WO2010086559A1 - Composition adhesive a base de polyethylene greffe - Google Patents

Composition adhesive a base de polyethylene greffe Download PDF

Info

Publication number
WO2010086559A1
WO2010086559A1 PCT/FR2010/050136 FR2010050136W WO2010086559A1 WO 2010086559 A1 WO2010086559 A1 WO 2010086559A1 FR 2010050136 W FR2010050136 W FR 2010050136W WO 2010086559 A1 WO2010086559 A1 WO 2010086559A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyethylene
composition
mixture
density
composition according
Prior art date
Application number
PCT/FR2010/050136
Other languages
English (en)
Inventor
Arnaud Gerbaulet
Samuel Devisme
Laurent Quillet
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to EA201101143A priority Critical patent/EA018678B1/ru
Priority to CN201080006006.XA priority patent/CN102300921B/zh
Priority to MX2011007855A priority patent/MX2011007855A/es
Priority to US13/147,073 priority patent/US8247053B2/en
Priority to BRPI1006977A priority patent/BRPI1006977B8/pt
Priority to ES10707609T priority patent/ES2399815T3/es
Priority to PL10707609T priority patent/PL2384352T3/pl
Priority to DK10707609T priority patent/DK2384352T3/da
Priority to EP10707609A priority patent/EP2384352B1/fr
Publication of WO2010086559A1 publication Critical patent/WO2010086559A1/fr
Priority to IL21384911A priority patent/IL213849A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/14Layered products comprising a layer of natural or synthetic rubber comprising synthetic rubber copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/16Layered products comprising a layer of natural or synthetic rubber comprising polydienes homopolymers or poly-halodienes homopolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/327Layered products comprising a layer of synthetic resin comprising polyolefins comprising polyolefins obtained by a metallocene or single-site catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/06Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2405/00Adhesive articles, e.g. adhesive tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article
    • Y10T428/1393Multilayer [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • Y10T428/31913Monoolefin polymer

