WO2010083897A1 - Device for equalizing pressure between a reaction chamber and cooling screen gap in an entrained-flow gasifier having a fixed welded cooling screen - Google Patents

Device for equalizing pressure between a reaction chamber and cooling screen gap in an entrained-flow gasifier having a fixed welded cooling screen Download PDF

Info

Publication number
WO2010083897A1
WO2010083897A1 PCT/EP2009/061862 EP2009061862W WO2010083897A1 WO 2010083897 A1 WO2010083897 A1 WO 2010083897A1 EP 2009061862 W EP2009061862 W EP 2009061862W WO 2010083897 A1 WO2010083897 A1 WO 2010083897A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling screen
gap
screen gap
pressure
reactor according
Prior art date
Application number
PCT/EP2009/061862
Other languages
German (de)
French (fr)
Inventor
Manfred Schingnitz
Christian Reuther
Norbert Fischer
Tino Just
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2010083897A1 publication Critical patent/WO2010083897A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/78High-pressure apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/485Entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • C10J3/506Fuel charging devices for entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/52Ash-removing devices
    • C10J3/526Ash-removing devices for entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/74Construction of shells or jackets
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/74Construction of shells or jackets
    • C10J3/76Water jackets; Steam boiler-jackets
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • C10J3/845Quench rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0943Coke
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen

Definitions

  • the invention relates to a reactor for the gasification of solid, liquid and gaseous fuels in the flow stream at temperatures between 1200 and 1900 0 C and pressures between ambient pressure and 10 MPa (100 bar).
  • Solid and liquid fuels can coal by different Kohlohlungsgrades and cokes of different origin, but also flammable liquids with certain solid and ash contents but also water, coal or
  • Gaseous fuels can be given by gaseous hydrocarbons, in particular natural gas.
  • a reactor is known for entrained flow gasification of various solid and liquid fuels with a free oxygen-containing oxidant under normal or elevated pressure. Such a device is apparent from DE 197 181 31 Al. A detailed description of such equipped with a cooling screen gasification reactor can be found in J. Carl et al., NOELL CONVERSIONS PROCESS, EF-Verlag for energy and environmental technology GmbH 1996, pages 32-33.
  • a cooling screen consisting of gastight welded cooling tubes within a pressure vessel. This cooling screen is supported on an intermediate floor and can expand freely upwards. This ensures that when various temperatures occur due to startup and shutdown processes and the resulting change in length no mechanical stresses can occur, which could possibly lead to destruction.
  • the cooling screen gap is flushed with a dry, condensate- and oxygen-free gas. Despite the flushing, as the practice shows, it comes to the back flow with gasification gas, which leads to corrosion on the back of the cooling screen or the pressure jacket. This can lead to downtime until the destruction of the cooling screen or the pressure jacket.
  • the invention is based on the problem of admitting a simple and reliable design for a gasification reactor, which effects a pressure equalization between the reaction chamber located inside the cooling screen and the cooling screen gap located outside the cooling screen and thereby overflowing gasification gas into the cooling screen gap with the result avoids corrosion starting from there.
  • a fixed connection of the cooling screen with the pressure jacket or the upper reactor flange is generally proposed, whereby the cooling screen gap and the gasification space are designed as separate spaces.
  • the reaction chamber with pressures up to 8 MPa (80 bar) is covered and thus the cooling screen with internal pressure is charged, which would lead to the destruction of the cooling screen. For this reason, the gap behind the cooling screen is also pressurized with covered to keep the differential pressure between the two rooms low.
  • this pilot burner includes a channel that is purged with nitrogen and that is in constant operation for the entire operating phase between pilot burner ignition at 0.3 MPa (3 bar) and main burner continuous operation up to 8 MPa (80 bar).
  • This nitrogen feed channel is always at the pressure in the reaction space at a pressure level.
  • an additional connecting line to the gap behind the cooling screen is created by this nitrogen feed. If the reaction space is now covered, the pressure in the gap behind the cooling screen also increases at the same time. As a result, there is only a very small pressure difference between the reaction space and the gap behind the cooling screen. Pressure fluctuations in the reaction chamber thus have no effect on the pressure in the cooling screen gap.
  • a flow reversal takes place via the connecting line, the reaction space, such as the cooling screen gap, being uniformly expanded, so that no stressful pressure difference occurs between the cooling screen gap and the reaction space.
  • the nitrogen used proves to be a particularly suitable medium for covering the gap behind the cooling screen, as this any corrosion can be excluded behind the cooling screen.
  • All connecting lines can be equipped with shut-off valves, which allow media flow only in the direction of the main burner.
  • shut-off valves When emergency release the valves open in addition and it can be done a quick relaxation of the cooling screen gap. By blocking the flow in the direction of the cooling screen gap, no flow reversal can take place in the direction of the cooling screen gap, even with leaky valves.
  • a check valve is provided by a combination of a shut-off valve with a non-return valve.
  • a controllability of the connecting line, in which the shut-off valve is arranged is achieved with protection against penetration of gasification gas into the cooling screen gap.
  • the individual lines are dimensioned in cross section so that even when not opening a check valve in case of emergency voltage equalization of pressure on the remaining lines is sufficient.
  • FIG. 1 shows a gasification reactor according to the invention with a pressure equalization between the reaction space and cooling screen gap by nitrogen flushing.
  • a combination burner is arranged, which consists of a central pilot burner 1 and a main burner 2 arranged around it. To start the pilot burner 1 is ignited and then the pressure in the reaction chamber slowly increased to the operating pressure up to about 80 bar. Due to the inventive separation of the reaction space 3 and the cooling screen gap 5 in order to avoid a backflow or a gas exchange, in this case only the reaction chamber 3 would be covered and the cooling screen gap 5 remains unpressurized. Due to the high reaction space pressure up to 80 bar, the cooling screen 4 is only loaded with internal pressure, which would lead to destruction. For this reason, the cooling screen gap 5 is also covered with the same pressure behind the cooling screen 4 in order to keep the differential pressure between the two rooms small.
  • the pilot burner 1 As a medium for the simultaneous covering of the cooling screen gap 5 behind the cooling screen 4, nitrogen is used, whereby any corrosion behind the cooling screen is excluded.
  • the pilot burner 1 is ignited. This pilot burner 1 includes a free passage which is permanently purged with nitrogen via the supply line 9 and monitored by the pilot burner 1 with optical flame monitoring.
  • this nitrogen feed 9 is always at the pressure in the reaction chamber 3 at a pressure level.
  • an additional connection line 8 to the nozzle 7 in the cooling screen gap 5 is created by this nitrogen feed 9. If the reaction chamber 3 is now covered, the pressure in the cooling screen gap 5 behind the cooling screen 4 also increases at the same time. As a result, there is only a very small pressure difference between the reaction chamber 3 and the cooling screen gap 5. Pressure fluctuations in the reaction chamber 3 thus have no effect on the pressure in the cooling screen gap. 5
  • the raw gas outlet 19 is connected on the one hand to a gas outlet fitting 20, via which the raw gas from the quench chamber 18 is regularly supplied to a further utilization and, on the other hand, connected to a flash valve 21 via which a
  • connection lines 13 to the 3 pieces of pulverized coal supply lines 10 and a connecting line 14 to the oxygen supply line 11. All lines are equipped with shut-off valves 12, which allow media flow only in the direction of the main burner 2. In emergency release, the valves 12 additionally open and there can be a quick relaxation of the cooling screen gap 5.
  • the individual lines 13 and 14 are dimensioned in cross section so that even if a valve 12 fails, the pressure equalization over the remaining lines is sufficient. By blocking the flow in the direction of the cooling screen gap 5, even in the case of leaking valves 12, no flow reversal can take place in the direction of the cooling screen gap 5.
  • the invention also includes a device for pressure equalization between the reaction chamber (3) and the cooling screen gap (5) in an air flow gasifier for the gasification of solid, liquid and gaseous fuels to produce a CO and hydrogen-rich raw gas at reaction chamber pressures up to 80 bar with pressure equalization between the reaction space ( 3) and cooling screen gap (5) between the cooling screen (4) and pressure jacket (6), a connecting line (8) branches off from the nitrogen supply line (9) on the pilot burner (1) and leads to the neck (7) on the cooling screen gap (5).
  • the invention also includes a device in which additional connecting lines (13) and (14) are provided for fast relaxation processes of the reaction chamber, which are equipped with shut-off valves (12) with non-return, branch off from the connecting line (8) and with the coal dust supply pipes (10) and the oxygen supply (11) are connected.
  • the invention also includes a device in which the additional connecting lines (13) and (14) are provided for fast relaxation processes of the reaction chamber, which are equipped with shut-off valves (12) with non-return, branch off from the connecting line (8) and with the coal dust supply pipes (10) and the oxygen supply (11) are connected.
  • the invention also includes a device in which the additional connecting lines

