WO2010084953A1 - Plasmon excitation sensor and method of assay using same - Google Patents

Plasmon excitation sensor and method of assay using same Download PDF

Info

Publication number
WO2010084953A1
WO2010084953A1 PCT/JP2010/050803 JP2010050803W WO2010084953A1 WO 2010084953 A1 WO2010084953 A1 WO 2010084953A1 JP 2010050803 W JP2010050803 W JP 2010050803W WO 2010084953 A1 WO2010084953 A1 WO 2010084953A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasmon excitation
fluorescent dye
excitation sensor
thin film
ligand
Prior art date
Application number
PCT/JP2010/050803
Other languages
French (fr)
Japanese (ja)
Inventor
英隆 二宮
高敏 彼谷
賢治 石田
法明 山本
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009011974A external-priority patent/JP5298877B2/en
Priority claimed from JP2009011973A external-priority patent/JP5298876B2/en
Priority claimed from JP2009025974A external-priority patent/JP5245125B2/en
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Publication of WO2010084953A1 publication Critical patent/WO2010084953A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings

Definitions

  • the present invention relates to a plasmon excitation sensor and an assay method using the same, an apparatus for the assay, and a kit for the assay. More specifically, the present invention is based on the principles of a plasmon excitation sensor in which a fluorescent dye and a ligand are immobilized on a metal thin film, and surface plasmon excitation enhanced fluorescence spectroscopy [SPFS: Surface Plasmon-field enhanced Fluorescence Spectroscopy]. The present invention relates to an assay method using the sensor, the assay device, and the assay kit.
  • the surface plasmon excitation enhanced fluorescence analysis method [SPFS] is performed by generating a dense wave (surface plasmon) on the metal thin film surface under the condition that the irradiated laser light attenuates total reflection [ATR] on the gold thin film surface.
  • the amount of photons in the laser light is increased to several tens to several hundreds times (electric field enhancement effect of surface plasmon), and by this, the fluorescent dye in the vicinity of the gold thin film is efficiently excited. It is a method that can detect an analyte.
  • Patent Document 1 discloses a surface plasmon in which a ligand (primary antibody) immobilization film using carboxymethyldextran is arranged on the surface of a metal substrate. A method for detecting a fluorescent dye associated with an antigen with an enhanced electric field is shown.
  • the amount of fluorescent dye in the conjugate associated with the antigen in the assay is also extremely small, which becomes a bottleneck in the amount of fluorescence generated, and therefore the plasmon electric field Even if enhancement is used, the amount of fluorescence signal does not increase, and it is difficult to improve assay sensitivity.
  • Patent Document 2 discloses hybrid probe particles including gold nanoparticles (diameter: 2 to 30 nm) having a high electric field enhancement effect.
  • the hybrid probe particles are disclosed wherein 1 to 100 antibody-type proteins are bound by gold-sulfur bonds on one of the gold nanoparticle surfaces, and on the other hand at least 10 fluorescent organic dyes are gold- Bonded by sulfur bond.
  • a fluorescent material is formed in a single layer or multiple layers on a surface in which flat silver particles having a cross-sectional particle diameter of 100 to 800 nm and a thickness of 30 to 50 nm are densely arranged as an island film on a substrate.
  • a spacer is provided on the metal particle surface.
  • Patent Document 4 examines signal amplification and non-specific reaction reduction by complexly combining an apoenzyme / holoenzyme reaction and an immune reaction on a sensor substrate.
  • extremely precise molecular orientation technology is premised. Therefore, when the apo / holoenzyme reaction is preferential or dominant over the immune reaction, the measurement system itself There is a high risk that
  • An object of the present invention is to provide a high-sensitivity and high-precision plasmon excitation sensor excellent in specificity that is indispensable for an immunoassay, an assay method using the same, an assay device, and an assay kit. .
  • the inventors of the present invention have problems with the above problems and the conventional sandwich immunoassay method (FIG. 1), that is, when detecting a very small amount of analyte, the conventional sandwich immunoassay method is used, and the conjugate itself is theoretical.
  • the conventional sandwich immunoassay method (FIG. 1) and the surface plasmon excitation enhanced fluorescence analysis method are combined, and a mechanism for quenching the fluorescence depending on the presence or absence of binding between the sensor and the analyte is provided, that is, light emission and quenching.
  • analyte for example, a target antigen
  • the plasmon excitation sensor of the present invention includes a transparent flat substrate; a metal thin film formed on one surface of the substrate; and a dielectric formed on the other surface of the metal thin film that is not in contact with the substrate. And (V) a ligand is immobilized on a fluorescent dye layer formed on the other surface of the spacer layer that is not in contact with the metal thin film, or (W) A ligand labeled with a fluorescent dye is immobilized on the other surface of the spacer layer that is not in contact with the metal thin film.
  • the metal thin film is preferably formed of at least one metal selected from the group consisting of gold, silver, aluminum, copper and platinum.
  • the dielectric preferably contains silicon dioxide [SiO 2 ] or titanium dioxide [TiO 2 ].
  • the ligand may be an antibody that recognizes and binds to a tumor marker or carcinoembryonic antigen.
  • the first aspect of the plasmon excitation sensor of the present invention (hereinafter referred to as “plasmon excitation sensor (I)”) takes the form of (V) above, and the metal thin film is made of gold or silver. Is preferred.
  • the fluorescent dye layer is formed by applying a composition containing a fluorescent dye and a polymer to the other surface of the spacer layer that is not in contact with the metal thin film. Or formed by binding a fluorescent dye via a silane coupling agent.
  • the second aspect of the plasmon excitation sensor of the present invention (hereinafter referred to as “plasmon excitation sensor (II)”) takes the form of (W), and the metal thin film is preferably made of gold. .
  • the ligand is preferably immobilized on the spacer layer via a self-assembled monolayer [SAM] made of a silane coupling agent.
  • SAM self-assembled monolayer
  • the assay method of the present invention includes at least (X) the following steps (a1), (b1), (d) and (e), or (Y) the following steps (a2), (b1), (d) and Comprising (e) or (Z) comprising the following steps (a1), (b2), (c), (d) and (e);
  • Step (a1) a step of bringing a specimen into contact with the plasmon excitation sensor (I) of the present invention
  • Step (a2) a step of bringing a specimen into contact with the plasmon excitation sensor (II) of the present invention
  • the plasmon excitation sensor obtained through the step (a1) is further combined with a ligand / enzyme conjugate that may
  • Step (c) a step of reacting a quencher substrate with the plasmon excitation sensor obtained through the step (b2) to produce a quencher
  • the specimen may be at least one body fluid selected from the group consisting of blood, serum, plasma, urine, nasal fluid and saliva.
  • the analyte may be a tumor marker or carcinoembryonic antigen.
  • the first aspect of the assay method of the present invention (hereinafter referred to as “assay method (X)”) and the second aspect (hereinafter referred to as “assay method (Y)”) are respectively the above (X) or ( In the case of Y), it is preferable to further use a ligand which is an analyte different from the above-mentioned analyte and to which an analyte competing with the above-mentioned analyte is bound in advance.
  • the enzyme is preferably ⁇ -galactosidase, ⁇ -glucosidase, alkaline phosphatase or glucose oxidase.
  • the assay device of the present invention comprises at least the plasmon excitation sensor, laser light source, optical filter, prism, cut filter, condensing lens, and surface plasmon excitation enhanced fluorescence obtained through the step (b1) or (c). It includes a detection unit, and is used in step (d) according to the assay method of the present invention.
  • the assay method when the assay method takes the form of (X), at least the transparent flat substrate, the metal thin film, the spacer layer composed of the dielectric, and the fluorescent dye layer are included.
  • the present invention is highly sensitive and accurate from a specimen containing an analyte (eg, target antigen) at a concentration of 10 ⁇ 18 mol (1 amol / L) to 10 ⁇ 12 mol (1 pmol / L) per liter.
  • analyte eg, target antigen
  • a plasmon excitation sensor capable of detecting the analyte can be provided.
  • the conventional sandwich immunoassay method when detecting a very small amount of analyte, the conventional sandwich immunoassay method has a small amount of fluorescence signal (fluorescence signal) and the S / N ratio is deteriorated.
  • the present invention provides a plasmon excitation sensor and a ligand (for example, secondary). Antibody) and a compound capable of quenching or absorbing fluorescence, and applied to the assay method of the present invention, the ratio of the target antigen is proportional to the compound capable of quenching or absorbing fluorescence. It is possible to provide a plasmon excitation sensor in which the ratio does not deteriorate.
  • the present invention can adjust the amount of fluorescence signal depending on the ability of a compound capable of quenching or absorbing fluorescence, it can provide a plasmon excitation sensor in which the assay method of the present invention can be carried out at an optimum S / N ratio. it can.
  • the present invention relates to an assay (X) and (Y) of the present invention, an analyte (target antigen), a secondary antibody (ligand) in which an antigen that competes with the analyte is previously bound, a quenching dye,
  • an analyte target antigen
  • a secondary antibody ligand
  • an antigen that competes with the analyte is previously bound
  • a quenching dye plasmon excitation sensors (I) and (II) that can make the fluorescence signal (fluorescence signal) amount and the target antigen amount proportional to each other.
  • FIG. 1 shows that in a conventional sandwich immunoassay method, a target antigen (3) contained in a specimen is bound to a primary antibody (2) immobilized on a substrate (1), and then a fluorescent dye (5) is used.
  • a state in which the labeled secondary antibody (4) is reacted is schematically shown.
  • FIG. 2 shows a prism (110); a transparent flat substrate in contact with the prism (110); a metal thin film formed on one surface of the substrate; and the metal thin film in contact with the substrate
  • a sensor chip comprising: a spacer layer made of a dielectric formed on the other surface; and a primary antibody immobilized on the other surface of the spacer layer not in contact with the metal thin film
  • FIG. 2 shows a schematic optical layout of the SPFS apparatus schematically showing a state in which the laser light is irradiated from the semiconductor laser (100) and the fluorescence amount is detected by the CCD (122).
  • the amount of light is adjusted by the ND filter (102), and 0.1 mW is incident on the sensor chip (111);
  • the fluorescent dye labeled on the secondary antibody contained in the flow path to which the sensor chip (111) is fixed is 0.4 nmol / L (measured antigen amount is 0.2 nmol / L of the secondary antibody). This corresponds to the labeling rate of fluorescent dye 2.
  • the “labeling rate” is the average number of labeling agents (eg, fluorescent dye, quenching dye, enzyme, etc.) per ligand (eg, antibody).
  • the effective plasmon region is present at a thickness of 100 nm; and (3) the molar extinction coefficient of the fluorescent dye is 250,000 and the fluorescence quantum yield is 0.47.
  • FIG. 3 shows an antibody that recognizes and binds to an antigen (7) other than the target antigen (analyte) contained in a sample by the type 1 (secondary antibody (4)) of the assay method (X) of the present invention. ) And type 2 (secondary antibody (4) is an antibody that recognizes and binds to target antigen (3) (analyte) contained in a specimen).
  • Step (b1) target antigen (2) bound to the primary antibody (2) by further reacting with the secondary antibody (4) on which the quenching dye (6) is immobilized.
  • the secondary antibody (4) binds to 3);
  • step (d) the fluorescent dye contained in the fluorescent dye layer (12) formed on one surface of the spacer layer made of a dielectric is excited by the surface plasmon. Then, the fluorescence (13) emitted from the fluorescent dye not quenched by the quenching dye (6) is measured.
  • FIG. 4 shows type 1 (for example, Examples (2-8) to (2-14)) and type 2 (for example, Examples (2-1) to (2-) of the assay method (Y) of the present invention. It is the figure which showed 7)) typically.
  • Step (b1) target antigen (2) bound to the primary antibody (2) by further reacting with the secondary antibody (4) on which the quenching dye (6) is immobilized.
  • Step (d) fluorescent dye (5) immobilized on primary antibody (2) is excited by surface plasmon, and fluorescent dye (5) becomes a quenching dye. The fluorescence (13) emitted without being quenched by (6) is measured.
  • FIG. 5 is a diagram schematically showing one embodiment of the assay method (Z) of the present invention (in the case of the enzyme reaction (A)).
  • step (a1) the plasmon excitation sensor (I) of the present invention is brought into contact with the specimen, so that the target antigen (3) contained in the specimen is the primary antibody (2
  • Step (b2) the target antibody (3) bound to the primary antibody (2) is further reacted with the secondary antibody (4) having the enzyme (10) immobilized thereon.
  • Step (c) added quencher substrate (8) reacts with enzyme (10) to produce quencher (9);
  • step (d) consists of dielectric
  • the fluorescent dye contained in the fluorescent dye layer (12) formed on one surface of the spacer layer is excited by the surface plasmon, and the fluorescence (13) emitted by the fluorescent dye not quenched by the quencher (9) is measured.
  • FIG. 6 is a graph summarizing the blank signals and assay signals obtained in Examples (3-1) and (3-2) and Comparative Examples (3-1) and (3-2), respectively. .
  • the plasmon excitation sensor of the present invention comprises: a transparent flat substrate; a metal thin film formed on one surface of the substrate; a dielectric formed on the other surface of the metal thin film that is not in contact with the substrate (V) a ligand is immobilized on a fluorescent dye layer formed on the other surface of the spacer layer that is not in contact with the metal thin film, or (W) the spacer layer. A ligand labeled with a fluorescent dye is immobilized on the other surface of the layer not in contact with the metal thin film.
  • the plasmon excitation sensor of the present invention includes the plasmon excitation sensor (I) taking the form (V) and the plasmon excitation sensor (II) taking the form (W).
  • the plasmon excitation sensor of the present invention can be used for the plasmon excitation sensor of the present invention, such as a sensor chip used in a Biacore system manufactured by GE Healthcare Biosciences Co., Ltd. Can do.
  • a transparent flat substrate is used as a substrate that supports the structure of the plasmon excitation sensor.
  • the transparent flat substrate is used as the support because light irradiation to the metal thin film described later is performed through the transparent flat substrate.
  • the material for the transparent flat substrate used in the present invention is not particularly limited as long as the object of the present invention is achieved.
  • the transparent support may be made of glass, or may be made of plastic such as polycarbonate [PC] or cycloolefin polymer [COP].
  • the refractive index [n d ] at the d line (588 nm) is preferably 1.40 to 2.20, and the thickness is preferably 0.01 to 10 mm, more preferably 0.5 to 5 mm.
  • the size (vertical x horizontal) is not particularly limited.
  • the transparent transparent substrate made of glass is “BK7” (refractive index [n d ] 1.52) and “LaSFN9” (refractive index [n d ] 1.85) manufactured by Shot Japan Co., Ltd. as commercially available products.
  • K-PSFn3 reffractive index [n d ] 1.84
  • K-LaSFn17 reffractive index [n d ] 1.88
  • K-LaSFn22 reffractive index
  • Ratio [n d ] 1.90) and “S-LAL10” (refractive index [n d ] 1.72) manufactured by OHARA INC. Are preferable from the viewpoints of optical properties and detergency.
  • the transparent flat substrate is preferably cleaned with acid and / or plasma before forming a metal thin film on the surface.
  • As the cleaning treatment with an acid it is preferable to immerse in 0.001 to 1N hydrochloric acid for 1 to 3 hours.
  • Examples of the plasma cleaning treatment include a method of immersing in a plasma dry cleaner (PDC200 manufactured by Yamato Scientific Co., Ltd.) for 0.1 to 30 minutes.
  • a metal thin film is formed on one surface of the transparent flat substrate. This metal thin film has a role of generating surface plasmon excitation by light irradiated from a light source, generating an electric field, and causing emission of a fluorescent dye.
  • the metal thin film formed on one surface of the transparent flat substrate is preferably made of at least one metal selected from the group consisting of gold, silver, aluminum, copper, and platinum, and is an alloy of these metals. Also good. Such metal species are preferable because they are stable against oxidation and increase in electric field due to surface plasmons increases.
  • the metal thin film is preferably formed from gold that is most stable against oxidation, and when used for assay method (Z), it will be described later. Because of the use of fluorescent dyes such as Tb chelate, ECFP, 2-Me-4-OMe TG, 2-OMe-5-Me TG, 2-OMe TG, etc. Preferably it is formed from.
  • a thin film of chromium, nickel chromium alloy or titanium in advance because glass and a metal thin film can be more firmly bonded only when a transparent flat substrate made of glass is used as the transparent flat substrate. .
  • Examples of a method for forming a metal thin film on a transparent flat substrate include sputtering, vapor deposition (resistance heating vapor deposition, electron beam vapor deposition, etc.), electrolytic plating, electroless plating, and the like. Since it is easy to adjust the thin film formation conditions, it is preferable to form a chromium thin film and / or a metal thin film by sputtering or vapor deposition.
  • the thickness of the metal thin film is preferably gold: 5 to 500 nm, silver: 5 to 500 nm, aluminum: 5 to 500 nm, copper: 5 to 500 nm, platinum: 5 to 500 nm, and alloys thereof: 5 to 500 nm.
  • the thickness of the thin film is preferably 1 to 20 nm.
  • gold 20 to 70 nm
  • silver 20 to 70 nm
  • aluminum 10 to 50 nm
  • copper 20 to 70 nm
  • platinum 20 to 70 nm
  • alloys thereof 10 to 70 nm
  • chromium The thickness of the thin film is more preferably 1 to 3 nm.
  • the thickness of the metal thin film is within the above range because surface plasmons are easily generated. Moreover, if it is a metal thin film which has such thickness, a magnitude
  • Spacer layer made of dielectric A spacer layer made of a dielectric is formed on the other surface of the metal thin film that is not in contact with the transparent flat substrate for the purpose of preventing metal quenching of the fluorescent dye by the metal thin film.
  • the dielectric various optically transparent inorganic substances, natural or synthetic polymers can be used, but silicon dioxide [SiO 2 ] because of its excellent chemical stability, production stability and optical transparency. or preferably contains titanium dioxide [TiO 2].
  • the thickness of the spacer layer is usually 10 nm to 1 mm, preferably 30 nm or less, more preferably 10 to 20 nm from the viewpoint of resonance angle stability. Further, from the viewpoint of electric field enhancement, 200 nm to 1 mm is preferable, and from the viewpoint of stability of the electric field enhancement effect, 400 to 1,600 nm is preferable.
  • the thickness of the spacer layer included in the sensor will fluctuate. Since there is a possibility, the thickness of the spacer layer is particularly preferably 10 to 20 nm in order to ensure measurement stability.
  • Examples of the method for forming the spacer layer include a sputtering method, an electron beam evaporation method, a thermal evaporation method, a formation method by a chemical reaction using a material such as polysilazane, or an application by a spin coater.
  • a ligand is a molecule or molecular fragment capable of specifically recognizing (or recognizing) and binding an analyte contained in a specimen.
  • a “molecule” or “molecular fragment” include, for example, , Nucleic acids (single stranded or double stranded DNA, RNA, polynucleotides, oligonucleotides, PNA [peptide nucleic acids] etc., or nucleosides, nucleotides and their modified molecules), proteins (polypeptides , Oligopeptides, etc.), amino acids (including modified amino acids), carbohydrates (oligosaccharides, polysaccharides, sugar chains, etc.), lipids, or their modified molecules, complexes, etc., are not particularly limited.
  • proteins examples include antibodies and the like, specifically, anti- ⁇ -fetoprotein [AFP] monoclonal antibody (available from Nippon Medical Laboratory, Inc.), anti-carcinoembryonic antigen [CEA Monoclonal antibodies, anti-CA19-9 monoclonal antibodies, anti-PSA monoclonal antibodies, and the like.
  • AFP anti- ⁇ -fetoprotein
  • CEA anti-carcinoembryonic antigen
  • an antibody includes a polyclonal antibody or a monoclonal antibody, an antibody obtained by gene recombination, and an antibody fragment.
  • An analyte is a molecule or molecular fragment capable of specifically recognizing (or recognizing) and binding to a ligand immobilized on a plasmon excitation sensor.
  • fragment include nucleic acids (DNA, RNA, polynucleotides, oligonucleotides, PNA [peptide nucleic acids] etc., which may be single-stranded or double-stranded, or nucleosides, nucleotides and modified molecules thereof.
  • Proteins polypeptides, oligopeptides, etc.
  • amino acids including modified amino acids
  • carbohydrates oligosaccharides, polysaccharides, sugar chains, etc.
  • lipids or their modified molecules, complexes, etc.
  • it may be a carcinoembryonic antigen such as AFP [ ⁇ -fetoprotein], a tumor marker, a signal transmitter, a hormone, etc. It is not particularly limited.
  • the plasmon excitation sensor (I) of the present invention is formed on a transparent flat substrate; a metal thin film formed on one surface of the substrate; and the other surface of the metal thin film not in contact with the substrate A spacer layer made of a dielectric; a fluorescent dye layer formed on the other surface of the spacer layer not in contact with the metal thin film; and the other of the fluorescent dye layer not in contact with the spacer layer And a ligand immobilized on the surface of the substrate.
  • the plasmon excitation sensor (I) of the present invention is used in the assay method (X) or (Z).
  • the fluorescent dye layer is a layer in which the fluorescent dye is immobilized on the other surface of the spacer layer made of the dielectric material that is not in contact with the metal thin film. Can be formed by coating the spacer layer on the spacer layer, or (B) by binding a fluorescent dye on the spacer layer via a silane coupling agent. it can.
  • the fluorescent dye and the polymer may or may not be chemically bonded, and (A ′) a silane coupling agent having a polymerizable group is bonded to the spacer layer.
  • a composition containing a fluorescent dye and a polymer can also be formed by adding another polymerizable monomer, a fluorescent dye and a polymerization initiator and copolymerizing them.
  • the fluorescent dye is bonded to the spacer layer.
  • (B) by binding the silane coupling agent having an amino group or a carboxyl group and a fluorescent dye introduced with a functional group that reacts with these groups and covalently binds, the fluorescent dye is bonded to the spacer layer. Can be immobilized.
  • the amount of the fluorescent dye that can be immobilized is large, and the strength of the resulting layer is high, which is preferable.
  • the fluorescent dye is a general term for substances that emit fluorescence by irradiating with predetermined excitation light or by using the electric field effect, and the “fluorescence” means various emission such as phosphorescence. Including.
  • the fluorescent dye used in the present invention is not particularly limited, and may be any known fluorescent dye.
  • fluorescent dyes with large Stokes shifts that allow the use of a fluorometer with a filter rather than a monochromator and also increase the efficiency of detection are preferred.
  • fluorescent dyes examples include fluorescein family fluorescent dyes (Integrated DNA Technologies), polyhalofluorescein family fluorescent dyes (Applied Biosystems Japan Co., Ltd.), and hexachlorofluorescein family fluorescent dyes. (Applied Biosystems Japan Co., Ltd.), Coumarin family fluorescent dye (Invitrogen Corp.), Rhodamine family fluorescent dye (GE Healthcare Bioscience Co., Ltd.), Cyanine family fluorescent dye, Indocarbocyanine family fluorescent dye, oxazine family fluorescent dye, thiazine family fluorescent dye, squaraine family fluorescent dye, chelated lanthanide dye Millie's fluorescent dye, BODIPY® family fluorescent dye (manufactured by Invitrogen), naphthalenesulfonic acid family fluorescent dye, pyrene family fluorescent dye, triphenylmethane family fluorescent dye, Alexa Fluor (Registered trademark) dye series (manufactured by Invitrogen Corp.) and the like, and further, U.S. Patent
  • Table 1 shows the absorption wavelength (nm) and emission wavelength (nm) of typical fluorescent dyes included in these families.
  • terbium [Tb] chelate fluorescence wavelength: 490 nm
  • enhanced cyan fluorescent protein [ECFP] fluorescence wavelength: 475 nm
  • 2-Me TG and 2-Me-- Fluorescent dyes such as Tokyo Green [TG] including 4-OMe TG, 2-OMe-5-Me TG, 2-OMe TG, and the like can also be used.
  • fluorescent dyes have high water solubility, and in order to immobilize these fluorescent dyes as a fluorescent dye layer in a polymer by intermolecular interaction, a hydrophobic aromatic group is attached to the carboxyl group of the fluorescent dye. It is necessary to react with the amino group or alcohol of the aromatic ring to form a water-insoluble structure, or to bond chemically by reaction between the hydrophobic polymer and the active ester of the fluorescent dye. In the case where the polymer and the fluorescent dye do not have a chemical bond, it is preferable to modify the fluorescent dye so as to have a structure close to the solubility parameter of the polymer (SP).
  • SP solubility parameter of the polymer
  • polymer examples include polyacrylate, polymethacrylate, polystyrene-acrylate, polystyrene, polyvinyl butyral, and polyester.
  • polyacrylates and polymethacrylates, polystyrene, and polyvinyl butyral have excellent compatibility with fluorescent dyes and nonspecific adsorption (eg, proteins (albumin, fibrinogen, immunoglobulin), lipids, saccharides (glucose)). Can be suppressed, which is preferable.
  • composition in addition to the fluorescent dye and the polymer, the composition can also contain a solvent and, if necessary, additives such as an antioxidant.
  • the “solvent” is not particularly limited as long as it has high volatility.
  • halogen-containing hydrocarbons for example, dichloromethane, dichloroethane, tetrafluoropropane, etc.
  • alcohols for example, methanol, ethanol, propanol, butanol, Tertiary butanol, tetrafluoropropanol
  • aromatics eg, toluene, xylene, etc.
  • ethers eg, diethyl ether, diethylene glycol monomethyl ether, etc.
  • esters eg, ethyl acetate, butyl acetate, etc.
  • glycols for example, ethylene glycol
  • ketones acetone, methyl ethyl ketone, etc.
  • aromatics, halogen-containing hydrocarbons, esters, and ketones are preferred from the viewpoint of the dissolution stability of the polymer used.
  • antioxidant examples include pentaerythrityl tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl)] propionate, 2,6-di-tert-butyl-4-methylphenol. 2,2′-dioxy-3,3′-di-t-butyl-5,5′-dimethyldiphenylmethane, tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate ] Methane etc. are mentioned.
  • the fluorescent dye is preferably 1 to 75% by weight, more preferably 30 to 70% by weight, and the polymer is preferably 25 to 99% by weight, more preferably 70 to 30% by weight, based on the total amount of the composition (100% by weight). preferable.
  • the quenching efficiency is good.
  • the solvent is preferably 100 to 1,000 parts by weight, more preferably 100 to 500 parts by weight with respect to 100 parts by weight of the composition.
  • the additive is preferably from 0.1 to 10 parts by weight, more preferably from 1 to 5 parts by weight, based on 100 parts by weight of the composition. It is preferable that the solvent or additive has the above blending amount because the coating property is good and the fluorescence quantum yield is not lowered.
  • the coating method is not particularly limited. For example, it is usually 20 to 100 after application by spin coating, wire coating, bar coating, roll coating, blade coating, curtain coating, screen printing, or the like. Dry at 30 ° C. for 5-30 minutes.
  • silane coupling agent having a bifunctional reactive group it has an ethoxy group (or methoxy group) that gives a silanol group [Si-OH] by hydrolysis, and an amino group, a glycidyl group, a carboxyl group, etc. at the other end.
  • Any silane coupling agent having a reactive group may be used. Specific examples include 3-aminopropyltriethoxysilane, 8-amino-octyltriethoxysilane, 6-amino-hexyltriethoxysilane, and 7-carboxy-heptyltriethoxy. Examples thereof include silane and 5-carboxy-pentyltriethoxysilane, but the present invention is not limited to these, and conventionally known silane coupling agents can also be used.
  • silane coupling agent having a bifunctional reactive group since it has excellent ligand immobilization ability, for example, carboxymethyl dextran, polyethylene glycol, iminodiacetic acid derivatives ((N-5-amino-1-carboxypentyl) iminodiacetic acid, etc.), biotin, avidin, streptavidin, protein A, protein G and the like are also suitable.
  • a silane coupling agent as the compound having a bifunctional reactive group in (A), as a specific example of a method for immobilizing a ligand, first, a thin gold film, a spacer layer made of a dielectric, and a fluorescent dye layer are:
  • the transparent flat substrate formed in order on one surface thereof is immersed in an aqueous solution containing a silane coupling agent in a concentration of usually 0.1 to 10%, preferably 0.5%, for 30 minutes to 2 hours, and then at room temperature.
  • drying is usually performed for 1 to 24 hours, preferably 10 hours, and at 100 ° C.
  • drying is usually performed for 10 minutes to 1 hour, preferably 30 minutes, and then the substrate is usually washed with water.
  • a monomolecular film is formed in which silanol groups [Si—OH] obtained by hydrolysis of one end of the silane coupling agent are arranged on the fluorescent dye layer side.
  • the amino group and carboxyl group of the silane coupling agent are exposed on the outside of the monomolecular film made of the silane coupling agent.
  • the carboxyl group of the ligand is converted into water-soluble carbodiimide [WSC] (for example, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride [EDC]) and N-hydroxysuccinimide [NHS].
  • WSC water-soluble carbodiimide
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
  • NHS N-hydroxysuccinimide
  • a carboxyl group of a polymer in a fluorescent dye layer is converted into a water-soluble carbodiimide [WSC] (for example, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride [EDC] etc.) And N-hydroxysuccinimide [NHS], and the amino group of the ligand is dehydrated and immobilized using water-soluble carbodiimide.
  • WSC water-soluble carbodiimide
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
  • NHS N-hydroxysuccinimide
  • the plasmon excitation sensor (II) of the present invention comprises a transparent flat substrate; a metal thin film formed on the surface of the substrate; a dielectric film formed on the other surface of the metal thin film that is not in contact with the substrate A spacer layer comprising a body; and a ligand labeled with a fluorescent dye, which is immobilized on the other surface of the spacer layer that is not in contact with the metal thin film.
  • the plasmon excitation sensor (II) of the present invention is used in the assay method (Y) of the present invention.
  • the spacer layer made of the transparent flat substrate, the metal thin film, and the dielectric used in the plasmon excitation sensor (II) of the present invention the same spacer layer as that of the plasmon excitation sensor (I) of the present invention can be used.
  • the method is the same as that of the plasmon excitation sensor (I) of the present invention.
  • Ligand labeled with fluorescent dye As a method for labeling the above-mentioned fluorescent dye to the above-mentioned ligand, for example, an active ester of the fluorescent dye is prepared and further amine-coupled with the ligand.
  • Various functional groups such as thiocyanate group, sulfonyl chloride group, mercapto group, iodoacetamide group and the like can be introduced, and a method for forming a chemical bond under a condition in which the reactive group and the functional group of the ligand can react And so on.
  • a method for immobilizing a ligand labeled with a fluorescent dye on a spacer layer made of the above-mentioned dielectric a method for immobilizing on a spacer layer via a SAM (self-assembled monolayer) made of a silane coupling agent Is preferred.
  • the method for immobilizing a ligand labeled with a fluorescent dye is the same as in the case of the plasmon excitation sensor (I) of the present invention.
  • a method of labeling a fluorescent dye on the ligand immobilized on the spacer layer can be used. After immobilizing the ligand with a silane coupling agent having a functional group capable of reacting with the ligand, the reactive group is further added. It is also possible to produce an immobilized ligand labeled with a fluorescent dye by reacting the fluorescent dye with the fluorescent dye.
  • the assay method of the present invention comprises at least (X) includes the following steps (a1), (b1), (d) and (e), (Y) includes the following steps (a2), (b1), (d) and (e), or (Z) includes the following steps (a1), (b2), (c), (d) and (e) It is characterized by including.
  • Step (a1) a step of bringing a specimen into contact with the plasmon excitation sensor (I) of the present invention
  • Step (a2) a step of bringing a specimen into contact with the plasmon excitation sensor (II) of the present invention
  • Step (b1) the plasmon excitation sensor obtained through the step (a1) or (a2), and a ligand that may be the same as or different from the ligand contained in the plasmon excitation sensor, and a quenching dye Reacting the conjugate with Step (b2):
  • the plasmon excitation sensor obtained through the step (a1) is further combined with a ligand / enzyme conjugate that may be the same as or different from the ligand contained in the plasmon excitation sensor.
  • Step (c) a step of reacting a quencher substrate with the plasmon excitation sensor obtained through the step (b2) to produce a quencher
  • the assay method of the present invention includes the assay method (X) taking the embodiment of (X), the assay method (Y) taking the embodiment of (Y), and the assay method (Z) taking the embodiment of (Z). Is included.
  • the assay method of the present invention preferably further includes a washing step as appropriate.
  • the assay method of the present invention is preferably carried out while maintaining a constant temperature.
  • Steps (a1) / (a2) are steps of bringing the specimen into contact with the plasmon excitation sensors (I) and (II) of the present invention, respectively.
  • specimen examples include blood (serum / plasma), urine, nasal fluid, saliva, feces, body cavity fluid (spinal fluid, ascites, pleural effusion, etc.), etc. It may be used. Of these samples, blood, serum, plasma, urine, nasal fluid and saliva are preferred.
  • the “flow channel” is a rectangular parallelepiped or a tube that can efficiently deliver a small amount of a chemical solution and can change the liquid feeding speed or circulate in order to promote the reaction.
  • the vicinity of the place where the plasmon excitation sensor is installed preferably has a rectangular parallelepiped structure, and the vicinity of the place where the drug solution is delivered preferably has a tubular shape.
  • the materials include homopolymers or copolymers, polyethylene, polyolefin, etc. containing methyl methacrylate, styrene, etc. as raw materials in the plasmon excitation sensor part, and silicon rubber, Teflon (registered trademark), polyethylene, polypropylene in the chemical solution delivery part. Etc. are used.
  • the vertical and horizontal sections of the channel of the plasmon excitation sensor unit are independently about 100 nm to 1 mm.
  • a method of fixing the plasmon excitation sensor to the flow path in a small-scale lot (laboratory level), first, on the surface on which the metal thin film of the plasmon excitation sensor is formed, A dimethylsiloxane [PDMS] sheet is pressure-bonded so as to surround the portion where the metal thin film of the plasmon excitation sensor is formed, and then the polydimethylsiloxane [PDMS] sheet and the plasmon excitation sensor are closed with screws or the like.
  • a method of fixing with a tool is preferred.
  • a gold substrate is formed on a plastic integrally molded product, or a separately manufactured gold substrate is fixed, and the gold surface is fixed. Further, after the dielectric layer, the fluorescent dye layer, and the ligand are immobilized, it can be manufactured by covering with a plastic integrally formed product corresponding to the top plate of the flow path. If necessary, the prism can be integrated into the flow path.
  • the “liquid feeding” is preferably the same as the solvent or buffer in which the specimen is diluted, and examples thereof include phosphate buffered saline (PBS) and Tris buffered saline (TBS), but are not particularly limited. It is not something.
  • PBS phosphate buffered saline
  • TBS Tris buffered saline
  • the temperature and time for circulating the liquid supply vary depending on the type of specimen and are not particularly limited, but are usually 20 to 40 ° C. ⁇ 1 to 60 minutes, preferably 37 ° C. ⁇ 5 to 15 minutes.
  • the initial concentration of the analyte contained in the specimen being sent may be 100 ⁇ g / mL to 0.001 pg / mL.
  • the total amount of liquid feeding, that is, the volume of the flow path is usually 0.001 to 20 mL, preferably 0.1 to 1 mL.
  • the flow rate of the liquid feeding is usually 1 to 2,000 ⁇ L / min, preferably 5 to 500 ⁇ L / min.
  • the washing step is preferably included before and / or after the following step (b1) or (b2), and the plasmon obtained in the above step (a1) or (a2) or the following step (b1) or (b2) This is a step of cleaning the surface of the excitation sensor.
  • a surfactant or a surfactant such as Tween 20 or Triton X100 is used in the same solvent or buffer as used in the reaction of the above step (a1) or (a2) or the following step (b1) or (b2). It is desirable that it is dissolved in a liquid and preferably contains 0.00001 to 1% by weight.
  • the temperature and flow rate at which the cleaning liquid is circulated are preferably equal to the “temperature and flow rate at which the liquid feed is circulated” in step (a1) or (a2).
  • the time for circulating the cleaning liquid is usually 0.5 to 180 minutes, preferably 5 to 60 minutes.
  • Step (b1) The step (b1) is different from the step (a1) or (a2), preferably the plasmon excitation sensor obtained through the washing step, even if the ligand contained in the plasmon excitation sensor is the same.
  • This is a step of reacting a conjugate of an optional ligand and a quenching dye.
  • quenching dye The quenching dye (or quencher) used in step (b1), that is, assay method (X) or (Y) is included in a compound capable of quenching or absorbing fluorescence, and the fluorescent dye is excited. If the compound has an appropriate energy level capable of absorbing the energy and an appropriate quenching dye is added to a certain fluorescent dye, the fluorescence disappears.
  • quenching dyes include fluorescein family quenching dyes, polyhalofluorescein family quenching dyes, hexachlorofluorescein family quenching dyes, coumarin family quenching dyes, rhodamine family quenching dyes, cyanine family quenching dyes.
  • Quenching dyes oxazine family quenching dyes, thiazine family quenching dyes, squarain family quenching dyes, chelated lanthanide family quenching dyes, BODIPY (registered trademark) family quenching dyes, and more Specifically, for example, BHQ (registered trademark) family dyes (including quenchers described in WO 01/86001: BHQ-1, BHQ-2 and BHQ-3) (Bio Searchte Nonology Japan BTJ, Iowa Black (registered trademark) (Integrated DNA Technologies), DABCYL (4- (4'-dimethylaminophenylazo) benzoic acid) (Integrated DNA Technologies), TAMRAN , N, N ′, N′-tetramethyl-6-carboxyrhodamine) (manufactured by Invitrogen), Cy3 (registered trademark) (manufactured by GE Healthcare Biosciences), Cy5 (registered trademark) (GE Health) Care Biosciences), 1-benz
  • BHQ-1 maximum wavelength 534 nm
  • BHQ-2 maximum wavelength 579 nm
  • BHQ-3 maximum wavelength 672 nm
  • a dark quencher a quenching dye that does not emit light itself
  • quenching dye systems usually include tetracyanoquinodimethanes, aminiums, diimmoniums, hydrazines, hydrazides, hydroxylamines, hydroquinones, tetrasubstituted boron anions, nickels, azo Examples include heavy metal complexes of dyes, formazan heavy metal complexes, dipyrromethene metal complexes, porphyrin heavy metal complexes, heavy metal phthalocyanines, heavy metal naphthalocyanines, and metallocenes.
  • the photons emitted by the fluorescent dye excited by the surface plasmon are considered to be quenched by energy transfer to the quenching dye in an electronically excited state. That is, it is considered that a quenching dye that has absorbed energy in an electronically excited state emits energy as photons or heat having different wavelengths. Therefore, in some cases, a compound exemplified as a fluorescent dye such as TG can be used as a quenching dye (or quencher).
  • a critical transition distance is a distance at which the electronic excitation level (usually singlet) of a fluorescent dye can interact with the lowest empty orbit of the quenching dye.
  • the quenching dye is an organic substance, it is usually a distance of about 10 nm, In the case of a metal-containing material, the distance is usually about 30 nm.
  • the critical transition distance between a specific fluorescent dye and a quenching dye is well known in the art, for example, Wu and Brand, 1994, Anal. Biochem. 218: 1-3 You can refer to the distance.
  • the quenching dye is also a fluorescent dye
  • An exemplary combination of a fluorescent dye and a quenching dye used in the present invention includes 6-carboxyfluorescein [FAM] as the fluorescent dye and Cy5 (registered trademark) as the quenching dye; Alexa Fluor (registered trademark) 647 ⁇ fluorescent dye> BHQ-3 ⁇ quenching dye>; FAM, TET, JOE, HEX and Oregon Green ⁇ fluorescent dye> and BHQ-1 ⁇ quenching dye>; FAM, TAMRA, ROX, Cy3, Cy3.5, CAL Red and Red 640 ⁇ fluorescence Dye> and BHQ-2 ⁇ quenching dye>; Cy5 and Cy5.5 ⁇ fluorescent dye> and BHQ-3 ⁇ quenching dye>, combinations described in US Pat. No. 6,245,514, listed in Table 2 However, the present invention is not limited to these combinations.
  • Molecules that can be used as both fluorescent and quenching dyes include, for example, fluorescein, 6-carboxyfluorescein, 2 ′, 7′-dimethoxy-4 ′, 5′-dichloro-6-carboxyfluorescein, rhodamine, 6-carboxyl And rhodamine, 6-carboxy-X-rhodamine, 5- (2′-aminoethyl) aminonaphthalene-1-sulfonic acid [EDANS] and the like.
  • conjugate of a ligand and quenching dye uses the following embodiment ( ⁇ ) or ( ⁇ ) when a secondary antibody is used as the ligand: Is preferred.
  • the secondary antibody may be a monoclonal antibody or a polyclonal antibody.
  • the secondary antibody is preferably a monoclonal antibody that recognizes an epitope that the primary antibody does not recognize, or a polyclonal antibody.
  • the primary antibody used as a ligand immobilized on the plasmon excitation sensor of the present invention is, for example, an AFP monoclonal antibody
  • the secondary antibody of the embodiment ( ⁇ ) competes with AFP contained in the specimen.
  • Aspect ( ⁇ ) is preferable because the amount of fluorescence signal can be adjusted depending on the ability of the quencher, and therefore the assay method of the present invention can be carried out at an optimal S / N ratio.
  • Such a secondary antibody may be a monoclonal antibody or a polyclonal antibody as long as it binds to a competitive antigen without binding to a target antigen.
  • the complex of the secondary antibody and the competitive antigen used in the embodiment ( ⁇ ) is preferable to use the complex of the secondary antibody and the competitive antigen used in the embodiment ( ⁇ ) for the competitive immunoassay method.
  • the competitive immunoassay method is applied to, for example, the assay method (X) or (Y) of the present invention, that is, in the assay method (X) or (Y) of the present invention, instead of the conjugate of the ligand and the quenching dye.
  • the embodiment ( ⁇ ) is preferable because the amount of fluorescent signal (fluorescent signal) and the amount of target antigen can be proportional.
  • the complex of the secondary antibody and the competitive antigen is brought into contact with the plasmon excitation sensor in excess after the step (b1), preferably after the washing step.
  • the secondary antibody of the embodiment ( ⁇ ) is an anti-AFP polyclonal antibody or an anti-AFP monoclonal antibody that can recognize and bind to an epitope that the anti-AFP monoclonal antibody does not recognize. Requires antibody.
  • a secondary antibody As a method for preparing a conjugate of a ligand and a quenching dye, when a secondary antibody is used as the ligand, for example, first, a carboxyl group is added to the quenching dye, and the carboxyl group is converted into a water-soluble carbodiimide [WSC] (for example, 1 -Ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride [EDC] and the like) and N-hydroxysuccinimide [NHS], and then the active esterified carboxyl group and the amino acid contained in the secondary antibody
  • WSC water-soluble carbodiimide
  • EDC EDC] and the like
  • NHS N-hydroxysuccinimide
  • the concentration of the conjugate of the ligand thus prepared and the quenching dye during feeding is preferably 0.001 to 10,000 ⁇ g / mL, more preferably 1 to 1,000) ⁇ g / mL.
  • the temperature, time and flow rate at which the liquid is circulated are the same as those in step (a1) or (a2). Moreover, it is preferable to include the said washing
  • the step (b2) may be the same as or different from the plasmon excitation sensor obtained through the step (a1), preferably the washing step, and the ligand contained in the plasmon excitation sensor. This is a step of reacting a conjugate of a ligand and an enzyme.
  • the enzyme used in the step (b2), that is, the assay method (Z) is for generating a “quenching agent” capable of quenching the fluorescence emitted from the fluorescent dye from a predetermined “quenching substrate”. More specifically, the enzyme activates the quencher by, for example, (A) removing the protecting group by enzymatic reaction from the following “quencher substrate” blocked by the protecting group, or (B) It is used for lowering the fluorescence intensity by lowering the pH around the fluorescent dye with a quencher activated by an enzymatic reaction using a specific “quencher substrate” described later.
  • Examples of the “enzyme” used in the enzyme reaction (A) include ⁇ -galactosidase, ⁇ -glucosidase, alkaline phosphatase and the like.
  • ⁇ -galactosidase catalyzes the reaction of eliminating ⁇ Gal from the quencher substrate TG- ⁇ Gal.
  • ⁇ -glucosidase catalyzes a reaction for eliminating ⁇ Glu from TG- ⁇ Glu which is a quencher substrate.
  • free TG has an excitation wavelength of 490 nm and a fluorescence dye having a fluorescence wavelength of 475 to 495 nm and Fluorescence Resonance Energy Transfer (FRET; fluorescence resonance energy transfer), fluorescence of terbium [Tb] chelate (fluorescence wavelength: 495 nm) ) Or enhanced cyan fluorescent protein (Enhanced Cyan Fluorescence Protein; ECFP) (fluorescence wavelength: 475 nm) can be quenched.
  • FRET Fluorescence Resonance Energy Transfer
  • Alkaline phosphatase catalyzes a reaction of hydrolyzing an AttoPhos (registered trademark) substrate to produce BBT [2 ′-[2-benzthiazoyl] -6′-hydroxyl-benzthiazole], which is a fluorescent substance.
  • the produced BBT is a fluorescent substance having an excitation wavelength of 482 nm, and, like the above-described TG, can cause terbium [Tb] chelate or ECFP and FRET to quench them.
  • Examples of the “enzyme” used in the enzyme reaction (B) include glucose oxidase.
  • Glucose oxidase produces gluconolactone and hydrogen peroxide by an enzyme reaction using glucose as a quencher substrate.
  • Fluorescence intensity such as 2-Me-4-OMe TG, 2-OMe-5-Me TG or 2-OMe TG used as a fluorescent dye as the pH of the water is lowered by hydrogen peroxide dissolved in the water becomes smaller (ie, extinguished).
  • conjugate of ligand and enzyme “The conjugate of a ligand and an enzyme, which may be the same as or different from the ligand contained in the plasmon excitation sensor” is a ligand labeled with the enzyme, and the ligand is the same as the ligand Or different.
  • a carboxyl group possessed by an enzyme is first converted into a water-soluble carbodiimide [WSC] (for example, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride [EDC].
  • WSC water-soluble carbodiimide
  • EDC 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
  • the concentration of the ligand-enzyme conjugate thus prepared in the solution is preferably 0.001 to 10,000 ⁇ g / mL, more preferably 1 to 1,000) ⁇ g / mL.
  • the temperature, time, and flow rate at which the liquid is circulated are the same as those in step (a1) or (a2).
  • the step (c) is a step in which a quencher substrate is reacted with the plasmon excitation sensor obtained through the step (b2), preferably the washing step, to generate a quencher.
  • quencher substrate examples include TG- ⁇ Gal, TG- ⁇ Glu, AttoPhos (registered trademark) substrate, glucose and the like as described above.
  • TG- ⁇ Gal and TG- ⁇ Glu which are quencher substrates used in the enzyme reaction (A) are compounds obtained by adding one molecule of ⁇ -galactose and ⁇ -glucose as protective groups to the fluorescent dye, TokyoGreen [TG], respectively. In this state, almost no fluorescence is observed, but strong light is emitted by the removal of the protecting group by ⁇ -galactosidase and ⁇ -glucosidase.
  • TG includes 2-Me TG and 2-Me-4-OMe TG represented by the above formula.
  • the AttoPhos (registered trademark) substrate hardly emits fluorescence even in a solution at pH 9.5, but is converted to BBT as a result of the enzymatic reaction with alkaline phosphatase, and emits strong fluorescence.
  • the quencher produced by the enzyme reaction (A) is included in a compound that can quench or absorb fluorescence in the same manner as the quenching dye, and can be used in an appropriate energy level capable of absorbing the excited energy of the fluorescent dye. When a suitable quenching dye is added to a certain fluorescent dye, the fluorescence disappears.
  • quencher substrate used in the enzyme reaction (B) examples include glucose and oxygen which are substrates for glucose oxidase.
  • preferable combinations of an enzyme, a quencher substrate, a quencher and a fluorescent dye include those shown in the following table.
  • the concentration of such a quencher substrate during feeding is preferably 0.001 to 10,000 ⁇ g / mL, more preferably 1 to 1,000 ⁇ g / mL.
  • the temperature, time, and flow rate at which the liquid is circulated are the same as those in step (a1) or (a2).
  • Step (d) refers to the step (b1), preferably the plasmon excitation sensor obtained through the cleaning step or the step (c), from one side of the transparent flat substrate on which the metal thin film is not formed. This is a step of measuring the amount of fluorescence emitted from the excited fluorescent dye by irradiating laser light through a prism.
  • the “laser light” adjusts the energy and the amount of photons immediately before entering the prism through the optical filter. Irradiation with laser light generates surface plasmons on the surface of the metal thin film under the total reflection attenuation condition [ATR]. Due to the electric field enhancement effect of surface plasmons, the fluorescent dye is excited by photons that are increased by several tens to several hundred times the amount of photons irradiated. The increase in photons due to the electric field enhancement effect depends on the refractive index of the glass serving as the substrate, the metal species and the film thickness of the metal thin film, but is usually about 10 to 20 times the increase in gold.
  • the fluorescent dye In the fluorescent dye, the electrons in the molecule are excited by light absorption, move to the first electronic excited state in a short time, and when returning from this state (level) to the ground state, the fluorescent dye has a wavelength corresponding to the energy difference. To emit.
  • quenching if there is a quencher in the vicinity that can absorb energy corresponding to the energy required for transition from the ground state of the fluorescent dye to the first electronic excited state, energy is transferred from the fluorescent dye to the quenching dye or the quencher.
  • the fluorescent dye moves and returns from the first electron excited state to the ground state without generating fluorescence. This phenomenon is called quenching.
  • the fluorescence that has not been quenched by the quenching dye / quenching agent is incident on the SPFS detector through the cut filter by the condenser lens, and the count value of the incident light is measured.
  • a light source of “laser light” for example, an LED capable of irradiating laser light having a wavelength of 400 to 840 nm and an incident light amount of about 1 mW, a wavelength of 230 to 800 nm (resonance wavelength is determined by the metal type used in the metal thin film), 0.
  • Examples thereof include a semiconductor laser [LD] capable of irradiating a laser beam of 01 to 100 mW.
  • both LED and LD can be used in SPR, but SPFS requires high energy to excite the fluorescent dye, and LD is preferable from the viewpoint of high sensitivity.
  • the “prism” is intended to allow the laser light through various filters to efficiently enter the plasmon excitation sensor, and the refractive index is preferably the same as that of the “transparent flat substrate”.
  • various prisms for which total reflection conditions can be set can be selected as appropriate, and therefore, there is no particular limitation on the angle and shape.
  • a 60-degree dispersion prism may be used.
  • Examples of such commercially available prisms include those similar to the above-mentioned commercially available “glass-made transparent flat substrate”.
  • optical filter examples include a neutral density [ND] filter and a diaphragm lens.
  • the “darkening [ND] filter” (or neutral density filter) is intended to adjust the amount of incident laser light. In particular, when a detector with a narrow dynamic range is used, it is preferable to use it for carrying out a highly accurate measurement.
  • the “polarizing filter” is used to make the laser light P-polarized light that efficiently generates surface plasmons.
  • Cut filters are: external light (illumination light outside the device), excitation light (excitation light transmission component), stray light (excitation light scattering component in various places), plasmon scattering light (excitation light originated from plasmon A filter that removes various noise light such as scattered light generated due to the influence of structures or deposits on the surface of the excitation sensor), autofluorescence of the enzyme fluorescent substrate, fluorescence emitted by the quenching dye / quenching agent by FRET, For example, an interference filter, a color filter, etc. are mentioned.
  • the “condensing lens” is intended to efficiently collect the fluorescent signal on the detector, and may be an arbitrary condensing system.
  • a simple condensing system a commercially available objective lens (for example, manufactured by Nikon Corporation or Olympus Corporation) used in a microscope or the like may be used.
  • the magnification of the objective lens is preferably 10 to 100 times.
  • the “SPFS detector” is preferably a photomultiplier (a photomultiplier manufactured by Hamamatsu Photonics) from the viewpoint of ultra-high sensitivity. Also, although the sensitivity is lower than these, a CCD image sensor capable of multipoint measurement is also suitable because it can be viewed as an image and noise light can be easily removed.
  • Step (e) is a step of calculating the amount of the analyte contained in the specimen from the measurement result obtained in the step (d).
  • a calibration curve is created by performing measurement with an analyte having a known concentration, and the analyte (target antigen) in the sample to be measured is calculated from the measurement signal based on the created calibration curve. It is a process.
  • the blank fluorescent signal measured before the step (d), the assay fluorescent signal obtained in the step (d), and a metal substrate not modified at all are fixed to the channel.
  • the assay S / N ratio represented by the following formula can be calculated.
  • the assay device of the present invention comprises at least the plasmon excitation sensor, laser light source, optical filter, prism, cut filter, condensing lens, and surface plasmon excitation enhanced fluorescence obtained through the step (b1) or (c). It includes a detector and is used in the step (d).
  • the assay device of the present invention is for carrying out the assay method (X), (Y) or (Z) of the present invention using the plasmon excitation sensor (I) or (II) of the present invention. is there.
  • the “apparatus” includes at least a light source, an optical filter, a prism, a flow path, a plasmon excitation sensor, a liquid feed pump, a cut filter, a condenser lens, and an SPFS detection unit.
  • the surface plasmon resonance [SPR] detector that is, the angle variable unit for adjusting the optimum angle of the photodiode, SPR and SPFS as a light receiving sensor dedicated to SPR (in order to obtain the total reflection attenuation [ATR] condition by the servomotor)
  • the angle between 30 ° and 85 ° is changed in synchronization with the photodiode and the light source.
  • the resolution is preferably 0.01 ° or more.
  • liquid feed pump examples include a micro pump suitable for a small amount of liquid feed, a syringe pump with high feed accuracy and low pulsation, which is preferable but cannot be circulated, and a simple and excellent handleability but a small amount of liquid feed.
  • a tube pump may be difficult.
  • the sensor includes at least a transparent flat substrate, the metal thin film, the spacer layer made of the dielectric, and the fluorescent dye layer, and the quenching dye.
  • the assay method of the present invention includes at least a sensor including a transparent flat substrate, the metal thin film, and a spacer layer made of the dielectric, the fluorescent dye, and the quenching dye.
  • the embodiment of (Z) includes at least a sensor including a transparent flat substrate, the metal thin film, the spacer layer made of the dielectric, and the fluorescent dye layer, and the enzyme and quencher substrate. It is used for the assay method (Z) of the invention.
  • the assay kit of the present invention includes everything necessary for performing the assay method (X), (Y) or (Z) of the present invention in addition to the specimen, the primary antibody and the secondary antibody. It is preferable.
  • the kit of the present invention blood as a specimen, and an antibody against a specific tumor marker, the content of the specific tumor marker can be detected with high sensitivity and high accuracy. From this result, the presence of a preclinical noninvasive cancer (carcinoma in situ) that cannot be detected by palpation or the like can be predicted with high accuracy.
  • such a “kit” includes a metal thin film and a dielectric spacer layer (and a fluorescent dye layer) formed in this order on a transparent flat substrate; reagents for immobilizing a ligand (For example, silane coupling agent, water-soluble carbodiimide (EDC, etc.), N-hydroxysuccinimide [NHS], etc.); solution or dilution solution for dissolving or diluting the sample; reaction between the plasmon excitation sensor and the sample Various reaction reagents and washing reagents; quenching dyes (eg, BHQ-3); enzymes ( ⁇ -galactosidase, ⁇ -glucosidase, alkaline phosphatase, glucose oxidase, etc.); quencher substrates (eg, TG- ⁇ Gal, TG) - ⁇ Glu, AttoPhos (registered trademark) substrate, glucose, etc.); quenching dye for secondary antibody Or various reagents for immobilizing enzymes (
  • kit element a standard material for preparing a calibration curve, a manual, a necessary set of equipment such as a microtiter plate capable of simultaneously processing a large number of samples may be included.
  • Examples (1-1) to (1-7) and (2-1) to (2-7) and Comparative Examples (1-1), (1-2) and (2-1), (2 -2) carried out the sandwich immunoassay method.
  • Examples (1-8) to (1-14) and (2-8) to (2-14) and Comparative Examples (1-3) and (1-4 ), (2-3), and (2-4) were subjected to competitive immunoassay.
  • Preparation Example (1-1) (Preparation of conjugate of secondary antibody and quenching dye) BHQ-2, BHQ-3 (manufactured by Biosearch Technologies Japan BTJ Co., Ltd./manufactured by Nippon Bioservice Co., Ltd.) or DABCYL (manufactured by Integrated DNA Technologies) are mixed with anti- ⁇ -fetoprotein [AFP] monoclonal antibody (1D5; 2. 5 mg / mL, immobilized on Japan Medical Clinical Laboratory Laboratories).
  • BHQ-2, BHQ-3 manufactured by Biosearch Technologies Japan BTJ Co., Ltd./manufactured by Nippon Bioservice Co., Ltd.
  • DABCYL manufactured by Integrated DNA Technologies
  • Example (1-1) An excess amount of AFP was mixed and complexed with the obtained conjugate of the secondary antibody and the quenching dye, and then purified using centrifugation and chromatography.
  • the assay was performed using SPFS in a region with a small amount of AFP (antigen) (pmol / L to fmol / L).
  • a spacer layer made of silicon dioxide [SiO 2 ] as a dielectric was formed by sputtering on one side of the gold thin film that was not in contact with the chromium thin film.
  • the spacer layer had a thickness of 15 nm.
  • aqueous solution containing 5% by weight of 3-aminopropyltriethoxysilane was applied onto the fluorescent dye layer of the substrate thus obtained with a spin coater, allowed to dry naturally at room temperature for 2 hours, and then at 50 ° C. for 10 minutes. Heated.
  • the surface of the fluorescent dye layer treated with the silane coupling agent is provided with a spacer made of polydimethylsiloxane [PDMS] having a hole of 2 mm ⁇ 10 mm, an outer shape of 20 mm ⁇ 20 mm, and a thickness of 0.5 mm.
  • the substrate was placed in the flow path so that is inside the flow path.
  • a polymethyl methacrylate plate having a thickness of 4 mm and the same outer shape as that of the PDMS spacer was put on the substrate so as to cover the substrate from the outside of the flow channel, and the flow channel and the polymethyl methacrylate plate were fixed with screws.
  • Ultrapure water was circulated for 10 minutes and then PBS was circulated for 30 minutes by a peristaltic pump at 30 ° C. and a flow rate of 500 ⁇ L / min.
  • the total volume of liquid delivery is 15 mL.
  • a semiconductor laser [LD] is used as a light source, a laser beam with a wavelength of 633 nm is irradiated, a photon amount is adjusted using a neutral density filter as an optical filter, and Sigma Kogyo Co., Ltd.
  • the surface plasmon measurement was started by irradiating the plasmon excitation sensor before immobilization of the ligand fixed to the flow path through the 60-degree prism manufactured.
  • the resonance angle shift was measured with surface plasmons to confirm the immobilization of the ligand.
  • the immobilization amount was 3 ng / mm 2 .
  • non-specific adsorption prevention treatment was performed by circulating and feeding in PBS buffered saline containing 1% by weight of bovine serum albumin [BSA] for 30 minutes.
  • Step (a1) The solution was replaced with PBS, 5 mL of PBS containing 10 ng / mL of AFP was added and circulated for 30 minutes.
  • Washing step Washing was performed by circulating 10 minutes using PBS containing 0.05% by weight of Tween 20 as a solution.
  • the plasmon excitation sensor fixed to the flow path using an LD is irradiated, and the cut filter manufactured by Nippon Vacuum Optics Co., Ltd. is 10 times as a condenser lens.
  • an objective lens manufactured by Nikon Co., Ltd.
  • fluorescence by SPFS was detected through a CCD image sensor (manufactured by Texas Instruments Japan Ltd.) to obtain a “blank fluorescence signal”.
  • Step (b1) 5 mL of PBS containing 1,000 ng / mL of the conjugate of the secondary antibody obtained in Preparation Example (1-1) and a quenching dye was added and circulated for 30 minutes. Washing step: Washing was performed by circulating PBS containing 0.05% by weight of Tween 20 for 20 minutes.
  • the other flow path not modified on the gold substrate was separately installed in the SPFS, and the resonance angle was reset based on the surface plasmon measurement while flowing ultrapure water, and the SPFS was measured.
  • the signal was defined as “initial noise”.
  • the assay S / N ratio was evaluated.
  • the assay S / N ratio indicates that the reliability of the assay signal is high when the absolute value of the numerical value of the fluorescent signal that changes with the amount of conjugate proportional to the amount of antigen is large and sufficiently large relative to the initial noise. means.
  • Example (1-2) A plasmon excitation sensor of the present invention was produced and assayed in the same manner as in Example (1-1) except that the fluorescent dye was changed to Alexa Fluor (registered trademark) 647 in Example (1-1). . Table 4 shows the obtained results.
  • Example (1-3) Manufacture of plasmon excitation sensor (I)
  • a glass transparent flat substrate having a refractive index [n d ] of 1.52 and a thickness of 1 mm and an outer shape of 20 mm ⁇ 20 mm (“BK7” manufactured by Shot Japan Co., Ltd.) is plasma-cleaned, and a chromium thin film is formed on one side of the substrate.
  • a chromium thin film was formed on the surface by sputtering.
  • the chromium thin film had a thickness of 1 nm
  • the gold thin film had a thickness of 50 nm.
  • a spacer layer made of TiO 2 as a dielectric was formed by sputtering on one side of the gold thin film that was not in contact with the chromium thin film.
  • the spacer layer had a thickness of 15 nm.
  • aqueous solution containing 5% by weight of 3-aminopropyltriethoxysilane was applied to one side of the spacer layer not in contact with the gold thin film with a spin coater, allowed to dry naturally at room temperature for 2 hours, and then at 50 ° C. for 10 minutes. Heated.
  • Example (1-4) In Example (1-1), the same as Example (1-1) except that the metal species was silver, the thickness of the metal thin film was 45 nm, the fluorescent dye was TRITC, and the wavelength of the laser beam was 532 nm. Thus, a plasmon excitation sensor of the present invention was prepared and assay method (X) was performed. Table 4 shows the obtained results.
  • Example (1-5) the plasmon excitation sensor (I) of the present invention was produced in the same manner as in Example (1-4) except that the metal species was aluminum and the thickness of the metal thin film was 15 nm. Assay method (X) was performed. Table 4 shows the obtained results.
  • Example (1-6) In Example (1-5), the plasmon excitation sensor (I) of the present invention was prepared in the same manner as in Example (1-5) except that the thickness of the metal thin film was changed to 20 nm. Carried out. Table 4 shows the obtained results.
  • Example (1-7) In Example (1-6), except that the fluorescent dye was changed to Cy3, the plasmon excitation sensor (I) of the present invention was produced in the same manner as in Example (1-6), and assay method (X) was performed. . Table 4 shows the obtained results.
  • the obtained substrate was immersed in an ethanol solution containing 1 mM of 10-carboxy-1-decanethiol for 24 hours or more to form SAM (Self Assembled Monolayer) on one side of the gold thin film.
  • SAM Self Assembled Monolayer
  • a polydimethylsiloxane [PDMS] sheet having a flow path height of 0.5 mm was provided on the surface of the SAM, and a polymethyl methacrylate top plate was further disposed.
  • Ultrapure water was fed as a liquid for 10 minutes, and then PBS was circulated for 20 minutes with a peristaltic pump at room temperature and a flow rate of 500 ⁇ L / min to equilibrate the surface.
  • Washing was carried out by circulating TBS containing 0.05% by weight of Tween 20 for 10 minutes. 2.5 mL of Alexa Fluor (registered trademark) 647-labeled secondary antibody (PBS solution prepared to be 1,000 ng / mL) was added and circulated for 30 minutes.
  • Alexa Fluor registered trademark 647-labeled secondary antibody
  • Comparative Example (1-2) In Comparative Example (1-1), a plasmon excitation sensor was prepared in the same manner as Comparative Example (1-1) except that the metal species was changed to aluminum and the thickness of the metal thin film was changed to 20 nm. The assay method was carried out in the same manner as in Comparative Example (1-1) except that it was changed to. Table 4 shows the obtained results.
  • the assay S / N ratio obtains the measured fluorescence amount changed with respect to the original fluorescence amount, and shows the reliable dynamic range of the numerical value in the measurement, and further divides by the noise level of the base substrate.
  • the reliability limit including the noise level can be obtained. That is, the higher the assay S / N ratio, the more accurate numerical value is provided for the measured antigen amount.
  • Preparation Example (1-3) (Preparation of conjugate of secondary antibody and fluorescent dye complexed with competitive antigen)
  • a fluorescent dye Alexa Fluor (registered trademark) 647 or Cy3 was used in the same manner as in Preparation Example (1-2).
  • the conjugate of secondary antibody and Alexa Fluor (registered trademark) 647 ”and“ conjugate of secondary antibody and Cy3 complexed with competitive antigen ” were prepared.
  • Example (1-8) In the implementation of the assay method (X) of Example (1-1), instead of the “conjugate of secondary antibody and quenching dye” obtained in Preparation Example (1-1), Preparation Example (1-2 The competitive immunoassay was carried out in the same manner as in Example (1-1) except that the “conjugate of secondary antibody and quenching dye complexed with competitive antigen” obtained in (1) was used. The results obtained are shown in Table 5.
  • Example (1-9) In the implementation of the assay method (X) of Example (1-2), instead of the “conjugate of secondary antibody and quenching dye” obtained in Preparation Example (1-1), Preparation Example (1-2 The competitive immunoassay was carried out in the same manner as in Example (1-2) except that the “conjugate of secondary antibody and quenching dye complexed with competitive antigen” obtained in (1) was used. The results obtained are shown in Table 5.
  • Example (1-10) In carrying out the assay method (X) of Example (1-3), instead of the “conjugate of secondary antibody and quenching dye” obtained in Preparation Example (1-1), Preparation Example (1-2 The competitive immunoassay was carried out in the same manner as in Example (1-3) except that the “conjugate of secondary antibody and quenching dye complexed with competitive antigen” obtained in (1) was used. The results obtained are shown in Table 5.
  • Example (1-11) In carrying out the assay method (X) of Example (1-4), instead of the “conjugate of secondary antibody and quenching dye” obtained in Preparation Example (1-1), Preparation Example (1-2 The competitive immunoassay was carried out in the same manner as in Example (1-4) except that the “conjugate of secondary antibody and quenching dye complexed with competitive antigen” obtained in (1) was used. The results obtained are shown in Table 5.
  • Example (1-12) In the implementation of the assay method (X) of Example (1-5), instead of the “conjugate of secondary antibody and quenching dye” obtained in Preparation Example (1-1), Preparation Example (1-2 The competitive immunoassay was carried out in the same manner as in Example (1-5) except that the “conjugate of secondary antibody and quenching dye complexed with competitive antigen” obtained in (1) was used. The results obtained are shown in Table 5.
  • Example (1-13) In the implementation of the assay method (X) of Example (1-6), instead of the “conjugate of secondary antibody and quenching dye” obtained in Preparation Example (1-1), Preparation Example (1-2 The competitive immunoassay was carried out in the same manner as in Example (1-6) except that the “conjugate of secondary antibody and quenching dye complexed with competitive antigen” obtained in (1) was used. The results obtained are shown in Table 5.
  • Example (1-14) In carrying out the assay method (X) of Example (1-7), instead of the “conjugate of secondary antibody and quenching dye” obtained in Preparation Example (1-1), Preparation Example (1-2 The competitive immunoassay was carried out in the same manner as in Example (1-7) except that the “conjugate of secondary antibody and quenching dye complexed with competitive antigen” obtained in (1) was used. The results obtained are shown in Table 5.
  • the fluorescence signal value of the present invention is sufficiently high, indicating that the abundance of the antigen can be measured with sufficient accuracy. Moreover, the above-mentioned assay S / N ratio also showed a high value, and it was confirmed that the reliability was high.
  • the competitive assay of the comparative example since it is a competitive system, the fluorescence signal value shows a high value and there is a sufficient amount of fluorescence with respect to the antigen abundance, but the assay S / N ratio is a measured value that is lower than that of the present invention. It was suggested that the reliability accuracy of was low. Presuming from this result, it is shown that the quenching dye-labeled secondary antibody measurement system of the present invention has a wider dynamic range on the fluorescence amount change than the assay measurement system of the fluorescent dye alone.
  • Preparation Example (2-1) (Preparation of secondary antibody with immobilized quenching dye) In the same manner as in Preparation Example (1-1), a conjugate of anti-AFP monoclonal antibody and BHQ-2, BHQ-3 or DABCYL was prepared.
  • Preparation Example (2-2) (Preparation of secondary antibody with immobilized quenching dye and complexed with competitive antigen) In the same manner as in Preparation Example (1-2), a complex was prepared by previously binding AFP to the conjugate obtained in Preparation Example (2-1).
  • Example (2-1) The assay is performed using SPFS in a region (pmol / L to fmol / L) where the amount of AFP (antigen) is very small.
  • a glass transparent flat substrate having a refractive index [n d ] of 1.52 and a thickness of 1 mm and an outer shape of 20 mm ⁇ 20 mm (“BK7” manufactured by Shot Japan Co., Ltd.) is plasma-cleaned, and a chromium thin film is formed on one side of the substrate.
  • a chromium thin film was formed on one side of the substrate.
  • the chromium thin film had a thickness of 2 nm
  • the gold thin film had a thickness of 48 nm.
  • a spacer layer made of silicon dioxide [SiO 2 ] as a dielectric was formed by sputtering on one side of the gold thin film that was not in contact with the chromium thin film.
  • the thickness of the spacer layer was 10 nm.
  • the substrate thus obtained was immersed in a 50% ethanol aqueous solution containing 5% by weight of 7-carboxy-heptyltriethoxysilane, reacted at 30 ° C. for 30 minutes, and then dried at 100 ° C. for 30 minutes. .
  • a SAM made of a silane coupling agent was formed on the spacer layer.
  • a spacer made of polydimethylsiloxane [PDMS] having an outer shape of 20 mm ⁇ 20 mm and a thickness of 0.5 mm having a flow path of 2 mm ⁇ 10 mm on the surface of the spacer layer treated with a silane coupling agent.
  • substrate is arrange
  • a 4 mm thick polymethyl methacrylate plate having the same outer shape with two through-holes for taking in and out of the liquid is put on the substrate so as to cover the substrate from the outside of the flow channel, and the flow channel and the polymethyl methacrylate plate are bonded with screws. Fixed.
  • Ultrapure water was circulated for 10 minutes and then PBS was circulated for 30 minutes by a peristaltic pump at 30 ° C. and a flow rate of 500 ⁇ L / min.
  • the total volume of liquid delivery is 15 mL.
  • an LD is used as a light source, a laser beam having a wavelength of 633 nm is irradiated, a photon amount is adjusted using an attenuating filter (neutral density filter) as an optical filter, and 60 degrees made by Sigma Kogyo Co., Ltd.
  • the surface plasmon measurement was started by irradiating the plasmon excitation sensor before immobilization of the ligand fixed to the flow path through the prism.
  • Step (a2) The solution was replaced with PBS, 5 mL of PBS containing 20 ng / mL of AFP was added and circulated for 30 minutes.
  • Washing step Washing was performed by circulating 10 minutes using PBS containing 0.05% by weight of Tween 20 as a solution. After measuring the surface plasmon and fixing it to the optimum angle, the plasmon excitation sensor (II) fixed to the flow path is irradiated with an LD laser and used as a cut filter (manufactured by Nippon Vacuum Optical Co., Ltd.). The fluorescence by SPFS was detected through a CCD image sensor (manufactured by Texas Instruments) using a 20 ⁇ objective lens (manufactured by Nikon Corporation) to obtain a blank fluorescence.
  • CCD image sensor manufactured by Texas Instruments
  • 20 ⁇ objective lens manufactured by Nikon Corporation
  • Step (b1) 5 mL of PBS containing 1,000 ng / mL of the secondary antibody obtained in Preparation Example (2-1) was added and circulated for 30 minutes. Washing step: Washing was performed by circulating PBS containing 0.05% by weight of Tween 20 for 20 minutes.
  • the other flow path not modified on the gold substrate was separately installed on the SPFS, and the resonance angle was reset based on the surface plasmon measurement while flowing ultrapure water, and the SPFS was measured.
  • the signal was defined as “initial noise”.
  • Example (2-2) The plasmon excitation sensor (II) of the present invention was produced in the same manner as in Example (2-1) except that the fluorescent dye was changed to Alexa Fluor (registered trademark) 647 in Example (2-1), and assay method (Y) was carried out. The obtained results are shown in Table 6.
  • Example (2-3) The plasmon excitation sensor (II) of the present invention was produced in the same manner as in Example (2-1) except that the fluorescent dye was changed to Alexa Fluor (registered trademark) 633 in Example (2-1), and assay method (Y) was carried out. The obtained results are shown in Table 6.
  • Example (2-1) is the same as Example (2-1) except that the metal species is silver, the thickness of the metal thin film is 45 nm, the fluorescent dye is TRITC, and the wavelength of the laser beam is 532 nm.
  • the plasmon excitation sensor (II) of the present invention was manufactured, and the assay method (Y) was performed. The obtained results are shown in Table 6.
  • Example (2-5) the plasmon excitation sensor (II) of the present invention was produced in the same manner as in Example (2-4) except that the metal species was aluminum and the thickness of the metal thin film was 15 nm. Assay method (Y) was performed. The obtained results are shown in Table 6.
  • Example (2-6) In Example (2-5), the plasmon excitation sensor (II) of the present invention was produced in the same manner as in Example (2-5) except that the thickness of the metal thin film was changed to 20 nm. Carried out. The obtained results are shown in Table 6.
  • Example (2-7) A plasmon excitation sensor (II) of the present invention was produced in the same manner as in Example (2-6) except that the fluorescent dye was changed to Cy3 (registered trademark) in Example (2-6), and assay method (Y ). The obtained results are shown in Table 6.
  • Such a substrate was immersed in an ethanol solution containing 1 mM of 10-carboxy-1-decanethiol for 24 hours or more to form a SAM on one side of the gold thin film.
  • the substrate was removed from the solution, washed with ethanol and isopropanol, and then dried with an air gun.
  • a similar plasmon excitation sensor was prepared by providing a polydimethylsiloxane [PDMS] sheet having a flow path height of 0.5 mm on the surface of the SAM and further placing a polymethylmethacrylate relay top plate. Ultrapure water was fed as a liquid for 10 minutes, and then PBS was circulated for 20 minutes with a peristaltic pump at room temperature and a flow rate of 500 ⁇ L / min to equilibrate the surface.
  • PDMS polydimethylsiloxane
  • Washing was carried out by circulating TBS containing 0.05% by weight of Tween 20 for 10 minutes. 2.5 mL of a secondary antibody (PBS solution prepared to be 1,000 ng / mL) labeled with Alexa Fluor (registered trademark) 647 was added and circulated for 30 minutes.
  • a secondary antibody PBS solution prepared to be 1,000 ng / mL labeled with Alexa Fluor (registered trademark) 647 was added and circulated for 30 minutes.
  • Comparative Example (2-1) In Comparative Example (2-1), the assay method was the same as Comparative Example (2-1) except that the metal species was aluminum, the thickness of the metal thin film was 20 nm, and the fluorescent dye was changed to Cy3 (registered trademark). Carried out. The obtained results are shown in Table 6.
  • the assay S / N ratio obtains the measured fluorescence amount changed with respect to the original fluorescence amount, and shows the reliable dynamic range of the numerical value in the measurement, and further divides by the noise level of the base substrate.
  • the reliability limit including the noise level can be obtained. That is, the higher the assay S / N ratio, the more accurate numerical value is provided for the measured antigen amount.
  • Example (2-8) Using the plasmon excitation sensor (II) prepared in Example (2-1), a conjugate obtained by complexing the secondary antibody labeled with the quenching dye obtained in Preparation Example (2-2) with AFP A competitive immunoassay was performed in the same manner as in Example (2-1) except that it was used. The results obtained are shown in Table 7.
  • Example (2-9) Using the plasmon excitation sensor (II) prepared in Example (2-2), a conjugate obtained by complexing the quencher-labeled secondary antibody obtained in Preparation Example (2-2) with AFP A competitive immunoassay was performed in the same manner as in Example (2-2) except that it was used. The results obtained are shown in Table 7.
  • Example (2-10) Using the plasmon excitation sensor (II) prepared in Example (2-3), a conjugate obtained by complexing the secondary antibody labeled with the quenching dye obtained in Preparation Example (2-2) with AFP A competitive immunoassay was carried out in the same manner as in Example (2-3) except that it was used. The results obtained are shown in Table 7.
  • Example (2-11) Using the plasmon excitation sensor (II) prepared in Example (2-4), a conjugate obtained by complexing the secondary antibody labeled with the quenching dye obtained in Preparation Example (2-2) with AFP A competitive immunoassay was carried out in the same manner as in Example (2-4) except that it was used. The results obtained are shown in Table 7.
  • Example (2-12) Using the plasmon excitation sensor (II) produced in Example (2-5), a conjugate obtained by complexing the secondary antibody labeled with the quenching dye obtained in Preparation Example (2-2) with AFP A competitive immunoassay was carried out in the same manner as in Example (2-5) except that it was used. The results obtained are shown in Table 7.
  • Example (2-13) Using the plasmon excitation sensor (II) produced in Example (2-6), the conjugate complexed with the secondary antibody labeled with the quenching dye obtained in Production Example (2-2) was used. A competitive immunoassay was performed in the same manner as in Example (2-6) except for the above. The results obtained are shown in Table 7.
  • Example (2-14) Using the plasmon excitation sensor (II) produced in Example (2-7), a conjugate obtained by complexing the secondary antibody labeled with the quenching dye obtained in Production Example (2-2) with AFP A competitive immunoassay was carried out in the same manner as in Example (2-7) except that it was used. The results obtained are shown in Table 7.
  • Comparative Example (2-3) Comparative Example (2-1) except that the plasmon excitation sensor produced in Comparative Example (2-1) was used and a conjugate of Alexa Fluor (registered trademark) 647-labeled secondary antibody complexed with AFP was used.
  • the competitive immunoassay was carried out in the same manner as described above. The results obtained are shown in Table 7.
  • the fluorescence signal values in the examples are sufficiently high, indicating that the abundance of the antigen can be measured with sufficient accuracy.
  • the assay S / N ratio also showed a high value, and it was confirmed that the reliability was high.
  • the competitive assay of the comparative example since it is a competitive system, the fluorescence signal value shows a high value and there is a sufficient amount of fluorescence with respect to the antigen abundance, but the assay S / N ratio is lower than the example and the measured value It was suggested that the reliability accuracy of was low. Assuming from this result, it is shown that the quencher-labeled secondary antibody measurement system of the example has a wider dynamic range on the fluorescence amount change than the assay measurement system of the fluorescent dye alone.
  • the unreacted antibody and the unreacted enzyme were purified using a molecular weight cut filter (manufactured by Nippon Millipore) to obtain an Alexa Fluor (registered trademark) 647-labeled anti-AFP monoclonal antibody solution.
  • the obtained antibody solution was stored at 4 ° C. after protein quantification.
  • Example (3-1) Manufacture of plasmon excitation sensor (I)
  • a glass transparent flat substrate having a refractive index [n d ] of 1.52, a thickness of 1 mm and an outer shape of 20 mm ⁇ 20 mm (“BK7” manufactured by Shot Japan Co., Ltd.) is plasma-cleaned, and a chromium thin film is formed on one side of the substrate.
  • a chromium thin film was formed on the surface by sputtering.
  • the thickness of the chromium thin film was 1 nm, and the thickness of the silver thin film was 45 nm.
  • a spacer layer made of silicon dioxide [SiO 2 ] as a dielectric was formed by sputtering on one side of the silver thin film not in contact with the chromium thin film.
  • the spacer layer had a thickness of 15 nm.
  • terbium [Tb] chelate 5 parts by weight of terbium [Tb] chelate as a fluorescent dye and 5% by weight of “BL-S” (polyvinyl butyral) manufactured by Sekisui Chemical Co., Ltd. as a fluorescent dye with respect to one side of the spacer layer not in contact with the silver thin film
  • BL-S polyvinyl butyral
  • a composition containing 25 parts by weight of methyl ethyl ketone as a solvent was applied by a spin coating method and dried at 50 ° C. for 10 minutes in the dark to volatilize the solvent.
  • the thickness of the obtained fluorescent dye layer was 10 nm.
  • aqueous solution containing 5% by weight of 3-aminopropyltriethoxysilane was applied onto the fluorescent dye layer of the substrate thus obtained with a spin coater, allowed to dry naturally at room temperature for 2 hours, and then at 50 ° C. for 10 minutes. Heated.
  • the surface of the fluorescent dye layer treated with the silane coupling agent is provided with a spacer made of polydimethylsiloxane [PDMS] having a hole of 2 mm ⁇ 10 mm, an outer shape of 20 mm ⁇ 20 mm, and a thickness of 0.5 mm.
  • the substrate was placed in the flow path so that is inside the flow path.
  • a polymethyl methacrylate plate having a thickness of 4 mm and the same outer shape as that of the PDMS spacer was put on the substrate so as to cover the substrate from the outside of the flow channel, and the flow channel and the polymethyl methacrylate plate were fixed with screws.
  • Ultrapure water was circulated for 10 minutes and then PBS was circulated for 30 minutes by a peristaltic pump at 30 ° C. and a flow rate of 500 ⁇ L / min.
  • the total volume of liquid delivery is 15 mL.
  • a laser beam having a wavelength of 340 nm is irradiated using an LD laser as a light source, and a photon amount is adjusted using a neutral density filter as an optical filter.
  • the surface plasmon measurement was started by irradiating the plasmon excitation sensor before immobilization of the ligand fixed to the flow path through the degree prism.
  • the resonance angle shift was measured with surface plasmons to confirm the immobilization of the ligand.
  • the immobilization amount was 3 ng / mm 2 .
  • non-specific adsorption prevention treatment was performed by circulating and feeding in PBS buffered saline containing 1% by weight of bovine serum albumin [BSA] for 30 minutes.
  • Step (a1) The solution was replaced with PBS, 0.5 mL of PBS containing 1 ng / mL of AFP was added and circulated for 25 minutes.
  • Washing step Washing was performed by circulating TBS containing 0.05% by weight of Tween 20 for 10 minutes.
  • an LD laser as a light source
  • an amount of photons is adjusted by an optical filter: (Sigma Kogyo Co., Ltd.)
  • Detection was performed by a CCD image sensor (manufactured by Texas Instruments Co., Ltd.) using a double objective lens (manufactured by Nikon Corporation).
  • Step (b2) 5 mL of PBS containing 1,000 ng / mL of the ⁇ -galactosidase-modified secondary antibody obtained in Preparation Example (3-1) was added and circulated for 20 minutes. Washing step: Washing was performed by circulating TBS containing 0.05% by weight of Tween 20 for 20 minutes.
  • Step (e): The amount of assay signal change in the plasmon excitation sensor of the present invention was evaluated by the following equation. Signal change
  • the obtained results are shown in Table 8 and FIG.
  • Example (3-2) Manufacture of plasmon excitation sensor (I)
  • 2-Me-4-OMe TG was used instead of the terbium chelate as a fluorescent dye, and laser light having a wavelength of 490 nm was used.
  • Example (3-1) The same procedure as in Example (3-1) except that glucose oxidase-modified secondary antibody obtained in Preparation Example (3-2), glucose and oxygen as the enzyme quenching substrate solution, and laser light having a wavelength of 490 nm were used. Went in the way.
  • Examplementation of assay method The same procedure as in Example (3-1) was performed except that the dark quencher-modified secondary antibody obtained in Preparation Example (3-3) was used and step (c) was not performed.
  • the substrate thus obtained is immersed in an ethanol solution containing 1 mM of 10-carboxy-1-decanethiol for 24 hours or more to form a SAM (Self Assembled Monolayer) on one surface of a gold thin film. did.
  • the substrate was removed from the solution, washed with ethanol and isopropanol, and then dried with an air gun.
  • a polydimethylsiloxane [PDMS] sheet having a flow path height of 0.5 mm is provided on the surface of the SAM, and the substrate is disposed so that the SAM surface is inside the flow path (however, the silicon rubber spacer is used for liquid feeding).
  • the pressure-sensitive adhesive sheet was pressed from the outside of the flow path, and the flow path sheet and the plasmon excitation sensor were fixed with screws.
  • the obtained plasmon excitation sensor was fixed to the flow path, and ultrapure water was supplied as a liquid for 10 minutes, and then PBS was circulated for 20 minutes with a peristaltic pump at room temperature and a flow rate of 500 ⁇ L / min to equilibrate the surface.
  • the fluorescent dye layer is formed on the substrate on the plasmon excitation sensor of the example, an extremely high fluorescence signal is obtained in the blank state, which is compared with the conventional fluorescence labeled SPFS measurement of the comparative example (3-2). It was found that an extremely sensitive measurement with an order of magnitude is possible. Further, it was found that by providing a quencher enzyme amplification mechanism, a higher signal change amount can be achieved as compared to the case where the quencher is directly modified to the secondary antibody of Comparative Example (3-1).
  • the plasmon excitation sensor of the present invention has high sensitivity and high accuracy, it can be directly applied to, for example, a selective biosensor or bioprobe using a molecular recognition reaction of a biomolecule such as carcinoembryonic antigen or tumor marker.
  • the assay method of the present invention using the plasmon excitation sensor of the present invention is a method that can be detected with high sensitivity and high accuracy, for example, even a very small amount of tumor marker contained in blood is detected. From this result, it is also possible to predict with high accuracy the presence of a preclinical non-invasive cancer (carcinoma in situ) that cannot be detected by palpation or the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

A plasmon excitation sensor which has high sensitivity and high precision and has excellent specificity, which is essential for immunoassay; and a method of assay, an assay device, and an assay kit each using or including the sensor. The plasmon excitation sensor is characterized by comprising a transparent flat substrate, a thin metal film formed on one surface of the substrate, and a spacer layer constituted of a dielectric and formed on the surface of the thin metal film which is not in contact with the substrate.  The sensor is further characterized in that (V) a ligand has been fixed to a fluorescent dye layer formed on the surface of the spacer layer which is not in contact with the thin metal film or that (W) a ligand labeled with a fluorescent dye has been fixed to the surface of the spacer layer which is not in contact with the thin metal film.