Definitions

  • the present invention relates to an adhesive composition comprising grafted polyethylene.
  • This composition allows the manufacture of multilayer structures that can be used as protective structures of tubes, these tubes can be used for example for the manufacture of oil or gas pipelines.
  • Binder compositions have already been described in the prior art.
  • WO2006125913 describes a binder comprising a mixture of a polyethylene (PE) having a density of between 0.94 and 0.98 with a polypropylene, said mixture being co-grafted with an unsaturated functional monomer and which can be diluted in ungrafted polyethylene having a density of between 0.94 and 0.98.
  • PE polyethylene
  • This binder is used for the manufacture of tubes in the construction of pipelines.
  • This binder has good adhesion at room temperature up to 80 ° C.
  • a tongue is cut using a knife or chisel: this constitutes the "priming" stage.
  • This tongue is cut at the binder between the epoxy resin and polyolefin layers.
  • the adhesion force is measured by fixing a jaw on the tongue formed during the first step: by pulling on the tongue, the peel force is measured.
  • the tongue priming step is easy. For binders whose priming is not possible at room temperature, it is necessary to carry it out after heating the tube. This heating is an additional step of handling.
  • Another binder composition is disclosed in document EP1043375, this binder comprising a mixture of a polyethylene having a density of between 0.935 and 0.980 with a polymer chosen from elastomers, very low density polyethylenes, said mixture being co-grafted. by an unsaturated carboxylic acid and diluted in a polyethylene of density between 0.93 and 0.95.
  • This binder can be used to form a multilayer structure for example in flexible packaging or gasoline tanks and does not concern the metal tubes used for the manufacture of pipeline.
  • compositions based on polyethylene obtained by grafted metallocene catalysis have improved adhesive properties compared to grafted polyethylenes obtained by radical polymerization or by Ziegler-Natta-type catalysis, these being here combined under the name "non-metallocene”.
  • Metallocene-catalyzed polyethylenes which are generally ethylene polymers comprising alpha-olefin comonomers, have a narrower molecular weight distribution than non-metallocene polyethylenes.
  • the distribution of alpha-olefin comonomers within the metallocene polyethylene chain is more uniform than in the various non-metallocene polyethylene chains.
  • the different metallocene polyethylene chains comprise fewer long branched chains than the non-metallocene polyethylene chains.
  • These intrinsic properties lead to physicochemical properties of the metallocene polyethylenes, for example of melt flow, different from those of non-metallocene polyethylenes.
  • These adhesive formulations thus comprise at least 65% by weight of ethylene copolymer and an ethylenic monomer bearing a polar function of ester and elastomer type; they exhibit low adhesiveness at high temperature, which prevents them from being used when the approvals require adhesion at high temperature.
  • the invention relates precisely to a new composition based on non-grafted polyethylene (B) obtained by metallocene catalysis, making it possible to overcome the disadvantages presented above.
  • This composition comprises, with respect to its total mass:
  • (A1) and (A2) being cografted by an unsaturated functional monomer, the weight content of functional monomer relative to (A) being in the range of 30 to 100,000 ppm; From 25 to 98% of an ungrafted polyethylene (B) obtained by metallocene catalysis having a density ranging from 0.900 to 0.965;
  • This new composition has good adhesion at ambient temperature or at high temperature (for example 80 ° C.) with many supports, for example supports made of polyethylene or epoxy resin. It is generally considered that the adhesion at ambient temperature is good when the peel force is at least greater than 250 N / cm according to the NF A 49-710 standard. It is generally considered that the adhesion at 80 ° C. is good when the force peel is at least greater than 10ON / cm (NF A 49-710).
  • the composition may be used in any type of multilayer structure. A preferred use of this composition is in the coating of pipes (pipe coating) incorporating structures comprising a layer of polyethylene. The present invention is particularly useful for metal surfaces coated with polyethylene (PE).
  • this binder allows the formation of multilayer structures having excellent adhesion properties between the different layers, while having a low manufacturing cost. Priming of the structure is easy, especially for epoxy resin / binder / PE coating structures.
  • Various preferred embodiments of the invention are described below; it is specified that these different modes can be combined with each other.
  • the composition according to the invention comprises, relative to its total mass, from 10 to 30% by weight of the grafted polyethylene or of the grafted mixture (A), from 40 to 80% of the ungrafted polyethylene (B) and from 10 to 30% by weight of the elastomeric product (C).
  • the density of the polyethylene (B) may advantageously be greater than or equal to 0.925, for example between 0.930 and 0.960.
  • the polyethylene (B) comprises at least 95 mol% of ethylene.
  • the functional monomer grafted on the polyethylene or on the co-grafted mixture (A) is an unsaturated carboxylic acid or an unsaturated anhydride of this acid.
  • polymer (A) is a co-grafted mixture
  • it preferably comprises from 90 to 20 parts of polyethylene (Al) and from 10 to 80 parts of polymer (A2).
  • the polymer (A2) is advantageously a polyolefin.
  • This polyolefin is preferably chosen from homopolymers and copolymers of ethylene and / or propylene.
  • the polyolefin (A2) is a homopolymer or a copolymer of ethylene and alpha-olefin different from
  • the polymer (A) is a co-grafted mixture of a metallocene polyethylene (Al) and a non-metallocene linear low density polyethylene (A2).
  • the density of (Al) is in the range of 0.860 to 0.96 g / cm 3 .
  • the density of (A2) is in the range of 0.9 to 0.94 g / cm 3 .
  • the elastomeric product (C) has a flexural modulus of less than 100 MPa, this modulus being measured according to the ISO 178: 2001 standard.
  • the elastomeric product (C) is chosen from ethylene-alkyl (meth) acrylate copolymers or ethylene (meth) acrylate-maleic anhydride terpolymers.
  • the elastomeric product (C) is a copolymer of ethylene with an alpha-olefin whose density is in the range of 0.860 to 0.900, such as copolymers of ethylene and propylene as for example ethylene-propylene rubbers comprising a diene (EPDM), ethylene-propylene rubbers containing no diene (EPR) or very low density polyethylenes (PETBD).
  • EPDM diene
  • EPR ethylene-propylene rubbers containing no diene
  • PETBD very low density polyethylenes
  • the composition comprises:
  • non-grafted metallocene polyethylene B having a density ranging from 0.900 to 0.965; And from 10 to 30% by weight of an ethylene-alkyl (meth) acrylate copolymer (C).
  • Another subject of the invention is a film of the composition according to the invention.
  • the invention also relates to a multilayer structure comprising at least one layer of composition according to the invention on at least one other so-called "support layer” layer.
  • the support layer comprises a polyolefin, this polyolefin preferably being a polyethylene.
  • the support layer comprises an epoxy resin.
  • a preferred structure of the invention comprises a layer of the composition, said layer being between a first support layer comprising an epoxy resin and a second support layer comprising polyethylene.
  • the invention also relates to the use of the composition or structure according to the invention in tubes, in particular for the corrosion protection of metal tubes.
  • the invention also relates to a tube covered by the structure according to the invention.
  • This tube is preferably metallic.
  • the tube is covered with a protective multilayer structure comprising an epoxy resin, a binder layer according to the invention and a polyolefin coating layer, said layers extending from the inside to the outside of the tube.
  • the tube according to the invention can be advantageously used to transport gases or liquids, especially petroleum products or gases.
  • Figure 1 is a sectional view showing an example of a tube (1) covered with a protective structure, this protective structure being successively composed of a layer of epoxy resin (3), binder (5) and polyolefin (7).
  • composition according to the invention comprises, with respect to its total mass: From 1 to 40% of a polyethylene (A) grafted with a functional monomer or a mixture of a polyethylene (Al) with a second polymer (A2) other than (Al), this mixture of (Al) and (A2) ) being co-grafted with a functional monomer, the mass content of functional monomer relative to (A) being in the range of 30 to 100000 ppm;
  • the polyethylene (PE) (A) or (Al) may be a homopolymer of ethylene or a copolymer comprising at least 50 mole% of ethylene and a second alpha-olefin.
  • the number of moles of ethylene is greater than 90%, most preferably greater than 95%.
  • copolymer is understood to mean a polymer obtained by copolymerization of at least two different comonomers.
  • a second alpha-olefin capable of copolymerizing with ethylene 1-butene, 1-hexene, 1-octene or 1-decene may be advantageously used.
  • the density of the PE (A) or (Al) measured according to the ASTM D 1505 standard can be 0.860 to 0.96, advantageously from 0.900 to 0.940, for example from 0.910 to 0.935.
  • the polyethylene (A) or (Al) is a linear low density polyethylene (LLDPE): this polymer is in a substantially linear form with a small number of long chains.
  • long chain is meant a chain produced during the polymerization of ethylene and not those optionally introduced by the second alpha-olefin co-polymerized with ethylene.
  • the number of long chains is low when its average number is less than or equal to 0.01 for a number of 100 carbon atoms, preferably less than or equal to 0.005.
  • LLDPE is a metallocene polyethylene.
  • metallocene polyethylene refers to the PE produced in the presence of a single-site catalyst generally consisting of an atom of a metal which may be, for example, zirconium or titanium and two metal-linked cyclic alkyl molecules. More specifically, metallocene catalysts are usually composed of two metal-bound cyclopentadiene rings. These catalysts are frequently used with aluminoxanes as cocatalysts or activators, preferably methylaluminoxane (MAO).
  • MAO methylaluminoxane
  • the PE (A) or (Al) may be a polyethylene obtained by metallocene catalysis.
  • This polyethylene obtained by metallocene catalysis is advantageously characterized by its ratio Mw / Mn ⁇ 3 and preferably ⁇ 2 in which Mw and Mn respectively denote the weight-average molar mass and the number-average molar mass.
  • it may also be a MFR (melt flow ratio or melt flow ratio MFI) less than 6.53 and a ratio Mw /
  • Mn greater than MFR minus 4.63.
  • MFR refers to the MFIlO report
  • MFI at 190 ° C. under a load of 10 kg at MFI2 (MFI at 190 ° C. under a load of 2.16 kg).
  • Other metallocene polyethylenes are defined by an MFR equal to or greater than 6.13 and a Mw / Mn ratio of less than or equal to MFR minus 4.63.
  • the ratio of the average molar masses by weight and by number can be measured for example by gel permeation chromatography (GPC) by putting the polymer in solution in tetrahydrofuran.
  • GPC gel permeation chromatography
  • the polymer (A2) is a polyolefin.
  • the polyolefin is preferably chosen from homopolymers of ethylene or copolymers of ethylene and another olefin, such as, for example, 1-butene, 1-hexene, 1-octene or 1-decene.
  • the polymer (A2) is a polyethylene and most preferably a linear low density polyethylene.
  • the LLDPE is obtained by Ziegler-Natta catalysis.
  • Zeroegler-Natta catalysts generally consist of a halogenated compound of a Group 4 or 5 transition metal, for example titanium or vanadium, and a Group 2 metal alkyl compound. , 13, for example beryllium, magnesium, zinc or aluminum. By way of example, mention may be made of the combination TiCl 4 with Al (C 2 H 5 ) 3 .
  • the PE (A2) is characterized by a ratio Mw /
  • the density of (A2) can be in the range of 0.9 to 0.94, for example from 0.905 to 0.925.
  • (A) is a mixture of a polyethylene (Al) obtained by metallocene catalysis and a non-metallocene polyethylene (A2).
  • the polyethylene (A2) is preferably a LLDPE.
  • (A2) can be obtained by Ziegler-Natta catalysis.
  • the polyethylene (A) or the mixture of polyethylene (Al) and polymer (A2) is (co) grafted with an unsaturated functional monomer.
  • the unsaturated functional monomer is a monomer chosen from:
  • Unsaturated carboxylic acids and their salts preferably those comprising from 2 to 30 carbon atoms, for example acrylic acid or methacrylic acid and the salts of these same acids;
  • Carboxylic acid anhydrides preferably those comprising from 4 to 30 carbon atoms: they may be chosen, for example, from maleic, itaconic, citraconic, allyl succinic, cyclohex-4-ene-1,2-dicarboxylic, 4- anhydrides; methylenecyclohex-4-ene-1,2-dicarboxylic, bicyclo (2,2,1) hept-5-ene-2,3-dicarboxylic acid, and x-methylbicyclo (2,2,1) hept-5-ene-2 , 2-dicarboxylic.
  • maleic anhydride is used as unsaturated functional monomer.
  • the quantity by weight of (A) is in the range of 1 to 40% relative to the total mass of the composition, advantageously between 5 and 40%, preferably 10 to 35%, or even 10 to 30%.
  • the grafting reaction can then be carried out according to a batch process in solution or, preferably, in a continuous process with a melt mixing tool which are techniques well known to those skilled in the art.
  • a melt mixing tool which are techniques well known to those skilled in the art.
  • a tool for extruding molten plastics known to those skilled in the art is used.
  • the grafting tool may be one of the above-mentioned tools or their combination, such as for example a co-ordinator associated with a single-screw extruder, a co-rotating twin-screw extruder associated with a pump.
