator 62, a solubility product calculator 63, and the evaporator 4. The operating condition calculating means 64 for calculating the operating conditions and the operating condition changing means 65 are provided.
 飽和溶解度積曲線データ記憶部61は、所定温度におけるイオン強度に対する硫酸カルシウムの飽和溶解度積の関係により予め決定される飽和溶解度積曲線データが格納された記憶媒体である。飽和溶解度積曲線データは、例えば、“Journal of Chemical and Engineering Data Vol.13 No.2,April,1964”に報告されている硫酸カルシウムの溶解度に関する文献値(表1)を採用し、この値をイオン強度と溶解度積に換算することにより作成することができる。つまり、表1に示されたNaCl溶液中の硫酸カルシウムの飽和溶解度のデータ(温度範囲25~200℃、NaCl濃度範囲0.0~6.0Mol)を全てイオン強度と硫酸カルシウム飽和溶解度積に換算して整理することにより得ることができる。具体的な換算値の一例として125℃における無水硫酸カルシウムのイオン強度と飽和溶解度積の関係を表2に示す。また、表2に示したデータに基づいて作成した飽和溶解度積曲線データを図2に示す。図2におけるグラフのX軸はイオン強度を、Y軸は硫酸カルシウムの飽和溶解度積(Ksp)を示している。図2は運転温度が125℃の場合のグラフであるが、運転温度別に同様なグラフを作成して運転指針とすることが出来る。 The saturated solubility product curve data storage unit 61 is a storage medium that stores saturated solubility product curve data determined in advance based on the relationship of the saturated solubility product of calcium sulfate to the ionic strength at a predetermined temperature. Saturated solubility product curve data is, for example, the literature value (Table 1) regarding the solubility of calcium sulfate reported in “Journal of Chemical and Engineering Data Vol.13 No.2, April, 1964”. It can be created by converting to ionic strength and solubility product. In other words, all the data on the saturation solubility of calcium sulfate in the NaCl solution shown in Table 1 (temperature range 25 to 200 ° C., NaCl concentration range 0.0 to 6.0 mol) is converted into the product of ionic strength and calcium sulfate saturation solubility. And can be obtained by organizing. Table 2 shows the relationship between the ionic strength and saturated solubility product of anhydrous calcium sulfate at 125 ° C. as an example of a specific conversion value. Further, FIG. 2 shows saturated solubility product curve data created based on the data shown in Table 2. The X-axis of the graph in FIG. 2 indicates the ionic strength, and the Y-axis indicates the saturated solubility product (Ksp) of calcium sulfate. FIG. 2 is a graph when the operation temperature is 125 ° C., but a similar graph can be created for each operation temperature to be used as an operation guideline.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、飽和溶解度積曲線データ記憶部61が格納する飽和溶解度積曲線データを“Journal of Chemical and Engineering Data Vol.13 No.2,April,1964”に報告されている硫酸カルシウムの溶解度に関する文献値(表1)を採用し、この値をイオン強度と溶解度積に換算することにより作成する代わりに、例えば、イオン強度の異なる海水を複数準備し、それぞれについて加熱温度を変えて蒸発させて、硫酸カルシウムが析出する濃度を確認することによっても作成することができる。 It should be noted that the saturation solubility product curve data stored in the saturation solubility product curve data storage unit 61 is a literature value relating to the solubility of calcium sulfate reported in “Journal of Chemical and Engineering Data Vol.13 No.2, April, 1964” ( Instead of creating this value by converting Table 1) to ionic strength and solubility product, for example, preparing a plurality of seawaters having different ionic strengths, evaporating them at different heating temperatures, It can also be created by confirming the concentration at which precipitation occurs.
 イオン強度算出手段62は、被処理水のイオン強度を算出する手段である。例えば、被処理水が、ナノ濾過膜装置3a及びRO膜装置3bにより海水から生成されるものであれば、被処理水中に含まれる主要イオン成分(Naイオン,Caイオン,Mgイオン,Kイオン,Clイオン,SOイオン等)の濃度をイオン分析計621により測定して、下記の式1に基づいて算出する。 The ionic strength calculating means 62 is a means for calculating the ionic strength of the water to be treated. For example, if the water to be treated is generated from seawater by the nanofiltration membrane device 3a and the RO membrane device 3b, main ion components (Na ions, Ca ions, Mg ions, K ions, The concentration of Cl ions, SO 4 ions, etc.) is measured by an ion analyzer 621 and calculated based on the following Equation 1.
 (式1)
    IC:1/2Σ(m×Zi2
  IC:溶液のイオン強度 [mol/kg・H2O]
  m:各イオンのモル濃度[mol/kg・H2O]
  Z:各イオンの電荷
(Formula 1)
IC: 1 / 2Σ (m i × Zi 2 )
IC: Ionic strength of solution [mol / kg · H 2 O]
m i : molar concentration of each ion [mol / kg · H 2 O]
Z i : Charge of each ion
 溶解度積算出手段63は、被処理水に含まれる硫酸カルシウムの溶解度積を算出する手段である。この溶解度積算出手段63は、被処理水に含まれるCaイオン及びSOイオンの濃度を硫酸カルシウム濃度計631により測定して、下記の式2に基づいて算出する。 The solubility product calculating means 63 is a means for calculating the solubility product of calcium sulfate contained in the water to be treated. The solubility product calculating means 63 measures the concentration of Ca ions and SO 4 ions contained in the water to be treated by a calcium sulfate concentration meter 631 and calculates the concentration based on the following formula 2.
 (式2)
     IPC:[Ca]×[SO
  IPC:硫酸カルシウムの溶解度積[mol/L
  [Ca]:Caイオンのモル濃度 [mol/L]
  [SO]:SOイオンのモル濃度 [mol/L]
(Formula 2)
IPC: [Ca] × [SO 4 ]
IPC: solubility product of calcium sulfate [mol 2 / L 2 ]
[Ca]: Ca ion molar concentration [mol / L]
[SO 4 ]: Molar concentration of SO 4 ion [mol / L]
 運転条件算出手段64は、イオン強度算出手段62及び溶解度積算出手段63により算出したイオン強度値及び硫酸カルシウムの溶解度積値の関係と、飽和溶解度積曲線データ記憶部61が記憶する飽和溶解度積曲線データとを比較することにより、被処理水のイオン強度に対する硫酸カルシウムの溶解度積が、飽和溶解度を越えないような蒸発装置4の運転条件を算出する機能を有している。本実施形態においては、イオン強度算出手段62及び溶解度積算出手段63により算出した被処理水のイオン強度値及び硫酸カルシウム溶解度積値の関係が、図2のA点に示すように飽和溶解度積曲線データを超えるものである場合、被処理水のイオン強度値及び硫酸カルシウム溶解度積値の関係が、飽和溶解度積曲線データよりも下の領域に位置する硫酸カルシウムの溶解度積、或いは、イオン強度の値を算出するように構成されている。 The operating condition calculation means 64 includes a relationship between the ionic strength value calculated by the ionic strength calculation means 62 and the solubility product calculation means 63 and the solubility product value of calcium sulfate, and the saturation solubility product curve stored in the saturation solubility product curve data storage unit 61. By comparing the data, it has a function of calculating the operating conditions of the evaporator 4 such that the solubility product of calcium sulfate with respect to the ionic strength of the water to be treated does not exceed the saturation solubility. In the present embodiment, the relationship between the ionic strength value of the water to be treated and the calcium sulfate solubility product value calculated by the ionic strength calculation means 62 and the solubility product calculation means 63 is a saturated solubility product curve as shown by point A in FIG. If it exceeds the data, the relationship between the ionic strength value of the water to be treated and the solubility product value of calcium sulfate is the solubility product of calcium sulfate located in the area below the saturation solubility product curve data, or the value of ionic strength. Is calculated.