Description

プラズモン励起センサおよびそれを用いたアッセイ法Plasmon excitation sensor and assay method using the same
 本発明は、プラズモン励起センサおよびそれを用いたアッセイ法,該アッセイ用装置ならびに該アッセイ用のキットに関する。さらに詳しくは、本発明は、金属薄膜の上に蛍光色素とリガンドとが固定化されているプラズモン励起センサ、および表面プラズモン励起増強蛍光分光法〔SPFS;Surface Plasmon-field enhanced Fluorescence Spectroscopy〕の原理に基づき該センサを用いたアッセイ法,該アッセイ用装置ならびに該アッセイ用のキットに関する。 The present invention relates to a plasmon excitation sensor and an assay method using the same, an apparatus for the assay, and a kit for the assay. More specifically, the present invention is based on the principles of a plasmon excitation sensor in which a fluorescent dye and a ligand are immobilized on a metal thin film, and surface plasmon excitation enhanced fluorescence spectroscopy [SPFS: Surface Plasmon-field enhanced Fluorescence Spectroscopy]. The present invention relates to an assay method using the sensor, the assay device, and the assay kit.
 表面プラズモン励起増強蛍光分析法〔SPFS〕とは、照射したレーザ光が金薄膜表面で全反射減衰〔ATR〕する条件において、金属薄膜表面に粗密波(表面プラズモン)を発生させることによって、照射したレーザ光が有するフォトン量を数十倍~数百倍に増やし(表面プラズモンの電場増強効果)、これにより金薄膜近傍の蛍光色素を効率良く励起させることによって、極微量および/または極低濃度のアナライトを検出することができる方法である。 The surface plasmon excitation enhanced fluorescence analysis method [SPFS] is performed by generating a dense wave (surface plasmon) on the metal thin film surface under the condition that the irradiated laser light attenuates total reflection [ATR] on the gold thin film surface. The amount of photons in the laser light is increased to several tens to several hundreds times (electric field enhancement effect of surface plasmon), and by this, the fluorescent dye in the vicinity of the gold thin film is efficiently excited. It is a method that can detect an analyte.
 このようなSPFSの原理に基づいたバイオセンサまたはバイオチップに関わる例として、特許文献1には、金属基板表面にカルボキシメチルデキストランを用いたリガンド(1次抗体)固定化膜を配し、表面プラズモンにより増強された電場で抗原に関係付けられた蛍光色素を検出する方法が示されている。 As an example related to a biosensor or biochip based on the principle of SPFS, Patent Document 1 discloses a surface plasmon in which a ligand (primary antibody) immobilization film using carboxymethyldextran is arranged on the surface of a metal substrate. A method for detecting a fluorescent dye associated with an antigen with an enhanced electric field is shown.
 しかしながら、極微量アナライト(標的抗原)の検出においては、アッセイで抗原に関係付けられるコンジュゲート中の蛍光色素量も極微量であり、このことが蛍光発生量のボトルネックとなるため、プラズモン電場増強を用いても蛍光シグナル量が上がらず、アッセイ感度の向上は難しい。 However, in the detection of trace analytes (target antigens), the amount of fluorescent dye in the conjugate associated with the antigen in the assay is also extremely small, which becomes a bottleneck in the amount of fluorescence generated, and therefore the plasmon electric field Even if enhancement is used, the amount of fluorescence signal does not increase, and it is difficult to improve assay sensitivity.
 一方、表面プラズモン励起増強において蛍光強度を効果的に増強する研究が行われており、特許文献2には、電場増強効果が高い金ナノ粒子(直径:2~30nm)を含むハイブリッド・プローブ粒子が開示されており、該ハイブリッド・プローブ粒子は、該金ナノ粒子の表面の一方において1~100の抗体タイプのタンパク質が金-硫黄結合により結合され、そして他方において少なくとも10の蛍光有機色素が金-硫黄結合により結合している。 On the other hand, studies have been conducted to effectively enhance fluorescence intensity in enhancement of surface plasmon excitation. Patent Document 2 discloses hybrid probe particles including gold nanoparticles (diameter: 2 to 30 nm) having a high electric field enhancement effect. The hybrid probe particles are disclosed wherein 1 to 100 antibody-type proteins are bound by gold-sulfur bonds on one of the gold nanoparticle surfaces, and on the other hand at least 10 fluorescent organic dyes are gold- Bonded by sulfur bond.
 また、特許文献3には、100~800nmの断面粒径と30~50nmの厚さを有する平板状銀粒子をアイランド膜として基板上に密に配列した表面上に、単層または多層に蛍光物質を担持させている蛍光素子が記載され、銀粒子表面と蛍光物質との距離を調節するために、金属粒子表面にスペーサを備えている。 Further, in Patent Document 3, a fluorescent material is formed in a single layer or multiple layers on a surface in which flat silver particles having a cross-sectional particle diameter of 100 to 800 nm and a thickness of 30 to 50 nm are densely arranged as an island film on a substrate. In order to adjust the distance between the silver particle surface and the fluorescent material, a spacer is provided on the metal particle surface.
 特許文献2および3に記載の発明は、蛍光色素層を金属近傍に配置することによりフォトンの利用効率を向上させて、蛍光発生の効率も改良される可能性があるが、蛍光色素の絶対量が少ない場合は対応できない。また、蛍光色素はコンジュゲートの形態に発展することは難しく、検出すべきアナライト量と関係付けられていないため、それ自体に特異性はなく、イムノアッセイに利用することもできない。 In the inventions described in Patent Documents 2 and 3, there is a possibility that the use efficiency of photons is improved by arranging the fluorescent dye layer in the vicinity of the metal, and the efficiency of fluorescence generation may be improved. If there are few, it cannot respond. Also, fluorescent dyes are difficult to evolve into conjugate forms and are not specific to themselves because they are not related to the amount of analyte to be detected and cannot be used for immunoassays.
 さらに、特許文献4では、センサ基板上でアポ酵素、ホロ酵素による反応と免疫反応とを複雑に組み合わせ、シグナル増幅および非特異反応低減を検討している。
 しかしながら、このような測定系を成立させるためには、極めて精密な分子配向技術が前提となっていることから、免疫反応よりもアポ/ホロ酵素反応が優先的または支配的な場合、測定系そのものが成立しない危険性が高い。
Further, Patent Document 4 examines signal amplification and non-specific reaction reduction by complexly combining an apoenzyme / holoenzyme reaction and an immune reaction on a sensor substrate.
However, in order to establish such a measurement system, extremely precise molecular orientation technology is premised. Therefore, when the apo / holoenzyme reaction is preferential or dominant over the immune reaction, the measurement system itself There is a high risk that
特許第3294605号Japanese Patent No. 3294605 特表2007-512522号公報Special table 2007-512522 gazette 特開2007-139540号公報JP 2007-139540 A 特開2008-139245号公報JP 2008-139245 A
 本発明は、高感度かつ高精度であり、イムノアッセイに必要不可欠である特異性に優れたプラズモン励起センサおよびそれを用いたアッセイ法,アッセイ用装置ならびにアッセイ用のキットを提供することを目的とする。 An object of the present invention is to provide a high-sensitivity and high-precision plasmon excitation sensor excellent in specificity that is indispensable for an immunoassay, an assay method using the same, an assay device, and an assay kit. .
 本発明者らは、上記の問題および従来のサンドイッチイムノアッセイ法(図1)が抱える問題、すなわち、極微量のアナライトを検出する場合、通常のサンドイッチイムノアッセイ法を行っても、コンジュゲート自体も理論的に極微量なため、しばしば増強電場に見合う蛍光プローブ量が存在せず、感度的に満足するものとはならないという問題を解決すべく鋭意研究した。その結果、従来のサンドイッチイムノアッセイ法(図1)と、表面プラズモン励起増強蛍光分析法とを組み合わせ、さらにセンサとアナライトとの結合の有無により蛍光を消光する機構を設けることによって、すなわち発光と消光との機能を分担することによって、極微量のアナライト(例えば、標的抗原)であってもフォトン量に見合った蛍光発光と特異性とを両立できることを見出し、本発明を完成するに至った。 The inventors of the present invention have problems with the above problems and the conventional sandwich immunoassay method (FIG. 1), that is, when detecting a very small amount of analyte, the conventional sandwich immunoassay method is used, and the conjugate itself is theoretical. In order to solve the problem that the amount of fluorescent probe that often corresponds to the enhanced electric field does not exist and is not satisfactory in terms of sensitivity. As a result, the conventional sandwich immunoassay method (FIG. 1) and the surface plasmon excitation enhanced fluorescence analysis method are combined, and a mechanism for quenching the fluorescence depending on the presence or absence of binding between the sensor and the analyte is provided, that is, light emission and quenching. Thus, the present inventors have found that even a very small amount of analyte (for example, a target antigen) can achieve both fluorescence emission and specificity corresponding to the amount of photons, thereby completing the present invention.
 すなわち、本発明のプラズモン励起センサは、透明平面基板と;該基板の一方の表面に形成された金属薄膜と;該金属薄膜の、該基板とは接していないもう一方の表面に形成された誘電体からなるスペーサ層とを含み、さらに(V)該スペーサ層の、該金属薄膜とは接していないもう一方の表面に形成された蛍光色素層にリガンドが固定化されているか、または(W)該スペーサ層の、該金属薄膜とは接していないもう一方の表面に蛍光色素により標識されたリガンドが固定化されていることを特徴とする。 That is, the plasmon excitation sensor of the present invention includes a transparent flat substrate; a metal thin film formed on one surface of the substrate; and a dielectric formed on the other surface of the metal thin film that is not in contact with the substrate. And (V) a ligand is immobilized on a fluorescent dye layer formed on the other surface of the spacer layer that is not in contact with the metal thin film, or (W) A ligand labeled with a fluorescent dye is immobilized on the other surface of the spacer layer that is not in contact with the metal thin film.
 上記金属薄膜は、金,銀,アルミニウム,銅および白金からなる群から選ばれる少なくとも1種の金属から形成されていることが好ましい。
 上記誘電体は、二酸化ケイ素〔SiO2〕または二酸化チタン〔TiO2〕を含むことが好ましい。
The metal thin film is preferably formed of at least one metal selected from the group consisting of gold, silver, aluminum, copper and platinum.
The dielectric preferably contains silicon dioxide [SiO 2 ] or titanium dioxide [TiO 2 ].
 上記リガンドは、腫瘍マーカーまたはがん胎児性抗原を認識し結合する抗体であってもよい。
 本発明のプラズモン励起センサの第1の態様(以下「プラズモン励起センサ(I)」と呼ぶ。)は、上記(V)の形態をとり、上記金属薄膜は、金または銀から形成されていることが好ましい。
The ligand may be an antibody that recognizes and binds to a tumor marker or carcinoembryonic antigen.
The first aspect of the plasmon excitation sensor of the present invention (hereinafter referred to as “plasmon excitation sensor (I)”) takes the form of (V) above, and the metal thin film is made of gold or silver. Is preferred.
 プラズモン励起センサ(I)において、上記蛍光色素層は、上記スペーサ層の、上記金属薄膜とは接していないもう一方の表面に、蛍光色素とポリマーとを含有する組成物を塗工することによって形成されるか、またはシランカップリング剤を介して蛍光色素を結合させることによって形成されることが好ましい。 In the plasmon excitation sensor (I), the fluorescent dye layer is formed by applying a composition containing a fluorescent dye and a polymer to the other surface of the spacer layer that is not in contact with the metal thin film. Or formed by binding a fluorescent dye via a silane coupling agent.
 本発明のプラズモン励起センサの第2の態様(以下「プラズモン励起センサ(II)」と呼ぶ。)は、上記(W)の形態をとり、上記金属薄膜は、金から形成されていることが好ましい。 The second aspect of the plasmon excitation sensor of the present invention (hereinafter referred to as “plasmon excitation sensor (II)”) takes the form of (W), and the metal thin film is preferably made of gold. .
 プラズモン励起センサ(II)において、上記リガンドは、シランカップリング剤からなる自己組織化単分子膜〔SAM〕を介して上記スペーサ層に固定化されていることが好ましい。 In the plasmon excitation sensor (II), the ligand is preferably immobilized on the spacer layer via a self-assembled monolayer [SAM] made of a silane coupling agent.
 本発明のアッセイ法は、少なくとも、(X)下記工程(a1),(b1),(d)および(e)を含むか、(Y)下記工程(a2),(b1),(d)および(e)を含むか、または(Z)下記工程(a1),(b2),(c),(d)および(e)を含むことを特徴とする;
 工程(a1):本発明のプラズモン励起センサ(I)に、検体を接触させる工程,
 工程(a2):本発明のプラズモン励起センサ(II)に、検体を接触させる工程,
 工程(b1):該工程(a1)または(a2)を経て得られたプラズモン励起センサに、さらに、該プラズモン励起センサに含まれるリガンドとは同じであっても異なっていてもよいリガンドと消光色素とのコンジュゲートを反応させる工程,
 工程(b2):該工程(a1)を経て得られたプラズモン励起センサに、さらに、該プラズモン励起センサに含まれるリガンドとは同じであっても異なっていてもよいリガンドと酵素とのコンジュゲートを反応させる工程,
 工程(c):該工程(b2)を経て得られたプラズモン励起センサに、消光剤基質を反応させ、消光剤が生成される工程,
 工程(d):該工程(b1)または(c)を経て得られたプラズモン励起センサに、上記透明平面基板の、上記金属薄膜を形成していないもう一方の表面から、プリズムを経由してレーザ光を照射し、励起された蛍光色素から発光された蛍光量を測定する工程,および
 工程(e):該工程(d)で得られた測定結果から、検体中に含有されるアナライトの量を算出する工程。
The assay method of the present invention includes at least (X) the following steps (a1), (b1), (d) and (e), or (Y) the following steps (a2), (b1), (d) and Comprising (e) or (Z) comprising the following steps (a1), (b2), (c), (d) and (e);
Step (a1): a step of bringing a specimen into contact with the plasmon excitation sensor (I) of the present invention,
Step (a2): a step of bringing a specimen into contact with the plasmon excitation sensor (II) of the present invention,
Step (b1): the plasmon excitation sensor obtained through the step (a1) or (a2), and a ligand that may be the same as or different from the ligand contained in the plasmon excitation sensor, and a quenching dye Reacting the conjugate with
Step (b2): The plasmon excitation sensor obtained through the step (a1) is further combined with a ligand / enzyme conjugate that may be the same as or different from the ligand contained in the plasmon excitation sensor. Reacting,
Step (c): a step of reacting a quencher substrate with the plasmon excitation sensor obtained through the step (b2) to produce a quencher,
Step (d): The plasmon excitation sensor obtained through the step (b1) or (c) is subjected to laser from the other surface of the transparent flat substrate on which the metal thin film is not formed via a prism. A step of irradiating light and measuring the amount of fluorescence emitted from the excited fluorescent dye, and step (e): the amount of analyte contained in the specimen from the measurement result obtained in step (d) Calculating step.
 上記検体は、血液,血清,血漿,尿,鼻孔液および唾液からなる群から選択される少なくとも1種の体液であってもよい。
 上記アナライトは、腫瘍マーカーまたはがん胎児性抗原であってもよい。
The specimen may be at least one body fluid selected from the group consisting of blood, serum, plasma, urine, nasal fluid and saliva.
The analyte may be a tumor marker or carcinoembryonic antigen.
 本発明のアッセイ法の第1の態様(以下「アッセイ法(X)」と呼ぶ。)および第2の態様(以下「アッセイ法(Y)」と呼ぶ。)は、それぞれ上記(X)または(Y)の態様をとるとき、上記アナライトとは異なるアナライトであって上記アナライトと競合するアナライトが予め結合しているリガンドをさらに用いることが好ましい。 The first aspect of the assay method of the present invention (hereinafter referred to as “assay method (X)”) and the second aspect (hereinafter referred to as “assay method (Y)”) are respectively the above (X) or ( In the case of Y), it is preferable to further use a ligand which is an analyte different from the above-mentioned analyte and to which an analyte competing with the above-mentioned analyte is bound in advance.
 本発明のアッセイ法の第3の態様(以下「アッセイ法(Z)」と呼ぶ。)において、上記酵素は、β-ガラクトシダーゼ,β-グルコシダーゼ,アルカリフォスファターゼまたはグルコースオキシダーゼであることが好ましい。 In the third aspect of the assay method of the present invention (hereinafter referred to as “assay method (Z)”), the enzyme is preferably β-galactosidase, β-glucosidase, alkaline phosphatase or glucose oxidase.
 本発明のアッセイ用装置は、少なくとも、上記工程(b1)または(c)を経て得られたプラズモン励起センサ,レーザ光の光源,光学フィルタ,プリズム,カットフィルタ,集光レンズおよび表面プラズモン励起増強蛍光検出部を含み、本発明のアッセイ法に係る工程(d)に用いられることを特徴とする。 The assay device of the present invention comprises at least the plasmon excitation sensor, laser light source, optical filter, prism, cut filter, condensing lens, and surface plasmon excitation enhanced fluorescence obtained through the step (b1) or (c). It includes a detection unit, and is used in step (d) according to the assay method of the present invention.
 また、本発明のアッセイ用のキットは、アッセイ法が、上記(X)の態様をとるとき、少なくとも、透明平面基板と上記金属薄膜と上記の誘電体からなるスペーサ層と上記蛍光色素層とを含むセンサおよび消光色素を含み、本発明のアッセイ法(X)に用いられ;アッセイ法が、上記(Y)の態様をとるとき、少なくとも、透明平面基板と上記金属薄膜と上記の誘電体からなるスペーサ層とを含むセンサ,蛍光色素および消光色素を含み、本発明のアッセイ法(Y)に用いられ;アッセイ法が、上記(Z)の態様をとるとき、少なくとも、透明平面基板と上記金属薄膜と上記の誘電体からなるスペーサ層と上記蛍光色素層とを含むセンサ,上記酵素および消光剤基質を含み、本発明のアッセイ法(Z)に用いられることを特徴とする。 In the assay kit of the present invention, when the assay method takes the form of (X), at least the transparent flat substrate, the metal thin film, the spacer layer composed of the dielectric, and the fluorescent dye layer are included. Comprising a sensor and a quenching dye, and used in the assay method (X) of the present invention; when the assay method takes the embodiment of (Y), it comprises at least a transparent flat substrate, the metal thin film, and the dielectric. A sensor including a spacer layer, a fluorescent dye, and a quenching dye, and used in the assay method (Y) of the present invention; when the assay method takes the form of (Z), at least the transparent flat substrate and the metal thin film And a sensor comprising the spacer layer made of the dielectric and the fluorescent dye layer, the enzyme and the quencher substrate, and used in the assay method (Z) of the present invention.
 従来、極微量のアナライトを測定する超高感度な系において、表面プラズモンの電場増強(電場増強フォトン量の例)と微量な蛍光色素量(蛍光フォトン量の例)のミスマッチが起こり感度の限界が生じる。 Conventionally, in ultra-sensitive systems that measure extremely small amounts of analyte, there is a mismatch between the surface plasmon electric field enhancement (example of electric field-enhanced photons) and a minute amount of fluorescent dye (example of fluorescence photons). Occurs.
 それに対して、本発明のプラズモン励起センサは、本発明のアッセイ法に用いた場合、図2によれば、蛍光色素を用いることにより電場増強に見合う蛍光を発生(シグナル量=蛍光色素で発生可能なフォトン量の例)させることができ、かつ蛍光をアナライトの量に応じて蛍光を消光または吸収し得る化合物(消光色素・消光剤)により調整(ノイズ量=蛍光を消光または吸収し得る化合物で消光可能なフォトン量の例)することができるため、ノイズが少なく、シグナルが多い高S/N比のアッセイが可能となる。 On the other hand, when the plasmon excitation sensor of the present invention is used in the assay method of the present invention, according to FIG. 2, it generates fluorescence commensurate with the electric field enhancement by using the fluorescent dye (signal amount = can be generated with the fluorescent dye). An example of an appropriate photon amount), and the fluorescence can be adjusted by a compound (quenching dye / quenching agent) that can quench or absorb the fluorescence according to the amount of the analyte (amount of noise = a compound that can quench or absorb the fluorescence) (Example of the amount of photons that can be extinguished by the above-mentioned method) Therefore, it is possible to assay with a high S / N ratio with less noise and more signal.
 すなわち、本発明は、1リットル当り10-18モル(1amol/L)~10-12モル(1pmol/L)レベルの濃度のアナライト(例えば、標的抗原)を含む検体から、高感度かつ高精度で該アナライトを検出できるプラズモン励起センサを提供することができる。 That is, the present invention is highly sensitive and accurate from a specimen containing an analyte (eg, target antigen) at a concentration of 10 −18 mol (1 amol / L) to 10 −12 mol (1 pmol / L) per liter. Thus, a plasmon excitation sensor capable of detecting the analyte can be provided.
 また、微量のアナライトを検出する際、従来のサンドイッチイムノアッセイ法では蛍光信号(蛍光シグナル)量が少なくS/N比が劣化するが、本発明は、プラズモン励起センサ、およびリガンド(例えば、2次抗体)と蛍光を消光または吸収し得る化合物とのコンジュゲートを用いて本発明のアッセイ法に適用した場合、標的抗原量と比例するのが蛍光を消光または吸収し得る化合物であるためS/N比が劣化しないプラズモン励起センサを提供することができる。 Further, when detecting a very small amount of analyte, the conventional sandwich immunoassay method has a small amount of fluorescence signal (fluorescence signal) and the S / N ratio is deteriorated. However, the present invention provides a plasmon excitation sensor and a ligand (for example, secondary). Antibody) and a compound capable of quenching or absorbing fluorescence, and applied to the assay method of the present invention, the ratio of the target antigen is proportional to the compound capable of quenching or absorbing fluorescence. It is possible to provide a plasmon excitation sensor in which the ratio does not deteriorate.
 また、本発明は、蛍光を消光または吸収し得る化合物の能力次第で蛍光信号量を調整できるため、本発明のアッセイ法が最適なS/N比で実施可能なプラズモン励起センサを提供することができる。 In addition, since the present invention can adjust the amount of fluorescence signal depending on the ability of a compound capable of quenching or absorbing fluorescence, it can provide a plasmon excitation sensor in which the assay method of the present invention can be carried out at an optimum S / N ratio. it can.
 さらに、本発明は、本発明のアッセイ法(X)および(Y)において、アナライト(標的抗原)と、該アナライトと競合する抗原を予め結合させた2次抗体(リガンド)と消光色素とのコンジュゲートとを競合させることにより、蛍光信号(蛍光シグナル)量と標的抗原量とを比例させることができるプラズモン励起センサ(I)および(II)を提供することができる。 Furthermore, the present invention relates to an assay (X) and (Y) of the present invention, an analyte (target antigen), a secondary antibody (ligand) in which an antigen that competes with the analyte is previously bound, a quenching dye, Thus, it is possible to provide plasmon excitation sensors (I) and (II) that can make the fluorescence signal (fluorescence signal) amount and the target antigen amount proportional to each other.
図1は、従来のサンドイッチイムノアッセイ法において、基板(1)に固定化された1次抗体(2)に、検体中に含有される標的抗原(3)が結合した後、蛍光色素(5)により標識された2次抗体(4)を反応させた状態を模式的に示す。FIG. 1 shows that in a conventional sandwich immunoassay method, a target antigen (3) contained in a specimen is bound to a primary antibody (2) immobilized on a substrate (1), and then a fluorescent dye (5) is used. A state in which the labeled secondary antibody (4) is reacted is schematically shown. 図2は、プリズム(110)と;該プリズム(110)に当接している透明平面基板と;該基板の一方の表面に形成された金属薄膜と;該金属薄膜の、該基板とは接していないもう一方の表面に形成された誘電体からなるスペーサ層と;該スペーサ層の、該金属薄膜とは接していないもう一方の表面に固定化された1次抗体とを有するセンサチップ(111)にレーザ光を半導体レーザ(100)から照射して、蛍光量をCCD(122)により検出している状態を模式的に示したSPFS装置の模式的な光学配置図を示す。FIG. 2 shows a prism (110); a transparent flat substrate in contact with the prism (110); a metal thin film formed on one surface of the substrate; and the metal thin film in contact with the substrate A sensor chip comprising: a spacer layer made of a dielectric formed on the other surface; and a primary antibody immobilized on the other surface of the spacer layer not in contact with the metal thin film FIG. 2 shows a schematic optical layout of the SPFS apparatus schematically showing a state in which the laser light is irradiated from the semiconductor laser (100) and the fluorescence amount is detected by the CCD (122).
 下記(1)~(3)の仮定に基づき、半導体レーザ(100)を光源とする「入射光子数」,該光源により励起された表面プラズモンの電場増強効果による「励起光子数」,2次抗体に標識された蛍光色素が励起される「吸収光子数」およびCCD(122)に検出された「蛍光光子数」をそれぞれ以下のようにして算出した。
(1)半導体レーザ(100)を用いてレーザ光を照射する際、P偏光した後、NDフィルタ(102)で光量を調整し、0.1mWをセンサチップ(111)に入射する;
(2)センサチップ(111)が固定された流路中の含まれる2次抗体に標識された蛍光色素は0.4nmol/Lであり(計測抗原量を0.2nmol/L、2次抗体の蛍光色素の標識率2に相当する。本明細書において、「標識率」を、リガンド(例えば、抗体など)1個当たりに対する標識剤(例えば、蛍光色素、消光色素、酵素など)が平均個数(比率)と定義する。)、有効プラズモン領域が100nmの厚さで存在する;および
(3)蛍光色素のモル吸光係数を250,000、蛍光量子収率を0.47とする。
Based on the assumptions of (1) to (3) below, “number of incident photons” using a semiconductor laser (100) as a light source, “number of excited photons” due to the electric field enhancement effect of surface plasmons excited by the light source, secondary antibody The “absorbed photon number” excited by the fluorescent dye labeled with the “fluorescent photon number” detected by the CCD (122) was calculated as follows.
(1) When irradiating laser light using the semiconductor laser (100), after P-polarized light, the amount of light is adjusted by the ND filter (102), and 0.1 mW is incident on the sensor chip (111);
(2) The fluorescent dye labeled on the secondary antibody contained in the flow path to which the sensor chip (111) is fixed is 0.4 nmol / L (measured antigen amount is 0.2 nmol / L of the secondary antibody). This corresponds to the labeling rate of fluorescent dye 2. In this specification, the “labeling rate” is the average number of labeling agents (eg, fluorescent dye, quenching dye, enzyme, etc.) per ligand (eg, antibody). The effective plasmon region is present at a thickness of 100 nm; and (3) the molar extinction coefficient of the fluorescent dye is 250,000 and the fluorescence quantum yield is 0.47.
 入射光子数は、Iph/S=3.2×1014個/Sとなる。
 励起光子数は、Exph/S=5.4×1015個/Sとなり、プラズモンにより電場増強は入射光子数に対して17倍である。
The number of incident photons is Iph / S = 3.2 × 10 14 / S.
The number of excitation photons is Exph / S = 5.4 × 10 15 / S, and the electric field enhancement by plasmons is 17 times the number of incident photons.
 吸収光子数は、Absph/S=励起光子数×吸収効率≒励起光子数×2.3×モル吸光係数×濃度×深さ≒1.27×107個/Sとなる。
 蛍光光子数は、Emph/S=吸収光子数×量子収率≒5.95×106個/Sとなる。
The number of absorbed photons is Absph / S = excitation photon number × absorption efficiency≈excitation photon number × 2.3 × molar extinction coefficient × concentration × depth≈1.27 × 10 7 / S.
The number of fluorescent photons is Emph / S = number of absorbed photons × quantum yield≈5.95 × 10 6 / S.
 すなわち、0.1mWのレーザ光が入射し、金基板で17倍の電場増強があるとすると、光子数は約15乗個にのぼるが、実際にnmol/Lレベルの抗原測定においては、蛍光色素を介して発生する光子数は6乗個にまで減少し、増強電場された光子の多くは利用されず、検出されるシグナルも光子量が極めて少ないことから、アッセイの精度が向上するとは言えない。
図3は、本発明のアッセイ法(X)のタイプ1(2次抗体(4)が、検体中に含有される標的抗原(アナライト)以外の抗原(7)を認識し結合する抗体である。)、およびタイプ2(2次抗体(4)が、検体中に含有される標的抗原(3)(アナライト)を認識し結合する抗体である。)を模式的に示す図である。
That is, assuming that 0.1 mW laser light is incident and the electric field is increased 17 times on the gold substrate, the number of photons is about 15th. However, in the antigen measurement at the nmol / L level, the fluorescent dye Since the number of photons generated via the number decreases to the sixth power, most of the photons with an enhanced electric field are not used, and the amount of photons detected is extremely small, so it cannot be said that the accuracy of the assay is improved. .
FIG. 3 shows an antibody that recognizes and binds to an antigen (7) other than the target antigen (analyte) contained in a sample by the type 1 (secondary antibody (4)) of the assay method (X) of the present invention. ) And type 2 (secondary antibody (4) is an antibody that recognizes and binds to target antigen (3) (analyte) contained in a specimen).
 本発明のアッセイ法(X)のタイプ2において、工程(a1)=本発明のプラズモン励起センサ(I)と検体とを接触させることにより、検体中に含有される標的抗原(3)が1次抗体(2)と結合し;工程(b1)=消光色素(6)が固定化された2次抗体(4)をさらに反応させることによって、1次抗体(2)に結合している標的抗原(3)に該2次抗体(4)が結合し;工程(d)=誘電体からなるスペーサ層の一方の表面に形成された蛍光色素層(12)に含まれる蛍光色素が表面プラズモンにより励起され、消光色素(6)により消光されなかった該蛍光色素が発した蛍光(13)を測定する。
図4は、本発明のアッセイ法(Y)のタイプ1(例えば、実施例(2-8)~(2-14))、およびタイプ2(例えば、実施例(2-1)~(2-7))を模式的に示した図である。
In the type 2 of the assay method (X) of the present invention, the target antigen (3) contained in the sample is primary by bringing the sample into contact with the sample (step a1) = plasmon excitation sensor (I) of the present invention. Step (b1) = target antigen (2) bound to the primary antibody (2) by further reacting with the secondary antibody (4) on which the quenching dye (6) is immobilized. The secondary antibody (4) binds to 3); step (d) = the fluorescent dye contained in the fluorescent dye layer (12) formed on one surface of the spacer layer made of a dielectric is excited by the surface plasmon. Then, the fluorescence (13) emitted from the fluorescent dye not quenched by the quenching dye (6) is measured.
FIG. 4 shows type 1 (for example, Examples (2-8) to (2-14)) and type 2 (for example, Examples (2-1) to (2-) of the assay method (Y) of the present invention. It is the figure which showed 7)) typically.
 本発明のアッセイ法(Y)のタイプ2において、工程(a2)=本発明のプラズモン励起センサ(II)と検体とを接触させることにより、検体中に含有される標的抗原(3)が1次抗体(2)と結合し;工程(b1)=消光色素(6)が固定化された2次抗体(4)をさらに反応させることによって、1次抗体(2)に結合している標的抗原(3)に該2次抗体(4)が結合し;工程(d)=1次抗体(2)に固定化された蛍光色素(5)が表面プラズモンにより励起され、蛍光色素(5)が消光色素(6)によって消光されずに発した蛍光(13)を測定する。
図5は、本発明のアッセイ法(Z)の一態様(酵素反応(A)の場合である。)を模式的に示す図である。
In type 2 of the assay method (Y) of the present invention, the target antigen (3) contained in the sample is primary by bringing the sample into contact with the sample (step ala2) = plasmon excitation sensor (II) of the present invention. Step (b1) = target antigen (2) bound to the primary antibody (2) by further reacting with the secondary antibody (4) on which the quenching dye (6) is immobilized. Step (d) = fluorescent dye (5) immobilized on primary antibody (2) is excited by surface plasmon, and fluorescent dye (5) becomes a quenching dye. The fluorescence (13) emitted without being quenched by (6) is measured.
FIG. 5 is a diagram schematically showing one embodiment of the assay method (Z) of the present invention (in the case of the enzyme reaction (A)).
 本発明のアッセイ法(Z)において、工程(a1)=本発明のプラズモン励起センサ(I)と検体とを接触させることにより、検体中に含有される標的抗原(3)が1次抗体(2)と結合し;工程(b2)=酵素(10)が固定化された2次抗体(4)をさらに反応させることによって、1次抗体(2)に結合している標的抗原(3)に該2次抗体(4)が結合し;工程(c)=添加した消光剤基質(8)が酵素(10)と反応し、消光剤(9)が生成され;工程(d)=誘電体からなるスペーサ層の一方の表面に形成された蛍光色素層(12)に含まれる蛍光色素が表面プラズモンにより励起され、消光剤(9)により消光されなかった該蛍光色素が発した蛍光(13)を測定する。
図6は、それぞれ実施例(3-1),(3-2)および比較例(3-1),(3-2)で得られたブランクシグナルおよびアッセイシグナルをグラフにしてまとめた図である。
In the assay method (Z) of the present invention, the step (a1) = the plasmon excitation sensor (I) of the present invention is brought into contact with the specimen, so that the target antigen (3) contained in the specimen is the primary antibody (2 Step (b2) = the target antibody (3) bound to the primary antibody (2) is further reacted with the secondary antibody (4) having the enzyme (10) immobilized thereon. Step (c) = added quencher substrate (8) reacts with enzyme (10) to produce quencher (9); step (d) = consists of dielectric The fluorescent dye contained in the fluorescent dye layer (12) formed on one surface of the spacer layer is excited by the surface plasmon, and the fluorescence (13) emitted by the fluorescent dye not quenched by the quencher (9) is measured. To do.
FIG. 6 is a graph summarizing the blank signals and assay signals obtained in Examples (3-1) and (3-2) and Comparative Examples (3-1) and (3-2), respectively. .
 以下、本発明について具体的に説明する。
 本発明のプラズモン励起センサは、透明平面基板と;該基板の一方の表面に形成された金属薄膜と;該金属薄膜の、該基板とは接していないもう一方の表面に形成された誘電体からなるスペーサ層とを含み、さらに
(V)該スペーサ層の、該金属薄膜とは接していないもう一方の表面に形成された蛍光色素層にリガンドが固定化されているか、または
(W)該スペーサ層の、該金属薄膜とは接していないもう一方の表面に蛍光色素により標識されたリガンドが固定化されていることを特徴とする。
Hereinafter, the present invention will be specifically described.
The plasmon excitation sensor of the present invention comprises: a transparent flat substrate; a metal thin film formed on one surface of the substrate; a dielectric formed on the other surface of the metal thin film that is not in contact with the substrate (V) a ligand is immobilized on a fluorescent dye layer formed on the other surface of the spacer layer that is not in contact with the metal thin film, or (W) the spacer layer. A ligand labeled with a fluorescent dye is immobilized on the other surface of the layer not in contact with the metal thin film.
 本発明のプラズモン励起センサは、それぞれ上記(V)の形態をとるプラズモン励起センサ(I)および上記(W)の形態をとるプラズモン励起センサ(II)を包含するものである。 The plasmon excitation sensor of the present invention includes the plasmon excitation sensor (I) taking the form (V) and the plasmon excitation sensor (II) taking the form (W).
 また、本発明のプラズモン励起センサは、例えば、GEヘルスケア バイオサイエンス(株)製のBiacoreシステムに用いられるセンサチップなどのように金薄膜を有するものも、本発明のプラズモン励起センサに利用することができる。 In addition, the plasmon excitation sensor of the present invention can be used for the plasmon excitation sensor of the present invention, such as a sensor chip used in a Biacore system manufactured by GE Healthcare Biosciences Co., Ltd. Can do.
 [透明平面基板]
 本発明において、プラズモン励起センサの構造を支持する基板として透明平面基板が用いられる。本発明において、支持体として透明平面基板を用いるのは、後述する金属薄膜への光照射をこの透明平面基板を通じて行うからである。
[Transparent flat substrate]
In the present invention, a transparent flat substrate is used as a substrate that supports the structure of the plasmon excitation sensor. In the present invention, the transparent flat substrate is used as the support because light irradiation to the metal thin film described later is performed through the transparent flat substrate.
 本発明で用いられる透明平面基板としては、本発明の目的が達せられる限り、材質に特に制限はない。例えば、この透明支持体が、ガラス製であってもよく、また、ポリカーボネート〔PC〕、シクロオレフィンポリマー〔COP〕などのプラスチック製であってもよい。 The material for the transparent flat substrate used in the present invention is not particularly limited as long as the object of the present invention is achieved. For example, the transparent support may be made of glass, or may be made of plastic such as polycarbonate [PC] or cycloolefin polymer [COP].
 また、d線(588nm)における屈折率〔nd〕が好ましくは1.40~2.20であり、厚さが好ましくは0.01~10mm、より好ましくは0.5~5mmであれば、大きさ(縦×横)は特に限定されない。 Further, the refractive index [n d ] at the d line (588 nm) is preferably 1.40 to 2.20, and the thickness is preferably 0.01 to 10 mm, more preferably 0.5 to 5 mm. The size (vertical x horizontal) is not particularly limited.
 なお、ガラス製の透明平面基板は、市販品として、ショット日本(株)製の「BK7」(屈折率〔nd〕1.52)および「LaSFN9」(屈折率〔nd〕 1.85)、(株)住田光学ガラス製の「K-PSFn3」(屈折率〔nd〕1.84)、「K-LaSFn17」(屈折率〔nd〕1.88)および「K-LaSFn22」(屈折率〔nd〕1.90)、ならびに(株)オハラ製の「S-LAL10」(屈折率〔nd〕1.72)などが、光学的特性と洗浄性との観点から好ましい。 In addition, the transparent transparent substrate made of glass is “BK7” (refractive index [n d ] 1.52) and “LaSFN9” (refractive index [n d ] 1.85) manufactured by Shot Japan Co., Ltd. as commercially available products. “K-PSFn3” (refractive index [n d ] 1.84), “K-LaSFn17” (refractive index [n d ] 1.88) and “K-LaSFn22” (refractive index) manufactured by Sumita Optical Glass Co., Ltd. Ratio [n d ] 1.90) and “S-LAL10” (refractive index [n d ] 1.72) manufactured by OHARA INC. Are preferable from the viewpoints of optical properties and detergency.
 透明平面基板は、その表面に金属薄膜を形成する前に、その表面を酸および/またはプラズマにより洗浄することが好ましい。
 酸による洗浄処理としては、0.001~1Nの塩酸中に、1~3時間浸漬することが好ましい。
The transparent flat substrate is preferably cleaned with acid and / or plasma before forming a metal thin film on the surface.
As the cleaning treatment with an acid, it is preferable to immerse in 0.001 to 1N hydrochloric acid for 1 to 3 hours.
 プラズマによる洗浄処理としては、例えば、プラズマドライクリーナー(ヤマト科学(株)製のPDC200)中に、0.1~30分間浸漬させる方法が挙げられる。
 [金属薄膜]
 本発明に係るプラズモン励起センサでは、上記透明平面基板の一方の表面に金属薄膜を形成する。この金属薄膜は、光源からの照射光により表面プラズモン励起を生じ、電場を発生させ、蛍光色素の発光をもたらす役割を有する。
Examples of the plasma cleaning treatment include a method of immersing in a plasma dry cleaner (PDC200 manufactured by Yamato Scientific Co., Ltd.) for 0.1 to 30 minutes.
[Metal thin film]
In the plasmon excitation sensor according to the present invention, a metal thin film is formed on one surface of the transparent flat substrate. This metal thin film has a role of generating surface plasmon excitation by light irradiated from a light source, generating an electric field, and causing emission of a fluorescent dye.
 透明平面基板の一方の表面に形成された金属薄膜としては、好ましくは、金,銀,アルミニウム,銅,および白金からなる群から選ばれる少なくとも1種の金属からなり、これら金属の合金であってもよい。このような金属種は、酸化に対して安定であり、かつ表面プラズモンによる電場増強が大きくなることから好適である。 The metal thin film formed on one surface of the transparent flat substrate is preferably made of at least one metal selected from the group consisting of gold, silver, aluminum, copper, and platinum, and is an alloy of these metals. Also good. Such metal species are preferable because they are stable against oxidation and increase in electric field due to surface plasmons increases.
 本発明のプラズモン励起センサをアッセイ法(X),(Y)に用いる場合、金属薄膜はもっとも酸化に対して安定な金から形成されることが好ましく、アッセイ法(Z)に用いる場合は後述するようなTbキレート,ECFP,2-Me-4-OMe TG,2-OMe-5-Me TG,2-OMe TGなどの蛍光色素を用いるため、蛍光色素の励起・蛍光波長との関係上、銀から形成されることが好ましい。 When the plasmon excitation sensor of the present invention is used for assay methods (X) and (Y), the metal thin film is preferably formed from gold that is most stable against oxidation, and when used for assay method (Z), it will be described later. Because of the use of fluorescent dyes such as Tb chelate, ECFP, 2-Me-4-OMe TG, 2-OMe-5-Me TG, 2-OMe TG, etc. Preferably it is formed from.
 なお、透明平面基板としてガラス製の透明平面基板を用いる場合に限り、ガラスと金属薄膜とをより強固に接着することができることから、あらかじめクロム,ニッケルクロム合金またはチタンの薄膜を形成することが好ましい。 In addition, it is preferable to form a thin film of chromium, nickel chromium alloy or titanium in advance because glass and a metal thin film can be more firmly bonded only when a transparent flat substrate made of glass is used as the transparent flat substrate. .
 透明平面基板上に金属薄膜を形成する方法としては、例えば、スパッタリング法,蒸着法(抵抗加熱蒸着法,電子線蒸着法等),電解メッキ,無電解メッキ法などが挙げられる。薄膜形成条件の調整が容易なことから、スパッタリング法または蒸着法によりクロムの薄膜および/または金属薄膜を形成することが好ましい。 Examples of a method for forming a metal thin film on a transparent flat substrate include sputtering, vapor deposition (resistance heating vapor deposition, electron beam vapor deposition, etc.), electrolytic plating, electroless plating, and the like. Since it is easy to adjust the thin film formation conditions, it is preferable to form a chromium thin film and / or a metal thin film by sputtering or vapor deposition.
 金属薄膜の厚さとしては、金:5~500nm,銀:5~500nm,アルミニウム:5~500nm,銅:5~500nm,白金:5~500nm,およびそれらの合金:5~500nmが好ましく、クロムの薄膜の厚さとしては、1~20nmが好ましい。 The thickness of the metal thin film is preferably gold: 5 to 500 nm, silver: 5 to 500 nm, aluminum: 5 to 500 nm, copper: 5 to 500 nm, platinum: 5 to 500 nm, and alloys thereof: 5 to 500 nm. The thickness of the thin film is preferably 1 to 20 nm.
 電場増強効果の観点から、金:20~70nm,銀:20~70nm,アルミニウム:10~50nm,銅:20~70nm,白金:20~70nm,およびそれらの合金:10~70nmがより好ましく、クロムの薄膜の厚さとしては1~3nmがより好ましい。 From the viewpoint of the electric field enhancement effect, gold: 20 to 70 nm, silver: 20 to 70 nm, aluminum: 10 to 50 nm, copper: 20 to 70 nm, platinum: 20 to 70 nm, and alloys thereof: 10 to 70 nm are more preferable, and chromium The thickness of the thin film is more preferably 1 to 3 nm.
 金属薄膜の厚さが上記範囲内であると、表面プラズモンが発生し易いので好適である。また、このような厚さを有する金属薄膜であれば、大きさ(縦×横)は特に限定されない。 It is preferable that the thickness of the metal thin film is within the above range because surface plasmons are easily generated. Moreover, if it is a metal thin film which has such thickness, a magnitude | size (length x width) will not be specifically limited.
 [誘電体からなるスペーサ層]
 誘電体からなるスペーサ層は、上記金属薄膜による蛍光色素の金属消光を防止することを目的として、該金属薄膜の、上記透明平面基板と接していないもう一方の表面に形成したものであって、該誘電体としては、光学的に透明な各種無機物,天然または合成ポリマーを用いることもできるが、化学的安定性,製造安定性および光学的透明性に優れていることから二酸化ケイ素〔SiO2〕または二酸化チタン〔TiO2〕を含むことが好ましい。
[Spacer layer made of dielectric]
