WO2010082298A1 - Transfer device and transfer method - Google Patents

Transfer device and transfer method Download PDF

Info

Publication number
WO2010082298A1
WO2010082298A1 PCT/JP2009/050313 JP2009050313W WO2010082298A1 WO 2010082298 A1 WO2010082298 A1 WO 2010082298A1 JP 2009050313 W JP2009050313 W JP 2009050313W WO 2010082298 A1 WO2010082298 A1 WO 2010082298A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
substrate
center
alignment
transfer
Prior art date
Application number
PCT/JP2009/050313
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 今井
修 加園
和信 橋本
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2010546483A priority Critical patent/JPWO2010082298A1/en
Priority to PCT/JP2009/050313 priority patent/WO2010082298A1/en
Publication of WO2010082298A1 publication Critical patent/WO2010082298A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/002Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/855Coating only part of a support with a magnetic layer

Definitions

  • the present invention relates to a transfer apparatus and a transfer method for transferring an uneven pattern to a transfer target.
  • Patent Document 1 describes that a conical mandrel is used to match reference positions of substrates on which a mold and a transfer layer are formed in a state of being separated from each other.
  • Patent Documents 2 and 3 describe that an alignment mark is formed on the mold, and the alignment between the disk substrate and the mold is performed using the alignment mark.
  • Patent Document 4 describes that the position of the molded product and the mold is aligned by detecting the position of the edge of the molded product.
  • the apparatus described in Patent Document 1 adjusts the relative position between the disk substrate and the mold using a conical mandrel, and the conical mandrel requires high processing accuracy.
  • the end position (inner periphery or outer periphery edge) of the disk substrate is observed using detection means such as a camera.
  • detection means such as a camera.
  • the edge position (inner and outer edges) of the disk substrate is generally chamfered or the like, the edge of the disk substrate is detected by a detection means such as a camera. It becomes difficult to accurately specify the position of the part.
  • the present invention has been made in view of the above points, and even when a mold is used in which the mold center point does not coincide with the center point of the uneven pattern formed on the mold, It is an object of the present invention to provide a transfer apparatus and a transfer method capable of adjusting the center point of the concavo-convex pattern with the center with high accuracy.
  • a transfer device is a transfer device that transfers a concavo-convex pattern by pressing a first mold against a first surface of a transfer object and pressing a second mold against the second surface of the transfer object.
  • Supporting means for supporting the transferred object, first mold holding means for holding the first mold, second mold holding means for holding the second mold, the first mold and the second mold.
  • First alignment means for adjusting the relative position of the first mold, the second mold, the center of the concave-convex pattern formed in each of the first and second molds and the center of the transferred body coincide with each other, And second alignment means for adjusting the relative position of the transfer object.
  • the transfer method according to the present invention is a transfer method in which a concavo-convex pattern is transferred by pressing a first mold against a first surface of a transfer object and pressing a second mold against the second surface of the transfer object.
  • a supporting step for supporting the transfer object a first mold holding step for holding the first mold, a second mold holding step for holding the second mold, the first mold, and the second mold.
  • a camera unit of a transfer device is a camera unit used for a transfer device that transfers a mold having a concavo-convex pattern and an alignment mark to a transfer target having a through hole. And first observation means for observing the holding means for holding the transferred body through the through-hole of the transferred body, and second observation means for observing the alignment mark formed on the mold.
  • the camera unit of the transfer device transfers a concavo-convex pattern by a first mold onto one surface of a transfer body having a through-hole, and a second surface on the other surface of the transfer body.
  • FIG. 2 is a diagram illustrating an example of a configuration of a camera unit 40.
  • FIG. It is a figure which shows typically the form of a mold drive stage (500a, 500b) and a mold holding
  • FIG. shows an example of the flowchart which shows the imprint method implemented when performing double-sided transfer.
  • FIG. shows an example of the flowchart which shows the imprint method implemented when performing double-sided transfer.
  • FIG. 6 is a diagram schematically illustrating the state (positional relationship) of each of an upper mold holding unit 501a, a lower mold holding unit 501b, and a center pin 30b for each stage by the imprint operation illustrated in FIGS. 4 and 5.
  • FIG. 6 is a diagram schematically illustrating the state (positional relationship) of each of an upper mold holding unit 501a, a lower mold holding unit 501b, and a center pin 30b for each stage by the imprint operation illustrated in FIGS. 4 and 5.
  • FIG. 6 is a diagram schematically illustrating the state (positional relationship) of each of an upper mold holding unit 501a, a lower mold holding unit 501b, and a center pin 30b for each stage by the imprint operation illustrated in FIGS. 4 and 5.
  • FIG. 6 is a diagram schematically illustrating the state (positional relationship) of each of an upper mold holding unit 501a, a lower mold holding unit 501b, and a center pin 30b for each stage by the imprint operation illustrated in FIGS
  • FIGS. 4 and 5 are diagram schematically illustrating the state (positional relationship) of each of an upper mold holding unit 501a, a lower mold holding unit 501b, and a center pin 30b for each stage by the imprint operation illustrated in FIGS. 4 and 5. It is a figure showing the position alignment operation
  • FIG.20 and FIG.21 It is a figure which shows an example of the flowchart which shows the imprint method implemented when performing single-sided transfer. It is a figure which represents typically the state (positional relationship) of each of the upper mold holding
  • FIG. 27 is a diagram schematically illustrating the state (positional relationship) of each of an upper mold holding unit 501a, a lower mold holding unit 501b, and a center pin 30b for each stage by the imprint operation illustrated in FIGS. 25 and 26.
  • FIG. 27 is a diagram schematically illustrating the state (positional relationship) of each of an upper mold holding unit 501a, a lower mold holding unit 501b, and a center pin 30b for each stage by the imprint operation illustrated in FIGS. 25 and 26.
  • FIG. 27 is a diagram schematically illustrating the state (positional relationship) of each of an upper mold holding unit 501a, a lower mold holding unit 501b, and a center pin 30b for each stage by the imprint operation illustrated in FIGS. 25 and 26.
  • FIG. 4 is a diagram illustrating an example of arrangement of cameras in a camera unit 40.
  • FIG. 4 is a diagram illustrating an example of arrangement of cameras in a camera unit 40.
  • FIG. 4 is a diagram illustrating an example of arrangement of cameras in a camera unit 40.
  • FIG. 4 is a diagram illustrating an example of arrangement of cameras in a camera unit 40. It is a figure which shows the other structure of the camera unit.
  • first, the first mold and the second mold are transferred.
  • the relative position is adjusted, and then the first mold, the second mold, and the transferred body so that the center of the uneven pattern formed in each of the first and second molds coincides with the center of the transferred body. Alignment whose relative position is to be adjusted is executed.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a UV (ultraviolet) type imprint apparatus as a transfer apparatus according to the present invention.
  • This imprint apparatus uses the upper mold 503a and the lower mold 503b on which the concavo-convex pattern to be transferred is formed, to simultaneously transfer patterns onto both sides of the substrate 6 as a transfer target to be transferred.
  • the transfer target is referred to as a substrate.
  • the substrate refers to a configuration including a transfer layer.
  • an upper transfer layer 604a and a lower transfer layer 604b made of a transfer material that is cured when irradiated with ultraviolet rays are formed.
  • a center hole is provided at the center position (reference position) of each of the substrate 6, the upper mold 503a, and the lower mold 503b.
  • FIG. 1 the configuration of the imprint apparatus is shown with the substrate 6, the upper mold 503a, and the lower mold 503b installed.
  • the imprint apparatus shown in FIG. 1 includes an upper mechanism unit, a lower mechanism unit, a controller 200 that controls the upper mechanism unit and the lower mechanism unit, and an operation unit 201.
  • the upper mechanism unit includes a camera unit 40, a camera unit driving stage 90, an upper mold driving stage 500a, an upper mold holding unit 501a, an upper stage 505a, and an upper UV irradiation unit 508a.
  • the board-like upper stage 505a has a screw hole portion in which a screw groove into which a ball screw 512 (to be described later) is screwed is formed, along with an opening portion 100a as shown in FIG.
  • the camera unit drive stage 90 is installed on the upper surface of the upper stage 505a.
  • the upper UV irradiation unit 508a applies ultraviolet light to be cured on the transfer material to the upper transfer layer 604a of the substrate 6 via the upper mold holding unit 501a and the upper mold 503a in accordance with the ultraviolet irradiation signal UV supplied from the controller 200. Irradiate.
  • the camera unit 40 On the camera unit drive stage 90, the camera unit 40 is installed.
  • the camera unit drive stage 90 moves the camera unit 40 to the center position of the opening 100a by the camera unit movement signal KG U supplied from the controller 200.
  • the camera unit 40 is provided to perform high-precision alignment of the upper mold 503a and the lower mold 503b with respect to the substrate 6 at the time of pressing.
  • FIG. 2 is a diagram illustrating a schematic configuration of the camera unit 40.
  • the camera unit 40 includes a plate-like stage CS having a plane parallel to the substrate 6, and cameras 41a to 41d fixedly arranged on the stage CS.
  • the center point of each photographic lens LZ is on a concentric reference alignment line AL (shown by a broken line) centered on the center point of the photographic lens LZ of the camera 41a on the surface of the stage CS. It is arranged to be located.
  • the reference alignment line AL is, for example, the innermost or outermost position of the concavo-convex pattern formed in the upper mold 503a and the lower mold 503b, or the relative positions of the upper mold 503a and the lower mold 503b with respect to the substrate 6.
  • the alignment mark has a diameter substantially the same as that of the alignment mark formed for adjusting.
  • the alignment mark is made up of, for example, a plurality of concentric grooves centering on the center point of the uneven pattern formed in the upper mold 503a and the lower mold 503b, and is formed so as to surround the periphery of the uneven pattern. ing.
  • the alignment mark may be in any form as long as it can be recognized as an image, and is not limited to a groove, and may be composed of a plurality of lines drawn with, for example, a laser marker.
  • the camera 41a is arranged so that the center of the photographing lens is located at the center point of the reference alignment line AL.
  • the cameras 41a to 41d there are photographing through-holes for fixing the respective photographing lenses vertically downward (direction in which the substrate 6 exists). Is provided. Further, as shown in FIG. 2, the cameras 41a to 41d are respectively installed at the same height position with respect to the surface of the stage CS.
  • the camera 41a takes an image of the tip of the center pin 30b shown in FIG. 1, and supplies the obtained image signal PDa to the controller 200.
  • the cameras 41b to 41d shoot the surfaces of the upper mold 503a and the lower mold 503b at the respective positions, and supply the photographic signals PDb to PDd obtained at this time to the controller 200.
  • the camera unit 40 maintains the relative positional relationship between the cameras 41b to 41d as shown in FIG. 2 in accordance with the unit position adjustment signal UP supplied from the controller 200, and the surface of the camera unit drive stage 90 is maintained. Move up to change the installation position.
  • An upper mold driving stage 500a having an opening 100a is installed on the lower surface of the upper stage 505a.
  • an upper mold holding part 501a made of a transparent material is installed so as to cover the opening 100a.
  • the upper mold holding unit 501a can move in two-dimensional directions (X, Y) as shown in FIG. 3 on the upper mold driving stage 500a, and can rotate about a central axis QJ perpendicular to the plane. It is installed in a state.
  • the upper mold holding part 501a has a mold holding surface DF as shown in FIG. 3 for holding the upper mold 503a, and a through hole is provided at the center thereof.
  • the upper mold holding unit 501a holds the upper mold 503a on the mold holding surface DF by, for example, vacuum suction according to the upper mold holding signal MH U supplied from the controller 200.
  • the method of holding the upper mold 503a on the mold holding surface is not limited to vacuum suction and may be held by a mechanical method.
  • Upper mold driving stage 500a is according to the supplied upper XY directions mold movement signal XY U from the controller 200 to move the upper mold holding portion 501a in the X direction and the Y direction in its surface. Further, the upper mold driving stage 500a in accordance with the upper mold rotation signal theta U supplied from the controller 200 rotates the upper mold holding portion 501a around the such central axis QJ shown in FIG. As a result, the relative positions of the upper mold 503a, the lower mold 503b, and the substrate 6 are adjusted. A method for adjusting each relative position will be described later.
  • 1 includes a center pin 30b, a lower mold driving stage 500b, a lower mold holding unit 501b, a lower stage 505b, a center pin driving unit 507b, a lower UV irradiation unit 508b, A lower stage vertical drive unit 511b and a lower ball screw 512b are provided.
  • the board-like lower stage 505b has a through hole through which the ball screw 512 passes, together with the opening 100b as shown in FIG.
  • One end of the ball screw 512 penetrates the through hole of the lower stage 505b and the other end is a screw hole of the upper stage 505a so that the lower stage 505b and the upper stage 505a are maintained in a parallel state. It is screwed into the part.
  • a lower mold driving stage 500b having an opening 100b is installed on the upper surface of the lower stage 505b.
  • a lower mold holding part 501b made of a transparent material is installed so as to cover the opening 100b.
  • the lower mold holding portion 501b can move in two-dimensional directions (X, Y) as shown in FIG. 3 on the lower mold driving stage 500b, and rotates about a central axis QJ perpendicular to the plane. Installed as possible.
  • the lower mold holding part 501b includes a mold holding surface DF as shown in FIG. 3 for holding the lower mold 503b, and a through hole is provided at the center thereof.
  • Lower mold holding portion 501b in accordance with the lower mold holding signal MH L supplied from the controller 200, for example, to hold the lower mold 503b to the mold holding surface DF by vacuum suction.
  • the method of holding the lower mold 503b on the mold holding surface is not limited to vacuum suction, and the mold may be supported by a mechanical method.
  • Lower mold driver stage 500b in response to the supplied lower XY direction mold movement signal XY L from the controller 200 moves the lower mold holding portion 501b in the X and Y directions at the surface. Also, the lower mold driver stage 500b, in accordance with the lower mold rotation signal theta L supplied from the controller 200, is rotated around the central axis QJ as shown the lower mold holding portion 501b in FIG. As a result, the relative positions of the lower mold 503b, the upper mold 503a, and the substrate 6 are adjusted. A method for adjusting each relative position will be described later.
  • the lower UV irradiation unit 508b transmits ultraviolet light to be cured on the transfer material in accordance with the ultraviolet irradiation signal UV supplied from the controller 200 via the lower mold holding unit 501b and the lower mold 503b. Irradiation is performed toward the side transfer layer 604b.
  • Center pin drive unit 507b in accordance with the center pin moving signal CG L supplied from the controller 200, the center pin 30b, by penetrating the lower mold holding portion 501b of the hole, perpendicular to the mold holding surface In the direction, that is, in the central axis direction of the center pin 30b, it is moved upward or downward.
  • a first support portion TB1 for supporting the upper mold 503a or the lower mold 503b and a second support portion TB2 for supporting the substrate 6 are provided at the tip of the center pin 30b.
  • the upper mold 503a, the lower mold 503b, and the substrate 6 are supported on the center pin 30b by the first support portion TB1 and the second support portion TB2 while maintaining the parallel state of the respective surfaces (described later). .
  • the lower UV irradiation unit 508b transmits ultraviolet light to be cured on the transfer material in accordance with the ultraviolet irradiation signal UV supplied from the controller 200 via the lower mold holding unit 501b and the lower mold 503b. Irradiate the transfer layer 604b.
  • the stage vertical drive unit 511 maintains the upper stage 505a parallel to the lower stage 505b by rotating the ball screw 512 clockwise or counterclockwise according to the stage drive signal SG supplied from the controller 200. Move it up or down. That is, the upward movement of the upper stage 505a causes the upper mold holding portion 501a to move away from the lower mold holding portion 501b in the direction perpendicular to the mold holding surface of the lower mold holding portion 501b. To do. On the other hand, the upper mold holding part 501a moves toward the lower mold holding part 501b by the downward movement of the upper stage 505a.
  • the operation unit 201 accepts various operation commands instructed by the user to operate the imprint apparatus, and supplies an operation command signal indicating the operation command to the controller 200.
  • the controller 200 generates various control signals for controlling the imprint apparatus by executing an operation processing program corresponding to the operation command signal supplied from the operation unit 201.
  • the controller 200 starts execution of the imprint processing program as shown in FIGS.
  • FIGS. 6 to 9 show states (positional relationships) of the upper mold holding portion 501a, the lower mold holding portion 501b, and the center pin 30b of the imprint apparatus shown in FIG. 1 at each stage in the pattern transfer operation. It is schematically represented.
  • step S1 the controller 200 supplies the center pin moving signal CG L to move the center pin 30b to a predetermined initial position to the center pin drive unit 507b (step S1).
  • the center pin driving unit 507b causes the center pin 30b to be in the initial state as shown in [State 1] in FIG. 6, that is, the first support portion TB1 and the second support portion TB2 in the center pin 30b are both in the initial state. Then, it moves to a position that appears at a position above the mold holding surface of the lower mold holding portion 501b.
  • the controller 200 repeatedly determines whether or not the center pin 30b supports the upper mold 503a from the output of a sensor (not shown) such as a contact sensor until the upper mold 503a is supported (step). S2).
  • the mold conveying device moves the upper mold 503a to the center pin 30b so that the center pin 30b passes through the center hole CA provided at the center position of the upper mold 503a as shown in FIG. Installing.
  • the upper mold 503a is supported by the first support portion TB1 of the center pin 30b with its pattern surface facing downward, as shown in [State 2] in FIG.
  • step S2 If it is determined in step S2 that the upper mold 503a is supported by the center pin 30b as shown in [State 2] in FIG. 6, the controller 200 causes the stage drive signal to move the upper stage 505a downward. SG is supplied to the stage vertical drive unit 511 (step S3). By executing step S3, the entire upper mechanism part including the upper mold holding part 501a gradually moves downward.
  • step S4 determines whether or not the mold holding surface of the upper mold holding unit 501a is in contact with the upper mold 503a from the output of a sensor or the like (not shown) (step S4).
  • step S4 determines whether or not the mold holding surface of the upper mold holding portion 501a is in contact with the upper mold 503a from the output of a sensor or the like (not shown) (step S4).
  • the controller 200 returns to the execution of step S3 and executes the operation as described above again. That is, as shown in [State 3] in FIG. 6, the upper mold holding portion 501a is moved downward until the mold holding surface of the upper mold holding portion 501a contacts the upper mold 503a.
  • step S4 If it is determined in step S4 that the mold holding surface of the upper mold holding portion 501a has contacted the upper mold 503a as shown in [State 3] in FIG. 6, the controller 200 sends the upper mold holding signal MH U to the upper mold holding signal MH U. It supplies to the holding
  • step S6 the controller 200 supplies a stage drive signal SG that should move the upper stage 505a upward by a predetermined distance to the stage vertical drive unit 511 (step S6).
  • step S6 As shown in [State 4] in FIG. 6, the upper mold holding portion 501a moves upward in the central axis direction of the center pin 30b.
  • the upper mold 503a is detached from the center pin 30b. That is, by performing the above steps S1 to S6, the upper mold 503a is held on the mold holding surface of the upper mold holding portion 501a in a state where the reference position coincides with the central axis of the center pin 30b.
  • the controller 200 repeatedly determines whether or not the center pin 30b supports the lower mold 503b from the output of a sensor (not shown) until the lower mold 503b is supported (step S7).
  • the mold conveying apparatus attaches the lower mold 503b to the center pin 30b so that the center pin 30b passes through the center hole CA provided at the center position of the lower mold 503b as shown in FIG. Thereby, as shown in [State 5] of Drawing 7, lower mold 503b is supported on the 1st support part TB1 of center pin 30b in the state where the pattern side turned up.
  • step S7 If it is determined in step S7 that the lower mold 503b is supported by the center pin 30b as shown in [State 5] in FIG. 7, the controller 200 should lower the center pin 30b to a predetermined position. supplying a pin moving signal CG L to the center pin drive unit 507b (step S8). By executing step S8, the center pin drive unit 507b lowers the center pin 30b to a predetermined position. That is, in the center pin drive unit 507b, as shown in [State 6] in FIG. 7, the first support portion TB1 of the center pin 30b and the mold holding surface of the lower mold holding portion 501b are located on the same plane. Until this happens, the center pin 30b is moved downward while monitoring the output of the distance sensor or the like. As a result, the lower mold 503b comes into contact with the mold holding surface of the lower mold holding portion 501b as shown in [State 6] in FIG.
  • the controller 200 supplies the lower mold holding signal MH L to the lower mold holding portion 501b (step S9).
  • the lower mold 503b is held on the mold holding surface of the lower mold holding portion 501b in a state where the center position Q of the lower mold 503b as shown in FIG. 10 coincides with the center axis of the center pin 30b. . That is, by performing the above steps S7 to S9, the lower mold 503b is placed on the mold holding surface of the lower mold holding portion 501b with its center position (reference position) aligned with the center axis of the center pin 30b. It is retained.
  • the controller 200 executes a mold alignment operation in which the upper mold 503a and the lower mold 503b should be aligned with each other (step S10). That is, in this step, in the state where the upper mold 503a and the lower mold 503b are held by the upper mold holding part 501a and the lower mold holding part 501b, the upper mold 503a and the lower mold 503b are displaced. Or the center of the concavo-convex pattern formed in the upper mold 503a when the center hole CA of the mold is eccentric with respect to the center point of the concavo-convex pattern formed in the upper mold 503a and / or the lower mold 503b. Positioning is performed so that the point coincides with the center point of the uneven pattern formed on the lower mold 503b.
  • the controller 200 sets a stage driving signal SG for moving the upper stage 505b downward based on the imaging signal PDb (or PDc, PDd) obtained by imaging with the camera 41b (or 41c, 41d). It is supplied to the vertical drive unit 511. That is, until the outlines of the alignment marks formed on each of the upper mold 503a and the lower mold 503b are displayed without being blurred in one frame image based on the photographing signal PDb, the [state of FIG.
  • the alignment mark is made up of, for example, a plurality of concentric grooves centering on the center point of the concavo-convex pattern formed in both molds (503a, 503b), and is formed so as to surround the concavo-convex pattern. .
  • one of the grooves closest to the reference alignment line AL as shown in FIG. 2 is selected from the alignment marks made up of a plurality of grooves formed concentrically on the upper mold 503a and the lower mold 503b.
  • this groove is referred to as an alignment line PL).
  • Such an alignment line PL becomes a photographing target for each of the cameras 41b to 41d arranged on the reference alignment line AL as shown in FIG. Therefore, for example, as shown in FIG. 10, one frame images Fb to Fd obtained by photographing with the cameras 41b to 41d include an alignment line PL (shown by a solid line) formed on the upper mold 503a and a bottom line.
  • An alignment line PL (shown by a broken line) formed in the side mold 503b appears.
  • the center position R of the alignment mark (including the alignment line PL) formed on each of the upper mold 503a and the lower mold 503b is not necessarily the mold itself due to the influence of manufacturing variations. It does not coincide with the center position Q of. Therefore, the controller 200, on the basis of the photographing signals PDb to PDd, on the vertical axis with respect to the surface of the substrate 6 as shown in FIG. 10, regardless of the center position Q between the alignment lines PL of both molds (503a, 503b).
  • the controller 200 controls the upper side so that the alignment lines PL of both molds (503a, 503b) overlap at the same position in each of the one frame images Fb to Fd as shown in FIG. 10 based on the photographing signals PDb to PDd.
  • Various control signals (XY U , XY L , ⁇ U , ⁇ L ) for moving the mold 503a and / or the lower mold 503b are supplied to the mold driving stage (500a, 500b).
  • the controller 200 supplies the stage vertical drive unit 511 with a stage drive signal SG for moving the upper stage 505a upward.
  • the upper mold 503a and the lower mold 503b are separated from each other to the extent that the substrate 6 can be mounted on the second support portion TB2 of the center pin 30b.
  • the alignment line PL of each of the upper mold 503a and the lower mold 503b is positioned on the axis perpendicular to the surface of the substrate 6, that is, the upper mold 503a and the lower mold 503b.
  • the reference positions of the side molds 503b coincide with each other.
  • the controller 200 After executing the mold alignment operation (step S10), the controller 200 repeatedly determines whether or not the substrate 6 is supported by the center pin 30b from the output of a sensor (not shown) until the substrate 6 is supported. (Step S11).
  • the substrate transfer device attaches the substrate 6 to the center pin 30b so that the center pin 30b passes through the center hole of the substrate 6.
  • the substrate 6 is supported on the second support portion TB2 of the center pin 30b as shown in [State 10] in FIG. That is, the substrate 6 is supported by the center pin 30b in a state where the position of the center axis of the center pin 30b and the reference position (the position of the center hole) of the substrate 6 coincide.
  • step S11 If it is determined in step S11 that the substrate 6 is supported by the center pin 30b, the controller 200 next performs a mold / substrate alignment operation for aligning the mold (503a, 503b) and the substrate 6. Is executed (step S12).
  • the controller 200 first starts the upper stage 505a until the surface of the tip of the center pin 30b appears in one frame image based on the photographing signal PDa obtained by the camera 41a. Is supplied to the stage vertical drive unit 511, as shown in [State 11] in FIG. In other words, this adjusts the focus to focus the camera 41a on the surface of the tip of the center pin 30b.
  • the controller 200 determines that the center axis CJ of the center pin 30b is located at the center position of the one frame image based on the tip image of the center pin 30b existing in the one frame image.
  • a unit position adjustment signal UP for moving the installation position of the unit 40 itself is supplied to the camera unit drive stage 90.
  • the center position R of the alignment line PL of each of the upper mold 503a and the lower mold 503b by the mold alignment operation (step S10) is not necessarily the position of the center axis CJ of the center pin 30b as shown in FIG. Is not consistent. Accordingly, as shown in [State 10] in FIG. 8, when the camera unit 40 is arranged at a position where the photographing axis of the camera 41a coincides with the center axis CJ (indicated by a broken line) of the center pin 30b, FIG.
  • the controller 200 sets the upper mold 503a at the center position (indicated by a cross) of each of the one-frame images Fb to Fd obtained by photographing with the cameras 41b to 41d.
  • the positions of the upper mold 503a and the lower mold 503b are adjusted so that the alignment line PL is positioned.
  • the controller 200 sends the upper XY stage movement signal XY U and the lower XY stage movement signal XY L to move the positions of the upper mold 503a and the lower mold 503b in the same two-dimensional direction. 500a and the lower mold drive stage 500b are supplied.
  • step S12 the center position R of each alignment line PL formed in each of the upper mold 503a and the lower mold 503b, and the center pin The position of the central axis CJ of 30b coincides.
  • the center position of the substrate 6, the center point of the concavo-convex pattern formed on the upper mold 503a, and the center point of the concavo-convex pattern formed on the lower mold 503b coincide with each other.
  • step S12 After execution of the mold / substrate alignment operation (step S12), the camera unit 40 is moved from the UV irradiation optical path, that is, from the opening 100a by the camera unit movement signal KG U supplied from the controller 200.
  • the controller 200 supplies a stage drive signal SG for moving the upper stage 505a downward to the stage vertical drive unit 511 (step S13).
  • step S13 the upper mold holding unit 501a moves downward in the direction of the central axis of the center pin 30b.
  • step S14 determines whether or not the upper mold 503a has contacted the substrate 6 from the output of a sensor or the like (not shown) (step S14).
  • the controller 200 returns to the execution of step S13 and performs the operation as described above again. That is, as shown in [State 12] in FIG. 8, the upper mold holding portion 501a is moved downward until the upper mold 503a contacts the substrate 6.
  • step S15 When it is determined in step S14 that the upper mold 503a is in contact with the substrate 6, the controller 200 performs a mold pressing operation for pressing the upper mold 503a and the lower mold 503b against the substrate 6 (step S15).
  • the controller 200 in order to press the substrate 6 the upper mold 503a and the lower mold 503b with a predetermined pressing value PV AD, the stage drive signal SG to move the upper stage 505a downward It is supplied to the stage vertical drive unit 511 for a predetermined time. Thereby, first, the lower mold 503b comes into contact with the upper transfer layer 604a of the substrate 6, and the substrate 6 is lowered together with the upper mold 503a. As a result, as shown in [State 13] in FIG.
  • both surfaces of the substrate 6 are pressed by the upper mold 503a and the lower mold 503b, and the state is maintained for a predetermined time. Therefore, the concave / convex pattern formed on the upper mold 503a is pressed against the upper transfer layer 604a, and the concave / convex pattern formed on the lower mold 503b is pressed against the lower transfer layer 604b. Since the upper transfer layer 604a and the lower transfer layer 604b are in a liquid state (flowable state), the upper transfer layer 604a is deformed along the uneven pattern shape formed in the upper mold 503a, and the lower transfer layer 604b is Each deforms along the uneven pattern shape formed in the lower mold 503b.
  • the transfer conditions such as the pressure and holding time for pressing the upper mold 503a and the lower mold 503b against the substrate 6 are the uneven pattern shape of the upper mold 503a and the lower mold 503b and the materials of the upper transfer layer 604a and the lower transfer layer 604b. It sets suitably according to etc.
  • step S15 the controller 200 supplies the ultraviolet irradiation signal UV to the upper UV irradiation unit 508a and the lower UV irradiation unit 508b (step 16).
  • step 16 causes the upper UV irradiation unit 508a to irradiate the upper transfer layer 604a of the substrate 6 with ultraviolet rays to cure the transfer material, and the lower UV irradiation unit 508b lowers the ultraviolet rays to cure the transfer material. Irradiation is performed toward the side transfer layer 604b. Thereby, the transfer layers of the upper transfer layer 604a and the lower transfer layer 604b are cured, and the uneven pattern on the surfaces of the upper transfer layer 604a and the lower transfer layer 604b is determined.
  • the controller 200 executes a mold release operation for releasing the substrate 6 from the upper mold 503a and the lower mold 503b (step S17).
  • the controller 200 supplies a stage drive signal SG for moving the upper stage 505a upward by a predetermined distance to the stage vertical drive unit 511.
  • the upper mold 503a is released from the upper transfer layer 604a of the substrate 6 as shown in [State 15] in FIG.
  • the controller 200 supplies the center pin moving signal CG L to move the center pin 30b upward to the center pin drive unit 507b.
  • the substrate 6 is released from the lower mold 503b.
  • the substrate 6 may be fixed by a fixing member (not shown) so that the substrate 6 does not adhere to the upper mold 503a and move together with the upward movement of the upper stage 505a. good. Further, the upper stage 505a and the center pin 30b may be moved simultaneously. In this case, the upper mold 503a and the lower mold 503b can be released from the substrate 6 at the same time by making the rising speed of the upper stage 505a faster than the rising speed of the center pin 30b.
  • a concavo-convex pattern in which the concavo-convex state is reversed from the concavo-convex pattern formed in the upper mold 503a is formed in the upper transfer layer 604a and the concavo-convex pattern formed in the lower mold 503b
  • the substrate 6 is obtained in which the concave / convex pattern in which the concave / convex state is inverted is formed on the lower transfer layer 604b.
  • the controller 200 sends a command to detach the substrate 6 from the center pin 30b to the substrate transfer device.
  • double-sided pattern transfer is performed by the upper mold 503a and the lower mold 503b for the upper transfer layer 604a and the lower transfer layer 604b of the substrate 6, respectively.
  • the controller 200 determines whether or not an operation command signal indicating the end of the operation is supplied from the operation unit 201 (step S18). When it is determined in step S18 that the operation command signal indicating the operation end is supplied, the controller 200 ends the imprint processing program. On the other hand, if it is determined in step S18 that the operation command signal indicating the end of the operation is not supplied, the controller 200 waits until the substrate transfer device removes the substrate 6 supported by the center pin 30b. , as shown the center pin 30b in the state 6] in FIG. 7, for supplying the center pin moving signal CG L to be moved to a predetermined position for mounting the substrate 6 to the center pin drive unit 507b (step S19).
  • step S19 the controller 200 repeatedly determines whether or not the substrate 6 is supported on the center pin 30b until the substrate 6 is supported (step S20).
  • the substrate transfer device (not shown) attaches a new substrate 6 to the center pin 30b so that the center pin 30b passes through the center hole of the substrate 6.
  • the controller 200 determines in step S20 that the substrate 6 is supported by the center pin 30b, returns to the execution of step S13, and repeatedly executes the operation as described above. Thereby, pattern transfer is continuously performed on the newly mounted substrate 6.
  • the molds are aligned (step S10), and then the mold and the substrate are aligned (Ste S12).
  • the positions of the upper mold 503a and the lower mold 503b are adjusted so that the center position of the substrate 6 coincides with the center position R of the alignment mark formed on the mold (503a, 503b).
  • the alignment mark is formed so as to be concentric with the concave / convex pattern formed on the mold, the center point of the mold coincides with the central point of the concave / convex pattern formed on the mold due to variations in mold manufacturing.
  • the alignment for aligning the center point of the concavo-convex pattern with the center of the substrate can be performed with high accuracy, and the concavo-convex shape does not occur with respect to the substrate
  • the pattern can be transferred.
  • the imprint process as described above by the imprint apparatus shown in FIG. 1 can be applied to a manufacturing process of a magnetic recording medium such as a discrete track medium or a bit patterned medium.
  • an upper mold 503a and a lower mold 503b having a desired concavo-convex pattern on the surface of a base material made of a material that transmits ultraviolet rays such as glass are prepared.
  • the concavo-convex pattern is formed by forming a resist pattern on a substrate using, for example, an electron beam drawing apparatus, and then performing dry etching using the resist pattern as a mask.
  • the completed upper mold 503a and lower mold 503b are subjected to surface treatment with a silane coupling agent or the like for improving the mold release property.
  • a substrate made of a material that transmits ultraviolet rays such as glass replicated by an imprint method or the like, may be used as a transfer mold using the upper mold 503a and the lower mold 503b as masters.
  • a substrate made of a material that transmits ultraviolet rays such as glass duplicated by an imprint method or the like from the duplication disk produced by the above method, may be used as a transfer mold. If a duplicate transfer mold is used, the master and / or the base material of the duplicate disk is, for example, ultraviolet rays such as nickel (including alloys) duplicated by a method such as silicon or electroforming. A material that does not transmit can be used.
  • a magnetic disk media substrate (hereinafter referred to as a media substrate) 600 is manufactured.
  • the media substrate 600 has, for example, an upper side on one side (upper side) and the other side (lower side) of a disc-shaped support substrate 601 made of specially processed chemically strengthened glass, silicon wafer, aluminum substrate, or the like.
  • a plurality of layers including the transfer layer 604a and the lower transfer layer 604b are laminated as follows. That is, as shown in FIG. 12A, on the upper surface of the support substrate 601, an upper nonmagnetic layer 602a made of a nonmagnetic material, an upper metal layer 603a made of a metal material such as Ta or Ti, and an upper transfer A layer 604a is stacked.
  • a lower nonmagnetic layer 602b made of a nonmagnetic material, a lower metal layer 603b made of a metal material such as Ta or Ti, and a lower transfer layer 604b are laminated on the lower surface of the support substrate 601.
  • the upper nonmagnetic layer 602a, the upper metal layer 603a, the lower nonmagnetic layer 602b, and the lower metal layer 603b are formed by a sputtering method or the like.
  • the concavo-convex pattern formed on the upper mold 503a and the lower mold 503b is transferred to the upper transfer layer 604a and the lower transfer layer 604b formed on the media substrate 600 by the imprint method described above. That is, the upper transfer layer 604a and the lower transfer layer 604b are formed on the media substrate 600 prepared in the above process by spin coating or the like, and the reference positions of the upper mold 503a and the lower mold 503b are aligned with the central axis of the center pin 30b.
  • the media substrate 600 is supported on the center pin 30b, and the upper mold 503a is placed on the lower mold in the direction of the center axis of the center pin 30b with the reference position aligned with the center axis of the center pin 30b.
  • the upper mold 503 a is pressed against one surface of the media substrate 600 and the lower mold 503 b is pressed against the other surface of the media substrate 600.
  • the upper UV irradiation unit 508a irradiates the upper transfer layer 604a of the media substrate 600 with ultraviolet rays to cure the transfer layer
  • the lower UV irradiation unit 508b emits ultraviolet rays to cure the transfer layer.
  • the upper transfer layer 604a and the lower transfer layer 604b are cured by irradiating toward the 604b, the upper mold 503a and the lower mold 503b are released from the media substrate 600, and the media substrate 600 is taken out.
  • the media substrate 600 is formed on both sides with a cross-sectional structure as shown in FIG.
  • etching is performed on both surfaces of the media substrate 600 having a structure as shown in FIG.
  • the etching process first, the remaining film of the upper transfer layer 604a remains in the portion corresponding to the convex portion of the upper mold 503a, and the residual film of the lower transfer layer 604b remains in the portion corresponding to the convex portion of the lower mold 503b.
  • the remaining film is removed by oxygen reactive ion etching (RIE) or the like.
  • RIE oxygen reactive ion etching
  • the upper metal layer 603a and the lower metal layer 603b are etched and patterned by dry etching using the upper transfer layer 604a and the lower transfer layer 604b patterned by the imprint process as a mask.
  • the recesses in the concavo-convex patterns of the upper resist layer 604a and the lower resist layer 604b and the recesses in the upper metal layer 603a and the lower metal layer 603b are formed. Corresponding portions are removed, and a pattern is formed on each of the upper metal layer 603a and the lower metal layer 603b (metal mask patterning step).
  • a transfer layer removal process is performed on both surfaces of the media substrate 600 in the state shown in FIG. 12B by a method such as wet etching or dry ashing. Then, the transfer layer remaining on each of the upper metal layer 603a and the lower metal layer 603b is removed (transfer layer removing process).
  • the non-magnetic material is etched and patterned by dry etching using the upper metal layer 603a and the lower metal layer 603b as a mask for the media substrate 600 in the state as shown in FIG.
  • a pattern is formed on the nonmagnetic material by a predetermined depth as shown in FIG. 12D for the exposed regions of the upper nonmagnetic layer 602a and the lower nonmagnetic layer 602b (nonmagnetic). Layer patterning process).
  • the remaining upper metal layer 603a and lower metal layer 603b are removed from both surfaces of the media substrate 600 in a state as shown in FIG. 12D by a method such as wet etching or dry etching.
  • a method such as wet etching or dry etching.
  • FIG. 12E the metal layer remaining in each of the upper nonmagnetic layer 602a and the lower nonmagnetic layer 602b is removed (metal mask removing process).
  • the concave portions of the upper nonmagnetic layer 602a and the lower nonmagnetic layer 602b are filled with a magnetic material (shown in black), and the upper protective layer 605a and the upper lubricating layer are further filled.
  • a layer 606a, a lower protective layer 605b, and a lower lubricating layer 606b are stacked as shown in FIG.
  • the substrate 6 having the concavo-convex pattern formed on both surfaces thereof by the imprint apparatus shown in FIG. 1 is subjected to the processes as shown in FIGS. 12A to 12F, so that FIG.
  • FIG. 12A to 12F a method for manufacturing a magnetic disk from a media substrate 600 having an upper nonmagnetic layer 602a and a lower nonmagnetic layer 602b as shown in FIG. 12A.
  • the magnetic disk may be manufactured from the media substrate 600 employing the upper magnetic layer and the lower magnetic layer made of a magnetic material instead of the upper nonmagnetic layer 602a and the lower nonmagnetic layer 602b.
  • the magnetic material is etched by dry etching using the upper metal layer 603a and the lower metal layer 603b as a mask with respect to the media substrate 600 in the state as shown in FIG.
  • a pattern is formed on the magnetic material by a predetermined depth for each exposed region of the side nonmagnetic layer (magnetic layer patterning step). Then, the magnetic disk is obtained by filling the concave portions of the upper magnetic layer and the lower magnetic layer with a nonmagnetic material.
  • the imprint method according to this embodiment is different from the first embodiment in the alignment adjustment method.
  • the alignment adjustment method according to the present embodiment will be described with reference to FIGS.
  • step S10 after the alignment between the molds is performed (step S10), the substrate 6 is mounted and then the alignment adjustment between the mold and the substrate is performed (step S12), but the substrate 6 is not mounted. Both can be executed together in the state.
  • FIG. 13 and FIG. 14 are diagrams showing another example of the imprint processing program made in view of this point.
  • FIGS. 15 to 18 schematically show the pattern transfer operation performed by executing the imprint processing program for each stage.
  • steps S101 to S109 shown in FIG. 13 is the same as that in steps S1 to S9 shown in FIG. 4, and the pattern transfer operation at each stage by the execution of steps S101 to S109, that is, in FIG. [State 1] to [State 6] in FIG. 16 are the same as [State 1] to FIG. 7 [State 6] in FIG.
  • step S109 the controller 200 executes an alignment operation for aligning the upper mold 503a, the lower mold 503b, and the substrate 6 (step S110).
  • a unit position adjustment signal UP for moving the installation position of the unit 40 itself is supplied to the camera unit drive stage 90.
  • the center positions Ra and Rb of the alignment line PL of each of the upper mold 503a and the lower mold 503b are not necessarily the position of the center axis CJ of the center pin 30b due to variations in mold manufacture, as shown in FIG. Is not consistent. Therefore, as shown in [State 7] in FIG. 16, when the camera unit 40 is arranged at a position where the photographing axis of the camera 41a coincides with the center axis CJ (indicated by a broken line) of the center pin 30b, FIG.
  • the controller 200 sets a stage driving signal SG for moving the upper stage 505b downward based on the imaging signal PDb (or PDc, PDd) obtained by imaging with the camera 41b (or 41c, 41d). It is supplied to the vertical drive unit 511.
  • the controller 200 sets the upper mold 503a and the upper mold 503a so that the alignment lines PL of both molds (503a, 503b) overlap at the same position in each of the one-frame images Fb to Fd as shown in FIG.
  • Various control signals (XY U , XY L , ⁇ U , ⁇ L ) for moving or rotating the lower mold 503b are supplied to the mold driving stage (500a, 500b).
  • the alignment lines PL of the upper mold 503a and the lower mold 503b are positioned together on the axis perpendicular to the surface of the substrate 6, that is, the upper mold 503a and the lower mold.
  • the reference positions of 503b coincide with each other.
  • the controller 200 sets the upper mold at the center positions (indicated by crosses) of the 1-frame images Fb to Fd obtained by photographing with the cameras 41b to 41d.
  • the positions of the upper mold 503a and the lower mold 503b are adjusted so that the alignment line PL of 503a (or the lower mold 503b) is positioned. That is, the controller 200 sends the upper XY stage movement signal XY U and the lower XY stage movement signal XY L to move the positions of the upper mold 503a and the lower mold 503b in the same two-dimensional direction. 500a and the lower mold drive stage 500b are supplied. According to this adjustment, as shown in FIG.
  • the controller 200 supplies the stage vertical drive unit 511 with a stage drive signal SG for moving the upper stage 505a upward. Accordingly, as shown in [State 9] in FIG. 17, the upper mold 503a and the lower mold 503b are separated from each other to the extent that the substrate 6 can be mounted on the second support portion TB2 of the center pin 30b. .
  • step S110 the position of the center axis CJ of the center pin 30b and the center position of the alignment line PL formed in both molds (503a, 503b) are adjusted to coincide with each other. It is. That is, the position of the center axis CJ of the center pin 30b, the center point of the concavo-convex pattern formed on the upper mold 503a, and the center point of the concavo-convex pattern formed on the lower mold 503b coincide.
  • the camera unit 40 moves from the UV irradiation optical path, that is, from the opening 100a by the camera unit movement signal KG U supplied from the controller 200.
  • the controller 200 repeatedly determines whether or not the substrate 6 is supported on the center pin 30b until the substrate 6 is supported (step S111).
  • the substrate transfer device (not shown) attaches the substrate 6 to the center pin 30b so that the center pin 30b passes through the center hole of the substrate 6.
  • the substrate 6 is supported on the second support portion TB2 of the center pin 30b as shown in [State 10] in FIG.
  • the substrate 6 is supported by the center pin 30b in a state where the position of the center axis of the center pin 30b and the reference position (the position of the center hole) of the substrate 6 coincide. That is, the center position of the substrate 6, the center point of the concavo-convex pattern formed on the upper mold 503a, and the center point of the concavo-convex pattern formed on the lower mold 503b coincide.
  • step S111 If it is determined in step S111 that the substrate 6 is supported by the center pin 30b, then the controller 200 sends a stage drive signal SG for moving the upper stage 505a downward to the stage vertical drive unit 511.
  • Supply step S112
  • step S112 the upper mold holding unit 501a moves downward in the central axis direction of the center pin 30b.
  • step S113 determines whether or not the upper mold 503a has contacted the substrate 6 (step S113).
  • step S113 determines whether or not the upper mold 503a has contacted the substrate 6 (step S113).
  • the controller 200 returns to the execution of step S112 and performs the above-described operation again. That is, as shown in [State 11] in FIG. 17, the upper mold holding portion 501a is moved downward until the upper mold 503a contacts the substrate 6.
  • step S114 When it is determined in step S113 that the upper mold 503a is in contact with the substrate 6, the controller 200 performs a mold pressing operation for pressing the upper mold 503a and the lower mold 503b against the substrate 6 (step S114).
  • the controller 200 in order to press the substrate 6 the upper mold 503a and the lower mold 503b with a predetermined pressing value PV AD, stage drive signal to move the upper stage 505a downward SG Is supplied to the stage vertical drive unit 511 for a predetermined time.
  • the lower mold 503b contacts the upper transfer layer 604a of the substrate 6, and the substrate 6 is lowered together with the lower mold 503b.
  • both surfaces of the substrate 6 are pressed by the upper mold 503a and the lower mold 503b, and the state is maintained for a predetermined time. Therefore, the concave / convex pattern formed on the upper mold 503a is pressed against the upper transfer layer 604a, and the concave / convex pattern formed on the lower mold 503b is pressed against the lower transfer layer 604b. Since the upper transfer layer 604a and the lower transfer layer 604b are in a liquid state (flowable state), the upper transfer layer 604a is deformed along the uneven pattern shape formed in the upper mold 503a, and the lower transfer layer 604b is Each deforms along the uneven pattern shape formed in the lower mold 503b.
  • the pressure, holding time, and the like for pressing the upper mold 503a and the lower mold 503b against the substrate 6 and the transfer conditions are the uneven pattern shape of the upper mold 503a and the lower mold 503b and the material of the upper transfer layer 604a and the lower transfer layer 604b. It sets suitably according to etc.
  • the controller 200 executes a transfer layer curing operation for curing the upper transfer layer 604a and the lower transfer layer 604b of the substrate 6 (step S115).
  • the controller 200 supplies the ultraviolet irradiation signal UV to the upper UV irradiation unit 508a and the lower UV irradiation unit 508b.
  • the upper UV irradiation unit 508a irradiates the upper transfer layer 604a of the substrate 6 with ultraviolet rays for curing the transfer material
  • the lower UV irradiation unit 508b applies the ultraviolet rays for curing the transfer material with the lower transfer layer. Irradiate toward 604b.
  • the transfer layers of the upper transfer layer 604a and the lower transfer layer 604b are cured, and the uneven pattern on the surfaces of the upper transfer layer 604a and the lower transfer layer 604b is determined.
  • the controller 200 executes a mold release operation for releasing the substrate 6 from the upper mold 503a and the lower mold 503b (step S116).
  • a mold release operation the controller 200 supplies a stage drive signal SG for moving the upper stage 505a upward by a predetermined distance to the stage vertical drive unit 511.
  • the controller 200 supplies the center pin moving signal CG L to move the center pin 30b upward to the center pin drive unit 507b.
  • the substrate 6 is released from the lower mold 503b.
  • the substrate 6 may be fixed by a fixing member (not shown) so that the substrate 6 does not adhere to the upper mold 503a and move together with the upward movement of the upper stage 505a. good. Further, the upper stage 505a and the center pin 30b may be moved simultaneously. In this case, the upper mold 503a and the lower mold 503b can be released from the substrate 6 at the same time by making the rising speed of the upper stage 505a faster than the rising speed of the center pin 30b.
  • a concavo-convex pattern in which the concavo-convex state is reversed from the concavo-convex pattern formed in the upper mold 503a is formed in the upper transfer layer 604a and the concavo-convex pattern formed in the lower mold 503b
  • the substrate 6 is obtained in which the concave / convex pattern in which the concave / convex state is inverted is formed on the lower transfer layer 604b.
  • the controller 200 sends a command to detach the substrate 6 from the center pin 30b to the substrate transfer device.
  • double-sided pattern transfer is performed by the upper mold 503a and the lower mold 503b for the upper transfer layer 604a and the lower transfer layer 604b of the substrate 6, respectively.
  • step S117 determines whether or not an operation command signal indicating the end of the operation is supplied from the operation unit 201 (step S117). If it is determined in step S117 that an operation command signal indicating the end of the operation has been supplied, the controller 200 ends the imprint processing program. On the other hand, when it is determined in step S117 that the operation command signal indicating the end of the operation is not supplied, the controller 200 waits until the substrate transfer device removes the substrate 6 supported by the center pin 30b. supplies center pin moving signal CG L to be moved to a predetermined position for mounting the center pin 30b of the new board 6 as shown in the state 6] in FIG. 16 to the center pin drive unit 507b (step S118).
  • step S118 the controller 200 returns to the execution of step S11 and repeatedly executes the operation as described above. That is, first, the controller 200 repeatedly determines whether or not the substrate 6 is supported on the center pin 30b by executing the above step S111 until the substrate 6 is supported.
  • the substrate transfer device (not shown) attaches a new substrate 6 to the center pin 30b so that the center pin 30b passes through the center hole of the substrate 6.
  • the controller 200 determines that the substrate 6 is supported by the center pin 30b in the step S111, and executes the operations of the steps S112 to S118 again, thereby continuously with respect to the newly mounted substrate 6. Pattern transfer.
  • the substrate 6 and the molds (503a, 503b) are aligned with each other before the substrate 6 is mounted.
  • the number of execution steps can be reduced.
  • the operation when pattern transfer is performed on both surfaces of the substrate 6 has been described.
  • the imprint method of the present application is also applied when pattern transfer is performed only on one surface of the substrate 6. Is possible.
  • FIG. 20 and FIG. 21 show an example of an imprint processing program for single-sided transfer made in view of such points.
  • FIGS. 22 to 24 schematically show the states (positional relationships) of the upper mold holding portion 501a, the lower mold holding portion 501b, and the center pin 30b for each stage in the pattern transfer operation. .
  • the controller 200 supplies the center pin moving signal CG L to move the center pin 30b to a predetermined initial position to the center pin drive unit 507b (step S201).
  • the center pin driving unit 507b causes the center pin 30b to be in the initial state as shown in [State 1] in FIG. 22, that is, the first support portion TB1 and the second support portion TB2 in the center pin 30b are both in the initial state. Then, it moves to a position that appears at a position above the mold holding surface of the lower mold holding portion 501b.
  • the controller 200 repeatedly determines whether or not the center pin 30b supports the upper mold 503a until the upper mold 503a is supported (step S202).
  • the mold conveying device (not shown) attaches the upper mold 503a to the center pin 30b so that the center pin 30b passes through the center hole CA of the upper mold 503a as described above.
  • the upper mold 503a is supported by the first support portion TB1 of the center pin 30b as shown in [State 2] in FIG. 22 with the pattern surface facing downward.
  • step S202 If it is determined in step S202 that the upper mold 503a is supported by the center pin 30b, the controller 200 supplies a stage drive signal SG for moving the upper stage 505a downward to the stage vertical drive unit 511. (Step S203). By executing step S203, the entire upper mechanism section including the upper mold holding section 501a gradually moves downward.
  • step S204 determines whether or not the mold holding surface of the upper mold holding part 501a has come into contact with the upper mold 503a.
  • step S204 determines whether or not the mold holding surface of the upper mold holding portion 501a has come into contact with the upper mold 503a.
  • the controller 200 returns to the execution of step S203 and executes the operation as described above again. That is, as shown in [State 3] in FIG. 22, the upper mold holding part 501a is moved downward until the mold holding surface of the upper mold holding part 501a contacts the upper mold 503a.
  • step S204 When it is determined in step S204 that the mold holding surface of the upper mold holding unit 501a has contacted the upper mold 503a, the controller 200 supplies the upper mold holding signal MH U to the upper mold holding unit 501a (step S205). Accordingly, the upper mold 503a is held on the mold holding surface of the upper mold holding portion 501a in a state where the center position Q of the upper mold 503a as shown in FIG. 10 is aligned with the center axis of the center pin 30b.
  • step S206 supplies a stage drive signal SG for moving the upper stage 505a upward by a predetermined distance to the stage vertical drive unit 511 (step S206).
  • step S206 As shown in [State 4] in FIG. 22, the upper mold holding portion 501a moves upward in the central axis direction of the center pin 30b.
  • the upper mold 503a is detached from the center pin 30b. That is, by performing the above steps S1 to S6, the upper mold 503a is held on the mold holding surface of the upper mold holding portion 501a in a state where the reference position coincides with the central axis of the center pin 30b.
  • the controller 200 repeatedly determines whether or not the substrate 6 is supported by the center pin 30b until the substrate 6 is supported (step S207).
  • the substrate transfer device (not shown) attaches the substrate 6 to the center pin 30b so that the center pin 30b passes through the center hole of the substrate 6. Accordingly, the substrate 6 is supported on the second support portion TB2 of the center pin 30b as shown in [State 5] in FIG. That is, the substrate 6 is supported by the center pin 30b in a state where the position of the center axis of the center pin 30b and the reference position (the position of the center hole) of the substrate 6 coincide.
  • An upper transfer layer 604a is formed on one surface of the substrate 6 (here, the upper side of the substrate).
  • step S207 If it is determined in step S207 that the substrate 6 is supported by the center pin 30b, then the controller 200 executes a mold / substrate alignment operation in which the upper mold 503a and the substrate 6 are to be aligned. (Step S208).
  • molded substrate alignment operation first, as shown in State 6] in FIG. 24, to move the camera unit 40 to the center position of the opening 100a by the camera unit movement signal KG U supplied from the controller 200.
  • the controller 200 should move the upper stage 505a downward until the surface of the tip of the center pin 30b appears in one frame image based on the photographing signal PDa obtained by the camera 41a.
  • a stage drive signal SG is supplied to the stage vertical drive unit 511.
  • this adjusts the focus to focus the camera 41a on the surface of the tip of the center pin 30b.
  • the controller 200 determines that the center axis CJ of the center pin 30b is located at the center position of the one frame image based on the tip image of the center pin 30b existing in the one frame image.
  • a unit position adjustment signal UP for moving the installation position of the unit 40 itself is supplied to the camera unit drive stage 90. Accordingly, as shown in [State 6] in FIG. 23, the camera unit 40 is arranged at a position where the imaging axis of the camera 41a and the center axis CJ (indicated by a broken line) of the center pin 30b coincide.
  • the controller 200 photographs the alignment line PL of the upper mold 503a with the cameras 41b to 41d.
  • the controller 200 aligns the upper mold 503a at the center position (indicated by a cross) of each of the one-frame images Fb to Fd as shown in FIG. 11B obtained by photographing with these cameras 41b to 41d.
  • the position of the upper mold 503a is adjusted so that the line PL is positioned. That is, the controller 200 may be moved to the position of the upper mold 503a, is to supply the upper XY stage movement signal XY U to the upper mold driving stage 500a.
  • step S208 the center position R of the alignment line PL formed in the upper mold 503a and the position of the center axis CJ of the center pin 30b. Will match. Thereby, the center position of the board
  • step S208 After execution of the mold / substrate alignment operation (step S208), the camera unit 40 is moved from the UV irradiation optical path, that is, from the opening 100a by the camera unit movement signal KG U supplied from the controller 200.
  • the controller 200 supplies a stage drive signal SG for moving the upper stage 505a downward to the stage vertical drive unit 511 (step S209).
  • step S209 the upper mold holding unit 501a moves downward in the central axis direction of the center pin 30b.
  • step S210 determines whether or not the upper mold 503a has contacted the substrate 6 (step S210).
  • step S210 determines whether or not the upper mold 503a has contacted the substrate 6 (step S210).
  • the controller 200 returns to the execution of step S209 and performs the above-described operation again. That is, as shown in [State 8] in FIG. 23, the upper mold holding portion 501a is moved downward until the upper mold 503a contacts the substrate 6.
  • step S210 When it is determined in step S210 that the upper mold 503a has come into contact with the substrate 6, the controller 200 performs a mold pressing operation for pressing the upper mold 503a against the substrate 6 (step S211).
  • the controller 200 in order to press the substrate 6 the upper mold 503a with a predetermined pressing value PV AD, stage drive signal SG stage vertical drive unit for moving the upper stage 505a downward 511 For a predetermined time.
  • stage drive signal SG stage vertical drive unit for moving the upper stage 505a downward 511
  • the substrate 6 is lowered together with the upper mold 503a, and the upper transfer layer 604a of the substrate 6 is pressed by the upper mold 503a as shown in [State 8] in FIG. 23, and this state is maintained for a predetermined time.
  • the uneven pattern formed on the upper mold 503a is pressed against the upper transfer layer 604a.
  • the upper transfer layer 604a is in a liquid state (flowable state)
  • the upper transfer layer 604a is deformed along the uneven pattern shape formed on the upper mold 503a.
  • the transfer conditions such as the pressure and holding time for pressing the upper mold 503a against the substrate 6 are appropriately set according to the concave / convex pattern shape of the upper mold 503a, the material of the upper transfer layer 604a, and the like.
  • the controller 200 executes a transfer layer curing operation for curing the upper transfer layer 604a of the substrate 6 (step S212).
  • the controller 200 supplies the ultraviolet irradiation signal UV to the upper UV irradiation unit 508a.
  • the upper UV irradiation unit 508a irradiates the upper transfer layer 604a of the substrate 6 with ultraviolet rays for curing the transfer material.
  • the transfer layer of the upper transfer layer 604a is cured, and the uneven pattern on the surface of the upper transfer layer 604a is determined.
  • the controller 200 executes a mold release operation for releasing the substrate 6 from the upper mold 503a (step S213).
  • the controller 200 supplies a stage drive signal SG for moving the upper stage 505a upward by a predetermined distance to the stage vertical drive unit 511 and a center pin for moving the center pin 30b upward. supplying a shift signal CG L to the center pin drive unit 507b. Accordingly, as shown in [State 10] in FIG. 24, the upper mold 503a is released from the upper transfer layer 604a of the substrate 6.
  • the substrate 6 may be fixed by a fixing member (not shown) so that the substrate 6 does not adhere to the upper mold 503a and move together with the upward movement of the upper stage 505a. good.
  • the substrate 6 is obtained in which the concavo-convex pattern in which the concavo-convex state is reversed from the concavo-convex pattern formed in the upper mold 503a is formed in the upper transfer layer 604a.
  • the controller 200 supplies the center pin moving signal CG L to move the center pin 30b upward to the center pin drive unit 507b.
  • the substrate 6 is supported by the center pin 30b.
  • the controller 200 sends a command to detach the substrate 6 from the center pin 30b to the substrate transfer device.
  • the controller 200 determines whether or not an operation command signal indicating the end of the operation is supplied from the operation unit 201 (step S214). If it is determined in step S214 that an operation command signal indicating the end of the operation has been supplied, the controller 200 ends the imprint processing program. On the other hand, if it is determined in step S214 that the operation command signal indicating the end of the operation is not supplied, the controller 200 waits until the substrate transfer apparatus removes the substrate 6 supported by the center pin 30b. , as shown the center pin 30b to state 4 in FIG. 22, and supplies the center pin moving signal CG L to be moved to a predetermined position for mounting the substrate 6 to the center pin drive unit 507b (step S215).
  • step S215 the controller 200 repeatedly determines whether or not the substrate 6 is supported on the center pin 30b until the substrate 6 is supported (step S216).
  • the substrate transfer device (not shown) attaches a new substrate 6 to the center pin 30b so that the center pin 30b passes through the center hole of the substrate 6.
  • the controller 200 determines in step S216 that the substrate 6 is supported by the center pin 30b, returns to the execution of step S209, and repeatedly executes the operation as described above. Thereby, single-sided pattern transfer is continuously performed on the newly mounted substrate 6.
  • the pattern transfer is performed by pressing the mold (503a) from the upper side against the substrate 6 on which the transfer layer (604a) is formed only on the upper surface.
  • single-sided pattern transfer may be performed by pressing the substrate 6 on which the transfer layer (604b) is formed only on the lower surface against the mold (503b) provided on the lower surface.
  • the substrate 6 is mounted and then the alignment operation (step S208) between the mold and the substrate is executed. You may make it perform alignment operation between a mold and a board
  • FIGS. 25 and 26 are diagrams showing another example of the imprint processing program made in view of the above points.
  • FIGS. 27 to 29 schematically show the pattern transfer operation performed by executing the imprint processing program for each stage.
  • steps S301 to S306 shown in FIG. 25 is the same as that in steps S201 to S2066 shown in FIG. 20, and the pattern transfer operation at each stage by the execution of steps S301 to S306, that is, in FIG. [State 1] to [State 4] are the same as [State 1] to [State 4] in FIG.
  • step S306 the controller 200 executes a mold / substrate alignment operation in which the upper mold 503a and the substrate 6 should be aligned (step S307).
  • the controller 200 first supplies the camera unit movement signal KG U to move the camera unit 40 to the center position of the opening 100a.
  • the controller 200 should move the upper stage 505a downward until the surface of the tip of the center pin 30b appears in one frame image based on the photographing signal PDa obtained by the camera 41a.
  • a stage drive signal SG is supplied to the stage vertical drive unit 511. In other words, this adjusts the focus to focus the camera 41a on the surface of the tip of the center pin 30b.
  • the controller 200 determines that the center axis CJ of the center pin 30b is located at the center position of the one frame image based on the tip image of the center pin 30b existing in the one frame image.
  • a unit position adjustment signal UP for moving the installation position of the unit 40 itself is supplied to the camera unit drive stage 90.
  • the camera unit 40 is arranged at a position where the imaging axis of the camera 41a and the center axis CJ (indicated by a broken line) of the center pin 30b coincide.
  • the controller 200 photographs the alignment line PL of the upper mold 503a with the cameras 41b to 41d.
  • the controller 200 aligns the upper mold 503a at the center position (indicated by a cross) of each of the one-frame images Fb to Fd as shown in FIG. 11B obtained by photographing with the cameras 41b to 41d.
  • the position of the upper mold 503a is adjusted so that the line PL is positioned. That is, the controller 200 may be moved to the position of the upper mold 503a, is to supply the upper XY stage movement signal XY U to the upper mold driving stage 500a.
  • step S307 the center position R of the alignment line PL formed in the upper mold 503a and the position of the center axis CJ of the center pin 30b. Will match. Thereby, the center axis CJ of the center pin 30b and the center point of the concavo-convex pattern formed in the upper mold 503a coincide with each other.
  • the controller 200 After the execution of the mold substrate alignment operation (step S307), the optical path of the camera unit 40 UV irradiation, i.e., to move from the opening 100a, the controller 200 supplies the camera unit movement signal KG U. Next, the controller 200 repeatedly determines whether or not the substrate 6 is supported on the center pin 30b until the substrate 6 is supported (step S308).
  • the substrate transfer device (not shown) attaches the substrate 6 to the center pin 30b so that the center pin 30b passes through the center hole of the substrate 6. As a result, the substrate 6 is supported on the second support portion TB2 of the center pin 30b as shown in [State 7] in FIG.
  • the substrate 6 is supported by the center pin 30b in a state where the position of the center axis CJ of the center pin 30b and the reference position (the position of the center hole) of the substrate 6 coincide. That is, the center position of the substrate 6 coincides with the center point of the uneven pattern formed on the upper mold 503a.
  • step S308 If it is determined in step S308 that the substrate 6 is supported by the center pin 30b, then the controller 200 sends a stage drive signal SG for moving the upper stage 505a downward to the stage vertical drive unit 511. Supply (step S309). By executing step S309, the upper mold holding unit 501a moves downward in the central axis direction of the center pin 30b.
  • step S310 determines whether or not the upper mold 503a has contacted the substrate 6 (step S310).
  • step S310 determines whether or not the upper mold 503a has contacted the substrate 6 (step S310).
  • the controller 200 returns to the execution of step S309 and performs the above-described operation again. That is, as shown in [State 8] in FIG. 28, the upper mold holding portion 501a is moved downward until the upper mold 503a contacts the substrate 6.
  • step S310 When it is determined in step S310 that the upper mold 503a has come into contact with the substrate 6, the controller 200 performs a mold pressing operation for pressing the upper mold 503a against the substrate 6 (step S311).
  • the controller 200 in order to press the substrate 6 the upper mold 503a with a predetermined pressing value PV AD, vertical stage drive unit stage drive signal SG to move the upper stage 505a downward 511 is supplied for a predetermined time.
  • the substrate 6 is lowered together with the upper mold 503a, and the upper transfer layer 604a of the substrate 6 is pressed by the upper mold 503a as shown in [State 8] in FIG. 28, and this state is maintained for a predetermined time.
  • the uneven pattern formed on the upper mold 503a is pressed against the upper transfer layer 604a.
  • the upper transfer layer 604a is in a liquid state (flowable state)
  • the upper transfer layer 604a is deformed along the uneven pattern shape formed on the upper mold 503a.
  • the transfer conditions such as the pressure and holding time for pressing the upper mold 503a against the substrate 6 are appropriately set according to the concave / convex pattern shape of the upper mold 503a, the material of the upper transfer layer 604a, and the like.
  • the controller 200 executes a transfer layer curing operation for curing the upper transfer layer 604a of the substrate 6 (step S312).
  • the controller 200 supplies the ultraviolet irradiation signal UV to the upper UV irradiation unit 508a.
  • the upper UV irradiation unit 508a irradiates the upper transfer layer 604a of the substrate 6 with ultraviolet rays for curing the transfer material.
  • the transfer layer of the upper transfer layer 604a is cured, and the uneven pattern on the surface of the upper transfer layer 604a is determined.
  • the controller 200 executes a mold release operation for releasing the substrate 6 from the upper mold 503a (step S313).
  • a mold release operation the controller 200 supplies a stage drive signal SG for moving the upper stage 505a upward by a predetermined distance to the stage vertical drive unit 511 and a center pin for moving the center pin 30b upward. supplying a shift signal CG L to the center pin drive unit 507b.
  • the upper mold 503a is released from the upper transfer layer 604a of the substrate 6.
  • the substrate 6 may be fixed by a fixing member (not shown) so that the substrate 6 does not come into close contact with the upper mold 503a and moves together with the upward movement of the upper stage 505a. .
  • the substrate 6 is obtained in which the concavo-convex pattern in which the concavo-convex state is reversed from the concavo-convex pattern formed in the upper mold 503a is formed in the upper transfer layer 604a.
  • the controller 200 supplies the center pin moving signal CG L to move the center pin 30b upward to the center pin drive unit 507b.
  • the substrate 6 is supported by the center pin 30b.
  • the controller 200 sends a command to detach the substrate 6 from the center pin 30b to the substrate transfer device.
  • the controller 200 determines whether or not an operation command signal indicating the end of the operation is supplied from the operation unit 201 (step S314). If it is determined in step S314 that the operation command signal indicating the end of the operation is supplied, the controller 200 ends the imprint processing program. On the other hand, if it is determined in step S314 that the operation command signal indicating the end of the operation is not supplied, the controller 200 waits until the substrate transfer device removes the substrate 6 supported by the center pin 30b. , as shown the center pin 30b in the state 6] in FIG. 28, and supplies the center pin moving signal CG L to be moved to a predetermined position for mounting the substrate 6 to the center pin drive unit 507b (step S315).
  • step S315 the controller 200 returns to the execution of step S308 and repeatedly executes the operation as described above. That is, first, the controller 200 repeatedly determines whether or not the substrate 6 is supported on the center pin 30b by executing step S308 until the substrate 6 is supported.
  • the substrate transfer device (not shown) attaches a new substrate 6 to the center pin 30b so that the center pin 30b passes through the center hole of the substrate 6.
  • the controller 200 determines that the substrate 6 is supported by the center pin 30b in step S13, and executes the operations of steps S308 to S314 again, thereby continuously with respect to the newly supported substrate 6. Pattern transfer.
  • the substrate 6 and the upper mold 503a are aligned with each other before the substrate 6 is mounted. Compared to the case where the imprint processing program shown in FIG. 21 is executed, the number of execution steps can be reduced.
  • (Modification 1) 30 to 31 show modifications of the camera unit 40 mounted on the imprint apparatus according to the present invention.
  • the three cameras 41b to 41d for photographing the alignment line (PL) around the camera 41a for photographing the tip of the center pin (30b) are used as the reference alignment line AL.
  • the number of cameras and the arrangement position are not limited to those shown in FIG.
  • the three cameras 41c to 41d are arranged at equal angular positions, that is, the angles of the three cameras 41c to 41d on the reference alignment line AL, with the camera 41a as the center. May be arranged to be 120 °.
  • the cameras 41b and 41c are arranged so as to be symmetric with respect to the camera 41a, that is, the three cameras 41a to 41c are arranged on the same diameter, and the same diameter is obtained. You may make it arrange
  • the cameras 41a are arranged at the center so that the angles are equal, that is, the angles of the four cameras 41c to 41e are 90 ° on the reference alignment line AL. Also good.
  • the number of cameras arranged on the reference alignment line AL may be two (cameras 41b and 41c) as shown in FIGS. 31 (a) to 31 (c). Further, the number of cameras arranged on the reference alignment line AL to photograph the alignment line (PL) may be only one (camera 41b) as shown in FIG. At this time, by rotating the upper mold 503a or the lower mold 503b on the mold driving stage (500a, 500b), the one camera 41b sequentially photographs the alignment line (PL), and the amount of variation of the alignment line Adjust the position so that is uniform.
  • an alignment mark is formed on the inner peripheral portion of the mold, and within the observation range of the camera 41a, that is, within one frame obtained by photographing, the alignment mark on the inner peripheral portion and the tip of the center pin If there is a camera, only the central camera 41a may shoot.
  • the number of cameras and their arrangement positions may be changed in accordance with desired alignment accuracy and restrictions by the imprint apparatus.
  • FIG. 33 shows a modification of the camera arrangement height on the camera unit 40 mounted on the imprint apparatus according to the present invention.
  • the camera (41a) for photographing the tip of the center pin (30b) and the cameras (41b to 41c) for photographing the alignment line (PL) are the same with respect to the surface of the stage CS. Although it installs in the height position, it is not limited to this.
  • the camera (41a) for photographing the tip of the center pin (30b) is more suitable for the stage CS than the cameras (41b to 41d) for photographing the mold alignment line (PL). You may make it arrange
  • the camera (41a) for photographing the tip of the center pin (30b) is positioned above the surface of the stage CS, rather than the cameras (41b to 41d) for photographing the mold alignment line (PL). It may be arranged.
  • the tip of the center pin (30b) and the mold alignment line (PL) can be photographed at the same time, so the focus adjustment operation, that is, the number of movement operations of the upper stage 505a in the vertical direction is reduced. It becomes possible.
  • FIG. 34 shows a modification of the installation position of the camera unit 40 mounted on the imprint apparatus according to the present invention.
  • the camera unit 40 is installed on the upper mold drive stage 500a.
  • the camera unit 40 is set in the imprint apparatus only when it is required by a transport apparatus (not shown). You may make it let it.
  • the camera unit 40 having the structure as shown in FIG. 34 is employed, it is possible to simultaneously photograph the alignment line PL of each of the upper mold 503a and the lower mold 503b and the tip of the center pin (30b).
  • the camera unit 40 shown in FIG. 34 is similar to that shown in FIG.
  • each photographing lens is installed on the stage CS with the downward direction.
  • cameras 41w to 41y for photographing the alignment line PL of the upper mold 503a are installed on the stage CS with their photographing lenses facing upward. This eliminates the need to stop the imprint apparatus when the camera unit 40 is maintained.
  • the present invention can be applied to an imprint apparatus using a non-transparent upper and lower mold, for example, a thermal imprint apparatus.
  • the upper and lower molds are moved in order to perform the alignment operation, but the present invention is not limited to this.
  • the center pin drive unit 511b can be moved in two-dimensional directions (X, Y) and rotated ( ⁇ ) by a central axis QJ perpendicular to the plane, and the center pin 30b is not moved in the vertical direction alone Instead, they may be moved to X, Y, and ⁇ .
  • the center pin 30b can be moved when the center position R of the alignment line PL formed in the mold (503a, 503b) and the position of the center axis CJ of the center pin 30b are matched.
  • the UV imprint method and the imprint apparatus are described.
  • the present invention is not limited to this.
  • Thermal imprint, energy rays for example, light other than UV, X-rays, etc.
  • It can also be used for other types of imprints such as curable imprints.
  • the material of the substrate 6 is a material capable of transferring a fine uneven pattern formed on the mold, such as a resin film, bulk resin, low melting point glass, etc.
  • the upper layer portion of the substrate 6 can be handled as a transfer layer.
  • the pattern shape can be directly transferred to the surface of the substrate without forming a transfer material on the substrate.

