WO2010084822A1 - Process for manufacturing granular iron - Google Patents

Process for manufacturing granular iron Download PDF

Info

Publication number
WO2010084822A1
WO2010084822A1 PCT/JP2010/050373 JP2010050373W WO2010084822A1 WO 2010084822 A1 WO2010084822 A1 WO 2010084822A1 JP 2010050373 W JP2010050373 W JP 2010050373W WO 2010084822 A1 WO2010084822 A1 WO 2010084822A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
iron oxide
amount
gas
atmospheric gas
Prior art date
Application number
PCT/JP2010/050373
Other languages
French (fr)
Japanese (ja)
Inventor
杉山 健
修三 伊東
修 津下
晶一 菊池
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201080004143XA priority Critical patent/CN102272337A/en
Priority to US13/142,368 priority patent/US20110265603A1/en
Priority to CA2745763A priority patent/CA2745763A1/en
Priority to RU2011135038/02A priority patent/RU2484145C2/en
Priority to AU2010207300A priority patent/AU2010207300B2/en
Publication of WO2010084822A1 publication Critical patent/WO2010084822A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • C21B13/105Rotary hearth-type furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0046Making spongy iron or liquid steel, by direct processes making metallised agglomerates or iron oxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Definitions

  • the present invention introduces an agglomerate formed from a raw material mixture containing an iron oxide-containing substance and a carbonaceous reducing agent into a hearth laid with a carbonaceous material, and heats the agglomerate.
  • the present invention relates to a method for producing granular iron by reducing and melting iron oxide in a chemical compound.
  • Direct reduction iron making methods have been developed to obtain granular metallic iron from a raw material mixture containing an iron oxide source such as iron ore or iron oxide (hereinafter sometimes referred to as iron oxide-containing substance) and a carbonaceous reducing agent.
  • an iron oxide source such as iron ore or iron oxide (hereinafter sometimes referred to as iron oxide-containing substance) and a carbonaceous reducing agent.
  • the raw material mixture is charged onto the hearth of a heating furnace, and the iron oxide in the raw material mixture is reduced with a carbonaceous reducing agent by heating the raw material mixture with gas heat transfer or radiant heat in a furnace. It is reduced to iron, and this reduced iron is subsequently carburized and melted, then aggregated into granules while being separated from by-product slag, and then cooled and solidified to obtain granular metallic iron.
  • the content of impurity elements may be low. desired.
  • the carbon content in the granular iron is as large as possible within a range that does not become excessive.
  • Patent Document 1 granular iron in which the Fe purity is increased to 94% by mass or more and the C content is adjusted to 1.0 to 4.5% by mass. ing.
  • the granular iron is further adjusted to have an S content of 0.20 mass% or less, an Si content of 0.02 to 0.5 mass%, and an Mn content of less than 0.3 mass%.
  • Patent Document 1 does not disclose the point of adjusting the P amount of granular iron. The reason for this is that the phosphorus behavior in the reduction process of iron oxide has already been clarified by the chemical reaction mechanism in the blast furnace.
  • the present invention has been made in view of such a situation, and an agglomerate formed from a raw material mixture containing an iron oxide-containing substance and a carbonaceous reducing agent is charged on a hearth laid with a carbonaceous material.
  • An object of the present invention is to provide a method capable of producing granular iron with a low phosphorus content by reducing and melting iron oxide in the agglomerated material by heating the agglomerated material.
  • One aspect of the present invention is to charge an agglomerate formed from a raw material mixture containing an iron oxide-containing substance and a carbonaceous reducing agent onto a hearth laid with a carbonaceous material and heat the agglomerate.
  • the temperature of the agglomerated product in the furnace is in the range from 1200 ° C. to 1500 ° C.
  • the agglomerated product The oxygen partial pressure in the standard state of the atmospheric gas when the gas is heated is 2.0 ⁇ 10 ⁇ 13 atm or more, and the linear velocity of the atmospheric gas in the furnace is 4.5 cm / second or more. It is a manufacturing method.
  • FIG. 1 is a graph showing the relationship between the gas linear velocity and the dephosphorization rate under different oxygen partial pressures.
  • FIG. 2 is a graph showing the relationship between the gas linear velocity and the dephosphorization rate.
  • FIG. 3 is a graph showing the relationship between the oxygen partial pressure and the dephosphorization rate.
  • FIG. 4 is a graph showing the relationship between the time until removal and the dephosphorization rate.
  • FIG. 5 is a graph showing the relationship between the amount of fixed carbon contained in the carbonaceous reducing agent blended in the raw material mixture and the dephosphorization rate.
  • An agglomerate formed from a raw material mixture containing an iron oxide-containing substance and a carbonaceous reducing agent is placed on a hearth laid with a carbonaceous material, and the agglomerate is heated by heating the agglomerate.
  • the metallurgical process for producing granular iron by reducing and melting iron oxide is usually performed in a reducing atmosphere. The reason is that when this process is performed in an oxidizing atmosphere, the reduction of iron oxide contained in the agglomerate is stagnant during heating of the agglomerate, and reduced iron cannot be obtained in a high yield. Because. On the other hand, when this process is performed in a reducing atmosphere, the reduction of iron oxide proceeds.
  • the reduced iron when the reduced iron is melted in a reducing atmosphere, the phosphorus contained in the reduced iron hardly transfers to the slag produced as a by-product during the reduction, and remains in the granular iron obtained by melting the reduced iron. As a result, granular iron with a high phosphorus content is obtained.
  • the obtained granular iron In order to reduce the phosphorus content of the granular iron, the obtained granular iron needs to be supplied to, for example, an electric furnace and further subjected to dephosphorization treatment.
  • reducing gas from the carbonaceous reducing agent is actively generated from the inside of the agglomerated material while the iron oxide in the agglomerated material is reduced. Although it is released, almost no reducing gas is generated while the reduction of iron oxide is almost completed and the reduced iron melts and separates into granular iron and by-product slag. For this reason, the present inventors considered that the component composition of the granular iron while the reduced iron melts and separates into granular iron and by-product slag is greatly influenced by the component composition of the atmospheric gas.
  • the present inventors thought that the component composition of the granular iron could be adjusted by appropriately controlling the atmospheric gas while the reduced iron melts and separates into granular iron and by-product slag, and intensive studies are being conducted. Piled up. As a result, the inventors have (I) The agglomerated material is charged on a hearth laid with a carbonaceous material and heated so that the agglomerated material is in a range from 1200 ° C to 1500 ° C.
  • an agglomerated material As an agglomerated material, an agglomerated material mixture containing an iron oxide-containing substance and a carbonaceous reducing agent is prepared.
  • iron oxide-containing substance for example, iron ore, iron sand, non-ferrous smelting residue and the like can be used.
  • carbonaceous reducing agent for example, a carbon-containing substance can be used, and specifically, coal, coke, or the like can be used.
  • a binder, MgO supply substance, CaO supply substance, etc. can be mix
  • a binder for example, a polysaccharide (for example, starch such as wheat flour) can be used.
  • MgO supply substance for example, an Mg-containing substance extracted from MgO powder, natural ore, seawater, or the like, or magnesium carbonate (MgCO 3 ) can be used.
  • quick lime (CaO) or limestone (main component is CaCO 3 ) can be used as the CaO supply substance.
  • the shape of the agglomerated material is not particularly limited.
  • a pellet form or a briquette form can be adopted.
  • the size of the agglomerated material is not particularly limited. From the operational aspect, the particle size (maximum diameter) is preferably 50 mm or less, and preferably about 5 mm or more. If the particle size is large, the heat transfer to the lower part of the pellet is deteriorated, the productivity is lowered, and the granulation efficiency is also deteriorated. Therefore, it is preferable that it is 50 mm or less.
  • a charcoal material is laid on the hearth to reduce the agglomerates.
  • This carbon material serves as a carbon supply source when the carbon contained in the agglomerated material is insufficient, and also acts as a hearth protective material.
  • the charcoal material laid on the hearth has a maximum particle size of 2 mm or less.
  • a carbonaceous material having a maximum particle size of 2 mm or less it is possible to prevent the molten slag from flowing down the gaps in the carbonaceous material. As a result, it is possible to prevent the molten slag from reaching the hearth surface and eroding the hearth.
  • the lower limit value of the maximum particle size of the carbon material is preferably about 0.5 mm, for example.
  • the carbonaceous material is preferably laid on the hearth with a thickness of about 1 to 5 mm, for example.
  • the prepared agglomerated material is placed on a hearth laid with a carbonaceous material and heated so that the temperature of the agglomerated material becomes 1200 to 1500 ° C., and iron oxide in the raw material mixture is reduced and melted.
  • the temperature of the agglomerated material is preferably 1250 ° C. or higher. By setting it to 1250 degreeC or more, the fusion
  • the temperature of the agglomerated material is preferably 1450 ° C. or lower. By setting the temperature to 1450 ° C.
  • the structure of the heating furnace is not complicated, and a decrease in thermal efficiency can be suppressed. From the viewpoint of the structure of the heating furnace and the use of energy, it is preferable to produce the target metallic iron nugget at a low temperature.
  • a burner is used as the heating means in the furnace, the temperature of the agglomerated product can be adjusted by controlling the combustion conditions of the burner.
  • the kind of furnace used by this invention is not specifically limited.
  • a heating furnace or a moving hearth furnace can be used.
  • a moving hearth furnace for example, a rotary hearth furnace can be used.
  • the oxygen partial pressure in the standard state of the atmospheric gas when the agglomerate is heated is set to 2.0 ⁇ 10 ⁇ 13 atm or more, and the gas linear velocity is set to 4.5 cm / second or more.
  • the phosphorus contained in the reduced iron is oxidized by melting the reduced iron in a slightly oxidizing atmosphere, and this phosphorus migrates to the slag. This is because it has been found that the phosphorus content is reduced.
  • the oxygen partial pressure of the atmosphere gas is less than 2.0 ⁇ 10 ⁇ 13 atm or the gas linear velocity is less than 4.5 cm / sec, the oxidation contained in the atmosphere gas in the vicinity of the surface of the agglomerated material.
  • the oxygen partial pressure in the standard state of the atmospheric gas when the agglomerate is heated is 2.0 ⁇ 10 ⁇ 13 atm or more, and the gas linear velocity is 4.5 cm / second or more.
  • the oxygen partial pressure in the standard state of the atmospheric gas is preferably 2.8 ⁇ 10 ⁇ 13 atm or more.
  • the higher the oxygen partial pressure the more the granular iron dephosphorization is promoted.
  • the oxygen partial pressure in the standard state is preferably 4.8 ⁇ 10 ⁇ 13 atm or less, and more preferably 4.0 ⁇ 10 ⁇ 13 atm or less.
  • the linear velocity of the atmospheric gas in the furnace is preferably 5 cm / second or more. As the gas linear velocity increases, the dephosphorization of granular iron is promoted. However, if the gas linear velocity becomes too high, the granular iron is re-oxidized and the iron yield is lowered. Therefore, the gas linear velocity is preferably 13.5 cm / second or less, and more preferably 9 cm / second or less.
  • the atmospheric gas when the agglomerated material is heated means an atmospheric gas near the surface of the agglomerated material.
  • the vicinity of the surface of the agglomerated product means a region from the surface of the agglomerated product to a height of 50 mm.
  • the oxygen partial pressure and gas linear velocity of the atmospheric gas in the furnace are often different below the furnace (near the hearth) and above (near the ceiling), so agglomerates that affect the redox reaction of the agglomerates. It is necessary to define the oxygen partial pressure and the gas linear velocity for the atmospheric gas in the vicinity of the surface.
  • the oxygen partial pressure of the atmospheric gas when the agglomerated material is heated can be calculated by collecting the atmospheric gas near the surface of the agglomerated material and analyzing the gas composition.
  • the linear velocity of the atmospheric gas can be measured using a peat tube or the like.
  • the oxygen partial pressure of the atmospheric gas can be controlled, for example, by adjusting the amount of oxygen supplied to the burner, adjusting the amount of fuel supplied to the burner, the air ratio, etc., or adjusting the blowing of reducing gas.
  • the linear velocity of the atmospheric gas can be controlled, for example, by adjusting the amount of gas supplied to the burner, adjusting the blowing angle of the burner, or changing the height of the ceiling.
  • the oxygen partial pressure and the gas linear velocity of the atmospheric gas are adjusted so that they are within the above ranges after the time when the reduced iron starts melting at the latest. This is because the component composition of granular iron is affected by the atmospheric gas composition at the time of melting rather than at the time of solid reduction.
  • the linear velocity of the atmospheric gas when the agglomerated material is heated is controlled to 5.4 cm / second or less (including 0 cm / second), and melting starts. After that, it is preferable to control the linear velocity of the atmospheric gas when the agglomerated material is heated to 4.5 cm / second or more.
  • the reduction reaction takes place actively in the agglomerate, so even if the composition of the atmospheric gas in the furnace is changed, the agglomerate or near the surface of the agglomerate It is difficult to change the composition of the atmospheric gas.
  • solid reduction approaches completion carburization into iron begins, the melting point of iron decreases, and melting begins.
  • the oxygen partial pressure of the atmospheric gas until the iron oxide contained in the raw material mixture starts to melt is preferably 2.8 ⁇ 10 ⁇ 13 atm or less.
  • the partition plate may be suspended from the ceiling in the furnace to divide the furnace into a plurality of zones, and the oxygen partial pressure and gas linear velocity of the atmospheric gas may be controlled in each zone.
  • the dephosphorization of granular iron can be promoted more effectively than reductive melting in a reducing atmosphere. It is possible to produce granular iron with a low phosphorus content.
  • the fixed carbon amount contained in the carbonaceous reducing agent to be blended in the raw material mixture with respect to the fixed carbon amount necessary for reducing the iron oxide contained in the iron oxide-containing substance is 98% by mass to 102% by mass. It is preferable to set it as the range. The reason is that if the amount of fixed carbon contained in the carbonaceous reducing agent relative to the amount of fixed carbon necessary for reducing iron oxide is less than 98% by mass, the carbon is insufficient and, as will be described later, it is laid on the hearth. This is because even if reducing gas (CO gas) springs out from the carbonaceous material, the reduction of iron oxide is insufficient.
  • CO gas reducing gas
  • the amount of fixed carbon contained in the carbonaceous reducing agent relative to the amount of fixed carbon necessary for reducing iron oxide is preferably 98% by mass or more, and more preferably 98.5% by mass or more.
  • the reducing gas CO gas
  • the fixed carbon amount contained in the carbonaceous reducing agent with respect to the fixed carbon amount required for reducing iron oxide is preferably 102% by mass or less, more preferably 101% by mass or less.
  • the amount of fixed carbon contained in the carbonaceous reducing agent it is particularly recommended to adjust the amount of fixed carbon contained in the carbonaceous reducing agent to be slightly deficient with respect to the amount of fixed carbon necessary for reducing iron oxide.
  • the reason is that when the amount of fixed carbon contained in the carbonaceous reducing agent is insufficient, the reduction of granular iron seems to be insufficient, but in the present invention, the agglomerate is located on the carbonaceous material, so This is because the unreduced portion of iron is reduced by the carbon material laid on the hearth.
  • iron oxide (FeO x ) contained in the agglomerated material is reduced by the following formulas (1) and (2) using carbon (C) contained in the carbonaceous reducing agent and carbon material laid on the hearth. Is reduced to form granular iron.
  • FeO x + xCO ⁇ Fe + xCO 2 (1)
  • the amount of carbon when calculated as one carbon atom necessary for reducing one oxygen atom contained in iron oxide is slightly insufficient because, for example, a carbonaceous reducing agent is blended in the raw material mixture in a small amount. Even if there is, the iron oxide in the agglomerates is sufficiently reduced.
  • the amount of fixed carbon contained in the carbonaceous reducing agent is adjusted to be deficient with respect to the amount of fixed carbon necessary for reducing iron oxide, so that iron oxide (FeO) contained in the by-product slag during reduction is reduced. ) Can be produced more, and the dephosphorization reaction when the reduced iron is melted can be promoted. Therefore, the amount of fixed carbon contained in the carbonaceous reducing agent with respect to the amount of fixed carbon necessary for reducing iron oxide is more preferably 100% by mass or less.
  • the amount of fixed carbon contained in the carbon material laid on the hearth is not particularly limited.
  • a carbon-containing material used as the carbonaceous reducing agent can be used.
  • the composition of the raw material mixture so that the agglomerate has a basicity of slag by-produced during the reduction of iron oxide in the range of 1.0 to 1.6.
  • the basicity is preferably 1.3 or more, and more preferably 1.4 or more.
  • the basicity of the slag becomes too high, the melting point of the slag becomes too high, and when the reduced iron is melted, the slag is not melted, so that the separation between the granular iron and the slag is deteriorated. As a result, slag is caught in granular iron, and the quality of granular iron falls. Accordingly, the basicity is preferably 1.6 or less.
  • the basicity of slag is a value [(CaO) / (SiO 2 )] calculated from the amount of CaO and the amount of SiO 2 contained in the slag.
  • each agglomerate formed from a raw material mixture containing an iron oxide-containing substance and a carbonaceous reducing agent was produced in a laboratory, and each agglomerate was heated in a furnace of a carbonaceous material.
  • Each granular iron was manufactured by charging into the floor and heating the agglomerated material to reduce and melt the iron oxide in the agglomerated material.
  • the composition of the agglomerated material and the reducing and melting conditions were variously changed. Specifically, it is as follows.
  • iron oxide-containing substance two types of iron ore (n) having a low phosphorus content and iron ore (hpb) having a high phosphorus content were used.
  • the component composition of iron ore (n) and iron ore (hpb) is shown in Table 1 below.
  • carbonaceous reducing agent two kinds of coal (p) having a low phosphorus content and coal (b) having a high phosphorus content were used.
  • the component composition of coal (p) and coal (b) is shown in Table 2 below.
  • Additives were blended into the iron ore shown in Table 1 below and the coal shown in Table 2 below, and pelletized agglomerates (test materials) having a particle size of 18 to 20 mm were prepared.
  • the blended additives are wheat flour added as a binder, MgO, CaO, and the like.
  • Table 3 below shows the composition of the test material (percentage of the weighed value).
  • Table 3 below shows percentage target values of the amount of fixed carbon contained in the carbonaceous reducing agent blended in the raw material mixture with respect to the amount of fixed carbon necessary for reducing iron oxide.
  • Table 3 below shows target values of basicity of slag produced as a by-product during reduction.
  • Table 4 below shows the component composition of the test materials.
  • the test material (1) is a low phosphorus content pellet
  • the test materials (2) to (5) are high phosphorus content pellets.
  • test materials shown in Table 4 below are charged into the furnace of the hearth where each charcoal material is laid, and the iron oxide in the raw material mixture is reduced and melted by heating, and the granular iron and slag are completely The product was taken out into the cooling zone at the time when it was separated, and each granular iron was produced.
  • the number of specimens charged into the furnace was 30.
  • 130 g of anthracite having a maximum particle size of 2 mm or less was spread as a charcoal material. A large amount of charcoal was laid around to protect the hearth.
  • the test material charged in the furnace was heated so that the temperature of the test material became 1450 ° C. using a heater provided in the furnace.
  • the linear velocity of the atmospheric gas when the specimen is heated (the linear velocity of the atmospheric gas in the vicinity of the specimen) is controlled in the range of 1.35 to 20.27 cm / sec.
  • the oxygen partial pressure of the atmospheric gas during heating (the oxygen partial pressure of the atmospheric gas in the vicinity of the specimen) was controlled in the range of 0 to 5.057 ⁇ 10 ⁇ 13 atm.
  • the gas linear velocity and oxygen partial pressure are shown in Table 5 or Table 6 below.
  • the gas linear velocity is a value in a standard state.
  • the gas linear velocity was calculated from the amount of gas supplied and the cross-sectional area at the sample installation part in the furnace.
  • the oxygen partial pressure was calculated by the following procedure.
  • the component composition of the obtained granular iron and the component composition of the slag produced as a by-product when the granular iron is generated are shown in Tables 5 and 6 below.
  • the amount of Fe shows a calculated value obtained by subtracting the alloy elements and the amount of impurities from the whole (100% by mass).
  • No. No. 30 shows the result of taking out the granular iron 1 minute earlier than the time when separation of the slag and granular iron is completed.
  • 31 shows the result of taking out granular iron from the furnace after hold
  • No. 30 and no. Samples other than 31 show the results of taking out granular iron from the furnace when one minute has passed since the separation of slag and granular iron was completed.
  • the center temperature of the test material When the center temperature of the test material is measured, it is about 1300 ° C. (No. 30) at a point one minute earlier than the separation of slag and granular iron, and 1 after the separation of slag and granular iron is completed.
  • the temperature was about 1400 ° C. when a minute elapsed, and about 1450 ° C. (No. 31) when held for 3 minutes after the separation of slag and granular iron was completed.
  • the CO 2 gas fraction in the vicinity of the specimen is from 1 minute earlier than the separation of slag and granular iron to the point of holding for 3 minutes after the separation of slag and granular iron is completed.
  • CO gas from the test material was slightly observed at one minute earlier than the separation of slag and granular iron, but after the separation of slag and granular iron was partially completed, No CO gas was detected from the specimen.
  • the phosphorus removal rate was calculated by the following formula.
  • FIG. 1 Based on the data in Tables 4 and 5, the relationship between the gas linear velocity and the dephosphorization rate under different oxygen partial pressures is shown in FIG.
  • the symbol ⁇ indicates the result when the oxygen partial pressure is 0 atm
  • the symbol ⁇ indicates the result when the oxygen partial pressure is 1.011 ⁇ 10 ⁇ 13 atm
  • the symbol ⁇ indicates the oxygen partial pressure is 1.517 ⁇ 10 ⁇ 13 atm.
  • the symbol ⁇ indicates the result when the oxygen partial pressure is 3.034 ⁇ 10 ⁇ 13 atm
  • the symbol ⁇ indicates the result when the oxygen partial pressure is 5.057 ⁇ 10 ⁇ 13 atm.
  • the dephosphorization rate increases as the linear velocity of the atmosphere gas when the specimen is heated is increased. Then, for example, in a gas linear velocity 5.41Cm / sec test material (3), increasing the partial pressure of oxygen in the atmosphere gas from 1.517 ⁇ 10 -13 atm to 3.034 ⁇ 10 -13 atm. It can be seen that when the oxygen partial pressure of the atmospheric gas is increased, the phosphorus removal rate increases with the same specimen and the same gas linear velocity so that the phosphorus removal rate increases. When the oxygen partial pressure of the atmospheric gas is 0 atm (that is, in a nitrogen gas atmosphere), the phosphorus removal rate is not affected by the gas linear velocity.
  • FIG. 3 shows the relationship between the oxygen partial pressure and the dephosphorization rate for 25, 27, 28, and 29.
  • the dephosphorization rate increases as the oxygen partial pressure increases. It can also be seen that the dephosphorization rate hardly changes when the oxygen partial pressure is up to 1.517 ⁇ 10 ⁇ 13 atm.
  • FIG. 4 shows the time when the reduced iron is melted and the time when the slag and the granular iron are completely separated is 0 minute, and the time from when the granular iron separated from the slag is taken out of the furnace is changed. Shows the change in the dephosphorization rate. As is apparent from FIG. 4, it can be seen that the dephosphorization rate decreases when heating is continued as it is after the slag and granular iron are separated.
  • the highest dephosphorization rate is when the removal time is “ ⁇ 1 minute”. This “ ⁇ 1 minute” means that the slag and granular iron were removed from the furnace before they were separated. This is a condition that cannot be adopted in actual operation.
  • FIG. 5 shows the relationship between the amount of fixed carbon contained in the carbonaceous reducing agent blended in the raw material mixture and the dephosphorization rate for 21, 22, and 25.
  • the amount of fixed carbon contained in the carbonaceous reductant blended in the raw material mixture is insufficient relative to the amount of fixed carbon necessary for reducing iron oxide. It can be seen that the phosphorus rate is higher.
  • the amount of fixed carbon contained in the carbonaceous reducing agent to be blended in the raw material mixture is insufficient with respect to the amount of fixed carbon necessary for reducing the iron oxide contained in the test material.
  • the amount of carbon contained in the charcoal laid on the hearth is adjusted to a range of 2 to 5% by mass with respect to the amount of fixed carbon required to reduce iron oxide. It can be seen that the remaining iron oxide is stably reduced by the carbon material laid on the hearth.
  • one aspect of the present invention is to charge an agglomerate formed from a raw material mixture containing an iron oxide-containing substance and a carbonaceous reducing agent onto a hearth laid with a carbonaceous material,
  • the oxygen partial pressure in the standard state of the atmospheric gas when the agglomerated material is heated is 2.0 ⁇ 10 ⁇ 13 atm or more, and the linear velocity of the atmospheric gas in the furnace is 4.5 cm. It is the manufacturing method of the granular iron which makes it / second or more.
  • the agglomerated material after the reduction is melted in a state where the oxygen partial pressure and the gas linear velocity of the atmospheric gas are controlled to the above conditions, so that the phosphorus contained in the reduced iron is transferred to the slag produced as a by-product during the reduction. be able to. As a result, the amount of phosphorus contained in the granular iron obtained by melting reduced iron is reduced.
  • the amount of fixed carbon contained in the carbonaceous reducing agent with respect to the amount of fixed carbon necessary for reducing the iron oxide is in a range from 98% by mass to 102% by mass. It is preferable to adjust the composition of the raw material mixture. Thereby, the reduction reaction of iron oxide proceeds more actively, and granular iron with less phosphorus content is obtained.
  • the composition of the raw material mixture so that the basicity of slag produced as a by-product during reduction of the iron oxide is in the range of 1.0 to 1.6.
  • the dephosphorization reaction proceeds faster, and granular iron having a lower phosphorus content is obtained.
  • the amount of fixed carbon contained in the carbonaceous reducing agent with respect to the amount of fixed carbon necessary for reducing the iron oxide is in a range from 98% by mass to 100% by mass. Is preferred.
  • the amount of fixed carbon contained in the carbonaceous reducing agent becomes insufficient with respect to the amount of fixed carbon necessary for reducing iron oxide, and the amount of iron oxide (FeO) contained in the byproduct slag during reduction is reduced. Many can be generated.
  • the dephosphorization reaction at the time of melting of the reduced iron is further promoted, so that the dephosphorization rate of the reduced iron can be further increased.
  • the linear velocity of the atmospheric gas is set to 5.4 cm / second or less (including 0 cm / second), and the iron oxide starts melting.
  • the linear velocity of the atmospheric gas is preferably 4.5 cm / second or more.
  • the amount of fixed carbon contained in the carbonaceous material laid on the hearth with respect to the amount of fixed carbon necessary for reducing the iron oxide ranges from 2% by mass to 5% by mass.
  • the maximum particle size of the carbon material is preferably 2 mm or less.
  • the method for producing granular iron of the present invention it is possible to stably produce granular iron with a low phosphorus content.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

A process for manufacturing granular iron, which comprises introducing agglomerates formed from a raw material mixture comprising both an iron oxide-containing substance and a carbonaceous reducing agent onto a hearth with a coal-based material laid thereon, and heating the agglomerates to reduce and melt the iron oxide contained in the agglomerates, characterized in that: the temperature of the agglomerates in the furnace is controlled within a range of 1200 to 1500°C; the oxygen partial pressure of the atmospheric gas when heating the agglomerates is adjusted to 2.0 × 10-13 atm or higher in terms of value at the standard state; and the linear velocity of the atmospheric gas in the furnace is adjusted to 4.5cm/s or higher.