A spacer layer made of a dielectric is formed on the other surface of the metal thin film that is not in contact with the transparent flat substrate for the purpose of preventing metal quenching of the fluorescent dye by the metal thin film. As the dielectric, various optically transparent inorganic substances, natural or synthetic polymers can be used, but silicon dioxide [SiO 2 ] because of its excellent chemical stability, production stability and optical transparency. or preferably contains titanium dioxide [TiO 2].
 該スペーサ層の厚さは、通常10nm~1mmであり、共鳴角安定性の観点からは、30nm以下が好ましく、10~20nmがより好ましい。また、電場増強の観点からは、200nm~1mmが好ましく、電場増強効果の安定性の観点からは、400~1,600nmが好ましい。本発明のプラズモン励起センサが、今後、大量生産される際、該センサが有するスペーサ層の厚さが変動することが想定され、特に400nm以上の厚さを有すると共鳴角の変動が一層大きくなる可能性があるため、測定の安定性を確保する目的から、該スペーサ層の厚さとして、特に10~20nmが好ましい。 The thickness of the spacer layer is usually 10 nm to 1 mm, preferably 30 nm or less, more preferably 10 to 20 nm from the viewpoint of resonance angle stability. Further, from the viewpoint of electric field enhancement, 200 nm to 1 mm is preferable, and from the viewpoint of stability of the electric field enhancement effect, 400 to 1,600 nm is preferable. When the plasmon excitation sensor of the present invention is mass-produced in the future, it is assumed that the thickness of the spacer layer included in the sensor will fluctuate. Since there is a possibility, the thickness of the spacer layer is particularly preferably 10 to 20 nm in order to ensure measurement stability.
 該スペーサ層の形成方法としては、例えば、スパッタリング法,電子線蒸着法,熱蒸着法,ポリシラザン等の材料を用いた化学反応による形成方法、またはスピンコータによる塗布などが挙げられる。 Examples of the method for forming the spacer layer include a sputtering method, an electron beam evaporation method, a thermal evaporation method, a formation method by a chemical reaction using a material such as polysilazane, or an application by a spin coater.
 [リガンド]
 リガンドとは、検体中に含有されるアナライトを特異的に認識し(または、認識され)結合し得る分子または分子断片であって、このような「分子」または「分子断片」としては、例えば、核酸(一本鎖であっても二本鎖であってもよいDNA,RNA,ポリヌクレオチド,オリゴヌクレオチド,PNA〔ペプチド核酸〕等、またはヌクレオシド,ヌクレオチドおよびそれらの修飾分子)、タンパク質(ポリペプチド,オリゴペプチド等),アミノ酸(修飾アミノ酸も含む。),糖質(オリゴ糖,多糖類,糖鎖等),脂質,またはこれらの修飾分子,複合体などであれば、特に限定されない。
[Ligand]
A ligand is a molecule or molecular fragment capable of specifically recognizing (or recognizing) and binding an analyte contained in a specimen. Examples of such a “molecule” or “molecular fragment” include, for example, , Nucleic acids (single stranded or double stranded DNA, RNA, polynucleotides, oligonucleotides, PNA [peptide nucleic acids] etc., or nucleosides, nucleotides and their modified molecules), proteins (polypeptides , Oligopeptides, etc.), amino acids (including modified amino acids), carbohydrates (oligosaccharides, polysaccharides, sugar chains, etc.), lipids, or their modified molecules, complexes, etc., are not particularly limited.
 「タンパク質」としては、例えば、抗体などが挙げられ、具体的には、抗αフェトプロテイン〔AFP〕モノクローナル抗体((株)日本医学臨床検査研究所などから入手可能),抗ガン胎児性抗原〔CEA〕モノクローナル抗体,抗CA19-9モノクローナル抗体,抗PSAモノクローナル抗体などが挙げられる。 Examples of the “protein” include antibodies and the like, specifically, anti-α-fetoprotein [AFP] monoclonal antibody (available from Nippon Medical Laboratory, Inc.), anti-carcinoembryonic antigen [CEA Monoclonal antibodies, anti-CA19-9 monoclonal antibodies, anti-PSA monoclonal antibodies, and the like.
 なお、本発明において、「抗体」という用語は、ポリクローナル抗体またはモノクローナル抗体,遺伝子組換えにより得られる抗体,および抗体断片を包含する。
 (アナライト)
 アナライト(標的抗原)としては、プラズモン励起センサに固定化されたリガンドを特異的に認識され(または、認識し)結合し得る分子または分子断片であって、このような「分子」または「分子断片」としては、例えば、核酸(一本鎖であっても二本鎖であってもよいDNA,RNA,ポリヌクレオチド,オリゴヌクレオチド,PNA〔ペプチド核酸〕等,またはヌクレオシド,ヌクレオチドおよびそれらの修飾分子),タンパク質(ポリペプチド,オリゴペプチド等),アミノ酸(修飾アミノ酸も含む。),糖質(オリゴ糖,多糖類,糖鎖等),脂質,またはこれらの修飾分子,複合体などが挙げられ、具体的には、AFP〔αフェトプロテイン〕等のがん胎児性抗原や腫瘍マーカー,シグナル伝達物質,ホルモンなどであってもよく、特に限定されない。
In the present invention, the term “antibody” includes a polyclonal antibody or a monoclonal antibody, an antibody obtained by gene recombination, and an antibody fragment.
(Analyte)
An analyte (target antigen) is a molecule or molecular fragment capable of specifically recognizing (or recognizing) and binding to a ligand immobilized on a plasmon excitation sensor. Examples of the “fragment” include nucleic acids (DNA, RNA, polynucleotides, oligonucleotides, PNA [peptide nucleic acids] etc., which may be single-stranded or double-stranded, or nucleosides, nucleotides and modified molecules thereof. ), Proteins (polypeptides, oligopeptides, etc.), amino acids (including modified amino acids), carbohydrates (oligosaccharides, polysaccharides, sugar chains, etc.), lipids, or their modified molecules, complexes, etc. Specifically, it may be a carcinoembryonic antigen such as AFP [α-fetoprotein], a tumor marker, a signal transmitter, a hormone, etc. It is not particularly limited.
           <プラズモン励起センサ(I)>
 本発明のプラズモン励起センサ(I)は、透明平面基板と;該基板の一方の表面に形成された金属薄膜と;該金属薄膜の、該基板とは接していないもう一方の表面に形成された誘電体からなるスペーサ層と;該スペーサ層の、該金属薄膜とは接していないもう一方の表面に形成された蛍光色素層と;該蛍光色素層の、該スペーサ層とは接していないもう一方の表面に固定化されたリガンドとを含むことを特徴とするものである。
<Plasmon excitation sensor (I)>
The plasmon excitation sensor (I) of the present invention is formed on a transparent flat substrate; a metal thin film formed on one surface of the substrate; and the other surface of the metal thin film not in contact with the substrate A spacer layer made of a dielectric; a fluorescent dye layer formed on the other surface of the spacer layer not in contact with the metal thin film; and the other of the fluorescent dye layer not in contact with the spacer layer And a ligand immobilized on the surface of the substrate.
 本発明のプラズモン励起センサ(I)は、アッセイ法(X)または(Z)で使用されるものである。
 [蛍光色素層]
 蛍光色素層とは、上記の誘電体からなるスペーサ層」の、上記金属薄膜とは接していないもう一方の表面に、蛍光色素を固定化した層であって、(A)蛍光色素とポリマーとを含有する組成物を該スペーサ層上に塗工することによって形成することもでき、また(B)シランカップリング剤を介して、蛍光色素を該スペーサ層上に結合することによって形成することもできる。
The plasmon excitation sensor (I) of the present invention is used in the assay method (X) or (Z).
[Fluorescent dye layer]
The fluorescent dye layer is a layer in which the fluorescent dye is immobilized on the other surface of the spacer layer made of the dielectric material that is not in contact with the metal thin film. Can be formed by coating the spacer layer on the spacer layer, or (B) by binding a fluorescent dye on the spacer layer via a silane coupling agent. it can.
 (A)の場合、蛍光色素とポリマーとは化学的結合をしていても、していなくてもよく、また(A')重合性基を有するシランカップリング剤を上記スペーサ層に結合させて、他の重合性モノマー,蛍光色素および重合開始剤を加えて共重合させることにより蛍光色素とポリマーとを含有する組成物を形成することもできる。 In the case of (A), the fluorescent dye and the polymer may or may not be chemically bonded, and (A ′) a silane coupling agent having a polymerizable group is bonded to the spacer layer. A composition containing a fluorescent dye and a polymer can also be formed by adding another polymerizable monomer, a fluorescent dye and a polymerization initiator and copolymerizing them.
 (B)の場合、アミノ基またはカルボキシル基を有するシランカップリング剤と、それらの基と反応して共有結合する官能基が導入された蛍光色素とを結合することによって、蛍光色素を上記スペーサ層に固定化することができる。 In the case of (B), by binding the silane coupling agent having an amino group or a carboxyl group and a fluorescent dye introduced with a functional group that reacts with these groups and covalently binds, the fluorescent dye is bonded to the spacer layer. Can be immobilized.
 このように、蛍光色素とポリマーとを含有してなる層を形成する(A)の場合は、固定化できる蛍光色素量が多く、得られる層の強度が高いことから好ましい。
 (蛍光色素)
 蛍光色素とは、本発明において、所定の励起光を照射する、または電界効果を利用して励起することによって蛍光を発光する物質の総称であり、該「蛍光」は、燐光など各種の発光も含む。
Thus, in the case of (A) which forms a layer containing a fluorescent dye and a polymer, the amount of the fluorescent dye that can be immobilized is large, and the strength of the resulting layer is high, which is preferable.
(Fluorescent dye)
In the present invention, the fluorescent dye is a general term for substances that emit fluorescence by irradiating with predetermined excitation light or by using the electric field effect, and the “fluorescence” means various emission such as phosphorescence. Including.
 本発明で用いられる蛍光色素は、特に限定されず、公知の蛍光色素のいずれであってもよい。一般に、単色比色計〔monochromometer〕よりむしろフィルタを備えた蛍光計の使用をも可能にし、かつ検出の効率を高める大きなストークス・シフトを有する蛍光色素が好ましい。 The fluorescent dye used in the present invention is not particularly limited, and may be any known fluorescent dye. In general, fluorescent dyes with large Stokes shifts that allow the use of a fluorometer with a filter rather than a monochromator and also increase the efficiency of detection are preferred.
 このような蛍光色素としては、例えば、フルオレセイン・ファミリーの蛍光色素(Integrated DNA Technologies社製),ポリハロフルオレセイン・ファミリーの蛍光色素(アプライドバイオシステムズジャパン(株)製),ヘキサクロロフルオレセイン・ファミリーの蛍光色素(アプライドバイオシステムズジャパン(株)製),クマリン・ファミリーの蛍光色素(インビトロジェン(株)製),ローダミン・ファミリーの蛍光色素(GEヘルスケア バイオサイエンス(株)製),シアニン・ファミリーの蛍光色素,インドカルボシアニン・ファミリーの蛍光色素,オキサジン・ファミリーの蛍光色素,チアジン・ファミリーの蛍光色素,スクアライン・ファミリーの蛍光色素,キレート化ランタニド・ファミリーの蛍光色素,BODIPY(登録商標)・ファミリーの蛍光色素(インビトロジェン(株)製),ナフタレンスルホン酸・ファミリーの蛍光色素,ピレン・ファミリーの蛍光色素,トリフェニルメタン・ファミリーの蛍光色素,Alexa Fluor(登録商標)色素シリーズ(インビトロジェン(株)製)などが挙げられ、さらに米国特許番号第6,406,297号、同第6,221,604号、同第5,994,063号、同第5,808,044号、同第5,880,287号、同第5,556,959号および同第5,135,717号に記載の蛍光色素も本発明で用いることができる。 Examples of such fluorescent dyes include fluorescein family fluorescent dyes (Integrated DNA Technologies), polyhalofluorescein family fluorescent dyes (Applied Biosystems Japan Co., Ltd.), and hexachlorofluorescein family fluorescent dyes. (Applied Biosystems Japan Co., Ltd.), Coumarin family fluorescent dye (Invitrogen Corp.), Rhodamine family fluorescent dye (GE Healthcare Bioscience Co., Ltd.), Cyanine family fluorescent dye, Indocarbocyanine family fluorescent dye, oxazine family fluorescent dye, thiazine family fluorescent dye, squaraine family fluorescent dye, chelated lanthanide dye Millie's fluorescent dye, BODIPY® family fluorescent dye (manufactured by Invitrogen), naphthalenesulfonic acid family fluorescent dye, pyrene family fluorescent dye, triphenylmethane family fluorescent dye, Alexa Fluor (Registered trademark) dye series (manufactured by Invitrogen Corp.) and the like, and further, U.S. Patent Nos. 6,406,297, 6,221,604, 5,994,063, The fluorescent dyes described in 5,808,044, 5,880,287, 5,556,959, and 5,135,717 can also be used in the present invention.
 これらファミリーに含まれる代表的な蛍光色素の吸収波長(nm)および発光波長(nm)を表1に示す。 Table 1 shows the absorption wavelength (nm) and emission wavelength (nm) of typical fluorescent dyes included in these families.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 また、本発明では、例えば、テルビウム〔Tb〕キレート(蛍光波長:490nm);強化シアン蛍光タンパク質〔ECFP〕(蛍光波長:475nm);それぞれ下記式で表される2-Me TGおよび2-Me-4-OMe TGや,2-OMe-5-Me TG,2-OMe TG等を包含するTokyoGreen〔TG〕などの蛍光色素も用いることができる。 In the present invention, for example, terbium [Tb] chelate (fluorescence wavelength: 490 nm); enhanced cyan fluorescent protein [ECFP] (fluorescence wavelength: 475 nm); 2-Me TG and 2-Me-- Fluorescent dyes such as Tokyo Green [TG] including 4-OMe TG, 2-OMe-5-Me TG, 2-OMe TG, and the like can also be used.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 このような蛍光色素は、水溶性が高いものが多く、これら蛍光色素を蛍光色素層としてポリマー中に分子間相互作用で固定化するためには、蛍光色素が有するカルボキシル基に、疎水性の芳香族環が有するアミノ基やアルコールを反応させて水に不溶性の構造にするか、または疎水性ポリマーと蛍光色素の活性エステルとの反応によって化学的に結合する必要がある。ポリマーと蛍光色素とが化学的な結合を有しない場合、ポリマーの溶解パラメータ〔Solubility Parameter;SP〕に近い構造となるように蛍光色素を修飾することが好ましい。 Many of these fluorescent dyes have high water solubility, and in order to immobilize these fluorescent dyes as a fluorescent dye layer in a polymer by intermolecular interaction, a hydrophobic aromatic group is attached to the carboxyl group of the fluorescent dye. It is necessary to react with the amino group or alcohol of the aromatic ring to form a water-insoluble structure, or to bond chemically by reaction between the hydrophobic polymer and the active ester of the fluorescent dye. In the case where the polymer and the fluorescent dye do not have a chemical bond, it is preferable to modify the fluorescent dye so as to have a structure close to the solubility parameter of the polymer (SP).
 これら蛍光色素は1種単独でも、2種以上併用してもよい。
 (ポリマー)
 ポリマーとしては、例えば、ポリアクリレート,ポリメタクリレート,ポリスチレン-アクリレート,ポリスチレン,ポリビニルブチラール,ポリエステルなどが挙げられる。これらのうち、ポリアクリレートおよびポリメタクリレート,ポリスチレン,ポリビニルブチラールは、蛍光色素との相溶性に優れ、非特異的な吸着(例えば、蛋白質(アルブミン,フィブリノーゲン,免疫グロブリン),脂質,糖類(グルコース))を抑制することができるため好適である。
These fluorescent dyes may be used alone or in combination of two or more.
(polymer)
Examples of the polymer include polyacrylate, polymethacrylate, polystyrene-acrylate, polystyrene, polyvinyl butyral, and polyester. Of these, polyacrylates and polymethacrylates, polystyrene, and polyvinyl butyral have excellent compatibility with fluorescent dyes and nonspecific adsorption (eg, proteins (albumin, fibrinogen, immunoglobulin), lipids, saccharides (glucose)). Can be suppressed, which is preferable.
 (組成物)
 組成物は、蛍光色素およびポリマー以外に、溶媒,必要に応じて酸化防止剤などの添加剤も含有することができる。
(Composition)
In addition to the fluorescent dye and the polymer, the composition can also contain a solvent and, if necessary, additives such as an antioxidant.
 「溶媒」としては、揮発性が高ければ特に限定されず、例えば、含ハロゲン系炭化水素類(例えば、ジクロロメタン,ジクロロエタン,テトラフルオロプロパン等),アルコール類(例えば、メタノール,エタノール,プロパノール,ブタノール,ターシャリブタノール,テトラフルオロプロパノール),芳香族類(例えば、トルエン,キシレン等),エーテル類(例えば、ジエチルエーテル,ジエチレングリコールモノメチルエーテル等),エステル類(例えば、酢酸エチル,酢酸ブチル等),グリコール類(例えば、エチレングリコール等),ケトン類(アセトン,メチルエチルケトン等)などが挙げられる。これらのうち、用いられるポリマーの溶解安定性の観点から、芳香族類,含ハロゲン系炭化水素類,エステル類,ケトン類が好ましい。 The “solvent” is not particularly limited as long as it has high volatility. For example, halogen-containing hydrocarbons (for example, dichloromethane, dichloroethane, tetrafluoropropane, etc.), alcohols (for example, methanol, ethanol, propanol, butanol, Tertiary butanol, tetrafluoropropanol), aromatics (eg, toluene, xylene, etc.), ethers (eg, diethyl ether, diethylene glycol monomethyl ether, etc.), esters (eg, ethyl acetate, butyl acetate, etc.), glycols (For example, ethylene glycol), ketones (acetone, methyl ethyl ketone, etc.), and the like. Of these, aromatics, halogen-containing hydrocarbons, esters, and ketones are preferred from the viewpoint of the dissolution stability of the polymer used.
 「酸化防止剤」としては、例えば、ペンタエリスリチルテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)]プロピオネート、2,6-ジ-t-ブチル-4-メチルフェノール、2,2'-ジオキシ-3,3'-ジ-t-ブチル-5,5'-ジメチルジフェニルメタン、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンなどが挙げられる。 Examples of the “antioxidant” include pentaerythrityl tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl)] propionate, 2,6-di-tert-butyl-4-methylphenol. 2,2′-dioxy-3,3′-di-t-butyl-5,5′-dimethyldiphenylmethane, tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate ] Methane etc. are mentioned.
 組成物の総量(100重量%)に対して、蛍光色素は1~75重量%が好ましく、30~70重量%がより好ましく、ポリマーは25~99重量%が好ましく、70~30重量%がより好ましい。蛍光色素およびポリマーが上記含有量であると、消光の効率が良好である。 The fluorescent dye is preferably 1 to 75% by weight, more preferably 30 to 70% by weight, and the polymer is preferably 25 to 99% by weight, more preferably 70 to 30% by weight, based on the total amount of the composition (100% by weight). preferable. When the fluorescent dye and the polymer have the above contents, the quenching efficiency is good.
 また、溶媒は、組成物100重量部に対して、100~1,000重量部が好ましく、100~500重量部がより好ましい。添加剤は、組成物100重量部に対して、0.1~10重量部が好ましく、1~5重量部がより好ましい。溶媒または添加剤が上記配合量であると、塗布性が良く、蛍光量子収率の低下を起さないため好適である。 Further, the solvent is preferably 100 to 1,000 parts by weight, more preferably 100 to 500 parts by weight with respect to 100 parts by weight of the composition. The additive is preferably from 0.1 to 10 parts by weight, more preferably from 1 to 5 parts by weight, based on 100 parts by weight of the composition. It is preferable that the solvent or additive has the above blending amount because the coating property is good and the fluorescence quantum yield is not lowered.
 (塗工)
 塗工する方法としては、特に限定されないが、例えば、スピンコート法,ワイヤーコート法,バーコート法,ロールコート法,ブレードコート法,カーテンコート法,スクリーン印刷法などで塗布後、通常20~100℃で、5~30分間乾燥させる。
(Coating)
The coating method is not particularly limited. For example, it is usually 20 to 100 after application by spin coating, wire coating, bar coating, roll coating, blade coating, curtain coating, screen printing, or the like. Dry at 30 ° C. for 5-30 minutes.
 [リガンドの固定化方法]
 リガンドの固定化方法としては、蛍光色素層形成の一態様である上記(A)の場合、ポリマーが有する水酸基,アミノ基,カルボキシル基,イソシアネート基等の官能基(好ましくは、水酸基,アミノ基およびカルボキシル基)とリガンドが有する官能基(免疫反応促進能や非特異吸着反応抑制能を勘案し、ポリマーが有する官能基と適宜組み合わせることが好ましい。)とで反応させて化学結合を形成する方法、または2官能性反応基を有する化合物(例えば、シランカップリング剤など)を介して上記蛍光色素層に固定化する方法が挙げられる。
[Ligand immobilization method]
As the method for immobilizing the ligand, in the case of the above (A) which is one embodiment of the formation of the fluorescent dye layer, functional groups such as hydroxyl group, amino group, carboxyl group and isocyanate group (preferably hydroxyl group, amino group and A method of forming a chemical bond by reacting with a carboxyl group) and a functional group possessed by a ligand (preferably combined with a functional group possessed by a polymer in consideration of the ability to promote immune reaction and suppress nonspecific adsorption reaction), Alternatively, a method of immobilizing the fluorescent dye layer via a compound having a bifunctional reactive group (for example, a silane coupling agent) can be used.
 2官能性反応基を有するシランカップリング剤としては、加水分解でシラノール基〔Si-OH〕を与えるエトキシ基(またはメトキシ基)を有し、他端にアミノ基やグリシジル基,カルボキシル基などの反応基を有するシランカップリング剤であればよく、具体例として、3-アミノプロピルトリエトキシシラン,8-アミノ-オクチルトリエトキシシラン,6-アミノ-ヘキシルトリエトキシシラン,7-カルボキシ-ヘプチルトリエトキシシラン,5-カルボキシ-ペンチルトリエトキシシランなどが挙げられるが、本発明はこれらに限定されず、従来公知のシランカップリング剤も用いることができる。 As a silane coupling agent having a bifunctional reactive group, it has an ethoxy group (or methoxy group) that gives a silanol group [Si-OH] by hydrolysis, and an amino group, a glycidyl group, a carboxyl group, etc. at the other end. Any silane coupling agent having a reactive group may be used. Specific examples include 3-aminopropyltriethoxysilane, 8-amino-octyltriethoxysilane, 6-amino-hexyltriethoxysilane, and 7-carboxy-heptyltriethoxy. Examples thereof include silane and 5-carboxy-pentyltriethoxysilane, but the present invention is not limited to these, and conventionally known silane coupling agents can also be used.
 「2官能性反応基を有するシランカップリング剤」以外に、リガンドの固定化能に優れることから、例えば、カルボキシメチルデキストラン,ポリエチレングリコール,イミノジ酢酸誘導体((N-5-amino-1-carboxypentyl)iminodiacetic acid等),ビオチン,アビジン,ストレプトアビジン,プロテインA,プロテインGなども好適である。 In addition to “a silane coupling agent having a bifunctional reactive group”, since it has excellent ligand immobilization ability, for example, carboxymethyl dextran, polyethylene glycol, iminodiacetic acid derivatives ((N-5-amino-1-carboxypentyl) iminodiacetic acid, etc.), biotin, avidin, streptavidin, protein A, protein G and the like are also suitable.
 (A)のうち、2官能性反応基を有する化合物としてシランカップリング剤を用いる場合、リガンドの固定化方法の具体例として、まず金薄薄膜、誘電体からなるスペーサ層および蛍光色素層が、その一方の表面に順に形成された透明平面基板を、シランカップリング剤を通常0.1~10%、好ましくは0.5%の濃度で含む水溶液に、30分~2時間浸漬後、室温の場合、通常1~24時間、好ましくは10時間、100℃の場合、通常10分~1時間、好ましくは30分の乾燥を行い、この後、通常、上記基板を水で洗浄する。この時点で、シランカップリング剤の一方の末端が加水分解して得られたシラノール基〔Si-OH〕を蛍光色素層側にして並べた単分子膜が形成されている。シランカップリング剤からなる単分子膜の外側には、シランカップリング剤が有するアミノ基やカルボキシル基が露出している状態となっている。 In the case of using a silane coupling agent as the compound having a bifunctional reactive group in (A), as a specific example of a method for immobilizing a ligand, first, a thin gold film, a spacer layer made of a dielectric, and a fluorescent dye layer are: The transparent flat substrate formed in order on one surface thereof is immersed in an aqueous solution containing a silane coupling agent in a concentration of usually 0.1 to 10%, preferably 0.5%, for 30 minutes to 2 hours, and then at room temperature. In this case, drying is usually performed for 1 to 24 hours, preferably 10 hours, and at 100 ° C., drying is usually performed for 10 minutes to 1 hour, preferably 30 minutes, and then the substrate is usually washed with water. At this point, a monomolecular film is formed in which silanol groups [Si—OH] obtained by hydrolysis of one end of the silane coupling agent are arranged on the fluorescent dye layer side. The amino group and carboxyl group of the silane coupling agent are exposed on the outside of the monomolecular film made of the silane coupling agent.
 次に、リガンドが有するカルボキシル基を、水溶性カルボジイミド〔WSC〕(例えば、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩〔EDC〕など)とN-ヒドロキシコハク酸イミド〔NHS〕とにより活性エステル化し、このように活性エステル化したカルボキシル基と、上記シランカップリング剤が有するアミノ基とを水溶性カルボジイミドを用いて脱水反応させ固定化させる。 Next, the carboxyl group of the ligand is converted into water-soluble carbodiimide [WSC] (for example, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride [EDC]) and N-hydroxysuccinimide [NHS]. Then, the carboxyl group thus activated and the amino group of the silane coupling agent are dehydrated and immobilized using water-soluble carbodiimide.
 その他の好ましい方法の具体例としては、蛍光色素層内のポリマーのカルボキシル基を水溶性カルボジイミド〔WSC〕(例えば、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩〔EDC〕など)とN-ヒドロキシコハク酸イミド〔NHS〕とにより活性エステル化し、上記リガンドが有するアミノ基とを水溶性カルボジイミドを用いて脱水反応させ固定化させる。 As a specific example of another preferable method, a carboxyl group of a polymer in a fluorescent dye layer is converted into a water-soluble carbodiimide [WSC] (for example, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride [EDC] etc.) And N-hydroxysuccinimide [NHS], and the amino group of the ligand is dehydrated and immobilized using water-soluble carbodiimide.
 リガンドの固定化方法として、蛍光色素層形成における上記(B)の場合、リガンド(例えば、1次抗体など)を蛍光色素層に物理吸着で固定化する方法が挙げられる。
           <プラズモン励起センサ(II)>
 本発明のプラズモン励起センサ(II)は、透明平面基板と;該基板の表面に形成された金属薄膜と;該金属薄膜の、該基板とは接していないもう一方の表面に形成された、誘電体からなるスペーサ層と;該スペーサ層の、該金属薄膜とは接していないもう一方の表面に固定化された、蛍光色素により標識されたリガンドとを含むことを特徴とするものである。
As the method for immobilizing the ligand, in the case of the above (B) in forming the fluorescent dye layer, a method of immobilizing a ligand (for example, a primary antibody) on the fluorescent dye layer by physical adsorption can be mentioned.
<Plasmon excitation sensor (II)>
The plasmon excitation sensor (II) of the present invention comprises a transparent flat substrate; a metal thin film formed on the surface of the substrate; a dielectric film formed on the other surface of the metal thin film that is not in contact with the substrate A spacer layer comprising a body; and a ligand labeled with a fluorescent dye, which is immobilized on the other surface of the spacer layer that is not in contact with the metal thin film.
 本発明のプラズモン励起センサ(II)は、本発明のアッセイ法(Y)で使用されるものである。
 本発明のプラズモン励起センサ(II)に用いられる透明平面基板,金属薄膜および誘電体からなるスペーサ層は、本発明のプラズモン励起センサ(I)と同様のものを用いることができ、さらにそれらの形成方法も本発明のプラズモン励起センサ(I)と同様である。
The plasmon excitation sensor (II) of the present invention is used in the assay method (Y) of the present invention.
As the spacer layer made of the transparent flat substrate, the metal thin film, and the dielectric used in the plasmon excitation sensor (II) of the present invention, the same spacer layer as that of the plasmon excitation sensor (I) of the present invention can be used. The method is the same as that of the plasmon excitation sensor (I) of the present invention.
 (蛍光色素により標識されたリガンド)
 上記リガンドに上記蛍光色素を標識する方法としては、例えば、蛍光色素の活性エステル体を作製し、さらにリガンドとアミンカップリングする方法が一般的であり、蛍光色素の反応基として、アミノ基,イソチオシアネート基,スルホニルクロリド基,メルカプト基,ヨードアセトアミド基などの様々な官能基を導入することができるので、該反応基とリガンドが有する官能基とを反応可能な条件で化学結合を形成させること方法なども挙げられる。
(Ligand labeled with fluorescent dye)
As a method for labeling the above-mentioned fluorescent dye to the above-mentioned ligand, for example, an active ester of the fluorescent dye is prepared and further amine-coupled with the ligand. Various functional groups such as thiocyanate group, sulfonyl chloride group, mercapto group, iodoacetamide group and the like can be introduced, and a method for forming a chemical bond under a condition in which the reactive group and the functional group of the ligand can react And so on.
 蛍光色素により標識されたリガンドを上記の誘電体からなるスペーサ層に固定化する方法としては、シランカップリング剤からなるSAM〔自己組織化単分子膜〕を介して該スペーサ層に固定化する方法が好適である。蛍光色素により標識されたリガンドの固定化方法は、本発明のプラズモン励起センサ(I)の場合と同様である。 As a method for immobilizing a ligand labeled with a fluorescent dye on a spacer layer made of the above-mentioned dielectric, a method for immobilizing on a spacer layer via a SAM (self-assembled monolayer) made of a silane coupling agent Is preferred. The method for immobilizing a ligand labeled with a fluorescent dye is the same as in the case of the plasmon excitation sensor (I) of the present invention.
 また、該スペーサ層に固定化したリガンドに蛍光色素を標識する方法も利用可能であり、リガンドと反応可能な官能基を有するシランカップリング剤でリガンドを固定化した後、さらに上記反応性基を有する蛍光色素を流路中で反応させ、蛍光色素により標識された固定化リガンドを作製することもできる。 Further, a method of labeling a fluorescent dye on the ligand immobilized on the spacer layer can be used. After immobilizing the ligand with a silane coupling agent having a functional group capable of reacting with the ligand, the reactive group is further added. It is also possible to produce an immobilized ligand labeled with a fluorescent dye by reacting the fluorescent dye with the fluorescent dye.
               <アッセイ法>
 本発明のアッセイ法は、少なくとも、
(X)下記工程(a1),(b1),(d)および(e)を含むか、
(Y)下記工程(a2),(b1),(d)および(e)を含むか、または
(Z)下記工程(a1),(b2),(c),(d)および(e)を含むことを特徴とする。
<Assay method>
The assay method of the present invention comprises at least
(X) includes the following steps (a1), (b1), (d) and (e),
(Y) includes the following steps (a2), (b1), (d) and (e), or (Z) includes the following steps (a1), (b2), (c), (d) and (e) It is characterized by including.
 工程(a1):本発明のプラズモン励起センサ(I)に、検体を接触させる工程,
 工程(a2):本発明のプラズモン励起センサ(II)に、検体を接触させる工程,
 工程(b1):該工程(a1)または(a2)を経て得られたプラズモン励起センサに、さらに、該プラズモン励起センサに含まれるリガンドとは同じであっても異なっていてもよいリガンドと消光色素とのコンジュゲートを反応させる工程,
 工程(b2):該工程(a1)を経て得られたプラズモン励起センサに、さらに、該プラズモン励起センサに含まれるリガンドとは同じであっても異なっていてもよいリガンドと酵素とのコンジュゲートを反応させる工程,
 工程(c):該工程(b2)を経て得られたプラズモン励起センサに、消光剤基質を反応させ、消光剤が生成される工程,
 工程(d):該工程(b1)または(c)を経て得られたプラズモン励起センサに、上記透明平面基板の、上記金属薄膜を形成していないもう一方の表面から、プリズムを経由してレーザ光を照射し、励起された蛍光色素から発光された蛍光量を測定する工程,および
 工程(e):該工程(d)で得られた測定結果から、検体中に含有されるアナライトの量を算出する工程。
Step (a1): a step of bringing a specimen into contact with the plasmon excitation sensor (I) of the present invention,
Step (a2): a step of bringing a specimen into contact with the plasmon excitation sensor (II) of the present invention,
Step (b1): the plasmon excitation sensor obtained through the step (a1) or (a2), and a ligand that may be the same as or different from the ligand contained in the plasmon excitation sensor, and a quenching dye Reacting the conjugate with
Step (b2): The plasmon excitation sensor obtained through the step (a1) is further combined with a ligand / enzyme conjugate that may be the same as or different from the ligand contained in the plasmon excitation sensor. Reacting,
Step (c): a step of reacting a quencher substrate with the plasmon excitation sensor obtained through the step (b2) to produce a quencher,
Step (d): The plasmon excitation sensor obtained through the step (b1) or (c) is subjected to laser from the other surface of the transparent flat substrate on which the metal thin film is not formed via a prism. A step of irradiating light and measuring the amount of fluorescence emitted from the excited fluorescent dye, and step (e): the amount of analyte contained in the specimen from the measurement result obtained in step (d) Calculating step.
 すなわち、本発明のアッセイ法は、該(X)の態様をとるアッセイ法(X),該(Y)の態様をとるアッセイ法(Y)および該(Z)の態様をとるアッセイ法(Z)を包含するものである。 That is, the assay method of the present invention includes the assay method (X) taking the embodiment of (X), the assay method (Y) taking the embodiment of (Y), and the assay method (Z) taking the embodiment of (Z). Is included.
 本発明のアッセイ法は、さらに洗浄工程を適宜含むことが好ましい。
 また、本発明のアッセイ法は、一定の温度を保ちながら実施することが好ましい。
 [工程(a1)・(a2)]
 工程(a1)および(a2)とは、それぞれ本発明のプラズモン励起センサ(I)および(II)に、上記検体を接触させる工程である。
The assay method of the present invention preferably further includes a washing step as appropriate.
The assay method of the present invention is preferably carried out while maintaining a constant temperature.
[Process (a1) / (a2)]
Steps (a1) and (a2) are steps of bringing the specimen into contact with the plasmon excitation sensors (I) and (II) of the present invention, respectively.
 (検体)
 検体としては、例えば、血液(血清・血漿),尿,鼻孔液,唾液,便,体腔液(髄液,腹水,胸水等)などが挙げられ、所望する溶媒,緩衝液等に適宜希釈して用いてもよい。これら検体のうち、血液,血清,血漿,尿,鼻孔液および唾液が好ましい。
(Sample)
Examples of the specimen include blood (serum / plasma), urine, nasal fluid, saliva, feces, body cavity fluid (spinal fluid, ascites, pleural effusion, etc.), etc. It may be used. Of these samples, blood, serum, plasma, urine, nasal fluid and saliva are preferred.
 (接触)
 接触は、流路中に循環する送液に検体が含まれ、プラズモン励起センサの蛍光色素およびリガンドが固定化されている片面のみが該送液中に浸漬されている状態において、プラズモン励起センサと検体とを接触させる態様が好ましい。
(contact)
In the state in which the specimen is contained in the liquid supply circulating in the flow path and only one surface on which the fluorescent dye and the ligand of the plasmon excitation sensor are immobilized is immersed in the liquid supply, the contact with the plasmon excitation sensor An embodiment in which a specimen is brought into contact is preferable.
 「流路」とは、微量な薬液の送達を効率的に行うことができ、反応促進を行うために送液速度を変化させたり、循環させたりすることができる直方体または管状のものであって、プラズモン励起センサを設置する個所(プラズモン励起センサ部)近傍は直方体構造を有することが好ましく、薬液を送達する個所近傍は管状を有することが好ましい。 The “flow channel” is a rectangular parallelepiped or a tube that can efficiently deliver a small amount of a chemical solution and can change the liquid feeding speed or circulate in order to promote the reaction. The vicinity of the place where the plasmon excitation sensor is installed (plasmon excitation sensor section) preferably has a rectangular parallelepiped structure, and the vicinity of the place where the drug solution is delivered preferably has a tubular shape.
 その材料としては、プラズモン励起センサ部ではメチルメタクリレート,スチレン等を原料として含有するホモポリマーまたは共重合体,ポリエチレン,ポリオレフィン等からなり、薬液送達部ではシリコンゴム,テフロン(登録商標),ポリエチレン,ポリプロピレン等のポリマーを用いる。 The materials include homopolymers or copolymers, polyethylene, polyolefin, etc. containing methyl methacrylate, styrene, etc. as raw materials in the plasmon excitation sensor part, and silicon rubber, Teflon (registered trademark), polyethylene, polypropylene in the chemical solution delivery part. Etc. are used.
 プラズモン励起センサ部においては、検体との接触効率を高め、拡散距離を短くする観点から、プラズモン励起センサ部の流路の断面として、縦×横がそれぞれ独立に100nm~1mm程度が好ましい。 In the plasmon excitation sensor unit, from the viewpoint of increasing the contact efficiency with the specimen and shortening the diffusion distance, it is preferable that the vertical and horizontal sections of the channel of the plasmon excitation sensor unit are independently about 100 nm to 1 mm.
 流路にプラズモン励起センサを固定する方法としては、小規模ロット(実験室レベル)では、まず、該プラズモン励起センサの金属薄膜が形成されている表面に、流路高さ0.5mmを有するポリジメチルシロキサン〔PDMS〕製シートを該プラズモン励起センサの金属薄膜が形成されている部位を囲むようにして圧着し、次に、該ポリジメチルシロキサン〔PDMS〕製シートと該プラズモン励起センサとをビス等の閉め具により固定する方法が好ましい。 As a method of fixing the plasmon excitation sensor to the flow path, in a small-scale lot (laboratory level), first, on the surface on which the metal thin film of the plasmon excitation sensor is formed, A dimethylsiloxane [PDMS] sheet is pressure-bonded so as to surround the portion where the metal thin film of the plasmon excitation sensor is formed, and then the polydimethylsiloxane [PDMS] sheet and the plasmon excitation sensor are closed with screws or the like. A method of fixing with a tool is preferred.
 工業的に製造される大ロット(工場レベル)では、流路にプラズモン励起センサを固定する方法としては、プラスチックの一体成形品に金基板を形成、または別途作製した金基板を固定し、金表面に誘電体層、蛍光色素層およびリガンド固定化を行った後、流路の天板に相当するプラスチックの一体成形品により蓋をすることで製造できる。必要に応じてプリズムを流路に一体化することもできる。 In large lots (factory level) manufactured industrially, as a method of fixing the plasmon excitation sensor to the flow path, a gold substrate is formed on a plastic integrally molded product, or a separately manufactured gold substrate is fixed, and the gold surface is fixed. Further, after the dielectric layer, the fluorescent dye layer, and the ligand are immobilized, it can be manufactured by covering with a plastic integrally formed product corresponding to the top plate of the flow path. If necessary, the prism can be integrated into the flow path.
 「送液」としては、検体を希釈した溶媒または緩衝液と同じものが好ましく、例えば、リン酸緩衝生理食塩水(PBS)、トリス緩衝生理食塩水(TBS)などが挙げられるが、特に限定されるものではない。 The “liquid feeding” is preferably the same as the solvent or buffer in which the specimen is diluted, and examples thereof include phosphate buffered saline (PBS) and Tris buffered saline (TBS), but are not particularly limited. It is not something.
 送液を循環させる温度および時間としては、検体の種類などにより異なり、特に限定されるものではないが、通常20~40℃×1~60分間、好ましくは37℃×5~15分間である。 The temperature and time for circulating the liquid supply vary depending on the type of specimen and are not particularly limited, but are usually 20 to 40 ° C. × 1 to 60 minutes, preferably 37 ° C. × 5 to 15 minutes.
 送液中の検体中に含有されるアナライトの初期濃度は、100μg/mL~0.001pg/mLであってもよい。
 送液の総量、すなわち流路の容積としては、通常0.001~20mL、好ましくは0.1~1mLである。
The initial concentration of the analyte contained in the specimen being sent may be 100 μg / mL to 0.001 pg / mL.
The total amount of liquid feeding, that is, the volume of the flow path is usually 0.001 to 20 mL, preferably 0.1 to 1 mL.
 送液の流速は、通常1~2,000μL/min、好ましくは5~500μL/minである。
 [洗浄工程]
 洗浄工程とは、下記工程(b1)または(b2)の前および/または後に含まれることが好ましく、上記工程(a1)もしくは(a2)または下記工程(b1)もしくは(b2)で得られたプラズモン励起センサの表面を洗浄する工程である。
The flow rate of the liquid feeding is usually 1 to 2,000 μL / min, preferably 5 to 500 μL / min.
[Washing process]
The washing step is preferably included before and / or after the following step (b1) or (b2), and the plasmon obtained in the above step (a1) or (a2) or the following step (b1) or (b2) This is a step of cleaning the surface of the excitation sensor.
 洗浄工程に使用される洗浄液としては、Tween20,TritonX100などの界面活性剤を、上記工程(a1)もしくは(a2)または下記工程(b1)もしくは(b2)の反応で用いたものと同じ溶媒または緩衝液に溶解させ、好ましくは0.00001~1重量%含有するものが望ましい。 As the washing solution used in the washing step, a surfactant or a surfactant such as Tween 20 or Triton X100 is used in the same solvent or buffer as used in the reaction of the above step (a1) or (a2) or the following step (b1) or (b2). It is desirable that it is dissolved in a liquid and preferably contains 0.00001 to 1% by weight.
 洗浄液を循環させる温度および流速は、上記工程(a1)または(a2)の「送液を循環させる温度および流速」に等しいことが好ましい。
 洗浄液を循環させる時間は、通常0.5~180分間、好ましくは5~60分間である。
The temperature and flow rate at which the cleaning liquid is circulated are preferably equal to the “temperature and flow rate at which the liquid feed is circulated” in step (a1) or (a2).
The time for circulating the cleaning liquid is usually 0.5 to 180 minutes, preferably 5 to 60 minutes.
 [工程(b1)]
 工程(b1)とは、上記工程(a1)または(a2)、好ましくは上記洗浄工程を経て得られたプラズモン励起センサに、さらに、該プラズモン励起センサに含まれるリガンドとは同じであっても異なっていてもよいリガンドと消光色素とのコンジュゲートを反応させる工程である。
[Step (b1)]
The step (b1) is different from the step (a1) or (a2), preferably the plasmon excitation sensor obtained through the washing step, even if the ligand contained in the plasmon excitation sensor is the same. This is a step of reacting a conjugate of an optional ligand and a quenching dye.
 (消光色素)
 工程(b1)、すなわちアッセイ法(X)または(Y)で用いられる消光色素(またはクエンチャー)とは、蛍光を消光または吸収し得る化合物に包含されるものであり、上記蛍光色素の励起されたエネルギーを吸収できる適切なエネルギー準位を有する化合物であって、ある蛍光色素に対して適切な消光色素を添加すると、蛍光が消失する。
(Quenching dye)
The quenching dye (or quencher) used in step (b1), that is, assay method (X) or (Y) is included in a compound capable of quenching or absorbing fluorescence, and the fluorescent dye is excited. If the compound has an appropriate energy level capable of absorbing the energy and an appropriate quenching dye is added to a certain fluorescent dye, the fluorescence disappears.