 飽和溶解度積曲線データよりも下の領域に位置する硫酸カルシウムの溶解度積、或いは、イオン強度の値は、蒸発装置4の淡水回収率と、蒸発装置4において生成される濃縮水の濃度である最高ブライン濃度から逆算して求めることができる。 The solubility product or ionic strength value of calcium sulfate located in the area below the saturated solubility product curve data is the highest concentration of fresh water recovered by the evaporator 4 and the concentration of concentrated water produced in the evaporator 4. It can be obtained by back calculation from the brine concentration.
 一般に、蒸発装置の淡水回収率(a)と給水濃度(Cf)が設定されると最高ブライン濃度(Cb)は、Cb=Cf x(1/(1-a))から算出できる。   Generally, when the fresh water recovery rate (a) and feed water concentration (Cf) of the evaporator are set, the maximum brine concentration (Cb) can be calculated from Cb = Cf x (1 / (1-a)).
 また、蒸発装置の最高ブライン濃度が高くなると沸点上昇も高くなり、蒸発効率の低下を招くことになるので、蒸発装置に許容される最高ブライン濃度の上限には自ずと制約がある。最高ブライン濃度の硫酸カルシウムの溶解度積を、想定される最高ブライン濃度及び運転温度により決定される硫酸カルシウムの飽和溶解度積を超えないように制御することが必要である。さらに設定された回収率から求めた給水濃度の硫酸カルシウムの溶解度積を、所定の運転温度での給水濃度から算出したイオン強度により決定される硫酸カルシウムの飽和溶解度積を超えないように制御することが必要である。 Also, as the maximum brine concentration of the evaporator increases, the boiling point increases and the evaporation efficiency decreases, so the upper limit of the maximum brine concentration allowed for the evaporator is naturally limited. It is necessary to control the solubility product of the highest brine concentration of calcium sulfate so that it does not exceed the saturation solubility product of calcium sulfate determined by the assumed maximum brine concentration and operating temperature. Furthermore, the solubility product of calcium sulfate at the feed water concentration obtained from the set recovery rate should be controlled so as not to exceed the saturation solubility product of calcium sulfate determined by the ionic strength calculated from the feed water concentration at the predetermined operating temperature. is required.
 運転条件変更手段65は、運転条件算出手段64が算出した運転条件となるように、蒸発装置4の運転条件を変更する手段である。具体的には、運転条件算出手段64が算出した飽和溶解度積曲線データを超えないイオン強度、或いは、硫酸カルシウムの溶解度積となるように、被処理水のイオン強度、或いは、硫酸カルシウムの溶解度積を調整する機能を有する。本実施形態においては、RO膜装置3b及び蒸発装置4を接続する被処理水供給管路91と、タンク2とを接続する管路93の途中に配置されるバルブ931に開閉指令を発するように構成されており、被処理水に海水を混入することにより被処理水のイオン強度或いは硫酸カルシウムの溶解度積を制御できるように構成されている。なお、例えば、逆浸透膜濃縮水などを混合することにより被処理水のイオン強度或いは硫酸カルシウムの溶解度積を制御するように構成してもよい。 The operating condition changing unit 65 is a unit that changes the operating condition of the evaporator 4 so that the operating condition calculated by the operating condition calculating unit 64 is obtained. Specifically, the ionic strength of the water to be treated or the solubility product of calcium sulfate so that the ionic strength does not exceed the saturation solubility product curve data calculated by the operating condition calculation means 64 or the solubility product of calcium sulfate. It has a function to adjust. In the present embodiment, an opening / closing command is issued to the valve 931 disposed in the middle of the pipe 93 connecting the RO membrane apparatus 3b and the evaporation apparatus 4 and the pipe 93 connecting the tank 2. It is comprised, and it is comprised so that the ionic strength or the solubility product of calcium sulfate can be controlled by mixing seawater into the water to be treated. For example, the ionic strength or the solubility product of calcium sulfate may be controlled by mixing reverse osmosis membrane concentrated water or the like.
 このように、本実施形態に係る運転管理装置6は、イオン強度と硫酸カルシウムの飽和溶解度積との関係に基づいて、硫酸カルシウムの溶解度積が飽和溶解度積を超えないように蒸発装置4の運転条件を制御しているので、蒸発装置4内部に硫酸カルシウムのスケールが析出することを確実に防止することができる。 As described above, the operation management device 6 according to the present embodiment operates the evaporator 4 based on the relationship between the ionic strength and the saturated solubility product of calcium sulfate so that the solubility product of calcium sulfate does not exceed the saturated solubility product. Since the conditions are controlled, it is possible to reliably prevent the calcium sulfate scale from being deposited in the evaporator 4.
 以上、本発明に係る造水装置1の一実施形態について説明したが、本発明の具体的な構成は、上記実施形態に限定されない。例えば、上記実施形態においては、イオン強度算出手段62が、被処理水中に含まれるNaイオン,Caイオン,Mgイオン等の主要イオン成分の濃度を測定して上記式1に基づいて被処理水のイオン強度を算出するように構成しているが、イオン強度算出手段62が、被処理水の全溶解固形分(TDS)とイオン強度との関係により予め決定されるイオン強度近似式に基づいて、イオン強度を算出するようにしてもよい。このような構成を採用する場合、被処理水の全溶解固形分(TDS)を算出する全溶解固形分算出手段を被処理水供給管路91に備えるようにする。なお、被処理水の全溶解固形分(TDS)を算出するには、被処理水の一定量を蒸発乾固して溶存している全固形物の重量を測定することにより行うことができる。 As mentioned above, although one Embodiment of the fresh water generator 1 which concerns on this invention was described, the specific structure of this invention is not limited to the said embodiment. For example, in the above embodiment, the ionic strength calculating means 62 measures the concentration of main ion components such as Na ions, Ca ions, Mg ions, etc. contained in the water to be treated and based on the above formula 1, Although the ionic strength is configured to be calculated, the ionic strength calculating means 62 is based on an ionic strength approximation formula determined in advance by the relationship between the total dissolved solid content (TDS) of the water to be treated and the ionic strength. The ionic strength may be calculated. In the case of adopting such a configuration, the to-be-treated water supply pipe 91 is provided with a total dissolved solid content calculating means for calculating the total dissolved solid content (TDS) of to-be-treated water. The total dissolved solid content (TDS) of the water to be treated can be calculated by measuring the weight of the total solids dissolved by evaporating and drying a certain amount of the water to be treated.