  • the tool preferably comprises a melting zone of the polymer, a zone of mixing and reaction between the species present and an expansion / degassing zone for eliminating the volatile compounds.
  • the tool may be equipped with a filtration system and / or a granulation system with rushes or underwater.
  • the polyethylene (A) or the mixture of polyethylene (Al) and the polymer (A2) is introduced in the presence of a radical generator and the functional monomer into the tool, the body temperature of which is regulated, this temperature being chosen from adequacy with the kinetics of decomposition of the radical generator.
  • the families of dialkyl peroxides, hydroperoxides or peroxyketals are preferably used as the radical generator for continuous grafting.
  • a temperature ranging from 100 to 300 ° C., more preferably from 180 to 250 ° C. is used.
  • the polyethylene, the grafting monomer and the radical generator can be introduced simultaneously or separately into the extrusion tool.
  • the monomer and / or the radical generator can be introduced simultaneously with the polymer in main feed, or separately in liquid injection along the tool.
  • a monomer fraction of a polymer may be associated with the monomer and / or the radical generator. This fraction of solvent is intended to facilitate mixing between the reactive species and the removal of volatile compounds during the degassing step.
  • a vacuum is applied adapted to the devolatilization of the volatile compounds, the vacuum level being able to range from a few millibars to several hundred.
  • the graft polymer can be recovered at the outlet of the extrusion tool in the form of granules using a granulation tool.
  • the amount of graft monomer on the polymer (A) can be suitably selected, generally in the range of from 30 to 100,000 ppm, preferably from 600 to 50,000 ppm, based on the weight total of the graft polymer.
  • the amount of monomer grafted onto the polymer (A) is determined by assaying the succinic functions by Fourier transform infrared spectroscopy.
  • the non-grafted polyethylene (B) is a polyethylene having a density in the range of 0.900 to 0.965, that is to say it may be a low density polyethylene, a LLDPE, a medium density polyethylene or a high density polyethylene .
  • This polyethylene (B) may be chosen from homopolymers of ethylene or copolymers of ethylene and another olefin, such as, for example, 1-butene, 1-hexene, 1-octene or 1-hexene. decene.
  • the density of PE (B) is advantageously in the range between 0.900 and 0.960. It may be greater than 0.925, preferably between 0.925 and 0.960, example between 0.930 and 0.940.
  • PE (B) is obtained by metallocene catalysis.
  • a metallocene polyethylene may advantageously be characterized by a ratio Mw / Mn ⁇ 3 and preferably ⁇ 2 in which Mw and Mn respectively denote the weight-average molar mass and the number-average molar mass.
  • polyethyleneocene polyethylene having a MFR is also referred to as polyethyleneocene polyethylene having a MFR
  • melt flow ratio (melt flow ratio or melt index)
  • MFR denotes the ratio of MFIi 0 (MFI at 190 ° C. under a load of 10 kg) to MFI 2 (MFI at 190 ° C. under a load of 2.16 kg).
  • Other metallocene polyethylenes are defined by an MFR equal to or greater than 6, 13 and a Mw / Mn ratio less than or equal to MFR minus 4.63.
  • the mass quantity of (B) relative to the total mass of the composition is in the range of 25 to 98%, preferably 40 to 80%.
  • the ungrafted polyethylene (B) comprises at least 90 mol% of ethylene, preferably at least 95 mol% of ethylene.
  • the elastomeric product (C) is different from (A) and (B).
  • the elastomeric product (C) may have a flexural modulus less than or equal to 100 MPa, preferably less than or equal to 80 MPa, most preferably less than or equal to 40 MPa, this module being measured according to the ISO 178: 2001 standard. This flexural modulus may also be superior to IMPa.
  • Ethylene-alpha-olefin copolymers whose density is in the range from 0.860 to 0.90, such as the ethylene-propylene copolymers chosen from EPR (abbreviation of ethylene-propylene-rubber) and EPDM (abbreviation ethylene- propylene-diene EPDM), and very low density polyethylenes (PETBDs) which are generally ethylene-butene-1, ethylene-hexene-1, ethylene-octene-1 copolymers; Ethylene-alkyl (meth) acrylate copolymers or ethylene-alkyl (meth) acrylate-maleic anhydride copolymers;
  • EPR abbreviation of ethylene-propylene-rubber
  • EPDM abbreviation ethylene- propylene-diene EPDM
  • PETBDs very low density polyethylenes
  • Ethylene-vinyl ester carboxylic acid copolymers such as ethylene-vinyl acetate copolymer
  • SEBS Styrene / ethylene-butene / styrene block copolymers
  • SBS styrene / butadiene / styrene
  • SIS styrene / isoprene / styrene
  • SEPS styrene / ethylene-propylene / styrene
  • SBR styrene-butadiene random copolymers
  • the quantity by weight of (C) relative to the total mass of the composition is in the range from 1 to 35%, preferably from 10 to 30%.
  • the composition comprises, relative to its total mass, between 5 and 40% (excluding bounds) by weight of the grafted polyethylene or of the co-grafted mixture (A), from 30 to 75% of the ungrafted polyethylene ( B) and from 10 to 30% by weight of the product (C).
  • the composition comprises, relative to its total mass, from 10 to 30% by weight of the grafted polyethylene or of the grafted mixture (A), from 40 to 80% of the ungrafted polyethylene (B) and from 10 to 30% by weight of the grafted polyethylene. at 30% by weight of the product (C).
  • the composition comprises, relative to its total mass, from 12 to 25% by weight of the grafted polyethylene or grafted mixture (A), from 50 to 76% of the ungrafted polyethylene (B) and from 12 to 25% by weight of the product (C).
  • compositions according to the invention may be prepared by the known techniques for preparing thermoplastics, for example by kneading or extrusion.
  • the binder of the invention may optionally include various additives such as antioxidants, ultraviolet absorbers, antistatic agents, nucleating agents, fillers, slip agents, and flame retardants.
  • ultraviolet absorbers are 2,4-dihydroxybenzophenone, 2- (2'-hydroxy-3 ', 5'-di-t-butylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy -3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, and bis (2,2 ', 6,6') -tetramethyl-4-piperidine) sebacate.
  • antioxidants are 2,6-di-t-butyl-p-cresol, O-butyl-p-cresol, tetrakis [methylene-3- (3,5-di-t-butyl) -4 hydroxyphenyl) propionate] methane, p-naphthylamine, and para-phenylenediamine.
  • anti-static agents are lauryldiethanolamine, palmityl-diethanolamine, stearyl-di-ethanolamine, oleyl diethanolamine, behenyl diethanolamine, polyoxyethylene alkylamines, stearyl monoglyceride, and 2-hydroxy-4-n-octoxybenzophenone. .
  • nucleating agents examples include aluminum p-tert-butylbenzoate, dibenzylidene sorbitol and aluminum hydroxy-di-p-t-butylbenzoate.
  • Suitable fillers are, for example, glass fibers, carbon fibers, talc, clay, silica, calcium carbonate, barium sulfate, magnesium hydroxide, calcium hydroxide and calcium oxide.
  • the sliding agent has the function of facilitating the manufacture of the composition, in particular its extrusion.
  • slip agents are stearamide, oleamide, erucinamide, calcium stearate, zinc stearate, aluminum stearate, magnesium stearate, and polyethylene wax.
  • flame retardants are metal hydroxides, halogens, antimony oxide, decabromobiphenyl ether, and bis (3,5-dibromo-4-bromopropyloxyphenyl) sulfone.
  • the amounts of these other additives may be selected from suitable amounts which do not adversely affect the binders of the invention.
  • the appropriate amounts are from about 0.01 to 5% by weight for the antioxidants; about 0.01 to 5% by weight for ultraviolet absorbers; about 0.01 to 1% by weight for the antistatic agents; about 0.01 to 5% by weight for the nucleating agents; about 0.1 to 60% by weight for the fillers; about 0.01 to 1% by weight for the agents of slip; and about 0.1 to 50% by weight for flame retardants.
  • composition according to the invention can be obtained by mixing the various polyolefins with the optional additives by using known techniques for mixing thermoplastic materials, such as, for example, extrusion or kneading. It is possible to use internal mixers with blades or rotors, an external mixer, co-rotating or counter-rotating single-screw, twin-screw extruders.
  • the temperature of the processing tool is in the range of 90 to 250 ° C., most preferably between 120 ° C. and 200 ° C.
  • the final composition has an MFI in the range of 1 and 10 g / 10 min (190 ° C., 2.16 kg).
  • Films of the binder composition may be made by known film making techniques, such as flat extrusion (also known as cast extrusion) or extrusion blow molding.
  • the film has a thickness ranging from 0.05 mm to 2 mm.
  • the subject of the invention is a multilayer structure comprising a layer of the composition according to the invention on at least one support layer; the layers in direct contact with the layer of the composition according to the invention are called "support layer”.
  • the layer of the composition preferably has a thickness ranging from 0.05 mm to 2 mm.
  • the layer of the composition according to the invention is in contact with a support layer comprising an epoxy resin.
  • this epoxy resin may be in powder form.
  • this layer has a thickness ranging from 0.1 to 10 mm.
  • the layer of the composition according to the invention is in contact with a support layer comprising a polyolefin.
  • the polyolefin is a polyethylene.
  • the polyethylene has a density greater than or equal to 0.92, preferably in the range from 0.92 to 0.97, most preferably from 0.94 to 0.97.
  • a particularly preferred structure combines these two last embodiments, that is to say that it is a structure successively comprising a first support layer comprising an epoxy resin, a composition layer according to the invention and a layer comprising a polyolefin, preferably polyethylene.
  • this layer has a thickness ranging from 1 to 50 mm.
  • Another object of the invention is a tube comprising the structure according to the invention.
  • the tube is preferably of metal.
  • the tube according to the invention comprises the following successive layers: metal layer / layer comprising an epoxy resin / binder layer according to the invention / protective layer comprising polyethylene, said layers going from the inside to the outside the tube.
  • the techniques known to those skilled in the art can be used to manufacture the tubes according to the invention. For example, coextrusion techniques can be used.
  • the center of the tube is made of metal, it is possible, for example, to use this preferred method of manufacturing the tube: • heating the metal tube, for example in the range of 150 and 250 ° C °;
  • the tube according to the invention can be advantageously used to transport gases or liquids, especially petroleum products or gases.
  • the polymers included in (A) are a metallocene-catalyzed (Al) LLDPE mixture having a density of 0.934 with Ziegler-Natta (A2) -based LDPEP having a density of 0.920, in respective 70/30 weight ratios.
  • Al metallocene-catalyzed
  • A2 Ziegler-Natta
  • this mixture is introduced into a rotating co-extruder comprising 8 heating zones having the following temperature profile (from hopper to the extruder head): 190 ° C / 190 ° C / 210 o C / 240 ° C / 250 ° C / 250 ° C / 230 ° C / 230 0 C. It is introduced into the second zone maleic anhydride (1.5% by mass relative to the mass of the introduced polymer) and a radical initiator based on 2, 5-Di (t-butylperoxy) -2, 5- dimethyl hexane (Luperox ® 101). The mixture co-grafted with maleic anhydride is obtained at the extruder outlet.
  • NON-GRAFTED POLYETHYLENE B
  • mPE M 3427 is a polyethylene produced by Total Petrochemicals obtained by metallocene catalysis having a density of 0.934 and an MFI of 2.7 g / 10 min (ASTM D 1238, 2.16 kg, 190 ° C.).
  • ELASTOMERIC COMPOUND C
  • ENGAGE ® EG 8200G is a very low density polyethylene produced by DOW having a flex modulus of 28 MPa (ISO 178: 2001) and a density of 0.882.
  • LOTRYL ® 30BA02 is an ethylene-butyl acrylate copolymer produced by Arkema with a flexural modulus of 9 MPa (ISO 178: 2001).
  • a comparative example 3 (CP3) was also performed in cogreffant a mixture of 80% of mPE M 3427 and 20% LOTRYL 30BA02 ® under the same conditions as for the manufacture of the co-grafted mixture of (A).
  • the various constituents (A), (B) and / or (C) of the formulation are pre-mixed in a bag. Then this mixture is added the components in a co-rotating extruder comprising 8 heating zones having the following temperature profile (from hopper to the head of the extruder): 190 ° C / 190 ° C / 210 ° C / 240 ° C / 250 ° C / 250 ° C / 230 ° C / 230 ° C.
  • the rotation speed of the screws is set at 250 rpm for a flow rate of 20kg / h.
  • At the exit of extruder is a flat die allowing the formation of a film of the composition
  • a steel tube is heated to 195 ° C.
  • An epoxy resin (Eurokote 714.4) is applied to this tube by spraying it.
  • the resin which takes the form of a gel, is covered 25 seconds later by rolling the extruded film of the adhesive composition previously obtained.
  • a 3mm thick layer of 4206B high density polyethylene (Total Petrochemicals) is immediately applied by rolling to the binder which is still in the molten state. The tube is then cooled with water at room temperature.
  • the specimen When the tongue is peeled off, the specimen is placed in a controlled thermal enclosure and the protocol of the NF A 49-710 standard is applied to measure the peel forces. The tests are carried out at 23 ° C. and 80 ° C. the results obtained are also reported Table 2.
  • the binders according to the invention have excellent adhesion both at ambient temperature and at high temperature.
  • EX1 and CP2 show that the adhesion is improved at room temperature, when part of the graft polymer (A) grafted with ungrafted polyethylene (B) is replaced in the proportions of the composition according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