Abstract

The invention relates to a reactor for gasifying gaseous, liquid, or solid fuels in an entrained flow, comprising a cooling screen welded gas-tight into a pressure shell. In order to equalize pressure between the reaction chamber and the cooling screen gap, a connection is provided between the nitrogen-purged monitoring channel in the burner and the cooling screen gap. For emergency pressure relief, controlled connections can be added between the cooling screen gap and the fuel inlets and oxidation agent inlet. Damage to the cooling screen due to excessive pressure differential between the reaction chamber and the cooling screen gap is avoided, and corrosion in the cooling screen gap due to gasifier gas is prevented.

Description

Beschreibungdescription
Vorrichtung zum Druckausgleich zwischen Reaktionsraum und Kühlschirmspalt bei einem Flugstromvergaser mit fest einge- schweißtem KühlschirmDevice for pressure equalization between the reaction space and the cooling screen gap in an air flow gasifier with a firmly welded-in cooling screen
Die Erfindung betrifft ein Reaktor zur Vergasung von festen, flüssigen und gasförmigen Brennstoffen im Flugstrom bei Temperaturen zwischen 1200 und 1900 0C und Drücken zwischen Um- gebungsdruck und 10 MPa (100 bar) .The invention relates to a reactor for the gasification of solid, liquid and gaseous fuels in the flow stream at temperatures between 1200 and 1900 0 C and pressures between ambient pressure and 10 MPa (100 bar).
Feste und flüssige Brennstoffe können durch Kohlen unterschiedlichen Inkohlungsgrades sowie Kokse unterschiedlichen Herkommens, aber auch brennbare Flüssigkeiten mit bestimmten Feststoff- und Aschegehalten aber auch Wasser-, Kohle- oderSolid and liquid fuels can coal by different Kohlohlungsgrades and cokes of different origin, but also flammable liquids with certain solid and ash contents but also water, coal or
Öl-Kohle-Suspensionen, sogenannte Slurries gegeben sein. Gasförmige Brennstoffe können durch gasförmige Kohlenwasserstoffe, insbesondere Erdgas, gegeben sein.Be given oil-carbon suspensions, called slurries. Gaseous fuels can be given by gaseous hydrocarbons, in particular natural gas.
Bekannt ist ein Reaktor zur Flugstromvergasung unterschiedlicher fester und flüssiger Brennstoffe mit einem freien Sauerstoff enthaltenden Oxidationsmittel unter normalem oder erhöhtem Druck. Eine solche Vorrichtung geht aus DE 197 181 31 Al hervor. Eine ausführliche Beschreibung eines solchen mit Kühlschirm ausgerüsteten Vergasungsreaktors findet sich in J. Carl u. a., NOELL-KONVERSIONSVERFAHREN, EF-Verlag für Energie- und Umwelttechnik GmbH 1996, Seiten 32-33. In der darin beschriebenen Konzeption befindet sich ein aus gasdicht verschweißten Kühlrohren bestehender Kühlschirm innerhalb eines Druckgefäßes. Dieser Kühlschirm ist auf einem Zwischenboden abgestützt und kann sich nach oben frei ausdehnen. Damit wird sichergestellt, dass beim Auftreten verschiedener Temperaturen auf Grund von An- und Abfahrvorgängen und daraus bedingter Längenänderung keine mechanischen Spannungen auftreten können, die ggf. zu einer Zerstörung führen könnten. Um dies zu erreichen, befindet sich am oberen Ende des Kühlschirmes keine feste Verbindung, sondern ein Spalt zwi- sehen dem Kühlschirmkragen und dem Brennerhalterungsflansch, der eine freie Beweglichkeit sichert. Um ein Hinterströmen des Kühlschirmspaltes bei Druckschwankungen im System von Vergasungsgas zu verhindern, wird der Kühlschirmspalt mit ei- nem trockenen, kondensat- und Sauerstofffreien Gas gespült. Trotz der Spülung kommt es, wie die Praxis zeigt, zur Hinterströmung mit Vergasungsgas, was zu Korrosion an der Rückseite des Kühlschirmes oder am Druckmantel führt. Dies kann zu Betriebsausfällen bis zur Zerstörung des Kühlschirmes oder des Druckmantels führen.A reactor is known for entrained flow gasification of various solid and liquid fuels with a free oxygen-containing oxidant under normal or elevated pressure. Such a device is apparent from DE 197 181 31 Al. A detailed description of such equipped with a cooling screen gasification reactor can be found in J. Carl et al., NOELL CONVERSIONS PROCESS, EF-Verlag for energy and environmental technology GmbH 1996, pages 32-33. In the conception described therein, there is a cooling screen consisting of gastight welded cooling tubes within a pressure vessel. This cooling screen is supported on an intermediate floor and can expand freely upwards. This ensures that when various temperatures occur due to startup and shutdown processes and the resulting change in length no mechanical stresses can occur, which could possibly lead to destruction. To achieve this, there is no fixed connection at the upper end of the cooling screen, but rather a gap between See the cooling screen collar and the burner mounting flange, which ensures a clear portability. In order to prevent backflow of the cooling screen gap in the event of pressure fluctuations in the system of gasification gas, the cooling screen gap is flushed with a dry, condensate- and oxygen-free gas. Despite the flushing, as the practice shows, it comes to the back flow with gasification gas, which leads to corrosion on the back of the cooling screen or the pressure jacket. This can lead to downtime until the destruction of the cooling screen or the pressure jacket.
