WO2010087178A1 - 風力発電装置 - Google Patents

風力発電装置 Download PDF

Info

Publication number
WO2010087178A1
WO2010087178A1 PCT/JP2010/000501 JP2010000501W WO2010087178A1 WO 2010087178 A1 WO2010087178 A1 WO 2010087178A1 JP 2010000501 W JP2010000501 W JP 2010000501W WO 2010087178 A1 WO2010087178 A1 WO 2010087178A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind turbine
turbine rotor
stage
rotor
angle
Prior art date
Application number
PCT/JP2010/000501
Other languages
English (en)
French (fr)
Inventor
金元敏明
Original Assignee
国立大学法人九州工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州工業大学 filed Critical 国立大学法人九州工業大学
Priority to US13/147,021 priority Critical patent/US9046075B2/en
Priority to DK10735650T priority patent/DK2402592T3/en
Priority to JP2010548428A priority patent/JP5470626B2/ja
Priority to EP10735650.3A priority patent/EP2402592B1/en
Publication of WO2010087178A1 publication Critical patent/WO2010087178A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/02Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors
    • F03D1/025Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having a plurality of rotors coaxially arranged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a tandem rotor type wind turbine generator capable of improving power generation efficiency.
  • the proposed tandem rotor type wind turbine generator has the front-stage wind turbine rotor 1 and the rear-stage wind turbine rotor 2 coaxially arranged, and the front-stage wind turbine rotor 1 is used as an armature rotor 4 (inner rotating armature) of the generator 3.
  • the latter stage wind turbine rotor 2 is connected to the field rotor 5 (outside rotating armature) of the same generator 3, and the twisting direction of the blade 6 of the former stage wind turbine rotor 1 and the twist direction of the blade 7 of the latter stage wind turbine rotor 2 are axial It is arranged to face in the opposite direction to the direction.
  • FIG. 1 shows an upwind type in which the wind turbine rotor is provided on the upstream side of the tower on which the generator 3 is mounted, but replacing the left and right (front and rear) of the wind turbine rotor in the same figure to cope with the wind from the right
  • the present invention can also be applied to a downwind type in which the wake side of the wind turbine rotor is the wind turbine rotor.
  • the characteristic of this tandem rotor type wind power generator is that operation is performed at the point where the reciprocal rotation torque acting on the armature rotor 4 of the generator 3 and the field rotor 5 match, but the rotation speed and the rotation direction are arbitrary.
  • the counter-rotating torque acting on both rotors 4 and 5 that is, the generated torques (directions are opposite) of the two wind turbine rotors 1 and 2 are operated at the same point.
  • the rotational speed and rotational direction of 2 are as follows according to the wind speed. As shown in FIG. 2, both of the wind turbine rotors 1 and 2 start to rotate in opposite directions from each other (reciprocal rotation) from the cut-in wind speed, and the rotational speed of both wind turbine rotors increases with the increase of the wind speed. In the vicinity of the speed, the power reaches the rated operating condition. When the wind speed is further increased, the rear-stage wind turbine rotor 2 gradually decelerates to match the front-stage wind turbine rotor 1 having large rotation torque with the front-stage wind turbine rotor 1 and rotates in the same direction as the front-stage wind turbine rotor 1 after stopping. (A kind of blowing action that sends air upstream against the wind). Such behavior is realized by proper cooperative play with the generator 3 of the inner and outer dual rotor (rotary armature / rotary field) type.
  • Non-Patent Document 1 of the inventor of the present application as a document considered about the preferred number of blades of the present wind power generator.
  • T rotational torque
  • P is output
  • the tendency of rotational torque change with respect to rotational speed and the optimum rotational speed to obtain the maximum output is the same as conventional single-stage wind turbines, but in this wind turbine generator, it is necessary to focus on the rotational behavior of the second-stage wind turbine rotor There is.
  • the rear-stage wind turbine rotor rotates in the opposite direction to the front-stage wind turbine rotor in an area where rotational torque is relatively small (reciprocal rotation, operation from extremely low wind speed to wind speed beyond the start of rated operation to some extent)
  • rotational torque increases, it is necessary to rotate in the same direction as the front-stage wind turbine rotor (rotation in the same direction, operation under strong wind).
  • the influence of the number of rear blades on the performance is large [Fig. 3 (b)].
  • N F the rotational torque and the output increase, and in absolute value, N F is slower and N R is faster.
  • Non-Patent Documents 2 and 3 The optimum diameter ratio and inter-axial distance of the front and rear wind turbines are shown in Non-Patent Documents 2 and 3 of the inventor of the present application.
  • a two-dimensional untwisted blade E (Fig. 5) consisting of a symmetrical wing element with no warpage, published by the National Institute of Advanced Industrial Science and Technology, to determine the desired diameter ratio and interaxial distance for a tandem wind turbine rotor (Http://riodb.ibase.aist.go.jp/db060/index.html)
  • a blade G that has been twisted so as to achieve a suitable angle of attack regardless of the radius by using the MEL 002 airfoil (Fig.
  • L 12 in the subsequent stage wind rotor is shorter becomes higher output, its tendency is not dependent on the blade shape.
  • FIG. 10 since the flow passing through the front wind turbine rotor 1 has a radially outward velocity component, it flows into the rear wind turbine rotor 2 as the inter-axial distance L 12 is longer as shown in FIG. 10 (b) This is because the flow is reduced. Therefore, while considering the blade deflection and vibration due to wind, as shown in FIG. 10 (a), prior to as close as possible the axial distance L 12 in the subsequent stage wind rotor is desired.
  • a large diameter wind turbine rotor is suitable for high output, but it does not operate under a small wind speed, and a lightweight small diameter wind turbine rotor is suitable under a small wind speed, but the output is low even under strong wind, etc.
  • the scope of application is limited.
  • B In order to increase the speed across the generator's magnetic field so that the quality of electricity is maintained, it is necessary to go through a speed increasing mechanism or to prepare a large diameter / multipole generator.
  • Complex rotational speed control mechanisms such as brakes and variable pitch blades are required to avoid damage to the wind turbine rotor or tower and overload on the generator under high wind speeds and to keep the output constant in the rated operating range I assume.
  • the conventional wind turbine has a rated operation with a constant output at a wind speed of about 11 m / s or more.
  • the average wind speed of the Altamont Pass Wind Farm in the hills of California is about 11 m / s
  • the average wind speed of the Middel Granden Wind Farm in the Gulf of Denmark is about 9 m / s.
  • the difference between fine wind and strong wind is remarkable, and in areas where good wind conditions can not be stably and abundantly obtained for wind turbines, for example, the average annual wind speed in Japan is 5 to 8 m / s for remote islands and weirs, and 5 m for coastal areas / S, 3 m / s inland, 5 to 10 m / s in mountains and summits, areas and seasons / times reaching the rated operation start wind speed of 11 m / s or more of the conventional windmill are quite limited. Since the output of the wind turbine is proportional to the cube of the wind speed, it decreases significantly as the wind speed slows.
  • the desirable form of the wind turbine generator which solves the problems described above is (1) increase of output under slight wind speed, (2) decrease of rated operation start wind speed, (3) speed increasing mechanism, brake and variable pitch mechanism Exclusion, etc., and the previously patented tandem rotor type wind power generator meets all these requirements for commercialization.
  • the conventional R & D policy that has been devoted to the development of a single-stage propeller based on hydrodynamics / aerodynamics has been followed, no further development can be expected further, so from a different perspective from the present inventor. New and emerging technologies are being proposed.
  • a typical example is the "wind lens" of Ota Toshiaki et al. (See Japanese Patent Laid-Open No. 2009-47069), and it is possible to integrate and utilize even minute wind speed energy which is difficult to use, and succeeded in significantly higher output.
  • the duct is provided around the wind turbine rotor, the drag acting on the tower is extremely large, and the application range is limited to the small capacity / small machine.
  • noise reduction with flexible blades and self-power control under high wind speed, variable drag vertical axis wind turbine Neishi et al., "Aerodynamic characteristics of wind power using variable drag wind turbine” , Turbomachine, Vol. 34, No.
  • the subject of the present invention relates to a wind turbine rotor employed in the tandem rotor type wind turbine generator.
  • the present inventor has developed a phase reversal type hydroelectric power unit consisting of a two-stage runner (impeller) and an internal / external dual-rotating armature generator. There is a big difference.
