WO2012014299A1 - Method for producing mold and base plate for mold - Google Patents

Method for producing mold and base plate for mold Download PDF

Info

Publication number
WO2012014299A1
WO2012014299A1 PCT/JP2010/062725 JP2010062725W WO2012014299A1 WO 2012014299 A1 WO2012014299 A1 WO 2012014299A1 JP 2010062725 W JP2010062725 W JP 2010062725W WO 2012014299 A1 WO2012014299 A1 WO 2012014299A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
mold
mark
processing
manufacturing
Prior art date
Application number
PCT/JP2010/062725
Other languages
French (fr)
Japanese (ja)
Inventor
加園 修
孝幸 糟谷
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2010/062725 priority Critical patent/WO2012014299A1/en
Publication of WO2012014299A1 publication Critical patent/WO2012014299A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • B29C2043/025Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves forming a microstructure, i.e. fine patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface

Definitions

  • the present invention relates to a manufacturing method for manufacturing a mold and a mold substrate.
  • JP 2009-208240 A JP 2007-230229 A JP-A-2-249908 JP 2009-83195A JP 2005-529436 Gazette
  • the problem to be solved by the present invention is to provide a mold manufacturing method and a mold substrate capable of arranging an imprint pattern on the mold with high accuracy with respect to the shape of the mold. It is.
  • the mold manufacturing method of the invention according to claim 1 is a mold manufacturing method having an imprint pattern region to be transferred to a transfer object by a transfer device, together with the imprint pattern region on the substrate of the mold, A forming step of forming a mark for processing the shape of the substrate and a processing step of processing the substrate into a predetermined shape based on the mark of the substrate are provided.
  • a mold substrate according to a tenth aspect of the present invention is a mold substrate processed into a mold having a predetermined shape having an imprint pattern region to be transferred to a transfer object by a transfer device, and the imprint pattern region A mark for processing a part of the substrate into the predetermined shape is formed.
  • a mold manufacturing method is a mold manufacturing method used in a transfer device for transferring a concavo-convex pattern onto both surfaces of a transfer object, the imprint pattern and the shape of the mold substrate.
  • a patterning process corresponding to a mark for processing is performed on the resist substrate by using the same drawing apparatus to draw a pattern on the resist, and an etching process is performed based on the drawing pattern drawn on the resist.
  • the mold substrate is processed into a predetermined shape using a processing apparatus. And a processing step to be performed.
  • FIG. 3 is a flowchart showing a nano-imprint operation of a transfer device when two imprint patterns are transferred onto a transfer substrate using two molds shown in FIG. 2 as a set. It is a figure which shows the state of the mold press step of FIG.
  • the substrate is processed based on the mark of the substrate.
  • the position of the imprint pattern area with respect to can be arranged with high accuracy. Therefore, the imprint pattern area of the mold can be transferred to a desired position on the transfer substrate simply by aligning the transfer substrate with respect to the shape of the mold in the transfer device.
  • FIGS. 1 (a) to 1 (g) show the mold manufacturing method of the present invention.
  • a mold manufactured by the manufacturing method shown in FIGS. 1 (a) to 1 (g) has a circular center hole penetrating the center portion as shown by reference numeral 1 in FIG. 2 and the outer shape linear portion 3 and the outer arc portion 4 are alternately formed at three locations.
  • the outer straight line portions 3 are formed at the same size at equal intervals of 120 degrees with respect to the center point of the mold 1, and the outer arc portions 4 are also formed at the same size at equal intervals of 120 degrees.
  • An annular imprint pattern region 5 is formed on one surface of the mold 1, which is, for example, a region in which a servo data pattern or a data track pattern of a magnetic disk is formed as an uneven imprint pattern. .
  • the other surface of the mold 1 is a flat surface processed to a required flatness by the transfer device.
  • the center hole 2 is located on the inner peripheral side from the imprint pattern region 5, and the circle center point of the center hole 2 is equal to the center point of the annular imprint pattern region 5.
  • the outer arc portion 4 is located at the same distance from the center point.
  • FIG. 1A a disk in which a hard mask 11 and a resist layer 12 are laminated on the surface of a quartz substrate.
  • a shaped substrate (substrate before processing) 10 is prepared.
  • This pre-processed substrate may be any shape such as a disk shape, a rectangular shape, or a substrate with a central hole, as long as it is larger than the mold shape formed by processing described later.
  • a substrate that is larger than the mold shape is selected from the standard substrate shape and substrate dimensions, and a stable and inexpensive substrate can be used. More desirably, the shape is optimal for an electron beam drawing apparatus.
  • an X ⁇ -type rotating electron beam lithography apparatus that performs electron beam exposure while rotating the substrate before processing
  • an electron beam lithography apparatus described in International Publication WO2008 / 1230331 filed by the applicant of the present invention for example, an electron beam lithography apparatus described in International Publication WO2008 / 1230331 filed by the applicant of the present invention.