 イオン強度近似式は、海水の組成、NF膜処理海水の組成、NF膜処理海水をRO膜で濃縮した海水の組成、それぞれを混合したMED給水、MED濃縮ブラインなど各種の試料の組成(Naイオン、Caイオン、Mgイオン、Kイオン、Clイオン、SOイオン、TDS、導電率)をそれぞれ分析して得たデータを、上記の式1に準じて解析して求めたイオン強度を基準とし、下記のように、このイオン強度とTDSの関係式(式3)、および、TDSと導電率の関係式(式4)が成立することを見出した。図3にイオン強度と全溶解固形分(TDS)との関係により求めたイオン強度近似式のグラフを示す。 The ionic strength approximation formula is the composition of seawater, the composition of NF membrane treated seawater, the composition of seawater obtained by concentrating NF membrane treated seawater with RO membranes, the composition of various samples such as MED feed water and MED concentrated brine (Na ions). , Ca ions, Mg ions, K ions, Cl ions, SO 4 ions, TDS, conductivity), respectively, based on the ionic strength obtained by analyzing according to the above formula 1, It was found that the relational expression (Equation 3) between the ionic strength and TDS and the relational expression (Equation 4) between TDS and conductivity are established as follows. FIG. 3 shows a graph of an approximate expression of ionic strength obtained from the relationship between ionic strength and total dissolved solid content (TDS).
 (式3)
     Y=a+aX+a
(Formula 3)
Y = a 1 X 2 + a 2 X + a 3
 但し、上記式3における係数a、a、aは、被処理液の濃度レベルとその濃縮率により変動するが、下記範囲で問題なく適用することができる。 However, coefficients a 1, a 2, a 3 in the above formula 3 will vary depending on the concentration level and its concentration rate of the liquid to be treated, it can be applied without problems by the following ranges.
    -2.2×10-12 < a < -1.8×10-12
    1.8×10-5 < a <2.2×10-5
    -0.00393 < a <-0.0321
−2.2 × 10 −12 <a 1 <−1.8 × 10 −12
1.8 × 10 −5 <a 2 <2.2 × 10 −5
-0.00393 <a 3 <-0.0321
 ここで、Yは、近似式により算出される被処理水のイオン強度[mol/kg・H2O]であり、Xは、被処理水の全溶解固形分(TDS)[mg/L]である。 Here, Y is the ionic strength [mol / kg · H 2 O] of the water to be treated calculated by an approximate expression, and X is the total dissolved solid content (TDS) [mg / L] of the water to be treated. is there.
 このように、被処理水の全溶解固形分(TDS)とイオン強度との関係により予め決定されるイオン強度近似式に、全溶解固形分算出手段が算出する被処理水の全溶解固形分(TDS)を代入してイオン強度を算出することにより、被処理水中に含まれるNaイオン,Caイオン,Mgイオン等の主要イオン成分の濃度をそれぞれ測定することなく極めて簡便にかつ精度よく被処理水のイオン強度を算出することが可能になる。この結果、硫酸カルシウムのスケールが析出することを防止しつつ、効率よく淡水を製造することができる。 In this way, the total dissolved solid content (TDS) calculated by the total dissolved solid content calculation means is added to the ionic strength approximate expression determined in advance by the relationship between the total dissolved solid content (TDS) of the water to be processed and the ionic strength. By calculating the ionic strength by substituting (TDS), the water to be treated is very simply and accurately measured without measuring the concentrations of major ion components such as Na ions, Ca ions, and Mg ions contained in the water to be treated. It becomes possible to calculate the ionic strength of. As a result, fresh water can be efficiently produced while preventing the calcium sulfate scale from precipitating.
 また、上記においては、全溶解固形分算出手段は、被処理水の一定量を蒸発乾固して溶存している全固形物の重量を測定することにより被処理水の全溶解固形分(TDS)を算出するように構成されているが、このような方法により被処理水の全溶解固形分(TDS)を算出することは、比較的手間が掛かり効率性に欠ける面がある。そこで、例えば、全溶解固形分算出手段が、導電率と全溶解固形分(TDS)との関係により予め決定される全溶解固形分近似式に基づいて、被処理水の全溶解固形分(TDS)を算出するようにしてもよい。このような構成を採用する場合、被処理水の導電率を検知する導電率検知手段を被処理水供給管路91に備えるようにする。 In the above, the total dissolved solid content calculating means measures the total dissolved solid content (TDS) of the water to be treated by measuring the weight of the total solid dissolved by evaporating and drying a certain amount of the water to be treated. However, calculating the total dissolved solid content (TDS) of the water to be treated by such a method is relatively time-consuming and lacks efficiency. Therefore, for example, the total dissolved solid content calculating means calculates the total dissolved solid content (TDS) of the water to be treated based on the total dissolved solid content approximate expression determined in advance by the relationship between the electrical conductivity and the total dissolved solid content (TDS). ) May be calculated. In the case of adopting such a configuration, the treated water supply pipe 91 is provided with a conductivity detecting means for detecting the conductivity of the treated water.
 全溶解固形分近似式も、上記イオン強度近似式と同様、海水の組成、NF膜処理海水の組成、NF膜処理海水をRO膜で濃縮した海水の組成、それぞれを混合したMED給水、MED濃縮部ラインなど各種の試料の組成を分析したデータを解析して、導電率と全溶解固形分(TDS)の関係式が、下記の式4で示す2次式で表すことができることを見出した。図4に導電率と全溶解固形分(TDS)との関係により求めた全溶解固形分近似式のグラフを示す。 Similar to the ionic strength approximate expression, the total dissolved solid content approximate expression is also the composition of seawater, the composition of NF membrane-treated seawater, the composition of seawater obtained by concentrating NF membrane-treated seawater with the RO membrane, the MED water supply mixed with each, and the MED concentration. By analyzing data obtained by analyzing the composition of various samples such as a partial line, it was found that the relational expression between conductivity and total dissolved solid content (TDS) can be expressed by a quadratic expression represented by the following expression 4. FIG. 4 shows a graph of an approximate expression for total dissolved solid content obtained from the relationship between electrical conductivity and total dissolved solid content (TDS).
  (式4)
     Y=b+bX+b
(Formula 4)
Y = b 1 X 2 + b 2 X + b 3