L'invention porte sur une composition adhésive comprenant par rapport à sa masse totale : de 1 à 40% d'un polyéthylène (A) greffé par un monomère fonctionnel ou un mélange d'un polyéthylène (A1) avec un second polymère (A2) différent de (A1), ce mélange de (A1) et (A2) étant co-greffé par un monomère fonctionnel insaturé, la teneur en masse de monomère fonctionnel insaturé par rapport à (A) étant comprise dans la gamme allant de 30 à 100000 ppm de 25 à 98% d'un polyéthylène (B) non greffé ayant une densité allant de 0,900 à 0,965; de 1 à 35% d'un produit élastomérique (C). L'invention a également pour objet une structure multicouche comprenant cette composition, cette structure pouvant servir comme protection de tubes métalliques utilisés pour la fabrication d'oléoducs et de gazoducs.

Description

COMPOSITION ADHESIVE A BASE DE POLYETHYLENE GREFFE Domaine de l' invention
La présente invention a pour objet une composition adhésive comprenant du polyéthylène greffé. Cette composition permet la fabrication de structures multicouches qui peuvent être utilisées comme structures protectrices de tubes, ces tubes pouvant être utilisés par exemple pour la fabrication d'oléoducs ou de gazoducs.
Etat de l'art
Le développement de la demande énergétique mondiale nécessite la construction de nouveaux oléoducs et de gazoducs afin de permettre le transit du pétrole et du gaz des pays producteurs vers les pays consommateurs. Ces oléoducs et gazoducs sont fabriqués à partir de tubes métalliques connectés entre eux. Ces tubes métalliques sont généralement protégés de l'environnement extérieur par des revêtements afin d'empêcher leur corrosion, par exemple par un revêtement en polyoléfine (généralement en polypropylène ou en polyéthylène). Comme les polyoléfines n'adhèrent pas au métal, on utilise généralement des couches intermédiaires qui permettent l'application du revêtement en polyoléfine. Par exemple, on peut utiliser des couches intermédiaires de résine époxy et de composition adhésive à base de polyoléfine, également appelée « liant » dans la présente description. Sur la Figure 1, on a représenté un exemple de tube métallique creux (1) recouvert d'une structure multicouche protectrice. Sur cette Figure, cette structure protectrice est composée de la manière suivante en partant de la surface métallique du tube, une couche de résine époxy (3) , une couche de liant (5) et une couche de polyoléfine (7) .
Pour que ces structures puissent être utilisées pour la construction d'oléoducs ou de gazoducs, il est nécessaire qu'elles soient homologuées dans chacun des pays où elles doivent être utilisées. Généralement, l'homologation consiste en une mesure de l'adhérence entre la couche de revêtement en polyoléfine et la couche de la résine époxy, cette adhérence étant conférée par la présence de liant entre les deux couches. Les conditions de cette homologation peuvent être différentes pour chaque pays. Selon les pays, les deux couches doivent adhérer à température ambiante et/ou à haute température, c'est-à-dire 800C. Il est donc nécessaire de fabriquer des liants qui adhèrent aussi bien à température ambiante qu'à haute température, afin de pouvoir les utiliser dans tous les pays, quel que soit le protocole d' homologation .
Des compositions de liant ont déjà été décrites dans l'art antérieur. Par exemple, il est décrit dans le document WO2006125913 un liant comprenant un mélange d'un polyéthylène (PE) ayant une densité comprise entre 0,94 et 0,98 avec un polypropylène, ledit mélange étant co-greffé par un monomère fonctionnel insaturé et pouvant être dilué dans un polyéthylène non greffé ayant une densité comprise entre 0,94 et 0,98. Ce liant est utilisé pour la fabrication de tubes dans la construction d' oléoducs .
Ce liant présente une bonne adhérence à température ambiante jusqu'à 800C. Pour mesurer cette adhérence, dans une première étape, on découpe après formation du tube une languette à l'aide d'un couteau ou d'un burin : ceci constitue l'étape d'« amorçage ». Cette languette est découpée au niveau du liant, entre les couches de résine époxy et de polyoléfine. Dans une seconde étape, on mesure la force d'adhérence en fixant un mors sur la languette formée lors de la première étape : en tirant sur la languette on mesure la force de pelage. En plus d'une bonne adhérence, il est donc nécessaire que l'étape d'amorçage de la languette soit facile. Pour les liants dont l'amorçage n'est pas possible à température ambiante, il est nécessaire de le réaliser après chauffage du tube. Ce chauffage constitue une étape supplémentaire de manipulation. De plus, les protocoles d'homologations dans certains pays interdisent un tel chauffage, ce qui empêche donc l'utilisation de ces liants dans ces pays. Or, l'amorçage n'est pas facile voire impossible à température ambiante avec le liant décrit dans ce document. Une autre composition de liant est divulguée dans le document EP1043375, ce liant comprenant un mélange d'un polyéthylène ayant une densité comprise entre 0,935 et 0,980 avec un polymère choisi parmi les élastomères, les polyéthylènes de très basse densité, ledit mélange étant co-greffé par un acide carboxylique insaturé et dilué dans un polyéthylène de densité comprise entre 0,93 et 0,95. Ce liant peut être utilisé pour former une structure multicouche par exemple dans les emballages souples ou les réservoirs essence et ne concerne pas les tubes métalliques utilisés pour la fabrication d'oléoduc.
Il existe également des compositions à base de polyéthylène obtenu par catalyse métallocène greffé. Ces compositions présentent des propriétés adhésives améliorées par rapport aux polyéthylènes greffés obtenus par polymérisation radicalaire ou par catalyse de type Ziegler-Natta, ceux-ci étant regroupés ici sous la dénomination « non-métallocène ». Les polyéthylènes obtenus par catalyse métallocène, qui sont généralement des polymères d'éthylène comprenant des comonomères alpha-oléfine, présentent une distribution de poids moléculaire plus étroite que les polyéthylènes non-métallocène. Par ailleurs, la répartition des comonomères alpha-oléfine à l'intérieur de la chaîne polyéthylène métallocène est plus uniforme que dans les différentes chaînes polyéthylène non-métallocène. Enfin, les différentes chaînes de polyéthylène métallocène comprennent moins de longues chaînes branchées que les chaînes de polyéthylène non-métallocène. Ces propriétés intrinsèques conduisent à des propriétés physicochimique des polyéthylènes métallocène, par exemple de fluidité à l'état fondu, différentes de celles des polyéthylènes non- métallocène . Parmi les documents décrivant une composition adhésive à base de polyéthylène métallocène greffé, on peut citer comme exemple le document WO 97/27259 dans lequel est décrite une composition adhésive comprenant un polyéthylène non métallocène, de 5 à 35% en poids de la composition d'un polyéthylène métallocène particulier greffé et éventuellement jusqu'à 30% en poids d'un élastomère hydrocarboné. Cependant, ce document ne décrit pas une composition adhésive restant efficace à haute température et qui permet un amorçage aisé à température ambiante tel que décrit précédemment. Une autre composition adhésive est également décrite dans le document WO 99/37730, cette composition comprenant un copolymère d'éthylène et d'un monomère éthylénique portant une fonction polaire de type ester, de 5 à 35% en poids de la composition d'un polyéthylène métallocène particulier greffé et éventuellement jusqu'à 30% en poids d'un élastomère hydrocarboné. Ces formulations adhésives comprennent ainsi au moins 65% en poids de copolymère d'éthylène et d'un monomère éthylénique portant une fonction polaire de type ester et d' élastomère ; elles présentent une faible adhésivité à haute température, ce qui les empêche de pouvoir être utilisées lorsque les homologations demandant une adhésion à haute température.
II existe donc encore aujourd'hui un besoin de trouver de nouvelles compositions de liant permettant la fabrication de structures multicouches utiles pour la construction d'oléoducs ou de gazoducs. Plus particulièrement, il est nécessaire que ces liants permettent d'obtenir une bonne adhérence avec les couches qui lui sont directement liées à température ambiante ainsi qu'à haute température, et que l'amorçage pour la mesure de cette adhérence soit aisé à température ambiante.
Résumé de l' invention L'invention porte justement sur une nouvelle composition, à base de polyéthylène (B) non greffé obtenu par catalyse métallocène, permettant de remédier aux inconvénients présentés ci-dessus. Cette composition comprend par rapport à sa masse totale :
• de 1 à 40% d'un polyéthylène (A) greffé par un monomère fonctionnel insaturé ou un mélange d'un polyéthylène (Al) avec un second polymère (A2) différent de (Al), ce mélange de
(Al) et (A2) étant cogreffé par un monomère fonctionnel insaturé, la teneur en masse de monomère fonctionnel par rapport à (A) étant comprise dans la gamme allant de 30 à 100000 ppm ; • de 25 à 98% d'un polyéthylène (B) non greffé obtenu par catalyse métallocène ayant une densité allant de 0,900 à 0,965 ;
• de 1 à 35% d'un produit élastomérique (C) .
Cette nouvelle composition présente une bonne adhérence à température ambiante ou à haute température (par exemple 800C) avec de nombreux supports, par exemple des supports en polyéthylène ou en résine époxy. On considère généralement que l'adhérence à température ambiante est bonne lorsque la force de pelage est au moins supérieure à 250N/cm selon la norme NF A 49- 710. On considère généralement que l'adhérence à 800C est bonne lorsque la force de pelage est au moins supérieure à lOON/cm (NF A 49-710) . La composition peut être utilisée dans tout type de structure multicouche. Une utilisation préférentielle de cette composition est dans le revêtement de tuyaux (pipe coating) intégrant des structures comprenant une couche de polyéthylène. La présente invention est particulièrement utile pour les surfaces métalliques revêtues de polyéthylène (PE) . La demanderesse a découvert que ce liant permet la formation de structures multicouches présentant d'excellentes propriétés d'adhérence entre les différentes couches, tout en présentant un coût de fabrication peu élevé. L'amorçage de la structure est aisé, en particulier pour les structures de type résine époxy/liant/revêtement en PE. Différents modes préférés de réalisation de l'invention sont décrits ci-dessous ; il est précisé que ces différents modes peuvent être combinés entre eux.
Avantageusement, la composition selon l'invention comprend, par rapport à sa masse totale, de 10 à 30% en masse du polyéthylène greffé ou du mélange cogreffé (A) , de 40 à 80% du polyéthylène non greffé (B) et de 10 à 30% en masse du produit élastomérique (C) .
La densité du polyéthylène (B) peut être avantageusement supérieure ou égale à 0,925, par exemple comprise entre 0,930 et 0,960. De manière préférée, le polyéthylène (B) comprend au moins 95% en moles d'éthylène.
Préférentiellement, le monomère fonctionnel greffé sur le polyéthylène ou sur le mélange co-greffé (A) est un acide carboxylique insaturé ou un anhydride insaturé de cet acide.
Dans le cas où le polymère (A) est un mélange co-greffé, il comprend préférentiellement de 90 à 20 parties de polyéthylène (Al) et de 10 à 80 parties de polymère (A2) .
Le polymère (A2) est avantageusement une polyoléfine. Cette polyoléfine est, de manière préférée, choisie parmi les homopolymères et les copolymères de l'éthylène et/ou du propylène.
Tout préférentiellement, la polyoléfine (A2) est un homopolymère ou un copolymère de l'éthylène et d' alpha-oléfine différent de
(Al) .
Selon un mode de réalisation, le polymère (A) est un mélange cogreffé de d'un polyéthylène métallocène (Al) et un polyéthylène basse densité linéaire (A2) non métallocène.
Préférentiellement, la densité de (Al) est comprise dans la gamme allant de 0,860 à 0,96 g/cm3. Préférentiellement, la densité de (A2) est comprise dans la gamme allant de 0,9 à 0,94 g/cm3.
De manière préférée, le produit élastomérique (C) a un module de flexion inférieur à 100MPa, ce module étant mesuré selon la norme ISO 178 : 2001.
Selon une première version de l'invention, le produit élastomérique (C) est choisi parmi les copolymères éthylène- (méth) acrylate d'alkyle ou terpolymères éthylène (méth) acrylates d' alkyle-anhydride maléique. Selon une seconde version de l'invention, le produit élastomérique (C) est un copolymère de l'éthylène avec une alpha-oléfine dont la densité est dans la gamme allant de 0,860 à 0,900, tels que les copolymères d'éthylène et de propylène comme par exemple les caoutchoucs éthylène-propylène comprenant un diène (EPDM) , les caoutchoucs éthylène-propylène ne comprenant pas de diène (EPR) ou les polyéthylènes très basse densité (PETBD) .
Selon une version préférée de l'invention, la composition comprend :
• de 10 à 30% en masse du mélange cogreffé (A) d'un polyéthylène obtenu par catalyse métallocène (Al) avec un polyéthylène obtenu par catalyse Ziegler-Natta (A2), ce mélange de (Al) et (A2) étant cogreffé par de l'anhydride maléïque, la teneur en masse de monomère fonctionnel par rapport à (A) étant comprise dans la gamme allant de 30 à 100000 ppm ;
• de 40 à 80% du polyéthylène métallocène non greffé (B) ayant une densité allant de 0,900 à 0,965 ; • et de 10 à 30% en masse d'un copolymère éthylène- (méth) acrylate d'alkyle (C).