 このような消光色素としては、フルオレセイン・ファミリーの消光色素,ポリハロフルオレセイン・ファミリーの消光色素,ヘキサクロロフルオレセイン・ファミリーの消光色素,クマリン・ファミリーの消光色素,ローダミン・ファミリーの消光色素,シアニン・ファミリーの消光色素,オキサジン・ファミリーの消光色素,チアジン・ファミリーの消光色素,スクアライン・ファミリーの消光色素,キレート化ランタニド・ファミリーの消光色素,BODIPY(登録商標)・ファミリーの消光色素などが挙げられ、より具体的には、例えば、BHQ(登録商標)・ファミリーの色素(国際公開第01/86001号パンフレットに記載されているクエンチャー:BHQ-1,BHQ-2およびBHQ-3を含む。)(バイオサーチテクノロジーズ ジャパンBTJ(株)製),Iowa Black(登録商標)(Integrated DNA Technologies社製),DABCYL(4-(4'-ジメチルアミノフェニルアゾ)安息香酸)(Integrated DNA Technologies社製),TAMRA(N,N,N',N'-テトラメチル-6-カルボキシローダミン)(インビトロジェン(株)製),Cy3(登録商標)(GEヘルスケア バイオサイエンス(株)製),Cy5(登録商標)(GEヘルスケア バイオサイエンス(株)製),1-ベンジル-1,4-ジヒドロニコチンアミド〔BNAH〕,9-アントラセンカルボニトリル、2-ナフトール,2-メトキシナフタレン,1,4-ナフトキノン、2,6-ジ-tert-ブチル-1,4-ベンゾキノン,3,5-ジ-tert-ブチル-1,2-ベンゾキノン,1-ナフトエ酸〔1-NA〕,2-ナフトエ酸〔2-NA〕,1-ピレン酪酸〔PyBA〕,4-ニトロ安息香酸〔PNBA〕,アントラキノン-2-カルボン酸〔AQCA〕,ピレンなどが挙げられる。また、本発明は、米国特許番号第6,399,392号、同第6,348,596号、同第6,080,068号および同第5,707,813号に記載の消光剤を用いることもできる。 Such quenching dyes include fluorescein family quenching dyes, polyhalofluorescein family quenching dyes, hexachlorofluorescein family quenching dyes, coumarin family quenching dyes, rhodamine family quenching dyes, cyanine family quenching dyes. Quenching dyes, oxazine family quenching dyes, thiazine family quenching dyes, squarain family quenching dyes, chelated lanthanide family quenching dyes, BODIPY (registered trademark) family quenching dyes, and more Specifically, for example, BHQ (registered trademark) family dyes (including quenchers described in WO 01/86001: BHQ-1, BHQ-2 and BHQ-3) (Bio Searchte Nonology Japan BTJ, Iowa Black (registered trademark) (Integrated DNA Technologies), DABCYL (4- (4'-dimethylaminophenylazo) benzoic acid) (Integrated DNA Technologies), TAMRAN , N, N ′, N′-tetramethyl-6-carboxyrhodamine) (manufactured by Invitrogen), Cy3 (registered trademark) (manufactured by GE Healthcare Biosciences), Cy5 (registered trademark) (GE Health) Care Biosciences), 1-benzyl-1,4-dihydronicotinamide [BNAH], 9-anthracenecarbonitrile, 2-naphthol, 2-methoxynaphthalene, 1,4-naphthoquinone, 2,6-di -Tert-butyl 1,4-benzoquinone, 3,5-di-tert-butyl-1,2-benzoquinone, 1-naphthoic acid [1-NA], 2-naphthoic acid [2-NA], 1-pyrenebutyric acid [PyBA], Examples include 4-nitrobenzoic acid [PNBA], anthraquinone-2-carboxylic acid [AQCA], and pyrene. Further, the present invention uses the quencher described in US Pat. Nos. 6,399,392, 6,348,596, 6,080,068, and 5,707,813. You can also
 これらの消光色素のうち、バイオサーチテクノロジーズ ジャパンBTJ(株)製のBHQ-1(最大波長534nm),BHQ-2(最大波長579nm),BHQ-3(最大波長672nm)等のシリーズが広い波長領域をカバーするダーククエンチャー(自らは発光しない消光色素)として好ましい。 Among these quenching dyes, BHQ-1 (maximum wavelength 534 nm), BHQ-2 (maximum wavelength 579 nm), BHQ-3 (maximum wavelength 672 nm), etc., manufactured by Biosearch Technologies Japan BTJ Ltd. have a wide wavelength range. It is preferable as a dark quencher (a quenching dye that does not emit light itself).
 上記以外の消光色素の系統としては、通常、テトラシアノキノジメタン類,アミニウム類,ジインモニウム類,ヒドラジン類,ヒドラジド類,ヒドロキシルアミン類,ハイドロキノン類,四置換ホウ素陰イオン類,またはニッケル類,アゾ色素の重金属錯体類,フォルマザン重金属錯体,ジピロメテン金属錯体類,ポルフィリン重金属錯体類,重金属フタロシアニン類,重金属ナフタロシアニン類,メタロセン類等の金属錯体などが挙げられる。 Other quenching dye systems usually include tetracyanoquinodimethanes, aminiums, diimmoniums, hydrazines, hydrazides, hydroxylamines, hydroquinones, tetrasubstituted boron anions, nickels, azo Examples include heavy metal complexes of dyes, formazan heavy metal complexes, dipyrromethene metal complexes, porphyrin heavy metal complexes, heavy metal phthalocyanines, heavy metal naphthalocyanines, and metallocenes.
 表面プラズモンによって励起された蛍光色素によって放射されるフォトンは、電子励起状態で消光色素にエネルギー移動されてクエンチされると考えられる。すなわち、電子励起状態のエネルギーを吸収した消光色素は、異なった波長のフォトンまたは熱としてエネルギーを放出すると考えられる。したがって、TGのように蛍光色素として挙げられた化合物を消光色素(または消光剤)として用いることができる場合もある。 The photons emitted by the fluorescent dye excited by the surface plasmon are considered to be quenched by energy transfer to the quenching dye in an electronically excited state. That is, it is considered that a quenching dye that has absorbed energy in an electronically excited state emits energy as photons or heat having different wavelengths. Therefore, in some cases, a compound exemplified as a fluorescent dye such as TG can be used as a quenching dye (or quencher).
 一般に、蛍光色素と消光色素とのエネルギー転移は、蛍光色素と消光色素との間の距離、すなわち臨界転移距離に依存する。「臨界転移距離」とは、蛍光色素の電子励起準位(通常1重項)と消光色素の最低空軌道とが相互作用できる距離であり、消光色素が有機物の場合、通常10nm前後の距離、金属含有物の場合では通常30nm程度の距離である。特定の蛍光色素と消光色素との臨界転移距離については、当該技術分野において周知であり、例えば、WuおよびBrand,1994年,Anal.Biochem.218巻:1~3頁の論文に記載の臨界転移距離を参照することができる。 Generally, energy transfer between a fluorescent dye and a quenching dye depends on a distance between the fluorescent dye and the quenching dye, that is, a critical transition distance. “Critical transition distance” is a distance at which the electronic excitation level (usually singlet) of a fluorescent dye can interact with the lowest empty orbit of the quenching dye. When the quenching dye is an organic substance, it is usually a distance of about 10 nm, In the case of a metal-containing material, the distance is usually about 30 nm. The critical transition distance between a specific fluorescent dye and a quenching dye is well known in the art, for example, Wu and Brand, 1994, Anal. Biochem. 218: 1-3 You can refer to the distance.
 特定の蛍光色素と消光色素との組み合わせの基準としては、例えば、蛍光色素による蛍光発光の量子収率;蛍光色素によって放たれる蛍光波長;消光色素の減衰係数;消光色素によって放たれる蛍光波長;消光色素による蛍光発光の量子収率などが挙げられる。また、消光色素が蛍光色素でもある場合、消光色素と蛍光色素とが、一方によって放射された蛍光がもう片方によって放射された蛍光と容易に区別できるように組み合わせることが好ましい。特定の蛍光色素と消光色素との組み合わせの選択については、KlostermeierおよびMillar,2002年,Biopolymers 61巻:159~179頁の総論を参照することができる。 As a standard for the combination of a specific fluorescent dye and a quenching dye, for example, the quantum yield of fluorescence emission by the fluorescent dye; the fluorescence wavelength emitted by the fluorescent dye; the extinction coefficient of the quenching dye; the fluorescence wavelength emitted by the quenching dye And the quantum yield of fluorescence emission by the quenching dye. In addition, when the quenching dye is also a fluorescent dye, it is preferable to combine the quenching dye and the fluorescent dye so that the fluorescence emitted by one can be easily distinguished from the fluorescence emitted by the other. For the selection of combinations of specific fluorescent dyes and quenching dyes, reference can be made to the general review of Klostermeier and Millar, 2002, Biopolymers 61: 159-179.
 本発明で用いられる蛍光色素と消光色素との例示的な組み合わせは、蛍光色素として6-カルボキシフルオレセイン〔FAM〕と消光色素としてCy5(登録商標);Alexa Fluor(登録商標)647<蛍光色素>とBHQ-3<消光色素>;FAM,TET,JOE,HEXおよびOregon Green<蛍光色素>とBHQ-1<消光色素>;FAM,TAMRA,ROX,Cy3,Cy3.5,CAL RedおよびRed 640<蛍光色素>とBHQ-2<消光色素>;Cy5およびCy5.5<蛍光色素>とBHQ-3<消光色素>、米国特許番号第6,245,514号に記載されている組み合わせ、表2に記載の組合わせなどが挙げられるが、本発明はこれらに限定されない。 An exemplary combination of a fluorescent dye and a quenching dye used in the present invention includes 6-carboxyfluorescein [FAM] as the fluorescent dye and Cy5 (registered trademark) as the quenching dye; Alexa Fluor (registered trademark) 647 <fluorescent dye> BHQ-3 <quenching dye>; FAM, TET, JOE, HEX and Oregon Green <fluorescent dye> and BHQ-1 <quenching dye>; FAM, TAMRA, ROX, Cy3, Cy3.5, CAL Red and Red 640 <fluorescence Dye> and BHQ-2 <quenching dye>; Cy5 and Cy5.5 <fluorescent dye> and BHQ-3 <quenching dye>, combinations described in US Pat. No. 6,245,514, listed in Table 2 However, the present invention is not limited to these combinations.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 蛍光色素および消光色素の両方として使用可能である分子は、例えば、フルオレセイン、6-カルボキシフルオレセイン、2',7'-ジメトキシ-4',5'-ジクロロ-6-カルボキシフルオレセイン、ローダミン、6-カルボキシローダミン、6-カルボキシ-X-ローダミン、5-(2'-アミノエチル)アミノナフタレン-1-スルホン酸〔EDANS〕などが挙げられる。 Molecules that can be used as both fluorescent and quenching dyes include, for example, fluorescein, 6-carboxyfluorescein, 2 ′, 7′-dimethoxy-4 ′, 5′-dichloro-6-carboxyfluorescein, rhodamine, 6-carboxyl And rhodamine, 6-carboxy-X-rhodamine, 5- (2′-aminoethyl) aminonaphthalene-1-sulfonic acid [EDANS] and the like.
 (リガンドと消光色素とのコンジュゲート)
 「プラズモン励起センサに含まれるリガンドとは同じであっても異なっていてもよいリガンドと消光色素とのコンジュゲート」は、リガンドとして2次抗体を用いる場合、以下の態様(α)または(β)が好ましい。
(Conjugate of ligand and quenching dye)
The “conjugate of a ligand and a quenching dye, which may be the same as or different from the ligand contained in the plasmon excitation sensor”, uses the following embodiment (α) or (β) when a secondary antibody is used as the ligand: Is preferred.
 態様(α):2次抗体として、検体中に含有されるアナライト(標的抗原)を認識し結合し得る抗体を用いる。ただし、本発明のプラズモン励起センサに固定化されているリガンドとして用いる1次抗体抗がポリクローナル抗体である場合、2次抗体は、モノクローナル抗体であってもポリクローナル抗体であってもよいが、該1次抗体がモノクローナル抗体である場合、2次抗体は、該1次抗体が認識しないエピトープを認識するモノクローナル抗体であるか、またはポリクローナル抗体であることが望ましい。 Embodiment (α): An antibody capable of recognizing and binding to an analyte (target antigen) contained in a specimen is used as a secondary antibody. However, when the primary antibody used as a ligand immobilized on the plasmon excitation sensor of the present invention is a polyclonal antibody, the secondary antibody may be a monoclonal antibody or a polyclonal antibody. When the secondary antibody is a monoclonal antibody, the secondary antibody is preferably a monoclonal antibody that recognizes an epitope that the primary antibody does not recognize, or a polyclonal antibody.
 本発明のプラズモン励起センサに固定化されているリガンドとして用いる1次抗体抗が、例えば、AFPモノクローナル抗体である場合、態様(α)の2次抗体としては、検体中に含有されるAFPに競合する抗原を認識し結合することができるモノクローナル抗体またはポリクローナル抗体を必要とする。 When the primary antibody used as a ligand immobilized on the plasmon excitation sensor of the present invention is, for example, an AFP monoclonal antibody, the secondary antibody of the embodiment (α) competes with AFP contained in the specimen. A monoclonal or polyclonal antibody capable of recognizing and binding to the antigen of interest.
 態様(α)は、消光剤の能力次第で蛍光信号量を調整できるため、本発明のアッセイ法が最適なS/N比で実施可能であるから好適である。
 態様(β):2次抗体として、検体中に含有されるアナライト(標的抗原)と競合するアナライト(競合抗原;ただし、標的抗原とは異なるものであるが、1次抗体(リガンド)とは結合する。)を予め結合した抗体を用いる。このような2次抗体は、標的抗原には結合せずに競合抗原にさえ結合すれば、モノクローナル抗体であってもポリクローナル抗体であってもよい。
Aspect (α) is preferable because the amount of fluorescence signal can be adjusted depending on the ability of the quencher, and therefore the assay method of the present invention can be carried out at an optimal S / N ratio.
Aspect (β): As a secondary antibody, an analyte competing with an analyte (target antigen) contained in a specimen (competitive antigen; provided that the primary antibody (ligand) is different from the target antigen) Are bound in advance). Such a secondary antibody may be a monoclonal antibody or a polyclonal antibody as long as it binds to a competitive antigen without binding to a target antigen.
 態様(β)で用いる2次抗体と競合抗原との複合体を競合イムノアッセイ法に用いることが好ましい。競合イムノアッセイ法を、例えば、本発明のアッセイ法(X)または(Y)に適用した場合、すなわち、本発明のアッセイ法(X)または(Y)において、リガンドと消光色素とのコンジュゲートの代わりに、リガンドと消光色素とのコンジュゲートに予め競合抗原を結合させた複合体を用いると、リガンドと消光色素とのコンジュゲートの非特異的な結合(吸着)によるノイズを低減することでき、かつ蛍光信号(蛍光シグナル)量と標的抗原量とをより高い精度で比例させることができる。 It is preferable to use the complex of the secondary antibody and the competitive antigen used in the embodiment (β) for the competitive immunoassay method. When the competitive immunoassay method is applied to, for example, the assay method (X) or (Y) of the present invention, that is, in the assay method (X) or (Y) of the present invention, instead of the conjugate of the ligand and the quenching dye. In addition, when a complex in which a competitive antigen is previously bound to a conjugate of a ligand and a quenching dye is used, noise due to nonspecific binding (adsorption) of the conjugate of the ligand and the quenching dye can be reduced, and The amount of fluorescent signal (fluorescent signal) and the amount of target antigen can be proportional to each other with higher accuracy.
 よって、態様(β)は、蛍光信号(蛍光シグナル)量と標的抗原量とを比例させることができるため好適である。
 2次抗体と競合抗原との複合体は、上記工程(b1)、好ましくは上記洗浄工程の後に、その過剰量をプラズモン励起センサに接触させる。
Therefore, the embodiment (β) is preferable because the amount of fluorescent signal (fluorescent signal) and the amount of target antigen can be proportional.
The complex of the secondary antibody and the competitive antigen is brought into contact with the plasmon excitation sensor in excess after the step (b1), preferably after the washing step.
 上記1次抗体が抗AFPモノクローナル抗体である場合、態様(β)の2次抗体としては、抗AFPポリクローナル抗体、または該抗AFPモノクローナル抗体が認識しないエピトープを認識し結合することができる抗AFPモノクローナル抗体を必要とする。 When the primary antibody is an anti-AFP monoclonal antibody, the secondary antibody of the embodiment (β) is an anti-AFP polyclonal antibody or an anti-AFP monoclonal antibody that can recognize and bind to an epitope that the anti-AFP monoclonal antibody does not recognize. Requires antibody.
 リガンドと消光色素とのコンジュゲートの作製方法としては、リガンドとして2次抗体を用いる場合、例えば、まず消光色素にカルボキシル基を付与し、該カルボキシル基を、水溶性カルボジイミド〔WSC〕(例えば、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩〔EDC〕など)とN-ヒドロキシコハク酸イミド〔NHS〕とにより活性エステル化し、次いで活性エステル化したカルボキシル基と2次抗体が有するアミノ基とを水溶性カルボジイミドを用いて脱水反応させ固定化させる方法;イソチオシアネートおよびアミノ基をそれぞれ有する2次抗体および消光色素を反応させ固定化する方法;スルホニルハライドおよびアミノ基をそれぞれ有する2次抗体および消光色素を反応させ固定化する方法;ヨードアセトアミドおよびチオール基をそれぞれ有する2次抗体および消光色素を反応させ固定化する方法;ビオチン化された消光色素とストレプトアビジン化された2次抗体とを反応させ固定化する方法などが挙げられる。 As a method for preparing a conjugate of a ligand and a quenching dye, when a secondary antibody is used as the ligand, for example, first, a carboxyl group is added to the quenching dye, and the carboxyl group is converted into a water-soluble carbodiimide [WSC] (for example, 1 -Ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride [EDC] and the like) and N-hydroxysuccinimide [NHS], and then the active esterified carboxyl group and the amino acid contained in the secondary antibody A method of dehydrating a group with water-soluble carbodiimide and immobilizing it; a method of reacting and immobilizing a secondary antibody having an isothiocyanate and an amino group and a quenching dye; a secondary antibody having a sulfonyl halide and an amino group, respectively And a method of reacting and immobilizing a quenching dye; Doasetoamido and methods for immobilizing by reacting secondary antibody and quencher dyes each having a thiol group; and a method of immobilizing reacting a biotinylated quencher dye and streptavidinated by secondary antibodies.
 このように作製されたリガンドと消光色素とのコンジュゲートの送液中の濃度は、0.001~10,000μg/mLが好ましく、1~1,000)μg/mLがより好ましい。 The concentration of the conjugate of the ligand thus prepared and the quenching dye during feeding is preferably 0.001 to 10,000 μg / mL, more preferably 1 to 1,000) μg / mL.
 送液を循環させる温度,時間および流速は、それぞれ上記工程(a1)または(a2)の場合と同様である。
 また、工程(b1)と下記工程(d)との間、工程(b2)と下記工程(c)との間に、上記洗浄工程を含むことが好ましい。
The temperature, time and flow rate at which the liquid is circulated are the same as those in step (a1) or (a2).
Moreover, it is preferable to include the said washing | cleaning process between a process (b2) and the following process (c) between a process (b1) and the following process (d).
 [工程(b2)]
 工程(b2)とは、上記工程(a1)、好ましくは上記洗浄工程を経て得られたプラズモン励起センサに、さらに、該プラズモン励起センサに含まれるリガンドとは同じであっても異なっていてもよいリガンドと酵素とのコンジュゲートを反応させる工程である。
[Step (b2)]
The step (b2) may be the same as or different from the plasmon excitation sensor obtained through the step (a1), preferably the washing step, and the ligand contained in the plasmon excitation sensor. This is a step of reacting a conjugate of a ligand and an enzyme.
 (酵素)
 工程(b2)、すなわちアッセイ法(Z)で用いられる酵素は、所定の「消光剤基質」から上記蛍光色素が発する蛍光を消光し得る「消光剤」を生成させるためのものである。より具体的には、その酵素は、例えば(A)保護基によってブロックされている下記「消光剤基質」から、酵素反応によって保護基を脱離させることで消光剤を活性化したり、(B)後述する特定の「消光剤基質」を用いた酵素反応によって活性化した消光剤により蛍光色素の周囲のpHを低下させて蛍光強度を弱めたりするために用いられる。
(enzyme)
The enzyme used in the step (b2), that is, the assay method (Z) is for generating a “quenching agent” capable of quenching the fluorescence emitted from the fluorescent dye from a predetermined “quenching substrate”. More specifically, the enzyme activates the quencher by, for example, (A) removing the protecting group by enzymatic reaction from the following “quencher substrate” blocked by the protecting group, or (B) It is used for lowering the fluorescence intensity by lowering the pH around the fluorescent dye with a quencher activated by an enzymatic reaction using a specific “quencher substrate” described later.
 (A)の酵素反応に用いる「酵素」としては、例えば、β-ガラクトシダーゼ,β-グルコシダーゼ,アルカリフォスファターゼなどが挙げられる。
 β-ガラクトシダーゼは、消光剤基質であるTG-βGalからβGalを脱離させる反応を触媒する。また、β-グルコシダーゼは、消光剤基質であるTG-βGluからβGluを脱離させる反応を触媒する。遊離のTGは励起波長が490nmであり、蛍光波長が475~495nmである蛍光色素とFluorescence Resonance Energy Transfer〔FRET;蛍光共鳴エネルギー移動〕を起すので、テルビウム〔Tb〕キレートの蛍光(蛍光波長:495nm)または強化シアン蛍光タンパク質〔Enhanced Cyan Fluorescence Protein;ECFP〕(蛍光波長:475nm)などの蛍光を消光することができる。
Examples of the “enzyme” used in the enzyme reaction (A) include β-galactosidase, β-glucosidase, alkaline phosphatase and the like.
β-galactosidase catalyzes the reaction of eliminating βGal from the quencher substrate TG-βGal. In addition, β-glucosidase catalyzes a reaction for eliminating βGlu from TG-βGlu which is a quencher substrate. Since free TG has an excitation wavelength of 490 nm and a fluorescence dye having a fluorescence wavelength of 475 to 495 nm and Fluorescence Resonance Energy Transfer (FRET; fluorescence resonance energy transfer), fluorescence of terbium [Tb] chelate (fluorescence wavelength: 495 nm) ) Or enhanced cyan fluorescent protein (Enhanced Cyan Fluorescence Protein; ECFP) (fluorescence wavelength: 475 nm) can be quenched.
 アルカリフォスファターゼは、AttoPhos(登録商標)基質を加水分解する反応を触媒し、蛍光物質であるBBT〔2'-[2-benzthiazoyl]-6'-hydroxyl-benzthiazole〕を生成させる。生成したBBTは励起波長482nmの蛍光物質であり、上述のTGと同様、テルビウム〔Tb〕キレートまたはECFPとFRETを起し、それらを消光することができる。 Alkaline phosphatase catalyzes a reaction of hydrolyzing an AttoPhos (registered trademark) substrate to produce BBT [2 ′-[2-benzthiazoyl] -6′-hydroxyl-benzthiazole], which is a fluorescent substance. The produced BBT is a fluorescent substance having an excitation wavelength of 482 nm, and, like the above-described TG, can cause terbium [Tb] chelate or ECFP and FRET to quench them.
 (B)の酵素反応に用いる「酵素」としては、例えば、グルコースオキシダーゼなどが挙げられる。
 グルコースオキシダーゼは、グルコースを消光剤基質とする酵素反応により、グルコノラクトンと過酸化水素とを生成する。水分に溶解した過酸化水素によってその水分のpHが低下するにともない、蛍光色素として用いている2-Me-4-OMe TG,2-OMe-5-Me TGまたは2-OMe TGなどの蛍光強度が小さくなる(すなわち、消光する)。
Examples of the “enzyme” used in the enzyme reaction (B) include glucose oxidase.
Glucose oxidase produces gluconolactone and hydrogen peroxide by an enzyme reaction using glucose as a quencher substrate. Fluorescence intensity such as 2-Me-4-OMe TG, 2-OMe-5-Me TG or 2-OMe TG used as a fluorescent dye as the pH of the water is lowered by hydrogen peroxide dissolved in the water Becomes smaller (ie, extinguished).
 (A),(B)ともに、これらの酵素は1種単独で用いることもでき、また2種以上併用することもできる。
 (リガンドと酵素とのコンジュゲート)
 「プラズモン励起センサに含まれるリガンドとは同じであっても異なっていてもよいリガンドと酵素とのコンジュゲート」とは、上記酵素により標識されたリガンドであって、該リガンドは、上記リガンドと同じであっても異なっていてもよい。
In both (A) and (B), these enzymes can be used alone or in combination of two or more.
(Conjugate of ligand and enzyme)
“The conjugate of a ligand and an enzyme, which may be the same as or different from the ligand contained in the plasmon excitation sensor” is a ligand labeled with the enzyme, and the ligand is the same as the ligand Or different.
 リガンドと酵素とのコンジュゲートの作製方法としては、例えば、まず酵素が有するカルボキシル基を、水溶性カルボジイミド〔WSC〕(例えば、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩〔EDC〕など)とN-ヒドロキシコハク酸イミド〔NHS〕とにより活性エステル化し、次いで活性エステル化したカルボキシル基とリガンドが有するアミノ基とを水溶性カルボジイミドを用いて脱水反応させ固定化させる方法;イソチオシアネートおよびアミノ基をそれぞれ有するリガンドおよび酵素を反応させ固定化する方法;スルホニルハライドおよびアミノ基をそれぞれ有するリガンドおよび酵素を反応させ固定化する方法;ヨードアセトアミドおよびチオール基をそれぞれ有するリガンドおよび酵素を反応させ固定化する方法;ビオチン化された酵素とストレプトアビジン化されたリガンドとを反応させ固定化する方法などが挙げられる。 As a method for preparing a conjugate of a ligand and an enzyme, for example, a carboxyl group possessed by an enzyme is first converted into a water-soluble carbodiimide [WSC] (for example, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride [EDC]. Etc.) and N-hydroxysuccinimide [NHS], followed by dehydration reaction and immobilization of the active esterified carboxyl group and the amino group of the ligand using water-soluble carbodiimide; isothiocyanate And a method of immobilizing a ligand and an enzyme each having an amino group; a method of reacting and immobilizing a ligand and an enzyme each having a sulfonyl halide and an amino group; and a method of reacting and immobilizing a ligand and an enzyme each having an iodoacetamide and a thiol group, respectively. A method can be mentioned immobilizing reacting the ligand is an enzyme and streptavidin of which is biotinylated; method for immobilizing is.
 このように作製されたリガンドと酵素とのコンジュゲートの送液中の濃度は、0.001~10,000μg/mLが好ましく、1~1,000)μg/mLがより好ましい。
 送液を循環させる温度、時間および流速は、それぞれ上記工程(a1)または(a2)の場合と同様である。
The concentration of the ligand-enzyme conjugate thus prepared in the solution is preferably 0.001 to 10,000 μg / mL, more preferably 1 to 1,000) μg / mL.
The temperature, time, and flow rate at which the liquid is circulated are the same as those in step (a1) or (a2).
 [工程(c)]
 工程(c)とは、上記工程(b2)、好ましくは上記洗浄工程を経て得られたプラズモン励起センサに、消光剤基質を反応させ、消光剤が生成される工程である。
[Step (c)]
The step (c) is a step in which a quencher substrate is reacted with the plasmon excitation sensor obtained through the step (b2), preferably the washing step, to generate a quencher.
 (消光剤基質・消光剤)
 消光剤基質としては、上述したように、例えば、TG-βGal,TG-βGlu,AttoPhos(登録商標)基質,グルコースなどが挙げられる。
(Quencher substrate / Quencher)
Examples of the quencher substrate include TG-βGal, TG-βGlu, AttoPhos (registered trademark) substrate, glucose and the like as described above.
 酵素反応(A)に用いる消光剤基質であるTG-βGalおよびTG-βGluは、蛍光色素であるTokyoGreen〔TG〕に、保護基としてそれぞれβ-ガラクトースおよびβ-グルコース1分子が付加された化合物であり、この状態では蛍光はほとんど観察されないが、β-ガラクトシダーゼおよびβ-グルコシダーゼにより保護基が脱離することによって強い光を発するようになる。 TG-βGal and TG-βGlu, which are quencher substrates used in the enzyme reaction (A), are compounds obtained by adding one molecule of β-galactose and β-glucose as protective groups to the fluorescent dye, TokyoGreen [TG], respectively. In this state, almost no fluorescence is observed, but strong light is emitted by the removal of the protecting group by β-galactosidase and β-glucosidase.
 なお、TGは、本発明において、上記式で表される2-Me TGおよび2-Me-4-OMe TGなども包含する。
 AttoPhos(登録商標)基質は、pH9.5の溶液中であってもほとんど蛍光を発しないが、アルカリフォスファターゼによる酵素反応の結果BBTに変換され、強い蛍光を発するようになる。
In the present invention, TG includes 2-Me TG and 2-Me-4-OMe TG represented by the above formula.
The AttoPhos (registered trademark) substrate hardly emits fluorescence even in a solution at pH 9.5, but is converted to BBT as a result of the enzymatic reaction with alkaline phosphatase, and emits strong fluorescence.
 酵素反応(A)で生成された消光剤は、上記消光色素と同様に蛍光を消光または吸収し得る化合物に包含されるものであり、上記蛍光色素の励起されたエネルギーを吸収できる適切なエネルギー準位を有する化合物であって、ある蛍光色素に対して適切な消光色素を添加すると、蛍光が消失する。 The quencher produced by the enzyme reaction (A) is included in a compound that can quench or absorb fluorescence in the same manner as the quenching dye, and can be used in an appropriate energy level capable of absorbing the excited energy of the fluorescent dye. When a suitable quenching dye is added to a certain fluorescent dye, the fluorescence disappears.
 酵素反応(B)に用いる消光剤基質としては、例えば、グルコースオキシダーゼの基質となるグルコースおよび酸素などが挙げられる。
 本発明のアッセイ法の工程(c)において、酵素,消光剤基質,消光剤および蛍光色素の好ましい組み合わせとして、下表に示すものが挙げられる。
Examples of the quencher substrate used in the enzyme reaction (B) include glucose and oxygen which are substrates for glucose oxidase.
In the step (c) of the assay method of the present invention, preferable combinations of an enzyme, a quencher substrate, a quencher and a fluorescent dye include those shown in the following table.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 このような消光剤基質の送液中の濃度は、0.001~10,000μg/mLが好ましく、1~1,000μg/mLがより好ましい。
 送液を循環させる温度、時間および流速は、それぞれ上記工程(a1)または(a2)の場合と同様である。
The concentration of such a quencher substrate during feeding is preferably 0.001 to 10,000 μg / mL, more preferably 1 to 1,000 μg / mL.
The temperature, time, and flow rate at which the liquid is circulated are the same as those in step (a1) or (a2).
 [工程(d)]
 工程(d)とは、上記工程(b1)、好ましくは上記洗浄工程または上記工程(c)を経て得られたプラズモン励起センサに、上記金属薄膜を形成していない上記透明平面基板の片面から、プリズムを経由してレーザ光を照射し、励起された蛍光色素から発光された蛍光量を測定する工程である。
[Step (d)]
Step (d) refers to the step (b1), preferably the plasmon excitation sensor obtained through the cleaning step or the step (c), from one side of the transparent flat substrate on which the metal thin film is not formed. This is a step of measuring the amount of fluorescence emitted from the excited fluorescent dye by irradiating laser light through a prism.
 「レーザ光」は、光学フィルタを通して、プリズムに入射する直前のエネルギーおよびフォトン量を調節することが望ましい。
 レーザ光の照射により、全反射減衰条件〔ATR〕において、金属薄膜の表面に表面プラズモンが発生する。表面プラズモンの電場増強効果により、照射したフォトン量の数十~数百倍に増えたフォトンにより蛍光色素を励起する。なお、該電場増強効果によるフォトン増加量は、基板となるガラスの屈折率、金属薄膜の金属種および膜厚に依存するが、通常、金では約10~20倍の増加量となる。
It is desirable that the “laser light” adjusts the energy and the amount of photons immediately before entering the prism through the optical filter.
Irradiation with laser light generates surface plasmons on the surface of the metal thin film under the total reflection attenuation condition [ATR]. Due to the electric field enhancement effect of surface plasmons, the fluorescent dye is excited by photons that are increased by several tens to several hundred times the amount of photons irradiated. The increase in photons due to the electric field enhancement effect depends on the refractive index of the glass serving as the substrate, the metal species and the film thickness of the metal thin film, but is usually about 10 to 20 times the increase in gold.
 蛍光色素は光吸収により分子内の電子が励起され、短時間のうちに第一電子励起状態に移動し、この状態(準位)から基底状態に戻る際、そのエネルギー差に相当する波長の蛍光を発する。 In the fluorescent dye, the electrons in the molecule are excited by light absorption, move to the first electronic excited state in a short time, and when returning from this state (level) to the ground state, the fluorescent dye has a wavelength corresponding to the energy difference. To emit.
 しかしながら、蛍光色素の基底状態から第一電子励起状態に移行する際に必要なエネルギーに相当するエネルギーを吸収することができる消光剤が近傍にあると、蛍光色素から消光色素または消光剤へエネルギーが移動し、蛍光色素は蛍光を発生することなく第一電子励起状態から基底状態に戻ってしまう。この現象を消光という。 However, if there is a quencher in the vicinity that can absorb energy corresponding to the energy required for transition from the ground state of the fluorescent dye to the first electronic excited state, energy is transferred from the fluorescent dye to the quenching dye or the quencher. The fluorescent dye moves and returns from the first electron excited state to the ground state without generating fluorescence. This phenomenon is called quenching.
 消光色素・消光剤により消光されなかった蛍光は、カットフィルタを通して、集光レンズによりSPFS検出部に入射し、入射光のカウント値を測定する。
 「レーザ光」の光源としては、例えば、波長400~840nm、入射光量として1mW程度のレーザ光を照射できるLED、波長230~800nm(金属薄膜に用いる金属種によって共鳴波長が決まる。)、0.01~100mWのレーザ光を照射できる半導体レーザ〔LD〕などが挙げられる。これら光源のうち、SPRではLED,LDともに用いることができるが、SPFSでは蛍光色素を励起するために高エネルギーが必要であり、高感度の観点から、LDが好ましい。
The fluorescence that has not been quenched by the quenching dye / quenching agent is incident on the SPFS detector through the cut filter by the condenser lens, and the count value of the incident light is measured.
As a light source of “laser light”, for example, an LED capable of irradiating laser light having a wavelength of 400 to 840 nm and an incident light amount of about 1 mW, a wavelength of 230 to 800 nm (resonance wavelength is determined by the metal type used in the metal thin film), 0. Examples thereof include a semiconductor laser [LD] capable of irradiating a laser beam of 01 to 100 mW. Among these light sources, both LED and LD can be used in SPR, but SPFS requires high energy to excite the fluorescent dye, and LD is preferable from the viewpoint of high sensitivity.
 「プリズム」は、各種フィルタを介したレーザ光が、プラズモン励起センサに効率よく入射することを目的としており、屈折率が上記「透明平面基板」と同じであることが好ましい。本発明は、全反射条件を設定できる各種プリズムを適宜選択することができることから、角度、形状に特に制限はなく、例えば、60度分散プリズムなどであってもよい。このようなプリズムの市販品としては、上述した「ガラス製の透明平面基板」の市販品と同様のものが挙げられる。 The “prism” is intended to allow the laser light through various filters to efficiently enter the plasmon excitation sensor, and the refractive index is preferably the same as that of the “transparent flat substrate”. In the present invention, various prisms for which total reflection conditions can be set can be selected as appropriate, and therefore, there is no particular limitation on the angle and shape. For example, a 60-degree dispersion prism may be used. Examples of such commercially available prisms include those similar to the above-mentioned commercially available “glass-made transparent flat substrate”.
 「光学フィルタ」としては、例えば、減光〔ND〕フィルタ,ダイアフラムレンズなどが挙げられる。
 「減光〔ND〕フィルタ」(または、中性濃度フィルタ)は、入射レーザ光量を調節することを目的とするものである。特に、ダイナミックレンジの狭い検出器を使用するときには精度の高い測定を実施する上で用いることが好ましい。
Examples of the “optical filter” include a neutral density [ND] filter and a diaphragm lens.
The “darkening [ND] filter” (or neutral density filter) is intended to adjust the amount of incident laser light. In particular, when a detector with a narrow dynamic range is used, it is preferable to use it for carrying out a highly accurate measurement.
 「偏光フィルタ」は、レーザ光を、表面プラズモンを効率よく発生させるP偏光とするために用いられるものである。
 「カットフィルタ」は、外光(装置外の照明光),励起光(励起光の透過成分),迷光(各所での励起光の散乱成分),プラズモンの散乱光(励起光を起源とし、プラズモン励起センサ表面上の構造体または付着物などの影響で発生する散乱光),酵素蛍光基質の自家蛍光,FRETにより消光色素・消光剤が発する蛍光などの各種ノイズ光を除去するフィルタであって、例えば、干渉フィルタ,色フィルタなどが挙げられる。
The “polarizing filter” is used to make the laser light P-polarized light that efficiently generates surface plasmons.
“Cut filters” are: external light (illumination light outside the device), excitation light (excitation light transmission component), stray light (excitation light scattering component in various places), plasmon scattering light (excitation light originated from plasmon A filter that removes various noise light such as scattered light generated due to the influence of structures or deposits on the surface of the excitation sensor), autofluorescence of the enzyme fluorescent substrate, fluorescence emitted by the quenching dye / quenching agent by FRET, For example, an interference filter, a color filter, etc. are mentioned.
 「集光レンズ」は、検出器に蛍光シグナルを効率よく集光することを目的とするものであり、任意の集光系でよい。簡易な集光系として、顕微鏡などで使用されている、市販の対物レンズ(例えば、(株)ニコン製またはオリンパス(株)製等)を転用してもよい。対物レンズの倍率としては、10~100倍が好ましい。 The “condensing lens” is intended to efficiently collect the fluorescent signal on the detector, and may be an arbitrary condensing system. As a simple condensing system, a commercially available objective lens (for example, manufactured by Nikon Corporation or Olympus Corporation) used in a microscope or the like may be used. The magnification of the objective lens is preferably 10 to 100 times.
 「SPFS検出部」としては、超高感度の観点からは光電子増倍管(浜松ホトニクス(株)製のフォトマルチプライヤー)が好ましい。また、これらに比べると感度は下がるが、画像として見ることができ、かつノイズ光の除去が容易なことから、多点計測が可能なCCDイメージセンサも好適である。 The “SPFS detector” is preferably a photomultiplier (a photomultiplier manufactured by Hamamatsu Photonics) from the viewpoint of ultra-high sensitivity. Also, although the sensitivity is lower than these, a CCD image sensor capable of multipoint measurement is also suitable because it can be viewed as an image and noise light can be easily removed.
 [工程(e)]
 工程(e)とは、上記工程(d)で得られた測定結果から、検体中に含有されるアナライトの量を算出する工程である。
[Step (e)]
The step (e) is a step of calculating the amount of the analyte contained in the specimen from the measurement result obtained in the step (d).
 より具体的には、既知濃度のアナライトでの測定を実施することで検量線を作成し、作成された検量線に基づいて被測定検体中のアナライト(標的抗原)を測定シグナルから算出する工程である。 More specifically, a calibration curve is created by performing measurement with an analyte having a known concentration, and the analyte (target antigen) in the sample to be measured is calculated from the measurement signal based on the created calibration curve. It is a process.
 さらに、工程(e)は、上記工程(d)の前に測定したブランク蛍光シグナル、上記工程(d)で得られたアッセイ蛍光シグナル、および何も修飾していない金属基板を流路に固定し、超純水を流しながらSPFSを測定して得られたシグナルを初期ノイズとしたとき、下記式で表されるアッセイS/N比を算出することができる。 Further, in the step (e), the blank fluorescent signal measured before the step (d), the assay fluorescent signal obtained in the step (d), and a metal substrate not modified at all are fixed to the channel. When the signal obtained by measuring SPFS while flowing ultrapure water is used as initial noise, the assay S / N ratio represented by the following formula can be calculated.
   アッセイS/N比=|(アッセイ蛍光シグナル)-(ブランク蛍光シグナル)|/(初期ノイズ)
              <アッセイ用装置>
 本発明のアッセイ用装置は、少なくとも、上記工程(b1)または(c)を経て得られたプラズモン励起センサ,レーザ光の光源,光学フィルタ,プリズム,カットフィルタ,集光レンズおよび表面プラズモン励起増強蛍光検出部を含み、上記工程(d)に用いられることを特徴とする。
Assay S / N ratio = | (assay fluorescence signal) − (blank fluorescence signal) | / (initial noise)
<Assay device>
The assay device of the present invention comprises at least the plasmon excitation sensor, laser light source, optical filter, prism, cut filter, condensing lens, and surface plasmon excitation enhanced fluorescence obtained through the step (b1) or (c). It includes a detector and is used in the step (d).
 すなわち、本発明のアッセイ用装置は、本発明のプラズモン励起センサ(I)または(II)を用いて、本発明のアッセイ法(X),(Y)または(Z)を実施するためのものである。 That is, the assay device of the present invention is for carrying out the assay method (X), (Y) or (Z) of the present invention using the plasmon excitation sensor (I) or (II) of the present invention. is there.
 「装置」としては、少なくとも光源,光学フィルタ,プリズム,流路とプラズモン励起センサと送液ポンプと、カットフィルタ,集光レンズおよびSPFS検出部を含むものとする。また、表面プラズモン共鳴〔SPR〕検出部、すなわちSPR専用の受光センサとしてのフォトダイオード,SPRおよびSPFSの最適角度を調製するための角度可変部(サーボモータで全反射減衰〔ATR〕条件を求めるためにフォトダイオードと光源とを同期して、30°~85°の角度変更する。分解能は0.01°以上が好ましい。),SPFS検出部に入力された情報を処理するためのコンピュータなども含んでもよい。 The “apparatus” includes at least a light source, an optical filter, a prism, a flow path, a plasmon excitation sensor, a liquid feed pump, a cut filter, a condenser lens, and an SPFS detection unit. In addition, the surface plasmon resonance [SPR] detector, that is, the angle variable unit for adjusting the optimum angle of the photodiode, SPR and SPFS as a light receiving sensor dedicated to SPR (in order to obtain the total reflection attenuation [ATR] condition by the servomotor) In addition, the angle between 30 ° and 85 ° is changed in synchronization with the photodiode and the light source. The resolution is preferably 0.01 ° or more.) Including a computer for processing information input to the SPFS detector But you can.
 光源,光学フィルタ,カットフィルタ,集光レンズおよびSPFS検出部の好ましい態様は上述したものと同様である。
 「送液ポンプ」としては、例えば、送液が微量な場合に好適なマイクロポンプ,送り精度が高く脈動が少なく好ましいが循環することができないシリンジポンプ,簡易で取り扱い性に優れるが微量送液が困難な場合があるチューブポンプなどが挙げられる。
Preferred embodiments of the light source, the optical filter, the cut filter, the condensing lens, and the SPFS detection unit are the same as those described above.
Examples of the “liquid feed pump” include a micro pump suitable for a small amount of liquid feed, a syringe pump with high feed accuracy and low pulsation, which is preferable but cannot be circulated, and a simple and excellent handleability but a small amount of liquid feed. For example, a tube pump may be difficult.
             <アッセイ用のキット>
 本発明のアッセイ用のキットは、上記(X)の態様をとるとき、少なくとも、透明平面基板と上記金属薄膜と上記の誘電体からなるスペーサ層と上記蛍光色素層とを含むセンサおよび上記消光色素を含み、本発明のアッセイ法(X)に用いられ;
 上記(Y)の態様をとるとき、少なくとも、透明平面基板と上記金属薄膜と上記の誘電体からなるスペーサ層とを含むセンサ,上記蛍光色素および上記消光色素を含み、本発明のアッセイ法(Y)に用いられ;
 上記(Z)の態様をとるとき、少なくとも、透明平面基板と上記金属薄膜と上記の誘電体からなるスペーサ層と上記蛍光色素層とを含むセンサ,ならびに上記の酵素および消光剤基質を含み、本発明のアッセイ法(Z)に用いられることを特徴とする。
<Assay kit>
When the assay kit of the present invention takes the above-described embodiment (X), the sensor includes at least a transparent flat substrate, the metal thin film, the spacer layer made of the dielectric, and the fluorescent dye layer, and the quenching dye. Used in the assay method (X) of the present invention;
When the embodiment (Y) is adopted, the assay method of the present invention (Y) includes at least a sensor including a transparent flat substrate, the metal thin film, and a spacer layer made of the dielectric, the fluorescent dye, and the quenching dye. );
When the embodiment of (Z) is taken, it includes at least a sensor including a transparent flat substrate, the metal thin film, the spacer layer made of the dielectric, and the fluorescent dye layer, and the enzyme and quencher substrate. It is used for the assay method (Z) of the invention.
 本発明のアッセイ用キットは、本発明のアッセイ法(X),(Y)または(Z)を実施するに当り、検体,1次抗体および2次抗体以外に必要とされるすべてのものを含むことが好ましい。 The assay kit of the present invention includes everything necessary for performing the assay method (X), (Y) or (Z) of the present invention in addition to the specimen, the primary antibody and the secondary antibody. It is preferable.
 例えば、本発明のキットと、検体として血液と、特定の腫瘍マーカーに対する抗体とを用いることによって、特定の腫瘍マーカーの含有量を、高感度かつ高精度で検出することができる。この結果から、触診などによって検出することができない前臨床期の非浸潤癌(上皮内癌)の存在も高精度で予測することができる。 For example, by using the kit of the present invention, blood as a specimen, and an antibody against a specific tumor marker, the content of the specific tumor marker can be detected with high sensitivity and high accuracy. From this result, the presence of a preclinical noninvasive cancer (carcinoma in situ) that cannot be detected by palpation or the like can be predicted with high accuracy.