Description

粒状鉄の製造方法Production method of granular iron
 本発明は、酸化鉄含有物質と炭素質還元剤を含む原料混合物から形成された塊成化物を、炭材を敷いた炉床に装入して、当該塊成化物を加熱することにより当該塊成化物中の酸化鉄を還元溶融して粒状鉄を製造する方法に関するものである。 The present invention introduces an agglomerate formed from a raw material mixture containing an iron oxide-containing substance and a carbonaceous reducing agent into a hearth laid with a carbonaceous material, and heats the agglomerate. The present invention relates to a method for producing granular iron by reducing and melting iron oxide in a chemical compound.
 鉄鉱石や酸化鉄等の酸化鉄源(以下、酸化鉄含有物質ということがある)と炭素質還元剤を含む原料混合物から、粒状の金属鉄を得る直接還元製鉄法が開発されてきている。この製鉄法では、原料混合物を加熱炉の炉床上に装入し、炉内で加熱バーナーによるガス伝熱や輻射熱で原料混合物を加熱することによって原料混合物中の酸化鉄を炭素質還元剤で還元鉄に還元し、この還元鉄を続いて浸炭・溶融させ、次いで副生するスラグと分離しつつ粒状に凝集させた後、冷却凝固させて粒状の金属鉄を得ている。この製鉄法は、高炉等の大規模な設備が不要なことや、コークスが不要になるなど資源面の柔軟性も高いことから、最近、実用化研究が盛んに行われている。しかし工業的規模でこの製鉄法を実施するには、操業安定性や安全性、経済性、粒状鉄(製品)の品質などを含めて更に改善しなければならない課題が多い。 Direct reduction iron making methods have been developed to obtain granular metallic iron from a raw material mixture containing an iron oxide source such as iron ore or iron oxide (hereinafter sometimes referred to as iron oxide-containing substance) and a carbonaceous reducing agent. In this iron making method, the raw material mixture is charged onto the hearth of a heating furnace, and the iron oxide in the raw material mixture is reduced with a carbonaceous reducing agent by heating the raw material mixture with gas heat transfer or radiant heat in a furnace. It is reduced to iron, and this reduced iron is subsequently carburized and melted, then aggregated into granules while being separated from by-product slag, and then cooled and solidified to obtain granular metallic iron. Since this iron making method does not require large-scale facilities such as a blast furnace, and has high resource flexibility such as no coke, research on practical application has been actively conducted recently. However, in order to implement this iron manufacturing method on an industrial scale, there are many problems that must be further improved, including operational stability, safety, economic efficiency, quality of granular iron (product), and the like.
 上記直接還元製鉄法によって得られた粒状鉄は、電気炉や転炉のような既存の製鋼設備へ送られて鉄源として使用されるため、その品質については不純物元素の含有量が少ないことが望まれる。また、粒状鉄中の炭素含有量は、鉄源としての汎用性を高めるために、過度にならない範囲でできるだけ多い方が望ましい。 Since the granular iron obtained by the direct reduction iron making process is sent to existing steel making facilities such as electric furnaces and converters and used as an iron source, the content of impurity elements may be low. desired. Moreover, in order to improve the versatility as an iron source, it is desirable that the carbon content in the granular iron is as large as possible within a range that does not become excessive.
 本出願人は、粒状金属鉄の品質向上を目指して、Fe純度を94質量%以上に高めると共に、C量を1.0~4.5質量%に調整した粒状鉄を特許文献1に提案している。この粒状鉄は、更に、S量を0.20質量%以下、Si量を0.02~0.5質量%、Mn量を0.3質量%未満に調整されている。しかし粒状鉄のP量を調整する点については特許文献1に開示されていない。その理由は、酸化鉄の還元過程におけるリンの挙動が高炉内での化学反応機構で既に明らかになっているように、被還元物(即ち、原料)由来のリンは、還元性雰囲気では、そのほぼ全量が還元物(即ち、金属鉄)中に残留してしまい、副生するスラグに移行しないため、特許文献1に開示された製鉄法で得られる粒状鉄のリン量を低減するには、原料中に含まれるリン量を低減するか、および/または、粒状鉄に対して更に脱リン処理を施すかのいずれかが必要であると認識されているからである。 In order to improve the quality of granular metallic iron, the present applicant proposed in Patent Document 1 granular iron in which the Fe purity is increased to 94% by mass or more and the C content is adjusted to 1.0 to 4.5% by mass. ing. The granular iron is further adjusted to have an S content of 0.20 mass% or less, an Si content of 0.02 to 0.5 mass%, and an Mn content of less than 0.3 mass%. However, Patent Document 1 does not disclose the point of adjusting the P amount of granular iron. The reason for this is that the phosphorus behavior in the reduction process of iron oxide has already been clarified by the chemical reaction mechanism in the blast furnace. In order to reduce the amount of phosphorus in the granular iron obtained by the iron manufacturing method disclosed in Patent Document 1, since almost the entire amount remains in the reduced product (that is, metallic iron) and does not shift to by-product slag, This is because it is recognized that it is necessary to reduce the amount of phosphorus contained in the raw material and / or to further dephosphorize the granular iron.
 近年では、鉄鉱石の品位が低下傾向にあり、採鉱される鉄鉱石に含まれるリン量は増大している。従ってリン量の少ない原料を調達することは今後益々困難になってくる。しかし、特許文献1に開示された製鉄法で得られた粒状鉄に更なる脱リン処理を施してそのリン量を下げることは、コスト上昇を招くことになる。 In recent years, the quality of iron ore has been declining, and the amount of phosphorus contained in the iron ore to be mined has increased. Therefore, it will become increasingly difficult to procure raw materials with low phosphorus content. However, reducing the amount of phosphorus by subjecting the granular iron obtained by the iron-making method disclosed in Patent Document 1 to a further dephosphorization process causes an increase in cost.
特開2002-339009号公報JP 2002-339909 A
 本発明は、この様な状況に鑑みてなされたものであり、酸化鉄含有物質と炭素質還元剤を含む原料混合物から形成された塊成化物を、炭材を敷いた炉床上に装入して、当該塊成化物を加熱することにより当該塊成化物中の酸化鉄を還元溶融してリン含有量の少ない粒状鉄が製造できる方法を提供することを目的とする。 The present invention has been made in view of such a situation, and an agglomerate formed from a raw material mixture containing an iron oxide-containing substance and a carbonaceous reducing agent is charged on a hearth laid with a carbonaceous material. An object of the present invention is to provide a method capable of producing granular iron with a low phosphorus content by reducing and melting iron oxide in the agglomerated material by heating the agglomerated material.
 本発明の一局面は、酸化鉄含有物質と炭素質還元剤を含む原料混合物から形成された塊成化物を、炭材を敷いた炉床上に装入して、当該塊成化物を加熱することにより当該塊成化物中の酸化鉄を還元溶融して粒状鉄を製造する方法であって、前記炉内での前記塊成化物の温度を1200℃から1500℃までの範囲とし、前記塊成化物が加熱される際の雰囲気ガスの標準状態における酸素分圧を2.0×10-13atm以上とし、前記炉内での前記雰囲気ガスの線速を4.5cm/秒以上とする粒状鉄の製造方法である。 One aspect of the present invention is to charge an agglomerate formed from a raw material mixture containing an iron oxide-containing substance and a carbonaceous reducing agent onto a hearth laid with a carbonaceous material and heat the agglomerate. To produce granular iron by reducing and melting iron oxide in the agglomerated product, the temperature of the agglomerated product in the furnace is in the range from 1200 ° C. to 1500 ° C., and the agglomerated product The oxygen partial pressure in the standard state of the atmospheric gas when the gas is heated is 2.0 × 10 −13 atm or more, and the linear velocity of the atmospheric gas in the furnace is 4.5 cm / second or more. It is a manufacturing method.
 本発明の目的、特徴、局面および利点は、以下の詳細な説明および図面によって、より明白となる。 The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and drawings.
図1は、異なる酸素分圧下でのガス線速と脱リン率の関係を示すグラフである。FIG. 1 is a graph showing the relationship between the gas linear velocity and the dephosphorization rate under different oxygen partial pressures. 図2は、ガス線速と脱リン率の関係を示すグラフである。FIG. 2 is a graph showing the relationship between the gas linear velocity and the dephosphorization rate. 図3は、酸素分圧と脱リン率の関係を示すグラフである。FIG. 3 is a graph showing the relationship between the oxygen partial pressure and the dephosphorization rate. 図4は、取り出しまでの時間と脱リン率の関係を示すグラフである。FIG. 4 is a graph showing the relationship between the time until removal and the dephosphorization rate. 図5は、原料混合物に配合する炭素質還元剤に含まれる固定炭素量と脱リン率の関係を示すグラフである。FIG. 5 is a graph showing the relationship between the amount of fixed carbon contained in the carbonaceous reducing agent blended in the raw material mixture and the dephosphorization rate.
 酸化鉄含有物質と炭素質還元剤を含む原料混合物から形成された塊成化物を、炭材を敷いた炉床上に装入して、当該塊成化物を加熱することにより当該塊成化物中の酸化鉄を還元溶融して粒状鉄を製造する冶金プロセスは、通常、還元性雰囲気で行なわれる。その理由は、このプロセスを酸化性雰囲気で行なった場合には、塊成化物の加熱中に塊成化物に含まれる酸化鉄の還元が停滞して、高い収率で還元鉄を得ることができないからである。一方、このプロセスを還元性雰囲気で行なった場合には、酸化鉄の還元が進行する。しかし、還元鉄を還元性雰囲気で溶融させることで、還元鉄中に含まれるリンは、還元時に副生したスラグへ殆んど移行せず、還元鉄が溶融して得られる粒状鉄に留まる。その結果、リン含有量が多い粒状鉄が得られる。粒状鉄のリン含有量を低下させるには、得られた粒状鉄を、例えば、電気炉へ供給して、更に脱リン処理を施す必要がある。 An agglomerate formed from a raw material mixture containing an iron oxide-containing substance and a carbonaceous reducing agent is placed on a hearth laid with a carbonaceous material, and the agglomerate is heated by heating the agglomerate. The metallurgical process for producing granular iron by reducing and melting iron oxide is usually performed in a reducing atmosphere. The reason is that when this process is performed in an oxidizing atmosphere, the reduction of iron oxide contained in the agglomerate is stagnant during heating of the agglomerate, and reduced iron cannot be obtained in a high yield. Because. On the other hand, when this process is performed in a reducing atmosphere, the reduction of iron oxide proceeds. However, when the reduced iron is melted in a reducing atmosphere, the phosphorus contained in the reduced iron hardly transfers to the slag produced as a by-product during the reduction, and remains in the granular iron obtained by melting the reduced iron. As a result, granular iron with a high phosphorus content is obtained. In order to reduce the phosphorus content of the granular iron, the obtained granular iron needs to be supplied to, for example, an electric furnace and further subjected to dephosphorization treatment.
 上記塊成化物を1200~1500℃の高温で還元溶融した場合には、塊成化物中の酸化鉄が還元される間は、塊成化物の内部から炭素質還元剤による還元性ガスが活発に放出されるが、酸化鉄の還元がほぼ終了し、還元鉄が溶融して粒状鉄と副生スラグに分離する間は、還元性ガスは殆んど発生しない。そのため還元鉄が溶融して粒状鉄と副生スラグに分離する間の粒状鉄の成分組成は、雰囲気ガスの成分組成に大きく影響を受けると本発明者らは考えた。そこで本発明者らは、還元鉄が溶融して粒状鉄と副生スラグに分離する間における雰囲気ガスを適切に制御すれば、粒状鉄の成分組成を調整できるのではないかと考え、鋭意検討を重ねた。その結果、本発明者らは、
(I)前記塊成化物を、炭材を敷いた炉床上に装入して、当該塊成化物が1200℃から1500℃までの範囲となるように加熱すると共に、
(II)塊成化物を加熱するときの雰囲気ガスの標準状態における酸素分圧を2.0×10-13atm以上とし、
(III)前記炉内での前記雰囲気ガスの線速を4.5cm/秒以上とすれば、
還元鉄の溶融時に、還元鉄に含まれるリンを、還元時に副生したスラグへ移行させることができ、リン含有量の少ない粒状鉄を製造できることを見出し、本発明を完成した。
When the agglomerated material is reduced and melted at a high temperature of 1200 to 1500 ° C., reducing gas from the carbonaceous reducing agent is actively generated from the inside of the agglomerated material while the iron oxide in the agglomerated material is reduced. Although it is released, almost no reducing gas is generated while the reduction of iron oxide is almost completed and the reduced iron melts and separates into granular iron and by-product slag. For this reason, the present inventors considered that the component composition of the granular iron while the reduced iron melts and separates into granular iron and by-product slag is greatly influenced by the component composition of the atmospheric gas. Therefore, the present inventors thought that the component composition of the granular iron could be adjusted by appropriately controlling the atmospheric gas while the reduced iron melts and separates into granular iron and by-product slag, and intensive studies are being conducted. Piled up. As a result, the inventors have
(I) The agglomerated material is charged on a hearth laid with a carbonaceous material and heated so that the agglomerated material is in a range from 1200 ° C to 1500 ° C.
(II) The oxygen partial pressure in the standard state of the atmospheric gas when heating the agglomerated material is 2.0 × 10 −13 atm or more,
(III) If the linear velocity of the atmospheric gas in the furnace is 4.5 cm / second or more,
It has been found that phosphorus contained in reduced iron can be transferred to slag produced as a by-product during reduction during the melting of reduced iron, and granular iron with a low phosphorus content can be produced, thereby completing the present invention.