Abstract

Provided is a transfer device for transferring rugged patterns to one surface and the other surface of a transfer target by using a first and second molds on which the rugged patterns are formed. The transfer device comprises a means for adjusting the relative positions of the first mold and the second mold and a means for adjusting the relative positions of the centers of the rugged patterns respectively formed on the first and second molds and the center of the transfer target.

Description

転写装置及び転写方法Transfer apparatus and transfer method
 本発明は、被転写体に凹凸パターンを転写する転写装置及び転写方法に関する。 The present invention relates to a transfer apparatus and a transfer method for transferring an uneven pattern to a transfer target.
 インプリント方法を利用してディスク形状の記録媒体基板上に微細な凹凸パターンを形成する際には、記録再生時に回転駆動される記録媒体の回転中心とモールドの中心点とを一致させる必要があることから、高度な位置合わせ技術が要求される。 When a fine concavo-convex pattern is formed on a disk-shaped recording medium substrate using the imprint method, it is necessary to match the rotation center of the recording medium that is rotationally driven during recording and reproduction with the center point of the mold. Therefore, advanced alignment technology is required.
 特許文献1には、円錐形マンドレルを使用して、互いに離間した状態でモールド及び転写層が形成された基板各々の基準位置同士を一致させることが記載されている。又、特許文献2、3には、モールドにアライメントマークを形成し、このアライメントマークを用いてディスク基板とモールドとの位置合わせを行なうことが記載されている。更に、特許文献4には、被成型品の縁の位置を検出することによって、被成型品と型との位置合わせを行なうことが記載されている。
特表2005-529436号公報 特開2007-190734号公報 特開2008-41852号公報 特開2008-194980号公報
Patent Document 1 describes that a conical mandrel is used to match reference positions of substrates on which a mold and a transfer layer are formed in a state of being separated from each other. Patent Documents 2 and 3 describe that an alignment mark is formed on the mold, and the alignment between the disk substrate and the mold is performed using the alignment mark. Furthermore, Patent Document 4 describes that the position of the molded product and the mold is aligned by detecting the position of the edge of the molded product.
JP 2005-529436 Gazette JP 2007-190734 A JP 2008-41852 A JP 2008-194980 A
 しかしながら、上記特許文献1に記載の装置は、円錐形マンドレルによってディスク基板とモールドとの相対位置の調整を行なうものであり、円錐形マンドレルに高い加工精度が要求される。一方、上記特許文献2~4に記載の装置は、ディスク基板をステージに保持した後に、カメラなどの検出手段を使用してディスク基板の端部位置(内周、又は、外周エッジ)を観察、又は、検出することとしているが、一般的にディスク基板の端部位置(内周、及び、外周エッジ)には面取りなどの加工が施されているため、カメラなどの検出手段ではディスク基板の端部位置を精確に特定することが困難となる。又、ディスク基板の両面に微細な凹凸パターンを形成する際のディスク基板とモールドの位置合わせ手段及び方法については何ら記載がなされていない。 However, the apparatus described in Patent Document 1 adjusts the relative position between the disk substrate and the mold using a conical mandrel, and the conical mandrel requires high processing accuracy. On the other hand, in the devices described in Patent Documents 2 to 4, after the disk substrate is held on the stage, the end position (inner periphery or outer periphery edge) of the disk substrate is observed using detection means such as a camera. Or, although it is to be detected, since the edge position (inner and outer edges) of the disk substrate is generally chamfered or the like, the edge of the disk substrate is detected by a detection means such as a camera. It becomes difficult to accurately specify the position of the part. In addition, there is no description about the means and method for aligning the disk substrate and the mold when forming a fine uneven pattern on both sides of the disk substrate.
 本発明は上記した点に鑑みてなされたものであり、モールド中心点とモールド上に形成された凹凸パターンの中心点とが一致していないようなモールドを用いる場合であっても、ディスク基板の中心に対して凹凸パターンの中心点を一致させる調整を高精度に行なうことができる転写装置及び転写方法を提供することを目的とする。 The present invention has been made in view of the above points, and even when a mold is used in which the mold center point does not coincide with the center point of the uneven pattern formed on the mold, It is an object of the present invention to provide a transfer apparatus and a transfer method capable of adjusting the center point of the concavo-convex pattern with the center with high accuracy.
 本発明による転写装置は、第1モールドを被転写体の第一の面に押圧し、第2モールドを前記被転写体の第二の面に押圧することにより凹凸パターンを転写する転写装置であって、前記被転写体を支持する支持手段と、前記第1モールドを保持する第1モールド保持手段と、前記第2モールドを保持する第2モールド保持手段と、前記第1モールドと前記第2モールドの相対位置を調整する第1アライメント手段と、前記第1及び第2モールド各々に形成されている凹凸パターンの中心と前記被転写体の中心が一致するように前記第1モールド、第2モールド、及び前記被転写体の相対位置を調整する第2アライメント手段と、を有する。 A transfer device according to the present invention is a transfer device that transfers a concavo-convex pattern by pressing a first mold against a first surface of a transfer object and pressing a second mold against the second surface of the transfer object. Supporting means for supporting the transferred object, first mold holding means for holding the first mold, second mold holding means for holding the second mold, the first mold and the second mold. First alignment means for adjusting the relative position of the first mold, the second mold, the center of the concave-convex pattern formed in each of the first and second molds and the center of the transferred body coincide with each other, And second alignment means for adjusting the relative position of the transfer object.
 本発明による転写方法は、第1モールドを被転写体の第一の面に押圧し、第2モールドを前記被転写体の第二の面に押圧することにより凹凸パターンを転写する転写方法であって、前記被転写体を支持する支持工程と、前記第1モールドを保持する第1モールド保持工程と、前記第2モールドを保持する第2モールド保持工程と、前記第1モールド及び前記第2モールドの相対位置を調整する第1アライメント工程と、前記第1及び第2モールド各々に形成されている凹凸パターンの中心と前記被転写体の中心が一致するように前記第1モールド、第2モールド、及び前記被転写体の相対位置を調整する第2アライメント工程と、を有する。 The transfer method according to the present invention is a transfer method in which a concavo-convex pattern is transferred by pressing a first mold against a first surface of a transfer object and pressing a second mold against the second surface of the transfer object. A supporting step for supporting the transfer object, a first mold holding step for holding the first mold, a second mold holding step for holding the second mold, the first mold, and the second mold. A first alignment step for adjusting the relative position of the first mold, the second mold, the center of the concave-convex pattern formed in each of the first and second molds and the center of the transferred body coincide with each other, And a second alignment step of adjusting the relative position of the transfer object.
 本発明の第1の特徴による転写装置のカメラユニットは、凹凸パターン及び位置あわせマークが形成されているモールドを、貫通孔が形成された被転写体に転写する転写装置に用いるカメラユニットであって、前記被転写体の貫通孔を介して被転写体を保持する保持手段を観察する第一観察手段と、前記モールドに形成された位置合わせマークを観察する第二観察手段と、を有する。 A camera unit of a transfer device according to the first aspect of the present invention is a camera unit used for a transfer device that transfers a mold having a concavo-convex pattern and an alignment mark to a transfer target having a through hole. And first observation means for observing the holding means for holding the transferred body through the through-hole of the transferred body, and second observation means for observing the alignment mark formed on the mold.
 本発明の第2の特徴による転写装置のカメラユニットは、貫通孔が形成された被転写体の一方の面に第1モールドによって凹凸パターンを転写し、前記被転写体の他方の面に第2モールドによって凹凸パターンを転写する転写装置に用いるカメラユニットであって、前記第1及び第2モールドには位置合わせマークが形成されており、前記貫通孔を介して被転写体を保持する保持手段を観察する第1観察手段と、前記第1及び第2モールドに形成された位置合わせマークを観察する第2観察手段と、を有する。 The camera unit of the transfer device according to the second aspect of the present invention transfers a concavo-convex pattern by a first mold onto one surface of a transfer body having a through-hole, and a second surface on the other surface of the transfer body. A camera unit for use in a transfer device that transfers a concavo-convex pattern by a mold, wherein the first and second molds are provided with alignment marks, and holding means for holding a transfer object through the through holes. First observing means for observing and second observing means for observing the alignment marks formed on the first and second molds.
本発明に係るインプリント装置の概略構成を示す図である。It is a figure which shows schematic structure of the imprint apparatus which concerns on this invention. カメラユニット40の構成の一例を示す図である。2 is a diagram illustrating an example of a configuration of a camera unit 40. FIG. モールド駆動ステージ(500a、500b)及びモールド保持部(501a、501b)の形態を模式的に示す図である。It is a figure which shows typically the form of a mold drive stage (500a, 500b) and a mold holding | maintenance part (501a, 501b). 両面転写を行なう際に実施されるインプリント方法を示すフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart which shows the imprint method implemented when performing double-sided transfer. 両面転写を行なう際に実施されるインプリント方法を示すフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart which shows the imprint method implemented when performing double-sided transfer. 図4及び図5に示されるインプリント動作による各段階毎に、上側モールド保持部501a、下側モールド保持部501b、及びセンターピン30b各々の状態(位置関係)を模式的に表す図である。FIG. 6 is a diagram schematically illustrating the state (positional relationship) of each of an upper mold holding unit 501a, a lower mold holding unit 501b, and a center pin 30b for each stage by the imprint operation illustrated in FIGS. 4 and 5. 図4及び図5に示されるインプリント動作による各段階毎に、上側モールド保持部501a、下側モールド保持部501b、及びセンターピン30b各々の状態(位置関係)を模式的に表す図である。FIG. 6 is a diagram schematically illustrating the state (positional relationship) of each of an upper mold holding unit 501a, a lower mold holding unit 501b, and a center pin 30b for each stage by the imprint operation illustrated in FIGS. 4 and 5. 図4及び図5に示されるインプリント動作による各段階毎に、上側モールド保持部501a、下側モールド保持部501b、及びセンターピン30b各々の状態(位置関係)を模式的に表す図である。FIG. 6 is a diagram schematically illustrating the state (positional relationship) of each of an upper mold holding unit 501a, a lower mold holding unit 501b, and a center pin 30b for each stage by the imprint operation illustrated in FIGS. 4 and 5. 図4及び図5に示されるインプリント動作による各段階毎に、上側モールド保持部501a、下側モールド保持部501b、及びセンターピン30b各々の状態(位置関係)を模式的に表す図である。FIG. 6 is a diagram schematically illustrating the state (positional relationship) of each of an upper mold holding unit 501a, a lower mold holding unit 501b, and a center pin 30b for each stage by the imprint operation illustrated in FIGS. 4 and 5. モールドアライメント動作による位置合わせ動作を表す図である。It is a figure showing the position alignment operation | movement by mold alignment operation | movement. モールド・基板アライメント動作による位置合わせ動作を表す図である。It is a figure showing the position alignment operation | movement by mold * board | substrate alignment operation | movement. 両面磁気ディスクの製造工程の一例を示す図である。It is a figure which shows an example of the manufacturing process of a double-sided magnetic disc. 両面転写を行なう際に実施されるインプリント方法を示すフローチャートの他の一例を示す図である。It is a figure which shows another example of the flowchart which shows the imprint method implemented when performing double-sided transfer. 両面転写を行なう際に実施されるインプリント方法を示すフローチャートの他の一例を示す図である。It is a figure which shows another example of the flowchart which shows the imprint method implemented when performing double-sided transfer. 図13及び図14に示されるインプリント動作による各段階毎に、上側モールド保持部501a、下側モールド保持部501b、及びセンターピン30b各々の状態(位置関係)を模式的に表す図である。It is a figure which represents typically the state (positional relationship) of each of the upper mold holding | maintenance part 501a, the lower mold holding | maintenance part 501b, and the center pin 30b for every step by the imprint operation | movement shown by FIG.13 and FIG.14. 図13及び図14に示されるインプリント動作による各段階毎に、上側モールド保持部501a、下側モールド保持部501b、及びセンターピン30b各々の状態(位置関係)を模式的に表す図である。It is a figure which represents typically the state (positional relationship) of each of the upper mold holding | maintenance part 501a, the lower mold holding | maintenance part 501b, and the center pin 30b for every step by the imprint operation | movement shown by FIG.13 and FIG.14. 図13及び図14に示されるインプリント動作による各段階毎に、上側モールド保持部501a、下側モールド保持部501b、及びセンターピン30b各々の状態(位置関係)を模式的に表す図である。It is a figure which represents typically the state (positional relationship) of each of the upper mold holding | maintenance part 501a, the lower mold holding | maintenance part 501b, and the center pin 30b for every step by the imprint operation | movement shown by FIG.13 and FIG.14. 図13及び図14に示されるインプリント動作による各段階毎に、上側モールド保持部501a、下側モールド保持部501b、及びセンターピン30b各々の状態(位置関係)を模式的に表す図である。It is a figure which represents typically the state (positional relationship) of each of the upper mold holding | maintenance part 501a, the lower mold holding | maintenance part 501b, and the center pin 30b for every step by the imprint operation | movement shown by FIG.13 and FIG.14. アライメント動作による位置合わせ動作を表す図である。It is a figure showing the alignment operation | movement by alignment operation. 片面転写を行なう際に実施されるインプリント方法を示すフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart which shows the imprint method implemented when performing single-sided transfer. 片面転写を行なう際に実施されるインプリント方法を示すフローチャートの一例を示す図である。It is a figure which shows an example of the flowchart which shows the imprint method implemented when performing single-sided transfer. 図20及び図21に示されるインプリント動作による各段階毎に、上側モールド保持部501a、下側モールド保持部501b、及びセンターピン30b各々の状態(位置関係)を模式的に表す図である。It is a figure which represents typically the state (positional relationship) of each of the upper mold holding | maintenance part 501a, the lower mold holding | maintenance part 501b, and the center pin 30b for every step by the imprint operation | movement shown by FIG.20 and FIG.21. 図20及び図21に示されるインプリント動作による各段階毎に、上側モールド保持部501a、下側モールド保持部501b、及びセンターピン30b各々の状態(位置関係)を模式的に表す図である。It is a figure which represents typically the state (positional relationship) of each of the upper mold holding | maintenance part 501a, the lower mold holding | maintenance part 501b, and the center pin 30b for every step by the imprint operation | movement shown by FIG.20 and FIG.21. 図20及び図21に示されるインプリント動作による各段階毎に、上側モールド保持部501a、下側モールド保持部501b、及びセンターピン30b各々の状態(位置関係)を模式的に表す図である。It is a figure which represents typically the state (positional relationship) of each of the upper mold holding | maintenance part 501a, the lower mold holding | maintenance part 501b, and the center pin 30b for every step by the imprint operation | movement shown by FIG.20 and FIG.21. 片面転写を行なう際に実施されるインプリント方法を示すフローチャートの他の一例を示す図である。It is a figure which shows another example of the flowchart which shows the imprint method implemented when performing single-sided transfer. 片面転写を行なう際に実施されるインプリント方法を示すフローチャートの他の一例を示す図である。It is a figure which shows another example of the flowchart which shows the imprint method implemented when performing single-sided transfer. 図25及び図26に示されるインプリント動作による各段階毎に、上側モールド保持部501a、下側モールド保持部501b、及びセンターピン30b各々の状態(位置関係)を模式的に表す図である。FIG. 27 is a diagram schematically illustrating the state (positional relationship) of each of an upper mold holding unit 501a, a lower mold holding unit 501b, and a center pin 30b for each stage by the imprint operation illustrated in FIGS. 25 and 26. 図25及び図26に示されるインプリント動作による各段階毎に、上側モールド保持部501a、下側モールド保持部501b、及びセンターピン30b各々の状態(位置関係)を模式的に表す図である。FIG. 27 is a diagram schematically illustrating the state (positional relationship) of each of an upper mold holding unit 501a, a lower mold holding unit 501b, and a center pin 30b for each stage by the imprint operation illustrated in FIGS. 25 and 26. 図25及び図26に示されるインプリント動作による各段階毎に、上側モールド保持部501a、下側モールド保持部501b、及びセンターピン30b各々の状態(位置関係)を模式的に表す図である。FIG. 27 is a diagram schematically illustrating the state (positional relationship) of each of an upper mold holding unit 501a, a lower mold holding unit 501b, and a center pin 30b for each stage by the imprint operation illustrated in FIGS. 25 and 26. カメラユニット40における各カメラの配置例を示す図である。FIG. 4 is a diagram illustrating an example of arrangement of cameras in a camera unit 40. カメラユニット40における各カメラの配置例を示す図である。FIG. 4 is a diagram illustrating an example of arrangement of cameras in a camera unit 40. カメラユニット40における各カメラの配置例を示す図である。FIG. 4 is a diagram illustrating an example of arrangement of cameras in a camera unit 40. カメラユニット40における各カメラの配置例を示す図である。FIG. 4 is a diagram illustrating an example of arrangement of cameras in a camera unit 40. カメラユニット40の他の構成を示す図である。It is a figure which shows the other structure of the camera unit.
 第1モールドを被転写体の第一の面に押圧し、第2モールドを被転写体の第二の面に押圧することにより凹凸パターンを転写するにあたり、先ず、第1モールド及び第2モールドの相対位置を調整し、次に、これら第1及び第2モールド各々に形成されている凹凸パターンの中心と上記被転写体の中心が一致するように上記第1モールド、第2モールド及び被転写体の相対位置を調整すべきアライメントを実行する。 In transferring the concavo-convex pattern by pressing the first mold against the first surface of the transferred body and pressing the second mold against the second surface of the transferred body, first, the first mold and the second mold are transferred. The relative position is adjusted, and then the first mold, the second mold, and the transferred body so that the center of the uneven pattern formed in each of the first and second molds coincides with the center of the transferred body. Alignment whose relative position is to be adjusted is executed.
 図1は、本発明による転写装置としてのUV(Ultraviolet)式のインプリント装置の概略構成を示す断面図である。 FIG. 1 is a cross-sectional view showing a schematic configuration of a UV (ultraviolet) type imprint apparatus as a transfer apparatus according to the present invention.
 このインプリント装置は、転写すべき凹凸パターンが形成されている上側モールド503a及び下側モールド503bを用いて、パターンの転写対象となるべき被転写体としての基板6に対して両面同時にパターン転写を行なうものである。なお、本明細書において被転写体を基板と称する。ここで基板とは、転写層を含む構成を指すものとする。基板6の両面には、紫外線が照射されると硬化する転写材料からなる上側転写層604a及び下側転写層604bが形成されている。基板6、上側モールド503a及び下側モールド503b各々の中心位置(基準位置)には中心孔が設けられている。尚、図1においては、これら基板6、上側モールド503a及び下側モールド503bが設置された状態で、インプリント装置の構成を示している。 This imprint apparatus uses the upper mold 503a and the lower mold 503b on which the concavo-convex pattern to be transferred is formed, to simultaneously transfer patterns onto both sides of the substrate 6 as a transfer target to be transferred. To do. In this specification, the transfer target is referred to as a substrate. Here, the substrate refers to a configuration including a transfer layer. On both surfaces of the substrate 6, an upper transfer layer 604a and a lower transfer layer 604b made of a transfer material that is cured when irradiated with ultraviolet rays are formed. A center hole is provided at the center position (reference position) of each of the substrate 6, the upper mold 503a, and the lower mold 503b. In FIG. 1, the configuration of the imprint apparatus is shown with the substrate 6, the upper mold 503a, and the lower mold 503b installed.
 図1に示すインプリント装置は、上側機構部、下側機構部、これら上側機構部及び下側機構部を制御するコントローラ200及び操作部201から構成される。 The imprint apparatus shown in FIG. 1 includes an upper mechanism unit, a lower mechanism unit, a controller 200 that controls the upper mechanism unit and the lower mechanism unit, and an operation unit 201.
 上側機構部は、カメラユニット40、カメラユニット駆動ステージ90、上側モールド駆動ステージ500a、上側モールド保持部501a、上側ステージ505a、上側UV照射ユニット508aを備える。 The upper mechanism unit includes a camera unit 40, a camera unit driving stage 90, an upper mold driving stage 500a, an upper mold holding unit 501a, an upper stage 505a, and an upper UV irradiation unit 508a.
 ボード状の上側ステージ505aには、図1に示す如き開口部100aと共に、後述するボールネジ512がねじ込まれるネジ溝が切られているネジ穴部が存在する。 The board-like upper stage 505a has a screw hole portion in which a screw groove into which a ball screw 512 (to be described later) is screwed is formed, along with an opening portion 100a as shown in FIG.
 上側ステージ505aの上面には、カメラユニット駆動ステージ90が設置されている。上側UV照射ユニット508aは、コントローラ200から供給された紫外線照射信号UVに応じて、転写材料を硬化させるべき紫外線を、上側モールド保持部501a及び上側モールド503aを介して基板6の上側転写層604aに照射する。 The camera unit drive stage 90 is installed on the upper surface of the upper stage 505a. The upper UV irradiation unit 508a applies ultraviolet light to be cured on the transfer material to the upper transfer layer 604a of the substrate 6 via the upper mold holding unit 501a and the upper mold 503a in accordance with the ultraviolet irradiation signal UV supplied from the controller 200. Irradiate.
 カメラユニット駆動ステージ90上には、カメラユニット40が設置されている。カメラユニット駆動ステージ90は、コントローラ200から供給されたカメラユニット移動信号KGによってカメラユニット40を開口部100aの中心位置に移動させる。 On the camera unit drive stage 90, the camera unit 40 is installed. The camera unit drive stage 90 moves the camera unit 40 to the center position of the opening 100a by the camera unit movement signal KG U supplied from the controller 200.
 カメラユニット40は、押圧時における基板6に対する上側モールド503a及び下側モールド503b各々の位置合わせを高精度に実施する為に設けられたものである。 The camera unit 40 is provided to perform high-precision alignment of the upper mold 503a and the lower mold 503b with respect to the substrate 6 at the time of pressing.
 図2は、カメラユニット40の概略構成を表す図である。 FIG. 2 is a diagram illustrating a schematic configuration of the camera unit 40.
 図2に示すように、カメラユニット40は、基板6に対して平行な面を有する板状のステージCSと、このステージCS上に固定配置されたカメラ41a~41dとからなる。カメラ41b~41dは、ステージCSの面上において、カメラ41aの撮影レンズLZの中心点を中心とする同心円状の基準アライメントラインAL(破線にて示す)上に夫々の撮影レンズLZの中心点が位置するように配置されている。基準アライメントラインALは、例えば、上側モールド503a及び下側モールド503bに形成されている凹凸パターンの最内周位置や最外周位置、又は、基板6に対する上側モールド503a及び下側モールド503b各々の相対位置を調整するために形成された位置合わせマークとほぼ同一直径を有するものである。なお、位置合わせマークは、例えば、上側モールド503a及び下側モールド503bに形成されている凹凸パターンの中心点を中心とする同心円状の複数のグルーブからなり、凹凸パターンの周囲を囲むように形成されている。又、位置合わせマークは、画像として認識できるものであればどのような形態であってもよく、グルーブに限らず、例えばレーザマーカー等で描かれた複数の線で構成されていてもよい。カメラ41aは、基準アライメントラインALの中心点にその撮影レンズの中心が位置するように配置されている。この際、ステージCS上において、カメラ41a~41d各々の設置位置には、夫々の撮影レンズを垂直に下方向(基板6が存在する方向)に向けた状態で固定する為の撮影用貫通孔が設けられている。又、図2に示すように、カメラ41a~41dは、ステージCSの表面に対して夫々同一の高さ位置に設置されている。 As shown in FIG. 2, the camera unit 40 includes a plate-like stage CS having a plane parallel to the substrate 6, and cameras 41a to 41d fixedly arranged on the stage CS. In the cameras 41b to 41d, the center point of each photographic lens LZ is on a concentric reference alignment line AL (shown by a broken line) centered on the center point of the photographic lens LZ of the camera 41a on the surface of the stage CS. It is arranged to be located. The reference alignment line AL is, for example, the innermost or outermost position of the concavo-convex pattern formed in the upper mold 503a and the lower mold 503b, or the relative positions of the upper mold 503a and the lower mold 503b with respect to the substrate 6. It has a diameter substantially the same as that of the alignment mark formed for adjusting. The alignment mark is made up of, for example, a plurality of concentric grooves centering on the center point of the uneven pattern formed in the upper mold 503a and the lower mold 503b, and is formed so as to surround the periphery of the uneven pattern. ing. The alignment mark may be in any form as long as it can be recognized as an image, and is not limited to a groove, and may be composed of a plurality of lines drawn with, for example, a laser marker. The camera 41a is arranged so that the center of the photographing lens is located at the center point of the reference alignment line AL. At this time, on the stage CS, at the installation positions of the cameras 41a to 41d, there are photographing through-holes for fixing the respective photographing lenses vertically downward (direction in which the substrate 6 exists). Is provided. Further, as shown in FIG. 2, the cameras 41a to 41d are respectively installed at the same height position with respect to the surface of the stage CS.
 図2に示す如き配置により、カメラ41aは、図1に示すセンターピン30bの先端部を撮影し、この際得られた撮影信号PDaをコントローラ200に供給する。又、この間、カメラ41b~41dは、夫々の位置で上側モールド503a及び下側モールド503bの表面を撮影し、この際得られた撮影信号PDb~PDdをコントローラ200に供給する。尚、カメラユニット40は、コントローラ200から供給されたユニット位置調整信号UPに応じて、図2に示す如きカメラ41b~41d各々の相対的な位置関係を維持したまま、カメラユニット駆動ステージ90の表面上において移動してその設置位置を変更する。 With the arrangement as shown in FIG. 2, the camera 41a takes an image of the tip of the center pin 30b shown in FIG. 1, and supplies the obtained image signal PDa to the controller 200. During this time, the cameras 41b to 41d shoot the surfaces of the upper mold 503a and the lower mold 503b at the respective positions, and supply the photographic signals PDb to PDd obtained at this time to the controller 200. Note that the camera unit 40 maintains the relative positional relationship between the cameras 41b to 41d as shown in FIG. 2 in accordance with the unit position adjustment signal UP supplied from the controller 200, and the surface of the camera unit drive stage 90 is maintained. Move up to change the installation position.
 上側ステージ505aの下面には、開口部100aを有する上側モールド駆動ステージ500aが設置されている。上側モールド駆動ステージ500a上には、上記開口部100aを覆うように透明材料からなる上側モールド保持部501aが設置されている。上側モールド保持部501aは、上側モールド駆動ステージ500a上において、図3に示す如く2次元の各方向(X、Y)に移動可能であり、且つその平面に垂直な中心軸QJにて回転可能な状態で設置されている。上側モールド保持部501aは、上側モールド503aを保持させる為の図3に示す如きモールド保持面DFを備えており、その中心部には貫通孔が設けられている。上側モールド保持部501aは、コントローラ200から供給された上側モールド保持信号MHに応じて、例えば真空吸着することにより、上側モールド503aをそのモールド保持面DFに保持する。尚、上側モールド503aをモールド保持面に保持する方法は、真空吸着に限られず機械式方法で保持するようにしても良い。 An upper mold driving stage 500a having an opening 100a is installed on the lower surface of the upper stage 505a. On the upper mold drive stage 500a, an upper mold holding part 501a made of a transparent material is installed so as to cover the opening 100a. The upper mold holding unit 501a can move in two-dimensional directions (X, Y) as shown in FIG. 3 on the upper mold driving stage 500a, and can rotate about a central axis QJ perpendicular to the plane. It is installed in a state. The upper mold holding part 501a has a mold holding surface DF as shown in FIG. 3 for holding the upper mold 503a, and a through hole is provided at the center thereof. The upper mold holding unit 501a holds the upper mold 503a on the mold holding surface DF by, for example, vacuum suction according to the upper mold holding signal MH U supplied from the controller 200. The method of holding the upper mold 503a on the mold holding surface is not limited to vacuum suction and may be held by a mechanical method.
 上側モールド駆動ステージ500aは、コントローラ200から供給された上側XY方向モールド移動信号XYに応じて、上側モールド保持部501aをその表面上におけるX方向及びY方向に移動させる。又、上側モールド駆動ステージ500aは、コントローラ200から供給された上側モールド回転信号θに応じて、上側モールド保持部501aを図3に示す如き中心軸QJを中心に回転させる。これにより、上側モールド503aと下側モールド503b及び基板6との相対位置調整がなされる。なお、各相対位置の調整方法については後述する。 図1に示すインプリント装置の下側機構部は、センターピン30b、下側モールド駆動ステージ500b、下側モールド保持部501b、下側ステージ505b、センターピン駆動ユニット507b、下側UV照射ユニット508b、下側ステージ上下駆動ユニット511b及び下側ボールネジ512bを備える。 Upper mold driving stage 500a is according to the supplied upper XY directions mold movement signal XY U from the controller 200 to move the upper mold holding portion 501a in the X direction and the Y direction in its surface. Further, the upper mold driving stage 500a in accordance with the upper mold rotation signal theta U supplied from the controller 200 rotates the upper mold holding portion 501a around the such central axis QJ shown in FIG. As a result, the relative positions of the upper mold 503a, the lower mold 503b, and the substrate 6 are adjusted. A method for adjusting each relative position will be described later. 1 includes a center pin 30b, a lower mold driving stage 500b, a lower mold holding unit 501b, a lower stage 505b, a center pin driving unit 507b, a lower UV irradiation unit 508b, A lower stage vertical drive unit 511b and a lower ball screw 512b are provided.
 ボード状の下側ステージ505bには、図1に示す如き開口部100bと共に、ボールネジ512が貫通する貫通孔が存在する。ボールネジ512は、下側ステージ505b及び上側ステージ505aの平行状態を維持させたまま両者を連結するように、その一端が下側ステージ505bの貫通孔を貫通し、他端が上側ステージ505aのネジ穴部にネジ込まれている。 The board-like lower stage 505b has a through hole through which the ball screw 512 passes, together with the opening 100b as shown in FIG. One end of the ball screw 512 penetrates the through hole of the lower stage 505b and the other end is a screw hole of the upper stage 505a so that the lower stage 505b and the upper stage 505a are maintained in a parallel state. It is screwed into the part.
 下側ステージ505bの上面には、開口部100bを有する下側モールド駆動ステージ500bが設置されている。下側モールド駆動ステージ500b上には、上記開口部100bを覆うように透明材料からなる下側モールド保持部501bが設置されている。下側モールド保持部501bは、下側モールド駆動ステージ500b上において、図3に示す如く2次元の各方向(X、Y)に移動可能であり、且つその平面に垂直な中心軸QJにて回転可能な状態で設置されている。下側モールド保持部501bは、下側モールド503bを保持させる為の図3に示す如きモールド保持面DFを備えており、その中心部には貫通孔が設けられている。下側モールド保持部501bは、コントローラ200から供給された下側モールド保持信号MHに応じて、例えば真空吸着によって下側モールド503bをそのモールド保持面DFに保持する。尚、下側モールド503bをモールド保持面に保持する方法は、真空吸着に限られず機械式方法でモールドを支持するようにしても良い。 A lower mold driving stage 500b having an opening 100b is installed on the upper surface of the lower stage 505b. On the lower mold drive stage 500b, a lower mold holding part 501b made of a transparent material is installed so as to cover the opening 100b. The lower mold holding portion 501b can move in two-dimensional directions (X, Y) as shown in FIG. 3 on the lower mold driving stage 500b, and rotates about a central axis QJ perpendicular to the plane. Installed as possible. The lower mold holding part 501b includes a mold holding surface DF as shown in FIG. 3 for holding the lower mold 503b, and a through hole is provided at the center thereof. Lower mold holding portion 501b in accordance with the lower mold holding signal MH L supplied from the controller 200, for example, to hold the lower mold 503b to the mold holding surface DF by vacuum suction. The method of holding the lower mold 503b on the mold holding surface is not limited to vacuum suction, and the mold may be supported by a mechanical method.
 下側モールド駆動ステージ500bは、コントローラ200から供給された下側XY方向モールド移動信号XYに応じて、下側モールド保持部501bをその表面上におけるX方向及びY方向に移動させる。又、下側モールド駆動ステージ500bは、コントローラ200から供給された下側モールド回転信号θに応じて、下側モールド保持部501bを図3に示す如き中心軸QJを中心に回転させる。これにより、下側モールド503bと上側モールド503a及び基板6との相対位置調整がなされる。なお、各相対位置の調整方法については後述する。 Lower mold driver stage 500b, in response to the supplied lower XY direction mold movement signal XY L from the controller 200 moves the lower mold holding portion 501b in the X and Y directions at the surface. Also, the lower mold driver stage 500b, in accordance with the lower mold rotation signal theta L supplied from the controller 200, is rotated around the central axis QJ as shown the lower mold holding portion 501b in FIG. As a result, the relative positions of the lower mold 503b, the upper mold 503a, and the substrate 6 are adjusted. A method for adjusting each relative position will be described later.