  • a disk-shaped pre-processed substrate is preferable, and a rectangular pre-processed substrate is preferable in the case of an XY-type electron beam drawing apparatus that performs electron beam exposure while moving the pre-processed substrate in two directions of the X axis and the Y axis.
  • the explanation is given as a disk-shaped pre-process substrate without a central hole.
  • the hard mask 11 is exclusively made of metal such as chromium (Cr) and is pre-deposited on a quartz substrate.
  • An electron beam (EB) resist is used as the resist layer 12 formed on the hard mask 11.
  • An electron beam resist is spin-coated on the substrate on which the hard mask 11 is formed to form a resist layer 12.
  • the resist layer 12 on the substrate 10 is irradiated with an electron beam from above by an electron beam lithography apparatus (not shown), the resist layer 12 is exposed, and development is performed after exposure (electron beam lithography and development process). ).
  • Drawing data in which pattern shape data of a concavo-convex pattern to be drawn (a pattern area 13 and a mark portion 14 to be described later) is processed in advance for an electron beam drawing apparatus is created.
  • the beam drawing apparatus is driven and the electron beam irradiation is executed.
  • the portion irradiated with the electron beam is formed as a latent image on the resist layer 12 on the substrate 10. That is, a latent image of a pattern corresponding to the pattern region 13 and a pattern corresponding to the mark portion 14 is formed on the resist in a batch process by the same electron beam drawing apparatus.
  • FIG. 3A is a diagram schematically showing a pattern drawn on the substrate 10.
  • the concavo-convex pattern drawn on the resist layer 12 includes a pattern region 13 and a mark portion 14 as shown in FIG.
  • the pattern area 13 is a portion that should eventually become the imprint pattern area 5 of the mold 1.
  • a concavo-convex pattern of the resist 12 corresponding to a servo data pattern or a data track pattern of a magnetic disk is formed. It is an area.
  • the pattern is a combination of the mark portion 14, the curved line 15, and the gap 16, and is drawn so that the curved line 15 and the gap 16 appear alternately on the same radius.
  • This mark portion 14 is located on the outer peripheral side avoiding the pattern region 13 (of course, depending on the final mold shape, there may be a mark portion on the inner peripheral side).
  • the substrate 10 exists in a portion to be removed by processing the substrate 10 into the shape shown in FIG.
  • the mark portion 14 is represented as one large dent in FIG. 1 (b) and as a line in FIG. 3 (a).
  • the shape can be recognized by a camera, which will be described later, it may be a region formed by collecting finer shapes such as a line-and-space shape and a set of dots instead of a linear shape.
  • the mark portion 14 is composed of three curved lines 15 having the same length drawn by an electron beam on the same distance in the radial direction from the center point of the substrate 10.
  • a gap 16 is provided. That is, three discontinuous portions on one circle are the gap 16.
  • the mark portion 14 is used as a mark for aligning the machining position in the machining process.
  • the mark is, for example, one end of each curved line 15 or the gap 16.
  • hard mask etching is performed on the hard mask 11 (hard mask etching process).
  • the hard mask 11 is etched in the pattern region 13 and the mark portion 14 of the resist layer 12 where the hard mask 11 is exposed. Therefore, the surface of the substrate 10 is exposed at the pattern region 13 and the mark portion 14.
  • substrate etching is performed on the substrate 10 (substrate etching step).
  • the quartz substrate of the substrate 10 is etched at a portion of the hard mask 11 where the pattern region 13 and the mark portion 14 are exposed.
  • a concave portion is formed in the quartz substrate of the substrate 10 at the pattern portion 13 and the mark portion 14.
  • the remaining resist layer 12 is removed as shown in FIG. 1E (resist removal step).
  • a processing step of the substrate 10 that has been subjected to substrate etching is performed.
  • This processing step is executed by a processing machine or a processing apparatus (not shown).
  • the substrate 10 after the resist removal process is set (step S11).
  • a mark (three gaps 16 in the case of FIG. 3A) of the mark portion 14 is detected by a camera (not shown) provided in the processing machine, and its coordinates are measured (step S12).
  • a machining position is calculated with reference to the coordinates of the gap 16 (step S13: machining position calculation step).
  • step S12 since data indicating the coordinate relationship between the machining position and the mark is stored in advance in the controller (not shown) of the processing machine, the coordinate position of the three marks is detected in step S12, so that step S13 is performed. Then, based on the stored data, for example, a straight line equation for moving a blade (end mill or the like) for processing the substrate is calculated.
  • step S14 the substrate 10 is processed by the processing machine so that the center hole 2 of the mold 1 is formed, and the outer straight line portion 3 and the outer arc portion 4 are further formed. That is, by removing a plurality of portions having marks on the substrate 10 in a straight line so that the extended lines of the outer straight portions 3 intersect each other on the surface of the substrate 10, the portions having the marks are removed from the main body portion of the mold. To be done.