 以下、粒状鉄を製造するときの手順に沿って本発明を説明する。 Hereinafter, the present invention will be described in accordance with the procedure for producing granular iron.
 (I)塊成化物として、酸化鉄含有物質と炭素質還元剤を含む原料混合物を塊成化したものを用意する。 (I) As an agglomerated material, an agglomerated material mixture containing an iron oxide-containing substance and a carbonaceous reducing agent is prepared.
 上記酸化鉄含有物質として、例えば、鉄鉱石や砂鉄、非鉄製錬残渣などを用いることができる。上記炭素質還元剤として、例えば炭素含有物質を用いることができ、具体的には、石炭やコークスなどを用いることができる。 As the iron oxide-containing substance, for example, iron ore, iron sand, non-ferrous smelting residue and the like can be used. As the carbonaceous reducing agent, for example, a carbon-containing substance can be used, and specifically, coal, coke, or the like can be used.
 また、上記原料混合物には、その他の成分として、バインダーやMgO供給物質、CaO供給物質などを配合することができる。バインダーとして、例えば、多糖類(例えば、小麦粉等の澱粉など)などを用いることができる。MgO供給物質として、例えば、MgO粉末や天然鉱石や海水などから抽出されるMg含有物質、或いは炭酸マグネシウム(MgCO)などを用いることができる。CaO供給物質として、例えば、生石灰(CaO)や石灰石(主成分はCaCO)などを用いることができる。 Moreover, a binder, MgO supply substance, CaO supply substance, etc. can be mix | blended with the said raw material mixture as another component. As the binder, for example, a polysaccharide (for example, starch such as wheat flour) can be used. As the MgO supply substance, for example, an Mg-containing substance extracted from MgO powder, natural ore, seawater, or the like, or magnesium carbonate (MgCO 3 ) can be used. For example, quick lime (CaO) or limestone (main component is CaCO 3 ) can be used as the CaO supply substance.
 上記塊成化物の形状は特に限定されない。例えば、ペレット状やブリケット状などを採用することができる。塊成化物の大きさも特に限定されない。操業面から、粒径(最大径)は50mm以下であることが好ましく、5mm程度以上であることが好ましい。粒径が大きいと、ペレット下部への伝熱が悪くなって生産性が低下し、また、造粒効率も悪くなるからである。従って、50mm以下であることが好ましい。 The shape of the agglomerated material is not particularly limited. For example, a pellet form or a briquette form can be adopted. The size of the agglomerated material is not particularly limited. From the operational aspect, the particle size (maximum diameter) is preferably 50 mm or less, and preferably about 5 mm or more. If the particle size is large, the heat transfer to the lower part of the pellet is deteriorated, the productivity is lowered, and the granulation efficiency is also deteriorated. Therefore, it is preferable that it is 50 mm or less.
 炉床上には、塊成化物を還元するために炭材を敷いておく。この炭材は、塊成化物に含まれる炭素が不足したときの炭素供給源となると共に、炉床保護材として作用するからである。 A charcoal material is laid on the hearth to reduce the agglomerates. This carbon material serves as a carbon supply source when the carbon contained in the agglomerated material is insufficient, and also acts as a hearth protective material.
 炉床上に敷く炭材は、最大粒径が2mm以下のものを用いることが推奨される。最大粒径が2mm以下の炭材を用いることで、溶融したスラグが炭材の隙間を流れ落ちることを抑制することができる。その結果、溶融スラグが炉床表面に到達して、炉床を侵食することを防止できる。炭材の最大粒径の下限値は、例えば、0.5mm程度が好ましい。最大粒径の下限値が0.5mm程度の炭材を用いることで、塊成化物が炭材層の中へ潜り込んでしまうことを抑制することができる。その結果、加熱速度が小さくなって生産性が低下することを防止できる。炭材は、炉床上に、例えば、1~5mm程度の厚みで敷くことが好ましい。 It is recommended that the charcoal material laid on the hearth has a maximum particle size of 2 mm or less. By using a carbonaceous material having a maximum particle size of 2 mm or less, it is possible to prevent the molten slag from flowing down the gaps in the carbonaceous material. As a result, it is possible to prevent the molten slag from reaching the hearth surface and eroding the hearth. The lower limit value of the maximum particle size of the carbon material is preferably about 0.5 mm, for example. By using a carbon material having a lower limit of the maximum particle size of about 0.5 mm, it is possible to suppress the agglomerate from entering the carbon material layer. As a result, it is possible to prevent the heating rate from decreasing and the productivity from decreasing. The carbonaceous material is preferably laid on the hearth with a thickness of about 1 to 5 mm, for example.
 そして、用意した塊成化物を、炭材を敷いた炉床上に装入し、塊成化物の温度が1200~1500℃となるように加熱し、原料混合物中の酸化鉄を還元溶融する。塊成化物の温度は、1250℃以上であることが好ましい。1250℃以上にすることにより、粒状鉄とスラグの溶融時間を短縮できる他、スラグと粒状鉄の分離を促進することができ、鉄純度の高い粒状鉄を得ることができる。一方、塊成化物の温度、1450℃以下であることが好ましい。1450℃以下にすることにより、加熱炉の構造は複雑にならず、また、熱効率の低下も抑制できる。加熱炉の構造およびエネルギー利用の観点から、目的とする金属鉄ナゲットを低温で製造する方が好ましい。炉内の加熱手段としてバーナーを用いる場合には、該バーナーの燃焼条件を制御することで、塊成化物の温度を調整できる。本発明で用いる炉の種類は特に限定されない。例えば、加熱炉や移動炉床炉を用いることができる。移動炉床炉としては、例えば、回転炉床炉を用いることができる。 Then, the prepared agglomerated material is placed on a hearth laid with a carbonaceous material and heated so that the temperature of the agglomerated material becomes 1200 to 1500 ° C., and iron oxide in the raw material mixture is reduced and melted. The temperature of the agglomerated material is preferably 1250 ° C. or higher. By setting it to 1250 degreeC or more, the fusion | melting time of granular iron and slag can be shortened, the isolation | separation of slag and granular iron can be accelerated | stimulated, and granular iron with high iron purity can be obtained. On the other hand, the temperature of the agglomerated material is preferably 1450 ° C. or lower. By setting the temperature to 1450 ° C. or lower, the structure of the heating furnace is not complicated, and a decrease in thermal efficiency can be suppressed. From the viewpoint of the structure of the heating furnace and the use of energy, it is preferable to produce the target metallic iron nugget at a low temperature. When a burner is used as the heating means in the furnace, the temperature of the agglomerated product can be adjusted by controlling the combustion conditions of the burner. The kind of furnace used by this invention is not specifically limited. For example, a heating furnace or a moving hearth furnace can be used. As the moving hearth furnace, for example, a rotary hearth furnace can be used.
 (IIおよびIII)塊成化物が加熱される際の雰囲気ガスの標準状態における酸素分圧を2.0×10-13atm以上とし、このガス線速を4.5cm/秒以上にする。本発明者らが種々実験を行った結果、還元鉄を若干の酸化性雰囲気で溶融させることで、還元鉄に含まれるリンが酸化され、このリンがスラグへ移行し、その結果、粒状鉄のリン含有量が低減することが判明したからである。具体的には、雰囲気ガスの酸素分圧が2.0×10-13atm未満であるか、ガス線速が4.5cm/秒未満では、塊成化物の表面近傍における雰囲気ガスに含まれる酸化性ガス量が不足するため、粒状鉄の脱リンを促進することができない。従って塊成化物が加熱される際の雰囲気ガスの標準状態における酸素分圧は2.0×10-13atm以上とし、ガス線速は4.5cm/秒以上とする。 (II and III) The oxygen partial pressure in the standard state of the atmospheric gas when the agglomerate is heated is set to 2.0 × 10 −13 atm or more, and the gas linear velocity is set to 4.5 cm / second or more. As a result of various experiments conducted by the present inventors, the phosphorus contained in the reduced iron is oxidized by melting the reduced iron in a slightly oxidizing atmosphere, and this phosphorus migrates to the slag. This is because it has been found that the phosphorus content is reduced. Specifically, when the oxygen partial pressure of the atmosphere gas is less than 2.0 × 10 −13 atm or the gas linear velocity is less than 4.5 cm / sec, the oxidation contained in the atmosphere gas in the vicinity of the surface of the agglomerated material. Since the amount of the reactive gas is insufficient, the dephosphorization of the granular iron cannot be promoted. Accordingly, the oxygen partial pressure in the standard state of the atmospheric gas when the agglomerate is heated is 2.0 × 10 −13 atm or more, and the gas linear velocity is 4.5 cm / second or more.
 雰囲気ガスの標準状態における酸素分圧は、2.8×10-13atm以上であることが好ましい。酸素分圧が高くなるほど、粒状鉄の脱リンは促進される。しかし酸素分圧が高くなり過ぎると、粒状鉄が再酸化してしまい、鉄純度(金属化率)を下げてしまう。従って標準状態における酸素分圧は4.8×10-13atm以下であることが好ましく、4.0×10-13atm以下であることがより好ましい。 The oxygen partial pressure in the standard state of the atmospheric gas is preferably 2.8 × 10 −13 atm or more. The higher the oxygen partial pressure, the more the granular iron dephosphorization is promoted. However, if the oxygen partial pressure becomes too high, the granular iron is reoxidized and the iron purity (metalization rate) is lowered. Therefore, the oxygen partial pressure in the standard state is preferably 4.8 × 10 −13 atm or less, and more preferably 4.0 × 10 −13 atm or less.
 炉内での雰囲気ガスの線速は、5cm/秒以上であることが好ましい。ガス線速が大きくなるほど、粒状鉄の脱リンは促進される。しかしガス線速が大きくなり過ぎると、粒状鉄が再酸化してしまい、鉄の収率を下げてしまう。従ってガス線速は13.5cm/秒以下であることが好ましく、9cm/秒以下であることがより好ましい。 The linear velocity of the atmospheric gas in the furnace is preferably 5 cm / second or more. As the gas linear velocity increases, the dephosphorization of granular iron is promoted. However, if the gas linear velocity becomes too high, the granular iron is re-oxidized and the iron yield is lowered. Therefore, the gas linear velocity is preferably 13.5 cm / second or less, and more preferably 9 cm / second or less.
 塊成化物が加熱される際の雰囲気ガスとは、塊成化物の表面近傍の雰囲気ガスを意味する。塊成化物の表面近傍とは、塊成化物の表面から50mm高さまでの領域を意味する。炉内の雰囲気ガスの酸素分圧とガス線速は、炉の下方(炉床近傍)と上方(天井近傍)で異なる場合が多いため、塊成化物の酸化還元反応に影響を及ぼす塊成化物の表面近傍の雰囲気ガスについて、上記酸素分圧とガス線速を規定する必要がある。 The atmospheric gas when the agglomerated material is heated means an atmospheric gas near the surface of the agglomerated material. The vicinity of the surface of the agglomerated product means a region from the surface of the agglomerated product to a height of 50 mm. The oxygen partial pressure and gas linear velocity of the atmospheric gas in the furnace are often different below the furnace (near the hearth) and above (near the ceiling), so agglomerates that affect the redox reaction of the agglomerates. It is necessary to define the oxygen partial pressure and the gas linear velocity for the atmospheric gas in the vicinity of the surface.
 塊成化物が加熱される際の雰囲気ガスの酸素分圧は、塊成化物の表面近傍における雰囲気ガスを採取し、ガス組成を分析することにより算出することができる。雰囲気ガスの線速は、ピート管等を用いて測定することができる。 The oxygen partial pressure of the atmospheric gas when the agglomerated material is heated can be calculated by collecting the atmospheric gas near the surface of the agglomerated material and analyzing the gas composition. The linear velocity of the atmospheric gas can be measured using a peat tube or the like.
 雰囲気ガスの酸素分圧は、例えば、バーナーに供給する酸素量を調整したり、バーナーに供給する燃料の量や空気比等を調整する、或いは還元性ガスの吹き込みを調整することにより制御できる。雰囲気ガスの線速は、例えば、バーナーに供給するガス量を調整したり、バーナーの吹き込み角度を調整したり、天井の高さを変えることにより制御できる。 The oxygen partial pressure of the atmospheric gas can be controlled, for example, by adjusting the amount of oxygen supplied to the burner, adjusting the amount of fuel supplied to the burner, the air ratio, etc., or adjusting the blowing of reducing gas. The linear velocity of the atmospheric gas can be controlled, for example, by adjusting the amount of gas supplied to the burner, adjusting the blowing angle of the burner, or changing the height of the ceiling.
 雰囲気ガスの酸素分圧とガス線速は、遅くとも還元鉄が溶融を開始した時点以降において上記範囲となるように調整する。粒状鉄の成分組成は、固体還元時よりもむしろ溶融時の雰囲気ガス組成に影響を受けるためである。 The oxygen partial pressure and the gas linear velocity of the atmospheric gas are adjusted so that they are within the above ranges after the time when the reduced iron starts melting at the latest. This is because the component composition of granular iron is affected by the atmospheric gas composition at the time of melting rather than at the time of solid reduction.