 下側UV照射ユニット508bは、コントローラ200から供給された紫外線照射信号UVに応じて、転写材料を硬化させるべき紫外線を、下側モールド保持部501b及び下側モールド503bを介して、基板6の下側転写層604bに向けて照射する。 The lower UV irradiation unit 508b transmits ultraviolet light to be cured on the transfer material in accordance with the ultraviolet irradiation signal UV supplied from the controller 200 via the lower mold holding unit 501b and the lower mold 503b. Irradiation is performed toward the side transfer layer 604b.
 センターピン駆動ユニット507bは、コントローラ200から供給されたセンターピン移動信号CGに応じて、センターピン30bを、下側モールド保持部501bの孔を貫通させて、このモールド保持面に対して垂直な方向、つまりセンターピン30bの中心軸方向において上側又は下側に移動させる。センターピン30bの先端部には、上側モールド503a又は下側モールド503bを支持する為の第1支持部TB1、基板6を支持する為の第2支持部TB2が設けられている。尚、上側モールド503a、下側モールド503b及び基板6は、上記第1支持部TB1及び第2支持部TB2により、夫々の面の平行状態を維持したままセンターピン30bにおいて支持される(後述する)。下側UV照射ユニット508bは、コントローラ200から供給された紫外線照射信号UVに応じて、転写材料を硬化させるべき紫外線を、下側モールド保持部501b及び下側モールド503bを介して基板6の下側転写層604bに照射する。 Center pin drive unit 507b in accordance with the center pin moving signal CG L supplied from the controller 200, the center pin 30b, by penetrating the lower mold holding portion 501b of the hole, perpendicular to the mold holding surface In the direction, that is, in the central axis direction of the center pin 30b, it is moved upward or downward. A first support portion TB1 for supporting the upper mold 503a or the lower mold 503b and a second support portion TB2 for supporting the substrate 6 are provided at the tip of the center pin 30b. The upper mold 503a, the lower mold 503b, and the substrate 6 are supported on the center pin 30b by the first support portion TB1 and the second support portion TB2 while maintaining the parallel state of the respective surfaces (described later). . The lower UV irradiation unit 508b transmits ultraviolet light to be cured on the transfer material in accordance with the ultraviolet irradiation signal UV supplied from the controller 200 via the lower mold holding unit 501b and the lower mold 503b. Irradiate the transfer layer 604b.
 ステージ上下駆動ユニット511は、コントローラ200から供給されたステージ駆動信号SGに応じて、ボールネジ512を時計方向又は反時計方向に回転させることにより、上側ステージ505aを、下側ステージ505bに対する平行状態を維持したまま上方向又は下方向に移動させる。すなわち、上側ステージ505aの上方向への移動により、上側モールド保持部501aが、下側モールド保持部501bのモールド保持面に対して垂直な方向においてこの下側モールド保持部501bから離間するように移動する。一方、上側ステージ505aの下方向への移動により、上側モールド保持部501aが、下側モールド保持部501bに向けて移動する。 The stage vertical drive unit 511 maintains the upper stage 505a parallel to the lower stage 505b by rotating the ball screw 512 clockwise or counterclockwise according to the stage drive signal SG supplied from the controller 200. Move it up or down. That is, the upward movement of the upper stage 505a causes the upper mold holding portion 501a to move away from the lower mold holding portion 501b in the direction perpendicular to the mold holding surface of the lower mold holding portion 501b. To do. On the other hand, the upper mold holding part 501a moves toward the lower mold holding part 501b by the downward movement of the upper stage 505a.
 操作部201は、このインプリント装置を動作させるべく、使用者によって指示された各種動作指令を受け付け、その動作指令を示す動作指令信号をコントローラ200に供給する。コントローラ200は、操作部201から供給された動作指令信号に対応した動作処理プログラムを実行することにより、インプリント装置を制御する為の各種制御信号を生成する。 The operation unit 201 accepts various operation commands instructed by the user to operate the imprint apparatus, and supplies an operation command signal indicating the operation command to the controller 200. The controller 200 generates various control signals for controlling the imprint apparatus by executing an operation processing program corresponding to the operation command signal supplied from the operation unit 201.
 ここで、操作部201が、使用者からのインプリント実行指令を受け付けると、コントローラ200は、図4及び図5に示す如きインプリント処理プログラムの実行を開始する。 Here, when the operation unit 201 receives an imprint execution command from the user, the controller 200 starts execution of the imprint processing program as shown in FIGS.
 以下に、かかるインプリント処理プログラムの実行によって為されるパターン転写動作について、図6~図11を参照しつつ説明する。尚、図6~図9は、パターン転写動作における各段階毎に図1に示すインプリント装置の上側モールド保持部501a、下側モールド保持部501b、及びセンターピン30b各々の状態(位置関係)を模式的に表すものである。 Hereinafter, a pattern transfer operation performed by executing the imprint processing program will be described with reference to FIGS. 6 to 9 show states (positional relationships) of the upper mold holding portion 501a, the lower mold holding portion 501b, and the center pin 30b of the imprint apparatus shown in FIG. 1 at each stage in the pattern transfer operation. It is schematically represented.
 図4において、先ず、コントローラ200は、センターピン30bを所定の初期位置に移動させるべきセンターピン移動信号CGをセンターピン駆動ユニット507bに供給する(ステップS1)。ステップS1の実行により、センターピン駆動ユニット507bは、センターピン30bを、図6の[状態1]に示す如き初期状態、つまり、センターピン30bにおける第1支持部TB1及び第2支持部TB2が共に、下側モールド保持部501bのモールド保持面よりも上方の位置に現れる位置に移動する。 4, first, the controller 200 supplies the center pin moving signal CG L to move the center pin 30b to a predetermined initial position to the center pin drive unit 507b (step S1). By executing step S1, the center pin driving unit 507b causes the center pin 30b to be in the initial state as shown in [State 1] in FIG. 6, that is, the first support portion TB1 and the second support portion TB2 in the center pin 30b are both in the initial state. Then, it moves to a position that appears at a position above the mold holding surface of the lower mold holding portion 501b.
 次に、コントローラ200は、図示せぬセンサ、例えば、接触センサなどの出力からセンターピン30bが上側モールド503a支持しているか否かの判定を、上側モールド503aが支持されるまで繰り返し実行する(ステップS2)。ここで、モールド搬送装置(図示せぬ)は、図10に示す如き上側モールド503aの中心位置に設けられている中心孔CAにセンターピン30bを貫通させるように、上側モールド503aをセンターピン30bに装着する。これにより、上側モールド503aは、図6の[状態2]に示すように、そのパターン面を下に向けた状態でセンターピン30bの第1支持部TB1に支持されることになる。 Next, the controller 200 repeatedly determines whether or not the center pin 30b supports the upper mold 503a from the output of a sensor (not shown) such as a contact sensor until the upper mold 503a is supported (step). S2). Here, the mold conveying device (not shown) moves the upper mold 503a to the center pin 30b so that the center pin 30b passes through the center hole CA provided at the center position of the upper mold 503a as shown in FIG. Installing. As a result, the upper mold 503a is supported by the first support portion TB1 of the center pin 30b with its pattern surface facing downward, as shown in [State 2] in FIG.
 上記ステップS2において、上側モールド503aが図6の[状態2]に示す如くセンターピン30bに支持されていると判定されると、コントローラ200は、上側ステージ505aを下方向に移動させるべきステージ駆動信号SGをステージ上下駆動ユニット511に供給する(ステップS3)。ステップS3の実行により、上側モールド保持部501aを含む上側機構部全体が徐々に下方向に移動する。 If it is determined in step S2 that the upper mold 503a is supported by the center pin 30b as shown in [State 2] in FIG. 6, the controller 200 causes the stage drive signal to move the upper stage 505a downward. SG is supplied to the stage vertical drive unit 511 (step S3). By executing step S3, the entire upper mechanism part including the upper mold holding part 501a gradually moves downward.
 次に、コントローラ200は、図示せぬセンサなどの出力から上側モールド保持部501aのモールド保持面が、上側モールド503aに接触したか否かを判定する(ステップS4)。ステップS4において上側モールド保持部501aのモールド保持面が上側モールド503aに接触していないと判定された場合、コントローラ200は、上記ステップS3の実行に戻って前述した如き動作を再び実行する。つまり、図6の[状態3]に示すように、上側モールド保持部501aのモールド保持面が上側モールド503aに接触するまで、上側モールド保持部501aを下方向に移動させるのである。 Next, the controller 200 determines whether or not the mold holding surface of the upper mold holding unit 501a is in contact with the upper mold 503a from the output of a sensor or the like (not shown) (step S4). When it is determined in step S4 that the mold holding surface of the upper mold holding portion 501a is not in contact with the upper mold 503a, the controller 200 returns to the execution of step S3 and executes the operation as described above again. That is, as shown in [State 3] in FIG. 6, the upper mold holding portion 501a is moved downward until the mold holding surface of the upper mold holding portion 501a contacts the upper mold 503a.
 上記ステップS4において上側モールド保持部501aのモールド保持面が、図6の[状態3]に示す如く上側モールド503aに接触したと判定された場合、コントローラ200は、上側モールド保持信号MHを上側モールド保持部501aに供給する(ステップS5)。ステップS5の実行により、図10に示す如き上側モールド503aの中心位置Qがセンターピン30bの中心軸と一致した状態で、この上側モールド503aが上側モールド保持部501aのモールド保持面に保持される。 If it is determined in step S4 that the mold holding surface of the upper mold holding portion 501a has contacted the upper mold 503a as shown in [State 3] in FIG. 6, the controller 200 sends the upper mold holding signal MH U to the upper mold holding signal MH U. It supplies to the holding | maintenance part 501a (step S5). By executing step S5, the upper mold 503a is held on the mold holding surface of the upper mold holding portion 501a in a state where the center position Q of the upper mold 503a matches the center axis of the center pin 30b as shown in FIG.
 次に、コントローラ200は、上側ステージ505aを所定距離だけ上方向に移動させるべきステージ駆動信号SGをステージ上下駆動ユニット511に供給する(ステップS6)。ステップS6の実行により、図6の[状態4]に示すように、上側モールド保持部501aが、センターピン30bの中心軸方向において上側に移動する。これにより、上側モールド503aがセンターピン30bから離脱する。すなわち、上記ステップS1からS6を実施することによって、上側モールド503aは、その基準位置がセンターピン30bの中心軸と一致した状態で、上側モールド保持部501aのモールド保持面に保持されるのである。 Next, the controller 200 supplies a stage drive signal SG that should move the upper stage 505a upward by a predetermined distance to the stage vertical drive unit 511 (step S6). By executing step S6, as shown in [State 4] in FIG. 6, the upper mold holding portion 501a moves upward in the central axis direction of the center pin 30b. As a result, the upper mold 503a is detached from the center pin 30b. That is, by performing the above steps S1 to S6, the upper mold 503a is held on the mold holding surface of the upper mold holding portion 501a in a state where the reference position coincides with the central axis of the center pin 30b.
 次に、コントローラ200は、図示せぬセンサなどの出力からセンターピン30bが下側モールド503bを支持しているか否かの判定を、下側モールド503bが支持されるまで繰り返し実行する(ステップS7)。ここで、モールド搬送装置は、図10に示す如き下側モールド503bの中心位置に設けられている中心孔CAにセンターピン30bを貫通させるように、下側モールド503bをセンターピン30bに装着する。これにより、下側モールド503bは、図7の[状態5]に示すように、そのパターン面を上方に向けた状態でセンターピン30bの第1支持部TB1上に支持されることになる。 Next, the controller 200 repeatedly determines whether or not the center pin 30b supports the lower mold 503b from the output of a sensor (not shown) until the lower mold 503b is supported (step S7). . Here, the mold conveying apparatus attaches the lower mold 503b to the center pin 30b so that the center pin 30b passes through the center hole CA provided at the center position of the lower mold 503b as shown in FIG. Thereby, as shown in [State 5] of Drawing 7, lower mold 503b is supported on the 1st support part TB1 of center pin 30b in the state where the pattern side turned up.
 上記ステップS7において、下側モールド503bが図7の[状態5]に示す如くセンターピン30bに支持されていると判定されると、コントローラ200は、センターピン30bを所定位置にまで下降させるべきセンターピン移動信号CGをセンターピン駆動ユニット507bに供給する(ステップS8)。ステップS8の実行により、センターピン駆動ユニット507bは、センターピン30bを、所定位置まで下降させる。つまり、センターピン駆動ユニット507bは、図7の[状態6]の如き、センターピン30bの第1支持部TB1と下側モールド保持部501bのモールド保持面とが互いに同一平面上に位置するようになるまで、距離センサなどの出力を監視しながらセンターピン30bを下方向に移動させる。これにより、下側モールド503bは、図7の[状態6]に示すように、下側モールド保持部501bのモールド保持面に接触することになる。 If it is determined in step S7 that the lower mold 503b is supported by the center pin 30b as shown in [State 5] in FIG. 7, the controller 200 should lower the center pin 30b to a predetermined position. supplying a pin moving signal CG L to the center pin drive unit 507b (step S8). By executing step S8, the center pin drive unit 507b lowers the center pin 30b to a predetermined position. That is, in the center pin drive unit 507b, as shown in [State 6] in FIG. 7, the first support portion TB1 of the center pin 30b and the mold holding surface of the lower mold holding portion 501b are located on the same plane. Until this happens, the center pin 30b is moved downward while monitoring the output of the distance sensor or the like. As a result, the lower mold 503b comes into contact with the mold holding surface of the lower mold holding portion 501b as shown in [State 6] in FIG.
 次に、コントローラ200は、下側モールド保持信号MHを下側モールド保持部501bに供給する(ステップS9)。これにより、図10に示す如き下側モールド503bの中心位置Qが、センターピン30bの中心軸と一致した状態で、この下側モールド503bが下側モールド保持部501bのモールド保持面に保持される。すなわち、上記ステップS7からS9を実施することによって、下側モールド503bは、その中心位置(基準位置)がセンターピン30bの中心軸と一致した状態で、下側モールド保持部501bのモールド保持面に保持されるのである。 Next, the controller 200 supplies the lower mold holding signal MH L to the lower mold holding portion 501b (step S9). Thus, the lower mold 503b is held on the mold holding surface of the lower mold holding portion 501b in a state where the center position Q of the lower mold 503b as shown in FIG. 10 coincides with the center axis of the center pin 30b. . That is, by performing the above steps S7 to S9, the lower mold 503b is placed on the mold holding surface of the lower mold holding portion 501b with its center position (reference position) aligned with the center axis of the center pin 30b. It is retained.
 次に、コントローラ200は、上側モールド503a及び下側モールド503b同士の位置合わせを行なうべきモールドアライメント動作を実行する(ステップS10)。つまり、このステップでは、上側モールド503a及び下側モールド503bが上側モールド保持部501a及び下側モールド保持部501bに各々保持されている状態において、上側モールド503aと下側モールド503bにずれが生じている場合、又は、上側モールド503a、及び/又は、下側モールド503bに形成された凹凸パターンの中心点に対してモールドの中心穴CAが偏心している場合に上側モールド503aに形成された凹凸パターンの中心点と下側モールド503bに形成された凹凸パターンの中心点とを一致させるように位置合わせを行なう。 Next, the controller 200 executes a mold alignment operation in which the upper mold 503a and the lower mold 503b should be aligned with each other (step S10). That is, in this step, in the state where the upper mold 503a and the lower mold 503b are held by the upper mold holding part 501a and the lower mold holding part 501b, the upper mold 503a and the lower mold 503b are displaced. Or the center of the concavo-convex pattern formed in the upper mold 503a when the center hole CA of the mold is eccentric with respect to the center point of the concavo-convex pattern formed in the upper mold 503a and / or the lower mold 503b. Positioning is performed so that the point coincides with the center point of the uneven pattern formed on the lower mold 503b.
 かかるモールドアライメント動作を実行するにあたり、図7の[状態7]に示すように、コントローラ200から供給されたカメラユニット移動信号KGによってカメラユニット40を開口部100aの中心位置に移動させる。次に、コントローラ200は、カメラ41b(又は41c、41d)によって撮影して得られた撮影信号PDb(又はPDc、PDd)に基づき、上側ステージ505bを下方向に移動させるべきステージ駆動信号SGをステージ上下駆動ユニット511に供給する。つまり、撮影信号PDbに基づく1フレーム画像中に、上側モールド503a及び下側モールド503b各々に形成されている位置合わせマークの輪郭が共にぼけることなく表示されるようになるまで、図7の[状態7]から[状態8]に示すように、上側モールド503a及び下側モールド503b間の距離を徐々に近接させて行く。これにより、カメラ41b~41dのフォーカス調整を行なうのである。なお、位置合わせマークは、例えば、両モールド(503a、503b)に形成された凹凸パターンの中心点を中心とする同心円状の複数のグルーブからなり、凹凸パターンの周囲を囲むように形成されている。 Upon executing the mold alignment operation, as shown in State 7] in FIG. 7, to move the camera unit 40 to the center position of the opening 100a by the camera unit movement signal KG U supplied from the controller 200. Next, the controller 200 sets a stage driving signal SG for moving the upper stage 505b downward based on the imaging signal PDb (or PDc, PDd) obtained by imaging with the camera 41b (or 41c, 41d). It is supplied to the vertical drive unit 511. That is, until the outlines of the alignment marks formed on each of the upper mold 503a and the lower mold 503b are displayed without being blurred in one frame image based on the photographing signal PDb, the [state of FIG. 7] to [State 8], the distance between the upper mold 503a and the lower mold 503b is gradually made closer. Thereby, the focus adjustment of the cameras 41b to 41d is performed. The alignment mark is made up of, for example, a plurality of concentric grooves centering on the center point of the concavo-convex pattern formed in both molds (503a, 503b), and is formed so as to surround the concavo-convex pattern. .
 ここで、上側モールド503a及び下側モールド503bに同心円状に形成された複数のグルーブからなる位置合わせマークの中から図2に示す如き基準アライメントラインALから最も近い位置にあるグルーブを1つ選び出す(以下、このグルーブをアライメントラインPLと称する)。かかるアライメントラインPLが図2に示すように基準アライメントラインAL上に配置されたカメラ41b~41d各々の撮影ターゲットとなる。よって、例えば、図10に示す如く、カメラ41b~41dによって撮影して得られた1フレーム画像Fb~Fdには、上側モールド503aに形成されているアライメントラインPL(実線にて示す)と、下側モールド503bに形成されているアライメントラインPL(破線にて示す)とが現れる。尚、図10に示す如く、上側モールド503a及び下側モールド503b各々に形成されている位置合わせマーク(アライメントラインPLを含む)の中心位置Rは、製造上のバラツキ等の影響により、必ずしもモールド自体の中心位置Qと一致しているわけではない。そこで、コントローラ200は、撮影信号PDb~PDdに基づき、両モールド(503a、503b)のアライメントラインPL同士がその中心位置Qに拘わらず、図10に示すように、基板6の面に対する垂直軸線上(2点鎖線にて示す)に位置するように、上側モールド503a及び/又は下側モールド503bの位置を移動する(下側を固定して上側を動かす、上側を固定して下側を動かす、或いは上下各々のステージの移動量が最小になるように両方のステージを動かす等)。すなわち、コントローラ200は、撮影信号PDb~PDdに基づく図10に示す如き1フレーム画像Fb~Fd各々内において、両モールド(503a、503b)のアライメントラインPLが互いに同一の位置で重なるように、上側モールド503a及び/又は下側モールド503bを移動させるべき各種制御信号(XY、XY、θ、θ)を、モールド駆動ステージ(500a、500b)に供給するのである。次に、コントローラ200は、上側ステージ505aを、上方向に移動させるべきステージ駆動信号SGをステージ上下駆動ユニット511に供給する。これにより、図8の[状態9]に示す如き、基板6をセンターピン30bの第2支持部TB2に装着することが可能となる程度に、上側モールド503a及び下側モールド503bが互いに離間する。 Here, one of the grooves closest to the reference alignment line AL as shown in FIG. 2 is selected from the alignment marks made up of a plurality of grooves formed concentrically on the upper mold 503a and the lower mold 503b. Hereinafter, this groove is referred to as an alignment line PL). Such an alignment line PL becomes a photographing target for each of the cameras 41b to 41d arranged on the reference alignment line AL as shown in FIG. Therefore, for example, as shown in FIG. 10, one frame images Fb to Fd obtained by photographing with the cameras 41b to 41d include an alignment line PL (shown by a solid line) formed on the upper mold 503a and a bottom line. An alignment line PL (shown by a broken line) formed in the side mold 503b appears. As shown in FIG. 10, the center position R of the alignment mark (including the alignment line PL) formed on each of the upper mold 503a and the lower mold 503b is not necessarily the mold itself due to the influence of manufacturing variations. It does not coincide with the center position Q of. Therefore, the controller 200, on the basis of the photographing signals PDb to PDd, on the vertical axis with respect to the surface of the substrate 6 as shown in FIG. 10, regardless of the center position Q between the alignment lines PL of both molds (503a, 503b). Move the position of the upper mold 503a and / or the lower mold 503b so as to be located (indicated by a two-dot chain line) (fix the lower side and move the upper side, fix the upper side and move the lower side, Alternatively, move both stages so that the amount of movement of each of the upper and lower stages is minimized). That is, the controller 200 controls the upper side so that the alignment lines PL of both molds (503a, 503b) overlap at the same position in each of the one frame images Fb to Fd as shown in FIG. 10 based on the photographing signals PDb to PDd. Various control signals (XY U , XY L , θ U , θ L ) for moving the mold 503a and / or the lower mold 503b are supplied to the mold driving stage (500a, 500b). Next, the controller 200 supplies the stage vertical drive unit 511 with a stage drive signal SG for moving the upper stage 505a upward. As a result, as shown in [State 9] in FIG. 8, the upper mold 503a and the lower mold 503b are separated from each other to the extent that the substrate 6 can be mounted on the second support portion TB2 of the center pin 30b.
 上記モールドアライメント動作(ステップS10)によれば、基板6の面に対して垂直な軸上に、上側モールド503a及び下側モールド503b各々のアライメントラインPLが共に位置する状態、つまり上側モールド503a及び下側モールド503b同士の基準位置が一致した状態となる。 According to the mold alignment operation (step S10), the alignment line PL of each of the upper mold 503a and the lower mold 503b is positioned on the axis perpendicular to the surface of the substrate 6, that is, the upper mold 503a and the lower mold 503b. The reference positions of the side molds 503b coincide with each other.
 モールドアライメント動作(ステップS10)の実行後、コントローラ200は、図示せぬセンサなどの出力からセンターピン30bに基板6が支持されているか否かの判定を、この基板6が支持されるまで繰り返し実行する(ステップS11)。ここで、基板搬送装置(図示せぬ)は、基板6の中心孔にセンターピン30bを貫通させるように、かかる基板6をセンターピン30bに装着する。これにより、基板6は、図8の[状態10]に示す如く、センターピン30bの第2支持部TB2上に支持されることになる。つまり、センターピン30bの中心軸の位置と基板6の基準位置(中心孔の位置)とが一致した状態で、基板6がセンターピン30bに支持されるのである。 After executing the mold alignment operation (step S10), the controller 200 repeatedly determines whether or not the substrate 6 is supported by the center pin 30b from the output of a sensor (not shown) until the substrate 6 is supported. (Step S11). Here, the substrate transfer device (not shown) attaches the substrate 6 to the center pin 30b so that the center pin 30b passes through the center hole of the substrate 6. As a result, the substrate 6 is supported on the second support portion TB2 of the center pin 30b as shown in [State 10] in FIG. That is, the substrate 6 is supported by the center pin 30b in a state where the position of the center axis of the center pin 30b and the reference position (the position of the center hole) of the substrate 6 coincide.
 上記ステップS11において、基板6がセンターピン30bに支持されていると判定されると、次に、コントローラ200は、モールド(503a、503b)と基板6との位置合わせを行なうべきモールド・基板アライメント動作を実行する(ステップS12)。 If it is determined in step S11 that the substrate 6 is supported by the center pin 30b, the controller 200 next performs a mold / substrate alignment operation for aligning the mold (503a, 503b) and the substrate 6. Is executed (step S12).
 かかるモールド・基板アライメント動作において、コントローラ200は、先ず、カメラ41aにて得られた撮影信号PDaに基づく1フレーム画像中に、センターピン30bの先端部の表面が現れるようになるまで、上側ステージ505aを図8の[状態11]の如く下方向に移動させるべきステージ駆動信号SGをステージ上下駆動ユニット511に供給する。すなわち、これにより、カメラ41aの焦点をセンターピン30bの先端部の表面に合焦させるべきフォーカス調整を行なうのである。次に、コントローラ200は、上記1フレーム画像内に存在するセンターピン30bの先端部画像をもとに、センターピン30bの中心軸CJが、この1フレーム画像の中心位置に位置するように、カメラユニット40自体の設置位置を移動させるべきユニット位置調整信号UPをカメラユニット駆動ステージ90に供給する。この際、上記モールドアライメント動作(ステップS10)により上側モールド503a及び下側モールド503b各々のアライメントラインPLの中心位置Rは、図11(a)に示す如く、必ずしもセンターピン30bの中心軸CJの位置と一致しているわけではない。従って、図8の[状態10]に示す如く、カメラ41aの撮影軸とセンターピン30bの中心軸CJ(破線にて示す)とが一致するような位置にカメラユニット40を配置すると、図11(a)に示すように、カメラ41b~41d各々が配置されている基準アライメントラインAL(破線にて示す)と、両モールド(503a、503b)のアライメントラインPL(実線にて示す)とにズレが生じる。そこで、コントローラ200は、図11(a)に示す如く、カメラ41b~41dにて撮影して得られた1フレーム画像Fb~Fd各々の中心位置(十字印にて示す)に、上側モールド503aのアライメントラインPLが位置するように、上側モールド503a及び下側モールド503bの位置を調整する。この際、上記モールドアライメント動作により、上側モールド503a及び下側モールド503b同士の基準位置が一致しているため、上側モールド503aのアライメントラインPLのみを観察すればよい。すなわち、コントローラ200は、上側モールド503a及び下側モールド503bの位置を共に同一の2次元方向に移動させるべき、上側XYステージ移動信号XY及び下側XYステージ移動信号XYを、上側モールド駆動ステージ500a及び下側モールド駆動ステージ500bに供給するのである。 In this mold / substrate alignment operation, the controller 200 first starts the upper stage 505a until the surface of the tip of the center pin 30b appears in one frame image based on the photographing signal PDa obtained by the camera 41a. Is supplied to the stage vertical drive unit 511, as shown in [State 11] in FIG. In other words, this adjusts the focus to focus the camera 41a on the surface of the tip of the center pin 30b. Next, the controller 200 determines that the center axis CJ of the center pin 30b is located at the center position of the one frame image based on the tip image of the center pin 30b existing in the one frame image. A unit position adjustment signal UP for moving the installation position of the unit 40 itself is supplied to the camera unit drive stage 90. At this time, the center position R of the alignment line PL of each of the upper mold 503a and the lower mold 503b by the mold alignment operation (step S10) is not necessarily the position of the center axis CJ of the center pin 30b as shown in FIG. Is not consistent. Accordingly, as shown in [State 10] in FIG. 8, when the camera unit 40 is arranged at a position where the photographing axis of the camera 41a coincides with the center axis CJ (indicated by a broken line) of the center pin 30b, FIG. As shown in a), there is a deviation between the reference alignment line AL (shown by a broken line) where each of the cameras 41b to 41d is arranged and the alignment line PL (shown by a solid line) of both molds (503a, 503b). Arise. Therefore, as shown in FIG. 11A, the controller 200 sets the upper mold 503a at the center position (indicated by a cross) of each of the one-frame images Fb to Fd obtained by photographing with the cameras 41b to 41d. The positions of the upper mold 503a and the lower mold 503b are adjusted so that the alignment line PL is positioned. At this time, since the reference positions of the upper mold 503a and the lower mold 503b coincide with each other by the mold alignment operation, only the alignment line PL of the upper mold 503a has to be observed. That is, the controller 200 sends the upper XY stage movement signal XY U and the lower XY stage movement signal XY L to move the positions of the upper mold 503a and the lower mold 503b in the same two-dimensional direction. 500a and the lower mold drive stage 500b are supplied.
 上記モールド・基板アライメント動作(ステップS12)によれば、図11(b)に示すように、上側モールド503a及び下側モールド503b各々に形成されているアライメントラインPL各々の中心位置Rと、センターピン30bの中心軸CJの位置とが一致することになる。これにより、基板6の中心位置と、上側モールド503aに形成された凹凸パターンの中心点と、下側モールド503bに形成された凹凸パターンの中心点とが一致した状態となる。 According to the mold / substrate alignment operation (step S12), as shown in FIG. 11B, the center position R of each alignment line PL formed in each of the upper mold 503a and the lower mold 503b, and the center pin The position of the central axis CJ of 30b coincides. As a result, the center position of the substrate 6, the center point of the concavo-convex pattern formed on the upper mold 503a, and the center point of the concavo-convex pattern formed on the lower mold 503b coincide with each other.
 上記モールド・基板アライメント動作(ステップS12)の実行後、コントローラ200から供給されたカメラユニット移動信号KGによってカメラユニット40がUV照射の光路上、すなわち、開口部100a上から移動する。次に、コントローラ200は、上側ステージ505aを下方向に移動させるべきステージ駆動信号SGをステージ上下駆動ユニット511に供給する(ステップS13)。ステップS13の実行により、上側モールド保持部501aが、センターピン30bの中心軸方向において下側に移動する。 After execution of the mold / substrate alignment operation (step S12), the camera unit 40 is moved from the UV irradiation optical path, that is, from the opening 100a by the camera unit movement signal KG U supplied from the controller 200. Next, the controller 200 supplies a stage drive signal SG for moving the upper stage 505a downward to the stage vertical drive unit 511 (step S13). By executing step S13, the upper mold holding unit 501a moves downward in the direction of the central axis of the center pin 30b.
 次に、図示せぬセンサなどの出力からコントローラ200は、上側モールド503aが基板6に接触したか否かを判定する(ステップS14)。ステップS14において上側モールド503aが基板6に接触していないと判定された場合、コントローラ200は、上記ステップS13の実行に戻って前述した如き動作を再び実行する。つまり、図8の[状態12]に示すように、上側モールド503aが基板6に接触するまで、上側モールド保持部501aを下方向に移動させるのである。 Next, the controller 200 determines whether or not the upper mold 503a has contacted the substrate 6 from the output of a sensor or the like (not shown) (step S14). When it is determined in step S14 that the upper mold 503a is not in contact with the substrate 6, the controller 200 returns to the execution of step S13 and performs the operation as described above again. That is, as shown in [State 12] in FIG. 8, the upper mold holding portion 501a is moved downward until the upper mold 503a contacts the substrate 6.
 上記ステップS14において上側モールド503aが基板6に接触したと判定された場合、コントローラ200は、上側モールド503a及び下側モールド503bを基板6に押圧させるべきモールド押圧動作を実行する(ステップS15)。モールド押圧動作を実行する為に、コントローラ200は、上側モールド503a及び下側モールド503bを所定の押圧値PVADで基板6に押圧させるべく、上側ステージ505aを下方向に移動させるステージ駆動信号SGをステージ上下駆動ユニット511に所定時間供給する。これにより、先ず、下側モールド503bが基板6の上側転写層604aに接触し、上側モールド503aと共に基板6が下降する。その結果、図9の[状態13]に示すように、基板6の両面が、上側モールド503a及び下側モールド503bによって押圧され、その状態が所定時間保持される。よって、上側モールド503aに形成されている凹凸パターンが上側転写層604aに押圧されると共に、下側モールド503bに形成されている凹凸パターンが下側転写層604bに夫々押圧される。上側転写層604a及び下側転写層604bは液状(流動可能状態)にあるため、上側転写層604aが上側モールド503aに形成されている凹凸パターン形状に沿って変形すると共に、下側転写層604bが下側モールド503bに形成されている凹凸パターン形状に沿って夫々変形する。尚、上側モールド503a及び下側モールド503bを基板6に押し付ける圧力及び保持時間等の転写条件は、上側モールド503a及び下側モールド503bの凹凸パターン形状や上側転写層604a及び下側転写層604bの材料等に応じて適宜設定される。 When it is determined in step S14 that the upper mold 503a is in contact with the substrate 6, the controller 200 performs a mold pressing operation for pressing the upper mold 503a and the lower mold 503b against the substrate 6 (step S15). To perform a mold pressing operation, the controller 200, in order to press the substrate 6 the upper mold 503a and the lower mold 503b with a predetermined pressing value PV AD, the stage drive signal SG to move the upper stage 505a downward It is supplied to the stage vertical drive unit 511 for a predetermined time. Thereby, first, the lower mold 503b comes into contact with the upper transfer layer 604a of the substrate 6, and the substrate 6 is lowered together with the upper mold 503a. As a result, as shown in [State 13] in FIG. 9, both surfaces of the substrate 6 are pressed by the upper mold 503a and the lower mold 503b, and the state is maintained for a predetermined time. Therefore, the concave / convex pattern formed on the upper mold 503a is pressed against the upper transfer layer 604a, and the concave / convex pattern formed on the lower mold 503b is pressed against the lower transfer layer 604b. Since the upper transfer layer 604a and the lower transfer layer 604b are in a liquid state (flowable state), the upper transfer layer 604a is deformed along the uneven pattern shape formed in the upper mold 503a, and the lower transfer layer 604b is Each deforms along the uneven pattern shape formed in the lower mold 503b. The transfer conditions such as the pressure and holding time for pressing the upper mold 503a and the lower mold 503b against the substrate 6 are the uneven pattern shape of the upper mold 503a and the lower mold 503b and the materials of the upper transfer layer 604a and the lower transfer layer 604b. It sets suitably according to etc.