 このような「キット」としては、具体的に、透明平面基板上に金属薄膜、誘電体からなるスペーサ層(および蛍光色素層)がこの順に形成させたもの;リガンドを固定化するための試薬類(例えば、シランカップリング剤,水溶性カルボジイミド(EDC等),N-ヒドロキシコハク酸イミド〔NHS〕など);検体を溶解または希釈するための溶解液または希釈液;プラズモン励起センサと検体とを反応させるための各種反応試薬および洗浄試薬;消光色素(例えば、BHQ-3など);酵素(β-ガラクトシダーゼ,β-グルコシダーゼ,アルカリフォスファターゼ,グルコースオキシダーゼなど);消光剤基質(例えば、TG-βGal,TG-βGlu,AttoPhos(登録商標)基質,グルコースなど);2次抗体に消光色素または酵素を固定化するための各種試薬(例えば、水溶性カルボジイミド(EDC等),N-ヒドロキシコハク酸イミド〔NHS〕など)が挙げられ、本発明のアッセイ法を実施するために必要とされる各種器材または資材や上記アッセイ用装置を含めることもできる。 Specifically, such a “kit” includes a metal thin film and a dielectric spacer layer (and a fluorescent dye layer) formed in this order on a transparent flat substrate; reagents for immobilizing a ligand (For example, silane coupling agent, water-soluble carbodiimide (EDC, etc.), N-hydroxysuccinimide [NHS], etc.); solution or dilution solution for dissolving or diluting the sample; reaction between the plasmon excitation sensor and the sample Various reaction reagents and washing reagents; quenching dyes (eg, BHQ-3); enzymes (β-galactosidase, β-glucosidase, alkaline phosphatase, glucose oxidase, etc.); quencher substrates (eg, TG-βGal, TG) -ΒGlu, AttoPhos (registered trademark) substrate, glucose, etc.); quenching dye for secondary antibody Or various reagents for immobilizing enzymes (for example, water-soluble carbodiimide (EDC, etc.), N-hydroxysuccinimide [NHS], etc.), which are necessary for carrying out the assay method of the present invention. Various devices or materials and the above assay devices can also be included.
 さらに、キット要素として、検量線作成用の標準物質,説明書,多数検体の同時処理ができるマイクロタイタープレートなどの必要な器材一式などを含んでもよい。 Furthermore, as a kit element, a standard material for preparing a calibration curve, a manual, a necessary set of equipment such as a microtiter plate capable of simultaneously processing a large number of samples may be included.
 次に、本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。なお、実施例(1-1)~(1-7)および(2-1)~(2-7)ならびに比較例(1-1),(1-2)および(2-1),(2-2)は、サンドイッチイムノアッセイ法を実施し、実施例(1-8)~(1-14)および(2-8)~(2-14)ならびに比較例(1-3),(1-4)および(2-3),(2-4)は、競合イムノアッセイ法を実施した。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. Examples (1-1) to (1-7) and (2-1) to (2-7) and Comparative Examples (1-1), (1-2) and (2-1), (2 -2) carried out the sandwich immunoassay method. Examples (1-8) to (1-14) and (2-8) to (2-14) and Comparative Examples (1-3) and (1-4 ), (2-3), and (2-4) were subjected to competitive immunoassay.
 [作製例(1-1)](2次抗体と消光色素とのコンジュゲートの作製)
 BHQ-2,BHQ-3(バイオサーチテクノロジーズ ジャパンBTJ(株)製/(株)日本バイオサービス製)またはDABCYL(Integrated DNA Technologies社製)を、抗αフェトプロテイン〔AFP〕モノクローナル抗体(1D5;2.5mg/mL、(株)日本医学臨床検査研究所製)に固定化した。
[Preparation Example (1-1)] (Preparation of conjugate of secondary antibody and quenching dye)
BHQ-2, BHQ-3 (manufactured by Biosearch Technologies Japan BTJ Co., Ltd./manufactured by Nippon Bioservice Co., Ltd.) or DABCYL (manufactured by Integrated DNA Technologies) are mixed with anti-α-fetoprotein [AFP] monoclonal antibody (1D5; 2. 5 mg / mL, immobilized on Japan Medical Clinical Laboratory Laboratories).
 具体的には、消光色素のカルボキシル基と抗体のアミノ基とをアミノカップリング法により固定化した。
 [作製例(1-2)](競合抗原を複合化した、2次抗体と消光色素とのコンジュゲートの作製)
 まず、BHQ-2,BHQ-3(バイオサーチテクノロジーズ ジャパンBTJ(株)製/(株)日本バイオサービス製)またはDABCYL(Integrated DNA Technologies社製)を、抗αフェトプロテイン〔AFP〕モノクローナル抗体(1D5;2.5mg/mL、(株)日本医学臨床検査研究所製)にアミノカップリング法により固定化した。
Specifically, the carboxyl group of the quenching dye and the amino group of the antibody were immobilized by an amino coupling method.
[Preparation Example (1-2)] (Preparation of conjugate of secondary antibody and quenching dye complexed with competitive antigen)
First, BHQ-2, BHQ-3 (manufactured by Biosearch Technologies Japan BTJ Co., Ltd./manufactured by Nippon Bioservice Co., Ltd.) or DABCYL (manufactured by Integrated DNA Technologies) are mixed with anti-α-fetoprotein [AFP] monoclonal antibody (1D5; 2.5 mg / mL, manufactured by Nippon Medical Laboratory Co., Ltd.) by an amino coupling method.
 次いで、過剰量のAFPを混合し、得られた2次抗体と消光色素とのコンジュゲートに複合化した後、遠心分離とクロマトグラフィーとを用いて精製した。
 [実施例(1-1)]
 AFP(抗原)が微量な領域(pmol/L~fmol/L)でSPFSを用いてアッセイを行った。
Next, an excess amount of AFP was mixed and complexed with the obtained conjugate of the secondary antibody and the quenching dye, and then purified using centrifugation and chromatography.
[Example (1-1)]
The assay was performed using SPFS in a region with a small amount of AFP (antigen) (pmol / L to fmol / L).
 (プラズモン励起センサ(I)の作製)
 屈折率〔nd〕1.52、厚さ1mmで外形が20mm×20mmのガラス製の透明平面基板(ショット日本(株)製の「BK7」)をプラズマ洗浄し、該基板の片面にクロム薄膜をスパッタリング法により形成した後、その表面にさら金薄膜をスパッタリング法により形成した。クロム薄膜の厚さは1nm、金薄膜の厚さは50nmであった。
(Production of plasmon excitation sensor (I))
A glass transparent flat substrate having a refractive index [n d ] of 1.52 and a thickness of 1 mm and an outer shape of 20 mm × 20 mm (“BK7” manufactured by Shot Japan Co., Ltd.) is plasma-cleaned, and a chromium thin film is formed on one side of the substrate. Was formed by sputtering, and then a thin gold film was formed on the surface by sputtering. The chromium thin film had a thickness of 1 nm, and the gold thin film had a thickness of 50 nm.
 金薄膜の、クロム薄膜とは接していない片面に対して、誘電体として二酸化ケイ素〔SiO2〕からなるスペーサ層をスパッタリング法により形成した。該スペーサ層の厚さは、15nmであった。 A spacer layer made of silicon dioxide [SiO 2 ] as a dielectric was formed by sputtering on one side of the gold thin film that was not in contact with the chromium thin film. The spacer layer had a thickness of 15 nm.
 該スペーサ層の、金薄膜とは接していない片面に対して、蛍光色素としてCy5(登録商標)のフェネチルアミン反応物5重量部、ポリマーとして積水化学工業(株)製の「BL-S」(ポリビニルブチラール)5重量部、および溶媒としてメチルエチルケトン25重量部を含有する組成物をスピンコート法により塗布し、暗所にて50℃で10分間乾燥させ、溶媒を揮散させた。得られた蛍光色素層の厚さは10nmであった。 5 parts by weight of a phenethylamine reaction product of Cy5 (registered trademark) as a fluorescent dye and “BL-S” (polyvinyl) manufactured by Sekisui Chemical Co., Ltd. as a polymer with respect to one side of the spacer layer not in contact with the gold thin film A composition containing 5 parts by weight of butyral) and 25 parts by weight of methyl ethyl ketone as a solvent was applied by a spin coating method and dried in the dark at 50 ° C. for 10 minutes to volatilize the solvent. The thickness of the obtained fluorescent dye layer was 10 nm.
 このようにして得られた基板の蛍光色素層の上に、3-アミノプロピルトリエトキシシランを5重量%含む水溶液をスピンコータで塗布し、室温で2時間自然乾燥させた後、50℃で10分間加熱した。 An aqueous solution containing 5% by weight of 3-aminopropyltriethoxysilane was applied onto the fluorescent dye layer of the substrate thus obtained with a spin coater, allowed to dry naturally at room temperature for 2 hours, and then at 50 ° C. for 10 minutes. Heated.
 蛍光色素層のシランカップリング剤処理を行った表面に、2mm×10mmの穴を有する、外形が20mm×20mm、厚さ0.5mmのポリジメチルシロキサン〔PDMS〕製スペーサを設け、蛍光色素層表面が流路の内側となるように、基板を流路に配置した。そして、流路の外側から基板を覆うように厚さ4mmでPDMS製スペーサと同外形のポリメチルメタクリレート板を乗せ圧着し、ビスで流路と該ポリメチルメタクリレート板とを固定した。 The surface of the fluorescent dye layer treated with the silane coupling agent is provided with a spacer made of polydimethylsiloxane [PDMS] having a hole of 2 mm × 10 mm, an outer shape of 20 mm × 20 mm, and a thickness of 0.5 mm. The substrate was placed in the flow path so that is inside the flow path. Then, a polymethyl methacrylate plate having a thickness of 4 mm and the same outer shape as that of the PDMS spacer was put on the substrate so as to cover the substrate from the outside of the flow channel, and the flow channel and the polymethyl methacrylate plate were fixed with screws.
 送液として超純水を10分間、その後PBSを30分間、ペリスタポンプにより、30℃、流速500μL/minで循環させた。送液の総量は15mLである。
 ここで、光源として半導体レーザ〔LD〕を用いて、波長633nmのレーザ光を照射し、光学フィルタとして減光フィルタ(中性濃度フィルタ)を用いてフォトン量を調節し、シグマ光機(株)製の60度プリズムを通して、流路に固定されているリガンド固定化前のプラズモン励起センサに照射し、表面プラズモンの測定を開始した。
Ultrapure water was circulated for 10 minutes and then PBS was circulated for 30 minutes by a peristaltic pump at 30 ° C. and a flow rate of 500 μL / min. The total volume of liquid delivery is 15 mL.
Here, a semiconductor laser [LD] is used as a light source, a laser beam with a wavelength of 633 nm is irradiated, a photon amount is adjusted using a neutral density filter as an optical filter, and Sigma Kogyo Co., Ltd. The surface plasmon measurement was started by irradiating the plasmon excitation sensor before immobilization of the ligand fixed to the flow path through the 60-degree prism manufactured.
 さらに、N-ヒドロキシコハク酸イミド〔NHS〕を50mMと、水溶性カルボジイミド〔WSC〕を100mMとを含むPBSを5mL添加し(終濃度はそれぞれNHS:50mM、WSC:100mM)、20分間循環させた後に、抗αフェトプロテイン〔AFP〕モノクローナル抗体(1D5;2.5mg/mL、(株)日本医学臨床検査研究所製)40μL、を2時間循環させて、プラズモン励起センサ(I)を作製した。 Further, 5 mL of PBS containing 50 mM N-hydroxysuccinimide [NHS] and 100 mM water-soluble carbodiimide [WSC] was added (final concentrations were NHS: 50 mM and WSC: 100 mM, respectively) and circulated for 20 minutes. Later, 40 μL of anti-α-fetoprotein [AFP] monoclonal antibody (1D5; 2.5 mg / mL, manufactured by Japan Medical Clinical Laboratory, Inc.) was circulated for 2 hours to produce plasmon excitation sensor (I).
 表面プラズモンで共鳴角のシフトを測定し、リガンドの固定化を確認した。固定化量は3ng/mm2であった。
 また、1重量%の牛血清アルブミン〔BSA〕を含むPBS緩衝生理食塩水にて30分間循環送液することで、非特異吸着防止処理を行った。
The resonance angle shift was measured with surface plasmons to confirm the immobilization of the ligand. The immobilization amount was 3 ng / mm 2 .
Further, non-specific adsorption prevention treatment was performed by circulating and feeding in PBS buffered saline containing 1% by weight of bovine serum albumin [BSA] for 30 minutes.
 (アッセイ法(X)の実施)
 工程(a1):送液をPBSに代え、AFPを10ng/mL含むPBSを5mL添加し、30分間循環させた。
(Execution of assay method (X))
Step (a1): The solution was replaced with PBS, 5 mL of PBS containing 10 ng / mL of AFP was added and circulated for 30 minutes.
 洗浄工程:Tween20を0.05重量%含むPBSを送液として、10分間循環させることによって洗浄した。ここで、表面プラズモンを測定し最適角に固定した後、LDを用いて流路に固定されているプラズモン励起センサに照射し、日本真空光学(株)製のカットフィルタ、集光レンズとして10倍の対物レンズ((株)ニコン製)を用いて、CCDイメージセンサ(日本テキサス・インスツルメンツ(株)製)を通してSPFSによる蛍光を検出し、「ブランク蛍光シグナル」とした。 Washing step: Washing was performed by circulating 10 minutes using PBS containing 0.05% by weight of Tween 20 as a solution. Here, after measuring the surface plasmon and fixing it to the optimum angle, the plasmon excitation sensor fixed to the flow path using an LD is irradiated, and the cut filter manufactured by Nippon Vacuum Optics Co., Ltd. is 10 times as a condenser lens. Using an objective lens (manufactured by Nikon Co., Ltd.), fluorescence by SPFS was detected through a CCD image sensor (manufactured by Texas Instruments Japan Ltd.) to obtain a “blank fluorescence signal”.
 工程(b1):作製例(1-1)で得られた2次抗体と消光色素とのコンジュゲートを1,000ng/mL含むPBSを5mL添加し、30分間循環させた。
 洗浄工程:Tween20を0.05重量%含むPBSを送液として20分間循環させることによって洗浄した。
Step (b1): 5 mL of PBS containing 1,000 ng / mL of the conjugate of the secondary antibody obtained in Preparation Example (1-1) and a quenching dye was added and circulated for 30 minutes.
Washing step: Washing was performed by circulating PBS containing 0.05% by weight of Tween 20 for 20 minutes.
 工程(d):洗浄開始から20分後のCCDから観察したときのSPFSシグナル値を計測し「アッセイシグナル」とした。なお、金基板に何も修飾していないもう一方の流路をSPFSに別途設置し、超純水を流しながら表面プラズモン測定を元に共鳴角を再設定し、SPFSを測定して得られたシグナルを「初期ノイズ」とした。 Step (d): The SPFS signal value when observed from the CCD 20 minutes after the start of washing was measured and used as an “assay signal”. In addition, the other flow path not modified on the gold substrate was separately installed in the SPFS, and the resonance angle was reset based on the surface plasmon measurement while flowing ultrapure water, and the SPFS was measured. The signal was defined as “initial noise”.
 工程(e):作製して得られたプラズモン励起センサにおけるアッセイ測定開始前の「ブランク蛍光シグナル」、比較サンプルのアッセイ開始前のブランクシグナルを「初期シグナル」とし、およびアッセイ蛍光シグナルから、下記式のアッセイS/N比を評価した。アッセイS/N比は、抗原量に比例するコンジュゲート量により変化する蛍光シグナルの数値の絶対値が大きく、かつ初期ノイズに対して数値的に充分大きい場合、アッセイシグナルの信頼性が高いことを意味する。 Step (e): “blank fluorescence signal” before starting assay measurement in the plasmon excitation sensor obtained by making, “blank signal before starting assay of comparative sample” as “initial signal”, and from the assay fluorescence signal, The assay S / N ratio was evaluated. The assay S / N ratio indicates that the reliability of the assay signal is high when the absolute value of the numerical value of the fluorescent signal that changes with the amount of conjugate proportional to the amount of antigen is large and sufficiently large relative to the initial noise. means.
   アッセイS/N比=|(アッセイ蛍光シグナル)-(ブランク蛍光シグナル)|/(初期ノイズ)
 得られた結果を表4に示す。
Assay S / N ratio = | (assay fluorescence signal) − (blank fluorescence signal) | / (initial noise)
Table 4 shows the obtained results.
 [実施例(1-2)]
 実施例(1-1)において、蛍光色素をAlexa Fluor(登録商標)647に変更した以外は実施例(1-1)と同様にして本発明のプラズモン励起センサを作製し、アッセイ法を実施した。得られた結果を表4に示す。
[Example (1-2)]
A plasmon excitation sensor of the present invention was produced and assayed in the same manner as in Example (1-1) except that the fluorescent dye was changed to Alexa Fluor (registered trademark) 647 in Example (1-1). . Table 4 shows the obtained results.
 [実施例(1-3)]
 (プラズモン励起センサ(I)の製造)
 屈折率〔nd〕1.52、厚さ1mmで外形が20mm×20mmのガラス製の透明平面基板(ショット日本(株)製の「BK7」)をプラズマ洗浄し、該基板の片面にクロム薄膜をスパッタリング法により形成した後、その表面にさら金薄膜をスパッタリング法により形成した。クロム薄膜の厚さは1nm、金薄膜の厚さは50nmであった。
[Example (1-3)]
(Manufacture of plasmon excitation sensor (I))
A glass transparent flat substrate having a refractive index [n d ] of 1.52 and a thickness of 1 mm and an outer shape of 20 mm × 20 mm (“BK7” manufactured by Shot Japan Co., Ltd.) is plasma-cleaned, and a chromium thin film is formed on one side of the substrate. Was formed by sputtering, and then a thin gold film was formed on the surface by sputtering. The chromium thin film had a thickness of 1 nm, and the gold thin film had a thickness of 50 nm.
 金薄膜の、クロム薄膜とは接していない片面に対して、誘電体としてTiO2からなるスペーサ層をスパッタリング法により形成した。該スペーサ層の厚さは、15nmであった。 A spacer layer made of TiO 2 as a dielectric was formed by sputtering on one side of the gold thin film that was not in contact with the chromium thin film. The spacer layer had a thickness of 15 nm.
 該スペーサ層の金薄膜とは接していない片面に対して、3-アミノプロピルトリエトキシシランを5重量%含む水溶液をスピンコータで塗布し、室温で2時間自然乾燥させた後、50℃で10分間加熱した。 An aqueous solution containing 5% by weight of 3-aminopropyltriethoxysilane was applied to one side of the spacer layer not in contact with the gold thin film with a spin coater, allowed to dry naturally at room temperature for 2 hours, and then at 50 ° C. for 10 minutes. Heated.
 N-ヒドロキシコハク酸イミド〔NHS〕を50mMと、水溶性カルボジイミド〔WSC〕を100mMおよびAlexa Fluor(登録商標)647を50mM含むPBSを5mL調製し、スピンコータで塗布して定法(50℃×10分間)で乾燥してポリマーを含有しない蛍光色素層を有するプラズモン励起センサを作製した。 Prepare 5 mL of PBS containing 50 mM N-hydroxysuccinimide [NHS], 100 mM water-soluble carbodiimide [WSC] and 50 mM Alexa Fluor (Registered Trade Mark) 647, apply with a spin coater (50 ° C. × 10 minutes) ) To produce a plasmon excitation sensor having a fluorescent dye layer containing no polymer.
 (アッセイ法(X)の実施)
 実施例(1-1)と同様にしてアッセイ法(X)を実施した。得られた結果を表4に示す。
(Execution of assay method (X))
Assay method (X) was carried out in the same manner as in Example (1-1). Table 4 shows the obtained results.
 [実施例(1-4)]
 実施例(1-1)において、金属種を銀に、金属薄膜の厚さを45nmとし、蛍光色素をTRITCに、レーザ光の波長を532nmとした以外は実施例(1-1)と同様にして本発明のプラズモン励起センサを作製し、アッセイ法(X)を実施した。得られた結果を表4に示す。
[Example (1-4)]
In Example (1-1), the same as Example (1-1) except that the metal species was silver, the thickness of the metal thin film was 45 nm, the fluorescent dye was TRITC, and the wavelength of the laser beam was 532 nm. Thus, a plasmon excitation sensor of the present invention was prepared and assay method (X) was performed. Table 4 shows the obtained results.
 [実施例(1-5)]
 実施例(1-4)において、金属種をアルミニウムに、金属薄膜の厚さを15nmとした以外は実施例(1-4)と同様にして本発明のプラズモン励起センサ(I)を作製し、アッセイ法(X)を実施した。得られた結果を表4に示す。
[Example (1-5)]
In Example (1-4), the plasmon excitation sensor (I) of the present invention was produced in the same manner as in Example (1-4) except that the metal species was aluminum and the thickness of the metal thin film was 15 nm. Assay method (X) was performed. Table 4 shows the obtained results.
 [実施例(1-6)]
 実施例(1-5)において、金属薄膜の厚さを20nmとした以外は実施例(1-5)と同様にして本発明のプラズモン励起センサ(I)を作製し、アッセイ法(X)を実施した。得られた結果を表4に示す。
[Example (1-6)]
In Example (1-5), the plasmon excitation sensor (I) of the present invention was prepared in the same manner as in Example (1-5) except that the thickness of the metal thin film was changed to 20 nm. Carried out. Table 4 shows the obtained results.
 [実施例(1-7)]
 実施例(1-6)において、蛍光色素をCy3に変更した以外は実施例(1-6)と同様にして本発明のプラズモン励起センサ(I)を作製し、アッセイ法(X)を実施した。得られた結果を表4に示す。
[Example (1-7)]
In Example (1-6), except that the fluorescent dye was changed to Cy3, the plasmon excitation sensor (I) of the present invention was produced in the same manner as in Example (1-6), and assay method (X) was performed. . Table 4 shows the obtained results.
 [比較例(1-1)]
 (プラズモン励起センサの製造)
 屈折率〔nd〕1.52、厚さ1mmで外形が20mm×20mmのガラス製の透明平面基板(ショット日本(株)製の「BK7」)をプラズマ洗浄し、該基板の片面にクロム薄膜をスパッタリング法により形成した後、その表面にさら金薄膜をスパッタリング法により形成した。クロム薄膜の厚さは1nm、金薄膜の厚さは50nmであった。
[Comparative Example (1-1)]
(Manufacture of plasmon excitation sensor)
A glass transparent flat substrate having a refractive index [n d ] of 1.52 and a thickness of 1 mm and an outer shape of 20 mm × 20 mm (“BK7” manufactured by Shot Japan Co., Ltd.) is plasma-cleaned, and a chromium thin film is formed on one side of the substrate. Was formed by sputtering, and then a thin gold film was formed on the surface by sputtering. The chromium thin film had a thickness of 1 nm, and the gold thin film had a thickness of 50 nm.
 得られた基板を、10-カルボキシ-1-デカンチオールを1mM含むエタノール溶液に24時間以上浸漬し、金薄膜の片面にSAM〔Self Assembled Monolayer;自己組織化単分子膜〕を形成した。基板を該溶液から取り出し、エタノールおよびイソプロパノールで洗浄した後、エアガンで乾燥させた。 The obtained substrate was immersed in an ethanol solution containing 1 mM of 10-carboxy-1-decanethiol for 24 hours or more to form SAM (Self Assembled Monolayer) on one side of the gold thin film. The substrate was removed from the solution, washed with ethanol and isopropanol, and then dried with an air gun.
 SAMの表面に、流路高さ0.5mmを有するポリジメチルシロキサン〔PDMS〕製シートを設け、さらにポリメチルメタクリレート製天板を配置した。送液として超純水を10分間、その後PBSを20分間、ペリスタポンプにより、室温、流速500μL/minで循環させ、その表面を平衡化した。 A polydimethylsiloxane [PDMS] sheet having a flow path height of 0.5 mm was provided on the surface of the SAM, and a polymethyl methacrylate top plate was further disposed. Ultrapure water was fed as a liquid for 10 minutes, and then PBS was circulated for 20 minutes with a peristaltic pump at room temperature and a flow rate of 500 μL / min to equilibrate the surface.
 続いて、N-ヒドロキシコハク酸イミド〔NHS〕を50mMと、水溶性カルボジイミド〔WSC〕を100mMとを含むPBSを5mL送液し、20分間循環送液させた後に、抗αフェトプロテイン〔AFP〕モノクローナル抗体(1D5;2.5mg/mL、(株)日本医学臨床検査研究所製)溶液2.5mLを30分間循環送液することで、SAM上に1次抗体を固相化した。1重量%の牛血清アルブミン〔BSA〕を含むPBS緩衝生理食塩水にて30分間循環送液することで、非特異吸着防止処理を行い、プラズモン励起センサを作製した。 Subsequently, 5 mL of PBS containing 50 mM N-hydroxysuccinimide [NHS] and 100 mM water-soluble carbodiimide [WSC] was fed and circulated for 20 minutes, followed by anti-α-fetoprotein [AFP] monoclonal. The primary antibody was solid-phased on the SAM by circulating 2.5 mL of an antibody (1D5; 2.5 mg / mL, manufactured by Japan Medical Clinical Laboratory Laboratories) solution for 30 minutes. Non-specific adsorption prevention treatment was performed by circulating the solution in PBS buffered saline containing 1% by weight of bovine serum albumin [BSA] for 30 minutes to produce a plasmon excitation sensor.
 (アッセイ法の実施)
 送液をPBSに代え、AFPを10ng/mL含むPBS溶液を5mL添加し、30分間循環させた。
(Implementation of assay method)
Instead of PBS, 5 mL of a PBS solution containing 10 ng / mL of AFP was added and circulated for 30 minutes.
 Tween20を0.05重量%含むTBSを送液として10分間循環させることによって洗浄した。
 Alexa Fluor(登録商標)647標識2次抗体(1,000ng/mLとなるように調製したPBS溶液)を2.5mL添加し、30分間循環させた。
Washing was carried out by circulating TBS containing 0.05% by weight of Tween 20 for 10 minutes.
2.5 mL of Alexa Fluor (registered trademark) 647-labeled secondary antibody (PBS solution prepared to be 1,000 ng / mL) was added and circulated for 30 minutes.
 その後、Tween20を0.05重量%含むTBSを送液として20分間循環させることによって洗浄した。
 共鳴角を最適にしてCCDイメージセンサから観察したときのシグナル値を計測し、「アッセイシグナル」とした。なお、AFPを0ng/mL時のSPFS測定シグナルを「ブランクシグナル」とした。アッセイ評価としては実施例(1-1)と同様のアッセイS/N比を算出することで評価した。得られた結果を表4に示す。
Then, it was cleaned by circulating TBS containing 0.05% by weight of Tween 20 for 20 minutes.
The signal value when observed from the CCD image sensor with the optimum resonance angle was measured and designated as “assay signal”. The SPFS measurement signal when AFP was 0 ng / mL was defined as “blank signal”. The assay was evaluated by calculating the same assay S / N ratio as in Example (1-1). Table 4 shows the obtained results.
 [比較例(1-2)]
 比較例(1-1)において、金属種をアルミニウムに、金属薄膜の厚さを20nmに変更した以外は比較例(1-1)と同様にしてプラズモン励起センサを作製し、さらに蛍光色素をCy3に変更した以外は比較例(1-1)と同様にしてアッセイ法を実施した。得られた結果を表4に示す。
[Comparative Example (1-2)]
In Comparative Example (1-1), a plasmon excitation sensor was prepared in the same manner as Comparative Example (1-1) except that the metal species was changed to aluminum and the thickness of the metal thin film was changed to 20 nm. The assay method was carried out in the same manner as in Comparative Example (1-1) except that it was changed to. Table 4 shows the obtained results.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表4から、アッセイS/N比では元の蛍光量に対して変化した測定蛍光量を求めており、測定における数値の信頼可能なダイナミックレンジを示す、さらにベースとなる基板のノイズレベルで除することによりノイズレベルを加えた信頼限界を求めることができる。すなわちアッセイS/N比が高いほど、測定抗原量に対してより精度ある数値を提供していることになる。 From Table 4, the assay S / N ratio obtains the measured fluorescence amount changed with respect to the original fluorescence amount, and shows the reliable dynamic range of the numerical value in the measurement, and further divides by the noise level of the base substrate. Thus, the reliability limit including the noise level can be obtained. That is, the higher the assay S / N ratio, the more accurate numerical value is provided for the measured antigen amount.
 本発明のプラズモン励起センサに用いる蛍光色素層を設け、かつ消光色素を2次抗体に結合した試料においては、いずれも比較例(1-1)および(1-2)に較べて高い蛍光シグナル値を有しており、単位抗原当たり、より多くの蛍光色素で信号を担っており数値の信頼性が高いことがわかった。またアッセイS/N比が比較例よりも有意に高いため測定感度もより高く設定できることがわかった。 In the sample in which the fluorescent dye layer used in the plasmon excitation sensor of the present invention is provided and the quenching dye is bound to the secondary antibody, both have higher fluorescent signal values than those of Comparative Examples (1-1) and (1-2) It was found that the signal is carried by more fluorescent dyes per unit antigen and the numerical value is highly reliable. Moreover, since the assay S / N ratio was significantly higher than that of the comparative example, it was found that the measurement sensitivity could be set higher.
 [作製例(1-3)](競合抗原を複合化した、2次抗体と蛍光色素とのコンジュゲートの作製)
 作製例(1-2)において、消光色素の代わりに、蛍光色素であるAlexa Fluor(登録商標)647またはCy3を用いた以外は作製例(1-2)と同様にして「競合抗原を複合化した、2次抗体とAlexa Fluor(登録商標)647とのコンジュゲート」および「競合抗原を複合化した、2次抗体とCy3とのコンジュゲート」を作製した。
[Preparation Example (1-3)] (Preparation of conjugate of secondary antibody and fluorescent dye complexed with competitive antigen)
In Preparation Example (1-2), in place of the quenching dye, a fluorescent dye Alexa Fluor (registered trademark) 647 or Cy3 was used in the same manner as in Preparation Example (1-2). The conjugate of secondary antibody and Alexa Fluor (registered trademark) 647 ”and“ conjugate of secondary antibody and Cy3 complexed with competitive antigen ”were prepared.
 [実施例(1-8)]
 実施例(1-1)のアッセイ法(X)の実施において、作製例(1-1)で得られた「2次抗体と消光色素とのコンジュゲート」の代わりに、作製例(1-2)で得られた「競合抗原を複合化した、2次抗体と消光色素とのコンジュゲート」を用いた以外は実施例(1-1)と同様にして競合イムノアッセイ法を実施した。得られた結果を表5に示す。
[Example (1-8)]
In the implementation of the assay method (X) of Example (1-1), instead of the “conjugate of secondary antibody and quenching dye” obtained in Preparation Example (1-1), Preparation Example (1-2 The competitive immunoassay was carried out in the same manner as in Example (1-1) except that the “conjugate of secondary antibody and quenching dye complexed with competitive antigen” obtained in (1) was used. The results obtained are shown in Table 5.
 [実施例(1-9)]
 実施例(1-2)のアッセイ法(X)の実施において、作製例(1-1)で得られた「2次抗体と消光色素とのコンジュゲート」の代わりに、作製例(1-2)で得られた「競合抗原を複合化した、2次抗体と消光色素とのコンジュゲート」を用いた以外は実施例(1-2)と同様にして競合イムノアッセイ法を実施した。得られた結果を表5に示す。
[Example (1-9)]
In the implementation of the assay method (X) of Example (1-2), instead of the “conjugate of secondary antibody and quenching dye” obtained in Preparation Example (1-1), Preparation Example (1-2 The competitive immunoassay was carried out in the same manner as in Example (1-2) except that the “conjugate of secondary antibody and quenching dye complexed with competitive antigen” obtained in (1) was used. The results obtained are shown in Table 5.
 [実施例(1-10)]
 実施例(1-3)のアッセイ法(X)の実施において、作製例(1-1)で得られた「2次抗体と消光色素とのコンジュゲート」の代わりに、作製例(1-2)で得られた「競合抗原を複合化した、2次抗体と消光色素とのコンジュゲート」を用いた以外は実施例(1-3)と同様にして競合イムノアッセイ法を実施した。得られた結果を表5に示す。
[Example (1-10)]
In carrying out the assay method (X) of Example (1-3), instead of the “conjugate of secondary antibody and quenching dye” obtained in Preparation Example (1-1), Preparation Example (1-2 The competitive immunoassay was carried out in the same manner as in Example (1-3) except that the “conjugate of secondary antibody and quenching dye complexed with competitive antigen” obtained in (1) was used. The results obtained are shown in Table 5.
 [実施例(1-11)]
 実施例(1-4)のアッセイ法(X)の実施において、作製例(1-1)で得られた「2次抗体と消光色素とのコンジュゲート」の代わりに、作製例(1-2)で得られた「競合抗原を複合化した、2次抗体と消光色素とのコンジュゲート」を用いた以外は実施例(1-4)と同様にして競合イムノアッセイ法を実施した。得られた結果を表5に示す。
[Example (1-11)]
In carrying out the assay method (X) of Example (1-4), instead of the “conjugate of secondary antibody and quenching dye” obtained in Preparation Example (1-1), Preparation Example (1-2 The competitive immunoassay was carried out in the same manner as in Example (1-4) except that the “conjugate of secondary antibody and quenching dye complexed with competitive antigen” obtained in (1) was used. The results obtained are shown in Table 5.
 [実施例(1-12)]
 実施例(1-5)のアッセイ法(X)の実施において、作製例(1-1)で得られた「2次抗体と消光色素とのコンジュゲート」の代わりに、作製例(1-2)で得られた「競合抗原を複合化した、2次抗体と消光色素とのコンジュゲート」を用いた以外は実施例(1-5)と同様にして競合イムノアッセイ法を実施した。得られた結果を表5に示す。
[Example (1-12)]
In the implementation of the assay method (X) of Example (1-5), instead of the “conjugate of secondary antibody and quenching dye” obtained in Preparation Example (1-1), Preparation Example (1-2 The competitive immunoassay was carried out in the same manner as in Example (1-5) except that the “conjugate of secondary antibody and quenching dye complexed with competitive antigen” obtained in (1) was used. The results obtained are shown in Table 5.
 [実施例(1-13)]
 実施例(1-6)のアッセイ法(X)の実施において、作製例(1-1)で得られた「2次抗体と消光色素とのコンジュゲート」の代わりに、作製例(1-2)で得られた「競合抗原を複合化した、2次抗体と消光色素とのコンジュゲート」を用いた以外は実施例(1-6)と同様にして競合イムノアッセイ法を実施した。得られた結果を表5に示す。
[Example (1-13)]
In the implementation of the assay method (X) of Example (1-6), instead of the “conjugate of secondary antibody and quenching dye” obtained in Preparation Example (1-1), Preparation Example (1-2 The competitive immunoassay was carried out in the same manner as in Example (1-6) except that the “conjugate of secondary antibody and quenching dye complexed with competitive antigen” obtained in (1) was used. The results obtained are shown in Table 5.
 [実施例(1-14)]
 実施例(1-7)のアッセイ法(X)の実施において、作製例(1-1)で得られた「2次抗体と消光色素とのコンジュゲート」の代わりに、作製例(1-2)で得られた「競合抗原を複合化した、2次抗体と消光色素とのコンジュゲート」を用いた以外は実施例(1-7)と同様にして競合イムノアッセイ法を実施した。得られた結果を表5に示す。
[Example (1-14)]
In carrying out the assay method (X) of Example (1-7), instead of the “conjugate of secondary antibody and quenching dye” obtained in Preparation Example (1-1), Preparation Example (1-2 The competitive immunoassay was carried out in the same manner as in Example (1-7) except that the “conjugate of secondary antibody and quenching dye complexed with competitive antigen” obtained in (1) was used. The results obtained are shown in Table 5.
 [比較例(1-3)]
 比較例(1-1)のアッセイ法の実施において、作製例(1-1)で得られた「2次抗体と消光色素とのコンジュゲート」の代わりに、作製例(1-3)で得られた「競合抗原を複合化した、2次抗体とAlexa Fluor(登録商標)647とのコンジュゲート」を用いた以外は比較例(1-1)と同様にして競合イムノアッセイ法を実施した。得られた結果を表5に示す。
[Comparative Example (1-3)]
In the implementation of the assay method of Comparative Example (1-1), instead of the “conjugate of secondary antibody and quenching dye” obtained in Preparation Example (1-1), it was obtained in Preparation Example (1-3). The competitive immunoassay method was carried out in the same manner as in Comparative Example (1-1) except that the “conjugate of secondary antibody complexed with competitive antigen and Alexa Fluor (registered trademark) 647” was used. The results obtained are shown in Table 5.
 [比較例(1-4)]
 比較例(1-2)のアッセイ法の実施において、作製例(1-1)で得られた「2次抗体と消光色素とのコンジュゲート」の代わりに、作製例(1-3)で得られた「競合抗原を複合化した、2次抗体とCy3とのコンジュゲート」を用いた以外は比較例(1-2)と同様にして競合イムノアッセイ法を実施した。得られた結果を表5に示す。
[Comparative Example (1-4)]
In the execution of the assay method of Comparative Example (1-2), instead of the “conjugate of secondary antibody and quenching dye” obtained in Preparation Example (1-1), it was obtained in Preparation Example (1-3). A competitive immunoassay was carried out in the same manner as in Comparative Example (1-2) except that the obtained “conjugate of secondary antibody and Cy3 complexed with competitive antigen” was used. The results obtained are shown in Table 5.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表5から、本発明の蛍光シグナル数値は充分高い値を示し、抗原の存在量を充分な精度で測定可能なことを示している。また、前述のアッセイS/N比も高い値を示し信頼性が高いことが確認できた。一方、比較例の競合アッセイにおいて、競合系なので蛍光シグナル値は高い数値を示し抗原存在量に対して充分な蛍光量があるものの、アッセイS/N比は本発明に較べて数値が低く測定値の信頼精度が低いことが示唆された。この結果から推測すると、蛍光色素単独のアッセイ測定系に比較して本発明の消光色素標識2次抗体測定系の方が蛍光量変化に及ぼすダイナミックレンジが広いことを示している。 From Table 5, the fluorescence signal value of the present invention is sufficiently high, indicating that the abundance of the antigen can be measured with sufficient accuracy. Moreover, the above-mentioned assay S / N ratio also showed a high value, and it was confirmed that the reliability was high. On the other hand, in the competitive assay of the comparative example, since it is a competitive system, the fluorescence signal value shows a high value and there is a sufficient amount of fluorescence with respect to the antigen abundance, but the assay S / N ratio is a measured value that is lower than that of the present invention. It was suggested that the reliability accuracy of was low. Presuming from this result, it is shown that the quenching dye-labeled secondary antibody measurement system of the present invention has a wider dynamic range on the fluorescence amount change than the assay measurement system of the fluorescent dye alone.
 [作製例(2-1)](消光色素を固定化した2次抗体の作製)
 作製例(1-1)と同様にして、抗AFPモノクローナル抗体と、BHQ-2,BHQ-3またはDABCYLとのコンジュゲートを作製した。
[Preparation Example (2-1)] (Preparation of secondary antibody with immobilized quenching dye)
In the same manner as in Preparation Example (1-1), a conjugate of anti-AFP monoclonal antibody and BHQ-2, BHQ-3 or DABCYL was prepared.
 [作製例(2-2)](消光色素を固定化し、競合抗原と複合化した2次抗体の作製)
 作製例(1-2)と同様にして、作製例(2-1)で得られたコンジュゲートにAFPを予め結合させた複合体を作製した。
[Preparation Example (2-2)] (Preparation of secondary antibody with immobilized quenching dye and complexed with competitive antigen)
In the same manner as in Preparation Example (1-2), a complex was prepared by previously binding AFP to the conjugate obtained in Preparation Example (2-1).
 [作製例(2-3)](蛍光色素を標識したリガンドの作製)
 蛍光色素(Cy3(登録商標),Cy5(登録商標),Alexa Fluor(登録商標)633,647またはTRITC)により、リガンドとして1次抗体である抗αフェトプロテイン〔AFP〕モノクローナル抗体(6D2;2.5mg/mL、(株)日本医学臨床検査研究所製)をアミノカップリング法により標識した。標識されなかった1次抗体を除去するため、さらに遠心分離およびクロマトグラフィーを用いて精製した。
[Preparation Example (2-3)] (Preparation of a ligand labeled with a fluorescent dye)
By using a fluorescent dye (Cy3 (registered trademark), Cy5 (registered trademark), Alexa Fluor (registered trademark) 633, 647 or TRITC) as a ligand, an anti-α-fetoprotein [AFP] monoclonal antibody (6D2; 2.5 mg) as a primary antibody / ML, manufactured by Nippon Medical Laboratory, Ltd.) was labeled by the amino coupling method. In order to remove the unlabeled primary antibody, it was further purified using centrifugation and chromatography.
 [実施例(2-1)]
 AFP(抗原)が微量な領域(pmol/L~fmol/L)でSPFSを用いてアッセイを行う。
[Example (2-1)]
The assay is performed using SPFS in a region (pmol / L to fmol / L) where the amount of AFP (antigen) is very small.
 (プラズモン励起センサ(II)の製造)
 屈折率〔nd〕1.52、厚さ1mmで外形が20mm×20mmのガラス製の透明平面基板(ショット日本(株)製の「BK7」)をプラズマ洗浄し、該基板の片面にクロム薄膜をスパッタリング法により形成した後、その表面にさら金薄膜をスパッタリング法により形成した。クロム薄膜の厚さは2nm、金薄膜の厚さは48nmであった。
(Manufacture of plasmon excitation sensor (II))
A glass transparent flat substrate having a refractive index [n d ] of 1.52 and a thickness of 1 mm and an outer shape of 20 mm × 20 mm (“BK7” manufactured by Shot Japan Co., Ltd.) is plasma-cleaned, and a chromium thin film is formed on one side of the substrate. Was formed by sputtering, and then a thin gold film was formed on the surface by sputtering. The chromium thin film had a thickness of 2 nm, and the gold thin film had a thickness of 48 nm.
 金薄膜の、クロム薄膜とは接していない片面に対して、誘電体として二酸化ケイ素〔SiO2〕からなるスペーサ層をスパッタリング法により形成した。該スペーサ層の厚さは、10nmであった。 A spacer layer made of silicon dioxide [SiO 2 ] as a dielectric was formed by sputtering on one side of the gold thin film that was not in contact with the chromium thin film. The thickness of the spacer layer was 10 nm.
 このようにして得られた基板を、7-カルボキシ-ヘプチルトリエトキシシランを5重量%含む50%エタノール水溶液に浸漬し、30℃で30分間反応させた後、100℃で30分間乾燥を行った。これにより、該スペーサ層の上に、シランカップリング剤からなるSAMが形成された。 The substrate thus obtained was immersed in a 50% ethanol aqueous solution containing 5% by weight of 7-carboxy-heptyltriethoxysilane, reacted at 30 ° C. for 30 minutes, and then dried at 100 ° C. for 30 minutes. . As a result, a SAM made of a silane coupling agent was formed on the spacer layer.
 上記スペーサ層にシランカップリング剤処理を行った表面に、2mm×10mmの流路を有する、外形が20mm×20mm、厚さ0.5mmのポリジメチルシロキサン〔PDMS〕製スペーサを設け、蛍光色素層表面が流路の内側となるように基板を配置する。次に液体を出し入れする貫通穴を2個有する厚さ4mmで同外形のポリメチルメタクリレート板を流路の外側から基板を覆うように乗せ圧着し、ビスで流路と該ポリメチルメタクリレート板とを固定した。 Provided with a spacer made of polydimethylsiloxane [PDMS] having an outer shape of 20 mm × 20 mm and a thickness of 0.5 mm having a flow path of 2 mm × 10 mm on the surface of the spacer layer treated with a silane coupling agent. A board | substrate is arrange | positioned so that the surface may become an inner side of a flow path. Next, a 4 mm thick polymethyl methacrylate plate having the same outer shape with two through-holes for taking in and out of the liquid is put on the substrate so as to cover the substrate from the outside of the flow channel, and the flow channel and the polymethyl methacrylate plate are bonded with screws. Fixed.
 送液として超純水を10分間、その後PBSを30分間、ペリスタポンプにより、30℃、流速500μL/minで循環させた。送液の総量は15mLである。
 ここで、光源としてLDを用いて、波長633nmのレーザ光を照射し、光学フィルタとして減光フィルタ(中性濃度フィルタ)を用いてフォトン量を調節し、シグマ光機(株)製の60度プリズムを通して、流路に固定されているリガンド固定化前のプラズモン励起センサに照射し、表面プラズモンの測定を開始した。
Ultrapure water was circulated for 10 minutes and then PBS was circulated for 30 minutes by a peristaltic pump at 30 ° C. and a flow rate of 500 μL / min. The total volume of liquid delivery is 15 mL.
Here, an LD is used as a light source, a laser beam having a wavelength of 633 nm is irradiated, a photon amount is adjusted using an attenuating filter (neutral density filter) as an optical filter, and 60 degrees made by Sigma Kogyo Co., Ltd. The surface plasmon measurement was started by irradiating the plasmon excitation sensor before immobilization of the ligand fixed to the flow path through the prism.
 さらに、N-ヒドロキシコハク酸イミド〔NHS〕を50mMと、水溶性カルボジイミド〔WSC〕を100mMとを含むPBSを5mL添加し(終濃度はそれぞれNHS:50mM、WSC:100mM)、20分間循環させた後に、作製例3で得られたリガンド(蛍光色素としてCy5(登録商標)により標識された1次抗体)40μL、を2時間循環させて、プラズモン励起センサ(II)を製造した。表面プラズモンで共鳴角のシフトを測定しリガンドの固定化を確認した。固定化量は400ng/cm2であった。さらに、重量1%牛血清アルブミン〔BSA〕を含むPBS緩衝生理食塩水にて30分間循環送液することで、非特異吸着防止処理を行った。 Further, 5 mL of PBS containing 50 mM N-hydroxysuccinimide [NHS] and 100 mM water-soluble carbodiimide [WSC] was added (final concentrations were NHS: 50 mM and WSC: 100 mM, respectively) and circulated for 20 minutes. Later, 40 μL of the ligand (primary antibody labeled with Cy5 (registered trademark) as a fluorescent dye) obtained in Preparation Example 3 was circulated for 2 hours to produce a plasmon excitation sensor (II). The resonance angle shift was measured with surface plasmons to confirm the immobilization of the ligand. The immobilization amount was 400 ng / cm 2 . Furthermore, non-specific adsorption prevention treatment was performed by circulating the solution in PBS buffered saline containing 1% bovine serum albumin [BSA] for 30 minutes.