Un autre objet de l'invention est un film de la composition selon 1 ' invention .
L'invention porte également sur une structure multicouche comprenant au moins une couche de composition selon l'invention sur au moins une autre couche dite « couche support ».
Selon une première variante de structure selon l'invention, la couche support comprend une polyoléfine, cette polyoléfine étant préférentiellement un polyéthylène.
Selon une seconde variante de structure selon l'invention, la couche support comprend une résine époxy. Une structure préférée de l'invention comprend une couche de la composition, ladite couche étant comprise entre une première couche support comprenant une résine époxy et une seconde couche support comprenant du polyéthylène .
L'invention porte également sur l'utilisation de la composition ou d'une structure selon l'invention dans des tubes, en particulier pour la protection à la corrosion de tubes métalliques.
L'invention a également pour objet un tube recouvert par la structure selon l'invention. Ce tube est de préférence métallique. De manière toute préférée, le tube est recouvert d'une structure multicouche protectrice comprenant une résine époxy, une couche de liant selon l'invention et une couche de revêtement en polyoléfine, lesdites couches allant de l'intérieur vers l'extérieur du tube.
Le tube selon l'invention peut être avantageusement utilisé pour transporter des gaz ou des liquides, tout particulièrement des produits pétroliers ou des gaz.
D'autres avantages apparaîtront à la lecture de la description qui suit .
Description de la Figure annexée
La description qui va suivre est donnée uniquement à titre illustratif et non limitatif en référence à la figure annexée, dans laquelle la Figure 1, déjà décrite, est une vue de coupe représentant un exemple de tube (1) recouvert d'une structure protectrice, cette structure protectrice étant composée successivement d'une couche de résine époxy (3), de liant (5) et de polyoléfine (7) .
Description détaillée de l'invention
La composition selon l'invention comprend par rapport à sa masse totale : • de 1 à 40% d'un polyéthylène (A) greffé par un monomère fonctionnel ou un mélange d'un polyéthylène (Al) avec un second polymère (A2) différent de (Al), ce mélange de (Al) et (A2) étant co-greffé par un monomère fonctionnel, la teneur en masse de monomère fonctionnel par rapport à (A) étant comprise dans la gamme allant de 30 à 100000 ppm ;
• de 25 à 98% d'un polyéthylène (B) non greffé obtenu par catalyse métallocène ayant une densité allant de 0,900 à 0,965 ; • de 1 à 35% d'un produit élastomérique (C) .
Le polyéthylène (PE) (A) ou (Al) peut être un homopolymère de l'éthylène ou un copolymère comprenant au moins 50% en moles d'éthylène et d'une seconde alpha-oléfine . Préférentiellement, le nombre de moles d'éthylène est supérieur à 90%, de manière toute préférée supérieur à 95%.
Dans la présente description, on entend par copolymère un polymère obtenu par copolymérisation d'au moins deux co-monomères différents . Comme seconde alpha-oléfine capable de copolymériser avec l'éthylène, on peut utiliser avantageusement le 1-butène, le 1- hexène, le 1-octène ou le 1-décène.
La densité du PE (A) ou (Al) mesurée selon la norme ASTM D 1505 peut être de 0,860 à 0,96, avantageusement de 0,900 à 0,940, par exemple de 0,910 à 0,935.
Tout préférentiellement, le polyéthylène (A) ou (Al) est un polyéthylène à basse densité linéaire (PEBDL) : ce polymère se présente sous une forme substantiellement linéaire avec un faible nombre de longues chaînes. Par longue chaîne, on entend une chaîne produite lors de la polymérisation de l'éthylène et non celles éventuellement introduites par la seconde alpha-oléfine ayant co- polymérisé avec l'éthylène. Selon l'invention, on considère que le nombre de longues chaînes est faible lorsque son nombre moyen est inférieur ou égal à 0,01 pour un nombre de 100 atomes de carbone, préférentiellement inférieur ou égal à 0,005.
On peut mesurer ce nombre de chaînes de carbone en utilisant la résonance magnétique nucléaire selon la méthode spectroscopique quantitative décrite par Randall dans Rev. Macromol . Chem. Phys . , C29, pages 285-297.
Ce PEBDL peut être obtenu par voie catalytique, en utilisant des catalyseurs de type Phillips, Ziegler-Natta ou métallocène. Selon un mode de réalisation, le PEBDL est un polyéthylène métallocène. Dans la demande, on désigne par polyéthylène métallocène le PE fabriqué en présence d'un catalyseur mono-site constitué généralement d'un atome d'un métal pouvant être par exemple du zirconium ou du titane et de deux molécules cycliques alkyles liées au métal. Plus spécifiquement, les catalyseurs métallocènes sont habituellement composés de deux cycles cyclopentadiéniques liés au métal. Ces catalyseurs sont fréquemment utilisés avec des aluminoxanes comme cocatalyseurs ou activateurs, de préférence le méthylaluminoxane (MAO) . Le hafnium peut aussi être utilisé comme métal auquel le cyclopentadiène est fixé. D'autres métallocènes peuvent inclure des métaux de transition des groupes IV A, V A, et VI A. Des métaux de la série des lanthanides peuvent aussi être utilisés. Selon l'invention, le PE (A) ou (Al) peut être un polyéthylène obtenu par catalyse métallocène. Ce polyéthylène obtenu par catalyse métallocène est avantageusement caractérisé par son rapport Mw/ Mn < 3 et de préférence < 2 dans lequel Mw et Mn désignent respectivement la masse molaire moyenne en poids et la masse molaire moyenne en nombre. De façon alternative, il peut être aussi avoir un MFR(melt flow ratio ou rapport d'indice de fluidité à l'état fondu MFI) inférieur à 6,53 et un rapport Mw /
Mn supérieur à MFR moins 4,63. MFR désigne le rapport du MFIlO
(MFI à 1900C sous une charge de 10 Kg) au MFI2 (MFI à 190 0C sous une charge de 2,16 Kg). D'autres polyéthylènes métallocènes sont définis par un MFR égal ou supérieur à 6,13 et un rapport Mw / Mn inférieur ou égal à MFR moins 4,63.
Selon l'invention, le rapport des masses molaires moyennes en poids et en nombre peut être mesuré par exemple par chromatographie par perméation de gel (GPC) en mettant le polymère en solution dans du tétrahydrofurane . Dans le cas où un mélange d'un polyéthylène (Al) avec un second polymère (A2) est utilisé, (A2) est différent de (Al). Avantageusement, le polymère (A2) est une polyoléfine. La polyoléfine est préférentiellement choisie parmi les homopolymères de l'éthylène ou les copolymères de l'éthylène et d'une autre oléfine, tels que par exemple le 1-butène, le 1-hexène, le 1- octène ou le 1-décène. De manière préférée, le polymère (A2) est un polyéthylène et tout préférentiellement un polyéthylène à basse densité linéaire. Préférentiellement, le PEBDL est obtenu par catalyse Ziegler-Natta .
Les catalyseurs "Ziegler-Natta" sont généralement constitués d'un composé halogène d'un métal de transition des groupes 4 ou 5, par exemple le titane ou le vanadium, et d'un composé alkylé d'un métal des groupes 2, 12, 13, par exemple le béryllium, le magnésium, le zinc ou l'aluminium. A titre d'exemple, on peut citer la combinaison TiCl4 avec A1(C2H5)3.
Préférentiellement, le PE (A2) est caractérisé par un rapport Mw/
Mn > 3.
La densité de (A2) peut être comprise dans la gamme allant de 0,9 à 0,94, par exemple de 0,905 à 0,925.
Selon une variante toute préférée de l'invention, (A) est un mélange d'un polyéthylène (Al) obtenu par catalyse métallocène et d'un polyéthylène non métallocène (A2). Selon cette variante, le polyéthylène (A2) est préférentiellement un PEBDL. Le polyéthylène
(A2) peut être obtenu par catalyse Ziegler-Natta.
Le polyéthylène (A) ou le mélange de polyéthylène (Al) et de polymère (A2) est (co-) greffé par un monomère fonctionnel insaturé.
Préférentiellement, le monomère fonctionnel insaturé est un monomère choisi parmi :
• les acides carboxyliques insaturés et leurs sels, préférentiellement ceux comprenant de 2 à 30 atomes de carbone, par exemple l'acide acrylique ou l'acide méthacrylique et les sels de ces mêmes acides ; • les anhydrides d'acide carboxylique, préférentiellement ceux comprenant de 4 à 30 atomes de carbone : ils peuvent être choisis par exemple parmi les anhydrides maléique, itaconique, citraconique, allylsuccinique, cyclohex-4-ène-l, 2-dicarboxylique, 4-méthylènecyclohex-4-ène-l, 2-dicarboxylique, bicyclo (2,2, 1) hept- 5-ène-2, 3-dicarboxylique, et x-méthylbicyclo (2,2, l)hept-5-ène-2, 2- dicarboxylique .
Préférentiellement, on utilise l'anhydride maléique comme monomère fonctionnel insaturé. La quantité massique de (A) est comprise dans la gamme de 1 à 40% par rapport à la masse totale de la composition, avantageusement entre 5 et 40%, préférentiellement de 10 à 35%, voire de 10 à 30%.
La réaction de greffage peut alors être réalisée selon un procédé batch en solution ou, préférentiellement, selon un procédé continu avec un outil de mélange en fondu qui sont des techniques bien connues de l'homme du métier. Dans le cas d'un procédé de greffage continu, on utilise un outil d'extrusion des matières plastiques à l'état fondu connu de l'homme de l'art. A titre d'exemple, on peut citer les mélangeurs internes, les mélangeurs à cylindre, les extrudeuses monovis, bi-vis contra ou co-rotatives, les co- malaxeurs continus. L'outil de greffage peut être l'un des outils cités ci-dessus ou leur association, comme par exemple un comalaxeur associé à une extrudeuse monovis, une extrudeuse bi-vis corotative associée à une pompe. Dans le cas d'une extrusion, l'outil comprend de préférence une zone de fusion du polymère, une zone de mélange et réaction entre les espèces présentes et une zone de détente/dégazage pour éliminer les composés volatils. L'outil peut être équipé d'un système de filtration et/ou d'un système de granulation à joncs ou sous eau. Le polyéthylène (A) ou le mélange de polyéthylène (Al) et du polymère (A2) est introduit en présence d'un générateur de radicaux et du monomère fonctionnel dans l'outil dont la température du corps est régulée, cette température étant choisie en adéquation avec la cinétique de décomposition du générateur de radicaux. On préfère utiliser comme générateur de radicaux pour le greffage continu les familles des peroxydes de dialkyl, des hydroperoxydes ou des peroxycétals . Préférentiellement, on utilise une température allant de 100 à 3000C, plus préférentiellement de 180 à 2500C.
Le polyéthylène, le monomère de greffage et le générateur de radicaux peuvent être introduit simultanément ou séparément dans l'outil d'extrusion. En particulier, le monomère et/ou le générateur de radicaux peuvent être introduit simultanément avec le polymère en alimentation principale, soit séparément en injection liquide le long de l'outil. A l'étape d'injection, on peut associer au monomère et/ou au générateur de radicaux une fraction d'un solvant du polymère. Cette fraction de solvant a pour but de faciliter le mélange entre les espèces réactives ainsi que l'élimination des composés volatils lors de l'étape de dégazage. A l'étape de détente/dégazage, on applique un vide adapté à la dévolatilisation des composés volatils, le niveau de vide pouvant aller quelques millibars à plusieurs centaines.
Le polymère greffé peut être récupéré en sortie de l'outil d'extrusion sous forme de granulé à l'aide d'un outil de granulation . Dans le polymère modifié par greffage, la quantité du monomère greffé sur le polymère (A) peut être choisie d'une façon appropriée, généralement dans la gamme allant de 30 à 100000 ppm, de préférence de 600 à 50000 ppm, par rapport au poids total du polymère greffé. La quantité du monomère greffé sur le polymère (A) est déterminée par dosage des fonctions succiniques par spectroscopie infrarouge à transformée de Fourrier.
Le polyéthylène (B) non greffé est un polyéthylène ayant une densité comprise dans la gamme allant de 0,900 à 0,965, c'est à dire qu'il peut être un polyéthylène basse densité, un PEBDL, un polyéthylène moyenne densité ou un polyéthylène haute densité. Ce polyéthylène (B) peut être choisi parmi les homopolymères de l'éthylène ou les copolymères de l'éthylène et d'une autre oléfine, tels que par exemple le 1-butène, le 1-hexène, le 1- octène ou le 1-décène. La densité du PE (B) est avantageusement comprise dans la gamme allant entre 0,900 et 0,960. Elle peut être supérieure à 0,925, préférentiellement entre 0,925 et 0,960, par exemple entre 0,930 et 0,940. Le PE (B) est obtenu par catalyse métallocène. Un polyéthylène métallocène peut être avantageusement caractérisé par un rapport Mw/ Mn < 3 et de préférence < 2 dans lequel Mw et Mn désignent respectivement la masse molaire moyenne en poids et la masse molaire moyenne en nombre. On désigne aussi par polyéthylène métallocène un polyéthylène ayant un MFR
(melt flow ratio ou rapport d'indice de fluidité à l'état fondu
MFI) inférieur à 6,53 et un rapport Mw / Mn supérieur à MFR moins
4,63. MFR désigne le rapport du MFIi0 (MFI à 1900C sous une charge de 10 Kg) au MFI2 (MFI à 190 0C sous une charge de 2,16 Kg). D'autres polyéthylènes métallocènes sont définis par un MFR égal ou supérieur à 6, 13 et un rapport Mw / Mn inférieur ou égal à MFR moins 4 , 63. La quantité massique de (B) par rapport à la masse totale de la composition est comprise dans la gamme allant de 25 à 98%, préférentiellement de 40 à 80%.
Avantageusement, le polyéthylène (B) non greffé comprend au moins 90% en moles d'éthylène, préférentiellement au moins 95% en moles d' éthylène .