Nachteil dieser Ausführung ist, dass zum Druckausgleich zwischen Kühlschirmspalt und Reaktionsraum innerhalb des Reaktors eine Verbindung bestehen muss, die unter allen Bedingungen (Reaktorbespannung und -entspannung) einen Druckausgleich ermöglicht. Um diese Bedingung zu sichern, muss die Verbindung auch einen entsprechend großen Querschnitt aufweisen, damit insbesondere bei der Notentspannung ein schneller Gasaustausch erfolgen kann und bezüglich des Innendrucks kein zu großer Überdruck von Außen auf den Kühlschirm einwirkt. Ein großer Verbindungsquerschnitt führt aber zu den oben genannten Problemen bezüglich Korrosion.Disadvantage of this embodiment is that for pressure equalization between cooling screen gap and reaction space within the reactor must be a compound that allows pressure equalization under all conditions (reactor lining and -entspannung). In order to ensure this condition, the connection must also have a correspondingly large cross-section, so that a rapid gas exchange can take place, in particular during emergency release, and no excessive pressure acts on the cooling screen from the outside with respect to the internal pressure. However, a large connection cross-section leads to the above-mentioned problems with respect to corrosion.
Der Erfindung liegt das Problem zugrunde, eine einfache und zuverlässige Ausgestaltung für einen Vergasungsreaktor an- zugeben, die einen Druckausgleich zwischen dem innerhalb des Kühlschirms befindlichen Reaktionsraum und dem außerhalb des Kühlschirms befindlichen Kühlschirmspalt bewirkt und die dabei ein Überströmen von Vergasungsgas in den Kühlschirmspalt mit der Folge von dort einsetzender Korrosion vermeidet.The invention is based on the problem of admitting a simple and reliable design for a gasification reactor, which effects a pressure equalization between the reaction chamber located inside the cooling screen and the cooling screen gap located outside the cooling screen and thereby overflowing gasification gas into the cooling screen gap with the result avoids corrosion starting from there.
Das Problem wird durch die Merkmale des Anspruchs 1 gelöst.The problem is solved by the features of claim 1.
Erfindungsgemäß wird generell eine feste Verbindung des Kühlschirmes mit dem Druckmantel bzw. dem oberen Reaktorflansch vorgeschlagen, wodurch der Kühlschirmspalt und der Vergasungsraum als getrennte Räume ausgeführt sind. Hierdurch entfällt eine dauernde Gasspülung und ein Hinterströmen durch Vergasungsgas wird verhindert. Beachtet werden muss aller- dings, dass beim Betrieb des Reaktors der Reaktionsraum mit Drücken bis 8 MPa (80 bar) bespannt wird und damit auch der Kühlschirm mit Innendruck belastet wird, was zur Zerstörung des Kühlschirmes führen würde. Aus diesem Grund wird auch der Spalt hinter dem Kühlschirm druckgleich mit bespannt, um den Differenzdruck zwischen beiden Räumen gering zu halten.According to the invention, a fixed connection of the cooling screen with the pressure jacket or the upper reactor flange is generally proposed, whereby the cooling screen gap and the gasification space are designed as separate spaces. This eliminates a continuous gas purging and backflow through gasification gas is prevented. It must be taken into account However, that during operation of the reactor, the reaction chamber with pressures up to 8 MPa (80 bar) is covered and thus the cooling screen with internal pressure is charged, which would lead to the destruction of the cooling screen. For this reason, the gap behind the cooling screen is also pressurized with covered to keep the differential pressure between the two rooms low.
Der Betrieb des Reaktors wird mittels eines Pilotbrenners ermöglicht und überwacht. Hierzu beinhaltet dieser Pilotbrenner einen Kanal, der mit Stickstoff gespült wird und der die gesamte Betriebsphase zwischen Pilotbrennerzündung bei 0,3 MPa (3 bar) und Dauerbetrieb des Hauptbrenners bis 8 MPa (80 bar) ständig in Betrieb ist. Dieser StickstoffZuführungskanal ist immer mit dem Druck im Reaktionsraum auf einem Druckniveau.The operation of the reactor is enabled and monitored by means of a pilot burner. For this purpose, this pilot burner includes a channel that is purged with nitrogen and that is in constant operation for the entire operating phase between pilot burner ignition at 0.3 MPa (3 bar) and main burner continuous operation up to 8 MPa (80 bar). This nitrogen feed channel is always at the pressure in the reaction space at a pressure level.
Erfindungsgemäß wird von dieser StickstoffZuführung eine zusätzliche Verbindungsleitung zum Spalt hinter dem Kühlschirm geschaffen. Wird jetzt der Reaktionsraum bespannt, so steigt gleichzeitig auch der Druck im Spalt hinter dem Kühlschirm mit an. Hierdurch herrscht zwischen dem Reaktionsraum und dem Spalt hinter dem Kühlschirm nur eine sehr geringe Druckdifferenz. Druckschwankungen im Reaktionsraum haben damit keine Auswirkung auf den Druck im Kühlschirmspalt. Bei normaler Entspannung des Reaktors erfolgt über die Verbindungsleitung eine Strömungsumkehr, wobei Reaktionsraum wie Kühlschirmspalt gleichmäßig entspannt werden, so dass zwischen Kühlschirmspalt und Reaktionsraum keine belastende Druckdifferenz auftritt.According to the invention, an additional connecting line to the gap behind the cooling screen is created by this nitrogen feed. If the reaction space is now covered, the pressure in the gap behind the cooling screen also increases at the same time. As a result, there is only a very small pressure difference between the reaction space and the gap behind the cooling screen. Pressure fluctuations in the reaction chamber thus have no effect on the pressure in the cooling screen gap. During normal relaxation of the reactor, a flow reversal takes place via the connecting line, the reaction space, such as the cooling screen gap, being uniformly expanded, so that no stressful pressure difference occurs between the cooling screen gap and the reaction space.