 但し、上記式4における係数b、b、bは、被処理液の濃度レベルとその濃縮率により変動するが、下記範囲で問題なく適用することができる。 However, the coefficients b 1 , b 2 , and b 3 in the above formula 4 vary depending on the concentration level of the liquid to be treated and its concentration rate, but can be applied without any problems in the following range.
    1.8×10-6 < b < 2.2×10-6
    0.4798 < b < 0.5854
    944 < b < 1154
1.8 × 10 −6 <b 1 <2.2 × 10 −6
0.4798 <b 2 <0.5854
944 <b 3 <1154
 ここで、Yは、近似式により算出される被処理水の全溶解固形分(TDS)[mg/L]であり、Xは、導電率検知手段により検知された被処理水の導電率 [μS/cm]である。 Here, Y is the total dissolved solid content (TDS) [mg / L] of the water to be treated calculated by the approximate expression, and X is the conductivity [μS of the water to be treated detected by the conductivity detecting means. / Cm].
 このように、導電率と全溶解固形分(TDS)との関係により予め決定される全溶解固形分近似式に、導電率検知手段により検知された被処理水の導電率を代入して被処理水の全溶解固形分(TDS)を算出することにより、単に被処理水の導電率とCaイオン及びSOイオンの濃度とを計測するのみで、イオン強度と硫酸カルシウム溶解度積を指標とした蒸発装置4の運転管理を効率よく行うことができる。 In this way, the conductivity of the water to be treated detected by the conductivity detecting means is substituted into the total dissolved solid content approximation formula determined in advance by the relationship between the conductivity and the total dissolved solid content (TDS). By calculating the total dissolved solid content (TDS) of water, simply measuring the conductivity of the water to be treated and the concentration of Ca ions and SO 4 ions, evaporation using the ionic strength and calcium sulfate solubility product as indicators. The operation management of the device 4 can be performed efficiently.
 次に本発明に係る造水装置1の第2の実施形態について図5及び図6を用いて以下に説明する。第2の実施形態に係る造水装置1は、図5に示すように、タンク2、ナノ濾過膜装置3a、RO膜装置3b、蒸発装置4を備えているが、これらは上記第1の実施形態に係る造水装置1が備える装置と同様であるため、詳細な説明は省略する。 Next, a second embodiment of the fresh water generator 1 according to the present invention will be described below with reference to FIGS. As shown in FIG. 5, the fresh water generator 1 according to the second embodiment includes a tank 2, a nanofiltration membrane device 3 a, an RO membrane device 3 b, and an evaporation device 4, which are the first embodiment described above. Since it is the same as the apparatus with which the fresh water generator 1 which concerns on a form is provided, detailed description is abbreviate | omitted.
 第2の実施形態に係る造水装置1における運転管理装置6は、図5に示すように、飽和溶解度積曲線データ群記憶部66、イオン強度算出手段62、溶解度積算出手段63、蒸発装置4の運転条件を算出する運転条件算出手段64、及び、運転条件変更手段65を備えている。なお、イオン強度算出手段62及び溶解度積算出手段63は、上記第1の実施形態に係る構成と同様であるため、詳細な説明は省略する。 As shown in FIG. 5, the operation management device 6 in the fresh water generator 1 according to the second embodiment includes a saturated solubility product curve data group storage unit 66, an ionic strength calculation unit 62, a solubility product calculation unit 63, and an evaporation device 4. The operating condition calculating means 64 for calculating the operating conditions and the operating condition changing means 65 are provided. The ionic strength calculating means 62 and the solubility product calculating means 63 are the same as the configuration according to the first embodiment, and a detailed description thereof will be omitted.
 飽和溶解度積曲線データ群記憶部66は、イオン強度、及び、硫酸カルシウムの飽和溶解度積の関係により決定される飽和溶解度積曲線データを複数の温度下で予め算出した飽和溶解度積曲線データ群が格納された記憶媒体である。複数の温度化における飽和溶解度積曲線データは、上述のように、例えば、“Journal of Chemical and Engineering Data Vol.13 No.2,April,1964”に報告されている硫酸カルシウムの溶解度に関する文献値(表1)を採用し、この値をイオン強度と溶解度積に換算することにより作成することができる。つまり、表1に示されたNaCl溶液中の硫酸カルシウムの飽和溶解度のデータ(温度範囲25~200℃、NaCl濃度範囲0.0~6.0Mol)を全てイオン強度と硫酸カルシウムの飽和溶解度積に換算して整理することにより得ることができる。得られた所定温度範囲のイオン強度と硫酸カルシウム飽和溶解度積との関係を模式的にグラフ化したもの(飽和溶解度積曲線データ群)を図6に示す。図6におけるグラフのX軸はイオン強度を、Y軸は飽和溶解度積(Ksp)を示している。また、図6には、T1℃、125℃、T2℃、T3℃の各温度における飽和溶解度積曲線を示している。T1℃、125℃、T2℃、T3℃の各温度は、T1<125℃<T2℃<T3℃となる温度関係を有している。なお、温度が高くなるに連れて、同一イオン強度に対する飽和溶解度積(Ksp)の値が低くなり、CaSOが析出する危険性が高くなる。 The saturated solubility product curve data group storage unit 66 stores a saturated solubility product curve data group that is calculated in advance at a plurality of temperatures with respect to saturated solubility product curve data determined by the relationship between ionic strength and the saturated solubility product of calcium sulfate. Storage medium. As described above, the saturated solubility product curve data in a plurality of temperatures is obtained from, for example, literature values relating to the solubility of calcium sulfate reported in “Journal of Chemical and Engineering Data Vol. 13 No. 2, April, 1964”. Table 1) can be adopted, and this value can be converted into an ionic strength and solubility product. That is, the data on the saturation solubility of calcium sulfate in the NaCl solution shown in Table 1 (temperature range 25 to 200 ° C., NaCl concentration range 0.0 to 6.0 mol) are all converted to the product of ionic strength and saturation solubility of calcium sulfate. It can be obtained by converting and organizing. FIG. 6 shows a graph (saturated solubility product curve data group) schematically showing the relationship between the obtained ionic strength in the predetermined temperature range and the saturated solubility product of calcium sulfate. The X axis of the graph in FIG. 6 represents the ionic strength, and the Y axis represents the saturated solubility product (Ksp). FIG. 6 shows saturation solubility product curves at temperatures of T1 ° C., 125 ° C., T2 ° C., and T3 ° C. Each temperature of T1 ° C, 125 ° C, T2 ° C, and T3 ° C has a temperature relationship of T1 <125 ° C <T2 ° C <T3 ° C. As the temperature increases, the value of the saturated solubility product (Ksp) for the same ionic strength decreases, and the risk of precipitation of CaSO 4 increases.