Le produit élastomérique (C) est différent de (A) et (B) . Le produit élastomérique (C) peut avoir un module de flexion inférieur ou égal à 100MPa, préférentiellement inférieur ou égal à 80MPa, tout préférentiellement inférieur ou égal à 40MPa, ce module étant mesuré selon la norme ISO 178 : 2001. Ce module de flexion peut être également supérieur à IMPa.
A titre d'exemple de produit élastomérique (C), on peut citer les polymères choisis parmi :
• les copolymères éthylène-alpha-oléfine dont la densité est dans la gamme allant de 0,860 à 0,90 tels que les copolymères éthylène-propylène choisis parmi les EPR (abréviation d ' éthylène-propylene-rubber) et les EPDM (abréviation éthylène-propylène-diène EPDM) , et les polyéthylènes très basse densité (PETBD) qui sont généralement des copolymères éthylène-butène-1 , éthylène-hexène-1 , éthylène-octène-1 ; • les copolymères éthylène- (méth) acrylate d'alkyle ou copolymères éthylène- (méth) acrylates d' alkyle-anhydride maléique ;
• les copolymères éthylène-ester vinylique d'acide carboxylique tel que le copolymère éthylène-acétate de vinyle ;
• les copolymères blocs styrène/éthylène-butène/styrène (SEBS) , styrène/butadiène/styrène (SBS) , styrène/isoprène/styrène (SIS) , styrène/éthylène-propylène/styrène (SEPS) ou les copolymères statistiques styrène-butadiène (SBR) ; • les polyisoprènes ;
• les polybutadiènes .
La quantité massique de (C) par rapport à la masse totale de la composition est comprise dans la gamme allant de 1 à 35%, préférentiellement de 10 à 30%.
Selon un mode de réalisation, la composition comprend, par rapport sa masse totale, entre 5 et 40% (bornes exclues) en masse du polyéthylène greffé ou du mélange co-greffé (A) , de 30 à 75% du polyéthylène non greffé (B) et de 10 à 30% en masse du produit (C) .
Selon un autre mode de réalisation, la composition comprend, par rapport sa masse totale, de 10 à 30% en masse du polyéthylène greffé ou du mélange cogreffé (A) , de 40 à 80% du polyéthylène non greffé (B) et de 10 à 30% en masse du produit (C) . Préférentiellement, la composition comprend, par rapport sa masse totale, de 12 à 25% en masse du polyéthylène greffé ou du mélange cogreffé (A), de 50 à 76% du polyéthylène non greffé (B) et de 12 à 25% en masse du produit (C) .
Les compositions selon l'invention peuvent être préparées par les techniques connues de préparation des thermoplastiques, par exemple par malaxage ou extrusion.
Le liant de l'invention peut comprendre de manière éventuelle divers additifs tels que des antioxydants, des absorbeurs d'ultra-violets, des agents antistatiques, des agents de nucléation, des charges, des agents de glissement et des produits ignifuges. Des exemples d'absorbeurs d'ultra-violets sont la 2,4- dihydroxybenzophénone, le 2- (2 ' -hydroxy-3 ' , 5 ' -di-t-butylphényl) -5- chlorobenzotriazole, 2- (2-hydroxy-3-t-butyl-5-méthylphényl) -5- chlorobenzotriazole, et le bis (2, 2 ' , 6, 6' ) -tétraméthyl-4-pipéridine) sébacate .
Des exemples d' anti-oxydants sont le 2, 6-di-t-butyl-p-crésol, O-t-butyl- p-crésol, tétrakis- [méthylène-3- (3, 5-di-t-butyl-4-hydroxyphényl) propionate] méthane, la p—naphtylamine, et la para-phénylènediamine . Des exemples d'agents anti-statiques sont la lauryldiéthanolamine, palmityl-diéthanolamine, stéaryl-di-éthanolamine, oléyl-diéthanolamine, béhényl-diéthanolamine, polyoxyéthylène-alkylamines, le stéaryl- monoglycéride, et la 2-hydroxy-4-n-octoxybenzophénone.
Des exemples d' agents de nucléation sont le p-tert-butylbenzoate d'aluminium, dibenzylidène-sorbitol et hydroxy-di-p-t-butylbenzoate d'aluminium.
Des charges utilisables sont par exemple les fibres de verres, fibres de carbone, talc, argile, silice, carbonate de calcium, sulfate de baryum, hydroxyde de magnésium, hydroxyde de calcium et oxyde de calcium. L'agent de glissement a pour fonction de faciliter la fabrication de la composition, en particulier son extrusion. Des exemples d'agents de glissement sont le stéaramide, l'oléamide, l' érucinamide, le stéarate de calcium, le stéarate de zinc, le stéarate d'aluminium, le stéarate de magnésium, et la cire de polyéthylène .
Les exemples de produits ignifuges sont les hydroxydes de métaux, les agents halogènes, l'oxyde d'antimoine, le décabromobiphényl- éther, et la bis (3, 5-dibromo-4-bromopropyloxyphényl) sulfone . Les quantités de ces autres additifs peuvent être choisies parmi les quantités appropriées qui n'affectent pas d'une façon défavorable les liants de l'invention. Par exemple, rapportées au poids total de la composition, les quantités appropriées sont d'environ 0,01 à 5% en poids pour les antioxydants; environ 0,01 à 5% en poids pour les absorbeurs d'ultra-violets; environ 0,01 à 1% en poids pour les agents antistatiques; environ 0,01 à 5% en poids pour les agents de nucléation; environ 0,1 à 60% en poids pour les charges; environ 0,01 à 1% en poids pour les agents de glissement ; et environ 0,1 à 50% en poids pour les produits ignifuges .
On peut obtenir la composition selon l'invention en mélangeant les différentes polyoléfines avec les additifs éventuels en utilisant les techniques connues de mélange des matériaux thermoplastiques, comme par exemple l'extrusion ou le malaxage. On peut utiliser des mélangeurs interne à pales ou à rotors, un mélangeur externe, des extrudeuses mono-vis, bi-vis co-rotatives ou contrarotatives . Préférentiellement , la température de l'outil de mise en œuvre est comprise dans la gamme allant de 90 à 2500C, de manière toute préférée entre 1200C et 200°C.
Avantageusement, la composition finale a un MFI compris dans la gamme allant de 1 et 10 g/lOmin (1900C, 2,16kg).
On peut fabriquer des films de la composition de liant par les techniques connues de fabrication de film, comme par exemple d'extrusion à plat (encore appelée « extrusion cast ») ou d'extrusion soufflage de gaine. Préférentiellement, le film a une épaisseur allant de 0,05mm à 2 mm.
L'invention a pour objet une structure multicouche comprenant une couche de la composition selon l'invention sur au moins une couche support ; les couches en contact direct avec la couche de la composition selon l'invention sont appelées « couche support ».
La couche de la composition a préférentiellement une épaisseur allant de 0,05mm à 2 mm.
Selon un mode de réalisation, la couche de la composition selon l'invention est en contact avec une couche support comprenant une résine époxy. Avant application, cette résine époxy peut être sous forme de poudre. Préférentiellement cette couche a une épaisseur allant de 0,1 à 10 mm.
Selon un autre mode de réalisation, la couche de la composition selon l'invention est en contact avec une couche support comprenant une polyoléfine. Avantageusement, la polyoléfine est un polyéthylène . Préférentiellement, le polyéthylène a une densité supérieure ou égale à 0,92, de préférence comprise dans la gamme allant de 0,92 à 0,97, tout préférentiellement de 0,94 à 0,97. Une structure particulièrement préférée combine ces deux derniers modes de réalisation, c'est à dire qu'il s'agit d'une structure comprenant successivement une première couche support comprenant une résine époxy, une couche de composition selon l'invention et une couche comprenant une polyoléfine, préférentiellement du polyéthylène . Préférentiellement cette couche a une épaisseur allant de 1 à 50 mm. Ces structures peuvent être utilisées pour la protection à la corrosion de tubes métalliques ou pour la fabrication de gazoducs ou d'oléoducs.
Un autre objet de l'invention est un tube comprenant la structure selon l'invention. Le tube est de préférence en métal. De manière toute préférée, le tube selon l'invention comprend les couches successives suivantes : couche de métal/ couche comprenant une résine époxy/couche de liant selon l'invention/couche protectrice comprenant du polyéthylène, lesdites couches allant de l'intérieur vers l'extérieur du tube. On peut utiliser les techniques connues de l'homme du métier pour fabriquer les tubes selon l'invention. On peut par exemple utiliser des techniques de co-extrusion. Lorsque le centre du tube est en métal, on peut par exemple utiliser ce procédé préféré de fabrication du tube : • chauffer le tube métallique, par exemple dans la gamme allant de 150 et 250°C° ;
• appliquer la composition comprenant la résine époxy sous forme de poudre sur le tube, la résine époxy passant alors à l'état fondu ; • appliquer dans un second temps sur la résine époxy à l'état fondu un film de la composition de liant ;
• recouvrir dans un troisième temps le film fondu de la composition de liant par la composition comprenant du polyéthylène à l'état fondu. Le tube selon l'invention peut être avantageusement utilisé pour transporter des gaz ou des liquides, tout particulièrement des produits pétroliers ou des gaz.
La présente invention va être maintenant illustrée par des exemples particuliers de réalisation décrits ci-après. Il est précisé que ces exemples ne visent en aucun cas à limiter la portée de la présente invention.
EXEMPLES
Pour réaliser des exemples de la composition selon l'invention et évaluer ses avantages par rapport aux compositions de l'art antérieur, les produits suivants ont été utilisés :
MELANGE COGREFFE (A) : PREPARATION
Les polymères compris dans (A) sont un mélange de PEBDL obtenu par catalyse metallocene (Al) ayant une densité de 0,934 avec du PEBDL obtenu par catalyse Ziegler-Natta (A2) ayant une densité de 0,920, en proportion massiques respectives 70/30. Pour réaliser le mélange de polymère co-greffé, on a utilisé le protocole suivant :
On effectue de manière préalable un mélange en sac de (Al) et
(A2) . On introduit ensuite ce mélange dans une extrudeuse co- rotative comprenant 8 zones de chauffe et ayant le profil de température suivant (de la trémie d'alimentation jusqu'à la tête de l'extrudeuse) : 190oC/190°C/210oC/240°C/250 °C/250 °C/230 °C/230 0C. On introduit dans la seconde zone l'anhydride maléique (1,5% en masse par rapport à la masse des polymères introduits) ainsi qu'un initiateur de radicaux à base de 2, 5-Di (t-butylperoxy) -2, 5- dimethyl hexane (Luperox® 101) . On obtient en sortie d' extrudeuse le mélange co-greffé par de l'anhydride maléique.
POLYETHYLENE NON GREFFE (B) mPE M 3427 est un polyéthylène produit par Total Petrochemicals obtenu par catalyse métallocène ayant une densité de 0,934 et un MFI de 2,7 g/lOmin (ASTM D 1238, 2,16kg, 1900C). COMPOSE ELASTOMERIQUE (C)
ENGAGE® EG 8200G est un polyéthylène très basse densité produit par DOW ayant un module de flexion de 28 MPa (ISO 178 : 2001) et une densité de 0,882. LOTRYL® 30BA02 est un copolymère éthylène-acrylate de butyle produit par Arkema ayant un module de flexion de 9 MPa (ISO 178 : 2001) .
Les compositions selon l'invention (EXl, EX2 et EX3) et comparative (CPl et CP2) ainsi que leurs proportions massiques sont reportées Tableau 1 :
Tableau 1
Figure imgf000022_0001
Un exemple comparatif 3 (CP3) a également été réalisé en cogreffant un mélange de 80% de mPE M 3427 et de 20% LOTRYL® 30BA02 dans les mêmes conditions que pour la fabrication du mélange cogreffé (A) .
Pour réaliser les films des formulations selon l'invention et comparatives, on effectue de manière préalable un mélange en sac des différents constituants (A), (B) et/ou (C) de la formulation. On introduit ensuite ce mélange des constituants dans une extrudeuse co-rotative comprenant 8 zones de chauffe et ayant le profil de température suivant (de la trémie d'alimentation jusqu'à la tête de l' extrudeuse) : 190°C/190oC/210oC/240oC/250oC/250°C/ 230°C/230°C. La vitesse de rotation des vis est réglée à 250 tours par minute pour un débit de 20kg/h. En sortie d' extrudeuse se trouve une filière plate permettant la formation d'un film de la composition
On chauffe à 195°C un tube d'acier. On applique sur ce tube une résine époxy (Eurokote 714.4) en la pulvérisant. La résine, qui prend la forme d'un gel, est recouverte 25 secondes après par laminage du film extrudé de la composition adhésive préalablement obtenu. On applique immédiatement une couche de 3mm d'épaisseur de polyéthylène haute densité 4206B (Total Petrochemicals) par laminage sur le liant qui est encore à l'état fondu. Le tube est ensuite refroidi par de l'eau à température ambiante.
Les résultats concernant l'adhérence sont reportés Tableau 2. Pour mesurer l'adhérence de la résine époxy et de la couche de PE, on fait dans une première étape l'amorçage en détachant une languette à l'aide d'un couteau à température ambiante on reporte le terme « OK » dans la colonne « amorçage T ambiante » du Tableau 2 dans le cas où l'amorçage à température ambiante est possible. Si l'amorçage est impossible à température ambiante, on chauffe préalablement le tube avant de détacher la languette ; on reporte le terme « échec » dans la ligne « amorçage T ambiante » du Tableau 2 dans le cas où l'amorçage à température ambiante est impossible .
Lorsque la languette est décollée, on place l'éprouvette dans une enceinte thermique régulée et on applique le protocole de la norme NF A 49-710 pour mesurer les forces de pelage. Les tests sont réalisés à 23°C et 800C ; les résultats obtenus sont également reportés Tableau 2.
Tableau 2
Figure imgf000023_0001
Les liants selon l'invention ont une excellente adhérence aussi bien à température ambiante qu'à haute température. EXl et CP2 montrent que l'adhérence est améliorée à température ambiante, lorsque l'on remplace une partie du polymère (A) greffé par un polyéthylène (B) non greffé, dans les proportions de la composition selon l'invention.