 原料混合物に含まれる酸化鉄が溶融を開始するまでは、塊成化物が加熱される際の雰囲気ガスの線速を5.4cm/秒以下(0cm/秒を含む)に制御し、溶融を開始した後は、塊成化物が加熱される際の雰囲気ガスの線速を4.5cm/秒以上に制御することが好ましい。酸化鉄の溶融が開始するまでの間は、塊成化物内では還元反応が活発に起こっているため、炉内の雰囲気ガスの組成を変化させても塊成化物内や塊成化物の表面近傍の雰囲気ガスの組成を変化させることは困難である。一方、固体還元が完了に近づくに連れて鉄への浸炭が始まり、鉄の融点が低下して溶融を開始する。鉄が溶融し始めると、塊成化物からは殆んどガスが発生しないため、鉄の組成は炉内の雰囲気ガスの組成に大きく影響を受けることとなる。従って酸化鉄が溶融を開始するまでの間と、溶融を開始してからの塊成化物が加熱される際の雰囲気ガスの線速を夫々適切に制御することが好ましい。なお、原料混合物に含まれる酸化鉄が溶融を開始するまでの間の雰囲気ガスの酸素分圧は、2.8×10-13atm以下とすることが好ましい。 Until the iron oxide contained in the raw material mixture starts to melt, the linear velocity of the atmospheric gas when the agglomerated material is heated is controlled to 5.4 cm / second or less (including 0 cm / second), and melting starts. After that, it is preferable to control the linear velocity of the atmospheric gas when the agglomerated material is heated to 4.5 cm / second or more. Until the iron oxide starts to melt, the reduction reaction takes place actively in the agglomerate, so even if the composition of the atmospheric gas in the furnace is changed, the agglomerate or near the surface of the agglomerate It is difficult to change the composition of the atmospheric gas. On the other hand, as solid reduction approaches completion, carburization into iron begins, the melting point of iron decreases, and melting begins. When iron starts to melt, little gas is generated from the agglomerated material, so the composition of iron is greatly influenced by the composition of the atmospheric gas in the furnace. Therefore, it is preferable to appropriately control the linear velocity of the atmospheric gas until the iron oxide starts melting and when the agglomerated material after the melting starts is heated. The oxygen partial pressure of the atmospheric gas until the iron oxide contained in the raw material mixture starts to melt is preferably 2.8 × 10 −13 atm or less.
 このように本発明では、酸化鉄が溶融を開始するまでと、溶融を開始した後での雰囲気ガスの酸素分圧とガス線速を制御することが好ましいが、加熱炉として移動炉床炉を用いる場合は、例えば、炉内の天井から仕切り板を垂下させて炉内を複数のゾーンに分け、各ゾーンで雰囲気ガスの酸素分圧やガス線速を制御してもよい。 As described above, in the present invention, it is preferable to control the oxygen partial pressure and the gas linear velocity of the atmospheric gas after the iron oxide starts melting and after the melting starts, but a moving hearth furnace is used as a heating furnace. When used, for example, the partition plate may be suspended from the ceiling in the furnace to divide the furnace into a plurality of zones, and the oxygen partial pressure and gas linear velocity of the atmospheric gas may be controlled in each zone.
 以上のように、還元溶融するときの雰囲気ガスの酸素分圧とガス線速を適切に制御すれば、還元性雰囲気で還元溶融するときよりも粒状鉄の脱リンを効果的に進めることができ、リン含有量の少ない粒状鉄を製造することができる。 As described above, if the oxygen partial pressure and the gas linear velocity of the atmospheric gas during reductive melting are appropriately controlled, the dephosphorization of granular iron can be promoted more effectively than reductive melting in a reducing atmosphere. It is possible to produce granular iron with a low phosphorus content.
 本発明では、酸化鉄含有物質に含まれる酸化鉄を還元するために必要な固定炭素量に対する、原料混合物に配合する炭素質還元剤に含まれる固定炭素量を百分率で98質量%から102質量%までの範囲とすることが好ましい。その理由は、酸化鉄を還元するために必要な固定炭素量に対する炭素質還元剤に含まれる固定炭素量が百分率で98質量%未満では、炭素不足となり、後述するように、炉床上に敷いた炭材から還元性ガス(COガス)が湧き出したとしても、酸化鉄の還元が不充分となるからである。酸化鉄を還元するために必要な固定炭素量に対する炭素質還元剤に含まれる固定炭素量は百分率で98質量%以上が好ましく、98.5質量%以上がより好ましい。しかし、炭素質還元剤に含まれる固定炭素量が過剰になると、還元終了後にも雰囲気ガスと反応して塊成化物から還元性ガス(COガス)が湧き出し続ける。そのため、後述するように還元鉄が溶融するときの酸素分圧が低くなり、還元鉄の脱リン率が低下してしまう。従って、酸化鉄を還元するために必要な固定炭素量に対する炭素質還元剤に含まれる固定炭素量は百分率で102質量%以下が好ましく、101質量%以下がより好ましい。 In the present invention, the fixed carbon amount contained in the carbonaceous reducing agent to be blended in the raw material mixture with respect to the fixed carbon amount necessary for reducing the iron oxide contained in the iron oxide-containing substance is 98% by mass to 102% by mass. It is preferable to set it as the range. The reason is that if the amount of fixed carbon contained in the carbonaceous reducing agent relative to the amount of fixed carbon necessary for reducing iron oxide is less than 98% by mass, the carbon is insufficient and, as will be described later, it is laid on the hearth. This is because even if reducing gas (CO gas) springs out from the carbonaceous material, the reduction of iron oxide is insufficient. The amount of fixed carbon contained in the carbonaceous reducing agent relative to the amount of fixed carbon necessary for reducing iron oxide is preferably 98% by mass or more, and more preferably 98.5% by mass or more. However, when the amount of fixed carbon contained in the carbonaceous reducing agent becomes excessive, the reducing gas (CO gas) continues to spring out from the agglomerated product by reacting with the atmospheric gas even after the reduction is completed. Therefore, as will be described later, the oxygen partial pressure when the reduced iron melts is lowered, and the dephosphorization rate of the reduced iron is lowered. Therefore, the fixed carbon amount contained in the carbonaceous reducing agent with respect to the fixed carbon amount required for reducing iron oxide is preferably 102% by mass or less, more preferably 101% by mass or less.
 本発明では、炭素質還元剤に含まれる固定炭素量を、酸化鉄を還元するために必要な固定炭素量に対して、やや不足気味に調整することが特に推奨される。その理由は、炭素質還元剤に含まれる固定炭素量が不足すると、粒状鉄の還元が不充分になるように思われるが、本発明では、塊成化物が炭材上に位置するため、酸化鉄の未還元部分は炉床上に敷いた炭材によって還元されるからである。 In the present invention, it is particularly recommended to adjust the amount of fixed carbon contained in the carbonaceous reducing agent to be slightly deficient with respect to the amount of fixed carbon necessary for reducing iron oxide. The reason is that when the amount of fixed carbon contained in the carbonaceous reducing agent is insufficient, the reduction of granular iron seems to be insufficient, but in the present invention, the agglomerate is located on the carbonaceous material, so This is because the unreduced portion of iron is reduced by the carbon material laid on the hearth.
 即ち、塊成化物に含まれる酸化鉄(FeO)は、炭素質還元剤に含まれる炭素(C)と炉床上に敷いた炭材によって、下記(1)式および(2)式の還元反応に基づいて還元されて、粒状鉄となる。
  FeO+xCO→Fe+xCO ・・・(1)
  FeO+xC→Fe+xCO ・・・(2)
That is, iron oxide (FeO x ) contained in the agglomerated material is reduced by the following formulas (1) and (2) using carbon (C) contained in the carbonaceous reducing agent and carbon material laid on the hearth. Is reduced to form granular iron.
FeO x + xCO → Fe + xCO 2 (1)
FeO x + xC → Fe + xCO (2)
 そして本発明者らが種々実験を行った結果、(1)式のFeOがaモル反応し、(2)式のFeOがbモル反応したときは、下記(3)式に示す割合で還元反応が進むことが判明した。つまりこの(3)式は、1個の炭素原子が還元する酸素原子の数を示している。FeOの還元は、炭素(C)による直接還元が全体の38%程度起こり、還元ガス(COガス)による間接還元が全体の72%程度起こると考えられる。
  1.0 ≦ 1+a/(a+b) ≦ 1.5 ・・・(3)
As a result of various experiments conducted by the present inventors, when the FeO x of the formula (1) undergoes a molar reaction and the FeO x of the formula (2) undergoes b molar reaction, the proportion shown in the following formula (3) It was found that the reduction reaction proceeds. That is, the formula (3) indicates the number of oxygen atoms that one carbon atom can reduce. In the reduction of FeO x , direct reduction with carbon (C) occurs about 38% of the whole, and indirect reduction with reducing gas (CO gas) occurs about 72% of the whole.
1.0 ≦ 1 + a / (a + b) ≦ 1.5 (3)
 従って、酸化鉄に含まれる酸素原子1個を還元するために必要な炭素原子を1個として計算したときの炭素量が、例えば炭素質還元剤を少なめに原料混合物に配合したため、やや不足気味であったとしても、塊成化物中の酸化鉄は充分還元されるのである。 Therefore, the amount of carbon when calculated as one carbon atom necessary for reducing one oxygen atom contained in iron oxide is slightly insufficient because, for example, a carbonaceous reducing agent is blended in the raw material mixture in a small amount. Even if there is, the iron oxide in the agglomerates is sufficiently reduced.
 また、炭素質還元剤に含まれる固定炭素量を、酸化鉄を還元するために必要な固定炭素量に対して、不足気味に調整することで、還元時に副生スラグに含まれる酸化鉄(FeO)をより多く生成させることができ、還元鉄の溶融時における脱リン反応を促進できる。従って、酸化鉄を還元するために必要な固定炭素量に対する炭素質還元剤に含まれる固定炭素量は百分率で100質量%以下であることがより好ましい。 In addition, the amount of fixed carbon contained in the carbonaceous reducing agent is adjusted to be deficient with respect to the amount of fixed carbon necessary for reducing iron oxide, so that iron oxide (FeO) contained in the by-product slag during reduction is reduced. ) Can be produced more, and the dephosphorization reaction when the reduced iron is melted can be promoted. Therefore, the amount of fixed carbon contained in the carbonaceous reducing agent with respect to the amount of fixed carbon necessary for reducing iron oxide is more preferably 100% by mass or less.
 酸化鉄を還元するために必要な固定炭素量は、原料混合物の成分組成に基づいて算出すればよい。 What is necessary is just to calculate the fixed carbon amount required in order to reduce | restore iron oxide based on the component composition of a raw material mixture.
 なお、溶融した粒状鉄とスラグを分離させるには、粒状鉄の融点を降下させるために、粒状鉄を浸炭して3質量%程度の炭素を含有させる必要がある。ところが原料混合物に配合する炭素質還元剤に含まれる固定炭素量を、酸化鉄を還元するために必要な固定炭素量に対して不足気味にすると、粒状鉄中に含有される固定炭素量が不足するため、粒状鉄を溶融させることができなくなる。従って炉床上に炭材を敷き、この炭材に含まれる固定炭素量を、酸化鉄を還元するために必要な固定炭素量よりも過剰にすれば、粒状鉄に供給される固定炭素量を増やすことができ、溶融した粒状鉄とスラグを分離できる。 In order to separate the molten granular iron and slag, it is necessary to carburize the granular iron to contain about 3% by mass of carbon in order to lower the melting point of the granular iron. However, if the amount of fixed carbon contained in the carbonaceous reducing agent to be blended in the raw material mixture is made insufficient relative to the amount of fixed carbon necessary for reducing iron oxide, the amount of fixed carbon contained in the granular iron is insufficient. Therefore, it becomes impossible to melt the granular iron. Therefore, if the carbon material is laid on the hearth and the amount of fixed carbon contained in the carbon material is made larger than the amount of fixed carbon necessary for reducing iron oxide, the amount of fixed carbon supplied to the granular iron is increased. The molten granular iron and slag can be separated.
 酸化鉄を還元するために必要な固定炭素量に対して、炉床上に敷く炭材に含まれる固定炭素量は百分率で2質量%から5質量%までの範囲となるように調整することが好ましい。炉床上に敷く炭材の種類は特に限定されない。例えば、上記炭素質還元剤として用いる炭素含有物質を用いることができる。 It is preferable to adjust the amount of fixed carbon contained in the carbon material laid on the hearth to a range from 2% by mass to 5% by mass with respect to the amount of fixed carbon required for reducing iron oxide. . The kind of charcoal material laid on the hearth is not particularly limited. For example, a carbon-containing material used as the carbonaceous reducing agent can be used.
 本発明では、上記塊成化物は、酸化鉄の還元時に副生するスラグの塩基度が1.0から1.6までの範囲となるように原料混合物の組成を調整することも好ましい。その理由は、スラグの塩基度が1.0未満では、還元鉄が溶融するときの脱リン反応が進まず、粒状鉄のP含有量を低減できないからである。従って塩基度は1.3以上が好ましく、1.4以上がより好ましい。しかし、スラグの塩基度が高くなり過ぎると、スラグの融点が高くなり過ぎて、還元鉄が溶融したときにはスラグが溶融しなくなるため、粒状鉄とスラグの分離性が悪くなる。その結果、粒状鉄にスラグが巻き込まれてしまい、粒状鉄の品質が低下する。従って塩基度は1.6以下が好ましい。 In the present invention, it is also preferable to adjust the composition of the raw material mixture so that the agglomerate has a basicity of slag by-produced during the reduction of iron oxide in the range of 1.0 to 1.6. The reason is that when the basicity of the slag is less than 1.0, the dephosphorization reaction does not proceed when the reduced iron melts, and the P content of the granular iron cannot be reduced. Accordingly, the basicity is preferably 1.3 or more, and more preferably 1.4 or more. However, if the basicity of the slag becomes too high, the melting point of the slag becomes too high, and when the reduced iron is melted, the slag is not melted, so that the separation between the granular iron and the slag is deteriorated. As a result, slag is caught in granular iron, and the quality of granular iron falls. Accordingly, the basicity is preferably 1.6 or less.
 なお、スラグの塩基度とは、スラグに含まれるCaO量とSiO量から算出した値[(CaO)/(SiO)]である。 The basicity of slag is a value [(CaO) / (SiO 2 )] calculated from the amount of CaO and the amount of SiO 2 contained in the slag.
 以下、本発明を実施例によって更に詳細に説明する。下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。 Hereinafter, the present invention will be described in more detail with reference to examples. The following examples are not intended to limit the present invention, and can be implemented with appropriate modifications within a range that can be adapted to the gist of the preceding and following descriptions, all of which fall within the technical scope of the present invention. included.