  • the hydraulic power generation unit has a flow path provided with runners, so the flow rate (axial velocity) passing through the runners is the same for both front and rear stages, but the wind turbine rotor is provided in free flow. As the wind passes through the wind turbine rotor, radial outward flow occurs as described above. Therefore, the axial velocity passing through the front and rear wind turbine rotors is different, and the downstream wind turbine rotor of the present wind power generator has both wind turbine action and air blowing action, and the flow becomes extremely complicated.
  • An object of the present invention is to provide a tandem rotor type wind turbine generator capable of improving power generation efficiency.
  • a front wind turbine rotor and a rear wind turbine rotor are coaxially disposed, and one wind turbine rotor is used as a rotatable armature rotor of a generator, the other wind turbine
  • the rotors are respectively connected to the rotatable field rotors of the same generator, and arranged so that the twisting direction of the blades of the front stage wind turbine rotor and the twisting direction of the blades of the rear stage wind turbine rotor face in the opposite axial direction.
  • the maximum lift-drag ratio means the lift-drag ratio which takes the maximum value of a lift-drag ratio curve.
  • the blade of the post-stage wind turbine rotor is a blade element formed of an airfoil having a warp in cross section along the rotational direction so as to obtain a desired rotational torque throughout the entire blade.
  • an angle of attack is obtained in a radial direction so as to obtain an attack angle smaller by a predetermined stability margin angle than an angle of attack It is characterized by giving a twist.
  • the front-stage wind turbine rotor and the rear-stage wind turbine rotor are closely arranged, the number of blades of the front-stage wind turbine rotor is three, and the number of blades of the rear-stage wind turbine rotor is four to six It is characterized by As a result, the rear-stage wind turbine rotor starts rotating in the opposite direction to the front-stage wind turbine rotor under a slight wind speed, but after the rotational speed reaches its maximum with the increase of the wind speed, it decelerates gradually and stops when the wind speed further increases. After that, it starts to rotate in the same direction as the front stage wind turbine rotor, and an ideal operation as a tandem rotor type wind turbine is realized.
  • a fourth configuration of the present invention is characterized in that the rotation radius of the rear wind turbine rotor is set to about 0.84 with respect to the rotation radius of the front wind turbine rotor. Thereby, the highest efficiency can be achieved while realizing the opposite rotation, stop, and rotation in the same direction of the rear stage wind turbine rotor.
  • a fifth configuration of the present invention is characterized in that the stability margin angle is 2 to 5 degrees. Thereby, the stability of the operation of the power generation device can be maintained.
  • a sixth configuration of the present invention is characterized in that an intermediate position of the front wind turbine rotor is 40 to 60% of a rotation radius of the front wind turbine rotor.
  • a wing shape having a warped cross-sectional shape along the rotation direction so as to obtain a desired rotation torque.
  • FIG. 1 It is a schematic block diagram of the tandem rotor type wind power generator (in the case of an up window type) in patent document 1 proposed previously. It is a graph which shows the rotational speed of each windmill rotor at the time of driving
  • This figure shows the form of the blade G radially twisted so as to achieve an optimum angle of attack regardless of the radius
  • (a) is a side view, a front view, a plan view, a bottom view of the blades of the front stage wind turbine rotor It is sectional drawing of each part
  • (b) is a side view of the braid
  • (a) is the front view which shows the form of the blade H of a front
  • (b 6B is a side view, a front view, a plan view, a bottom view, and a cross-sectional view of each part of the blade G of the rear-stage wind turbine rotor similar to FIG.
  • the dimensions shown in this figure are for a small blade for wind tunnel experiments.
  • FIG. 11 An example (pre-stage blade H) of a suitable blade shape of a front-stage wind turbine rotor is shown in Drawing 11 (a).
  • the desirable form as a tandem windmill rotor of the wind power generator of this invention is as follows.
  • (A) The number of blades of the front-stage wind turbine rotor is 3, and the number of blades of the rear-stage wind turbine rotor is 4 to 6.
  • Both wind turbine rotors should be as close as possible.
  • Fig.11 (a) has shown the numerical value in an experimental model (a front
  • the angle and shape of the cross section of each part of the blade are set values at each dimensional position in the longitudinal direction of the blade.
  • latter stage windmill rotor it can be set as the shape of FIG.11 (b) which has the shape similar to above-mentioned FIG.6 (b).
  • the blade tip side with a large radius r of the front-stage wind turbine rotor (outside area: 40 to 60% of the rotation radius, 50% in this embodiment is a standard)
  • the angle of attack ⁇ that is smaller than the angle of attack that gives the maximum lift-drag ratio regardless of the radial position by a predetermined stability margin angle (the ⁇ used below will give the maximum lift-drag ratio.
  • the velocity triangles before and after the wing element at an arbitrary radius position on the tip side are shown in FIG.
  • u is the circumferential velocity (rotational velocity r ⁇ )
  • v is the absolute velocity
  • v m is the axial velocity
  • w is the relative velocity
  • is the angle of attack between the chord and the relative velocity w 1
  • subscripts 1 and 2 are It is the value of the inlet and outlet cross sections.
  • the attack angle ⁇ is around 10 degrees
  • Figure 13 shows a one-wing performance curve (Robert ES et al., Aerodynamic) published by the National Aerospace Advisory Board (NACA), the predecessor of the National Institute of Advanced Industrial Science and Technology (MEL) and NASA (Aerospace Agency). Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines, SAND 80-2114, (1981).
  • the blade should be designed to achieve this angle of attack.
  • the lift-drag ratio is rapidly decreased (see FIG. 13, lowering of lift, increased drag: stall), i.e. the rotational force F T is reduced, the rotational speed of the windmill rotor is directed towards increasingly slower.
  • the rotation speed becomes faster, the angle of attack becomes smaller than 10 degrees, the lift-drag ratio decreases, and the rotation speed decreases and restores the original state.
  • the actual design angle of attack is selected to be smaller by the stability margin angle than the angle at which the maximum lift-drag ratio can be obtained, and the operation stability range is broadened.
  • the degree of reduction depends on the design concept of a company or an engineer, but as a guide, it is reduced by 2 to 5 degrees, and in this embodiment, reduced by about 3 degrees.
  • the blades of the front-stage wind turbine rotor according to the present invention have a small radius that does not contribute much to the rotational torque with a large diameter wind turbine rotor (inner region: 60 to 40% of the radius of rotation [(rotation radius-length of outer region) / Radius of rotation], and in the present embodiment, 50% is a standard. That is, the blade element with the least drag is adopted to realize no load, and the front-stage wind turbine rotor passes the wind without doing work at small radius, and receives the energy of the upstream wind on the rear-stage wind turbine rotor hand over. As shown in FIG.
  • chord direction of each radial position may be determined so that the angle of attack ⁇ at which the lift-drag ratio ⁇ of equation (1) can be obtained with respect to the relative flow angle ⁇ given by equation (2) (blade Torsion).
  • the resultant force F causes a change in momentum in the axial direction, that is, a decrease in axial velocity
  • a wing element with the resultant force F that is, the reaction force D as small as possible is adopted.
  • a symmetrical airfoil is shown as an example in FIG. 12 (b), the object can be achieved with an airfoil having a camber.
  • the output is increased by leaving the small diameter post-stage wind turbine rotor to absorb energy with a small radius which can not be expected with the large-scale front stage wind turbine rotor.
  • the tandem wind turbine rotor instead of simply combining the optimal ones as single-stage wind turbine rotors, as described above, a blade which does not absorb wind energy is adopted in a portion with a small radius for the front-stage wind turbine rotor.
  • the blades of the rear stage wind turbine rotor adopt the following shape to match the flow from the front stage wind turbine rotor. That is, in the entire blade area, a blade element is formed of an airfoil having a warp in cross section along the rotational direction so that a desired rotational torque can be obtained.
  • the angle of attack smaller than the angle of attack that gives the highest lift-drag ratio for the swirl flow, lower than the attack angle that gives the highest lift-drag ratio for the non-swirl flow in the region corresponding to the inner region Apply a twist in the radial direction so as to make the angle of attack smaller by the stability margin angle of.
  • the coefficient 0.160) is more than that for the output improvement of the rear-stage wind turbine rotor (the maximum output coefficient 0.138 of the rear-stage blade G when the front-stage blade G is adopted)
  • the maximum power coefficient of 0.165) stands out, and the power of the tandem rotor type wind power generator increases (FIG. 15).
  • the power coefficient C P in front blade G single stage is 0.287.
  • the present invention can be used as a wind turbine generator with high power generation efficiency in the fields of a wind turbine industry, a machine industry, an electricity industry, and an electric power industry aiming to achieve clean energy.