Claims

Revendications
1 - Composition comprenant par rapport à sa masse totale :
• de 1 à 40% d'un polyéthylène (A) greffé par un monomère fonctionnel ou un mélange d'un polyéthylène (Al) avec un second polymère (A2) différent de (Al), ce mélange de (Al) et (A2) étant co-greffé par un monomère fonctionnel insaturé, la teneur en masse de monomère fonctionnel insaturé par rapport à (A) étant comprise dans la gamme allant de 30 à 100000 ppm ;
• de 25 à 98% d'un polyéthylène (B) non greffé obtenu par catalyse métallocène ayant une densité allant de 0,900 à 0,965 ;
• de 1 à 35% d'un produit élastomérique (C) .
2 - Composition selon la revendication 1 caractérisée en ce qu'elle comprend, par rapport sa masse totale, de 10 à 30% en masse du polyéthylène greffé ou du mélange cogreffé (A) , de 40 à 80% du polyéthylène non greffé (B) et de 10 à 30% en masse du produit élastomérique (C) .
3 - Composition selon l'une des revendications 1 à 3 dans laquelle la densité du polyéthylène (B) est supérieure ou égale à 0,925.
4 - Composition selon l'une des revendications 1 à 3 dans laquelle la densité du polyéthylène (B) est comprise entre 0,930 et 0,960.
5 - Composition selon l'une des revendications 1 à 4 dans laquelle le monomère fonctionnel greffé sur le polyéthylène ou sur le mélange (A) est un acide carboxylique insaturé ou un anhydride insaturé de cet acide.
6 - Composition selon l'une des revendications 1 à 5 dans laquelle (A2) est une polyoléfine. 7 - Composition selon la revendication 6 dans laquelle la polyoléfine (A2) est un polyéthylène différent de (Al) .
8 - Composition selon la revendication 7 caractérisée en ce que (A) est un mélange cogreffé de (Al) et (A2) et que ce mélange comprend de 80 à 20 parties d'un polyéthylène obtenu par catalyse métallocène (Al) de densité comprise dans la gamme allant de 0,865 à 0,950 et de 20 à 80 parties d'un polyéthylène basse densité linéaire (A2) obtenu par catalyse Ziegler-Natta ayant une densité comprise dans la gamme allant de 0, 900 à 0, 940 g/cm3.
9 - Composition selon l'une des revendications 1 à 8 dans laquelle (C) a un module de flexion inférieur à 100MPa, ce module étant mesuré selon la norme ISO 178 : 2001.
10 - Composition selon l'une des revendications 1 à 9 dans laquelle (C) est choisi parmi les copolymères éthylène (méth) acrylate d'alkyle ou terpolymères éthylène (méth) acrylates d'alkyle - anhydride maléïque.
11 - Composition selon l'une des revendications 1 à 9 dans laquelle (C) est un est un copolymère de l' éthylène avec une alpha-oléfine dont la densité est dans la gamme allant de 0,860 à 0,90.
12 - Structure multicouche comprenant au moins une couche de composition (5) selon l'une des revendications 1 à 11 sur au moins une autre couche dite « couche support » (3,7) .
13 - Structure selon la revendication 12 dans laquelle la couche de la composition (5) est comprise entre une première couche support comprenant une résine époxy (3) et une seconde couche support comprenant du polyéthylène (7) . - Utilisation d'une composition selon l'une des revendications
1 à 11 ou d'une structure selon la revendication 12 ou 13 dans des tubes.
- Utilisation d'une structure selon la revendication 12 ou 13 pour la protection à la corrosion de tubes métalliques.
PCT/FR2010/050136 2009-01-30 2010-01-28 Composition adhesive a base de polyethylene greffe WO2010086559A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EA201101143A EA018678B1 (ru) 2009-01-30 2010-01-28 Адгезионная композиция на основе привитого полиэтилена
CN201080006006.XA CN102300921B (zh) 2009-01-30 2010-01-28 基于接枝聚乙烯的粘合剂组合物
MX2011007855A MX2011007855A (es) 2009-01-30 2010-01-28 Composicion adhesiva a base de polietileno injertado.
US13/147,073 US8247053B2 (en) 2009-01-30 2010-01-28 Adhesive composition containing grafted polyethylene
BRPI1006977A BRPI1006977B8 (pt) 2009-01-30 2010-01-28 Composição adesiva à base de polietileno enxertado, estrutura multicamada e uso de uma composição
ES10707609T ES2399815T3 (es) 2009-01-30 2010-01-28 Composición adhesiva a base de polietileno injertado
PL10707609T PL2384352T3 (pl) 2009-01-30 2010-01-28 Kompozycja klejowa na bazie szczepionego polietylenu
DK10707609T DK2384352T3 (da) 2009-01-30 2010-01-28 Klæbemiddelsammensætning på basis af podet polyethylen
EP10707609A EP2384352B1 (fr) 2009-01-30 2010-01-28 Composition adhesive a base de polyethylene greffe
IL21384911A IL213849A (en) 2009-01-30 2011-06-30 A polyethylene-molded, unformatted and elastomer-containing composition, their multilayer structure and their uses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0950569A FR2941701B1 (fr) 2009-01-30 2009-01-30 Composition adhesive a base de polyethylene greffe
FR0950569 2009-01-30