 上記モールド押圧動作値(ステップS15)の実行後、コントローラ200は、紫外線照射信号UVを上側UV照射ユニット508a及び下側UV照射ユニット508bに供給する(ステップ16)。ステップ16の実行によって、上側UV照射ユニット508aが転写材料を硬化させるべき紫外線を基板6の上側転写層604aに向けて照射すると共に、下側UV照射ユニット508bが転写材料を硬化させるべき紫外線を下側転写層604bに向けて照射する。これにより、上側転写層604a及び下側転写層604b各々の転写層が硬化し、上側転写層604a及び下側転写層604b表面の凹凸パターンが確定する。 After executing the mold pressing operation value (step S15), the controller 200 supplies the ultraviolet irradiation signal UV to the upper UV irradiation unit 508a and the lower UV irradiation unit 508b (step 16). Execution of step 16 causes the upper UV irradiation unit 508a to irradiate the upper transfer layer 604a of the substrate 6 with ultraviolet rays to cure the transfer material, and the lower UV irradiation unit 508b lowers the ultraviolet rays to cure the transfer material. Irradiation is performed toward the side transfer layer 604b. Thereby, the transfer layers of the upper transfer layer 604a and the lower transfer layer 604b are cured, and the uneven pattern on the surfaces of the upper transfer layer 604a and the lower transfer layer 604b is determined.
 上記転写層硬化動作(ステップS16)の実行後、コントローラ200は、上側モールド503a及び下側モールド503bから基板6を離型させるべき離型動作を実行する(ステップS17)。かかる離型動作において、コントローラ200は、上側ステージ505aを所定距離だけ上方向に移動させるべきステージ駆動信号SGをステージ上下駆動ユニット511に供給する。これにより、図9の[状態15]の如く、上側モールド503aが基板6の上側転写層604aから離型する。更に、コントローラ200は、センターピン30bを上方向に移動させるべきセンターピン移動信号CGをセンターピン駆動ユニット507bに供給する。これにより、下側モールド503bから基板6が離型する。なお、上側ステージ505aの上方向への移動に伴って、上側モールド503aに基板6が密着して一緒に移動してしまわないように、図示しない固定部材にて基板6を固定するようにしても良い。又、上側ステージ505aとセンターピン30bとを同時に移動させても良い。この場合、上側ステージ505aの上昇速度をセンターピン30bの上昇速度よりも早くすることで、基板6に対して、上側モールド503aと下側モールド503bの離型を同時に行なうことが出来る。かかる離型動作により、上側モールド503aに形成されている凹凸パターンとは凹凸の状態が反転した凹凸状パターンが上側転写層604aに形成されていると共に、下側モールド503bに形成されている凹凸パターンとは凹凸の状態が反転した凹凸状パターンが下側転写層604bに形成されている基板6が得られる。そして、コントローラ200は、基板6をセンターピン30bから離脱させるべき指令を基板搬送装置に送出する。 After executing the transfer layer curing operation (step S16), the controller 200 executes a mold release operation for releasing the substrate 6 from the upper mold 503a and the lower mold 503b (step S17). In such a mold release operation, the controller 200 supplies a stage drive signal SG for moving the upper stage 505a upward by a predetermined distance to the stage vertical drive unit 511. As a result, the upper mold 503a is released from the upper transfer layer 604a of the substrate 6 as shown in [State 15] in FIG. Furthermore, the controller 200 supplies the center pin moving signal CG L to move the center pin 30b upward to the center pin drive unit 507b. As a result, the substrate 6 is released from the lower mold 503b. Note that the substrate 6 may be fixed by a fixing member (not shown) so that the substrate 6 does not adhere to the upper mold 503a and move together with the upward movement of the upper stage 505a. good. Further, the upper stage 505a and the center pin 30b may be moved simultaneously. In this case, the upper mold 503a and the lower mold 503b can be released from the substrate 6 at the same time by making the rising speed of the upper stage 505a faster than the rising speed of the center pin 30b. By such a releasing operation, a concavo-convex pattern in which the concavo-convex state is reversed from the concavo-convex pattern formed in the upper mold 503a is formed in the upper transfer layer 604a and the concavo-convex pattern formed in the lower mold 503b The substrate 6 is obtained in which the concave / convex pattern in which the concave / convex state is inverted is formed on the lower transfer layer 604b. Then, the controller 200 sends a command to detach the substrate 6 from the center pin 30b to the substrate transfer device.
 以上の如き一連の動作により、基板6の上側転写層604a及び下側転写層604b各々に対して、上側モールド503a及び下側モールド503bによる両面パターン転写が為されるのである。 By the series of operations as described above, double-sided pattern transfer is performed by the upper mold 503a and the lower mold 503b for the upper transfer layer 604a and the lower transfer layer 604b of the substrate 6, respectively.
 次に、コントローラ200は、操作部201から、動作終了を示す動作指令信号が供給されているか否かを判定する(ステップS18)。ステップS18において動作終了を示す動作指令信号が供給されたと判定された場合、コントローラ200は、このインプリント処理プログラムを終了する。一方、ステップS18にて動作終了を表す動作指令信号が供給されていないと判定された場合、コントローラ200は、センターピン30bに支持されている基板6を基板搬送装置が取り外すまでの間待機した後、センターピン30bを図7の[状態6]に示す如き、基板6を装着するための所定位置に移動させるべきセンターピン移動信号CGをセンターピン駆動ユニット507bに供給する(ステップS19)。 Next, the controller 200 determines whether or not an operation command signal indicating the end of the operation is supplied from the operation unit 201 (step S18). When it is determined in step S18 that the operation command signal indicating the operation end is supplied, the controller 200 ends the imprint processing program. On the other hand, if it is determined in step S18 that the operation command signal indicating the end of the operation is not supplied, the controller 200 waits until the substrate transfer device removes the substrate 6 supported by the center pin 30b. , as shown the center pin 30b in the state 6] in FIG. 7, for supplying the center pin moving signal CG L to be moved to a predetermined position for mounting the substrate 6 to the center pin drive unit 507b (step S19).
 上記ステップS19の終了後、コントローラ200は、センターピン30bに基板6が支持されているか否かの判定を、この基板6が支持されるまで繰り返し実行する(ステップS20)。ここで、基板搬送装置(図示せぬ)は、基板6の中心孔にセンターピン30bを貫通させるように、新たな基板6をセンターピン30bに装着する。すると、コントローラ200は、上記ステップS20にて基板6がセンターピン30bに支持されたと判定し、上記ステップS13の実行に戻り、前述した如き動作を繰り返し実行する。これにより、新たに装着された基板6に対して連続してパターン転写を行なうのである。 After step S19, the controller 200 repeatedly determines whether or not the substrate 6 is supported on the center pin 30b until the substrate 6 is supported (step S20). Here, the substrate transfer device (not shown) attaches a new substrate 6 to the center pin 30b so that the center pin 30b passes through the center hole of the substrate 6. Then, the controller 200 determines in step S20 that the substrate 6 is supported by the center pin 30b, returns to the execution of step S13, and repeatedly executes the operation as described above. Thereby, pattern transfer is continuously performed on the newly mounted substrate 6.
 以上の如く、図1に示すインプリント装置においては、モールド(503a、503b)を基板6に押圧するにあたり、モールド同士のアライメントを実施(ステップS10)した後、モールド及び基板間のアライメントを実行(ステップS12)するようにしている。この際、これら一連のアライメントでは、モールド(503a、503b)に形成された位置合わせマークの中心位置Rに、基板6の中心位置が一致するように、上側モールド503a及び下側モールド503b各々の位置を調整するようにしている。位置合わせマークは、モールドに形成された凹凸パターンと同心円をなすように形成されるので、モールド製造上のばらつき等により、モールド中心点とモールド上に形成された凹凸パターンの中心点とが一致していないようなモールドを用いる場合であっても、基板の中心に対して凹凸パターンの中心点を一致させるための位置合わせを高精度に行なうことができ、基板に対して偏心を生じることなく凹凸パターンを転写することが可能となる。 As described above, in the imprint apparatus shown in FIG. 1, when the molds (503a, 503b) are pressed against the substrate 6, the molds are aligned (step S10), and then the mold and the substrate are aligned ( Step S12). At this time, in these series of alignments, the positions of the upper mold 503a and the lower mold 503b are adjusted so that the center position of the substrate 6 coincides with the center position R of the alignment mark formed on the mold (503a, 503b). To adjust. Since the alignment mark is formed so as to be concentric with the concave / convex pattern formed on the mold, the center point of the mold coincides with the central point of the concave / convex pattern formed on the mold due to variations in mold manufacturing. Even when a mold that is not used is used, the alignment for aligning the center point of the concavo-convex pattern with the center of the substrate can be performed with high accuracy, and the concavo-convex shape does not occur with respect to the substrate The pattern can be transferred.
 ここで、図1に示すインプリント装置による、上述した如きインプリント工程は、ディスクリートトラックメディアやビットパターンドメディア等の磁気記録媒体の製造工程に適用することができる。 Here, the imprint process as described above by the imprint apparatus shown in FIG. 1 can be applied to a manufacturing process of a magnetic recording medium such as a discrete track medium or a bit patterned medium.
 以下に、上記したインプリント工程を含む磁気ディスクの製造手方法について図12を参照しつつ説明する。 Hereinafter, a method for manufacturing a magnetic disk including the above-described imprint process will be described with reference to FIG.
 まず、ガラス等の紫外線を透過する材料からなる基材の表面に所望とする凹凸パターンを有する上側モールド503a及び下側モールド503bを作製する。凹凸パターンは、例えば電子ビーム描画装置などにより基材上にレジストパターンを形成し、その後、レジストパターンをマスクとしてドライエッチング処理等を行なうことによって形成する。
完成した上側モールド503a及び下側モールド503bには、離型性向上のためシランカップリング剤等により表面処理を施しておく。なお、上側モールド503a及び下側モールド503bを原盤として、インプリント法等で複製したガラス等の紫外線を透過する材料からなる基板を転写用のモールドとして用いても良い。更に、上記方法で作製した複製盤からインプリント法等で複製したガラス等の紫外線を透過する材料からなる基板を転写用のモールドとして用いても良い。尚、複製した転写用のモールドを使用するのであれば、原盤、及び/又は、複製盤の基材は、例えば、シリコンや電鋳等の方法によって複製したニッケル(合金を含む)等の紫外線を透過しない材料を用いることができる。
First, an upper mold 503a and a lower mold 503b having a desired concavo-convex pattern on the surface of a base material made of a material that transmits ultraviolet rays such as glass are prepared. The concavo-convex pattern is formed by forming a resist pattern on a substrate using, for example, an electron beam drawing apparatus, and then performing dry etching using the resist pattern as a mask.
The completed upper mold 503a and lower mold 503b are subjected to surface treatment with a silane coupling agent or the like for improving the mold release property. Note that a substrate made of a material that transmits ultraviolet rays, such as glass replicated by an imprint method or the like, may be used as a transfer mold using the upper mold 503a and the lower mold 503b as masters. Furthermore, a substrate made of a material that transmits ultraviolet rays, such as glass duplicated by an imprint method or the like from the duplication disk produced by the above method, may be used as a transfer mold. If a duplicate transfer mold is used, the master and / or the base material of the duplicate disk is, for example, ultraviolet rays such as nickel (including alloys) duplicated by a method such as silicon or electroforming. A material that does not transmit can be used.
 次に磁気ディスクメディア基板(以下メディア基板と称する)600を作製する。メディア基板600は、例えば、特殊加工化学強化ガラス、シリコンウエハ、アルミ基板等からなるディスク状の支持基板601の一方の面側(上側面)及び他方の面側(下側面)に、夫々、上側転写層604a及び下側転写層604bを含む、以下の如き複数の層が積層されて為るものである。つまり、図12(A)に示すように、支持基板601の上側面には、非磁性材料からなる上側非磁性層602a、金属材料、例えばTa又はTi等からなる上側メタル層603a、及び上側転写層604aが積層されている。支持基板601の下側面には非磁性材料からなる下側非磁性層602b、金属材料、例えばTa又はTi等からなる下側メタル層603b、及び下側転写層604bを積層することにより形成する。上側非磁性層602a、上側メタル層603a、下側非磁性層602b、及び下側メタル層603bは、スパッタリング法等により形成する。 Next, a magnetic disk media substrate (hereinafter referred to as a media substrate) 600 is manufactured. The media substrate 600 has, for example, an upper side on one side (upper side) and the other side (lower side) of a disc-shaped support substrate 601 made of specially processed chemically strengthened glass, silicon wafer, aluminum substrate, or the like. A plurality of layers including the transfer layer 604a and the lower transfer layer 604b are laminated as follows. That is, as shown in FIG. 12A, on the upper surface of the support substrate 601, an upper nonmagnetic layer 602a made of a nonmagnetic material, an upper metal layer 603a made of a metal material such as Ta or Ti, and an upper transfer A layer 604a is stacked. A lower nonmagnetic layer 602b made of a nonmagnetic material, a lower metal layer 603b made of a metal material such as Ta or Ti, and a lower transfer layer 604b are laminated on the lower surface of the support substrate 601. The upper nonmagnetic layer 602a, the upper metal layer 603a, the lower nonmagnetic layer 602b, and the lower metal layer 603b are formed by a sputtering method or the like.
 次に、上記したインプリント方法により、メディア基板600に形成した上側転写層604a及び下側転写層604bに上側モールド503a及び下側モールド503bに形成された凹凸パターンを転写する。すなわち、上記工程で用意したメディア基板600にスピンコート法等で上側転写層604a及び下側転写層604bを形成し、上側モールド503a及び下側モールド503bの基準位置をセンターピン30bの中心軸に合致させた状態で固定した後、メディア基板600をセンターピン30bに支持させ、基準位置をセンターピン30bの中心軸に合致させた状態で、上側モールド503aをセンターピン30bの中心軸方向において下側モールド503bに向けて移動させることにより、上側モールド503aをメディア基板600の一方の面に押圧すると共に下側モールド503bをメディア基板600の他方の面に押圧する。その後、上側UV照射ユニット508aから転写層を硬化させるべき紫外線をメディア基板600の上側転写層604aに向けて照射すると共に、下側UV照射ユニット508bから転写層を硬化させるべき紫外線を下側転写層604bに向けて照射し、上側転写層604a及び下側転写層604bが硬化したら上側モールド503a及び下側モールド503bをメディア基板600から離型し、メディア基板600を取り出す。 Next, the concavo-convex pattern formed on the upper mold 503a and the lower mold 503b is transferred to the upper transfer layer 604a and the lower transfer layer 604b formed on the media substrate 600 by the imprint method described above. That is, the upper transfer layer 604a and the lower transfer layer 604b are formed on the media substrate 600 prepared in the above process by spin coating or the like, and the reference positions of the upper mold 503a and the lower mold 503b are aligned with the central axis of the center pin 30b. Then, the media substrate 600 is supported on the center pin 30b, and the upper mold 503a is placed on the lower mold in the direction of the center axis of the center pin 30b with the reference position aligned with the center axis of the center pin 30b. By moving it toward 503 b, the upper mold 503 a is pressed against one surface of the media substrate 600 and the lower mold 503 b is pressed against the other surface of the media substrate 600. Thereafter, the upper UV irradiation unit 508a irradiates the upper transfer layer 604a of the media substrate 600 with ultraviolet rays to cure the transfer layer, and the lower UV irradiation unit 508b emits ultraviolet rays to cure the transfer layer. When the upper transfer layer 604a and the lower transfer layer 604b are cured by irradiating toward the 604b, the upper mold 503a and the lower mold 503b are released from the media substrate 600, and the media substrate 600 is taken out.
 以上の工程により、メディア基板600の両面に図12(A)に示す如き断面構造を有するものが形成される。 Through the above steps, the media substrate 600 is formed on both sides with a cross-sectional structure as shown in FIG.
 次に、図12(A)に示す如き構造を有するメディア基板600の両面にエッチング処理を施す。エッチング処理として、先ず、上側モールド503aの凸部に相当する部分に上側転写層604aの残膜が、下側モールド503bの凸部に相当する部分に下側転写層604bの残膜が残るため、酸素リアクティブイオンエッチング(RIE)等でこの残膜を除去する。次に、上記インプリント工程によりパターニングが施された上側転写層604a及び下側転写層604bをマスクとしてドライエッチング処理により、上側メタル層603a及び下側メタル層603bをエッチングし、パターニングを施す。かかるエッチング処理により、図12(B)に示す如く、上側レジスト層604a及び下側レジスト層604b各々の凹凸パターンの内で凹部、並びに、上側メタル層603a及び下側メタル層603b各々における上記凹部に対応した部分が除去され、上側メタル層603a及び下側メタル層603b各々にパターンが形成される(メタルマスクパターニング工程)。 Next, etching is performed on both surfaces of the media substrate 600 having a structure as shown in FIG. As the etching process, first, the remaining film of the upper transfer layer 604a remains in the portion corresponding to the convex portion of the upper mold 503a, and the residual film of the lower transfer layer 604b remains in the portion corresponding to the convex portion of the lower mold 503b. The remaining film is removed by oxygen reactive ion etching (RIE) or the like. Next, the upper metal layer 603a and the lower metal layer 603b are etched and patterned by dry etching using the upper transfer layer 604a and the lower transfer layer 604b patterned by the imprint process as a mask. By this etching process, as shown in FIG. 12B, the recesses in the concavo-convex patterns of the upper resist layer 604a and the lower resist layer 604b and the recesses in the upper metal layer 603a and the lower metal layer 603b are formed. Corresponding portions are removed, and a pattern is formed on each of the upper metal layer 603a and the lower metal layer 603b (metal mask patterning step).
 次に、図12(B)に示す如き状態にあるメディア基板600の両面に対して、ウェットエッチング若しくはドライアッシング処理等の方法で転写層除去処理を施すことにより、図12(C)に示すように、上側メタル層603a及び下側メタル層603b各々に残存する転写層を除去する(転写層除去行程)。 Next, as shown in FIG. 12C, a transfer layer removal process is performed on both surfaces of the media substrate 600 in the state shown in FIG. 12B by a method such as wet etching or dry ashing. Then, the transfer layer remaining on each of the upper metal layer 603a and the lower metal layer 603b is removed (transfer layer removing process).
 次に、図12(C)に示す如き状態にあるメディア基板600に対して上側メタル層603a及び下側メタル層603bをマスクとしてドライエッチング処理により、非磁性体をエッチングし、パターニングを施す。これにより、上側非磁性層602a及び下側非磁性層602b各々の露出領域に対して、図12(D)に示す如く、所定の深さ分だけ非磁性材料にパターンが形成される(非磁性層パターニング行程)。 Next, the non-magnetic material is etched and patterned by dry etching using the upper metal layer 603a and the lower metal layer 603b as a mask for the media substrate 600 in the state as shown in FIG. As a result, a pattern is formed on the nonmagnetic material by a predetermined depth as shown in FIG. 12D for the exposed regions of the upper nonmagnetic layer 602a and the lower nonmagnetic layer 602b (nonmagnetic). Layer patterning process).
 次に、図12(D)に示す如き状態にあるメディア基板600の両面に対して、残存する上側メタル層603a及び下側メタル層603bをウェットエッチング処理、若しくはドライエッチング処理等の方法で除去することにより、図12(E)に示すように、上側非磁性層602a及び下側非磁性層602b各々に残存するメタル層を除去する(メタルマスク除去行程)。 Next, the remaining upper metal layer 603a and lower metal layer 603b are removed from both surfaces of the media substrate 600 in a state as shown in FIG. 12D by a method such as wet etching or dry etching. As a result, as shown in FIG. 12E, the metal layer remaining in each of the upper nonmagnetic layer 602a and the lower nonmagnetic layer 602b is removed (metal mask removing process).
 次に、図12(E)に示す如き上側非磁性層602a及び下側非磁性層602b各々の凹部に磁性体(黒塗りにて示す)を充填し、更に、上側保護層605a、上側潤滑層606a、下側保護層605b、及び下側潤滑層606bを図12(F)に示すように積層する。 Next, as shown in FIG. 12E, the concave portions of the upper nonmagnetic layer 602a and the lower nonmagnetic layer 602b are filled with a magnetic material (shown in black), and the upper protective layer 605a and the upper lubricating layer are further filled. A layer 606a, a lower protective layer 605b, and a lower lubricating layer 606b are stacked as shown in FIG.
 このように、図1に示すインプリント装置によって両面に凹凸パターンが形成された基板6に対して、図12(A)~図12(F)の如き処理を施すことにより、図12(F)に示す如き断面構造を有する両面磁気ディスクが製造されるのである。 In this way, the substrate 6 having the concavo-convex pattern formed on both surfaces thereof by the imprint apparatus shown in FIG. 1 is subjected to the processes as shown in FIGS. 12A to 12F, so that FIG. Thus, a double-sided magnetic disk having a cross-sectional structure as shown in FIG.
 尚、図12(A)~図12(F)では、図12(A)に示す如き上側非磁性層602a及び下側非磁性層602bを備えたメディア基板600から、磁気ディスクを製造する方法について説明したが、上側非磁性層602a及び下側非磁性層602bに代わり、磁性材料からなる上側磁性層及び下側磁性層を採用したメディア基板600から磁気ディスクを製造するようにしても良い。この際、図12(C)に示す如き状態にあるメディア基板600に対して上側メタル層603a及び下側メタル層603bをマスクとしてドライエッチング処理により、磁性体をエッチングし、上側非磁性層及び下側非磁性層各々の露出領域に対して、所定の深さ分だけ磁性材料にパターン形成を行なう(磁性層パターニング行程)。そして、上側磁性層及び下側磁性層各々の凹部に非磁性材料を充填することにより、磁気ディスクを得るのである。 12A to 12F, a method for manufacturing a magnetic disk from a media substrate 600 having an upper nonmagnetic layer 602a and a lower nonmagnetic layer 602b as shown in FIG. 12A. As described above, the magnetic disk may be manufactured from the media substrate 600 employing the upper magnetic layer and the lower magnetic layer made of a magnetic material instead of the upper nonmagnetic layer 602a and the lower nonmagnetic layer 602b. At this time, the magnetic material is etched by dry etching using the upper metal layer 603a and the lower metal layer 603b as a mask with respect to the media substrate 600 in the state as shown in FIG. A pattern is formed on the magnetic material by a predetermined depth for each exposed region of the side nonmagnetic layer (magnetic layer patterning step). Then, the magnetic disk is obtained by filling the concave portions of the upper magnetic layer and the lower magnetic layer with a nonmagnetic material.
 次に、本発明に係るインプリント方法の第2実施例について説明する。本実施例に係るインプリント方法は、アライメント調整方法が第1実施例のものと異なる。以下、本実施例に係るアライメント調整方法に関して図13~図18を参照しつつ説明する。 Next, a second embodiment of the imprint method according to the present invention will be described. The imprint method according to this embodiment is different from the first embodiment in the alignment adjustment method. Hereinafter, the alignment adjustment method according to the present embodiment will be described with reference to FIGS.
 実施例1では、モールド同士のアライメントを実行(ステップS10)した後に、基板6を装着してからモールド及び基板間のアライメント調整(ステップS12)を実行するようにしているが、基板6を装着しない状態で両者をまとめて実行することができる。 In the first embodiment, after the alignment between the molds is performed (step S10), the substrate 6 is mounted and then the alignment adjustment between the mold and the substrate is performed (step S12), but the substrate 6 is not mounted. Both can be executed together in the state.
 図13及び図14は、かかる点に鑑みて為されたインプリント処理プログラムの他の一例を示す図である。又、図15~図18は、このインプリント処理プログラムの実行によって為されるパターン転写動作を各段階毎に模式的に表すものである。 FIG. 13 and FIG. 14 are diagrams showing another example of the imprint processing program made in view of this point. FIGS. 15 to 18 schematically show the pattern transfer operation performed by executing the imprint processing program for each stage.
 尚、図13に示されるステップS101~S109による制御は、図4に示されるステップS1~S9と同一であり、且つかかるステップS101~S109の実行による各段階毎のパターン転写動作、つまり図15の[状態1]~図16の[状態6]についても図6の[状態1]~図7の[状態6]と同一である。 The control in steps S101 to S109 shown in FIG. 13 is the same as that in steps S1 to S9 shown in FIG. 4, and the pattern transfer operation at each stage by the execution of steps S101 to S109, that is, in FIG. [State 1] to [State 6] in FIG. 16 are the same as [State 1] to FIG. 7 [State 6] in FIG.
 よって、以下に、ステップS109の実行後の各ステップの動作について、図14、及び図16~図18を参照しつつ説明する。 Therefore, the operation of each step after execution of step S109 will be described below with reference to FIG. 14 and FIGS.
 図13に示されるステップS109の実行後、コントローラ200は、上側モールド503a、下側モールド503b及び基板6の位置合わせを行なうべきアライメント動作を実行する(ステップS110)。 After the execution of step S109 shown in FIG. 13, the controller 200 executes an alignment operation for aligning the upper mold 503a, the lower mold 503b, and the substrate 6 (step S110).
 かかるアライメント動作において、先ず、図16の[状態7]に示すように、コントローラ200から供給されたカメラユニット移動信号KGによってカメラユニット40を開口部100aの中心位置に移動させる。次に、コントローラ200は、カメラ41aにて得られた撮影信号PDaに基づく1フレーム画像中にセンターピン30bの先端部の表面が現れるようになるまで、上側ステージ505aを下方向に移動させるべきステージ駆動信号SGをステージ上下駆動ユニット511に供給する。すなわち、これにより、カメラ41aの焦点をセンターピン30bの先端部の表面に合焦させるべきフォーカス調整を行なうのである。次に、コントローラ200は、上記1フレーム画像内に存在するセンターピン30bの先端部画像をもとに、センターピン30bの中心軸CJが、この1フレーム画像の中心位置に位置するように、カメラユニット40自体の設置位置を移動させるべきユニット位置調整信号UPをカメラユニット駆動ステージ90に供給する。この際、モールド製造上のバラツキ等により上側モールド503a及び下側モールド503b各々のアライメントラインPLの中心位置Ra及びRbは、図19(a)に示す如く、必ずしもセンターピン30bの中心軸CJの位置と一致しているわけではない。従って、図16の[状態7]に示す如く、カメラ41aの撮影軸とセンターピン30bの中心軸CJ(破線にて示す)とが一致する位置にカメラユニット40を配置すると、図19(a)に示すように、カメラ41b~41d各々が配置されている基準アライメントラインAL(破線にて示す)、上側モールド503a及び下側モールド503bのアライメントラインPL(夫々を実線及び2点鎖線にて示す)にズレが生じる。次に、コントローラ200は、カメラ41b(又は41c、41d)によって撮影して得られた撮影信号PDb(又はPDc、PDd)に基づき、上側ステージ505bを下方向に移動させるべきステージ駆動信号SGをステージ上下駆動ユニット511に供給する。つまり、撮影信号PDbに基づく1フレーム画像中に、上側モールド503a及び下側モールド503b各々に形成されている位置合わせマークの輪郭が共にぼけることなく表示されるようになるまで、図16の[状態7]から[状態8]に示すように、上側モールド503a及び下側モールド503b間の距離を徐々に近接させて行く。これにより、カメラ41b~41dのフォーカス調整が為されるので、これらカメラ41b~41dによって撮影して得られた1フレーム画像Fb~Fd中には、図19(a)に示すように、上側モールド503aのアライメントラインPL(実線にて示す)と、下側モールド503bのアライメントラインPL(2点鎖線にて示す)とが現れる。ここで、コントローラ200は、図19(a)に示す如き1フレーム画像Fb~Fd各々内において、両モールド(503a、503b)のアライメントラインPLが互いに同一の位置で重なるように、上側モールド503a及び/又は下側モールド503bを移動又は回転させるべき各種制御信号(XY、XY、θ、θ)を、モールド駆動ステージ(500a、500b)に供給する。ここまでの一連の動作によれば、基板6の表面に対して垂直な軸上に、上側モールド503a及び下側モールド503b各々のアライメントラインPLが共に位置する状態、つまり上側モールド503a及び下側モールド503b同士の基準位置が一致した状態となる。次に、コントローラ200は、図19(b)に示すように、カメラ41b~41dにて撮影して得られた1フレーム画像Fb~Fd各々の中心位置(十字印にて示す)に、上側モールド503a(又は下側モールド503b)のアライメントラインPLが位置するように、上側モールド503a及び下側モールド503bの位置を調整する。すなわち、コントローラ200は、上側モールド503a及び下側モールド503bの位置を共に同一の2次元方向に移動させるべき、上側XYステージ移動信号XY及び下側XYステージ移動信号XYを、上側モールド駆動ステージ500a及び下側モールド駆動ステージ500bに供給する。かかる調整によれば、図19(b)に示すように、上側モールド503a及び下側モールド503b各々に形成されているアライメントラインPL各々の中心位置Ra及びRbと、センターピン30bの中心軸CJの位置とが一致することになる。次に、コントローラ200は、上側ステージ505aを、上方向に移動させるべきステージ駆動信号SGをステージ上下駆動ユニット511に供給する。これにより、図17の[状態9]に示すように、基板6をセンターピン30bの第2支持部TB2に装着することが可能となる程度に、上側モールド503a及び下側モールド503bが互いに離間する。 In such an alignment operation, first, as shown in State 7] in FIG. 16, to move the camera unit 40 to the center position of the opening 100a by the camera unit movement signal KG U supplied from the controller 200. Next, the controller 200 should move the upper stage 505a downward until the surface of the tip of the center pin 30b appears in one frame image based on the photographing signal PDa obtained by the camera 41a. A drive signal SG is supplied to the stage vertical drive unit 511. In other words, this adjusts the focus to focus the camera 41a on the surface of the tip of the center pin 30b. Next, the controller 200 determines that the center axis CJ of the center pin 30b is located at the center position of the one frame image based on the tip image of the center pin 30b existing in the one frame image. A unit position adjustment signal UP for moving the installation position of the unit 40 itself is supplied to the camera unit drive stage 90. At this time, the center positions Ra and Rb of the alignment line PL of each of the upper mold 503a and the lower mold 503b are not necessarily the position of the center axis CJ of the center pin 30b due to variations in mold manufacture, as shown in FIG. Is not consistent. Therefore, as shown in [State 7] in FIG. 16, when the camera unit 40 is arranged at a position where the photographing axis of the camera 41a coincides with the center axis CJ (indicated by a broken line) of the center pin 30b, FIG. As shown, the reference alignment line AL (shown by a broken line) on which each of the cameras 41b to 41d is arranged, the alignment line PL of the upper mold 503a and the lower mold 503b (respectively indicated by a solid line and a two-dot chain line) Deviation occurs. Next, the controller 200 sets a stage driving signal SG for moving the upper stage 505b downward based on the imaging signal PDb (or PDc, PDd) obtained by imaging with the camera 41b (or 41c, 41d). It is supplied to the vertical drive unit 511. That is, until the outlines of the alignment marks formed on each of the upper mold 503a and the lower mold 503b are displayed without being blurred in one frame image based on the photographing signal PDb, the [state of FIG. 7] to [State 8], the distance between the upper mold 503a and the lower mold 503b is gradually made closer. As a result, the focus adjustment of the cameras 41b to 41d is performed. Therefore, in the one frame images Fb to Fd obtained by photographing with these cameras 41b to 41d, as shown in FIG. An alignment line PL (shown by a solid line) 503a and an alignment line PL (shown by a two-dot chain line) of the lower mold 503b appear. Here, the controller 200 sets the upper mold 503a and the upper mold 503a so that the alignment lines PL of both molds (503a, 503b) overlap at the same position in each of the one-frame images Fb to Fd as shown in FIG. Various control signals (XY U , XY L , θ U , θ L ) for moving or rotating the lower mold 503b are supplied to the mold driving stage (500a, 500b). According to the series of operations so far, the alignment lines PL of the upper mold 503a and the lower mold 503b are positioned together on the axis perpendicular to the surface of the substrate 6, that is, the upper mold 503a and the lower mold. The reference positions of 503b coincide with each other. Next, as shown in FIG. 19 (b), the controller 200 sets the upper mold at the center positions (indicated by crosses) of the 1-frame images Fb to Fd obtained by photographing with the cameras 41b to 41d. The positions of the upper mold 503a and the lower mold 503b are adjusted so that the alignment line PL of 503a (or the lower mold 503b) is positioned. That is, the controller 200 sends the upper XY stage movement signal XY U and the lower XY stage movement signal XY L to move the positions of the upper mold 503a and the lower mold 503b in the same two-dimensional direction. 500a and the lower mold drive stage 500b are supplied. According to this adjustment, as shown in FIG. 19B, the center positions Ra and Rb of the alignment lines PL formed in the upper mold 503a and the lower mold 503b, respectively, and the center axis CJ of the center pin 30b The position will match. Next, the controller 200 supplies the stage vertical drive unit 511 with a stage drive signal SG for moving the upper stage 505a upward. Accordingly, as shown in [State 9] in FIG. 17, the upper mold 503a and the lower mold 503b are separated from each other to the extent that the substrate 6 can be mounted on the second support portion TB2 of the center pin 30b. .
 上記アライメント動作(ステップS110)によれば、センターピン30bの中心軸CJの位置と、両モールド(503a、503b)に形成されているアライメントラインPLの中心位置とが互いに一致した状態に調整されるのである。すなわち、センターピン30bの中心軸CJの位置と、上側モールド503aに形成された凹凸パターンの中心点と、下側モールド503bに形成された凹凸パターンの中心点とが一致した状態となる。 According to the alignment operation (step S110), the position of the center axis CJ of the center pin 30b and the center position of the alignment line PL formed in both molds (503a, 503b) are adjusted to coincide with each other. It is. That is, the position of the center axis CJ of the center pin 30b, the center point of the concavo-convex pattern formed on the upper mold 503a, and the center point of the concavo-convex pattern formed on the lower mold 503b coincide.