Abstract

 本発明は、発電効率を向上させることのできるタンデムロータ型の風力発電装置を提供することを目的とする。発電機(3)の電機子ロータ(4)に連結される前段風車ロータ(1)のブレード(6)には、前段風車ロータ(1)の回転半径の中間位置の外側領域では、所望する回転トルクが得られるように回転方向に沿う断面形状が反りをもつ翼型からなる翼素を採用するとともに、半径位置によらず最高揚抗比を与える迎え角よりも所定の安定余裕角度分小さい迎え角が得られるように半径方向に捻りを与え、前段風車ロータの回転半径の前記中間位置の内側領域では無負荷にするため、半径位置によらず、翼素に働く抗力が小さく、かつ揚力との合力が軸方向を向く迎え角が得られるように半径方向に捻りを与えたブレードを用いた風力発電装置。

Description

風力発電装置
 本発明は、発電効率を向上させることのできるタンデムロータ型の風力発電装置に関する。
 風況が良好な欧米に適した従来技術の延長線上にある現状風車の問題点を克服し、適用範囲の拡大と運転方法の改善を目的とし、大小二段の風車ロータが固定子を持たない発電機の内外二重回転電機子/回転界磁をそれぞれ駆動する、まったく新しい風力発電装置が本願発明者によって提案され、特許が付与された(特許文献1)。その構成の概略図と特性図を図1,図2に示す。図1において本提案のタンデムロータ型風力発電装置は、前段風車ロータ1と後段風車ロータ2を同軸上に配置し、前段風車ロータ1を発電機3の電機子ロータ4(内側回転電機子)に、後段風車ロータ2を同発電機3の界磁ロータ5(外側回転電機子)にそれぞれ連結し、前段風車ロータ1のブレード6の捻れ方向と後段風車ロータ2のブレード7の捻れ方向とが軸方向に対して逆に向くように配置した構成である。図1は発電機3を搭載するタワーの上流側に風車ロータを設けたアップウィンド型であるが、同図の風車ロータの左右(前後)を入れ換え、右方向からの風に対応させると、タワーの後流側が風車ロータとなるダウンウィンド型にも適用できる。
 このタンデムロータ型風力発電装置の特徴は、発電機3の電機子ロータ4と界磁ロータ5に働く相反回転トルクが一致する点で運転されるが、その回転速度と回転方向は任意であることを利用する風車ロータの回転挙動にある。増速機構はなく、前後段の風車ロータ軸が発電機3の電機子ロータ4と界磁ロータ5にそれぞれ連結されている。このとき上述のように、両ロータ4,5に働く相反回転トルク、すなわち前後二段の風車ロータ1,2それぞれの発生トルク(方向は逆)が同じ点で運転されるが、風車ロータ1,2の回転速度や回転方向は風速に応じて次のようになる。図2に示すように、両風車ロータ1,2はカットイン風速から互いに逆方向に回転(相反回転)し始め、風速の増加とともに両風車ロータの回転速度は増し、後段風車ロータ2の最高回転速度付近において出力一定の定格運転状態に達する。それより風速が増すと、後段風車ロータ2は回転トルクの大きい前段風車ロータ1と回転トルクを一致させるために徐々に減速し、停止状態を経て前段風車ロータ1と同方向に回転するようになる(風に逆らって上流側に空気を送る一種の送風作用)。このような挙動は、内外二重ロータ(回転電機子/回転界磁)方式の発電機3との的確な連携プレーによって実現される。
 本風力発電装置の好適なブレード枚数について考察した文献として、本願発明者の非特許文献1がある。
 風車ロータのブレードとして最も簡単な平板(厚さ1.5mmの矩形、前段風車ロータ径500mmに対する後段風車ロータ径の比DRF=0.71)を用いた場合について、性能に及ぼす前後段風車ロータのブレード枚数ZF、ZRの影響を図3に示す(風速V=12.1m/s、回転方向から測った前後段のブレード取付け角βF=βR=45°)。ここに、NTは相対回転速度[=NF-NR,NF,NR:前後段風車ロータの回転速度(前段風車ロータの回転方向を正)]、Tは回転トルク、Pは出力であり、同図(a)は後段ブレード枚数ZR=5で前段ブレード枚数ZFを変えた場合、(b)はZF=3でZRを変えた場合である。回転速度に対する回転トルク変化や最高出力が得られる最適な回転速度が存在するなどの傾向は従来の単段風車となんら変わりはないが、本風力発電装置では後段風車ロータの回転挙動に着目する必要がある。
 すなわち前述のように、後段風車ロータは、回転トルクが比較的小さい領域では前段風車ロータとは逆方向に回転(相反回転、極低風速から定格運転開始をある程度越えた風速までの運転)するが、回転トルクが大きくなるにつれて前段風車ロータと同方向に回転(同方向回転、強風下での運転)する必要がある。前段のブレード枚数を変えても回転トルクおよび出力はさほど変わらないが、ZF=2では本着想の拠りどころである前後段風車ロータの同方向回転は望めず、出力などから評価して、従来の単段風車ロータ通りZF=3が良好となる[図3(a)]。これに対し、性能に及ぼす後段ブレード枚数の影響は大きい[図3(b)]。後段ブレード枚数の増加とともに、回転トルクと出力は増加し、絶対値でみるとNFは遅くNRは速くなる。着想の相反回転と同方向回転の混在機能および出力から評価すると、後段のブレード枚数はZR=4~6が最適である。
 図3の相対回転速度、出力をそれぞれ相対周速比λT(=前後段風車ロータの相対外周速度/風速)、出力係数CP[=P/(ρAV3/2)、ρ:空気密度、A:風車ロータの受風面積]でまとめ直し、図4に示す。なお、風速に対して相似性が確認されたので、種々な風速における実験値を一つの曲線で代表させている。前述のように、CPに及ぼす前段ブレード枚数の影響は比較的少ないが、後段ブレード枚数の影響は顕著となる。図4(b)には前段ブレードのみで運転したときの値(Single、単段風車ロータの場合に相当、もともと出力が期待できない平板のため絶対値の評価はさほど意味がない)を細実線で示すが、タンデム(二段)風車ロータにすることにより、最高出力を与える最適相対周速比λTは単段風車ロータの場合に比べて3倍近く速くなり、その出力CPもZR=5で2.5倍近くになる。
 前後段風車ロータの最適な直径比と軸間距離については、本願発明者の非特許文献2、3に示されている。
 タンデム風車ロータとして望ましい直径比および軸間距離を求めるため、反りを持たない対称翼型の翼素からなる捻りがない二次元のブレードE(図5)、産業技術総合研究所が公表している(http://riodb.ibase.aist.go.jp/db060/index.html)MEL002翼型を流用して半径によらず好適な迎え角となるように捻りを与えたブレードG(図6、現状実機の単段風車ロータに採用)を準備した(前段風車ロータ径500mm)。以下、表記の単純化のため、これらのブレードのアルファベットを前後段順に記し、例えば前段風車ロータに前段ブレード(Front Blade)G、後段風車ロータに後段ブレード(Rear Blade)Eを使用した場合をタンデム風車ロータ(Tandem Wind Rotor)GEと表記する。なお、相反回転時の回転方向から測った前後段風車ロータのブレードティップにおける取付角βF,βRはそれぞれ予備的研究で最適化されている。
 タンデム風車ロータEE,GEについて、出力特性に及ぼす前後段風車ロータの直径比DRF(=dR/dF;dF,dR:前後段風車ロータの回転直径)の影響を図7に示す。ここに、CPmaxは各DRFにおける出力係数CPの最高値、Lは無次元軸間距離(後の図9参照)である。前段風車ロータの形状によらず、前段風車ロータを出た流れは半径外向きに向かうため(後の図10参照)、後段風車ロータ径が大きくなると、その流れのエネルギーをより多く吸収することができ、タンデム風車ロータとしての出力は高くなる(DRF=1で最高値)。しかし、図8に示す風車ロータの回転挙動をみると、DRFが0.84付近より小さいと、相対回転速度NTが遅い領域において後段風車ロータは前段風車ロータと同方向に回転するが、DRF=0.84よりも大きくなると前段風車ロータが後段風車ロータと同じ方向に回転する。後者の回転挙動は、本風力発電装置の着想から大きく逸脱するものである。したがって、着想に添い、かつ高出力が得られる最適な前後段風車ロータ径比は、DRF=0.84付近となる。