Publications (1)

Publication Number Publication Date
WO2010086559A1 true WO2010086559A1 (fr) 2010-08-05

Family

ID=40872326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/050136 WO2010086559A1 (fr) 2009-01-30 2010-01-28 Composition adhesive a base de polyethylene greffe

Country Status (14)

Country Link
US (1) US8247053B2 (fr)
EP (1) EP2384352B1 (fr)
CN (1) CN102300921B (fr)
AR (1) AR075178A1 (fr)
BR (1) BRPI1006977B8 (fr)
CO (1) CO6410239A2 (fr)
DK (1) DK2384352T3 (fr)
EA (1) EA018678B1 (fr)
ES (1) ES2399815T3 (fr)
FR (1) FR2941701B1 (fr)
IL (1) IL213849A (fr)
MX (1) MX2011007855A (fr)
PL (1) PL2384352T3 (fr)
WO (1) WO2010086559A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103709974A (zh) * 2013-12-31 2014-04-09 广州市合诚化学有限公司 一种低加工温度粘接树脂及其制备方法与应用
CN104497931A (zh) * 2014-12-10 2015-04-08 上海邦中新材料有限公司 一种用于钢塑复合板的粘结树脂

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2505574C1 (ru) * 2012-12-07 2014-01-27 Закрытое акционерное общество "МЕТАКЛЭЙ" (ЗАО "МЕТАКЛЭЙ") Термопластичный адгезив
CN103289599B (zh) * 2013-05-07 2016-05-04 安徽金门工贸有限公司 一种耐低温封边热熔胶及其制备方法
FR3009516B1 (fr) 2013-08-09 2021-01-29 Arkema France Structure multicouche pour un tube
RU2674766C2 (ru) * 2014-05-28 2018-12-13 Криовак, Инк. Многослойные термоусадочные пленки
US9650548B2 (en) * 2014-08-06 2017-05-16 Equistar Chemicals, Lp Polyolefin-based compositions, adhesives, and related multi-layered structures prepared therefrom
US20170327677A1 (en) * 2014-12-11 2017-11-16 Sabic Global Technologies B.V. Polymer compositions for thermal spray coating
CN104531005B (zh) * 2014-12-19 2017-06-20 上海邦中新材料有限公司 一种埋地排水用钢带增强聚乙烯管用粘结树脂
RU2600167C2 (ru) * 2014-12-30 2016-10-20 Публичное акционерное общество "СИБУР Холдинг" Адгезионная композиция на основе полиэтилена
US10633524B2 (en) 2016-12-01 2020-04-28 Cryovac, Llc Multilayer heat shrinkable films
CN107559539A (zh) * 2017-09-29 2018-01-09 江苏天时新材料科技有限公司 三层pe结构防腐层
RU2768173C1 (ru) * 2018-11-06 2022-03-23 Публичное акционерное общество "СИБУР Холдинг" Адгезионная композиция на основе полиэтилена с улучшенной долговременной стабильностью, способ ее получения и применение
WO2020096475A1 (fr) * 2018-11-06 2020-05-14 Public Joint Stock Company "Sibur Holding" Composition adhésive de polyéthylène, son procédé de fabrication et son utilisation
RU2705584C1 (ru) * 2018-11-07 2019-11-08 Публичное Акционерное Общество "Нижнекамскнефтехим" Адгезионная полиэтиленовая композиция для изоляционного покрытия стальных труб
CN110821046B (zh) * 2019-11-20 2021-12-03 北京市建筑工程研究院有限责任公司 一种缓粘结预应力筋及其制备方法
CN112111097A (zh) * 2020-09-23 2020-12-22 上海长园电子材料有限公司 一种热缩套管的配方及制备方法和应用
CN115612424B (zh) * 2022-12-21 2023-03-21 广州鹿山新材料股份有限公司 耐高温胶粘剂及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2116187A (en) * 1982-02-19 1983-09-21 Acc Chem Co Adhesive olefin polymer compositions
US4684576A (en) * 1984-08-15 1987-08-04 The Dow Chemical Company Maleic anhydride grafts of olefin polymers
WO1994011435A1 (fr) * 1992-11-06 1994-05-26 Exxon Chemical Patents Inc. Procede permettant de rendre compatibles des melanges elastomeres
WO1997027259A1 (fr) 1996-01-25 1997-07-31 E.I. Du Pont De Nemours And Company Compositions adhesives a base de melanges de polyethylenes metallocenes greffes catalyses et de polyethylenes classiques non greffes
WO1999037730A1 (fr) 1998-01-27 1999-07-29 E.I. Du Pont De Nemours And Company Compositions adhesives a base de melanges de metallocene greffe catalyse et de copolymeres polaires d'ethylene
EP1043375A1 (fr) 1999-04-06 2000-10-11 Atofina Liant de coextrusion, son utilisation pour une structure multicouche et la structure ainsi obtenue
WO2006125913A1 (fr) 2005-05-26 2006-11-30 Arkema France Liant de coextrusion de pe et pp cogreffes dilues dans un pe non greffe

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2116187A (en) * 1982-02-19 1983-09-21 Acc Chem Co Adhesive olefin polymer compositions
US4684576A (en) * 1984-08-15 1987-08-04 The Dow Chemical Company Maleic anhydride grafts of olefin polymers
WO1994011435A1 (fr) * 1992-11-06 1994-05-26 Exxon Chemical Patents Inc. Procede permettant de rendre compatibles des melanges elastomeres
WO1997027259A1 (fr) 1996-01-25 1997-07-31 E.I. Du Pont De Nemours And Company Compositions adhesives a base de melanges de polyethylenes metallocenes greffes catalyses et de polyethylenes classiques non greffes
WO1999037730A1 (fr) 1998-01-27 1999-07-29 E.I. Du Pont De Nemours And Company Compositions adhesives a base de melanges de metallocene greffe catalyse et de copolymeres polaires d'ethylene
EP1043375A1 (fr) 1999-04-06 2000-10-11 Atofina Liant de coextrusion, son utilisation pour une structure multicouche et la structure ainsi obtenue
WO2006125913A1 (fr) 2005-05-26 2006-11-30 Arkema France Liant de coextrusion de pe et pp cogreffes dilues dans un pe non greffe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RANDALL, REV. MACROMOL. CHEM. PHYS., vol. C29, pages 285 - 297

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103709974A (zh) * 2013-12-31 2014-04-09 广州市合诚化学有限公司 一种低加工温度粘接树脂及其制备方法与应用
CN103709974B (zh) * 2013-12-31 2015-10-07 广州市合诚化学有限公司 一种低加工温度粘接树脂及其制备方法与应用
CN104497931A (zh) * 2014-12-10 2015-04-08 上海邦中新材料有限公司 一种用于钢塑复合板的粘结树脂

Also Published As

Publication number Publication date
PL2384352T3 (pl) 2013-04-30
EP2384352B1 (fr) 2012-11-14
AR075178A1 (es) 2011-03-16
IL213849A0 (en) 2011-07-31
CO6410239A2 (es) 2012-03-30
EA018678B1 (ru) 2013-09-30
US8247053B2 (en) 2012-08-21
MX2011007855A (es) 2011-08-15
ES2399815T3 (es) 2013-04-03
BRPI1006977B1 (pt) 2019-06-04
CN102300921A (zh) 2011-12-28
IL213849A (en) 2015-01-29
FR2941701A1 (fr) 2010-08-06
EP2384352A1 (fr) 2011-11-09
BRPI1006977B8 (pt) 2022-11-08
CN102300921B (zh) 2015-09-02
BRPI1006977A2 (pt) 2016-04-12
DK2384352T3 (da) 2013-02-18
US20110318517A1 (en) 2011-12-29
EA201101143A1 (ru) 2011-12-30
FR2941701B1 (fr) 2012-04-06

Similar Documents

Publication Publication Date Title
EP2384352B1 (fr) Composition adhesive a base de polyethylene greffe
EP0802207B1 (fr) Liant de coextrusion à base d&#39;un mélange de polyoléfines cogreffées
EP1283227B1 (fr) Polypropylène greffé sur base de polypropylène isotactique obtenu par catalyse métallocène
CA2407183C (fr) Composition a base de polypropylene isotactique obtenu par catalyse metallocene et de polypropylene isotactique obtenu par catalyse ziegler natta, greffe
CA2342084C (fr) Liant de coextrusion a base de polyethylene metallocene cogreffe
EP2748253A1 (fr) Composition à caractère greffé présentant des oléfines ramifiées à chaîne longue pour des couches de liaison améliorées
EP1362870A1 (fr) Structure multicouche comprenant un liant à base de polyoléfine greffée par un monomère acrylique
EP0990515A1 (fr) Film comprenant une couche centrale en polyoléfine et deux couches externes en alliage polyamide/polyoléfine
CA2500208C (fr) Utilisation d&#39;un liant de coextrusion pour polyester a base de polyethylene metallocene et lldpe cogreffes et de polyethylene metallocene
WO2001098386A1 (fr) Polypropylene syndiotactique greffe et liants de coextrusion a base de polypropylene syndiotactique
FR2788528A1 (fr) Composition a base d&#39;un copolymere de l&#39;ethylene et de l&#39;alcool vinylique et son utilisation
CA2209505C (fr) Structure multicouche comprenant un liant et une couche de polycetone
EP0797506B1 (fr) Liant d&#39;adhesion de polyolefines et de polymeres fluores, procede de fabrication de materiau composite le mettant en oeuvre et tubes ou reservoirs ainsi obtenus
EP0999932B1 (fr) Structures comprenant du polyethylene moyenne densite et liants utilises dans ces structures
TWI811308B (zh) 用作具有聚對苯二甲酸伸乙酯之多層結構中之黏結層的樹脂
EP3083863B1 (fr) Liant pour structure multicouche
EP3030418A1 (fr) Structure multicouche pour un tube

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080006006.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10707609

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 4975/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 11091051

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/007855

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2010707609

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201101143

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 13147073

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1006977

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1006977

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110728