 運転条件算出手段64は、イオン強度算出手段62及び溶解度積算出手段63により算出したイオン強度値及び硫酸カルシウムの溶解度積値と、飽和溶解度積曲線データ群とを比較することにより、被処理水のイオン強度値に対する硫酸カルシウムの溶解度積値が、飽和溶解度積値を超えない所定の飽和溶解度積曲線データを選定すると共に、選定した所定の飽和溶解度積曲線データに対応する温度を算出する機能を有している。例えば、イオン強度算出手段62及び溶解度積算出手段63により算出した被処理水のイオン強度値に対する硫酸カルシウムの溶解度積値が図6におけるB点である場合、このB点は、T1℃、125℃及びT2℃における飽和溶解度積曲線よりも下方に存在しているため、運転条件算出手段64は、T1℃、125℃及びT2℃の温度の中の最高温度であるT2℃を算出するように構成される。 The operating condition calculation unit 64 compares the ionic strength value and the solubility product value of calcium sulfate calculated by the ionic strength calculation unit 62 and the solubility product calculation unit 63 with the saturated solubility product curve data group, thereby obtaining water to be treated. Selects a predetermined saturation solubility product curve data in which the solubility product value of calcium sulfate with respect to the ionic strength value does not exceed the saturation solubility product value, and has a function of calculating a temperature corresponding to the selected predetermined saturation solubility product curve data. is doing. For example, when the solubility product value of calcium sulfate with respect to the ionic strength value of the water to be treated calculated by the ionic strength calculating means 62 and the solubility product calculating means 63 is the point B in FIG. 6, these points B are T1 ° C. and 125 ° C. And the operating condition calculation means 64 is configured to calculate the maximum temperature T2 ° C among the temperatures of T1 ° C, 125 ° C and T2 ° C. Is done.
 運転条件変更手段65は、蒸発装置4における駆動温度が、運転条件算出手段64が算出した温度(例えば、T2℃)となるように、ボイラ等の蒸気発生手段7から蒸発装置4に送られる蒸気の量を制御する。 The operating condition changing means 65 is a steam sent from the steam generating means 7 such as a boiler to the evaporator 4 so that the driving temperature in the evaporator 4 becomes the temperature calculated by the operating condition calculating means 64 (for example, T2 ° C.). The amount of control.
 このように、第2の実施形態に係る造水装置1によれば、運転管理装置6が、硫酸カルシウムのスケール析出が防止できる蒸発装置4の駆動温度条件を算出して、その温度下で蒸発装置4が駆動できるように制御するため、スケール析出を確実に防止して効率よく淡水を製造することができる。 Thus, according to the fresh water generator 1 which concerns on 2nd Embodiment, the operation management apparatus 6 calculates the drive temperature conditions of the evaporator 4 which can prevent scale precipitation of calcium sulfate, and it evaporates under the temperature. Since it controls so that the apparatus 4 can be driven, scale precipitation can be prevented reliably and fresh water can be manufactured efficiently.
 また、上記第2の実施形態に係る造水装置1においても、第1の実施形態と同様、イオン強度算出手段62が、被処理水の全溶解固形分(TDS)とイオン強度との関係により予め決定されるイオン強度近似式(式3)に基づいて、イオン強度を算出するように構成してもよい。 Moreover, also in the fresh water generator 1 which concerns on the said 2nd Embodiment, ionic strength calculation means 62 is based on the relationship between the total dissolved solid content (TDS) of treated water and ionic strength similarly to 1st Embodiment. You may comprise so that ion intensity may be calculated based on the ion intensity approximate expression (Formula 3) determined beforehand.
 また、被処理水の全溶解固形分(TDS)を算出する全溶解固形分算出手段が、導電率と全溶解固形分(TDS)との関係により予め決定される全溶解固形分近似式(式4)に基づいて、被処理水の全溶解固形分(TDS)を算出するように構成してもよい。 Further, the total dissolved solid content calculating means for calculating the total dissolved solid content (TDS) of the water to be treated is a total dissolved solid content approximation formula (formula) determined in advance by the relationship between the electrical conductivity and the total dissolved solid content (TDS). The total dissolved solid content (TDS) of the water to be treated may be calculated based on 4).
 また、上記第1及び第2の実施形態においては、単一の蒸発装置4を備えるように造水装置1を構成しているが、図7に示すように複数の蒸発装置4を直列的に接続する多重効用型の蒸発装置4を備えるように構成してもよい。多重効用型の蒸発装置4を備えるようにした場合、各蒸発装置4が運転管理装置6を備えるように構成する。そして、各運転管理装置6が有するイオン強度算出手段62及び溶解度積算出手段63が、各蒸発装置4における散布手段が散布する被処理水のイオン強度及び硫酸カルシウムの溶解度積をそれぞれ算出するように構成する。このような構成により、各蒸発装置4に硫酸カルシウムのスケールが発生することを防止しつつ、効率的に飲料用等の淡水を製造することができる。 Moreover, in the said 1st and 2nd embodiment, although the fresh water generator 1 is comprised so that the single evaporator 4 may be provided, as shown in FIG. 7, several evaporator 4 is connected in series. You may comprise so that the multi-effect type | formula evaporation apparatus 4 to connect may be provided. When the multi-effect evaporator 4 is provided, each evaporator 4 is configured to include the operation management device 6. Then, the ionic strength calculating means 62 and the solubility product calculating means 63 included in each operation management device 6 calculate the ionic strength and the solubility product of calcium sulfate, respectively, of the water to be treated sprayed by the spraying means in each evaporator 4. Constitute. With such a configuration, fresh water for beverages or the like can be efficiently produced while preventing the scale of calcium sulfate from being generated in each evaporator 4.
 また、上記式3におけるXに、上記式4のYを代入することにより求められる、導電率とイオン強度との関係により予め決定される第2イオン強度近似式に基づいて、導電率検知手段によって検知される導電率から直接的にイオン強度を算出するようにしてもよい。このような構成により、イオン強度の算出をより迅速に行うことが可能になる。 Further, based on the second ionic strength approximation formula determined in advance by the relationship between the conductivity and the ionic strength, which is obtained by substituting Y in the above formula 4 into X in the above formula 3, the conductivity detection means The ion intensity may be calculated directly from the detected conductivity. With such a configuration, it is possible to calculate the ionic strength more quickly.
1 造水装置
2 タンク
3a ナノ濾過膜装置
3b RO膜装置
4 蒸発装置
5 凝縮装置
6 運転管理装置
61 飽和溶解度積曲線データ記憶部
62 イオン強度算出手段
63 溶解度積算出手段
64 運転条件算出手段
65 運転条件変更手段
7 蒸気発生手段
DESCRIPTION OF SYMBOLS 1 Water generator 2 Tank 3a Nanofiltration membrane apparatus 3b RO membrane apparatus 4 Evaporating apparatus 5 Condensing apparatus 6 Operation management apparatus 61 Saturation solubility product curve data storage part 62 Ion strength calculation means 63 Solubility product calculation means 64 Operating condition calculation means 65 Operation Condition changing means 7 Steam generating means