 本実施例では、実験室で酸化鉄含有物質と炭素質還元剤を含む原料混合物から形成された各塊成化物を作製し、そして、各塊成化物を炭材が敷かれた加熱炉の炉床に装入し、さらに当該塊成化物を加熱することにより塊成化物中の酸化鉄を還元溶融させて各粒状鉄を製造した。このとき塊成化物の成分組成および還元溶融条件を種々変化させた。具体的には次の通りである。 In this example, each agglomerate formed from a raw material mixture containing an iron oxide-containing substance and a carbonaceous reducing agent was produced in a laboratory, and each agglomerate was heated in a furnace of a carbonaceous material. Each granular iron was manufactured by charging into the floor and heating the agglomerated material to reduce and melt the iron oxide in the agglomerated material. At this time, the composition of the agglomerated material and the reducing and melting conditions were variously changed. Specifically, it is as follows.
 酸化鉄含有物質としては、リン含有量が少ない鉄鉱石(n)とリン含有量が多い鉄鉱石(hpb)の2種類を用いた。鉄鉱石(n)と鉄鉱石(hpb)の成分組成を下記表1に示す。炭素質還元剤としては、リン含有量が少ない石炭(p)とリン含有量が多い石炭(b)の2種類を用いた。石炭(p)と石炭(b)の成分組成を下記表2に示す。 As the iron oxide-containing substance, two types of iron ore (n) having a low phosphorus content and iron ore (hpb) having a high phosphorus content were used. The component composition of iron ore (n) and iron ore (hpb) is shown in Table 1 below. As the carbonaceous reducing agent, two kinds of coal (p) having a low phosphorus content and coal (b) having a high phosphorus content were used. The component composition of coal (p) and coal (b) is shown in Table 2 below.
 下記表1にそれぞれ示した鉄鉱石と下記表2に示した石炭に添加物を配合し、粒径が18~20mmの各ペレット状塊成化物(供試材)を作製した。配合された添加物は、バインダーとして添加された小麦粉、およびMgOやCaOなどである。供試材の配合組成(秤量値の百分率)を下記表3に示す。 Additives were blended into the iron ore shown in Table 1 below and the coal shown in Table 2 below, and pelletized agglomerates (test materials) having a particle size of 18 to 20 mm were prepared. The blended additives are wheat flour added as a binder, MgO, CaO, and the like. Table 3 below shows the composition of the test material (percentage of the weighed value).
 下記表3には、酸化鉄を還元するために必要な固定炭素量に対する、原料混合物に配合する炭素質還元剤に含まれる固定炭素量の百分率目標値を示す。また、下記表3には、還元時に副生するスラグの塩基度の目標値を示す。 Table 3 below shows percentage target values of the amount of fixed carbon contained in the carbonaceous reducing agent blended in the raw material mixture with respect to the amount of fixed carbon necessary for reducing iron oxide. Table 3 below shows target values of basicity of slag produced as a by-product during reduction.
 下記表4に、供試材の成分組成を示す。下記表4のうち、供試材(1)は低リン含有ペレットであり、供試材(2)~(5)は高リン含有ペレットである。 Table 4 below shows the component composition of the test materials. In Table 4 below, the test material (1) is a low phosphorus content pellet, and the test materials (2) to (5) are high phosphorus content pellets.
 下記表4に示した供試材を、各炭材を敷いた炉床の炉内へ装入し、加熱することにより原料混合物中の酸化鉄を還元溶融し、そして、粒状鉄とスラグが完全に分離した時点で生成物を冷却ゾーンへ取り出して、各粒状鉄を製造した。炉内へ装入した各供試材は30個とした。炉床上には、炭材として最大粒径が2mm以下の無煙炭を130g敷き詰めた。炭材は、炉床を保護するために、周囲に多量に敷いた。 The test materials shown in Table 4 below are charged into the furnace of the hearth where each charcoal material is laid, and the iron oxide in the raw material mixture is reduced and melted by heating, and the granular iron and slag are completely The product was taken out into the cooling zone at the time when it was separated, and each granular iron was produced. The number of specimens charged into the furnace was 30. On the hearth, 130 g of anthracite having a maximum particle size of 2 mm or less was spread as a charcoal material. A large amount of charcoal was laid around to protect the hearth.
 炉内に装入した供試材は、炉に設けられたヒーターを用いて供試材の温度が1450℃となるように加熱した。 The test material charged in the furnace was heated so that the temperature of the test material became 1450 ° C. using a heater provided in the furnace.
 炉内では、供試材が加熱される際の雰囲気ガスの線速(供試材近傍における雰囲気ガスの線速)を1.35~20.27cm/秒の範囲に制御すると共に、供試材が加熱される際の雰囲気ガスの酸素分圧(供試材近傍における雰囲気ガスの酸素分圧)を0~5.057×10-13atmの範囲に制御した。ガス線速と酸素分圧を下記表5または表6に示す。ガス線速は、標準状態における値である。 In the furnace, the linear velocity of the atmospheric gas when the specimen is heated (the linear velocity of the atmospheric gas in the vicinity of the specimen) is controlled in the range of 1.35 to 20.27 cm / sec. The oxygen partial pressure of the atmospheric gas during heating (the oxygen partial pressure of the atmospheric gas in the vicinity of the specimen) was controlled in the range of 0 to 5.057 × 10 −13 atm. The gas linear velocity and oxygen partial pressure are shown in Table 5 or Table 6 below. The gas linear velocity is a value in a standard state.
 ガス線速は、供給ガス量と、炉内の試料設置部における断面積から算出した。また、酸素分圧は、次の手順で算出した。 The gas linear velocity was calculated from the amount of gas supplied and the cross-sectional area at the sample installation part in the furnace. The oxygen partial pressure was calculated by the following procedure.
 炭素の燃焼反応は下記(4)式で示され、この反応における標準生成自由エネルギーΔFは下記(5)式で示される。
  C(graphite)+O(g)=CO(g) ・・・(4)
  ΔF=-94640+0.05×T(cal/mol)・・・(5)
The combustion reaction of carbon is represented by the following equation (4), and the standard free energy of formation ΔF in this reaction is represented by the following equation (5).
C (graphite) + O 2 (g) = CO 2 (g) (4)
ΔF = −94640 + 0.05 × T (cal / mol) (5)
 一方、この反応の標準生成自由エネルギーΔFは、雰囲気ガスに占める二酸化炭素ガスの分圧PCO2と、雰囲気ガスに占める酸素ガスの分圧PO2とを用いて、下記(6)式で示される。
  ΔF=-RT×log(PCO2/PO2) ・・・(6)
On the other hand, the standard free energy of formation ΔF for this reaction is expressed by the following equation (6) using the partial pressure P CO2 of carbon dioxide gas in the atmospheric gas and the partial pressure P O2 of oxygen gas in the atmospheric gas. .
ΔF = −RT × log (P CO2 / P O2 ) (6)
1450℃は絶対温度では、
  1450(℃)+273=1723(K)
であるから、1450℃における雰囲気ガスの二酸化炭素ガス分圧と酸素分圧の関係は上記(5)、(6)式から次のようになる。
Figure JPOXMLDOC01-appb-I000001
  log(PCO2/PO2)=11.995
  PCO2/PO2=9.887×1011
1450 ° C is the absolute temperature
1450 (° C.) + 273 = 1723 (K)
Therefore, the relationship between the partial pressure of carbon dioxide gas and the oxygen partial pressure of the atmospheric gas at 1450 ° C. is as follows from the above equations (5) and (6).
Figure JPOXMLDOC01-appb-I000001
log (P CO2 / P O2 ) = 11.995
P CO2 / P O2 = 9.887 × 10 11
ここで、雰囲気ガスに占める二酸化炭素ガスの分圧を測定することで、
例えば、PCO2=0.5が測定された場合には、雰囲気ガスに占める酸素ガスの分圧として、
  PO2=5.0571×10-13
が得られる。
Here, by measuring the partial pressure of carbon dioxide gas in the atmospheric gas,
For example, when P CO2 = 0.5 is measured, the partial pressure of oxygen gas in the atmospheric gas is
P O2 = 5.0571 × 10 −13
Is obtained.
 得られた粒状鉄の成分組成と、粒状鉄が生成したときに副生したスラグの成分組成を下記表5、表6に示す。なお、下記表5、表6に示した粒状鉄の成分組成のうち、Fe量は、全体(100質量%)から合金元素と不純物量を引いた計算値を示した。 The component composition of the obtained granular iron and the component composition of the slag produced as a by-product when the granular iron is generated are shown in Tables 5 and 6 below. In addition, among the component compositions of granular iron shown in Tables 5 and 6 below, the amount of Fe shows a calculated value obtained by subtracting the alloy elements and the amount of impurities from the whole (100% by mass).
 なお、表6のうち、No.30はスラグと粒状鉄の分離が完了する時点よりも1分早く粒状鉄を取り出した結果を、No.31はスラグと粒状鉄の分離が完了した時点から3分間保持した後、粒状鉄を炉内から取り出した結果を示している。表5と、表6のうちNo.30とNo.31以外の試料は、スラグと粒状鉄の分離が完了した時点から1分間経過した時点で粒状鉄を炉内から取り出した結果を示している。 In Table 6, No. No. 30 shows the result of taking out the granular iron 1 minute earlier than the time when separation of the slag and granular iron is completed. 31 shows the result of taking out granular iron from the furnace after hold | maintaining for 3 minutes from the time of completion | finish of isolation | separation of slag and granular iron. In Tables 5 and 6, no. 30 and no. Samples other than 31 show the results of taking out granular iron from the furnace when one minute has passed since the separation of slag and granular iron was completed.
 供試材の中心部温度を測定すると、スラグと粒状鉄の分離が完了するよりも1分早い時点では約1300℃(No.30)であり、スラグと粒状鉄の分離が完了してから1分間経過した時点では約1400℃であり、スラグと粒状鉄の分離が完了してから3分間保持した時点では約1450℃(No.31)であった。 When the center temperature of the test material is measured, it is about 1300 ° C. (No. 30) at a point one minute earlier than the separation of slag and granular iron, and 1 after the separation of slag and granular iron is completed. The temperature was about 1400 ° C. when a minute elapsed, and about 1450 ° C. (No. 31) when held for 3 minutes after the separation of slag and granular iron was completed.
 また、スラグと粒状鉄の分離が完了するよりも1分早い時点から、スラグと粒状鉄の分離が完了してから3分間保持した時点までの間は、供試材近傍のCOガス分率はほぼ一定であった。一方、スラグと粒状鉄の分離が完了するよりも1分早い時点では供試材からCOガスの湧き出しが多少認められたが、スラグと粒状鉄の分離が部分的に完了した時点以降は、供試材からのCOガスの湧き出しは認められなかった。 In addition, the CO 2 gas fraction in the vicinity of the specimen is from 1 minute earlier than the separation of slag and granular iron to the point of holding for 3 minutes after the separation of slag and granular iron is completed. Was almost constant. On the other hand, CO gas from the test material was slightly observed at one minute earlier than the separation of slag and granular iron, but after the separation of slag and granular iron was partially completed, No CO gas was detected from the specimen.
 供試材の成分組成と粒状鉄の成分組成に基づいて、脱リン率を下記式で算出した。
Figure JPOXMLDOC01-appb-I000002
Based on the component composition of the test material and the component composition of the granular iron, the phosphorus removal rate was calculated by the following formula.
Figure JPOXMLDOC01-appb-I000002
 表4、表5のデータに基づいて、異なる酸素分圧下でのガス線速と脱リン率の関係を図1に示す。図1中、符号◇は酸素分圧が0atmの結果を、符号▲は酸素分圧が1.011×10-13atmの結果を、符号×は酸素分圧が1.517×10-13atmの結果を、符号○は酸素分圧が3.034×10-13atmの結果を、符号■は酸素分圧が5.057×10-13atmの結果を夫々示している。 Based on the data in Tables 4 and 5, the relationship between the gas linear velocity and the dephosphorization rate under different oxygen partial pressures is shown in FIG. In FIG. 1, the symbol ◇ indicates the result when the oxygen partial pressure is 0 atm, the symbol ▲ indicates the result when the oxygen partial pressure is 1.011 × 10 −13 atm, and the symbol × indicates the oxygen partial pressure is 1.517 × 10 −13 atm. The symbol ◯ indicates the result when the oxygen partial pressure is 3.034 × 10 −13 atm, and the symbol ■ indicates the result when the oxygen partial pressure is 5.057 × 10 −13 atm.
 図1から明らかなように、雰囲気ガス中に酸素を含む場合は、供試材が加熱される際の雰囲気ガスの線速を大きくするほど、脱リン率は高くなることが分かる。そして、例えば、ガス線速5.41cm/秒の供試材(3)においては、雰囲気ガスの酸素分圧を1.517×10-13atmから3.034×10-13atmに増加させることで脱リン率が高まるように、同一の供試材および同一のガス線速では、雰囲気ガスの酸素分圧を増加させると脱リン率が高まることが分かる。なお、雰囲気ガスの酸素分圧が0atm(即ち、窒素ガス雰囲気中)の場合は、脱リン率は、ガス線速に影響を受けない。ガス線速が5cm/秒未満の小さいときは、雰囲気ガスの酸素分圧が1.517×10-13atmの場合に比べて脱リン率の結果が逆転しているが、これらはリンの分析誤差や試料のバラツキが影響しているとみなされる。 As can be seen from FIG. 1, when the atmosphere gas contains oxygen, the dephosphorization rate increases as the linear velocity of the atmosphere gas when the specimen is heated is increased. Then, for example, in a gas linear velocity 5.41Cm / sec test material (3), increasing the partial pressure of oxygen in the atmosphere gas from 1.517 × 10 -13 atm to 3.034 × 10 -13 atm It can be seen that when the oxygen partial pressure of the atmospheric gas is increased, the phosphorus removal rate increases with the same specimen and the same gas linear velocity so that the phosphorus removal rate increases. When the oxygen partial pressure of the atmospheric gas is 0 atm (that is, in a nitrogen gas atmosphere), the phosphorus removal rate is not affected by the gas linear velocity. When the gas linear velocity is less than 5 cm / second, the result of the dephosphorization rate is reversed as compared with the case where the oxygen partial pressure of the atmospheric gas is 1.517 × 10 −13 atm. It is considered that errors and sample variations have an effect.