 次に、前後段風車ロータの軸方向距離比L(=L12/dF、L12:前後段風車ロータの軸間距離)がタンデム風車ロータの出力CPmaxに与える影響を図9に示す。前後段風車ロータの軸間距離L12が短いほど高出力となり、その傾向はブレード形状に依存しない。図10に示すように、前段風車ロータ1を通過した流れは半径外向きの速度成分をもつため、図10(b)に示すように軸間距離L12が長いほど後段風車ロータ2に流入する流れが減少するためである。したがって、風によるブレードのたわみや振動などを考慮しながら、図10(a)に示すように、前後段風車ロータの軸間距離L12をできるだけ近付けるのが望ましい。
特許第4040939号公報
Toshiaki KANEMOTO and Ahmed Mohamed GALAL, Development of Intelligent Wind Turbine Generator with Tandem Wind Rotors and Double Rotational Armatures (1st Report, Superior Operation of Tandem Wind Rotors), JSME International Journal, Series B, Vol.49, No.2 (2006-5), pp.450-457. Toshiaki Kanemoto, Hiromi Mitarai, Koichi Kubo, Noboru Aoki, Nobuyuki Esaki, Akinori Maeyama, Hidenori Eguchi, Hideharu Noda and Ikumi Yamada, Almighty High Output Type Intelligent Wind Turbine Generator with Tandem Rotors, Proceedings of the 5th Joint JSME-ASME Fluid Engineering Conference, (2007-7), CD-ROM FEDSM2007-37534. Koichi Kubo and Toshiaki Kanemoto, Development of Intelligent Wind Turbine Unit with Tandem Wind Rotors and Double Rotational Armatures (2nd Report, Characteristics of tandem wind rotors), Journal of Fluid Science and Technology, Vol. 3, No. 3, (2008-6), pp. 370-378.
 現在活躍している従来風車は、風況が良好な欧州や米国に適した単段プロペラに固執した延長線上にあり、次のような解決すべき技術的問題を抱えている。
(a)高出力には大径風車ロータが適しているが微風速下では稼働せず、微風速下では軽量小径風車ロータが適しているが強風下でも出力が低いなど、風車ロータの径によって適用範囲は限定される。
(b)電気の質が保たれるよう、発電機の磁界を横切る速度を速くするため、増速機構を介するか、あるいは大径/多極発電機を準備する必要がある。
(c)強風速下における風車ロータやタワーの破損と発電機への過負荷を避け、かつ定格運転域で出力を一定に保つため、ブレーキや可変ピッチブレードなどの複雑な回転速度制御機構を必要とする。
(d)従来風車は風速約11m/s以上で出力一定の定格運転となる。たとえば、カリフォルニア州丘陵のアルタモントパスウィンドファームの平均風速は約11m/s、デンマーク湾岸のミデルグランデンウィンドファームの平均風速は約9m/sであり、従来風車の能力が十分発揮されている。しかし、微風速と強風速の差が著しく、風車にとって良好な風況が安定して豊富に得られない地域、たとえば日本における年平均風速は離島や岬で5~8m/s、海岸地域で5m/s内外、内陸で3m/s、山岳や山頂で5~10m/sであり、従来風車の定格運転開始風速11m/s以上に達する地域や季節/時間はかなり限定される。風車の出力は、風速の3乗に比例するので、風速が遅くなるとともに著しく低下するから、風車にとって風況が好ましくない地域では低風速域での出力増大が望まれる。
 今後は、風況を選ぶ従来風車を設置できる適地は少なくなり、風況を選ばず低風速にも適した高出力風力発電装置が採用されるようになると思われる。
 以上に述べた問題点を解決する風力発電装置の望ましい姿は、(1)微風速下での出力増大、(2)定格運転開始風速の低下、(3)増速機構、ブレーキや可変ピッチ機構などの排除、であり、先に特許化したタンデムロータ型風力発電装置は、実用化のためのこれらの要求を総て満たすものである。
 しかし、流体力学/航空力学を基盤にした単段のプロペラ開発に終始してきた従来の研究開発方針を踏襲する限り、今以上より格段の発展は望めないため、本発明者とは別の観点に立った新たな技術も提案されつつある。
 その代表例として太田俊昭らの“風レンズ”(特開2009-47069号公報参照)があげられ、利用が難しい微風速エネルギーをも集積活用でき、格段の高出力化に成功しており将来の一姿と考えられるが、風車ロータまわりにダクトを設けるのでタワーに作用する抗力が極めて大きく、適用範囲は小容量/小型機に限られる。また、同様に小容量/小型機を対象として、柔軟ブレードの採用による騒音軽減と強風速下の自己出力制御、抗力可変型垂直軸風車(西ほか、「風圧利用抗力可変形風車の空力特性」、ターボ機械、第34巻第12号、pp.44-50、2006年12月)などの発想も生まれつつある。また、韓国では小径前段風車ロータと大径後段風車ロータあるいは同径風車ロータの採用を考えた例もある(Sung Nam Jung, et al., Aerodynamic performance prediction of 30 kWcounter-rotating wind turbine system, www.sciencedirect.com, Renewable Energy 30 (2005), pp.631-644.)。
 本発明の対象は、前記タンデムロータ型風力発電装置に採用する風車ロータに関するものである。本発明者は、二段ランナ(羽根車)と内外二重回転電機子方式発電機からなる相反転方式水力発電ユニットの開発実績を有しているが、本風力発電装置とは次の点で大きく相違している。
(a)ランナ流路:水力発電ユニットではランナを設ける流路を有するので、ランナを通過する流量(軸方向速度)は前後段とも同じであるが、風車ロータは自由流中に設けられるので、風が風車ロータを通過する際、前述のように半径方向外向き流れが生じる。したがって、前後の風車ロータを通過する軸方向速度は異なり、かつ本風力発電装置の後段風車ロータは風車作用と送風作用を兼ね備えるから流れは極めて複雑になる。その影響は前段風車ロータにまで及ぶので、たとえ前段風車ロータのみ取り上げても従来の単段風車ロータとは異なった流れとなり、新たな設計法の確立が必要となる。
(b)回転速度:水力発電ユニットでは設置点の落差と流量によって前後段ランナの相対回転速度(一定)は決まるが、本風力発電装置の相対回転速度は風速と発電負荷に左右される。
 上述のようにタンデム風車ロータは両風車ロータ間の流れの干渉が極めて強く、単段風車ロータの設計法が適用できないため、新たな設計法の確立が望まれる。