 上記アライメント動作(ステップS110)の実行後、コントローラ200から供給されたカメラユニット移動信号KGによってカメラユニット40がUV照射の光路上、すなわち、開口部100a上から移動する。次に、コントローラ200は、センターピン30bに基板6が支持されているか否かの判定を、この基板6が支持されるまで繰り返し実行する(ステップS111)。ここで、基板搬送装置(図示せぬ)は、基板6の中心孔にセンターピン30bを貫通させるように、かかる基板6をセンターピン30bに装着する。これにより、基板6は、図17の[状態10]に示す如く、センターピン30bの第2支持部TB2上に支持されることになる。つまり、センターピン30bの中心軸の位置と基板6の基準位置(中心孔の位置)とが一致した状態で、基板6がセンターピン30bに支持される。すなわち、基板6の中心位置と、上側モールド503aに形成されている凹凸パターンの中心点と、下側モールド503bに形成された凹凸パターンの中心点とが一致した状態となるのである。 After execution of the alignment operation (step S110), the camera unit 40 moves from the UV irradiation optical path, that is, from the opening 100a by the camera unit movement signal KG U supplied from the controller 200. Next, the controller 200 repeatedly determines whether or not the substrate 6 is supported on the center pin 30b until the substrate 6 is supported (step S111). Here, the substrate transfer device (not shown) attaches the substrate 6 to the center pin 30b so that the center pin 30b passes through the center hole of the substrate 6. As a result, the substrate 6 is supported on the second support portion TB2 of the center pin 30b as shown in [State 10] in FIG. That is, the substrate 6 is supported by the center pin 30b in a state where the position of the center axis of the center pin 30b and the reference position (the position of the center hole) of the substrate 6 coincide. That is, the center position of the substrate 6, the center point of the concavo-convex pattern formed on the upper mold 503a, and the center point of the concavo-convex pattern formed on the lower mold 503b coincide.
 上記ステップS111において、基板6がセンターピン30bに支持されていると判定されると、次に、コントローラ200は、上側ステージ505aを下方向に移動させるべきステージ駆動信号SGをステージ上下駆動ユニット511に供給する(ステップS112)。ステップS112の実行により、上側モールド保持部501aが、センターピン30bの中心軸方向において下側に移動する。 If it is determined in step S111 that the substrate 6 is supported by the center pin 30b, then the controller 200 sends a stage drive signal SG for moving the upper stage 505a downward to the stage vertical drive unit 511. Supply (step S112). By executing step S112, the upper mold holding unit 501a moves downward in the central axis direction of the center pin 30b.
 次に、コントローラ200は、上側モールド503aが基板6に接触したか否かを判定する(ステップS113)。ステップS113において上側モールド503aが基板6に接触していないと判定された場合、コントローラ200は、上記ステップS112の実行に戻って前述した如き動作を再び実行する。つまり、図17の[状態11]に示すように、上側モールド503aが基板6に接触するまで、上側モールド保持部501aを下方向に移動させるのである。 Next, the controller 200 determines whether or not the upper mold 503a has contacted the substrate 6 (step S113). When it is determined in step S113 that the upper mold 503a is not in contact with the substrate 6, the controller 200 returns to the execution of step S112 and performs the above-described operation again. That is, as shown in [State 11] in FIG. 17, the upper mold holding portion 501a is moved downward until the upper mold 503a contacts the substrate 6.
 上記ステップS113において上側モールド503aが基板6に接触したと判定された場合、コントローラ200は、上側モールド503a及び下側モールド503bを基板6に押圧させるべきモールド押圧動作を実行する(ステップS114)。かかるモールド押圧動作を実行する為に、コントローラ200は、上側モールド503a及び下側モールド503bを所定の押圧値PVADで基板6に押圧させるべく、上側ステージ505aを下方向に移動させるステージ駆動信号SGをステージ上下駆動ユニット511に所定時間供給する。これにより、先ず、下側モールド503bが基板6の上側転写層604aに接触し、下側モールド503bと共に基板6が下降する。その結果、図17の[状態11]に示すように、基板6の両面が、上側モールド503a及び下側モールド503bによって押圧され、その状態が所定時間保持される。よって、上側モールド503aに形成されている凹凸パターンが上側転写層604aに押圧されると共に、下側モールド503bに形成されている凹凸パターンが下側転写層604bに夫々押圧される。上側転写層604a及び下側転写層604bは液状(流動可能状態)にあるため、上側転写層604aが上側モールド503aに形成されている凹凸パターン形状に沿って変形すると共に、下側転写層604bが下側モールド503bに形成されている凹凸パターン形状に沿って夫々変形する。尚、上側モールド503a及び下側モールド503bを基板6に押し付ける圧力及び保持時間等と転写条件は、上側モールド503a及び下側モールド503bの凹凸パターン形状や上側転写層604a及び下側転写層604bの材料等に応じて適宜設定される。 When it is determined in step S113 that the upper mold 503a is in contact with the substrate 6, the controller 200 performs a mold pressing operation for pressing the upper mold 503a and the lower mold 503b against the substrate 6 (step S114). To perform such mold pressing operation, the controller 200, in order to press the substrate 6 the upper mold 503a and the lower mold 503b with a predetermined pressing value PV AD, stage drive signal to move the upper stage 505a downward SG Is supplied to the stage vertical drive unit 511 for a predetermined time. Thereby, first, the lower mold 503b contacts the upper transfer layer 604a of the substrate 6, and the substrate 6 is lowered together with the lower mold 503b. As a result, as shown in [State 11] in FIG. 17, both surfaces of the substrate 6 are pressed by the upper mold 503a and the lower mold 503b, and the state is maintained for a predetermined time. Therefore, the concave / convex pattern formed on the upper mold 503a is pressed against the upper transfer layer 604a, and the concave / convex pattern formed on the lower mold 503b is pressed against the lower transfer layer 604b. Since the upper transfer layer 604a and the lower transfer layer 604b are in a liquid state (flowable state), the upper transfer layer 604a is deformed along the uneven pattern shape formed in the upper mold 503a, and the lower transfer layer 604b is Each deforms along the uneven pattern shape formed in the lower mold 503b. Note that the pressure, holding time, and the like for pressing the upper mold 503a and the lower mold 503b against the substrate 6 and the transfer conditions are the uneven pattern shape of the upper mold 503a and the lower mold 503b and the material of the upper transfer layer 604a and the lower transfer layer 604b. It sets suitably according to etc.
 上記モールド押圧動作(ステップS114)の実行後、コントローラ200は、基板6の上側転写層604a及び下側転写層604b各々を硬化させるべき転写層硬化動作を実行する(ステップS115)。かかる転写層硬化動作を実行するにあたり、コントローラ200は、紫外線照射信号UVを上側UV照射ユニット508a及び下側UV照射ユニット508bに供給する。これにより、上側UV照射ユニット508aが転写材料を硬化させるべき紫外線を基板6の上側転写層604aに向けて照射すると共に、下側UV照射ユニット508bが転写材料を硬化させるべき紫外線を下側転写層604bに向けて照射する。紫外線が照射されることで、上側転写層604a及び下側転写層604b各々の転写層が硬化し、上側転写層604a及び下側転写層604b表面の凹凸パターンが確定する。 After execution of the mold pressing operation (step S114), the controller 200 executes a transfer layer curing operation for curing the upper transfer layer 604a and the lower transfer layer 604b of the substrate 6 (step S115). In executing the transfer layer curing operation, the controller 200 supplies the ultraviolet irradiation signal UV to the upper UV irradiation unit 508a and the lower UV irradiation unit 508b. As a result, the upper UV irradiation unit 508a irradiates the upper transfer layer 604a of the substrate 6 with ultraviolet rays for curing the transfer material, and the lower UV irradiation unit 508b applies the ultraviolet rays for curing the transfer material with the lower transfer layer. Irradiate toward 604b. By irradiating with ultraviolet rays, the transfer layers of the upper transfer layer 604a and the lower transfer layer 604b are cured, and the uneven pattern on the surfaces of the upper transfer layer 604a and the lower transfer layer 604b is determined.
 上記転写層硬化動作(ステップS115)の実行後、コントローラ200は、上側モールド503a及び下側モールド503bから基板6を離型させるべき離型動作を実行する(ステップS116)。かかる離型動作において、コントローラ200は、上側ステージ505aを所定距離だけ上方向に移動させるべきステージ駆動信号SGをステージ上下駆動ユニット511に供給する。これにより、図18の[状態13]の如く、上側モールド503aが基板6の上側転写層604aから離型する。更に、コントローラ200は、センターピン30bを上方向に移動させるべきセンターピン移動信号CGをセンターピン駆動ユニット507bに供給する。これにより、下側モールド503bから基板6が離型する。なお、上側ステージ505aの上方向への移動に伴って、上側モールド503aに基板6が密着して一緒に移動してしまわないように、図示しない固定部材にて基板6を固定するようにしても良い。又、上側ステージ505aとセンターピン30bとを同時に移動させても良い。この場合、上側ステージ505aの上昇速度をセンターピン30bの上昇速度よりも早くすることで、基板6に対して、上側モールド503aと下側モールド503bの離型を同時に行なうことが出来る。かかる離型動作により、上側モールド503aに形成されている凹凸パターンとは凹凸の状態が反転した凹凸状パターンが上側転写層604aに形成されていると共に、下側モールド503bに形成されている凹凸パターンとは凹凸の状態が反転した凹凸状パターンが下側転写層604bに形成されている基板6が得られる。そして、コントローラ200は、基板6をセンターピン30bから離脱させるべき指令を基板搬送装置に送出する。 After execution of the transfer layer curing operation (step S115), the controller 200 executes a mold release operation for releasing the substrate 6 from the upper mold 503a and the lower mold 503b (step S116). In such a mold release operation, the controller 200 supplies a stage drive signal SG for moving the upper stage 505a upward by a predetermined distance to the stage vertical drive unit 511. As a result, the upper mold 503a is released from the upper transfer layer 604a of the substrate 6 as shown in [State 13] in FIG. Furthermore, the controller 200 supplies the center pin moving signal CG L to move the center pin 30b upward to the center pin drive unit 507b. As a result, the substrate 6 is released from the lower mold 503b. Note that the substrate 6 may be fixed by a fixing member (not shown) so that the substrate 6 does not adhere to the upper mold 503a and move together with the upward movement of the upper stage 505a. good. Further, the upper stage 505a and the center pin 30b may be moved simultaneously. In this case, the upper mold 503a and the lower mold 503b can be released from the substrate 6 at the same time by making the rising speed of the upper stage 505a faster than the rising speed of the center pin 30b. By such a releasing operation, a concavo-convex pattern in which the concavo-convex state is reversed from the concavo-convex pattern formed in the upper mold 503a is formed in the upper transfer layer 604a and the concavo-convex pattern formed in the lower mold 503b The substrate 6 is obtained in which the concave / convex pattern in which the concave / convex state is inverted is formed on the lower transfer layer 604b. Then, the controller 200 sends a command to detach the substrate 6 from the center pin 30b to the substrate transfer device.
 以上の如き一連の動作により、基板6の上側転写層604a及び下側転写層604b各々に対して、上側モールド503a及び下側モールド503bによる両面パターン転写が為されるのである。 By the series of operations as described above, double-sided pattern transfer is performed by the upper mold 503a and the lower mold 503b for the upper transfer layer 604a and the lower transfer layer 604b of the substrate 6, respectively.
 次に、コントローラ200は、操作部201から、動作終了を示す動作指令信号が供給されているか否かを判定する(ステップS117)。ステップS117において動作終了を示す動作指令信号が供給されたと判定された場合、コントローラ200は、このインプリント処理プログラムを終了する。一方、ステップS117にて動作終了を表す動作指令信号が供給されていないと判定された場合、コントローラ200は、センターピン30bに支持されている基板6を基板搬送装置が取り外すまでの間待機した後、センターピン30bを図16の[状態6]に示す如き新たな基板6を装着するための所定位置に移動させるべきセンターピン移動信号CGをセンターピン駆動ユニット507bに供給する(ステップS118)。 Next, the controller 200 determines whether or not an operation command signal indicating the end of the operation is supplied from the operation unit 201 (step S117). If it is determined in step S117 that an operation command signal indicating the end of the operation has been supplied, the controller 200 ends the imprint processing program. On the other hand, when it is determined in step S117 that the operation command signal indicating the end of the operation is not supplied, the controller 200 waits until the substrate transfer device removes the substrate 6 supported by the center pin 30b. supplies center pin moving signal CG L to be moved to a predetermined position for mounting the center pin 30b of the new board 6 as shown in the state 6] in FIG. 16 to the center pin drive unit 507b (step S118).
 上記ステップS118の終了後、コントローラ200は、上記ステップS11の実行に戻り、前述した如き動作を繰り返し実行する。すなわち、コントローラ200は、先ず、上記ステップS111の実行により、センターピン30bに基板6が支持されているか否かの判定を、この基板6が支持されるまで繰り返し行なうのである。ここで、基板搬送装置(図示せぬ)は、基板6の中心孔にセンターピン30bを貫通させるように、新たな基板6をセンターピン30bに装着する。すると、コントローラ200は、上記ステップS111にて基板6がセンターピン30bに支持されたと判定し、再び上記ステップS112~S118の動作を実行することにより、新たに装着された基板6に対して連続してパターン転写を行なうのである。 After the end of step S118, the controller 200 returns to the execution of step S11 and repeatedly executes the operation as described above. That is, first, the controller 200 repeatedly determines whether or not the substrate 6 is supported on the center pin 30b by executing the above step S111 until the substrate 6 is supported. Here, the substrate transfer device (not shown) attaches a new substrate 6 to the center pin 30b so that the center pin 30b passes through the center hole of the substrate 6. Then, the controller 200 determines that the substrate 6 is supported by the center pin 30b in the step S111, and executes the operations of the steps S112 to S118 again, thereby continuously with respect to the newly mounted substrate 6. Pattern transfer.
 以上の如く、図13及び図14に示すインプリント処理プログラムの実行によれば、基板6を装着する前に、基板6及びモールド(503a、503b)同士のアライメントを実施するようにしたので、図4及び図5に示すインプリント処理プログラムを実行した場合に比して、その実行ステップ数を減らすことが可能となる。 As described above, according to the execution of the imprint processing program shown in FIG. 13 and FIG. 14, the substrate 6 and the molds (503a, 503b) are aligned with each other before the substrate 6 is mounted. Compared with the case where the imprint processing program shown in FIGS. 4 and 5 is executed, the number of execution steps can be reduced.
 上記実施例1及び2では、基板6の両面に対してパターン転写を実施させる場合の動作について説明したが、基板6の片面だけにパターン転写を行なう場合にも本願のインプリント方法を適用することが可能である。 In the first and second embodiments, the operation when pattern transfer is performed on both surfaces of the substrate 6 has been described. However, the imprint method of the present application is also applied when pattern transfer is performed only on one surface of the substrate 6. Is possible.
 図20及び図21は、かかる点に鑑みて為された片面転写用のインプリント処理プログラムの一例である。 FIG. 20 and FIG. 21 show an example of an imprint processing program for single-sided transfer made in view of such points.
 以下に、かかるインプリント処理プログラムの実行によって為されるパターン転写動作について、図22~図24を参照しつつ説明する。尚、図22~図24は、パターン転写動作における各段階毎に、上側モールド保持部501a、下側モールド保持部501b、及びセンターピン30b各々の状態(位置関係)を模式的に表すものである。 Hereinafter, a pattern transfer operation performed by executing the imprint processing program will be described with reference to FIGS. 22 to 24 schematically show the states (positional relationships) of the upper mold holding portion 501a, the lower mold holding portion 501b, and the center pin 30b for each stage in the pattern transfer operation. .
 図20において、先ず、コントローラ200は、センターピン30bを所定の初期位置に移動させるべきセンターピン移動信号CGをセンターピン駆動ユニット507bに供給する(ステップS201)。ステップS201の実行により、センターピン駆動ユニット507bは、センターピン30bを、図22の[状態1]に示す如き初期状態、つまり、センターピン30bにおける第1支持部TB1及び第2支持部TB2が共に、下側モールド保持部501bのモールド保持面よりも上方の位置に現れる位置に移動する。 In Figure 20, first, the controller 200 supplies the center pin moving signal CG L to move the center pin 30b to a predetermined initial position to the center pin drive unit 507b (step S201). By executing step S201, the center pin driving unit 507b causes the center pin 30b to be in the initial state as shown in [State 1] in FIG. 22, that is, the first support portion TB1 and the second support portion TB2 in the center pin 30b are both in the initial state. Then, it moves to a position that appears at a position above the mold holding surface of the lower mold holding portion 501b.
 次に、コントローラ200は、センターピン30bが上側モールド503aを支持しているか否かの判定を、上側モールド503aが支持されるまで繰り返し実行する(ステップS202)。ここで、モールド搬送装置(図示せぬ)は、前述した如き上側モールド503aの中心孔CAにセンターピン30bを貫通させるように、かかる上側モールド503aをセンターピン30bに装着する。これにより、上側モールド503aは、そのパターン面を下方に向けた状態で図22の[状態2]に示すように、センターピン30bの第1支持部TB1に支持されることになる。 Next, the controller 200 repeatedly determines whether or not the center pin 30b supports the upper mold 503a until the upper mold 503a is supported (step S202). Here, the mold conveying device (not shown) attaches the upper mold 503a to the center pin 30b so that the center pin 30b passes through the center hole CA of the upper mold 503a as described above. Thus, the upper mold 503a is supported by the first support portion TB1 of the center pin 30b as shown in [State 2] in FIG. 22 with the pattern surface facing downward.
 上記ステップS202において、上側モールド503aがセンターピン30bに支持されていると判定されると、コントローラ200は、上側ステージ505aを下方向に移動させるべきステージ駆動信号SGをステージ上下駆動ユニット511に供給する(ステップS203)。ステップS203の実行により、上側モールド保持部501aを含む上側機構部全体が徐々に下方向に移動する。 If it is determined in step S202 that the upper mold 503a is supported by the center pin 30b, the controller 200 supplies a stage drive signal SG for moving the upper stage 505a downward to the stage vertical drive unit 511. (Step S203). By executing step S203, the entire upper mechanism section including the upper mold holding section 501a gradually moves downward.
 次に、コントローラ200は、上側モールド保持部501aのモールド保持面が、上側モールド503aに接触したか否かを判定する(ステップS204)。ステップS204において上側モールド保持部501aのモールド保持面が上側モールド503aに接触していないと判定された場合、コントローラ200は、上記ステップS203の実行に戻って前述した如き動作を再び実行する。つまり、図22の[状態3]に示すように、上側モールド保持部501aのモールド保持面が上側モールド503aに接触するまで、上側モールド保持部501aを下方向に移動させるのである。 Next, the controller 200 determines whether or not the mold holding surface of the upper mold holding part 501a has come into contact with the upper mold 503a (step S204). When it is determined in step S204 that the mold holding surface of the upper mold holding portion 501a is not in contact with the upper mold 503a, the controller 200 returns to the execution of step S203 and executes the operation as described above again. That is, as shown in [State 3] in FIG. 22, the upper mold holding part 501a is moved downward until the mold holding surface of the upper mold holding part 501a contacts the upper mold 503a.
 上記ステップS204において上側モールド保持部501aのモールド保持面が上側モールド503aに接触したと判定された場合、コントローラ200は、上側モールド保持信号MHを上側モールド保持部501aに供給する(ステップS205)。これにより、図10に示す如き上側モールド503aの中心位置Qをセンターピン30bの中心軸と一致させた状態で、上側モールド503aを上側モールド保持部501aのモールド保持面に保持する。 When it is determined in step S204 that the mold holding surface of the upper mold holding unit 501a has contacted the upper mold 503a, the controller 200 supplies the upper mold holding signal MH U to the upper mold holding unit 501a (step S205). Accordingly, the upper mold 503a is held on the mold holding surface of the upper mold holding portion 501a in a state where the center position Q of the upper mold 503a as shown in FIG. 10 is aligned with the center axis of the center pin 30b.
 次に、コントローラ200は、上側ステージ505aを所定距離だけ上方向に移動させるべきステージ駆動信号SGをステージ上下駆動ユニット511に供給する(ステップS206)。ステップS206の実行により、図22の[状態4]に示すように、上側モールド保持部501aが、センターピン30bの中心軸方向において上側に移動する。これにより、上側モールド503aがセンターピン30bから離脱する。すなわち、上記ステップS1からS6を実施することによって、上側モールド503aは、その基準位置がセンターピン30bの中心軸と一致した状態で、上側モールド保持部501aのモールド保持面に保持されるのである。 Next, the controller 200 supplies a stage drive signal SG for moving the upper stage 505a upward by a predetermined distance to the stage vertical drive unit 511 (step S206). By executing step S206, as shown in [State 4] in FIG. 22, the upper mold holding portion 501a moves upward in the central axis direction of the center pin 30b. As a result, the upper mold 503a is detached from the center pin 30b. That is, by performing the above steps S1 to S6, the upper mold 503a is held on the mold holding surface of the upper mold holding portion 501a in a state where the reference position coincides with the central axis of the center pin 30b.
 次に、コントローラ200は、センターピン30bに基板6が支持されているか否かの判定を、この基板6が支持されるまで繰り返し実行する(ステップS207)。ここで、基板搬送装置(図示せぬ)は、基板6の中心孔にセンターピン30bを貫通させるように、かかる基板6をセンターピン30bに装着する。これにより、基板6は、図23の[状態5]に示す如く、センターピン30bの第2支持部TB2上に支持されることになる。つまり、センターピン30bの中心軸の位置と基板6の基準位置(中心孔の位置)とが一致した状態で、基板6がセンターピン30bに支持されるのである。尚、基板6の一方の面(ここでは基板の上側)に上側転写層604aが形成されている。 Next, the controller 200 repeatedly determines whether or not the substrate 6 is supported by the center pin 30b until the substrate 6 is supported (step S207). Here, the substrate transfer device (not shown) attaches the substrate 6 to the center pin 30b so that the center pin 30b passes through the center hole of the substrate 6. Accordingly, the substrate 6 is supported on the second support portion TB2 of the center pin 30b as shown in [State 5] in FIG. That is, the substrate 6 is supported by the center pin 30b in a state where the position of the center axis of the center pin 30b and the reference position (the position of the center hole) of the substrate 6 coincide. An upper transfer layer 604a is formed on one surface of the substrate 6 (here, the upper side of the substrate).
 上記ステップS207において、基板6がセンターピン30bに支持されていると判定されると、次に、コントローラ200は、上側モールド503aと基板6との位置合わせを行なうべきモールド・基板アライメント動作を実行する(ステップS208)。かかるモールド・基板アライメント動作において、先ず、図24の[状態6]に示すように、コントローラ200から供給されたカメラユニット移動信号KGによってカメラユニット40を開口部100aの中心位置に移動させる。次に、コントローラ200は、カメラ41aにて得られた撮影信号PDaに基づく1フレーム画像中に、センターピン30bの先端部の表面が現れるようになるまで、上側ステージ505aを下方向に移動させるべきステージ駆動信号SGをステージ上下駆動ユニット511に供給する。すなわち、これにより、カメラ41aの焦点をセンターピン30bの先端部の表面に合焦させるべきフォーカス調整を行なうのである。次に、コントローラ200は、上記1フレーム画像内に存在するセンターピン30bの先端部画像をもとに、センターピン30bの中心軸CJが、この1フレーム画像の中心位置に位置するように、カメラユニット40自体の設置位置を移動させるべきユニット位置調整信号UPをカメラユニット駆動ステージ90に供給する。これにより、図23の[状態6]に示す如く、カメラ41aの撮影軸とセンターピン30bの中心軸CJ(破線にて示す)とが一致するような位置にカメラユニット40が配置される。次に、コントローラ200は、図23の[状態7]に示すように、カメラ41b~41dにて上側モールド503aのアライメントラインPLを撮影する。そして、コントローラ200は、これらカメラ41b~41dによって撮影して得られた図11(b)に示す如き1フレーム画像Fb~Fd各々の中心位置(十字印にて示す)に、上側モールド503aのアライメントラインPLが位置するように、上側モールド503aの位置を調整する。すなわち、コントローラ200は、上側モールド503aの位置を移動させるべき、上側XYステージ移動信号XYを上側モールド駆動ステージ500aに供給するのである。 If it is determined in step S207 that the substrate 6 is supported by the center pin 30b, then the controller 200 executes a mold / substrate alignment operation in which the upper mold 503a and the substrate 6 are to be aligned. (Step S208). In such molded substrate alignment operation, first, as shown in State 6] in FIG. 24, to move the camera unit 40 to the center position of the opening 100a by the camera unit movement signal KG U supplied from the controller 200. Next, the controller 200 should move the upper stage 505a downward until the surface of the tip of the center pin 30b appears in one frame image based on the photographing signal PDa obtained by the camera 41a. A stage drive signal SG is supplied to the stage vertical drive unit 511. In other words, this adjusts the focus to focus the camera 41a on the surface of the tip of the center pin 30b. Next, the controller 200 determines that the center axis CJ of the center pin 30b is located at the center position of the one frame image based on the tip image of the center pin 30b existing in the one frame image. A unit position adjustment signal UP for moving the installation position of the unit 40 itself is supplied to the camera unit drive stage 90. Accordingly, as shown in [State 6] in FIG. 23, the camera unit 40 is arranged at a position where the imaging axis of the camera 41a and the center axis CJ (indicated by a broken line) of the center pin 30b coincide. Next, as shown in [State 7] in FIG. 23, the controller 200 photographs the alignment line PL of the upper mold 503a with the cameras 41b to 41d. The controller 200 aligns the upper mold 503a at the center position (indicated by a cross) of each of the one-frame images Fb to Fd as shown in FIG. 11B obtained by photographing with these cameras 41b to 41d. The position of the upper mold 503a is adjusted so that the line PL is positioned. That is, the controller 200 may be moved to the position of the upper mold 503a, is to supply the upper XY stage movement signal XY U to the upper mold driving stage 500a.
 かかるモールド・基板アライメント動作(ステップS208)によれば、図11(b)に示すように、上側モールド503aに形成されているアライメントラインPLの中心位置Rと、センターピン30bの中心軸CJの位置とが一致することになる。これにより、基板6の中心位置と、上側モールド503aに形成されている凹凸パターンの中心点とが互いに一致するのである。 According to the mold / substrate alignment operation (step S208), as shown in FIG. 11B, the center position R of the alignment line PL formed in the upper mold 503a and the position of the center axis CJ of the center pin 30b. Will match. Thereby, the center position of the board | substrate 6 and the center point of the uneven | corrugated pattern currently formed in the upper mold 503a mutually correspond.
 上記モールド・基板アライメント動作(ステップS208)の実行後、コントローラ200から供給されたカメラユニット移動信号KGによってカメラユニット40がUV照射の光路上、すなわち、開口部100a上から移動する。次に、コントローラ200は、上側ステージ505aを下方向に移動させるべきステージ駆動信号SGをステージ上下駆動ユニット511に供給する(ステップS209)。ステップS209の実行により、上側モールド保持部501aが、センターピン30bの中心軸方向において下側に移動する。 After execution of the mold / substrate alignment operation (step S208), the camera unit 40 is moved from the UV irradiation optical path, that is, from the opening 100a by the camera unit movement signal KG U supplied from the controller 200. Next, the controller 200 supplies a stage drive signal SG for moving the upper stage 505a downward to the stage vertical drive unit 511 (step S209). By executing step S209, the upper mold holding unit 501a moves downward in the central axis direction of the center pin 30b.
 次に、コントローラ200は、上側モールド503aが基板6に接触したか否かを判定する(ステップS210)。ステップS210において上側モールド503aが基板6に接触していないと判定された場合、コントローラ200は、上記ステップS209の実行に戻って前述した如き動作を再び実行する。つまり、図23の[状態8]に示すように、上側モールド503aが基板6に接触するまで、上側モールド保持部501aを下方向に移動させるのである。 Next, the controller 200 determines whether or not the upper mold 503a has contacted the substrate 6 (step S210). When it is determined in step S210 that the upper mold 503a is not in contact with the substrate 6, the controller 200 returns to the execution of step S209 and performs the above-described operation again. That is, as shown in [State 8] in FIG. 23, the upper mold holding portion 501a is moved downward until the upper mold 503a contacts the substrate 6.
 上記ステップS210において上側モールド503aが基板6に接触したと判定された場合、コントローラ200は、上側モールド503aを基板6に押圧させるべきモールド押圧動作を実行する(ステップS211)。モールド押圧動作を実行する為に、コントローラ200は、上側モールド503aを所定の押圧値PVADで基板6に押圧させるべく、上側ステージ505aを下方向に移動させるステージ駆動信号SGをステージ上下駆動ユニット511に所定時間供給する。これにより、上側モールド503aと共に基板6が下降し、図23の[状態8]に示すように、基板6の上側転写層604aが上側モールド503aによって押圧され、その状態が所定時間保持される。その結果、上側モールド503aに形成されている凹凸パターンが上側転写層604aに押圧される。この際、上側転写層604aは液状(流動可能状態)にあるため、上側モールド503aに形成されている凹凸パターン形状に沿って変形する。尚、上側モールド503aを基板6に押し付ける圧力及び保持時間等の転写条件は、上側モールド503aの凹凸パターン形状や上側転写層604aの材料等に応じて適宜設定される。 When it is determined in step S210 that the upper mold 503a has come into contact with the substrate 6, the controller 200 performs a mold pressing operation for pressing the upper mold 503a against the substrate 6 (step S211). To perform a mold pressing operation, the controller 200, in order to press the substrate 6 the upper mold 503a with a predetermined pressing value PV AD, stage drive signal SG stage vertical drive unit for moving the upper stage 505a downward 511 For a predetermined time. As a result, the substrate 6 is lowered together with the upper mold 503a, and the upper transfer layer 604a of the substrate 6 is pressed by the upper mold 503a as shown in [State 8] in FIG. 23, and this state is maintained for a predetermined time. As a result, the uneven pattern formed on the upper mold 503a is pressed against the upper transfer layer 604a. At this time, since the upper transfer layer 604a is in a liquid state (flowable state), the upper transfer layer 604a is deformed along the uneven pattern shape formed on the upper mold 503a. The transfer conditions such as the pressure and holding time for pressing the upper mold 503a against the substrate 6 are appropriately set according to the concave / convex pattern shape of the upper mold 503a, the material of the upper transfer layer 604a, and the like.
 上記モールド押圧動作(ステップS211)の実行後、コントローラ200は、基板6の上側転写層604aを硬化させるべき転写層硬化動作を実行する(ステップS212)。かかる転写層硬化動作を実行するにあたり、コントローラ200は、紫外線照射信号UVを上側UV照射ユニット508aに供給する。これにより、上側UV照射ユニット508aが転写材料を硬化させるべき紫外線を基板6の上側転写層604aに向けて照射する。紫外線が照射されることにより、上側転写層604aの転写層が硬化し、この上側転写層604a表面の凹凸パターンが確定する。 After execution of the mold pressing operation (step S211), the controller 200 executes a transfer layer curing operation for curing the upper transfer layer 604a of the substrate 6 (step S212). In executing the transfer layer curing operation, the controller 200 supplies the ultraviolet irradiation signal UV to the upper UV irradiation unit 508a. As a result, the upper UV irradiation unit 508a irradiates the upper transfer layer 604a of the substrate 6 with ultraviolet rays for curing the transfer material. By irradiating with ultraviolet rays, the transfer layer of the upper transfer layer 604a is cured, and the uneven pattern on the surface of the upper transfer layer 604a is determined.
 上記転写層硬化動作(ステップS212)の実行後、コントローラ200は、上側モールド503aから基板6を離型させるべき離型動作を実行する(ステップS213)。かかる離型動作において、コントローラ200は、上側ステージ505aを所定距離だけ上方向に移動させるべきステージ駆動信号SGをステージ上下駆動ユニット511に供給すると共に、センターピン30bを上方向に移動させるべきセンターピン移動信号CGをセンターピン駆動ユニット507bに供給する。これにより、図24の[状態10]の如く、上側モールド503aが基板6の上側転写層604aから離型する。なお、上側ステージ505aの上方向への移動に伴って、上側モールド503aに基板6が密着して一緒に移動してしまわないように、図示しない固定部材にて基板6を固定するようにしても良い。かかる離型動作により、上側モールド503aに形成されている凹凸パターンとは凹凸の状態が反転した凹凸状パターンが上側転写層604aに形成されている基板6が得られる。更に、コントローラ200は、センターピン30bを上方向に移動させるべきセンターピン移動信号CGをセンターピン駆動ユニット507bに供給する。これにより、図24の[状態10]の如く、基板6がセンターピン30bに支持された状態となる。そして、コントローラ200は、基板6をセンターピン30bから離脱させるべき指令を基板搬送装置に送出する。 After executing the transfer layer curing operation (step S212), the controller 200 executes a mold release operation for releasing the substrate 6 from the upper mold 503a (step S213). In such a mold release operation, the controller 200 supplies a stage drive signal SG for moving the upper stage 505a upward by a predetermined distance to the stage vertical drive unit 511 and a center pin for moving the center pin 30b upward. supplying a shift signal CG L to the center pin drive unit 507b. Accordingly, as shown in [State 10] in FIG. 24, the upper mold 503a is released from the upper transfer layer 604a of the substrate 6. Note that the substrate 6 may be fixed by a fixing member (not shown) so that the substrate 6 does not adhere to the upper mold 503a and move together with the upward movement of the upper stage 505a. good. With this mold release operation, the substrate 6 is obtained in which the concavo-convex pattern in which the concavo-convex state is reversed from the concavo-convex pattern formed in the upper mold 503a is formed in the upper transfer layer 604a. Furthermore, the controller 200 supplies the center pin moving signal CG L to move the center pin 30b upward to the center pin drive unit 507b. As a result, as shown in [State 10] in FIG. 24, the substrate 6 is supported by the center pin 30b. Then, the controller 200 sends a command to detach the substrate 6 from the center pin 30b to the substrate transfer device.
 以上の如き一連の動作により、基板6の上側転写層604aに対して、上側モールド503aによる片面パターン転写が為されるのである。 Through the series of operations as described above, single-sided pattern transfer by the upper mold 503a is performed on the upper transfer layer 604a of the substrate 6.