Der verwendete Stickstoff erweist sich als besonders geeignetes Medium zur Bespannung des Spaltes hinter dem Kühlschirm, da hierdurch jegliche Korrosion hinter dem Kühlschirm ausgeschlossen werden kann.The nitrogen used proves to be a particularly suitable medium for covering the gap behind the cooling screen, as this any corrosion can be excluded behind the cooling screen.
Durch die erfindungsgemäße Maßnahme ist eine gleichmäßige Be- und Entspannung des Reaktionsraumes sowie des Spaltes zwischen Kühlschirm und Druckmantel geschaffen. In Weiterbildung der Erfindung ist eine zusätzliche Verbindung zwischen Kühlschirmspalt und SauerstoffZuführung gegeben .The inventive measure a uniform loading and relaxation of the reaction chamber and the gap between the cooling screen and pressure jacket is created. In a further development of the invention, an additional connection between cooling screen gap and SauerstoffZuführung is given.
In Weiterbildung der Erfindung ist eine zusätzliche Verbindung zwischen Kühlschirmspalt und einer Brennstoffzuführungs- leitung gegeben.In a further development of the invention, an additional connection between the cooling screen gap and a fuel supply line is given.
In Weiterbildung der Erfindung sind zusätzliche Verbindungen zwischen Kühlschirmspalt und mehreren BrennstoffZuführungsleitungen gegeben.In a further development of the invention, additional connections between the cooling screen gap and a plurality of fuel supply lines are provided.
In Weiterbildung der Erfindung sind zusätzliche Verbindungen zwischen Kühlschirmspalt und SauerstoffZuführung sowie zwi- sehen Kühlschirmspalt und einer Anzahl von Brennstoffzufüh- rungsleitungen gegeben.In a further development of the invention, additional connections between the cooling screen gap and the oxygen supply and between the cooling screen gap and a number of fuel supply lines are provided.
Durch die genannten Maßnahmen wird bei einer schnellen Notentspannung des Reaktionsraumes ein ausreichender Querschnitt für den Druckausgleich geschaffen, wenn der Kanal des Pilotbrenners alleine nicht ausreicht.By the measures mentioned a sufficient cross section for the pressure equalization is created at a rapid emergency relaxation of the reaction space when the channel of the pilot burner alone is insufficient.
Alle Verbindungsleitungen können mit Absperrventilen ausgerüstet sein, die eine Medienströmung nur in Richtung Haupt- brenner zulassen. Bei Notentspannung öffnen die Ventile zusätzlich und es kann eine schnelle Entspannung des Kühlschirmspaltes erfolgen. Durch die Sperrung der Strömung in Richtung Kühlschirmspalt kann auch bei undichten Ventilen keine Strömungsumkehr in Richtung Kühlschirmspalt erfolgen.All connecting lines can be equipped with shut-off valves, which allow media flow only in the direction of the main burner. When emergency release the valves open in addition and it can be done a quick relaxation of the cooling screen gap. By blocking the flow in the direction of the cooling screen gap, no flow reversal can take place in the direction of the cooling screen gap, even with leaky valves.
In einer besonderen Ausgestaltung der Erfindung ist ein Rückschlagventil durch eine Kombination eines Absperrventils mit einer Rückschlagsicherung gegeben. Hierdurch wird eine Steuerbarkeit der Verbindungsleitung, in der das Absperrventil angeordnet ist, mit einem Schutz vor Eindringen von Vergasungsgas in den Kühlschirmspalt erreicht. In weiterer Ausgestaltung der Erfindung sind die Einzelleitungen im Querschnitt so bemessen, dass selbst bei Nicht- Öffnen eines Rückschlagventils im Notentspannungsfall der Druckausgleich über die restlichen Leitungen ausreicht.In a particular embodiment of the invention, a check valve is provided by a combination of a shut-off valve with a non-return valve. As a result, a controllability of the connecting line, in which the shut-off valve is arranged, is achieved with protection against penetration of gasification gas into the cooling screen gap. In a further embodiment of the invention, the individual lines are dimensioned in cross section so that even when not opening a check valve in case of emergency voltage equalization of pressure on the remaining lines is sufficient.
Die Erfindung wird im Folgenden als Ausführungsbeispiel in einem zum Verständnis erforderlichen Umfang anhand einer Figur näher erläutert. Dabei zeigt:The invention is explained in more detail below as an exemplary embodiment in a scope necessary for understanding with reference to a figure. Showing:
Fig. 1 einen erfindungsgemäßen Vergasungsreaktor mit einem Druckausgleich zwischen Reaktionsraum und Kühlschirmspalt durch StickstoffSpülung.1 shows a gasification reactor according to the invention with a pressure equalization between the reaction space and cooling screen gap by nitrogen flushing.