 本発明は、発電効率を向上させることのできるタンデムロータ型の風力発電装置を提供することを目的とする。
 前記目的を達成するための、本発明の第1の構成は、前段風車ロータと後段風車ロータを同軸上に配置し、一方の風車ロータを発電機の回転自在な電機子ロータに、他方の風車ロータを同発電機の回転自在な界磁ロータにそれぞれ連結し、前記前段風車ロータのブレードの捻れ方向と前記後段風車ロータのブレードの捻れ方向とが軸方向に対して逆に向くように配置した風力発電装置において、
 前記後段風車ロータの回転半径を、前記前段風車ロータの回転半径よりも短く同回転半径の半分よりも長くし、
 前記前段風車ロータのブレードには、
 同前段風車ロータの回転半径の中間位置の外側領域では、所望する回転トルクが得られるように回転方向に沿う断面形状が反りをもつ翼型からなる翼素を採用するとともに、半径位置によらず最高揚抗比を与える迎え角よりも所定の安定余裕角度分小さい迎え角が得られるように半径方向に捻りを与え、
 前記前段風車ロータの回転半径の前記中間位置の内側領域では無負荷にするため、半径位置によらず、翼素に働く抗力が小さく、かつ揚力との合力が軸方向を向く迎え角が得られるように半径方向に捻りを与えたことを特徴とする。
 このように、大径の前段風車ロータでは、回転トルクにあまり寄与しない半径の小さいハブ側のブレード形状として、極力抗力が小さい翼素を採用して無負荷を実現し、半径の小さいところでは仕事をせず風を通り抜かせ、後段風車ロータに上流側の風のエネルギーをそのまま受け渡すことにより、タンデム風車ロータとして効率的なエネルギー吸収を行う。なお、「最高揚抗比」は、揚抗比曲線の最大値を取る揚抗比を意味する。
 本発明の第2の構成は、前記後段風車ロータのブレードは、同ブレード全域で、所望する回転トルクが得られるように回転方向に沿う断面形状が反りを持つ翼型からなる翼素とし、
 前記前段風車ロータの前記外側領域に対応する後段風車ロータの部分では、前記前段風車ロータからの旋回流に対して最高揚抗比を与える迎え角よりも所定の安定余裕角度分小さい迎え角が得られるように半径方向に捻りを与え、
 前段風車ロータの前記内側領域に対応する後段風車ロータの部分では、無旋回流れに対して最高揚抗比を与える迎え角よりも所定の安定余裕角度分小さい迎え角が得られるように半径方向に捻りを与えたことを特徴とする。
 後段風車ロータのブレードを上述の形態とすることにより、後段風車ロータは全域にわたって効率良く風のエネルギーを吸収し、タンデム風車ロータとしての出力増大に寄与する。
 本発明の第3の構成は、前記前段風車ロータと前記後段風車ロータとを近接配置し、前記前段風車ロータのブレードの枚数を3枚とし、前記後段風車ロータのブレードの枚数を4~6枚としたことを特徴とする。
 これにより、後段風車ロータは、微風速下で前段風車ロータとは逆方向に回転し始めるが、風速の増加とともに回転速度が最高になった後、徐々に減速し、さらに風速が増すと停止状態を経て前段風車ロータと同方向に回転し始めるようになり、タンデムロータ型風力発電装置としての理想的な運転が実現される。
 本発明の第4の構成は、後段風車ロータの回転半径を、前記前段風車ロータの回転半径に対して0.84付近にしたことを特徴とする。
 これにより、前記後段風車ロータの相反回転、停止、同方向回転を実現しながら最高効率を達成することができる。
 本発明の第5の構成は、前記安定余裕角度が2~5度であることを特徴とする。
 これにより、発電装置の運転の安定性を保持することができる。
 本発明の第6の構成は、前記前段風車ロータにおける中間位置が、前記前段風車ロータの回転半径の40~60%であることを特徴とする。
 これにより、前段風車ロータの内側領域における風のエネルギーを後段風車ロータに有効に受け渡すことができる。
 本発明によれば、前段風車ロータのブレードには、同前段風車ロータの回転半径の中間位置の外側領域では、所望する回転トルクが得られるように回転方向に沿う断面形状が反りをもつ翼型からなる翼素を採用するとともに、半径位置によらず最高揚抗比を与える迎え角よりも所定の安定余裕角度分小さい迎え角が得られるように半径方向に捻りを与え、前段風車ロータの回転半径の中間位置の内側領域では無負荷にするため、半径位置によらず、翼素に働く抗力が小さく、かつ揚力との合力が軸方向を向く迎え角が得られるように半径方向に捻りを与えたことにより、効率的な風のエネルギー変換が行われ、タンデムロータ型風力発電装置の特徴を十分に達成することができる。
先に提案した特許文献1におけるタンデムロータ型風力発電装置(アップウインドウ型の場合)の概略構成図である。 図1に示したタンデムロータ型風力発電装置の運転時における各風車ロータの回転速度、出力特性と風速の関係を示すグラフである。 風車ロータのブレードとして最も簡単な平板を用いた場合について、性能に及ぼす前後段風車ロータのブレード枚数の影響を示すグラフである。 図3に対応し、風車ロータのブレード枚数の影響を受ける相対周速比と出力係数との関係を示すグラフであり、(a)は前段風車ロータのブレード枚数の影響、(b)は後段風車ロータのブレード枚数の影響を示す。 反りを持たない対称翼型の翼素からなる捻りがない二次元のブレードEを示す側面図及び断面図である。 半径によらず最適な迎え角となるように半径方向に捻りを与えたブレードGの形態を示すもので、(a)は前段風車ロータのブレードの側面図、正面図、平面図、底面図、各部の断面図であり、(b)は後段風車ロータのブレードの側面図、正面図、平面図、底面図、各部の断面図である。 出力係数に及ぼす前後段風車ロータ径比の影響を示すグラフである。 タンデム風車ロータの回転の振る舞いを示すグラフであり、(a)はタンデム風車ロータEEの場合、(b)はタンデム風車ロータGEの場合を示す。 出力特性に及ぼす前後段風車ロータの軸間距離の影響を示すグラフである。 風車ロータまわりの空気の流れの状態を示すもので、(a)は軸間距離が短い場合、(b)は軸間距離が長い場合を示す。 本発明の実施の形態に係るブレードの形態を示すものであり、(a)は前段風車ロータのブレードHの形態を示す正面図、側面図、平面図、底面図、各部の断面図、(b)は図6(b)と同様の後段風車ロータのブレードGの側面図、正面図、平面図、底面図、各部の断面図である。なお,本図に記された寸法は風洞実験用の小型ブレードのものである. 前段風車ロータ出入口の速度三角形および翼に働く揚力、抗力、合力の説明図であり、(a)はディップ側、(b)はハブ側を示す。 産業技術総合研究所(MEL)および米国の国家航空宇宙諮問委員会(NACA)が公表している一翼型の性能曲線であり、(a)は揚抗比、(b)は揚力係数、(c)は抗力係数を示す。 後段風車ロータの出力に及ぼす前段風車ロータのブレード形状の影響を示すグラフである。 タンデム風車ロータの相対周速比と出力係数との関係を示すグラフである。
 1 前段風車ロータ
 2 後段風車ロータ
 3 発電機
 4 電機子ロータ(内側回転電機子)
 5 界磁ロータ(外側回転電機子)
 6 前段風車ロータのブレード
 7 後段風車ロータのブレード
 以下、本発明の実施の形態を、図面を用いて説明する。
 前段風車ロータの好適ブレード形状の一例(前段ブレードH)を図11(a)に示す。
 本発明の風力発電装置のタンデム風車ロータとして望ましい形態は、次の通りである。
(a)前段風車ロータのブレード枚数は3枚、後段風車ロータのブレード枚数は4~6枚とする。
(b)前段風車ロータ径に対する後段風車ロータ径の比は0.84程度とする。
(c)両風車ロータは可能な限り隣接させる。
 なお、図11(a)における寸法は、実験模型(前段風車ロータ径500mm)での数値を示しており、長さの単位はmmである。また、ブレードの各部の断面の角度および形状は、ブレードの長手方向の各寸法位置における設定値である。なお、後段風車ロータのブレードとしては、前掲の図6(b)と同様の形状を有する図11(b)の形状とすることができる。