 次に、コントローラ200は、操作部201から、動作終了を示す動作指令信号が供給されているか否かを判定する(ステップS214)。ステップS214において動作終了を示す動作指令信号が供給されたと判定された場合、コントローラ200は、このインプリント処理プログラムを終了する。一方、ステップS214にて動作終了を表す動作指令信号が供給されていないと判定された場合、コントローラ200は、センターピン30bに支持されている基板6を基板搬送装置が取り外すまでの間待機した後、センターピン30bを図22の[状態4]に示す如き、基板6を装着するための所定位置に移動させるべきセンターピン移動信号CGをセンターピン駆動ユニット507bに供給する(ステップS215)。 Next, the controller 200 determines whether or not an operation command signal indicating the end of the operation is supplied from the operation unit 201 (step S214). If it is determined in step S214 that an operation command signal indicating the end of the operation has been supplied, the controller 200 ends the imprint processing program. On the other hand, if it is determined in step S214 that the operation command signal indicating the end of the operation is not supplied, the controller 200 waits until the substrate transfer apparatus removes the substrate 6 supported by the center pin 30b. , as shown the center pin 30b to state 4 in FIG. 22, and supplies the center pin moving signal CG L to be moved to a predetermined position for mounting the substrate 6 to the center pin drive unit 507b (step S215).
 上記ステップS215の終了後、コントローラ200は、センターピン30bに基板6が支持されているか否かの判定を、この基板6が支持されるまで繰り返し実行する(ステップS216)。ここで、基板搬送装置(図示せぬ)は、基板6の中心孔にセンターピン30bを貫通させるように、新たな基板6をセンターピン30bに装着する。コントローラ200は、上記ステップS216にて基板6がセンターピン30bに支持されたと判定し、上記ステップS209の実行に戻り、前述した如き動作を繰り返し実行する。これにより、新たに装着された基板6に対して連続して片面パターン転写を行なうのである。 After step S215, the controller 200 repeatedly determines whether or not the substrate 6 is supported on the center pin 30b until the substrate 6 is supported (step S216). Here, the substrate transfer device (not shown) attaches a new substrate 6 to the center pin 30b so that the center pin 30b passes through the center hole of the substrate 6. The controller 200 determines in step S216 that the substrate 6 is supported by the center pin 30b, returns to the execution of step S209, and repeatedly executes the operation as described above. Thereby, single-sided pattern transfer is continuously performed on the newly mounted substrate 6.
 尚、図20及び図21に示すインプリント処理プログラムでは、上側面だけに転写層(604a)が形成されている基板6に対して、上側からモールド(503a)を押し付けることによりパターン転写を行なうようにしているが、下側面だけに転写層(604b)が形成されている基板6を、その下側に設けられているモールド(503b)に押し付けることにより片面パターン転写を行なうようにしても良い。 In the imprint processing program shown in FIGS. 20 and 21, the pattern transfer is performed by pressing the mold (503a) from the upper side against the substrate 6 on which the transfer layer (604a) is formed only on the upper surface. However, single-sided pattern transfer may be performed by pressing the substrate 6 on which the transfer layer (604b) is formed only on the lower surface against the mold (503b) provided on the lower surface.
 上記実施例3に示した図20及び図21のインプリント処理プログラムでは、基板6を装着してからモールド及び基板間のアライメント動作(ステップS208)を実行するようにしているが、基板6を装着しない状態でモールド及び基板間のアライメント動作を実行するようにしても良い。 In the imprint processing program of FIGS. 20 and 21 shown in the third embodiment, the substrate 6 is mounted and then the alignment operation (step S208) between the mold and the substrate is executed. You may make it perform alignment operation between a mold and a board | substrate in the state which does not carry out.
 図25及び図26は、かかる点に鑑みて為されたインプリント処理プログラムの他の一例を示す図である。又、図27~図29は、このインプリント処理プログラムの実行によって為されるパターン転写動作を各段階毎に模式的に表すものである。 25 and 26 are diagrams showing another example of the imprint processing program made in view of the above points. FIGS. 27 to 29 schematically show the pattern transfer operation performed by executing the imprint processing program for each stage.
 尚、図25に示されるステップS301~S306による制御は、図20に示されるステップS201~S2066と同一であり、且つかかるステップS301~S306の実行による各段階毎のパターン転写動作、つまり図27の[状態1]~[状態4]についても図22の[状態1]~[状態4]と同一である。 The control in steps S301 to S306 shown in FIG. 25 is the same as that in steps S201 to S2066 shown in FIG. 20, and the pattern transfer operation at each stage by the execution of steps S301 to S306, that is, in FIG. [State 1] to [State 4] are the same as [State 1] to [State 4] in FIG.
 よって、以下に、ステップS306の実行後の各ステップの動作について、図26及び図28~図29を参照しつつ説明する。 Therefore, the operation of each step after execution of step S306 will be described below with reference to FIG. 26 and FIGS.
 図25に示されるステップS306の実行後、コントローラ200は、上側モールド503aと基板6との位置合わせを行なうべきモールド・基板アライメント動作を実行する(ステップS307)。 After execution of step S306 shown in FIG. 25, the controller 200 executes a mold / substrate alignment operation in which the upper mold 503a and the substrate 6 should be aligned (step S307).
 かかるモールド・基板アライメント動作において、コントローラ200は、先ず、カメラユニット40を開口部100aの中心位置に移動させるためにカメラユニット移動信号KGを供給する。次に、コントローラ200は、カメラ41aにて得られた撮影信号PDaに基づく1フレーム画像中に、センターピン30bの先端部の表面が現れるようになるまで、上側ステージ505aを下方向に移動させるべきステージ駆動信号SGをステージ上下駆動ユニット511に供給する。すなわち、これにより、カメラ41aの焦点をセンターピン30bの先端部の表面に合焦させるべきフォーカス調整を行なうのである。次に、コントローラ200は、上記1フレーム画像内に存在するセンターピン30bの先端部画像をもとに、センターピン30bの中心軸CJが、この1フレーム画像の中心位置に位置するように、カメラユニット40自体の設置位置を移動させるべきユニット位置調整信号UPをカメラユニット駆動ステージ90に供給する。これにより、図28の[状態5]に示す如く、カメラ41aの撮影軸とセンターピン30bの中心軸CJ(破線にて示す)とが一致するような位置にカメラユニット40が配置される。次に、コントローラ200は、図28の[状態6]に示すように、カメラ41b~41dにて上側モールド503aのアライメントラインPLを撮影する。そして、コントローラ200は、これらカメラ41b~41dによって撮影して得られた図11(b)に示す如き1フレーム画像Fb~Fd各々の中心位置(十字印にて示す)に、上側モールド503aのアライメントラインPLが位置するように、上側モールド503aの位置を調整する。すなわち、コントローラ200は、上側モールド503aの位置を移動させるべき、上側XYステージ移動信号XYを上側モールド駆動ステージ500aに供給するのである。 In such molded substrate alignment operation, the controller 200 first supplies the camera unit movement signal KG U to move the camera unit 40 to the center position of the opening 100a. Next, the controller 200 should move the upper stage 505a downward until the surface of the tip of the center pin 30b appears in one frame image based on the photographing signal PDa obtained by the camera 41a. A stage drive signal SG is supplied to the stage vertical drive unit 511. In other words, this adjusts the focus to focus the camera 41a on the surface of the tip of the center pin 30b. Next, the controller 200 determines that the center axis CJ of the center pin 30b is located at the center position of the one frame image based on the tip image of the center pin 30b existing in the one frame image. A unit position adjustment signal UP for moving the installation position of the unit 40 itself is supplied to the camera unit drive stage 90. As a result, as shown in [State 5] in FIG. 28, the camera unit 40 is arranged at a position where the imaging axis of the camera 41a and the center axis CJ (indicated by a broken line) of the center pin 30b coincide. Next, as shown in [State 6] in FIG. 28, the controller 200 photographs the alignment line PL of the upper mold 503a with the cameras 41b to 41d. The controller 200 aligns the upper mold 503a at the center position (indicated by a cross) of each of the one-frame images Fb to Fd as shown in FIG. 11B obtained by photographing with the cameras 41b to 41d. The position of the upper mold 503a is adjusted so that the line PL is positioned. That is, the controller 200 may be moved to the position of the upper mold 503a, is to supply the upper XY stage movement signal XY U to the upper mold driving stage 500a.
 上記モールド・基板アライメント動作(ステップS307)によれば、図11(b)に示すように、上側モールド503aに形成されているアライメントラインPLの中心位置Rと、センターピン30bの中心軸CJの位置とが一致することになる。これにより、センターピン30bの中心軸CJと、上側モールド503aに形成されている凹凸パターンの中心点とが互いに一致するのである。 According to the mold / substrate alignment operation (step S307), as shown in FIG. 11B, the center position R of the alignment line PL formed in the upper mold 503a and the position of the center axis CJ of the center pin 30b. Will match. Thereby, the center axis CJ of the center pin 30b and the center point of the concavo-convex pattern formed in the upper mold 503a coincide with each other.
 上記モールド・基板アライメント動作(ステップS307)の実行後、カメラユニット40をUV照射の光路上、すなわち、開口部100a上から移動させるために、コントローラ200はカメラユニット移動信号KGを供給する。次に、コントローラ200は、センターピン30bに基板6が支持されているか否かの判定を、この基板6が支持されるまで繰り返し実行する(ステップS308)。ここで、基板搬送装置(図示せぬ)は、基板6の中心孔にセンターピン30bを貫通させるように、かかる基板6をセンターピン30bに装着する。これにより、基板6は、図28の[状態7]に示す如く、センターピン30bの第2支持部TB2上に支持されることになる。つまり、センターピン30bの中心軸CJの位置と基板6の基準位置(中心孔の位置)とが一致した状態で、基板6がセンターピン30bに支持される。すなわち、基板6の中心位置と、上側モールド503aに形成されている凹凸パターンの中心点とが一致した状態となるのである。 After the execution of the mold substrate alignment operation (step S307), the optical path of the camera unit 40 UV irradiation, i.e., to move from the opening 100a, the controller 200 supplies the camera unit movement signal KG U. Next, the controller 200 repeatedly determines whether or not the substrate 6 is supported on the center pin 30b until the substrate 6 is supported (step S308). Here, the substrate transfer device (not shown) attaches the substrate 6 to the center pin 30b so that the center pin 30b passes through the center hole of the substrate 6. As a result, the substrate 6 is supported on the second support portion TB2 of the center pin 30b as shown in [State 7] in FIG. That is, the substrate 6 is supported by the center pin 30b in a state where the position of the center axis CJ of the center pin 30b and the reference position (the position of the center hole) of the substrate 6 coincide. That is, the center position of the substrate 6 coincides with the center point of the uneven pattern formed on the upper mold 503a.
 上記ステップS308において、基板6がセンターピン30bに支持されていると判定されると、次に、コントローラ200は、上側ステージ505aを下方向に移動させるべきステージ駆動信号SGをステージ上下駆動ユニット511に供給する(ステップS309)。ステップS309の実行により、上側モールド保持部501aが、センターピン30bの中心軸方向において下側に移動する。 If it is determined in step S308 that the substrate 6 is supported by the center pin 30b, then the controller 200 sends a stage drive signal SG for moving the upper stage 505a downward to the stage vertical drive unit 511. Supply (step S309). By executing step S309, the upper mold holding unit 501a moves downward in the central axis direction of the center pin 30b.
 次に、コントローラ200は、上側モールド503aが基板6に接触したか否かを判定する(ステップS310)。ステップS310において上側モールド503aが基板6に接触していないと判定された場合、コントローラ200は、上記ステップS309の実行に戻って前述した如き動作を再び実行する。つまり、図28の[状態8]に示すように、上側モールド503aが基板6に接触するまで、上側モールド保持部501aを下方向に移動させるのである。 Next, the controller 200 determines whether or not the upper mold 503a has contacted the substrate 6 (step S310). When it is determined in step S310 that the upper mold 503a is not in contact with the substrate 6, the controller 200 returns to the execution of step S309 and performs the above-described operation again. That is, as shown in [State 8] in FIG. 28, the upper mold holding portion 501a is moved downward until the upper mold 503a contacts the substrate 6.
 上記ステップS310において上側モールド503aが基板6に接触したと判定された場合、コントローラ200は、上側モールド503aを基板6に押圧させるべきモールド押圧動作を実行する(ステップS311)。かかるモールド押圧動作を実行する為に、コントローラ200は、上側モールド503aを所定の押圧値PVADで基板6に押圧させるべく、上側ステージ505aを下方向に移動させるステージ駆動信号SGをステージ上下駆動ユニット511に所定時間供給する。これにより、上側モールド503aと共に基板6が下降し、図28の[状態8]に示すように、基板6の上側転写層604aが上側モールド503aによって押圧され、その状態が所定時間保持される。その結果、上側モールド503aに形成されている凹凸パターンが上側転写層604aに押圧される。この際、上側転写層604aは液状(流動可能状態)にあるため、上側モールド503aに形成されている凹凸パターン形状に沿って変形する。尚、上側モールド503aを基板6に押し付ける圧力及び保持時間等の転写条件は、上側モールド503aの凹凸パターン形状や上側転写層604aの材料等に応じて適宜設定される。 When it is determined in step S310 that the upper mold 503a has come into contact with the substrate 6, the controller 200 performs a mold pressing operation for pressing the upper mold 503a against the substrate 6 (step S311). To perform such mold pressing operation, the controller 200, in order to press the substrate 6 the upper mold 503a with a predetermined pressing value PV AD, vertical stage drive unit stage drive signal SG to move the upper stage 505a downward 511 is supplied for a predetermined time. As a result, the substrate 6 is lowered together with the upper mold 503a, and the upper transfer layer 604a of the substrate 6 is pressed by the upper mold 503a as shown in [State 8] in FIG. 28, and this state is maintained for a predetermined time. As a result, the uneven pattern formed on the upper mold 503a is pressed against the upper transfer layer 604a. At this time, since the upper transfer layer 604a is in a liquid state (flowable state), the upper transfer layer 604a is deformed along the uneven pattern shape formed on the upper mold 503a. The transfer conditions such as the pressure and holding time for pressing the upper mold 503a against the substrate 6 are appropriately set according to the concave / convex pattern shape of the upper mold 503a, the material of the upper transfer layer 604a, and the like.
 上記モールド押圧動作(ステップS311)の実行後、コントローラ200は、基板6の上側転写層604aを硬化させるべき転写層硬化動作を実行する(ステップS312)。かかる転写層硬化動作を実行するにあたり、コントローラ200は、紫外線照射信号UVを上側UV照射ユニット508aに供給する。これによって、上側UV照射ユニット508aが転写材料を硬化させるべき紫外線を基板6の上側転写層604aに向けて照射する。紫外線が照射されることにより、上側転写層604aの転写層が硬化し、この上側転写層604a表面の凹凸パターンが確定する。 After execution of the mold pressing operation (step S311), the controller 200 executes a transfer layer curing operation for curing the upper transfer layer 604a of the substrate 6 (step S312). In executing the transfer layer curing operation, the controller 200 supplies the ultraviolet irradiation signal UV to the upper UV irradiation unit 508a. As a result, the upper UV irradiation unit 508a irradiates the upper transfer layer 604a of the substrate 6 with ultraviolet rays for curing the transfer material. By irradiating with ultraviolet rays, the transfer layer of the upper transfer layer 604a is cured, and the uneven pattern on the surface of the upper transfer layer 604a is determined.
 上記転写層硬化動作(ステップS312)の実行後、コントローラ200は、上側モールド503aから基板6を離型させるべき離型動作を実行する(ステップS313)。かかる離型動作において、コントローラ200は、上側ステージ505aを所定距離だけ上方向に移動させるべきステージ駆動信号SGをステージ上下駆動ユニット511に供給すると共に、センターピン30bを上方向に移動させるべきセンターピン移動信号CGをセンターピン駆動ユニット507bに供給する。これにより、上側モールド503aが基板6の上側転写層604aから離型する。なお、上側ステージ505aの上方向への移動に伴って、上側モールド503aに基板6が密着して一緒に移動してしまわないように、図示しない固定部材で基板6を固定するようにしても良い。かかる離型動作により、上側モールド503aに形成されている凹凸パターンとは凹凸の状態が反転した凹凸状パターンが上側転写層604aに形成されている基板6が得られる。更に、コントローラ200は、センターピン30bを上方向に移動させるべきセンターピン移動信号CGをセンターピン駆動ユニット507bに供給する。これにより、図30の[状態10]の如く、基板6がセンターピン30bに支持された状態となる。そして、コントローラ200は、基板6をセンターピン30bから離脱させるべき指令を基板搬送装置に送出する。 After execution of the transfer layer curing operation (step S312), the controller 200 executes a mold release operation for releasing the substrate 6 from the upper mold 503a (step S313). In such a mold release operation, the controller 200 supplies a stage drive signal SG for moving the upper stage 505a upward by a predetermined distance to the stage vertical drive unit 511 and a center pin for moving the center pin 30b upward. supplying a shift signal CG L to the center pin drive unit 507b. As a result, the upper mold 503a is released from the upper transfer layer 604a of the substrate 6. Note that the substrate 6 may be fixed by a fixing member (not shown) so that the substrate 6 does not come into close contact with the upper mold 503a and moves together with the upward movement of the upper stage 505a. . With this mold release operation, the substrate 6 is obtained in which the concavo-convex pattern in which the concavo-convex state is reversed from the concavo-convex pattern formed in the upper mold 503a is formed in the upper transfer layer 604a. Furthermore, the controller 200 supplies the center pin moving signal CG L to move the center pin 30b upward to the center pin drive unit 507b. As a result, as shown in [State 10] in FIG. 30, the substrate 6 is supported by the center pin 30b. Then, the controller 200 sends a command to detach the substrate 6 from the center pin 30b to the substrate transfer device.
 以上の如き一連の動作により、基板6の上側転写層604aに対して、上側モールド503aによる片面パターン転写が為されるのである。 Through the series of operations as described above, single-sided pattern transfer by the upper mold 503a is performed on the upper transfer layer 604a of the substrate 6.
 次に、コントローラ200は、操作部201から、動作終了を示す動作指令信号が供給されているか否かを判定する(ステップS314)。ステップS314において動作終了を示す動作指令信号が供給されたと判定された場合、コントローラ200は、このインプリント処理プログラムを終了する。一方、ステップS314にて動作終了を表す動作指令信号が供給されていないと判定された場合、コントローラ200は、センターピン30bに支持されている基板6を基板搬送装置が取り外すまでの間待機した後、センターピン30bを図28の[状態6]に示す如き、基板6を装着するための所定位置に移動させるべきセンターピン移動信号CGをセンターピン駆動ユニット507bに供給する(ステップS315)。 Next, the controller 200 determines whether or not an operation command signal indicating the end of the operation is supplied from the operation unit 201 (step S314). If it is determined in step S314 that the operation command signal indicating the end of the operation is supplied, the controller 200 ends the imprint processing program. On the other hand, if it is determined in step S314 that the operation command signal indicating the end of the operation is not supplied, the controller 200 waits until the substrate transfer device removes the substrate 6 supported by the center pin 30b. , as shown the center pin 30b in the state 6] in FIG. 28, and supplies the center pin moving signal CG L to be moved to a predetermined position for mounting the substrate 6 to the center pin drive unit 507b (step S315).
 上記ステップS315の終了後、コントローラ200は、上記ステップS308の実行に戻り、前述した如き動作を繰り返し実行する。すなわち、コントローラ200は、先ず、上記ステップS308の実行により、センターピン30bに基板6が支持されているか否かの判定を、この基板6が支持されるまで繰り返し行なうのである。ここで、基板搬送装置(図示せぬ)は、基板6の中心孔にセンターピン30bを貫通させるように、新たな基板6をセンターピン30bに装着する。すると、コントローラ200は、上記ステップS13にて基板6がセンターピン30bに支持されたと判定し、再び上記ステップS308~S314の動作を実行することにより、新たに支持された基板6に対して連続してパターン転写を行なうのである。 After the end of step S315, the controller 200 returns to the execution of step S308 and repeatedly executes the operation as described above. That is, first, the controller 200 repeatedly determines whether or not the substrate 6 is supported on the center pin 30b by executing step S308 until the substrate 6 is supported. Here, the substrate transfer device (not shown) attaches a new substrate 6 to the center pin 30b so that the center pin 30b passes through the center hole of the substrate 6. Then, the controller 200 determines that the substrate 6 is supported by the center pin 30b in step S13, and executes the operations of steps S308 to S314 again, thereby continuously with respect to the newly supported substrate 6. Pattern transfer.
 このように、図25及び図26に示すインプリント処理プログラムの実行によれば、基板6を装着する前に、基板6及び上側モールド503a同士のアライメントを実施するようにしたので、図20及び図21に示すインプリント処理プログラムを実行した場合に比して、その実行ステップ数を減らすことが可能となる。 As described above, according to the execution of the imprint processing program shown in FIGS. 25 and 26, the substrate 6 and the upper mold 503a are aligned with each other before the substrate 6 is mounted. Compared to the case where the imprint processing program shown in FIG. 21 is executed, the number of execution steps can be reduced.
 上記各実施例において示した本発明に係るインプリント装置の各部の構成は、上記したものに限定されず種々の変更を加えることが可能である。以下において、本発明に係るインプリント装置の変形例を示す。 The configuration of each part of the imprint apparatus according to the present invention shown in each of the above embodiments is not limited to the above, and various changes can be made. Hereinafter, modifications of the imprint apparatus according to the present invention will be described.
 (変形例1)
 図30~31に本発明に係るインプリント装置に搭載されるカメラユニット40の変形例を示す。上記実施例においては、図2に示す如く、センターピン(30b)の先端部を撮影するカメラ41aを中心にして、アライメントライン(PL)を撮影する3台のカメラ41b~41dを基準アライメントラインAL上に固定配置しているが、そのカメラの台数及び配置位置は、図2に示されるものに限定されない。
(Modification 1)
30 to 31 show modifications of the camera unit 40 mounted on the imprint apparatus according to the present invention. In the above-described embodiment, as shown in FIG. 2, the three cameras 41b to 41d for photographing the alignment line (PL) around the camera 41a for photographing the tip of the center pin (30b) are used as the reference alignment line AL. Although fixedly arranged above, the number of cameras and the arrangement position are not limited to those shown in FIG.
 例えば、図30(a)に示すように、カメラ41aを中心にして、3台のカメラ41c~41dを、均等な角度位置、すなわち、基準アライメントラインAL上において3台のカメラ41c~41dの角度が120°になるように配置しても良い。或いは、図30(b)に示すように、カメラ41aを中心に対称となるようにカメラ41bと41cを配置、すなわち、3台のカメラ41a~41cを同一径上に配置し、この同一径と直交するようにカメラ41dを配置するようにしても良い。更に、図30(c)に示すように、カメラ41aを中心にして、均等な角度、すなわち、基準アライメントラインAL上において4台のカメラ41c~41eの角度が90°になるように配置しても良い。 For example, as shown in FIG. 30 (a), the three cameras 41c to 41d are arranged at equal angular positions, that is, the angles of the three cameras 41c to 41d on the reference alignment line AL, with the camera 41a as the center. May be arranged to be 120 °. Alternatively, as shown in FIG. 30B, the cameras 41b and 41c are arranged so as to be symmetric with respect to the camera 41a, that is, the three cameras 41a to 41c are arranged on the same diameter, and the same diameter is obtained. You may make it arrange | position the camera 41d so that it may orthogonally cross. Further, as shown in FIG. 30 (c), the cameras 41a are arranged at the center so that the angles are equal, that is, the angles of the four cameras 41c to 41e are 90 ° on the reference alignment line AL. Also good.
 基準アライメントラインAL上に配置するカメラの台数は、図31(a)~図31(c)に示すように、2台(カメラ41b、41c)であっても良い。又、アライメントライン(PL)を撮影すべく基準アライメントラインAL上に配置するカメラの台数は、図32に示すように1台(カメラ41b)だけであっても良い。この際、モールド駆動ステージ(500a、500b)にて上側モールド503a又は下側モールド503bを回転させることにより、1台のカメラ41bによって、アライメントライン(PL)上を順次撮影し、アライメントラインの変動量が均一になるように位置調整を行なう。更に、位置合わせマークがモールドの内周部に形成されており、且つ、カメラ41aの観察範囲内、すなわち、撮影して得られる1フレーム内に内周部の位置合わせマークとセンターピンの先端部が存在するのであれば、撮影するカメラは中心の41aだけであっても良い。 The number of cameras arranged on the reference alignment line AL may be two ( cameras 41b and 41c) as shown in FIGS. 31 (a) to 31 (c). Further, the number of cameras arranged on the reference alignment line AL to photograph the alignment line (PL) may be only one (camera 41b) as shown in FIG. At this time, by rotating the upper mold 503a or the lower mold 503b on the mold driving stage (500a, 500b), the one camera 41b sequentially photographs the alignment line (PL), and the amount of variation of the alignment line Adjust the position so that is uniform. Further, an alignment mark is formed on the inner peripheral portion of the mold, and within the observation range of the camera 41a, that is, within one frame obtained by photographing, the alignment mark on the inner peripheral portion and the tip of the center pin If there is a camera, only the central camera 41a may shoot.
 このように、カメラの台数及び配置位置は、所望とする位置合わせ精度やインプリント装置による制限などに合わせて変更しても構わない。 As described above, the number of cameras and their arrangement positions may be changed in accordance with desired alignment accuracy and restrictions by the imprint apparatus.
 (変形例2)
 図33に本発明に係るインプリント装置に搭載されるカメラユニット40上のカメラ配置高さの変形例を示す。図2に示す一例では、センターピン(30b)の先端部を撮影するカメラ(41a)と、アライメントライン(PL)を撮影するカメラ(41b~41c)とを、ステージCSの表面に対して同一の高さ位置に設置するようにしているが、これに限定されない。例えば、図33に示すように、センターピン(30b)の先端部を撮影するカメラ(41a)を、モールドのアライメントライン(PL)を撮影する為のカメラ(41b~41d)よりも、ステージCSの表面に対して下に配置するようにしても良い。逆に、センターピン(30b)の先端部を撮影するカメラ(41a)を、モールドのアライメントライン(PL)を撮影する為のカメラ(41b~41d)よりも、ステージCSの表面に対して上に配置するようにしても良い。これによって、センターピン(30b)の先端部とモールドのアライメントライン(PL)を同時に撮影することができるようになるため、フォーカス調整動作、すなわち、上側ステージ505aの上下方向への移動動作数を減らすことが可能となる。
(Modification 2)
FIG. 33 shows a modification of the camera arrangement height on the camera unit 40 mounted on the imprint apparatus according to the present invention. In the example shown in FIG. 2, the camera (41a) for photographing the tip of the center pin (30b) and the cameras (41b to 41c) for photographing the alignment line (PL) are the same with respect to the surface of the stage CS. Although it installs in the height position, it is not limited to this. For example, as shown in FIG. 33, the camera (41a) for photographing the tip of the center pin (30b) is more suitable for the stage CS than the cameras (41b to 41d) for photographing the mold alignment line (PL). You may make it arrange | position below with respect to the surface. Conversely, the camera (41a) for photographing the tip of the center pin (30b) is positioned above the surface of the stage CS, rather than the cameras (41b to 41d) for photographing the mold alignment line (PL). It may be arranged. As a result, the tip of the center pin (30b) and the mold alignment line (PL) can be photographed at the same time, so the focus adjustment operation, that is, the number of movement operations of the upper stage 505a in the vertical direction is reduced. It becomes possible.
 (変形例3)
 図34に本発明に係るインプリント装置に搭載されるカメラユニット40の設置位置の変形例を示す。図1に示すインプリント装置においては、カメラユニット40を上側モールド駆動ステージ500a上に設置するようにしているが、これを搬送装置(図示せぬ)にて必要な場合にのみインプリント装置にセットさせるようにしても良い。この際、図34に示す如き構造のカメラユニット40を採用すれば、上側モールド503a及び下側モールド503b各々のアライメントラインPL、及びセンターピン(30b)の先端部を同時に撮影することが可能となる。尚、図34に示すカメラユニット40は、図2に示すものと同様に、センターピン(30b)の先端部を撮影するカメラ41aと、下側モールド503bのアライメントラインPLを撮影するカメラ41b~41dとが、夫々の撮影レンズを下方向に向けてステージCSに設置されている。更に、図34に示すカメラユニット40では、上側モールド503aのアライメントラインPLを撮影する為のカメラ41w~41yが、夫々の撮影レンズを上方向に向けてステージCSに設置されているものである。これによって、カメラユニット40をメンテナンスする時に、インプリント装置を停止させる必要がなくなる。更に、非透明体の上下モールドを使用するインプリント装置、例えば、熱式のインプリント装置などにも本発明を適用することが可能となる。
(Modification 3)
FIG. 34 shows a modification of the installation position of the camera unit 40 mounted on the imprint apparatus according to the present invention. In the imprint apparatus shown in FIG. 1, the camera unit 40 is installed on the upper mold drive stage 500a. However, the camera unit 40 is set in the imprint apparatus only when it is required by a transport apparatus (not shown). You may make it let it. At this time, if the camera unit 40 having the structure as shown in FIG. 34 is employed, it is possible to simultaneously photograph the alignment line PL of each of the upper mold 503a and the lower mold 503b and the tip of the center pin (30b). . The camera unit 40 shown in FIG. 34 is similar to that shown in FIG. 2 and includes a camera 41a for photographing the tip of the center pin (30b) and cameras 41b to 41d for photographing the alignment line PL of the lower mold 503b. However, each photographing lens is installed on the stage CS with the downward direction. Furthermore, in the camera unit 40 shown in FIG. 34, cameras 41w to 41y for photographing the alignment line PL of the upper mold 503a are installed on the stage CS with their photographing lenses facing upward. This eliminates the need to stop the imprint apparatus when the camera unit 40 is maintained. Furthermore, the present invention can be applied to an imprint apparatus using a non-transparent upper and lower mold, for example, a thermal imprint apparatus.
 (変形例4)
 本実施例では、アライメント動作を実施するために、上下モールドを移動させていたが、これに限定されない。例えば、センターピン駆動ユニット511bに2次元の各方向(X、Y)への移動、且つその平面に垂直な中心軸QJにて回転(θ)可能な状態とし、センターピン30bを上下方向だけではなく、X、Y、θに移動させるようにしても良い。これによって、モールド(503a、503b)に形成されているアライメントラインPLの中心位置Rと、センターピン30bの中心軸CJの位置を一致させる際にセンターピン30bを移動させることができるようになる。その結果、モールド・基板アライメント動作の実施時にカメラユニット40及びモールドを移動させる必要がなくなるため、相対位置調整のためのステップ数を減らすことが可能となる。
(Modification 4)
In the present embodiment, the upper and lower molds are moved in order to perform the alignment operation, but the present invention is not limited to this. For example, the center pin drive unit 511b can be moved in two-dimensional directions (X, Y) and rotated (θ) by a central axis QJ perpendicular to the plane, and the center pin 30b is not moved in the vertical direction alone Instead, they may be moved to X, Y, and θ. Accordingly, the center pin 30b can be moved when the center position R of the alignment line PL formed in the mold (503a, 503b) and the position of the center axis CJ of the center pin 30b are matched. As a result, it is not necessary to move the camera unit 40 and the mold when performing the mold / substrate alignment operation, so that the number of steps for adjusting the relative position can be reduced.
 (変形例5)
 本実施例2では、アライメント動作として、上側モールド503aと下側モールド503bの相対位置を調整した後に、アライメントラインPL各々の中心位置Ra及びRbと、センターピン30bの中心軸CJの位置を一致させるようにしていたが、これに限定されない。例えば、上側モールド503aのアライメントラインPLの中心位置Raとセンターピン30bの中心軸CJの位置を一致させた後に、下側モールド503bのアライメントラインPLの中心位置Rbとセンターピン30bの中心軸CJの位置を一致させるようにしても良い。尚、この際、下側モールド503bを先に調整しても良い。これによって、アライメント動作における上側モールド駆動ステージ500aと下側モールド駆動ステージ500bの動作をほぼ同一にすることができるため、装置の制御を簡易化することが可能となる。
(Modification 5)
In the second embodiment, as the alignment operation, after adjusting the relative positions of the upper mold 503a and the lower mold 503b, the center positions Ra and Rb of each alignment line PL and the position of the center axis CJ of the center pin 30b are made to coincide. However, the present invention is not limited to this. For example, after matching the center position Ra of the alignment line PL of the upper mold 503a with the position of the center axis CJ of the center pin 30b, the center position Rb of the alignment line PL of the lower mold 503b and the center axis CJ of the center pin 30b The positions may be matched. At this time, the lower mold 503b may be adjusted first. Accordingly, the operations of the upper mold drive stage 500a and the lower mold drive stage 500b in the alignment operation can be made substantially the same, and thus the control of the apparatus can be simplified.
 尚、本実施例ではUV式のインプリント方法及びインプリント装置に関して記載しているが、これに限定されるものではなく、熱式インプリント、エネルギー線(例えば、UV以外の光、X線など)硬化式インプリント等の他の方式のインプリントにも用いることができる。 In this embodiment, the UV imprint method and the imprint apparatus are described. However, the present invention is not limited to this. Thermal imprint, energy rays (for example, light other than UV, X-rays, etc.) ) It can also be used for other types of imprints such as curable imprints.
 又、基板6の材質がモールドに形成された微細な凹凸パターンを転写可能な材質、例えば樹脂フィルム、バルク樹脂、低融点ガラス等であれば、基板6の上層部分を転写層として扱うことができ、この場合基板上に転写材料を形成しないで、基板表面に直接パターン形状を転写することができる。 In addition, if the material of the substrate 6 is a material capable of transferring a fine uneven pattern formed on the mold, such as a resin film, bulk resin, low melting point glass, etc., the upper layer portion of the substrate 6 can be handled as a transfer layer. In this case, the pattern shape can be directly transferred to the surface of the substrate without forming a transfer material on the substrate.
 更に、磁気ディスクの転写だけでなく、光ディスクなどの様々な記録媒体の製造に用いることができる。 Furthermore, it can be used not only to transfer magnetic disks but also to manufacture various recording media such as optical disks.