Bei dem erfindungsgemäßen Reaktor besteht eine gasdichte, feste Verbindung des Kühlschirmes 4 mit dem Druckmantel 6 bzw. dem oberen Reaktorflansch, wodurch der Kühlschirmspalt 5 und der Vergasungsraum 3 getrennte Räume bilden. Am Kopf des Reaktors ist ein Kombibrenner angeordnet, der aus einem zentralen Pilotbrenner 1 und einem um diesen angeordne- ten Hauptbrenner 2 besteht. Zur Inbetriebnahme wird der Pilotbrenner 1 gezündet und anschließend der Druck im Reaktionsraum langsam auf den Betriebsdruck bis ca. 80 bar erhöht. Durch die erfindungsgemäße Trennung des Reaktionsraumes 3 und des Kühlschirmspaltes 5, um eine Hinterströmung bzw. einen Gasaustausch zu vermeiden, würde hierbei nur der Reaktionsraum 3 bespannt und der Kühlschirmspalt 5 bleibt drucklos. Durch den hohen Reaktionsraumdruck bis 80 bar wird der Kühlschirm 4 nur mit Innendruck belastet, was zur Zerstörung führen würde . Aus diesem Grund wird auch der Kühlschirmspalt 5 hinter dem Kühlschirm 4 druckgleich mit bespannt, um den Differenzdruck zwischen beiden Räumen gering zu halten.In the reactor according to the invention there is a gas-tight, firm connection of the cooling screen 4 with the pressure jacket 6 and the upper reactor flange, whereby the cooling screen gap 5 and the gasification chamber 3 form separate spaces. At the top of the reactor, a combination burner is arranged, which consists of a central pilot burner 1 and a main burner 2 arranged around it. To start the pilot burner 1 is ignited and then the pressure in the reaction chamber slowly increased to the operating pressure up to about 80 bar. Due to the inventive separation of the reaction space 3 and the cooling screen gap 5 in order to avoid a backflow or a gas exchange, in this case only the reaction chamber 3 would be covered and the cooling screen gap 5 remains unpressurized. Due to the high reaction space pressure up to 80 bar, the cooling screen 4 is only loaded with internal pressure, which would lead to destruction. For this reason, the cooling screen gap 5 is also covered with the same pressure behind the cooling screen 4 in order to keep the differential pressure between the two rooms small.
Als Medium zur gleichzeitigen Bespannung des Kühlschirmspaltes 5 hinter dem Kühlschirm 4 wird Stickstoff verwendet, wo- durch jegliche Korrosion hinter dem Kühlschirm ausgeschlossen wird. Zur Inbetriebnahme des Reaktors wird der Pilotbrenners 1 gezündet. Dieser Pilotbrenner 1 beinhaltet einen freien Kanal, der dauerhaft mit Stickstoff über die Zuführungsleitung 9 gespült und durch den der Pilotbrenner 1 mit einer optischen Flammenüberwachung überwacht wird.As a medium for the simultaneous covering of the cooling screen gap 5 behind the cooling screen 4, nitrogen is used, whereby any corrosion behind the cooling screen is excluded. To start up the reactor, the pilot burner 1 is ignited. This pilot burner 1 includes a free passage which is permanently purged with nitrogen via the supply line 9 and monitored by the pilot burner 1 with optical flame monitoring.
Während der gesamte Betriebsphase zwischen Pilotbrennerzündung bei ca. 3 bar und Dauerbetrieb des Hauptbrenners 2 bis 80 bar ist diese StickstoffZuführung 9 immer mit dem Druck im Reaktionsraum 3 auf einem Druckniveau.During the entire operating phase between pilot burner ignition at about 3 bar and continuous operation of the main burner 2 to 80 bar, this nitrogen feed 9 is always at the pressure in the reaction chamber 3 at a pressure level.
Erfindungsgemäß wird von dieser StickstoffZuführung 9 eine zusätzliche Verbindungsleitung 8 zum Stutzen 7 in den Kühlschirmspalt 5 geschaffen. Wird jetzt der Reaktionsraum 3 bespannt, so steigt gleichzeitig auch der Druck im Kühlschirm- spalt 5 hinter dem Kühlschirm 4 mit an. Hierdurch herrscht zwischen dem Reaktionsraum 3 und dem Kühlschirmspalt 5 nur eine sehr geringe Druckdifferenz. Druckschwankungen im Reaktionsraum 3 haben damit keine Auswirkung auf den Druck im Kühlschirmspalt 5.According to the invention, an additional connection line 8 to the nozzle 7 in the cooling screen gap 5 is created by this nitrogen feed 9. If the reaction chamber 3 is now covered, the pressure in the cooling screen gap 5 behind the cooling screen 4 also increases at the same time. As a result, there is only a very small pressure difference between the reaction chamber 3 and the cooling screen gap 5. Pressure fluctuations in the reaction chamber 3 thus have no effect on the pressure in the cooling screen gap. 5
Bei normaler Entspannung des Reaktors erfolgt über die Verbindungsleitung 8 eine Strömungsumkehr und Reaktionsraum 3 und Kühlschirmspalt 5 werden gleichmäßig entspannt, so dass zwischen Kühlschirmspalt 5 und Reaktionsraum 3 keine belas- tende Druckdifferenz auftritt.During normal relaxation of the reactor via the connecting line 8, a flow reversal and reaction chamber 3 and cooling screen gap 5 are uniformly relaxed, so that between cooling screen gap 5 and the reaction chamber 3 no loading pressure difference occurs.
Der Rohgasabgang 19 ist zum einen mit einer Gasabgangsarmatur 20 verbunden, über das das Rohgas aus dem Quenchraum 18 einer weiteren Verwertung regelmäßig zugeführt wird und zum anderen mit einer Entspannungsarmatur 21 verbunden, über das eineThe raw gas outlet 19 is connected on the one hand to a gas outlet fitting 20, via which the raw gas from the quench chamber 18 is regularly supplied to a further utilization and, on the other hand, connected to a flash valve 21 via which a
Notentspannung des Vergasungsreaktors in einen Auffangbehälter oder in die Atmosphäre möglich ist. Überschreitet der Druck in dem Vergasungsreaktor einen vorgegebenen Grenzwert wird die Gasabgangsarmatur 20 geschlossen und die Entspan- nungsarmatur 21 geöffnet. Im Falle einer schnellen Notentspannung des Reaktionsraumes 3 würde die Verbindung über die Leitungen 8 und 9 für einen Druckausgleich allein nicht ausreichen.Emergency relaxation of the gasification reactor in a collecting container or in the atmosphere is possible. If the pressure in the gasification reactor exceeds a predetermined limit value, the gas outlet fitting 20 is closed and the expansion valve 21 is opened. In the case of a rapid emergency release of the reaction chamber 3, the connection via the lines 8 and 9 would not be sufficient for pressure equalization alone.