 前段風車ロータの半径rが大きいブレードティップ側(外側領域:回転半径の40~60%、本実施の形態では50%が目安)は従来通り、翼型の翼素を採用して所望する回転トルクが得られるように反りを与え、半径位置によらず最高揚抗比を与える迎え角よりも所定の安定余裕角度分小さい迎え角α(以下に使用するαは、「最高揚抗比を与える迎え角」ではなく、安定余裕角度を引いた、この迎え角を指す。)となるようにブレードを半径方向に捻る。ティップ側の任意半径位置における翼素前後の速度三角形を図12(a)に示す。ここに、uは周方向速度(回転速度rω)、vは絶対速度、vmは軸方向速度、wは相対速度、αは翼弦と相対速度w1がなす迎え角、添字1、2は入口と出口断面の値である。
 出入口の相対速度w2、w1のベクトル平均に平行な方向の抗力Dとそれに垂直な揚力Lの合力Fの回転方向成分FTによって風車ロータが回転する。したがって、揚抗比(ε=L/D)が大きいほど合力Fの回転方向成分FTすなわち出力は高くなり、たとえば、産業技術総合研究所のMEL002翼型では、迎え角α=10度付近で揚抗比は最高となる。半径によらず迎え角α=10度に保ちたければ、図12(a)の速度三角形を参照して、各半径rにおける風速vm1(一般には一定)と回転速度u=rωから相対速度w1を求め、w1と翼弦のなす角αが半径によらず10度となるようにブレードを半径方向に捻ればよい。実際の設計では、風車ロータ回転の安定性を考慮して、最高揚抗比を与える迎え角よりも所定の安定余裕角度分小さい迎え角が選定される。
 ここで、ブレード形状によって揚力Lと抗力Dすなわち揚抗比ε=L/Dは異なる。これらの値は画一的なものはなく(式では与えられない)、個々についてそれぞれ、性能試験あるいは数値シミュレーションによって求めざるを得ない。図13は産業技術総合研究所(MEL)および米国NASA(航空宇宙局)の前身である国家航空宇宙諮問委員会(NACA)が公表している一翼型の性能曲線(Robert E.S. et al., Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines, SAND80-2114, (1981))である。
 図12(a)からわかるように揚抗比ε=L/Dが大きいほど回転力FTは大きくなる。たとえば図13(a)のMEL002翼型では、迎え角α=10度付近で揚抗比は最高となる。理想的にはこの迎え角となるようにブレードを設計すればよい。しかし、実際の風は乱流成分を持ちながら脈動している。また、風力発電装置自身の何らかの問題で回転速度や負荷が変わる場合がある。たとえば、MEL002を用いて迎え角α=10度で設計されたブレードを考える。何らかの外乱等で回転速度uが遅くなると迎え角αは10度より大きくなる(図12参照)。このとき、揚抗比は急激に低下(図13参照,揚力の低下、抗力の増加:失速)、すなわち回転力FTは低下し、風車ロータの回転速度はますます遅くなるほうに向かう。これに対し、回転速度が速くなった場合、迎え角は10度より小さくなり、揚抗比が減少して回転速度は減少方向に向かい元の状態に復元する。
 以上の理由により、実際の設計迎え角は、最高揚抗比が得られる角度よりも安定余裕角度分小さく選定され、運転の安定領域を広くとる。どの程度、小さくするかは企業やエンジニア等の設計思想によるが、目安としては2~5度、本実施の形態では3度程度小さくしている。
 本発明の前段風車ロータのブレードは、大径の風車ロータでは回転トルクにあまり寄与しない半径の小さいハブ側(内側領域:回転半径の60~40%[(回転半径-外側領域の長さ)/回転半径]、本実施の形態では50%が目安)の形状に特徴がある。すなわち、極力抗力が小さい翼素を採用して無負荷を実現し、前段風車ロータは、半径の小さいところでは仕事をせず風を通り抜かせ、後段風車ロータに上流側の風のエネルギーをそのまま受け渡す。図12(b)に示すように、前段風車ロータに流入する軸方向流れ(v1=vm1)はそのまま方向を変えずに軸方向に流出する(v2=vm2)ようにすれば、風が前段風車ロータを通過する際に流れの角運動量変化が生じない、すなわち半径の小さいハブ側における前段風車ロータは無負荷となり風のエネルギーを吸収しない。このとき当然、相対速度w1、w2の方向も同じとなる。
 風車ロータ前後で流れの角運動量変化が生じないことは、翼素に働く回転方向(周方向)の力がない(FT=0)ことである。すなわち、図12(b)に示すように、翼素に働く抗力Dと揚力Lの合力Fが軸方向に向き、Fの回転方向成分がFT=0となるようにすればよい。このときの揚力と抗力の関係は速度三角形と相似となり、揚抗比εは
 ε=L/D=u/vm1=rω/vm1      ・・・・・・・・・(1)
で与えられ、回転方向から測った相対流れ角βは
 β=tan-1(vm1/rω)=tan-1(D/L)     ・・・・(2)
で与えられる。
 したがって、式(2)で与えられる相対流れ角βに対して、式(1)の揚抗比εが得られる迎え角αとなるように、各半径位置の翼弦方向を決めれば良い(ブレードの捻り)。このとき、合力Fは軸方向の運動量変化、すなわち軸方向速度の減少を招くので、合力Fすなわち抗力Dが極力小さい翼素を採用する。図12(b)には例として対称翼型を示しているが、反りを持つ翼型でも本目的は達成できる。
 このように、大径の前段風車ロータでは期待できない半径が小さいところのエネルギー吸収を、小径の後段風車ロータに任せることにより出力は増加する。たとえば、直径dF=500mmのモデルによる前段ブレードGの最高出力点付近で発生する回転トルクは、ティップ側50%で0.1136Nmに対し、ハブ側50%では0.0096Nmであり、ハブ側で発生する回転トルクが出力(=回転トルク×回転角速度)に及ぼす影響は微々たるものであることが確認できる。
 タンデム風車ロータとしては、単段風車ロータとして最適なものを単に組み合わせるのではなく、上述のように前段風車ロータについては半径の小さい部分であえて風のエネルギーを吸収しないブレードを採用する。これに対する後段風車ロータのブレードは、前段風車ロータからの流れにマッチングするように次のような形状を採用する。
 すなわち、ブレード全域で、所望する回転トルクが得られるように回転方向に沿う断面形状が反りを持つ翼型からなる翼素とし、前段風車ロータ径の外側領域に相当する領域では、前段風車ロータからの旋回流に対して最高揚抗比を与える迎え角よりも所定の安定余裕角度分小さい迎え角、内側領域に相当する領域では無旋回流れに対して最高揚抗比を与える迎え角よりも所定の安定余裕角度分小さい迎え角となるように、半径方向に捻りを与える。
 図14は出力向上の実証結果を示すもので、後段ブレードGの出力係数CPRに及ぼす前段ブレード形状の影響を示す(λR:後段風車ロータの周速比)。上述した前段ブレードHを採用すると、後段風車ロータに十分な風のエネルギーを与えることができ、出力係数CPRは格段に向上する。
 前段ブレードHは半径の小さいところで仕事をしない分、他の風車ロータと比較して幾分出力係数CPFは小さくなる(前段ブレードGの最高出力係数0.175に対し、前段ブレードHの最高出力係数0.160)が、それ以上に後段風車ロータの出力向上(前段ブレードGを採用したときの後段ブレードGの最高出力係数0.138に対し、前段ブレードHを採用したときの後段ブレードGの最高出力係数0.165)が目立ち、タンデムロータ型風力発電装置としての出力は増加する(図15)。なお、前段ブレードG単段での出力係数CPは0.287である。
 本発明は、発電効率の高い風力発電装置として、クリーンエネルギー化を目指す風力発電産業、機械産業、電気産業、電力産業の各分野において利用することができる。