Claims (12)

  1.  加熱することによって硫酸カルシウムを含む被処理水を蒸発濃縮する蒸発装置の運転条件を制御する運転管理装置であって、
     所定温度におけるイオン強度と硫酸カルシウムの飽和溶解度積との関係により予め決定される飽和溶解度積曲線データと、
     前記被処理水におけるイオン強度を算出するイオン強度算出手段と、
     前記被処理水における硫酸カルシウムの溶解度積を算出する溶解度積算出手段と、
     前記イオン強度算出手段及び前記溶解度積算出手段により算出したイオン強度値及び硫酸カルシウムの溶解度積値と、前記飽和溶解度積曲線データとを比較することにより、前記被処理水のイオン強度値に対する硫酸カルシウムの溶解度積値が、飽和溶解度積値を超えない前記蒸発装置の運転条件を算出する運転条件算出手段と、
     前記運転条件算出手段が算出した運転条件となるように前記蒸発装置の運転条件を変更する運転条件変更手段とを備えている運転管理装置。
    An operation management device for controlling operating conditions of an evaporator that evaporates and concentrates water to be treated containing calcium sulfate by heating,
    Saturation solubility product curve data determined in advance by the relationship between the ionic strength at a predetermined temperature and the saturation solubility product of calcium sulfate,
    Ionic strength calculating means for calculating ionic strength in the treated water;
    A solubility product calculating means for calculating a solubility product of calcium sulfate in the treated water;
    By comparing the ionic strength value calculated by the ionic strength calculating means and the solubility product calculating means and the solubility product value of calcium sulfate with the saturated solubility product curve data, calcium sulfate relative to the ionic strength value of the water to be treated is obtained. Operating condition calculation means for calculating the operating condition of the evaporation device, the solubility product value of which does not exceed the saturation solubility product value;
    An operation management device comprising operation condition changing means for changing the operation condition of the evaporator so as to be the operation condition calculated by the operation condition calculating means.
  2.  前記被処理水の全溶解固形分(TDS)を算出する全溶解固形分算出手段を備えており、
     前記イオン強度算出手段は、全溶解固形分(TDS)とイオン強度との関係により予め決定されるイオン強度近似式に基づいて、イオン強度を算出する請求項1に記載の運転管理装置。
    A total dissolved solid content calculating means for calculating the total dissolved solid content (TDS) of the water to be treated;
    The operation management device according to claim 1, wherein the ionic strength calculating unit calculates the ionic strength based on an ionic strength approximation formula determined in advance based on a relationship between the total dissolved solid content (TDS) and the ionic strength.
  3.  前記被処理水の導電率を検知する導電率検知手段を備えており、
     前記全溶解固形分算出手段は、導電率と全溶解固形分(TDS)との関係により予め決定される全溶解固形分近似式に基づいて、全溶解固形分(TDS)を算出する請求項2に記載の運転管理装置。
    Comprising a conductivity detecting means for detecting the conductivity of the water to be treated;
    The total dissolved solid content (TDS) is calculated based on a total dissolved solid content approximate expression determined in advance by a relationship between electrical conductivity and total dissolved solid content (TDS). The operation management device described in 1.
  4.  前記運転条件算出手段は、前記イオン強度算出手段及び前記溶解度積算出手段により算出したイオン強度値及び硫酸カルシウムの溶解度積値と、前記飽和溶解度積曲線データとを比較することにより、イオン強度に対する硫酸カルシウムの溶解度積が、飽和溶解度積値を超えないイオン強度値、或いは、硫酸カルシウムの溶解度積値を算出し、
     前記運転条件変更手段は、前記運転条件算出手段が算出した飽和溶解度積値を超えないイオン強度値、或いは、硫酸カルシウムの溶解度積値となるように、前記被処理水のイオン強度、或いは、硫酸カルシウムの溶解度積を変更する請求項1に記載の運転管理装置。
    The operating condition calculation means compares the ionic strength value calculated by the ionic strength calculation means and the solubility product calculation means and the solubility product value of calcium sulfate with the saturated solubility product curve data, thereby comparing the sulfuric acid product with respect to the ionic strength. Calculate the ionic strength value that the solubility product of calcium does not exceed the saturation solubility product value, or the solubility product value of calcium sulfate,
    The operating condition changing means is an ionic strength value that does not exceed the saturation solubility product value calculated by the operating condition calculating means, or an ionic strength value of the water to be treated, or sulfuric acid so as to be a calcium sulfate solubility product value. The operation management apparatus according to claim 1, wherein the solubility product of calcium is changed.
  5.  硫酸カルシウムを含む被処理水を加熱することによって蒸発濃縮する蒸発装置と、請求項1に記載の運転管理装置とを備える造水装置。 A fresh water generator comprising an evaporator that evaporates and concentrates by heating water to be treated containing calcium sulfate, and the operation management apparatus according to claim 1.
  6.  加熱することによって硫酸カルシウムを含む被処理水を蒸発濃縮する蒸発装置の運転条件を制御する運転管理方法であって、
     前記被処理水におけるイオン強度を算出するイオン強度算出ステップと、 
     前記被処理水における硫酸カルシウムの溶解度積を算出する溶解度積算出ステップと、
     前記イオン強度算出ステップ及び前記溶解度積算出ステップにより算出したイオン強度値及び硫酸カルシウムの溶解度積値と、所定温度におけるイオン強度及び硫酸カルシウムの飽和溶解度積の関係により予め決定される飽和溶解度積曲線データとを比較することにより、前記被処理水のイオン強度値に対する硫酸カルシウムの溶解度積値が、飽和溶解度積値を超えない前記蒸発装置の運転条件を算出する運転条件算出ステップと、
     前記運転条件算出ステップが算出した運転条件となるように前記蒸発装置の運転条件を変更する運転条件変更ステップとを備えている運転管理方法。
    An operation management method for controlling operating conditions of an evaporator that evaporates and concentrates water to be treated containing calcium sulfate by heating,
    An ionic strength calculating step for calculating an ionic strength in the treated water;
    A solubility product calculating step for calculating a solubility product of calcium sulfate in the treated water;
    Saturation solubility product curve data determined in advance by the relationship between the ionic strength value and the solubility product value of calcium sulfate calculated by the ionic strength calculation step and the solubility product calculation step, and the ionic strength and saturation solubility product of calcium sulfate at a predetermined temperature. By comparing the solubility product value of calcium sulfate with respect to the ionic strength value of the water to be treated, the operating condition calculating step of calculating the operating condition of the evaporator not exceeding the saturated solubility product value;
    An operation management method comprising: an operation condition change step for changing the operation condition of the evaporator so that the operation condition is calculated in the operation condition calculation step.
  7.  前記被処理水の全溶解固形分(TDS)を算出する全溶解固形分算出ステップを備えており、
     前記イオン強度算出ステップは、全溶解固形分(TDS)とイオン強度との関係により予め決定されるイオン強度近似式に基づいて、イオン強度を算出する請求項6に記載の運転管理方法。