Für diesen Notfall existieren zusätzlich 3 Verbindungsleitun- gen 13 zu den 3 Stück Kohlenstaubzuführungsleitungen 10 und eine Verbindungsleitung 14 zur SauerstoffZuführung 11. Alle Leitungen sind mit Absperrventilen 12 ausgerüstet, die eine Medienströmung nur in Richtung Hauptbrenner 2 zulassen. Bei Notentspannung öffnen die Ventile 12 zusätzlich und es kann eine schnelle Entspannung des Kühlschirmspaltes 5 erfolgen. Die Einzelleitungen 13 und 14 sind im Querschnitt so bemessen, dass selbst bei Versagen eines Ventils 12 der Druckausgleich über die restlichen Leitungen ausreicht. Durch die Sperrung der Strömung in Richtung Kühlschirmspalt 5 kann auch bei undichten Ventilen 12 keine Strömungsumkehr in Richtung Kühlschirmspalt 5 erfolgen.For this emergency, there are additionally 3 connection lines 13 to the 3 pieces of pulverized coal supply lines 10 and a connecting line 14 to the oxygen supply line 11. All lines are equipped with shut-off valves 12, which allow media flow only in the direction of the main burner 2. In emergency release, the valves 12 additionally open and there can be a quick relaxation of the cooling screen gap 5. The individual lines 13 and 14 are dimensioned in cross section so that even if a valve 12 fails, the pressure equalization over the remaining lines is sufficient. By blocking the flow in the direction of the cooling screen gap 5, even in the case of leaking valves 12, no flow reversal can take place in the direction of the cooling screen gap 5.
Die Erfindung umfasst auch eine Vorrichtung zum Druckausgleich zwischen Reaktionsraum (3) und Kühlschirmspalt (5) bei einem Flugstromvergaser zur Vergasung von festen, flüssigen und gasförmigen Brennstoffen zur Erzeugung eines CO- und wasserstoffreichen Rohgases bei Reaktionsraumdrücken bis 80 bar wobei zum Druckausgleich zwischen dem Reaktionsraum (3) und Kühlschirmspalt (5) zwischen Kühlschirm (4) und Druckmantel (6) eine Verbindungsleitung (8) besteht, die von der StickstoffZuführungsleitung (9) am Pilotbrenner (1) abzweigt und zum Stutzen (7) am Kühlschirmspalt (5) führt.The invention also includes a device for pressure equalization between the reaction chamber (3) and the cooling screen gap (5) in an air flow gasifier for the gasification of solid, liquid and gaseous fuels to produce a CO and hydrogen-rich raw gas at reaction chamber pressures up to 80 bar with pressure equalization between the reaction space ( 3) and cooling screen gap (5) between the cooling screen (4) and pressure jacket (6), a connecting line (8) branches off from the nitrogen supply line (9) on the pilot burner (1) and leads to the neck (7) on the cooling screen gap (5).
In weiterer Ausgestaltung umfasst die Erfindung auch eine Vorrichtung, bei der für schnelle Entspannungsvorgänge des Reaktionsraumes noch zusätzliche Verbindungsleitungen (13) und (14) vorhanden sind, die mit Absperrventilen (12) mit Rückschlagsicherung ausgerüstet sind, von der Verbindungsleitung (8) abzweigen und mit den Kohlenstaubzuführungsrohren (10) beziehungsweise der SauerstoffZuführung (11) verbunden sind. In weiterer Ausgestaltung umfasst die Erfindung auch eine Vorrichtung, bei der die zusätzlichen VerbindungsleitungenIn a further embodiment, the invention also includes a device in which additional connecting lines (13) and (14) are provided for fast relaxation processes of the reaction chamber, which are equipped with shut-off valves (12) with non-return, branch off from the connecting line (8) and with the coal dust supply pipes (10) and the oxygen supply (11) are connected. In a further embodiment, the invention also includes a device in which the additional connecting lines
(13) und (14) mit einer Strömungssicherung ausgerüstet sind, die nur eine Medienströmung aus dem Kühlschirmspalt (5) über Stutzen (7) und der Verbindungsleitung (8) zum Hauptbrenner(13) and (14) are equipped with a flow safety device, which only a flow of media from the cooling screen gap (5) via nozzle (7) and the connecting line (8) to the main burner
(2) in den Reaktor zulassen. (2) allow in the reactor.
Bezugs zeichenlisteReference sign list
1 Pilotbrenner1 pilot burner
2 Hauptbrenner 3 Reaktionsraum2 main burners 3 reaction space
4 Kühlschirm4 cooling screen
5 Kühlschirmspalt5 cooling screen gap
6 Druckmantel6 pressure jacket
7 N2-Zuführungsstutzen in Kühlschirmspalt 8 N2-Verbindungsleitung zwischen Pilotbrenner und Stutzen 77 N2 supply nozzle in cooling screen gap 8 N2 connecting pipe between pilot burner and nozzle 7
9 N2-Zuführung zum Pilotbrenner9 N2 supply to the pilot burner
10 3 x Kohlenstaubzuführungsrohre zum Hauptbrenner10 3 x coal dust feed pipes to the main burner
11 SauerstoffZuführung zum Hauptbrenner 12 4 x Absperrventile mit Rückströmsicherung11 Oxygen supply to main burner 12 4 x shut-off valves with backflow preventer
13 N2-Verbindungsleitung zu den Kohlenstaubleitungen13 N2 connecting pipe to the pulverized coal pipes
14 N2-Verbindungsleitung zur O2-Zuführung zum Hauptbrenner14 N2 connection line for O2 supply to the main burner
15 Schlackeablaufkörper 16 Gasübergang zum Quenchraum15 slag drain 16 gas transfer to the quench
17 Quenchdüse17 quench nozzle
18 Quenchraum18 quenching room
19 Rohgasabgang19 raw gas outlet
20 Gasabgangsarmatur 21 Entspannungsarmatur 20 Gas outlet fitting 21 Relaxation fitting