Claims (12)

  1. 第1モールドを被転写体の第一の面に押圧し、第2モールドを前記被転写体の第二の面に押圧することにより凹凸パターンを転写する転写装置であって、
     前記被転写体を支持する支持手段と、
     前記第1モールドを保持する第1モールド保持手段と、
     前記第2モールドを保持する第2モールド保持手段と、
     前記第1モールドと前記第2モールドの相対位置を調整する第1アライメント手段と、
     前記第1及び第2モールド各々に形成されている凹凸パターンの中心と前記被転写体の中心が一致するように前記第1モールド、第2モールド、及び前記被転写体の相対位置を調整する第2アライメント手段と、を有することを特徴とする転写装置。
    A transfer device that transfers a concavo-convex pattern by pressing a first mold against a first surface of a transfer object and pressing a second mold against the second surface of the transfer object,
    A support means for supporting the transfer object;
    First mold holding means for holding the first mold;
    Second mold holding means for holding the second mold;
    First alignment means for adjusting a relative position between the first mold and the second mold;
    Adjusting the relative positions of the first mold, the second mold, and the transferred body so that the center of the concavo-convex pattern formed in each of the first and second molds matches the center of the transferred body; And an alignment unit.
  2. 前記第1アライメント手段は、前記第1モールド保持手段及び/又は前記第2モールド保持手段を移動させることで、相対位置を調整することを特徴とする請求項1に記載の転写装置。 The transfer apparatus according to claim 1, wherein the first alignment unit adjusts a relative position by moving the first mold holding unit and / or the second mold holding unit.
  3. 前記第2アライメント手段は、前記第1モールド保持手段及び/又は前記第2モールド保持手段及び/又は前記支持手段を移動させることで、相対位置を調整することを特徴とする請求項1又は2に記載の転写装置。 The second alignment means adjusts the relative position by moving the first mold holding means and / or the second mold holding means and / or the support means. The transfer apparatus described.
  4. 前記第1及び第2モールドを撮影して第1撮影信号を得る第1撮影手段を更に備え、
     前記第1アライメント手段は、前記第1撮影信号に基づいて前記第1モールド及び前記第2モールドの相対位置を調整することを特徴とする請求項1ないし3のいずれか1に記載の転写装置。
    A first photographing means for photographing the first and second molds to obtain a first photographing signal;
    4. The transfer device according to claim 1, wherein the first alignment unit adjusts a relative position between the first mold and the second mold based on the first imaging signal. 5.
  5. 前記支持手段の中心を撮影して第2撮像信号を得る第2撮影手段を更に備え、
     前記第2アライメント手段は、前記第2撮影信号に基づいて、前記第1モールド、又は、前記第2モールドと前記被転写体との相対位置を調整することを特徴とする請求項1ないし4のいずれか1に記載の転写装置。
    A second imaging means for obtaining a second imaging signal by imaging the center of the support means;
    5. The second alignment unit according to claim 1, wherein the second alignment unit adjusts a relative position between the first mold or the second mold and the transfer target based on the second photographing signal. The transfer apparatus according to any one of the above.
  6. 前記第1及び第2モールドには位置合わせマークが形成されており、
     前記第1モールドの位置合わせマーク及び前記第2モールドの位置合わせマークが、前記第1及び第2モールドの面方向において一致するように前記第1モールド及び前記第2モールドの相対位置を調整する第1アライメント手段と、を更に有することを特徴とする請求項1ないし5のいずれか1に記載の転写装置。
    An alignment mark is formed on the first and second molds,
    The relative position of the first mold and the second mold is adjusted so that the alignment mark of the first mold and the alignment mark of the second mold coincide in the plane direction of the first and second molds. The transfer apparatus according to claim 1, further comprising an alignment unit.
  7. 前記位置合わせマークは、モールドに形成されたパターンと中心を同じくする同心円上に形成されていることを特徴とする請求項1ないし5のいずれか1に記載の転写装置。 The transfer apparatus according to claim 1, wherein the alignment mark is formed on a concentric circle having the same center as that of the pattern formed on the mold.
  8. 第1モールドを被転写体の第一の面に押圧し、第2モールドを前記被転写体の第二の面に押圧することにより凹凸パターンを転写する転写方法であって、
     前記被転写体を支持する支持工程と、
     前記第1モールドを保持する第1モールド保持工程と、
     前記第2モールドを保持する第2モールド保持工程と、
     前記第1モールド及び前記第2モールドの相対位置を調整する第1アライメント工程と、
     前記第1及び第2モールド各々に形成されている凹凸パターンの中心と前記被転写体の中心が一致するように前記第1モールド、第2モールド、及び前記被転写体の相対位置を調整する第2アライメント工程と、を有することを特徴とする転写方法。
    A transfer method for transferring a concavo-convex pattern by pressing a first mold against a first surface of a transferred body and pressing a second mold against the second surface of the transferred body,
    A supporting step for supporting the transfer object;
    A first mold holding step for holding the first mold;
    A second mold holding step for holding the second mold;
    A first alignment step of adjusting a relative position of the first mold and the second mold;
    Adjusting the relative positions of the first mold, the second mold, and the transferred body so that the center of the concavo-convex pattern formed in each of the first and second molds matches the center of the transferred body; And a second alignment step.
  9. 凹凸パターン及び位置あわせマークが形成されているモールドを、貫通孔が形成された被転写体に転写する転写装置に用いるカメラユニットであって、
     前記被転写体の貫通孔を介して被転写体を保持する保持手段を観察する第一観察手段と、
     前記モールドに形成された位置合わせマークを観察する第二観察手段と、を有することを特徴とするカメラユニット。
    A camera unit for use in a transfer device for transferring a mold in which a concavo-convex pattern and an alignment mark are formed to a transfer target having a through-hole formed therein,
    First observing means for observing a holding means for holding the transferred body through the through-hole of the transferred body;
    And a second observation means for observing the alignment mark formed on the mold.
  10. 貫通孔が形成された被転写体の一方の面に第1モールドによって凹凸パターンを転写し、前記被転写体の他方の面に第2モールドによって凹凸パターンを転写する転写装置に用いるカメラユニットであって、
     前記第1及び第2モールドには位置合わせマークが形成されており、
     前記貫通孔を介して被転写体を保持する保持手段を観察する第1観察手段と、
     前記第1及び第2モールドに形成された位置合わせマークを観察する第2観察手段と、を有することを特徴とするカメラユニット。
    This is a camera unit used in a transfer device that transfers a concavo-convex pattern by a first mold to one surface of a transferred body in which a through hole is formed, and transfers the concavo-convex pattern by a second mold to the other surface of the transferred body. And
    An alignment mark is formed on the first and second molds,
    First observation means for observing a holding means for holding the transfer object via the through hole;
    And a second observation means for observing the alignment marks formed on the first and second molds.
  11. 前記位置あわせマークは前記凹凸パターンと中心を同じくする同心円上に形成されており、前記第2観察手段は、前記位置あわせマークの少なくとも一部を観察することを特徴とする請求項9又は10に記載のカメラユニット。 The alignment mark is formed on a concentric circle having the same center as the concave / convex pattern, and the second observation unit observes at least a part of the alignment mark. The camera unit described.
  12. 前記第1及び第2観察手段の観察視野内には観察地点を特定する特定マークが表示され、前記第1観察手段の前記特定マークで特定される観察地点と前記第2観察手段の前記特定マークで特定される観察地点との距離は、前記凹凸パターンの中心と前記貫通孔の中心を平面方向で一致させた場合の前記位置あわせマークと前記貫通孔の中心との距離と等しいことを特徴とする請求項9又は10に記載のカメラユニット。 A specific mark for specifying an observation point is displayed in the observation field of view of the first and second observation units, and the observation point specified by the specific mark of the first observation unit and the specific mark of the second observation unit The distance from the observation point specified by is equal to the distance between the alignment mark and the center of the through hole when the center of the uneven pattern and the center of the through hole are aligned in the plane direction. The camera unit according to claim 9 or 10.
PCT/JP2009/050313 2009-01-13 2009-01-13 Transfer device and transfer method WO2010082298A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010546483A JPWO2010082298A1 (en) 2009-01-13 2009-01-13 Transfer apparatus and transfer method
PCT/JP2009/050313 WO2010082298A1 (en) 2009-01-13 2009-01-13 Transfer device and transfer method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/050313 WO2010082298A1 (en) 2009-01-13 2009-01-13 Transfer device and transfer method