    A total dissolved solid content calculating step for calculating the total dissolved solid content (TDS) of the water to be treated;
    The operation management method according to claim 6, wherein the ionic strength calculation step calculates the ionic strength based on an ionic strength approximation formula determined in advance based on a relationship between the total dissolved solid content (TDS) and the ionic strength.
  8.  前記被処理水の導電率を検知する導電率検知ステップを備えており、
     前記全溶解固形分算出ステップは、導電率と全溶解固形分(TDS)との関係により予め決定される全溶解固形分近似式に基づいて、全溶解固形分(TDS)を算出する請求項7に記載の運転管理方法。
    A conductivity detecting step for detecting the conductivity of the water to be treated;
    The total dissolved solid content (TDS) is calculated based on a total dissolved solid content approximate expression determined in advance based on a relationship between electrical conductivity and total dissolved solid content (TDS). The operation management method described in 1.
  9.  前記被処理水の導電率を検知する導電率検知ステップを備えており、
     前記イオン強度算出ステップは、導電率とイオン強度との関係により予め決定される第2イオン強度近似式に基づいて、イオン強度を算出する請求項6に記載の運転管理方法。
    A conductivity detecting step for detecting the conductivity of the water to be treated;
    The operation management method according to claim 6, wherein the ionic strength calculation step calculates the ionic strength based on a second ionic strength approximation formula determined in advance based on a relationship between conductivity and ionic strength.
  10.  前記運転条件算出ステップは、前記イオン強度算出手段及び前記溶解度積算出手段により算出したイオン強度値及び硫酸カルシウムの溶解度積値と、前記飽和溶解度積曲線データとを比較することにより、イオン強度に対する硫酸カルシウムの飽和溶解度積が、飽和溶解度積値を超えないイオン強度値、或いは、硫酸カルシウムの溶解度積値を算出し、
     前記運転条件変更手段は、前記運転条件算出手段が算出した飽和溶解度積値を超えないイオン強度値、或いは、硫酸カルシウムの溶解度積値となるように、前記被処理水のイオン強度、或いは、硫酸カルシウムの溶解度積を変更する請求項6に記載の運転管理方法。
    The operating condition calculating step compares the ionic strength value calculated by the ionic strength calculating means and the solubility product calculating means and the solubility product value of calcium sulfate with the saturated solubility product curve data, thereby comparing the sulfuric acid product with respect to the ionic strength. Calculate the ionic strength value that the saturation solubility product of calcium does not exceed the saturation solubility product value, or the solubility product value of calcium sulfate,
    The operating condition changing means is an ionic strength value that does not exceed the saturation solubility product value calculated by the operating condition calculating means, or an ionic strength value of the water to be treated, or sulfuric acid so as to be a calcium sulfate solubility product value. The operation management method according to claim 6, wherein the solubility product of calcium is changed.
  11.  請求項6に記載の運転管理方法を用いて硫酸カルシウムを含む被処理水を蒸発濃縮することにより淡水を生成する造水方法。 A fresh water generating method for producing fresh water by evaporating and concentrating water to be treated containing calcium sulfate using the operation management method according to claim 6.
  12.  加熱することによって硫酸カルシウムを含む被処理水を蒸発濃縮する蒸発装置と、前記蒸発装置の運転条件を制御する運転管理装置とを備える造水装置であって、
     前記運転管理装置は、所定温度におけるイオン強度、及び、硫酸カルシウムの飽和溶解度積の関係により予め決定される飽和溶解度積曲線データを複数の温度下で予め算出した飽和溶解度積曲線データ群と、
     前記被処理水におけるイオン強度を算出するイオン強度算出手段と、
     前記被処理水における硫酸カルシウムの溶解度積を算出する溶解度積算出手段と、
     前記イオン強度算出手段及び前記溶解度積算出手段により算出したイオン強度値及び硫酸カルシウムの溶解度積値と、前記飽和溶解度積曲線データ群とを比較することにより、前記被処理水のイオン強度値に対する硫酸カルシウムの溶解度積値が、飽和溶解度積値を超えない所定の飽和溶解度積曲線データを選定すると共に、前記所定の飽和溶解度積曲線データに対応する温度を算出する運転条件算出手段と、
     前記運転条件算出手段が算出した温度となるように前記蒸発装置の加熱温度を変更する運転条件変更手段とを備えている造水装置。
    A fresh water generator comprising an evaporation device that evaporates and concentrates water to be treated containing calcium sulfate by heating, and an operation management device that controls operating conditions of the evaporation device,
    The operation management device is a saturated solubility product curve data group in which saturated solubility product curve data determined in advance by a relationship between ionic strength at a predetermined temperature and a saturated solubility product of calcium sulfate are calculated in advance at a plurality of temperatures, and
    Ionic strength calculating means for calculating ionic strength in the treated water;
    A solubility product calculating means for calculating a solubility product of calcium sulfate in the treated water;
    By comparing the ionic strength value calculated by the ionic strength calculating means and the solubility product calculating means and the solubility product value of calcium sulfate with the saturated solubility product curve data group, sulfuric acid relative to the ionic strength value of the water to be treated is obtained. Selecting a predetermined saturation solubility product curve data in which the solubility product value of calcium does not exceed the saturation solubility product value, and operating condition calculation means for calculating a temperature corresponding to the predetermined saturation solubility product curve data;
    A fresh water generator comprising operating condition changing means for changing the heating temperature of the evaporator so as to be the temperature calculated by the operating condition calculating means.
PCT/JP2010/051640 2009-02-06 2010-02-04 Operation management device for a vaporization device, fresh water generator provided with the operation management device, and operation management method and fresh water-generating method for vaporization devices WO2010090273A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080001852.2A CN102066264B (en) 2009-02-06 2010-02-04 Operation management device for a vaporization device, fresh water generator provided with the operation management device, and operation management method and fresh water-generating method for vaporization devices
KR1020107021163A KR101666920B1 (en) 2009-02-06 2010-02-04 Operation management device for a vaporization device, fresh water generator provided with the operation management device, and operation management method and fresh water-generating method for vaporization devices
JP2010537069A JP4743727B2 (en) 2009-02-06 2010-02-04 Evaporator operation management device, fresh water generator with operation management device, evaporator operation management method, and fresh water generation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009025641 2009-02-06
JP2009-025641 2009-02-06
JP2009123051 2009-05-21
JP2009-123051 2009-05-21