 以上の結果から、脱リン率を高めるには、ガス線速と雰囲気ガスの酸素分圧を所定値以上に大きくすることが有効である。 From the above results, in order to increase the phosphorus removal rate, it is effective to increase the gas linear velocity and the oxygen partial pressure of the atmospheric gas to a predetermined value or more.
 次に、表6に示した酸素分圧が3.034×10-13atmの結果のうち、No.24,25,32について、ガス線速と脱リン率の関係を図2に示す。図2と上記図1を比べると、供試材に含まれるリン量が変化しても、酸素分圧が一定の場合は、ガス線速が大きくなるに従って脱リン率は高くなることが分かる。図示しないが、例えば、No.2,4,6からも同様のことが分かる。 Next, among the results in which the oxygen partial pressure shown in Table 6 is 3.034 × 10 −13 atm, No. For 24, 25 and 32, the relationship between the gas linear velocity and the dephosphorization rate is shown in FIG. Comparing FIG. 2 with FIG. 1 above, it can be seen that, even if the amount of phosphorus contained in the test material changes, when the oxygen partial pressure is constant, the dephosphorization rate increases as the gas linear velocity increases. Although not shown, for example, no. The same can be seen from 2, 4 and 6.
 次に、表6に示したガス線速が5.41cm/秒の結果のうち、No.25,27,28,29について、酸素分圧と脱リン率の関係を図3に示す。図3から明らかなように、ガス線速が一定の場合は、酸素分圧が大きくなるに従って脱リン率は高くなることが分かる。また、酸素分圧が1.517×10-13atmまでの場合では、脱リン率は殆んど変化しないことが分かる。図示しないが、例えば、No.3,4,5からも、ガス線速が一定の場合は、酸素分圧が大きくなるに従って脱リン率は高くなることが分かる。 Next, among the results where the gas linear velocity shown in Table 6 is 5.41 cm / second, No. FIG. 3 shows the relationship between the oxygen partial pressure and the dephosphorization rate for 25, 27, 28, and 29. As can be seen from FIG. 3, when the gas linear velocity is constant, the dephosphorization rate increases as the oxygen partial pressure increases. It can also be seen that the dephosphorization rate hardly changes when the oxygen partial pressure is up to 1.517 × 10 −13 atm. Although not shown, for example, no. From 3, 4 and 5, it can be seen that when the gas linear velocity is constant, the dephosphorization rate increases as the oxygen partial pressure increases.
 次に、表6に示した酸素分圧が3.034×10-13atmで、ガス線速が5.41cm/秒である結果のうち、No.25,30,31について、粒状鉄を取り出すまでの時間と脱リン率の関係を図4に示す。図4は、還元鉄が溶融した後に、スラグと粒状鉄が完全に分離したときの時刻を0分とし、この時刻からスラグと分離した粒状鉄を炉内から取り出すまでの時間を変化させたときの脱リン率の変化を示している。図4から明らかなように、スラグと粒状鉄が分離した後、そのまま加熱を続けると、脱リン率が低下することが分かる。 Next, among the results shown in Table 6 where the oxygen partial pressure was 3.034 × 10 −13 atm and the gas linear velocity was 5.41 cm / sec, No. For 25, 30, and 31, the relationship between the time until the granular iron is taken out and the dephosphorization rate is shown in FIG. FIG. 4 shows the time when the reduced iron is melted and the time when the slag and the granular iron are completely separated is 0 minute, and the time from when the granular iron separated from the slag is taken out of the furnace is changed. Shows the change in the dephosphorization rate. As is apparent from FIG. 4, it can be seen that the dephosphorization rate decreases when heating is continued as it is after the slag and granular iron are separated.
 図4において脱リン率が最も高いのは、取り出し時間が「-1分」の場合であるが、この「-1分」とは、スラグと粒状鉄が分離する前に炉内から取り出されたことを意味し、実操業では採用できない条件である。 In FIG. 4, the highest dephosphorization rate is when the removal time is “−1 minute”. This “−1 minute” means that the slag and granular iron were removed from the furnace before they were separated. This is a condition that cannot be adopted in actual operation.
 次に、表6に示した結果のうち、No.21,22,25について、原料混合物に配合する炭素質還元剤に含まれる固定炭素量と脱リン率の関係を図5に示す。図5から明らかなように、酸化鉄を還元するために必要な固定炭素量に対して、原料混合物に配合する炭素質還元剤に含まれる固定炭素量を不足気味に含有させた方が、脱リン率はより高くなることが分かる。 Next, of the results shown in Table 6, No. FIG. 5 shows the relationship between the amount of fixed carbon contained in the carbonaceous reducing agent blended in the raw material mixture and the dephosphorization rate for 21, 22, and 25. As is clear from FIG. 5, the amount of fixed carbon contained in the carbonaceous reductant blended in the raw material mixture is insufficient relative to the amount of fixed carbon necessary for reducing iron oxide. It can be seen that the phosphorus rate is higher.
 一方、酸化鉄を還元するために必要な固定炭素量に対する、原料混合物に配合する炭素質還元剤に含まれる固定炭素量を百分率で102質量%を超えて含有させると、脱リン率はより低くなることが分かる。これは、還元鉄を溶融する過程においても、還元性ガスの湧き出し量が多くなるため、ガス線速を大きくすることによる効果が損なわれると考えられる。 On the other hand, when the amount of fixed carbon contained in the carbonaceous reducing agent blended in the raw material mixture with respect to the amount of fixed carbon necessary for reducing iron oxide is contained in excess of 102% by mass, the dephosphorization rate is lower. I understand that This is thought to be due to the fact that the amount of reducing gas flowing out increases in the process of melting reduced iron, so that the effect of increasing the gas linear velocity is impaired.
 なお、No.22の結果から明らかなように、供試材に含まれる酸化鉄を還元するために必要な固定炭素量に対して、原料混合物に配合する炭素質還元剤に含まれる固定炭素量を不足気味にしても、炉床上に敷く炭材に含まれる炭素量を、酸化鉄を還元するために必要な固定炭素量に対して2~5質量%の範囲に調整することで、脱リンが進んだ後に残留する酸化鉄は、炉床上に敷かれた炭材によって安定して還元されることが分かる。 No. As is clear from the result of No. 22, the amount of fixed carbon contained in the carbonaceous reducing agent to be blended in the raw material mixture is insufficient with respect to the amount of fixed carbon necessary for reducing the iron oxide contained in the test material. However, after dephosphorization has progressed, the amount of carbon contained in the charcoal laid on the hearth is adjusted to a range of 2 to 5% by mass with respect to the amount of fixed carbon required to reduce iron oxide. It can be seen that the remaining iron oxide is stably reduced by the carbon material laid on the hearth.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 以上、詳述したように、本発明の一局面は、酸化鉄含有物質と炭素質還元剤を含む原料混合物から形成された塊成化物を、炭材を敷いた炉床上に装入して、当該塊成化物を加熱することにより当該塊成化物中の酸化鉄を還元溶融して粒状鉄を製造する方法であって、前記炉内での前記塊成化物の温度を1200℃から1500℃までの範囲とし、前記塊成化物が加熱される際の雰囲気ガスの標準状態における酸素分圧を2.0×10-13atm以上とし、前記炉内での前記雰囲気ガスの線速を4.5cm/秒以上とする粒状鉄の製造方法である。 As described above in detail, one aspect of the present invention is to charge an agglomerate formed from a raw material mixture containing an iron oxide-containing substance and a carbonaceous reducing agent onto a hearth laid with a carbonaceous material, A method of producing granular iron by reducing and melting iron oxide in the agglomerate by heating the agglomerate, wherein the temperature of the agglomerate in the furnace is from 1200 ° C. to 1500 ° C. The oxygen partial pressure in the standard state of the atmospheric gas when the agglomerated material is heated is 2.0 × 10 −13 atm or more, and the linear velocity of the atmospheric gas in the furnace is 4.5 cm. It is the manufacturing method of the granular iron which makes it / second or more.
 本発明では、雰囲気ガスの酸素分圧とガス線速を上記条件に制御した状態で、還元後の塊成化物を溶融させるので、還元鉄に含まれるリンを還元時に副生したスラグへ移行させることができる。その結果、還元鉄が溶融して得られる粒状鉄は、含有するリン量が少なくなる。 In the present invention, the agglomerated material after the reduction is melted in a state where the oxygen partial pressure and the gas linear velocity of the atmospheric gas are controlled to the above conditions, so that the phosphorus contained in the reduced iron is transferred to the slag produced as a by-product during the reduction. be able to. As a result, the amount of phosphorus contained in the granular iron obtained by melting reduced iron is reduced.
 上記粒状鉄の製造方法において、前記酸化鉄を還元するために必要な固定炭素量に対する、前記炭素質還元剤に含まれる固定炭素量を百分率で98質量%から102質量%までの範囲になるように前記原料混合物の組成を調整することが好ましい。これにより、酸化鉄の還元反応がより活発に進行して、リン含有量のより少ない粒状鉄が得られる。 In the method for producing granular iron, the amount of fixed carbon contained in the carbonaceous reducing agent with respect to the amount of fixed carbon necessary for reducing the iron oxide is in a range from 98% by mass to 102% by mass. It is preferable to adjust the composition of the raw material mixture. Thereby, the reduction reaction of iron oxide proceeds more actively, and granular iron with less phosphorus content is obtained.
 上記粒状鉄の製造方法において、前記酸化鉄の還元時に副生するスラグの塩基度が1.0から1.6までの範囲になるように前記原料混合物の組成を調整することが好ましい。これにより、脱リン反応がより速く進行して、リン含有量のより少ない粒状鉄が得られる。 In the method for producing granular iron, it is preferable to adjust the composition of the raw material mixture so that the basicity of slag produced as a by-product during reduction of the iron oxide is in the range of 1.0 to 1.6. As a result, the dephosphorization reaction proceeds faster, and granular iron having a lower phosphorus content is obtained.
 上記粒状鉄の製造方法において、前記酸化鉄を還元するために必要な固定炭素量に対する、前記炭素質還元剤に含まれる固定炭素量を百分率で98質量%から100質量%までの範囲とすることが好ましい。これにより、炭素質還元剤に含まれる固定炭素量が、酸化鉄を還元するために必要な固定炭素量に対して不足気味になり、還元時に副生スラグに含まれる酸化鉄(FeO)量を多く生成させることができる。その結果、還元鉄の溶融時における脱リン反応がさらに促進するので、還元鉄の脱リン率をさらに上昇させることができる。 In the method for producing granular iron, the amount of fixed carbon contained in the carbonaceous reducing agent with respect to the amount of fixed carbon necessary for reducing the iron oxide is in a range from 98% by mass to 100% by mass. Is preferred. As a result, the amount of fixed carbon contained in the carbonaceous reducing agent becomes insufficient with respect to the amount of fixed carbon necessary for reducing iron oxide, and the amount of iron oxide (FeO) contained in the byproduct slag during reduction is reduced. Many can be generated. As a result, the dephosphorization reaction at the time of melting of the reduced iron is further promoted, so that the dephosphorization rate of the reduced iron can be further increased.
 上記粒状鉄の製造方法において、前記酸化鉄が溶融を開始するまでは、前記雰囲気ガスの線速を5.4cm/秒以下(0cm/秒を含む)とし、前記酸化鉄が溶融を開始した後は、前記雰囲気ガスの線速を4.5cm/秒以上とすることが好ましい。酸化鉄の溶融が開始するまでの間と、溶融が開始した後とで、塊成化物が加熱される際の雰囲気ガスの線速を夫々調整することにより、酸化鉄の溶融が開始するまでは、塊成化物内での還元反応が活発に進行し、一方、溶融が開始した後は、鉄の溶融を安定的に進行させることができる。 In the method for producing granular iron, until the iron oxide starts melting, the linear velocity of the atmospheric gas is set to 5.4 cm / second or less (including 0 cm / second), and the iron oxide starts melting. The linear velocity of the atmospheric gas is preferably 4.5 cm / second or more. By adjusting the linear velocity of the atmospheric gas when the agglomerate is heated, until the melting of iron oxide starts and after the melting starts, until the melting of iron oxide starts The reduction reaction in the agglomerated material proceeds actively, and on the other hand, after the melting has started, the melting of iron can proceed stably.
 上記粒状鉄の製造方法において、前記酸化鉄を還元するために必要な固定炭素量に対する、前記炉床上に敷く炭材に含まれる固定炭素量は百分率で2質量%から5質量%までの範囲とすると共に、前記炭材の最大粒径を2mm以下とすることが好ましい。これにより、粒状鉄に供給される固定炭素量を増やして、溶融した粒状鉄とスラグを分離できるとともに、溶融したスラグが炭材の隙間を流れ落ちて炉床を侵食することを防止できる。 In the method for producing granular iron, the amount of fixed carbon contained in the carbonaceous material laid on the hearth with respect to the amount of fixed carbon necessary for reducing the iron oxide ranges from 2% by mass to 5% by mass. In addition, the maximum particle size of the carbon material is preferably 2 mm or less. Thereby, the amount of fixed carbon supplied to the granular iron can be increased, and the molten granular iron and slag can be separated, and the molten slag can be prevented from flowing down through the gap between the carbonaceous materials and eroding the hearth.
 本発明の粒状鉄の製造方法を用いれば、リン含有量の少ない粒状鉄を安定して製造することができる。 If the method for producing granular iron of the present invention is used, it is possible to stably produce granular iron with a low phosphorus content.