Publications (1)

Publication Number Publication Date
WO2010082298A1 true WO2010082298A1 (en) 2010-07-22

Family

ID=42339567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050313 WO2010082298A1 (en) 2009-01-13 2009-01-13 Transfer device and transfer method

Country Status (2)

Country Link
JP (1) JPWO2010082298A1 (en)
WO (1) WO2010082298A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201000A (en) * 2011-03-25 2012-10-22 Toshiba Mach Co Ltd Apparatus and method for molding molded article
JP2012232547A (en) * 2011-05-09 2012-11-29 Toshiba Mach Co Ltd Molding installation method and molding installation apparatus
TWI641091B (en) * 2016-06-30 2018-11-11 東和股份有限公司 Resin molding device and method for producing resin molded article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246810A (en) * 1999-03-03 2000-09-12 Sharp Corp Device and method for producing optical element
JP2007190734A (en) * 2006-01-18 2007-08-02 Hitachi Ltd Pattern forming method and mold
JP2008012858A (en) * 2006-07-07 2008-01-24 Hitachi High-Technologies Corp Imprinting device and imprinting method
JP2008276919A (en) * 2007-03-30 2008-11-13 Pioneer Electronic Corp Imprint device and imprint method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246810A (en) * 1999-03-03 2000-09-12 Sharp Corp Device and method for producing optical element
JP2007190734A (en) * 2006-01-18 2007-08-02 Hitachi Ltd Pattern forming method and mold
JP2008012858A (en) * 2006-07-07 2008-01-24 Hitachi High-Technologies Corp Imprinting device and imprinting method
JP2008276919A (en) * 2007-03-30 2008-11-13 Pioneer Electronic Corp Imprint device and imprint method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201000A (en) * 2011-03-25 2012-10-22 Toshiba Mach Co Ltd Apparatus and method for molding molded article
JP2012232547A (en) * 2011-05-09 2012-11-29 Toshiba Mach Co Ltd Molding installation method and molding installation apparatus
TWI641091B (en) * 2016-06-30 2018-11-11 東和股份有限公司 Resin molding device and method for producing resin molded article

Also Published As

Publication number Publication date
JPWO2010082298A1 (en) 2012-06-28

Similar Documents

Publication Publication Date Title
US8268209B2 (en) Pattern forming method and its mold
JP5232077B2 (en) Microstructure transfer device
JP2008276919A (en) Imprint device and imprint method
US20100289184A1 (en) Die Imprint By Double Side Force-Balanced Press For Step-And-Repeat Imprint Lithography
JP2017022243A (en) Imprint apparatus, imprint method and article manufacturing method
CN104914665A (en) Imprint apparatus, alignment method, and method of manufacturing article
JP6423641B2 (en) Imprint apparatus, article manufacturing method, and imprint method
WO2010082298A1 (en) Transfer device and transfer method
JP4555896B2 (en) Transfer method and transfer device
JP4550504B2 (en) Manufacturing method of recording medium
KR102059758B1 (en) Imprint apparatus and article manufacturing method
JP5024464B2 (en) Pattern forming method and mold
KR20170031710A (en) Step and repeat type imprinting device and method
US20110008535A1 (en) Apparatus and method for resist application
JP5048560B2 (en) Method and apparatus for manufacturing nanopatterned disks
TW202209434A (en) Imprint apparatus and method of manufacturing article
JP5052660B2 (en) MOLD, MOLD MANUFACTURING METHOD, AND MOLD TRANSFER METHOD
JP4608028B2 (en) Mold and manufacturing method thereof
JP4756106B2 (en) Transfer device
WO2010082301A1 (en) Transfer device and transfer method
WO2010082300A1 (en) Transfer device
WO2012014299A1 (en) Method for producing mold and base plate for mold
JP2019201180A (en) Adhering matter removal method, molding apparatus, molding method, and manufacturing method for article
US20060147843A1 (en) Fabrication process for ultra high density optical disc
WO2010100712A1 (en) Transfer apparatus and transfer method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838268

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010546483

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838268

Country of ref document: EP

Kind code of ref document: A1