Claims (6)

  1.  前段風車ロータと後段風車ロータを同軸上に配置し、一方の風車ロータを発電機の回転自在な電機子ロータに、他方の風車ロータを同発電機の回転自在な界磁ロータにそれぞれ連結し、前記前段風車ロータのブレードの捻れ方向と前記後段風車ロータのブレードの捻れ方向とが軸方向に対して逆に向くように配置した風力発電装置において、
     前記後段風車ロータの回転半径を、前記前段風車ロータの回転半径よりも短く同回転半径の半分よりも長くし、
     前記前段風車ロータのブレードには、
     同前段風車ロータの回転半径の中間位置の外側領域では、所望する回転トルクが得られるように回転方向に沿う断面形状が反りをもつ翼型からなる翼素を採用するとともに、半径位置によらず最高揚抗比を与える迎え角よりも所定の安定余裕角度分小さい迎え角が得られるように半径方向に捻りを与え、
     前記前段風車ロータの回転半径の前記中間位置の内側領域では無負荷にするため、半径位置によらず、翼素に働く抗力が小さく、かつ揚力との合力が軸方向を向く迎え角が得られるように半径方向に捻りを与えた
    ことを特徴とする風力発電装置。
  2.  前記後段風車ロータのブレードは、同ブレード全域で、所望する回転トルクが得られるように回転方向に沿う断面形状が反りを持つ翼型からなる翼素とし、
     前記前段風車ロータの前記外側領域に対応する後段風車ロータの部分では、前記前段風車ロータからの旋回流に対して最高揚抗比を与える迎え角よりも所定の安定余裕角度分小さい迎え角が得られるように半径方向に捻りを与え、
     前段風車ロータの前記内側領域に対応する後段風車ロータの部分では、無旋回流れに対して最高揚抗比を与える迎え角よりも所定の安定余裕角度分小さい迎え角が得られるように半径方向に捻りを与えたことを特徴とする請求項1記載の風力発電装置。
  3.  前記前段風車ロータと前記後段風車ロータとを近接配置し、前記前段風車ロータのブレードの枚数を3枚とし、前記後段風車ロータのブレードの枚数を4~6枚としたことを特徴とする請求項1または2記載の風力発電装置。
  4.  後段風車ロータの回転半径を、前記前段風車ロータの回転半径に対して0.84付近にしたことを特徴とする請求項1,2または3記載の風力発電装置。
  5.  前記安定余裕角度が2~5度である請求項1から4のいずれかの項に記載の風力発電装置。
  6.  前記前段風車ロータにおける中間位置が、前記前段風車ロータの回転半径の40~60%である請求項1から5のいずれかの項に記載の風力発電装置。
PCT/JP2010/000501 2009-01-30 2010-01-28 風力発電装置 WO2010087178A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/147,021 US9046075B2 (en) 2009-01-30 2010-01-28 Wind turbine generator
DK10735650T DK2402592T3 (en) 2009-01-30 2010-01-28 Wind Turbine Generator
JP2010548428A JP5470626B2 (ja) 2009-01-30 2010-01-28 風力発電装置
EP10735650.3A EP2402592B1 (en) 2009-01-30 2010-01-28 Wind turbine generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-020675 2009-01-30
JP2009020675 2009-01-30

Publications (1)

Publication Number Publication Date
WO2010087178A1 true WO2010087178A1 (ja) 2010-08-05

Family

ID=42395442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000501 WO2010087178A1 (ja) 2009-01-30 2010-01-28 風力発電装置

Country Status (5)

Country Link
US (1) US9046075B2 (ja)
EP (1) EP2402592B1 (ja)
JP (1) JP5470626B2 (ja)
DK (1) DK2402592T3 (ja)
WO (1) WO2010087178A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020067010A (ja) * 2018-10-23 2020-04-30 三菱電機エンジニアリング株式会社 プロペラ装置
CN113000173A (zh) * 2021-03-29 2021-06-22 南京工程学院 超硬纳米粉碎卧式液力双向对冲高速湍流磨