Claims

Patentansprüche claims
1. Reaktor zur Vergasung von festen, flüssigen und gasförmigen Brennstoffen im Flugstrom bei Temperaturen zwischen 1200 und 1900 0C und Drücken zwischen Umgebungsdruck und 10 MPa (100 bar) , bei dem1. Reactor for the gasification of solid, liquid and gaseous fuels in the air stream at temperatures between 1200 and 1900 0 C and pressures between ambient pressure and 10 MPa (100 bar), in which
— ein Kühlschirm (4) gasdicht in einen Druckmantel (6) eingebaut ist,A cooling screen (4) is installed gastightly in a pressure jacket (6),
— zwischen Kühlschirm und Druckmantel ein Kühlschirmspalt (5) besteht,- there is a cooling screen gap (5) between the cooling screen and the pressure jacket,
— ein Brenner (1) mit einem Stickstoff-gespülten Überwachungskanal angeordnet ist, dadurch gekennzeichnet, dass zwischen Überwachungskanal und Kühlschirmspalt eine Verbin- düng (8) angeordnet ist.- A burner (1) is arranged with a nitrogen-purged monitoring channel, characterized in that between the monitoring channel and cooling screen gap a connection düng (8) is arranged.
2. Reaktor nach Anspruch 1, da du r ch g e k e n n z e i ch n e t , d a s s eine Verbindung zwischen Kühlschirmspalt und der Oxidations- mittelzuführungsleitung (11) gegeben ist.2. Reactor according to claim 1, characterized in that there is a connection between the cooling screen gap and the oxidizing agent supply line (11).
3. Reaktor nach Anspruch 2, da du r ch g e k e n n z e i ch n e t , d a s s in der Verbindung zwischen Kühlschirmspalt und Oxidationsmit- telzuführungsleitung ein Rückschlagventil (14) angeordnet ist .3. Reactor according to claim 2, characterized in that a check valve (14) is arranged in the connection between the cooling screen gap and the oxidizing agent supply line.
4. Reaktor nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass eine Verbindung zwischen Kühlschirmspalt und einer BrennstoffZuführungsleitung (10) gegeben ist.4. Reactor according to one of the preceding claims, characterized in that a connection between the cooling screen gap and a fuel supply line (10) is given.
5. Reaktor nach Anspruch 2, da du r ch g e k e n n z e i ch n e t , d a s s in der Verbindung zwischen Kühlschirmspalt und Brennstoffzu- führungsleitung ein Rückschlagventil (13) angeordnet ist.5. Reactor according to claim 2, since, in the connection between the cooling screen gap and the fuel supply line, a non-return valve (13) is arranged.
6. Reaktor nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zwischen mehreren BrennstoffZuführungsleitungen (10) und6. Reactor according to one of the preceding claims, characterized in that between a plurality of fuel supply lines (10) and
Kühlschirmspalt jeweilige Verbindungen (13) angeordnet sind.Cooling screen gap respective connections (13) are arranged.
7. Reaktor nach Anspruch 6, dadurch gekennzeichnet, dass in den Verbindungen zu allen BrennstoffZuführungsleitungen jeweilige Rückschlagventile (12) angeordnet sind.7. Reactor according to claim 6, characterized in that respective non-return valves (12) are arranged in the connections to all fuel supply lines.
8. Reaktor nach einem der vorstehenden Ansprüche 3 bis 7, da du r ch g e k e n n z e i ch n e t , d a s s ein Rückschlagventil durch eine Kombination eines Absperrventils mit einer Rückschlagsicherung gegeben ist.8. Reactor according to one of the preceding claims 3 to 7, since there is a non-return e e s t e, a check valve is provided by a combination of a shut-off valve with a non-return valve.
9 . Reaktor nach einem der vorstehenden Ansprüche 2 bis 8, ge k e n n z e i ch n e t du r c h9. Reactor according to one of the preceding claims 2 to 8, Ge n e c e e n t e r c h
Dimensionierung der Strömungswiderstände der n Verbindungen zwischen Kühlschirmspalt und Reaktionsraum derart, dass eine sichere Notentspannung über n-1 Verbindungen durchführbar ist. Dimensioning of the flow resistances of the n connections between the cooling screen gap and the reaction space in such a way that a secure emergency release via n-1 connections can be carried out.
PCT/EP2009/061862 2009-01-23 2009-09-14 Device for equalizing pressure between a reaction chamber and cooling screen gap in an entrained-flow gasifier having a fixed welded cooling screen WO2010083897A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009005856.7 2009-01-23
DE200910005856 DE102009005856A1 (en) 2009-01-23 2009-01-23 Device for pressure equalization between the reaction chamber and the cooling screen gap in an air flow gasifier with a firmly welded-in cooling screen