Claims (6)

  1.  酸化鉄含有物質と炭素質還元剤を含む原料混合物から形成された塊成化物を、炭材を敷いた炉床上に装入して、当該塊成化物を加熱することにより当該塊成化物中の酸化鉄を還元溶融して粒状鉄を製造する方法であって、
     前記炉内での前記塊成化物の温度を1200℃から1500℃までの範囲とし、前記塊成化物が加熱される際の雰囲気ガスの標準状態における酸素分圧を2.0×10-13atm以上とし、前記炉内での前記雰囲気ガスの線速を4.5cm/秒以上とすることを特徴とする粒状鉄の製造方法。
    An agglomerate formed from a raw material mixture containing an iron oxide-containing substance and a carbonaceous reducing agent is placed on a hearth laid with a carbonaceous material, and the agglomerate is heated by heating the agglomerate. A method for producing granular iron by reducing and melting iron oxide,
    The temperature of the agglomerate in the furnace is in the range of 1200 ° C. to 1500 ° C., and the oxygen partial pressure in the standard state of the atmospheric gas when the agglomerate is heated is 2.0 × 10 −13 atm. The method for producing granular iron is characterized in that the linear velocity of the atmospheric gas in the furnace is 4.5 cm / second or more.
  2.  前記酸化鉄を還元するために必要な固定炭素量に対する、前記炭素質還元剤に含まれる固定炭素量を百分率で98質量%から102質量%までの範囲となるように前記原料混合物の組成を調整する請求項1に記載の製造方法。 The composition of the raw material mixture is adjusted so that the amount of fixed carbon contained in the carbonaceous reducing agent with respect to the amount of fixed carbon necessary for reducing the iron oxide is in the range from 98% by mass to 102% by mass. The manufacturing method according to claim 1.
  3.  前記酸化鉄の還元時に副生するスラグの塩基度が1.0から1.6までの範囲となるように前記原料混合物の組成を調整する請求項1に記載の製造方法。 The production method according to claim 1, wherein the composition of the raw material mixture is adjusted so that the basicity of the slag produced as a by-product during the reduction of the iron oxide is in the range of 1.0 to 1.6.
  4.  前記酸化鉄を還元するために必要な固定炭素量に対する、前記炭素質還元剤に含まれる固定炭素量を百分率で98質量%から100質量%までの範囲とする請求項1に記載の製造方法。 The production method according to claim 1, wherein the amount of fixed carbon contained in the carbonaceous reducing agent with respect to the amount of fixed carbon necessary for reducing the iron oxide is in a range from 98% by mass to 100% by mass.
  5.  前記酸化鉄が溶融を開始するまでは、前記雰囲気ガスの線速を5.4cm/秒以下(0cm/秒を含む)とし、前記酸化鉄が溶融を開始した後は、前記雰囲気ガスの線速を4.5cm/秒以上とする請求項1に記載の製造方法。 Until the iron oxide starts to melt, the linear velocity of the atmospheric gas is set to 5.4 cm / second or less (including 0 cm / second), and after the iron oxide starts to melt, the linear velocity of the atmospheric gas is increased. The manufacturing method of Claim 1 which makes 4.5 or more cm / sec.
  6.  前記酸化鉄を還元するために必要な固定炭素量に対する、前記炉床上に敷く炭材に含まれる固定炭素量を百分率で2質量%から5質量%までの範囲とすると共に、前記炭材の最大粒径を2mm以下とする請求項1~5のいずれかに記載の製造方法。 The amount of fixed carbon contained in the carbon material laid on the hearth with respect to the amount of fixed carbon necessary for reducing the iron oxide is in a range from 2% by mass to 5% by mass, and the maximum of the carbon material. The production method according to any one of claims 1 to 5, wherein the particle size is 2 mm or less.
PCT/JP2010/050373 2009-01-23 2010-01-15 Process for manufacturing granular iron WO2010084822A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080004143XA CN102272337A (en) 2009-01-23 2010-01-15 Process for manufacturing granular iron
US13/142,368 US20110265603A1 (en) 2009-01-23 2010-01-15 Method for producing granular iron
CA2745763A CA2745763A1 (en) 2009-01-23 2010-01-15 Process for manufacturing granular iron
RU2011135038/02A RU2484145C2 (en) 2009-01-23 2010-01-15 Method of producing pelletised iron
AU2010207300A AU2010207300B2 (en) 2009-01-23 2010-01-15 Process for manufacturing granular iron