 (アッセイ法(Y)の実施)
 工程(a2):送液をPBSに代え、AFPを20ng/mL含むPBSを5mL添加し、30分間循環させた。
(Execution of assay method (Y))
Step (a2): The solution was replaced with PBS, 5 mL of PBS containing 20 ng / mL of AFP was added and circulated for 30 minutes.
 洗浄工程:Tween20を0.05重量%含むPBSを送液として10分間循環させることによって洗浄した。ここで表面プラズモンを測定し最適角に固定した後、LDレーザを用いて流路に固定されているプラズモン励起センサ(II)に照射し、カットフィルタとして(日本真空光学社製)、集光レンズとして20倍の対物レンズ((株)ニコン製)を用いてCCDイメージセンサ(テキサスインスツルメント社製)を通してSPFSによる蛍光を検出し、ブランクの蛍光とした。 Washing step: Washing was performed by circulating 10 minutes using PBS containing 0.05% by weight of Tween 20 as a solution. After measuring the surface plasmon and fixing it to the optimum angle, the plasmon excitation sensor (II) fixed to the flow path is irradiated with an LD laser and used as a cut filter (manufactured by Nippon Vacuum Optical Co., Ltd.). The fluorescence by SPFS was detected through a CCD image sensor (manufactured by Texas Instruments) using a 20 × objective lens (manufactured by Nikon Corporation) to obtain a blank fluorescence.
 工程(b1):作製例(2-1)で得られた二次抗体を1,000ng/mL含むPBSを5mL添加し、30分間循環させた。
 洗浄工程:Tween20を0.05重量%含むPBSを送液として20分間循環させることによって洗浄した。
Step (b1): 5 mL of PBS containing 1,000 ng / mL of the secondary antibody obtained in Preparation Example (2-1) was added and circulated for 30 minutes.
Washing step: Washing was performed by circulating PBS containing 0.05% by weight of Tween 20 for 20 minutes.
 工程(d):洗浄開始から20分後のCCDから観察したときのSPFSシグナル値を計測しアッセイ蛍光シグナルとした。なお、別途金基板に何も修飾していないもう一方の流路をSPFSに設置し超純水を流しながら共鳴角を、表面プラズモン測定を元に再設定し、SPFSを測定して得られたシグナルを「初期ノイズ」とした。 Step (d): The SPFS signal value when observed from the CCD 20 minutes after the start of washing was measured and used as the assay fluorescence signal. In addition, the other flow path not modified on the gold substrate was separately installed on the SPFS, and the resonance angle was reset based on the surface plasmon measurement while flowing ultrapure water, and the SPFS was measured. The signal was defined as “initial noise”.
 工程(e):得られたプラズモン励起センサ(II)におけるアッセイ測定開始前のブランクの蛍光シグナルおよび比較サンプルのアッセイ開始前のブランクの蛍光シグナルを「ブランク蛍光シグナル」とし、「アッセイ蛍光シグナル」と「ブランク蛍光シグナル」との関係から、以下の式でS/N比を評価した。すなわち、抗原量に比例する2次抗体量により変化するアッセイ蛍光シグナルの数値の絶対値が大きく、また初期ノイズに対して数値的に充分大きいことがアッセイシグナルの信頼性が高いことになる。 Step (e): The blank fluorescence signal before the start of assay measurement in the obtained plasmon excitation sensor (II) and the blank fluorescence signal before the start of the assay of the comparative sample are defined as “blank fluorescence signal”, and “assay fluorescence signal” From the relationship with the “blank fluorescence signal”, the S / N ratio was evaluated by the following formula. That is, the reliability of the assay signal is high when the absolute value of the value of the assay fluorescence signal, which varies with the amount of secondary antibody proportional to the amount of antigen, is large and sufficiently large numerically with respect to the initial noise.
   アッセイS/N比=|(アッセイ蛍光シグナル)-(ブランク蛍光シグナル)|/(初期ノイズ)
 得られた結果を表6に示す。
Assay S / N ratio = | (assay fluorescence signal) − (blank fluorescence signal) | / (initial noise)
The obtained results are shown in Table 6.
 [実施例(2-2)]
 実施例(2-1)において、蛍光色素をAlexa Fluor(登録商標)647に変更した以外は実施例(2-1)と同様にして本発明のプラズモン励起センサ(II)を製造し、アッセイ法(Y)を実施した。得られた結果を表6に示す。
[Example (2-2)]
The plasmon excitation sensor (II) of the present invention was produced in the same manner as in Example (2-1) except that the fluorescent dye was changed to Alexa Fluor (registered trademark) 647 in Example (2-1), and assay method (Y) was carried out. The obtained results are shown in Table 6.
 [実施例(2-3)]
 実施例(2-1)において、蛍光色素をAlexa Fluor(登録商標)633に変更した以外は実施例(2-1)と同様にして本発明のプラズモン励起センサ(II)を製造し、アッセイ法(Y)を実施した。得られた結果を表6に示す。
[Example (2-3)]
The plasmon excitation sensor (II) of the present invention was produced in the same manner as in Example (2-1) except that the fluorescent dye was changed to Alexa Fluor (registered trademark) 633 in Example (2-1), and assay method (Y) was carried out. The obtained results are shown in Table 6.
 [実施例(2-4)]
 実施例(2-1)において、金属種を銀に、金属薄膜の厚さを45nmとし、蛍光色素をTRITCに、レーザ光の波長を532nmとした以外は実施例(2-1)と同様にして本発明のプラズモン励起センサ(II)を製造し、アッセイ法(Y)を実施した。得られた結果を表6に示す。
[Example (2-4)]
Example (2-1) is the same as Example (2-1) except that the metal species is silver, the thickness of the metal thin film is 45 nm, the fluorescent dye is TRITC, and the wavelength of the laser beam is 532 nm. The plasmon excitation sensor (II) of the present invention was manufactured, and the assay method (Y) was performed. The obtained results are shown in Table 6.
 [実施例(2-5)]
 実施例(2-4)において、金属種をアルミニウムに、金属薄膜の厚さを15nmとした以外は実施例(2-4)と同様にして本発明のプラズモン励起センサ(II)を製造し、アッセイ法(Y)を実施した。得られた結果を表6に示す。
[Example (2-5)]
In Example (2-4), the plasmon excitation sensor (II) of the present invention was produced in the same manner as in Example (2-4) except that the metal species was aluminum and the thickness of the metal thin film was 15 nm. Assay method (Y) was performed. The obtained results are shown in Table 6.
 [実施例(2-6)]
 実施例(2-5)において、金属薄膜の厚さを20nmとした以外は実施例(2-5)と同様にして本発明のプラズモン励起センサ(II)を製造し、アッセイ法(Y)を実施した。得られた結果を表6に示す。
[Example (2-6)]
In Example (2-5), the plasmon excitation sensor (II) of the present invention was produced in the same manner as in Example (2-5) except that the thickness of the metal thin film was changed to 20 nm. Carried out. The obtained results are shown in Table 6.
 [実施例(2-7)]
 実施例(2-6)において、蛍光色素をCy3(登録商標)に変更した以外は実施例(2-6)と同様にして本発明のプラズモン励起センサ(II)を製造し、アッセイ法(Y)を実施した。得られた結果を表6に示す。
[Example (2-7)]
A plasmon excitation sensor (II) of the present invention was produced in the same manner as in Example (2-6) except that the fluorescent dye was changed to Cy3 (registered trademark) in Example (2-6), and assay method (Y ). The obtained results are shown in Table 6.
 [比較例(2-1)]
 (プラズモン励起センサの製造)
 屈折率〔nd〕1.52、厚さ1mmで外形が20mm×20mmのガラス製の透明平面基板(ショット日本(株)製の「BK7」)をプラズマ洗浄し、該基板の片面にクロム薄膜をスパッタリング法により形成した後、その表面にさら金薄膜をスパッタリング法により形成した。クロム薄膜の厚さは2nm、金薄膜の厚さは48nmであった。
[Comparative Example (2-1)]
(Manufacture of plasmon excitation sensor)
A glass transparent flat substrate having a refractive index [n d ] of 1.52 and a thickness of 1 mm and an outer shape of 20 mm × 20 mm (“BK7” manufactured by Shot Japan Co., Ltd.) is plasma-cleaned, and a chromium thin film is formed on one side of the substrate. Was formed by sputtering, and then a thin gold film was formed on the surface by sputtering. The chromium thin film had a thickness of 2 nm, and the gold thin film had a thickness of 48 nm.
 このような基板を、10-カルボキシ-1-デカンチオールを1mM含むエタノール溶液に24時間以上浸漬し、金薄膜の片面にSAMを形成した。基板を該溶液から取り出し、エタノールおよびイソプロパノールで洗浄した後、エアガンで乾燥させた。 Such a substrate was immersed in an ethanol solution containing 1 mM of 10-carboxy-1-decanethiol for 24 hours or more to form a SAM on one side of the gold thin film. The substrate was removed from the solution, washed with ethanol and isopropanol, and then dried with an air gun.
 SAMの表面に、流路高さ0.5mmを有するポリジメチルシロキサン〔PDMS〕製シートを設け、さらにポリメチルメタクリレー製天板を配置して同様なプラズモン励起センサを作成した。送液として超純水を10分間、その後PBSを20分間、ペリスタポンプにより、室温、流速500μL/minで循環させ、その表面を平衡化した。 A similar plasmon excitation sensor was prepared by providing a polydimethylsiloxane [PDMS] sheet having a flow path height of 0.5 mm on the surface of the SAM and further placing a polymethylmethacrylate relay top plate. Ultrapure water was fed as a liquid for 10 minutes, and then PBS was circulated for 20 minutes with a peristaltic pump at room temperature and a flow rate of 500 μL / min to equilibrate the surface.
 続いて、N-ヒドロキシコハク酸イミド〔NHS〕を50mMと、水溶性カルボジイミド〔WSC〕を100mMとを含むPBSを5mL送液し、20分間循環送液させた後に、1次抗体溶液2.5mLを30分間循環送液することで、SAM上に該リガンドを固相化した。重量1%牛血清アルブミン〔BSA〕を含むPBS緩衝生理食塩水にて30分間循環送液することで、非特異吸着防止処理を行った。 Subsequently, 5 mL of PBS containing 50 mM N-hydroxysuccinimide [NHS] and 100 mM water-soluble carbodiimide [WSC] was fed and circulated for 20 minutes, and then 2.5 mL of the primary antibody solution. Was circulated for 30 minutes to immobilize the ligand on the SAM. Non-specific adsorption prevention treatment was performed by circulating and feeding in PBS buffered saline containing 1% bovine serum albumin [BSA] for 30 minutes.
 (アッセイ法の実施)
 送液をPBSに代え、AFPを10ng/mL含むPBS溶液を5mL添加し、30分間循環させた。
(Implementation of assay method)
Instead of PBS, 5 mL of a PBS solution containing 10 ng / mL of AFP was added and circulated for 30 minutes.
 Tween20を0.05重量%含むTBSを送液として10分間循環させることによって洗浄した。
 Alexa Fluor(登録商標)647を標識した2次抗体(1,000ng/mLとなるように調製したPBS溶液)を2.5mL添加し、30分間循環させた。
Washing was carried out by circulating TBS containing 0.05% by weight of Tween 20 for 10 minutes.
2.5 mL of a secondary antibody (PBS solution prepared to be 1,000 ng / mL) labeled with Alexa Fluor (registered trademark) 647 was added and circulated for 30 minutes.
 その後、Tween20を0.05重量%含むTBSを送液として20分間循環させることによって洗浄した。
 共鳴角を最適にしてCCDから観察したときのシグナル値を計測しアッセイ蛍光シグナルとした。なお、AFPを0ng/mL時のSPFS測定シグナルをブランク蛍光シグナルとした。アッセイ評価としては実施例(2-1)と同様のアッセイS/N比を算出することで評価した。得られた結果を表6に示す。
Then, it was cleaned by circulating TBS containing 0.05% by weight of Tween 20 for 20 minutes.
The signal value when observed from the CCD with the optimum resonance angle was measured and used as the assay fluorescence signal. The SPFS measurement signal when AFP was 0 ng / mL was used as a blank fluorescence signal. The assay was evaluated by calculating the same assay S / N ratio as in Example (2-1). The obtained results are shown in Table 6.
 [比較例(2-2)]
 比較例(2-1)において、金属種をアルミニウムに、金属薄膜の厚さを20nmとして、蛍光色素をCy3(登録商標)に変更した以外は比較例(2-1)と同様にしてアッセイ法を実施した。得られた結果を表6に示す。
[Comparative Example (2-2)]
In Comparative Example (2-1), the assay method was the same as Comparative Example (2-1) except that the metal species was aluminum, the thickness of the metal thin film was 20 nm, and the fluorescent dye was changed to Cy3 (registered trademark). Carried out. The obtained results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表6から、アッセイS/N比では元の蛍光量に対して変化した測定蛍光量を求めており、測定における数値の信頼可能なダイナミックレンジを示す、さらにベースとなる基板のノイズレベルで除することによりノイズレベルを加えた信頼限界を求めることができる。すなわち、アッセイS/N比が高いほど、測定抗原量に対してより精度ある数値を提供していることになる。 From Table 6, the assay S / N ratio obtains the measured fluorescence amount changed with respect to the original fluorescence amount, and shows the reliable dynamic range of the numerical value in the measurement, and further divides by the noise level of the base substrate. Thus, the reliability limit including the noise level can be obtained. That is, the higher the assay S / N ratio, the more accurate numerical value is provided for the measured antigen amount.
 本発明に係る、蛍光色素で標識した1次抗体を固定化し、かつ消光色素を2次抗体に結合した実施例においてはいずれも、比較例(2-1)および(2-2)に比べて高い蛍光シグナル値を有しており、単位抗原当たり、より多くの蛍光色素で信号を担っており数値の信頼性が高いことがわかった。またアッセイS/N比が比較例よりも桁違いに高いため測定感度もより高く設定できることがわかった。 In Examples where the primary antibody labeled with a fluorescent dye is immobilized and the quenching dye is bound to the secondary antibody, both are compared with Comparative Examples (2-1) and (2-2). It has a high fluorescence signal value, and it is found that the signal is carried by more fluorescent dyes per unit antigen and the numerical reliability is high. It was also found that the measurement sensitivity can be set higher because the assay S / N ratio is orders of magnitude higher than that of the comparative example.
 [実施例(2-8)]
 実施例(2-1)で作製したプラズモン励起センサ(II)を用いて、作製例(2-2)で得られた消光色素が標識された2次抗体をAFPと複合体させたコンジュゲートを用いた以外は実施例(2-1)と同様の操作で競合イムノアッセイ法を実施した。得られた結果を表7に示す。
[Example (2-8)]
Using the plasmon excitation sensor (II) prepared in Example (2-1), a conjugate obtained by complexing the secondary antibody labeled with the quenching dye obtained in Preparation Example (2-2) with AFP A competitive immunoassay was performed in the same manner as in Example (2-1) except that it was used. The results obtained are shown in Table 7.
 [実施例(2-9)]
 実施例(2-2)で作製したプラズモン励起センサ(II)を用いて、作製例(2-2)で得られた消光剤が標識された2次抗体をAFPと複合体させたコンジュゲートを用いた以外は実施例(2-2)と同様の操作で競合イムノアッセイ法を実施した。得られた結果を表7に示す。
[Example (2-9)]
Using the plasmon excitation sensor (II) prepared in Example (2-2), a conjugate obtained by complexing the quencher-labeled secondary antibody obtained in Preparation Example (2-2) with AFP A competitive immunoassay was performed in the same manner as in Example (2-2) except that it was used. The results obtained are shown in Table 7.
 [実施例(2-10)]
 実施例(2-3)で作製したプラズモン励起センサ(II)を用いて、作製例(2-2)で得られた消光色素が標識された2次抗体をAFPと複合体させたコンジュゲートを用いた以外は実施例(2-3)と同様の操作で競合イムノアッセイ法を実施した。得られた結果を表7に示す。
[Example (2-10)]
Using the plasmon excitation sensor (II) prepared in Example (2-3), a conjugate obtained by complexing the secondary antibody labeled with the quenching dye obtained in Preparation Example (2-2) with AFP A competitive immunoassay was carried out in the same manner as in Example (2-3) except that it was used. The results obtained are shown in Table 7.
 [実施例(2-11)]
 実施例(2-4)で作製したプラズモン励起センサ(II)を用いて、作製例(2-2)で得られた消光色素が標識された2次抗体をAFPと複合体させたコンジュゲートを用いた以外は実施例(2-4)と同様の操作で競合イムノアッセイ法を実施した。得られた結果を表7に示す。
[Example (2-11)]
Using the plasmon excitation sensor (II) prepared in Example (2-4), a conjugate obtained by complexing the secondary antibody labeled with the quenching dye obtained in Preparation Example (2-2) with AFP A competitive immunoassay was carried out in the same manner as in Example (2-4) except that it was used. The results obtained are shown in Table 7.
 [実施例(2-12)]
  実施例(2-5)で製造したプラズモン励起センサ(II)を用いて、作製例(2-2)で得られた消光色素が標識された2次抗体をAFPと複合体させたコンジュゲートを用いた以外は実施例(2-5)と同様の操作で競合イムノアッセイ法を実施した。得られた結果を表7に示す。
[Example (2-12)]
Using the plasmon excitation sensor (II) produced in Example (2-5), a conjugate obtained by complexing the secondary antibody labeled with the quenching dye obtained in Preparation Example (2-2) with AFP A competitive immunoassay was carried out in the same manner as in Example (2-5) except that it was used. The results obtained are shown in Table 7.
 [実施例(2-13)]
 実施例(2-6)で製造したプラズモン励起センサ(II)を用いて、作製例(2-2)で得られた消光色素が標識された2次抗体と複合体させたコンジュゲートを用いた以外は実施例(2-6)と同様の操作で競合イムノアッセイ法を実施した。得られた結果を表7に示す。
[Example (2-13)]
Using the plasmon excitation sensor (II) produced in Example (2-6), the conjugate complexed with the secondary antibody labeled with the quenching dye obtained in Production Example (2-2) was used. A competitive immunoassay was performed in the same manner as in Example (2-6) except for the above. The results obtained are shown in Table 7.
 [実施例(2-14)]
 実施例(2-7)で製造したプラズモン励起センサ(II)を用いて、作製例(2-2)で得られた消光色素が標識された2次抗体をAFPと複合体させたコンジュゲートを用いた以外は実施例(2-7)と同様の操作で競合イムノアッセイ法を実施した。得られた結果を表7に示す。
[Example (2-14)]
Using the plasmon excitation sensor (II) produced in Example (2-7), a conjugate obtained by complexing the secondary antibody labeled with the quenching dye obtained in Production Example (2-2) with AFP A competitive immunoassay was carried out in the same manner as in Example (2-7) except that it was used. The results obtained are shown in Table 7.
 [比較例(2-3)]
 比較例(2-1)で製造したプラズモン励起センサを用いて、Alexa Fluor(登録商標)647標識2次抗体をAFPと複合体化させたコンジュゲートを用いた以外は比較例(2-1)と同様の操作で競合イムノアッセイ法を実施した。得られた結果を表7に示す。
[Comparative Example (2-3)]
Comparative Example (2-1) except that the plasmon excitation sensor produced in Comparative Example (2-1) was used and a conjugate of Alexa Fluor (registered trademark) 647-labeled secondary antibody complexed with AFP was used. The competitive immunoassay was carried out in the same manner as described above. The results obtained are shown in Table 7.
 [比較例(2-4)]
 比較例(2-2)で製造したプラズモン励起センサを用いて、Cy3標識2次抗体をAFPと複合体化させたコンジュゲートを用いた以外は比較例(2-2)と同様の操作で競合イムノアッセイ法を実施した。得られた結果を表7に示す。
[Comparative Example (2-4)]
Competing in the same manner as in Comparative Example (2-2), except that the plasmon excitation sensor produced in Comparative Example (2-2) was used and a conjugate of Cy3-labeled secondary antibody complexed with AFP was used. An immunoassay was performed. The results obtained are shown in Table 7.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表7から、実施例での蛍光シグナル数値は充分高い値を示し、抗原の存在量を充分な精度で測定可能なことを示している。また、上述したように、アッセイS/N比も高い値を示し信頼性が高いことが確認できた。一方、比較例の競合アッセイにおいて、競合系なので蛍光シグナル値は高い数値を示し抗原存在量に対して充分な蛍光量があるものの、アッセイS/N比は実施例に比べて数値が低く測定値の信頼精度が低いことが示唆された。この結果から推測すると、蛍光色素単独のアッセイ測定系に比較して実施例の消光剤標識2次抗体測定系の方が蛍光量変化に及ぼすダイナミックレンジが広いことを示している。 From Table 7, the fluorescence signal values in the examples are sufficiently high, indicating that the abundance of the antigen can be measured with sufficient accuracy. In addition, as described above, the assay S / N ratio also showed a high value, and it was confirmed that the reliability was high. On the other hand, in the competitive assay of the comparative example, since it is a competitive system, the fluorescence signal value shows a high value and there is a sufficient amount of fluorescence with respect to the antigen abundance, but the assay S / N ratio is lower than the example and the measured value It was suggested that the reliability accuracy of was low. Assuming from this result, it is shown that the quencher-labeled secondary antibody measurement system of the example has a wider dynamic range on the fluorescence amount change than the assay measurement system of the fluorescent dye alone.
 [作製例(3-1)](2次抗体とβ-ガラクトシダーゼとのコンジュゲートの作製)
 β-ガラクトシダーゼを、抗αフェトプロテイン〔AFP〕モノクローナル抗体(6D2;2.5mg/mL、(株)日本医学臨床検査研究所製)に固定化した。
[Preparation Example (3-1)] (Preparation of conjugate of secondary antibody and β-galactosidase)
β-galactosidase was immobilized on an anti-α-fetoprotein [AFP] monoclonal antibody (6D2; 2.5 mg / mL, manufactured by Japan Medical Laboratory).
 具体的には、酵素のカルボキシル基と抗体のアミノ基とをアミノカップリング法により固定化した。
 [作製例(3-2)](2次抗体とグルコースオキシダーゼとのコンジュゲートの作製)
 作製例(3-1)と同様の手順に従い、グルコースオキシダーゼを、抗αフェトプロテイン〔AFP〕モノクローナル抗体(6D2;2.5mg/mL、(株)日本医学臨床検査研究所製)に固定化した。
Specifically, the carboxyl group of the enzyme and the amino group of the antibody were immobilized by an amino coupling method.
[Preparation Example (3-2)] (Preparation of conjugate of secondary antibody and glucose oxidase)
Following the same procedure as in Preparation Example (3-1), glucose oxidase was immobilized on an anti-α-fetoprotein [AFP] monoclonal antibody (6D2; 2.5 mg / mL, manufactured by Japan Medical Clinical Laboratory, Inc.).
 [作製例(3-3)](2次抗体とダーククエンチャーとのコンジュゲートの作製)
 作製例(3-1)と同様の手順に従い、ダーククエンチャーであるEclipse(登録商標)(Epoch Biosciences社製)を、抗αフェトプロテイン〔AFP〕モノクローナル抗体(6D2;2.5mg/mL、(株)日本医学臨床検査研究所製)に固定化した。
[Preparation Example (3-3)] (Preparation of conjugate of secondary antibody and dark quencher)
In accordance with the same procedure as in Preparation Example (3-1), Eclipse (registered trademark) (manufactured by Epoch Biosciences), which is a dark quencher, was added to anti-α fetoprotein [AFP] monoclonal antibody (6D2; 2.5 mg / mL, strain ) Immobilized in Japan Medical Clinical Laboratory.
 [作製例(3-4)](Alexa Fluor(登録商標)647標識2次抗体の作製)
 ビオチン化抗AFPモノクローナル抗体の溶液とストレプトアビジン標識Alexa Fluor(登録商標)647(Molecular Probes社製)溶液とを混合し、4℃で60分間、攪拌混合することで反応させた。
[Preparation Example (3-4)] (Preparation of Alexa Fluor (registered trademark) 647-labeled secondary antibody)
A solution of biotinylated anti-AFP monoclonal antibody and a streptavidin-labeled Alexa Fluor (registered trademark) 647 (Molecular Probes) solution were mixed and reacted by stirring at 4 ° C. for 60 minutes.
 次に、未反応抗体および未反応酵素を、分子量カットフィルタ(日本ミリポア(株)製)を用いて精製することで、Alexa Fluor(登録商標)647標識抗AFPモノクローナル抗体溶液を得た。得られた抗体溶液はタンパク定量後、4℃で保存した。 Next, the unreacted antibody and the unreacted enzyme were purified using a molecular weight cut filter (manufactured by Nippon Millipore) to obtain an Alexa Fluor (registered trademark) 647-labeled anti-AFP monoclonal antibody solution. The obtained antibody solution was stored at 4 ° C. after protein quantification.
 [実施例(3-1)]
 (プラズモン励起センサ(I)の製造)
 屈折率〔nd〕1.52、厚さ1mmで外形が20mm×20mmのガラス製の透明平面基板(ショット日本(株)製の「BK7」)をプラズマ洗浄し、該基板の片面にクロム薄膜をスパッタリング法により形成した後、その表面にさら銀薄膜をスパッタリング法により形成した。クロム薄膜の厚さは1nm、銀薄膜の厚さは45nmであった。
[Example (3-1)]
(Manufacture of plasmon excitation sensor (I))
A glass transparent flat substrate having a refractive index [n d ] of 1.52, a thickness of 1 mm and an outer shape of 20 mm × 20 mm (“BK7” manufactured by Shot Japan Co., Ltd.) is plasma-cleaned, and a chromium thin film is formed on one side of the substrate. Was formed by sputtering, and a silver thin film was formed on the surface by sputtering. The thickness of the chromium thin film was 1 nm, and the thickness of the silver thin film was 45 nm.
 銀薄膜の、クロム薄膜とは接していない片面に対して、誘電体として二酸化ケイ素〔SiO2〕からなるスペーサ層をスパッタリング法により形成した。該スペーサ層の厚さは、15nmであった。 A spacer layer made of silicon dioxide [SiO 2 ] as a dielectric was formed by sputtering on one side of the silver thin film not in contact with the chromium thin film. The spacer layer had a thickness of 15 nm.
 該スペーサ層の、銀薄膜とは接していない片面に対して、蛍光色素としてテルビウム〔Tb〕キレート5重量部、ポリマーとして積水化学工業(株)製の「BL-S」(ポリビニルブチラール)5重量部、および溶媒としてメチルエチルケトン25重量部を含有する組成物をスピンコート法により塗布し、暗所にて50℃で10分間乾燥させ、溶媒を揮散させた。得られた蛍光色素層の厚さは10nmであった。 5 parts by weight of terbium [Tb] chelate as a fluorescent dye and 5% by weight of “BL-S” (polyvinyl butyral) manufactured by Sekisui Chemical Co., Ltd. as a fluorescent dye with respect to one side of the spacer layer not in contact with the silver thin film And a composition containing 25 parts by weight of methyl ethyl ketone as a solvent was applied by a spin coating method and dried at 50 ° C. for 10 minutes in the dark to volatilize the solvent. The thickness of the obtained fluorescent dye layer was 10 nm.
 このようにして得られた基板の蛍光色素層の上に、3-アミノプロピルトリエトキシシランを5重量%含む水溶液をスピンコータで塗布し、室温で2時間自然乾燥させた後、50℃で10分間加熱した。 An aqueous solution containing 5% by weight of 3-aminopropyltriethoxysilane was applied onto the fluorescent dye layer of the substrate thus obtained with a spin coater, allowed to dry naturally at room temperature for 2 hours, and then at 50 ° C. for 10 minutes. Heated.
 蛍光色素層のシランカップリング剤処理を行った表面に、2mm×10mmの穴を有する、外形が20mm×20mm、厚さ0.5mmのポリジメチルシロキサン〔PDMS〕製スペーサを設け、蛍光色素層表面が流路の内側となるように、基板を流路に配置した。そして、流路の外側から基板を覆うように厚さ4mmでPDMS製スペーサと同外形のポリメチルメタクリレート板を乗せ圧着し、ビスで流路と該ポリメチルメタクリレート板とを固定した。 The surface of the fluorescent dye layer treated with the silane coupling agent is provided with a spacer made of polydimethylsiloxane [PDMS] having a hole of 2 mm × 10 mm, an outer shape of 20 mm × 20 mm, and a thickness of 0.5 mm. The substrate was placed in the flow path so that is inside the flow path. Then, a polymethyl methacrylate plate having a thickness of 4 mm and the same outer shape as that of the PDMS spacer was put on the substrate so as to cover the substrate from the outside of the flow channel, and the flow channel and the polymethyl methacrylate plate were fixed with screws.
 送液として超純水を10分間、その後PBSを30分間、ペリスタポンプにより、30℃、流速500μL/minで循環させた。送液の総量は15mLである。
 ここで、光源としてLDレーザを用いて、波長340nmのレーザ光を照射し、光学フィルタとして減光フィルタ(中性濃度フィルタ)を用いてフォトン量を調節し、シグマ光機(株)製の60度プリズムを通して、流路に固定されているリガンド固定化前のプラズモン励起センサに照射し、表面プラズモンの測定を開始した。
Ultrapure water was circulated for 10 minutes and then PBS was circulated for 30 minutes by a peristaltic pump at 30 ° C. and a flow rate of 500 μL / min. The total volume of liquid delivery is 15 mL.
Here, a laser beam having a wavelength of 340 nm is irradiated using an LD laser as a light source, and a photon amount is adjusted using a neutral density filter as an optical filter. The surface plasmon measurement was started by irradiating the plasmon excitation sensor before immobilization of the ligand fixed to the flow path through the degree prism.
 さらに、N-ヒドロキシコハク酸イミド〔NHS〕を50mMと、水溶性カルボジイミド〔WSC〕を100mMとを含むPBSを5mL添加し(終濃度はそれぞれNHS:50mM、WSC:100mM)、20分間循環させた後に、抗αフェトプロテイン〔AFP〕モノクローナル抗体(1D5;2.5mg/mL、(株)日本医学臨床検査研究所製)40μL、を2時間循環させて、プラズモン励起センサ(I)を製造した。 Further, 5 mL of PBS containing 50 mM N-hydroxysuccinimide [NHS] and 100 mM water-soluble carbodiimide [WSC] was added (final concentrations were NHS: 50 mM and WSC: 100 mM, respectively) and circulated for 20 minutes. Later, 40 μL of anti-α-fetoprotein [AFP] monoclonal antibody (1D5; 2.5 mg / mL, manufactured by Japan Medical Clinical Laboratory, Inc.) was circulated for 2 hours to produce plasmon excitation sensor (I).
 表面プラズモンで共鳴角のシフトを測定し、リガンドの固定化を確認した。固定化量は3ng/mm2であった。
 また、1重量%の牛血清アルブミン〔BSA〕を含むPBS緩衝生理食塩水にて30分間循環送液することで、非特異吸着防止処理を行った。
The resonance angle shift was measured with surface plasmons to confirm the immobilization of the ligand. The immobilization amount was 3 ng / mm 2 .
Further, non-specific adsorption prevention treatment was performed by circulating and feeding in PBS buffered saline containing 1% by weight of bovine serum albumin [BSA] for 30 minutes.
 (アッセイ法(Z)の実施)
 工程(a1):送液をPBSに代え、AFPを1ng/mL含むPBSを0.5mL添加し、25分間循環させた。
(Execution of assay method (Z))
Step (a1): The solution was replaced with PBS, 0.5 mL of PBS containing 1 ng / mL of AFP was added and circulated for 25 minutes.
 洗浄工程:Tween20を0.05重量%含むTBSを送液として10分間循環させることによって洗浄した。ここでブランクの蛍光を、光源としてLDレーザを用いて、波長340nmのレーザ光を、光学フィルタ:(シグマ光機(株))によりフォトン量を調節し、プリズム:((株)オハラ製の「S-LAL10」(屈折率〔nd〕=1.72))を通して、流路に固定されているプラズモン励起センサに照射し、カットフィルタとして(シグマ光機(株))、集光レンズとして20倍の対物レンズ((株)ニコン製)を用いてCCDイメージセンサ(テキサスインスツルメント(株)製)により検出した。 Washing step: Washing was performed by circulating TBS containing 0.05% by weight of Tween 20 for 10 minutes. Here, using blank fluorescence, an LD laser as a light source, a laser beam having a wavelength of 340 nm, an amount of photons is adjusted by an optical filter: (Sigma Kogyo Co., Ltd.), and a prism: (“Ohara Co., Ltd. S-LAL10 ”(refractive index [n d ] = 1.72) is applied to the plasmon excitation sensor fixed to the flow path, and is used as a cut filter (Sigma Kogyo Co., Ltd.) and as a condenser lens. Detection was performed by a CCD image sensor (manufactured by Texas Instruments Co., Ltd.) using a double objective lens (manufactured by Nikon Corporation).
 工程(b2):作製例(3-1)で得られたβ-ガラクトシダーゼ修飾二次抗体を1,000ng/mL含むPBSを5mL添加し、20分間循環させた。
 洗浄工程:Tween20を0.05重量%含むTBSを送液として20分間循環させることによって洗浄した。
Step (b2): 5 mL of PBS containing 1,000 ng / mL of the β-galactosidase-modified secondary antibody obtained in Preparation Example (3-1) was added and circulated for 20 minutes.
Washing step: Washing was performed by circulating TBS containing 0.05% by weight of Tween 20 for 20 minutes.
 工程(c):上記洗浄工程を経て得られたプラズモン励起センサに、TBSで調整した酵素消光基質(TG-bGal)溶液を導入し、反応させた。
 工程(d):該酵素消光基質溶液導入から20分後のCCDから観察したときのシグナル値を計測しアッセイシグナルとした。なお、AFPを0ng/mL時のSPFS測定シグナルをブランクシグナルとした。
Step (c): An enzyme quenching substrate (TG-bGal) solution adjusted with TBS was introduced into the plasmon excitation sensor obtained through the washing step and allowed to react.
Step (d): The signal value observed from the CCD 20 minutes after the introduction of the enzyme quenching substrate solution was measured and used as an assay signal. The SPFS measurement signal when AFP was 0 ng / mL was used as a blank signal.
 工程(e):本発明のプラズモン励起センサにおけるアッセイシグナル変化量を以下の式で評価した。
 シグナル変化量=|(アッセイ蛍光シグナル)-(ブランクシグナル)|
 得られた結果を、表8および図6に示す。
Step (e): The amount of assay signal change in the plasmon excitation sensor of the present invention was evaluated by the following equation.
Signal change = | (assay fluorescence signal) − (blank signal) |
The obtained results are shown in Table 8 and FIG.
 [実施例(3-2)]
 (プラズモン励起センサ(I)の製造)
 蛍光色素をテルビウムキレートの代わりに、2-Me-4-OMe TGを、さらに波長490nmのレーザ光を用いた以外は、実施例(3-1)と同様の方法で行った。
[Example (3-2)]
(Manufacture of plasmon excitation sensor (I))
The same procedure as in Example (3-1) was performed, except that 2-Me-4-OMe TG was used instead of the terbium chelate as a fluorescent dye, and laser light having a wavelength of 490 nm was used.
 (アッセイ法(Z)の実施)
 作製例(3-2)で得られたグルコースオキシダーゼ修飾2次抗体、酵素消光基質溶液としてグルコースおよび酸素を、さらに波長490nmのレーザ光を用いた以外は、実施例(3-1)と同様の方法で行った。
(Execution of assay method (Z))
The same procedure as in Example (3-1) except that glucose oxidase-modified secondary antibody obtained in Preparation Example (3-2), glucose and oxygen as the enzyme quenching substrate solution, and laser light having a wavelength of 490 nm were used. Went in the way.
 得られた結果を、表8および図6に示す。
 [比較例(3-1)]
 (プラズモン励起センサの製造)
 実施例(3-1)と同様の方法でプラズモン励起センサを製造した。
The obtained results are shown in Table 8 and FIG.
[Comparative Example (3-1)]
(Manufacture of plasmon excitation sensor)
A plasmon excitation sensor was manufactured in the same manner as in Example (3-1).
 (アッセイ法の実施)
 作製例(3-3)で得られたダーククエンチャー修飾2次抗体を用い、工程(c)を行わなかった以外は、実施例(3-1)と同様の方法で行った。
(Implementation of assay method)
The same procedure as in Example (3-1) was performed except that the dark quencher-modified secondary antibody obtained in Preparation Example (3-3) was used and step (c) was not performed.
 得られた結果を、表8および図6に示す。
 [比較例(3-2)]
 (プラズモン励起センサの製造)
 屈折率〔nd〕1.72、厚さ1mmのガラス製の透明平面基板((株)オハラ製の「S-LAL 10」)をプラズマ洗浄し、該基板の片面にクロム薄膜をスパッタリング法により形成した後、その表面にさらに金薄膜をスパッタリング法により形成した。クロム薄膜の厚さは1~3nm、金薄膜の厚さは44~52nmであった。
The obtained results are shown in Table 8 and FIG.
[Comparative Example (3-2)]
(Manufacture of plasmon excitation sensor)
A glass transparent flat substrate (“S-LAL 10” manufactured by OHARA INC.) Having a refractive index [n d ] of 1.72 and a thickness of 1 mm is plasma-cleaned, and a chromium thin film is formed on one surface of the substrate by sputtering. After the formation, a gold thin film was further formed on the surface by a sputtering method. The chromium thin film had a thickness of 1 to 3 nm, and the gold thin film had a thickness of 44 to 52 nm.
 このようにして得られた基板を、10-カルボキシ-1-デカンチオールを1mM含むエタノール溶液に24時間以上浸漬し、金薄膜の片面にSAM〔Self Assembled Monolayer;自己組織化単分子膜〕を形成した。基板を該溶液から取り出し、エタノールおよびイソプロパノールで洗浄した後、エアガンで乾燥させた。 The substrate thus obtained is immersed in an ethanol solution containing 1 mM of 10-carboxy-1-decanethiol for 24 hours or more to form a SAM (Self Assembled Monolayer) on one surface of a gold thin film. did. The substrate was removed from the solution, washed with ethanol and isopropanol, and then dried with an air gun.
 SAMの表面に、流路高さ0.5mmを有するポリジメチルシロキサン〔PDMS〕製シートを設け、SAM表面が流路の内側となるように基板を配置し(ただし、該シリコンゴムスペーサは送液に触れない状態とする。)、流路の外側から圧着し、ビスで流路シートと該プラズモン励起センサとを固定した。 A polydimethylsiloxane [PDMS] sheet having a flow path height of 0.5 mm is provided on the surface of the SAM, and the substrate is disposed so that the SAM surface is inside the flow path (however, the silicon rubber spacer is used for liquid feeding). The pressure-sensitive adhesive sheet was pressed from the outside of the flow path, and the flow path sheet and the plasmon excitation sensor were fixed with screws.
 (アッセイ法の実施)
 得られたプラズモン励起センサを流路に固定し、送液として超純水を10分間、その後PBSを20分間、ペリスタポンプにより、室温、流速500μL/minで循環させ、その表面を平衡化した。
(Implementation of assay method)
The obtained plasmon excitation sensor was fixed to the flow path, and ultrapure water was supplied as a liquid for 10 minutes, and then PBS was circulated for 20 minutes with a peristaltic pump at room temperature and a flow rate of 500 μL / min to equilibrate the surface.
 続いて、N-ヒドロキシコハク酸イミド〔NHS〕を50mMと、水溶性カルボジイミド〔WSC〕を100mMとを含むPBSを5mL送液し、20分間循環送液させた後に、抗αフェトプロテイン〔AFP〕モノクローナル抗体(1D5;2.5mg/mL、(株)日本医学臨床検査研究所製)溶液2.5mLを30分間循環送液することで、SAM上に1次抗体を固相化した。なお、1重量%牛血清アルブミン〔BSA〕を含むPBS緩衝生理食塩水にて30分間循環送液することで、非特異的吸着防止処理を行った。 Subsequently, 5 mL of PBS containing 50 mM N-hydroxysuccinimide [NHS] and 100 mM water-soluble carbodiimide [WSC] was fed and circulated for 20 minutes, followed by anti-α-fetoprotein [AFP] monoclonal. The primary antibody was solid-phased on the SAM by circulating 2.5 mL of an antibody (1D5; 2.5 mg / mL, manufactured by Japan Medical Clinical Laboratory Laboratories) solution for 30 minutes. In addition, the nonspecific adsorption | suction prevention process was performed by circulating 30 minutes by PBS buffer physiological saline containing 1 weight% bovine serum albumin [BSA].
 送液をPBSに代え、AFPを1ng/mL含むPBS溶液を0.5mL添加し、25分間循環させた。
 Tween20を0.05重量%含むTBSを送液として10分間循環させることによって洗浄した。
Instead of PBS, 0.5 mL of a PBS solution containing 1 ng / mL of AFP was added and circulated for 25 minutes.
Washing was carried out by circulating TBS containing 0.05% by weight of Tween 20 for 10 minutes.
 作製例(3-4)で作製したAlexa Fluor(登録商標)647を標識した2次抗体(1,000ng/mLとなるように調製したPBS溶液)を2.5mL添加し、20分間循環させた。 2.5 mL of secondary antibody (PBS solution prepared to be 1,000 ng / mL) labeled with Alexa Fluor (registered trademark) 647 prepared in Preparation Example (3-4) was added and circulated for 20 minutes. .
 その後、Tween20を0.05重量%含むTBSを送液として20分間循環させることによって洗浄した。
 CCDから観察したときのシグナル値を計測しアッセイシグナルとした。なお、AFPを0ng/mL時のSPFS測定シグナルをブランクシグナルとした。アッセイ評価としては実施例(3-1)と同様のアッセイシグナル変化量を算出することで評価した。
Then, it was cleaned by circulating TBS containing 0.05% by weight of Tween 20 for 20 minutes.
The signal value observed from the CCD was measured and used as an assay signal. The SPFS measurement signal when AFP was 0 ng / mL was used as a blank signal. As assay evaluation, it evaluated by calculating the assay signal variation | change_quantity similar to Example (3-1).
 得られた結果を、表8および図6に示す。 The obtained results are shown in Table 8 and FIG.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 実施例のプラズモン励起センサ上では基盤に蛍光色素層を形成しているため、ブランク状態で極めて高い蛍光シグナルが得られており、比較例(3-2)の従来の蛍光標識SPFS測定と較べて、桁違いの極めて高感度な測定が可能であることがわかった。さらに、消光剤の酵素増幅機構を設けることで、比較例(3-1)の2次抗体に直接消光剤が修飾されている場合と較べて、高いシグナル変化量を達成できることがわかった。 Since the fluorescent dye layer is formed on the substrate on the plasmon excitation sensor of the example, an extremely high fluorescence signal is obtained in the blank state, which is compared with the conventional fluorescence labeled SPFS measurement of the comparative example (3-2). It was found that an extremely sensitive measurement with an order of magnitude is possible. Further, it was found that by providing a quencher enzyme amplification mechanism, a higher signal change amount can be achieved as compared to the case where the quencher is directly modified to the secondary antibody of Comparative Example (3-1).
 本発明のプラズモン励起センサは、高感度および高精度であるから、例えば、がん胎児性抗原や腫瘍マーカーなどの生体分子の分子認識反応を利用した選択的バイオセンサやバイオプローブに直接応用できる。 Since the plasmon excitation sensor of the present invention has high sensitivity and high accuracy, it can be directly applied to, for example, a selective biosensor or bioprobe using a molecular recognition reaction of a biomolecule such as carcinoembryonic antigen or tumor marker.
 本発明のプラズモン励起センサを用いた本発明のアッセイ法は、高感度かつ高精度に検出することができる方法であるから、例えば、血液中に含まれる極微量の腫瘍マーカーであっても検出することができ、この結果から、触診などによって検出することができない前臨床期の非浸潤癌(上皮内癌)の存在も高精度で予測することができる。 Since the assay method of the present invention using the plasmon excitation sensor of the present invention is a method that can be detected with high sensitivity and high accuracy, for example, even a very small amount of tumor marker contained in blood is detected. From this result, it is also possible to predict with high accuracy the presence of a preclinical non-invasive cancer (carcinoma in situ) that cannot be detected by palpation or the like.
  1・・・・・・基板
  2・・・・・・1次抗体
  3・・・・・・検体中に含有される標的抗原
  4・・・・・・2次抗体
  5・・・・・・蛍光色素
  6・・・・・・消光色素
  7・・・・・・検体中に含有される標的抗原とは異なる、該標的抗原と競合する抗原(競合抗原)
  8・・・・・・消光剤基質
  9・・・・・・消光剤
 10・・・・・・酵素
 11・・・・・・透明平面基板の一方の表面に形成された金属薄膜
 12・・・・・・誘電体からなるスペーサ層の一方の表面に形成された蛍光色素層
 13・・・・・・表面プラズモンにより励起された蛍光色素が発した蛍光
100・・・・・・半導体レーザ〔LD〕
101・・・・・・ダイアフラムレンズ
102・・・・・・減光フィルタ(中性濃度〔ND〕フィルタ)
103・・・・・・偏光フィルタ
104・・・・・・フォトダイオード
110・・・・・・プリズム
111・・・・・・センサチップ
120・・・・・・光学レンズ
121・・・・・・カットフィルタおよびアダプタ
122・・・・・・CCDイメージセンサ
1 .... Substrate 2 .... Primary antibody 3 .... Target antigen contained in specimen 4 .... Secondary antibody 5 .... Fluorescent dye 6 .... Quenching dye 7 .... An antigen competing with the target antigen, which is different from the target antigen contained in the specimen (competitive antigen)
8 .... Quencher substrate 9 .... Quencher 10 .... Enzyme 11 .... Metal thin film formed on one surface of transparent flat substrate 12 .... ... Fluorescent dye layer formed on one surface of spacer layer made of dielectric 13... Fluorescence emitted by fluorescent dye excited by surface plasmon 100... Semiconductor laser [ LD]
101... Diaphragm lens 102... Neutral density filter (Neutral density [ND] filter)
103... Polarizing filter 104... Photodiode 110... Prism 111... Sensor chip 120. -Cut filter and adapter 122-CCD image sensor