Publications (1)

Publication Number Publication Date
WO2010083897A1 true WO2010083897A1 (en) 2010-07-29

Family

ID=42261991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/061862 WO2010083897A1 (en) 2009-01-23 2009-09-14 Device for equalizing pressure between a reaction chamber and cooling screen gap in an entrained-flow gasifier having a fixed welded cooling screen

Country Status (2)

Country Link
DE (1) DE102009005856A1 (en)
WO (1) WO2010083897A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010040227B4 (en) * 2010-09-03 2012-05-24 Siemens Aktiengesellschaft Air flow gasifier with gas cushion for firmly welded cooling screen
DE102016216453A1 (en) 2016-08-31 2018-03-01 Siemens Aktiengesellschaft Cooling screen with variable tube diameter for high carburetor performance
CN114621793B (en) * 2022-03-17 2023-06-13 张金辉 Burner of coal gasification equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936376A (en) * 1988-06-27 1990-06-26 Texaco Inc. Synthetic gas cooler with thermal protection
EP0619455A2 (en) * 1993-03-03 1994-10-12 Ebara Corporation Pressurized internal circulating fluidized-bed boiler
DE102007032809A1 (en) * 2007-07-13 2009-01-22 Siemens Ag Reactor for entrained bed gasification for operation with powdered or liquid fuels, has pressure shell cylindrically enclosing cooling screen, where gap is completely filled with liquid between cooling screen and pressure shell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19718131C2 (en) 1997-04-29 1999-10-14 Krc Umwelttechnik Gmbh Method and device for the regeneration of a liquid obtained in the power process for the digestion of wood by gasification

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936376A (en) * 1988-06-27 1990-06-26 Texaco Inc. Synthetic gas cooler with thermal protection
EP0619455A2 (en) * 1993-03-03 1994-10-12 Ebara Corporation Pressurized internal circulating fluidized-bed boiler
DE102007032809A1 (en) * 2007-07-13 2009-01-22 Siemens Ag Reactor for entrained bed gasification for operation with powdered or liquid fuels, has pressure shell cylindrically enclosing cooling screen, where gap is completely filled with liquid between cooling screen and pressure shell

Also Published As

Publication number Publication date
DE102009005856A1 (en) 2010-07-29

Similar Documents

Publication Publication Date Title
DE102007051077B4 (en) Air flow carburettor with cooling screen and inner water jacket
DE102007045322B4 (en) Air flow carburetor with cooling screen and sliding seal
DE102006029595B4 (en) Method for high current jet carburettor
DE102007034950B4 (en) Method for the selective safety monitoring of entrained flow gasification reactors
DE102005041930B4 (en) Gasification process and apparatus for generating synthesis gases by partial oxidation of ash-containing fuels under elevated pressure and quench cooling of the raw gas
DE202006020601U1 (en) Device for high-flow entrainment gasification reactors with combination burner and multi-burner arrangement
DE202005021661U1 (en) Apparatus for producing synthesis gases by partial oxidation of slurries produced from ash-containing fuels and full quenching of the raw gas
DE102007045321A1 (en) Air flow gasifier with cooling screen and corrugated tube compensator
WO2010083897A1 (en) Device for equalizing pressure between a reaction chamber and cooling screen gap in an entrained-flow gasifier having a fixed welded cooling screen
DE202009012134U1 (en) Apparatus for carrying out high-temperature gasification processes
DE102016217412A1 (en) Run-off gasifier with a reduced number of cooling-water feed-throughs through the pressure jacket for the raw-gas and slag-removal modules as well as the guide tube
DE202008016515U1 (en) Air flow gasifier with fixed cooling screen and steam generation
DE4306980A1 (en) Multifuel-type burner for partial oxidation
DD136748B1 (en) METHOD FOR OPERATING GASING SYSTEMS FOR DUST-SOUND FUELS
DE102012216898B4 (en) Gasification reactor with intermittent pilot burner operation
EP2397671B1 (en) Gas and steam turbine plant and corresponding process
DE102009005857A1 (en) Reactor for gasification of e.g. gaseous fuel, in entrained flow, has joint arranged between monitoring channel and cooling screen opening, and tension safety device connected between opening and quench ring in pressure tight manner
DE102010040227B4 (en) Air flow gasifier with gas cushion for firmly welded cooling screen
DE4041445A1 (en) Safety arrangement for coal-charging closure system in pressure gas generator - has bunker shut=off slide plate arranged between upper sealing and lower support ring
DD145026A3 (en) PRESSURE RELIEF DEVICE V N REACTORS
WO2023057090A1 (en) Device and method for carrying out partial oxidation
DE102013204779A1 (en) Measurement of the temperatures in the cooling screen of an entrainment gasifier
DD200681A1 (en) PROCESS FOR EMERGENCY SHUT-OFF OF GASING REACTORS
DE202010018417U1 (en) Guide tube for a gasification reactor with winding made of solid tube
DE102012217464A1 (en) Method for operating air-flow vitrification reactor, involves supplying pneumatic or hydraulic pulverized fuel, which is operated at certain pressures and certain vitrification temperature

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09782963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09782963

Country of ref document: EP

Kind code of ref document: A1