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100962774B1 (ko) * 2009-11-09 2010-06-10 강현문 풍력발전장치
DE102013200313A1 (de) * 2013-01-11 2014-07-17 KPinvest Windkraftanlage
ITMI20130263U1 (it) * 2013-07-15 2015-01-16 Immobiliare Orizzonti 3000 S R L Impianto mobile per la produzione di energia elettrica
US9617979B2 (en) * 2013-10-30 2017-04-11 Airgenesis, LLC Motor assisted power generation system
US20180171966A1 (en) * 2015-06-18 2018-06-21 New World Energy Enterprises Limited Wind turbine with rotating augmentor
CN106837683B (zh) * 2017-04-21 2018-09-11 华北电力大学 迎风面的出流切线倾角的最优值确定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440939B2 (ja) 1982-12-23 1992-07-06 Tokyo Shibaura Electric Co
JP2003129935A (ja) * 2001-10-26 2003-05-08 Mitsubishi Heavy Ind Ltd 風力発電装置
JP2003526757A (ja) * 2000-01-26 2003-09-09 アロイス・ヴォベン 風力発電装置
JP2004084522A (ja) * 2002-08-26 2004-03-18 Mitsubishi Heavy Ind Ltd 翼及びこれを備える風力発電装置
JP2004100546A (ja) * 2002-09-09 2004-04-02 Japan Science & Technology Corp 風力発電方法およびその装置
JP2009047069A (ja) 2007-08-20 2009-03-05 Toshiaki Ota 風力発電装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB476716A (en) * 1937-02-04 1937-12-14 Rudolf Arnold Erren Improvements in and relating to electric generators
US2153523A (en) * 1937-03-25 1939-04-04 W N Price Wind operated electric generator
US6769873B2 (en) * 2002-10-08 2004-08-03 The United States Of America As Represented By The Secretary Of The Navy Dynamically reconfigurable wind turbine blade assembly
GB0516149D0 (en) * 2005-08-05 2005-09-14 Univ Strathclyde Turbine
GB2462308A (en) * 2008-08-01 2010-02-03 Vestas Wind Sys As Extension portion for wind turbine blade
GB2462307A (en) * 2008-08-01 2010-02-03 Vestas Wind Sys As Extension portion for wind turbine blade
US20110223021A1 (en) * 2010-03-10 2011-09-15 Vestas Wind Systems A/S Wind turbine rotor blade
US20120020803A1 (en) * 2011-02-14 2012-01-26 Paul Lees Turbine blades, systems and methods
US9133819B2 (en) * 2011-07-18 2015-09-15 Kohana Technologies Inc. Turbine blades and systems with forward blowing slots

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0440939B2 (ja) 1982-12-23 1992-07-06 Tokyo Shibaura Electric Co
JP2003526757A (ja) * 2000-01-26 2003-09-09 アロイス・ヴォベン 風力発電装置
JP2003129935A (ja) * 2001-10-26 2003-05-08 Mitsubishi Heavy Ind Ltd 風力発電装置
JP2004084522A (ja) * 2002-08-26 2004-03-18 Mitsubishi Heavy Ind Ltd 翼及びこれを備える風力発電装置
JP2004100546A (ja) * 2002-09-09 2004-04-02 Japan Science & Technology Corp 風力発電方法およびその装置
JP2009047069A (ja) 2007-08-20 2009-03-05 Toshiaki Ota 風力発電装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
KOICHI KUBO, TOSHIAKI KANEMOTO: "Development of Intelligent Wind Turbine Unit with Tandem Wind Rotors and Double Rotational Armature (2nd Report, Characteristics of tandem wind rotors", JOURNAL OF FLUID SCIENCE AND TECHNOLOGY, vol. 3, no. 3, June 2008 (2008-06-01), pages 370 - 378
NISHI ET AL.: "Aerodynamic Performance of a Drag-Controlled Vertical Axis Wind Turbine", TURBOMACHINERY, vol. 34, no. 12, December 2006 (2006-12-01), pages 44 - 50
See also references of EP2402592A4 *
SUNG NAM JUNG ET AL.: "Aerodynamic Performance Prediction of 30 kW Counter-rotating Wind Turbine System", RENEWABLE ENERGY, vol. 30, 2005, pages 631 - 644, Retrieved from the Internet <URL:www. sciencedirect. com>
TOSHIAKI KANEMOTO, AHMED MOHAMED GALAL: "Development of Intelligent Wind Turbine Generator with Tandem Wind Rotors and Double Rotational Armature (1st Report, Superior Operation of Tandem Wind Rotors", JSME INTERNATIONAL JOURNAL, vol. 49, no. 2, May 2006 (2006-05-01), pages 450 - 457
TOSHIAKI KANEMOTO, HIROMI MITARAI, KOICHI KUBO, NOBORU AOKI, NOBUYUKI ESAKI, AKINORI MAEYAMA, HIDENORI EGUCHI, HIDEHARU NODA, IKUM: "Output Type Intelligent Wind Turbine Generator with Tandem Rotors", PROCEEDINGS OF THE 5TH JOINT JSME-ASME FLUID ENGINEERING CONFERENCE, July 2007 (2007-07-01)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020067010A (ja) * 2018-10-23 2020-04-30 三菱電機エンジニアリング株式会社 プロペラ装置
CN113000173A (zh) * 2021-03-29 2021-06-22 南京工程学院 超硬纳米粉碎卧式液力双向对冲高速湍流磨

Also Published As

Publication number Publication date
EP2402592A1 (en) 2012-01-04
JPWO2010087178A1 (ja) 2012-08-02
US9046075B2 (en) 2015-06-02
US20120091721A1 (en) 2012-04-19
JP5470626B2 (ja) 2014-04-16
DK2402592T3 (en) 2015-04-27
EP2402592B1 (en) 2015-03-25
EP2402592A4 (en) 2014-01-01

Similar Documents

Publication Publication Date Title
WO2010087178A1 (ja) 風力発電装置
AU2009277220B2 (en) Vertical shaft type Darius windmill
US20110116923A1 (en) Blade for a rotor of a wind or water turbine
EP2507510B1 (en) Turbine
AU2007249992A1 (en) Fluid energy converter
EP3613980A1 (en) Vertical-shaft turbine
EP2906819A1 (en) Joined blade wind turbine rotor
US6602045B2 (en) Wingtip windmill and method of use
Zhang et al. The hydrodynamic characteristics of free variable-pitch vertical axis tidal turbine
WO2002014688A1 (fr) Eolienne a ossature combinee
AU2011213426A1 (en) High-efficiency high-power vertical axis wind generator
JP2018507973A (ja) 発電機用のロータ
Kubo et al. Development of intelligent wind turbine unit with tandem wind rotors and double rotational armatures (2nd report, characteristics of tandem wind rotors)
Duran Computer-aided design of horizontal-axis wind turbine blades
CN205349609U (zh) 一种自动变桨风轮结构
JP2010223207A (ja) 垂直型反動風車発電機
CN105402083A (zh) 一种阶梯马格努斯型风力叶片及风力机
CN201521400U (zh) 基于导叶和升力叶片的立轴风车装置
CN116745518A (zh) 能够设置于移动体的风力发电装置
CN206397650U (zh) 新型多叶多节风叶轮及其风力发电机
CN101852168A (zh) 风力发电机离心变桨轮毂
CN215333225U (zh) 一种主动失速型的风力发电机组叶片
Chiu et al. Optimal aerodynamic design of a biplane wind turbine blade
RU2235900C2 (ru) Ветроэнергетическая установка малой мощности крыльчатого типа
CN201461231U (zh) 抗风灾的伞式风帆叶片及其风力机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10735650

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010548428

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010735650

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13147021

Country of ref document: US