Claims (17)

  1.  透明平面基板と;
     該基板の一方の表面に形成された金属薄膜と;
     該金属薄膜の、該基板とは接していないもう一方の表面に形成された誘電体からなるスペーサ層と
    を含み、さらに
    (V)該スペーサ層の、該金属薄膜とは接していないもう一方の表面に形成された蛍光色素層にリガンドが固定化されているか、または
    (W)該スペーサ層の、該金属薄膜とは接していないもう一方の表面に蛍光色素により標識されたリガンドが固定化されていることを特徴とするプラズモン励起センサ。
    A transparent planar substrate;
    A metal thin film formed on one surface of the substrate;
    A spacer layer made of a dielectric formed on the other surface of the metal thin film not in contact with the substrate, and (V) the other of the spacer layer not in contact with the metal thin film. The ligand is immobilized on the fluorescent dye layer formed on the surface, or (W) the ligand labeled with the fluorescent dye is immobilized on the other surface of the spacer layer that is not in contact with the metal thin film. A plasmon excitation sensor characterized by comprising:
  2.  上記金属薄膜が、金,銀,アルミニウム,銅および白金からなる群から選ばれる少なくとも1種の金属から形成されている請求項1に記載のプラズモン励起センサ。 The plasmon excitation sensor according to claim 1, wherein the metal thin film is formed of at least one metal selected from the group consisting of gold, silver, aluminum, copper and platinum.
  3.  上記誘電体が、二酸化ケイ素〔SiO2〕または二酸化チタン〔TiO2〕を含む請求項1または2に記載のプラズモン励起センサ。 The plasmon excitation sensor according to claim 1 or 2, wherein the dielectric includes silicon dioxide [SiO 2 ] or titanium dioxide [TiO 2 ].
  4.  上記リガンドが、腫瘍マーカーまたはがん胎児性抗原を認識し結合する抗体である請求項1~3のいずれかに記載のプラズモン励起センサ。 The plasmon excitation sensor according to any one of claims 1 to 3, wherein the ligand is an antibody that recognizes and binds to a tumor marker or carcinoembryonic antigen.
  5.  上記(V)の形態をとる請求項1~4のいずれかに記載のプラズモン励起センサ。 The plasmon excitation sensor according to any one of claims 1 to 4, which takes the form (V).
  6.  上記金属薄膜が、金または銀から形成されている請求項5に記載のプラズモン励起センサ。 The plasmon excitation sensor according to claim 5, wherein the metal thin film is made of gold or silver.
  7.  上記蛍光色素層が、上記スペーサ層の、上記金属薄膜とは接していないもう一方の表面に、蛍光色素とポリマーとを含有する組成物を塗工することによって形成されるか、またはシランカップリング剤を介して蛍光色素を結合させることによって形成される、請求項5または6に記載のプラズモン励起センサ。 The fluorescent dye layer is formed by applying a composition containing a fluorescent dye and a polymer to the other surface of the spacer layer that is not in contact with the metal thin film, or silane coupling. The plasmon excitation sensor according to claim 5 or 6, which is formed by binding a fluorescent dye via an agent.
  8.  上記(W)の形態をとる請求項1~4のいずれかに記載のプラズモン励起センサ。 The plasmon excitation sensor according to any one of claims 1 to 4, which takes the form (W).
  9.  上記金属薄膜が、金から形成されている請求項8に記載のプラズモン励起センサ。 The plasmon excitation sensor according to claim 8, wherein the metal thin film is made of gold.
  10.  上記リガンドが、シランカップリング剤からなる自己組織化単分子膜〔SAM〕を介して上記スペーサ層に固定化されている請求項8または9に記載のプラズモン励起センサ。 The plasmon excitation sensor according to claim 8 or 9, wherein the ligand is immobilized on the spacer layer via a self-assembled monolayer [SAM] made of a silane coupling agent.
  11.  少なくとも、
    (X)下記工程(a1),(b1),(d)および(e)を含むか、
    (Y)下記工程(a2),(b1),(d)および(e)を含むか、または
    (Z)下記工程(a1),(b2),(c),(d)および(e)を含む
    ことを特徴とするアッセイ法;
     工程(a1):請求項5~7のいずれかに記載のプラズモン励起センサに、検体を接触させる工程,
     工程(a2):請求項8~10のいずれかに記載のプラズモン励起センサに、検体を接触させる工程,
     工程(b1):該工程(a1)または(a2)を経て得られたプラズモン励起センサに、さらに、該プラズモン励起センサに含まれるリガンドとは同じであっても異なっていてもよいリガンドと消光色素とのコンジュゲートを反応させる工程,
     工程(b2):該工程(a1)を経て得られたプラズモン励起センサに、さらに、該プラズモン励起センサに含まれるリガンドとは同じであっても異なっていてもよいリガンドと酵素とのコンジュゲートを反応させる工程,
     工程(c):該工程(b2)を経て得られたプラズモン励起センサに、消光剤基質を反応させ、消光剤が生成される工程,
     工程(d):該工程(b1)または(c)を経て得られたプラズモン励起センサに、上記透明平面基板の、上記金属薄膜を形成していないもう一方の表面から、プリズムを経由してレーザ光を照射し、励起された蛍光色素から発光された蛍光量を測定する工程,および
     工程(e):該工程(d)で得られた測定結果から、検体中に含有されるアナライトの量を算出する工程。
    at least,
    (X) includes the following steps (a1), (b1), (d) and (e),
    (Y) includes the following steps (a2), (b1), (d) and (e), or (Z) includes the following steps (a1), (b2), (c), (d) and (e) An assay characterized by comprising;
    Step (a1): contacting the specimen with the plasmon excitation sensor according to any one of claims 5 to 7,
    Step (a2): contacting the specimen with the plasmon excitation sensor according to any one of claims 8 to 10,
    Step (b1): the plasmon excitation sensor obtained through the step (a1) or (a2), and a ligand that may be the same as or different from the ligand contained in the plasmon excitation sensor, and a quenching dye Reacting the conjugate with
    Step (b2): The plasmon excitation sensor obtained through the step (a1) is further combined with a ligand / enzyme conjugate that may be the same as or different from the ligand contained in the plasmon excitation sensor. Reacting,
    Step (c): a step of reacting a quencher substrate with the plasmon excitation sensor obtained through the step (b2) to produce a quencher,
    Step (d): The plasmon excitation sensor obtained through the step (b1) or (c) is subjected to laser from the other surface of the transparent flat substrate on which the metal thin film is not formed via a prism. A step of irradiating light and measuring the amount of fluorescence emitted from the excited fluorescent dye, and step (e): the amount of analyte contained in the specimen from the measurement result obtained in step (d) Calculating step.
  12.  上記検体が、血液,血清,血漿,尿,鼻孔液および唾液からなる群から選択される少なくとも1種の体液である請求項11に記載のアッセイ法。 The assay method according to claim 11, wherein the specimen is at least one body fluid selected from the group consisting of blood, serum, plasma, urine, nasal fluid and saliva.
  13.  上記アナライトが、腫瘍マーカーまたはがん胎児性抗原である請求項11または12に記載のアッセイ法。 The assay method according to claim 11 or 12, wherein the analyte is a tumor marker or carcinoembryonic antigen.
  14.  上記(X)または(Y)の態様をとるとき、上記アナライトとは異なるアナライトであって、上記アナライトと競合するアナライトが、上記コンジュゲートと予め結合している請求項11~13のいずれかに記載のアッセイ法。 When taking the embodiment of (X) or (Y), an analyte that is different from the analyte and that competes with the analyte is previously bound to the conjugate. An assay method according to any of the above.
  15.  上記酵素が、β-ガラクトシダーゼ,β-グルコシダーゼ,アルカリフォスファターゼまたはグルコースオキシダーゼである請求項11~13のいずれかに記載のアッセイ法。 The assay method according to any one of claims 11 to 13, wherein the enzyme is β-galactosidase, β-glucosidase, alkaline phosphatase or glucose oxidase.
  16.  少なくとも、上記工程(b1)または(c)を経て得られたプラズモン励起センサ,レーザ光の光源,光学フィルタ,プリズム,カットフィルタ,集光レンズおよび表面プラズモン励起増強蛍光検出部を含み、請求項11~15のいずれかに記載の工程(d)に用いられることを特徴とするアッセイ用装置。 12. At least a plasmon excitation sensor obtained through the step (b1) or (c), a laser light source, an optical filter, a prism, a cut filter, a condensing lens, and a surface plasmon excitation enhanced fluorescence detection unit. An assay device, which is used in the step (d) according to any one of to 15.
  17.  アッセイ法が、上記(X)の態様をとるとき、
    少なくとも、透明平面基板と上記金属薄膜と上記の誘電体からなるスペーサ層と上記蛍光色素層とを含むセンサおよび消光色素を含み;
     アッセイ法が、上記(Y)の態様をとるとき、
    少なくとも、透明平面基板と上記金属薄膜と上記の誘電体からなるスペーサ層とを含むセンサ,蛍光色素および消光色素を含み;
     アッセイ法が、上記(Z)の態様をとるとき、
     少なくとも、透明平面基板と上記金属薄膜と上記の誘電体からなるスペーサ層と上記蛍光色素層とを含むセンサ,上記酵素および消光剤基質を含むことを特徴とする、請求項11~15のいずれかに記載のアッセイ用のキット。
    When the assay method takes the embodiment of (X) above,
    At least a sensor including a transparent flat substrate, the metal thin film, a spacer layer made of the dielectric, and the fluorescent dye layer and a quenching dye;
    When the assay method takes the embodiment (Y) above,
    Including at least a sensor including a transparent flat substrate, the metal thin film, and a spacer layer made of the dielectric, a fluorescent dye, and a quenching dye;
    When the assay method takes the embodiment of (Z) above,
    A sensor comprising at least a transparent flat substrate, the metal thin film, a spacer layer made of the dielectric, and the fluorescent dye layer, the enzyme, and a quencher substrate. A kit for the assay described in 1.
PCT/JP2010/050803 2009-01-22 2010-01-22 Plasmon excitation sensor and method of assay using same WO2010084953A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009011974A JP5298877B2 (en) 2009-01-22 2009-01-22 Assay method using plasmon excitation sensor
JP2009011973A JP5298876B2 (en) 2009-01-22 2009-01-22 Plasmon excitation sensor and assay method using the same
JP2009-011974 2009-01-22
JP2009-011973 2009-01-22
JP2009-025974 2009-02-06
JP2009025974A JP5245125B2 (en) 2009-02-06 2009-02-06 Assay method using surface plasmon