Publications (1)

Publication Number Publication Date
WO2010090273A1 true WO2010090273A1 (en) 2010-08-12

Family

ID=42542165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051640 WO2010090273A1 (en) 2009-02-06 2010-02-04 Operation management device for a vaporization device, fresh water generator provided with the operation management device, and operation management method and fresh water-generating method for vaporization devices

Country Status (4)

Country Link
JP (1) JP4743727B2 (en)
KR (1) KR101666920B1 (en)
CN (1) CN102066264B (en)
WO (1) WO2010090273A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012239967A (en) * 2011-05-18 2012-12-10 Ihi Corp System and method for desalination of seawater

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104436731B (en) * 2014-11-25 2016-05-11 上海试四赫维化工有限公司 A kind of automatic division box of ethyl acetate backflow reaction
CN113758978B (en) * 2021-08-31 2024-03-22 西安热工研究院有限公司 Method for calculating liquid phase sulfur (IV) substance content of wet desulfurization slurry based on ORP value

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916584A (en) * 1982-07-20 1984-01-27 Ishikawajima Harima Heavy Ind Co Ltd Control device for concentration of hydrogen ion in desalting device for sea water
JPH01104399A (en) * 1987-10-15 1989-04-21 Mitsubishi Heavy Ind Ltd Prevention of scale deposition
JP2008272668A (en) * 2007-04-27 2008-11-13 Saline Water Conversion Corp Water producing apparatus and water producing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1206414B1 (en) 1999-08-20 2003-06-25 L.E.T. Leading Edge Technologies Limited A salt water desalination process using ion selective membranes
CN100506717C (en) * 2006-06-21 2009-07-01 中国石油化工股份有限公司 Method for treating wastewater of dilute thiamine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916584A (en) * 1982-07-20 1984-01-27 Ishikawajima Harima Heavy Ind Co Ltd Control device for concentration of hydrogen ion in desalting device for sea water
JPH01104399A (en) * 1987-10-15 1989-04-21 Mitsubishi Heavy Ind Ltd Prevention of scale deposition
JP2008272668A (en) * 2007-04-27 2008-11-13 Saline Water Conversion Corp Water producing apparatus and water producing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012239967A (en) * 2011-05-18 2012-12-10 Ihi Corp System and method for desalination of seawater

Also Published As

Publication number Publication date
CN102066264B (en) 2013-07-10
JP4743727B2 (en) 2011-08-10
CN102066264A (en) 2011-05-18
KR20110119518A (en) 2011-11-02
KR101666920B1 (en) 2016-10-17
JPWO2010090273A1 (en) 2012-08-09

Similar Documents

Publication Publication Date Title
JP5089236B2 (en) Fresh water generator and fresh water generation method
KR101196344B1 (en) Desalination apparatus and method of desalination
CN107108294B (en) Selective scaling in desalinated water treatment systems and related methods
US10689264B2 (en) Hybrid desalination systems and associated methods
JP6333573B2 (en) Fresh water generator and fresh water generation method
ES2197114T3 (en) SALT WATER DESALINATION PROCEDURE USING ION SELECTIVE MEBRANES.
US9266037B2 (en) Thermal distillation system and process
CN106082275B (en) A kind of salt extraction process and salt making system
CN104854037A (en) Apparatus and process for desalination of water
JP4743727B2 (en) Evaporator operation management device, fresh water generator with operation management device, evaporator operation management method, and fresh water generation method
CN106115740B (en) A kind of salt extraction process and salt making system
CN104903246A (en) Apparatus, use of apparatus and process for desalination of water
AU2017335668B2 (en) Osmotically driven membrane processes and systems and methods for draw solute recovery
CN106185996B (en) A kind of salt extraction process and salt making system
WO2017053281A1 (en) Osmotically driven membrane processes and systems and methods for draw solute recovery
EP3090791B1 (en) Multi-effect desalination apparatus partially dosing acids into some evaporators and desalination method using the same
Greig et al. An economic comparison of 2× 1000 m3/day desalination plants
US10065859B2 (en) Hydrochloric acid production system
McLafferty Comparison of Mechanical Vapour Compression Evaporator Technologies
JP2019042674A (en) Evaporation type heat exchange device
WO2006048933A1 (en) Method of preventing alkali scale deposition in brine circulation type seawater desalination plant
Boglovskii et al. Setting up the water chemistry for thermal water treatment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001852.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010537069

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107021163

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10738604

Country of ref document: EP

Kind code of ref document: A1