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009013378 2009-01-23
JP2009-013378 2009-01-23

Publications (1)

Publication Number Publication Date
WO2010084822A1 true WO2010084822A1 (en) 2010-07-29

Family

ID=42355876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050373 WO2010084822A1 (en) 2009-01-23 2010-01-15 Process for manufacturing granular iron

Country Status (7)

Country Link
US (1) US20110265603A1 (en)
JP (1) JP2010189762A (en)
CN (1) CN102272337A (en)
AU (1) AU2010207300B2 (en)
CA (1) CA2745763A1 (en)
RU (1) RU2484145C2 (en)
WO (1) WO2010084822A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150027275A1 (en) * 2012-02-28 2015-01-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Process for manufacturing reduced iron agglomerates
RU2820696C1 (en) * 2023-09-22 2024-06-07 Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) Method of processing magnesium-containing carbonate iron-ore materials

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5408369B2 (en) * 2012-01-19 2014-02-05 Jfeスチール株式会社 Hot metal pretreatment method
JP6294152B2 (en) * 2014-05-15 2018-03-14 株式会社神戸製鋼所 Manufacturing method of granular metallic iron
JP6250482B2 (en) * 2014-06-13 2017-12-20 株式会社神戸製鋼所 Manufacturing method of granular metallic iron
JP6460531B2 (en) 2015-05-28 2019-01-30 株式会社神戸製鋼所 Method for producing reduced iron
JP7476871B2 (en) 2021-11-30 2024-05-01 Jfeスチール株式会社 Metal manufacturing methods
KR20240090639A (en) * 2021-11-30 2024-06-21 제이에프이 스틸 가부시키가이샤 Manufacturing method of metallic iron
JP7476872B2 (en) 2021-11-30 2024-05-01 Jfeスチール株式会社 Metal manufacturing methods

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11172312A (en) * 1997-09-30 1999-06-29 Kawasaki Steel Corp Operation of movable hearth type furnace and movable hearth type furnace
JPH11217615A (en) * 1997-11-27 1999-08-10 Kobe Steel Ltd Production of reduced iron
JP2001181719A (en) * 1999-12-24 2001-07-03 Kawasaki Steel Corp Method of manufacturing reduced metal from metal- containing material
JP2001323310A (en) * 2000-05-15 2001-11-22 Kobe Steel Ltd Method for producing reduced iron
JP2002030319A (en) * 2000-06-28 2002-01-31 Midrex Internatl Bv Method for producing granular metallic iron
JP2007246970A (en) * 2006-03-15 2007-09-27 Jfe Steel Kk Method for operating movable hearth furnace
WO2008059691A1 (en) * 2006-11-14 2008-05-22 Kabushiki Kaisha Kobe Seiko Sho Process for production of granular metallic iron and equipment for the production

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100241854B1 (en) * 1996-01-26 2000-03-02 아사무라 타카시 How to operate vertically
JP3845893B2 (en) * 1996-03-15 2006-11-15 株式会社神戸製鋼所 Metal iron manufacturing method
PE21298A1 (en) * 1996-03-15 1998-05-01 Kobe Steel Ltd METHOD AND APPARATUS FOR MAKING METALLIC IRON
ID22491A (en) * 1997-09-30 1999-10-21 Kawasaki Steel Co ROTATING SEA FUNCTION FOR SEED OXIDE AND OPERATION METHOD OF ITS
DE60125669T2 (en) * 2000-03-30 2007-11-08 Kabushiki Kaisha Kobe Seiko Sho, Kobe Process for the production of metallic iron
JP4774611B2 (en) * 2001-03-19 2011-09-14 Jfeスチール株式会社 Operation method of mobile hearth furnace
JP4691827B2 (en) * 2001-05-15 2011-06-01 株式会社神戸製鋼所 Granular metal iron

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11172312A (en) * 1997-09-30 1999-06-29 Kawasaki Steel Corp Operation of movable hearth type furnace and movable hearth type furnace
JPH11217615A (en) * 1997-11-27 1999-08-10 Kobe Steel Ltd Production of reduced iron
JP2001181719A (en) * 1999-12-24 2001-07-03 Kawasaki Steel Corp Method of manufacturing reduced metal from metal- containing material
JP2001323310A (en) * 2000-05-15 2001-11-22 Kobe Steel Ltd Method for producing reduced iron
JP2002030319A (en) * 2000-06-28 2002-01-31 Midrex Internatl Bv Method for producing granular metallic iron
JP2007246970A (en) * 2006-03-15 2007-09-27 Jfe Steel Kk Method for operating movable hearth furnace
WO2008059691A1 (en) * 2006-11-14 2008-05-22 Kabushiki Kaisha Kobe Seiko Sho Process for production of granular metallic iron and equipment for the production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150027275A1 (en) * 2012-02-28 2015-01-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Process for manufacturing reduced iron agglomerates
US10144981B2 (en) * 2012-02-28 2018-12-04 Kobe Steel, Ltd. Process for manufacturing reduced iron agglomerates
RU2820696C1 (en) * 2023-09-22 2024-06-07 Федеральное государственное бюджетное учреждение науки Институт металлургии Уральского отделения Российской академии наук (ИМЕТ УрО РАН) Method of processing magnesium-containing carbonate iron-ore materials

Also Published As

Publication number Publication date
CA2745763A1 (en) 2010-07-29
US20110265603A1 (en) 2011-11-03
RU2484145C2 (en) 2013-06-10
AU2010207300A1 (en) 2011-06-23
RU2011135038A (en) 2013-02-27
AU2010207300B2 (en) 2013-05-09
CN102272337A (en) 2011-12-07
JP2010189762A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
WO2010084822A1 (en) Process for manufacturing granular iron
JP5503420B2 (en) Method for producing granular metal
TW531560B (en) Granular metallic iron
WO2010117008A1 (en) Method for producing metallic iron
AU2009234752B2 (en) Titanium oxide-containing agglomerate for producing granular metallic iron
US20120103136A1 (en) Apparatus and method for producing reduced iron from alkali-containing ironmaking dust serving as material
KR101121701B1 (en) Process for production of granular metallic iron and equipment for the production
AU2006335814B2 (en) Method for manufacturing metallic iron
JP2001279315A (en) Method for producing granular metallic iron and method for producing molten steel using the metallic iron
JP2010090431A (en) Method for producing ferro-alloy containing nickel and vanadium
CA2659559C (en) A method for the commercial production of iron
JP5210555B2 (en) Manufacturing method of granular metallic iron
JP2008266793A (en) Method for producing granular metallic-iron and method for producing molten iron using this metallic-iron
JP2014062321A (en) Method of manufacturing reduced iron agglomerated product
JP5400600B2 (en) Blast furnace operation method
JP5055794B2 (en) Method for producing reduced metal
JP5971482B2 (en) Agglomerate production method
JP2013133513A (en) Method for producing agglomerated ore

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004143.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733429

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2745763

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2010207300

Country of ref document: AU

Date of ref document: 20100115

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 5330/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011135038

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 10733429

Country of ref document: EP

Kind code of ref document: A1