Publications (1)

Publication Number Publication Date
WO2010084953A1 true WO2010084953A1 (en) 2010-07-29

Family

ID=42356003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050803 WO2010084953A1 (en) 2009-01-22 2010-01-22 Plasmon excitation sensor and method of assay using same

Country Status (1)

Country Link
WO (1) WO2010084953A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042233A (en) * 2010-08-13 2012-03-01 Konica Minolta Holdings Inc Correction method of fluorescent signal to be measured by spfs (surface plasmon excitation enhanced fluorescence spectrometry), assay method using the same, structure to be used for the methods and surface plasmon resonance sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208069A (en) * 2005-01-26 2006-08-10 National Institute Of Advanced Industrial & Technology Apparatus and method for detecting biomolecular interaction using plasmon resonance fluorescence
WO2007137060A2 (en) * 2006-05-16 2007-11-29 Applied Biosystems Systems, methods, and apparatus for single molecule sequencing
JP2008224561A (en) * 2007-03-15 2008-09-25 Fujifilm Corp Surface plasmon enhancing fluorescence sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208069A (en) * 2005-01-26 2006-08-10 National Institute Of Advanced Industrial & Technology Apparatus and method for detecting biomolecular interaction using plasmon resonance fluorescence
WO2007137060A2 (en) * 2006-05-16 2007-11-29 Applied Biosystems Systems, methods, and apparatus for single molecule sequencing
JP2008224561A (en) * 2007-03-15 2008-09-25 Fujifilm Corp Surface plasmon enhancing fluorescence sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KNOLL W ET AL.: "Surface Plasmon Fluorescence Immunoassay of Free Prostate-Specific Antigen in Human Plasma at the Femtomolar Level", ANAL CHEM, vol. 76, no. 22, 15 November 2004 (2004-11-15), pages 6765 - 6770 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042233A (en) * 2010-08-13 2012-03-01 Konica Minolta Holdings Inc Correction method of fluorescent signal to be measured by spfs (surface plasmon excitation enhanced fluorescence spectrometry), assay method using the same, structure to be used for the methods and surface plasmon resonance sensor

Similar Documents

Publication Publication Date Title
JP5652393B2 (en) Plasmon excitation sensor and assay method used for measurement method by SPFS-LPFS system
JP5720248B2 (en) Immunoassay using surface plasmon and fluorescence resonance energy transfer
JP5428322B2 (en) Assay method using plasmon excitation sensor
JP5994890B2 (en) Analyte detection probe
JP5958339B2 (en) Near-field enhanced fluorescence sensor chip
JP5772612B2 (en) Assay method using a sensor chip for a fluorescence measuring device using surface plasmon excitation enhanced fluorescence spectroscopy, and assay kit
JP2008102117A (en) Surface plasmon enhanced fluorescence sensor and fluorescence detecting method
JP2009080011A (en) Fluorescence detection method
JP5660035B2 (en) Fusion protein-containing assembly, method for producing the same, and assay method using the assembly
JP5516198B2 (en) Plasmon excitation sensor chip, plasmon excitation sensor using the same, and analyte detection method
WO2010041736A1 (en) Assay method using surface plasmon
WO2010084953A1 (en) Plasmon excitation sensor and method of assay using same
EP2607888B1 (en) Spfs sensor equipped with non-specific adsorption type purification mechanism
JP5541003B2 (en) Plasmon excitation sensor chip and assay method using the same
JP5245125B2 (en) Assay method using surface plasmon
JP5298877B2 (en) Assay method using plasmon excitation sensor
JP2009128136A (en) Fluorescence detection method
JP5298876B2 (en) Plasmon excitation sensor and assay method using the same
JP5754309B2 (en) Quantitative analysis method for measuring fluorescence using surface plasmon excitation enhanced fluorescence spectroscopy, and quantitative analysis kit and analyte dissociation inhibitor used therefor
JP2011127991A (en) Plasmon excitation sensor and assay method using sensor
JP5169891B2 (en) Assay method using surface plasmon
JP2012037477A (en) Sensor chip and assay method using the same
JP2010091527A (en) Assay method using surface plasmon
JP2011169609A (en) Assay method using plasmon excitation sensor
JP5516197B2 (en) Plasmon excitation sensor and assay method using the sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10733560

Country of ref document: EP

Kind code of ref document: A1