  • the pattern region 13 and the mark portion 14 are formed as shown in FIG. 3A, the substrate 10 in which the center hole is formed according to the processing position and the outer peripheral region is removed by this processing step is shown.
  • a broken line A in FIG. 3B indicates a mark portion 14 existing in a portion removed by processing the substrate 10. In the example of FIG. 3B, for example, cutting is used as a processing method.
  • the hard mask 11 remaining on the substrate 10 is removed as shown in FIG. 1 (g) (hard mask removing step).
  • the concavo-convex pattern (pattern region 13) of the resist formed by electron beam drawing is finally converted to the imprint pattern region 5, and in addition, the imprint pattern region 5 is arranged at an accurate position with respect to the shape.
  • the mold 1 having the shape shown in FIG. 2 is completed.
  • FIG. 5A shows a mark portion 14 together with a pattern region 13 as another embodiment of the present invention.
  • the mark portion 14 is located outside the annular pattern region 13.
  • the mark part 14 includes three points 17 located on the same distance in the radial direction from the center point of the substrate 10. Three points 17 are drawn and formed as circles at intervals of 120 degrees by electron beam irradiation.
  • the three points 17 are detected as marks of the mark portion 14 by the camera provided in the processing machine in the above step S12.
  • a processing position is set with the mark as a position reference.
  • step S14 when the substrate 10 is removed together with the hard mask 11 in accordance with the processing position, a substrate shape is obtained as shown in FIG.
  • the mark portion 14 composed of the three points 17, unnecessary portions of the substrate 10 for forming the outer straight line portion 3 and the outer arc portion 4 are removed during processing. That is, the mark portion 14 is formed at a position that is removed by removing the outer peripheral portion of the pattern region 13 linearly in order to form the outer straight portion 3.
  • a broken line B in FIG. 5B indicates three points 17 existing in a portion removed by processing the substrate 10.
  • FIG. 6A further shows a mark portion 14 together with a pattern region 13 as another embodiment of the present invention.
  • the mark portion 14 is located inside the annular pattern region 13.
  • the mark portion 14 includes a circle 18 about the center point of the substrate 10 and three lines 19 extending in the radial direction intersecting the circle.
  • the circle 18 and the three lines 19 are drawn and formed by electron beam irradiation.
  • the three lines 19 are arranged at intervals of 120 degrees.
  • step S13 coordinates for processing are set with the mark as a position reference.
  • step S14 when unnecessary portions of the substrate 10 are removed according to the processing coordinates, the substrate shape is changed as shown in FIG. As a result, the mark portion 14 including the circle 18 and the three lines 19 is removed by forming the center hole 2.
  • a broken line C in FIG. 6B shows a circle 18 and three lines 19 existing in a portion removed by processing the substrate 10.
  • FIG. 7A further shows a mark portion 14 together with a pattern region 13 as another embodiment of the present invention.
  • the mark portion 14 is located inside the annular pattern region 13.
  • the mark portion 14 is composed of three small circles 20 located on the same distance in the radial direction from the center point of the substrate 10. Three small circles 20 are drawn and formed at intervals of 120 degrees by electron beam irradiation.
  • the three small circles 20 are detected as marks of the mark portion 14 by the camera provided in the processing machine in the above step S12.
  • coordinates for processing are set with the mark as a position reference.
  • step S14 when unnecessary portions of the substrate 10 are removed according to the processing coordinates, the substrate shape is changed as shown in FIG. As a result, the mark portion 14 composed of the three small circles 20 is removed by forming the center hole 2.
  • a broken line D in FIG. 7B shows three small circles 20 existing in a portion removed by processing the substrate 10.
  • FIG. 8A shows a mark portion 14 together with a pattern region 13 as another embodiment of the present invention.
  • the mark portion 14 is located outside the annular pattern region 13.
  • the mark portion 14 includes three cross marks 21 located on the same distance in the radial direction from the center point of the substrate 10. Three cross marks 21 are drawn and formed at intervals of 120 degrees by electron beam irradiation.
  • the three cross marks 21 are detected as marks of the mark part 14 by the camera provided in the processing machine in the above step S12. Then, in step S13, coordinates for processing are set using the mark as a position reference, and in step S14, when unnecessary portions of the substrate 10 are removed according to the processing coordinates, the substrate shape is changed as shown in FIG.
  • the obtained mark portion 14 composed of three cross marks 21 is removed when the substrate 10 is contoured to form the contour straight line portion 3 and the contour arc portion 4.
  • a broken line E in FIG. 8B indicates three cross marks 21 existing in a portion removed by processing the substrate 10.
  • the three crosses 21 shown in FIG. 8 (a) are located outside the distance corresponding to the outer arc portion 4 from the center point, but as shown in FIG. 9 (a), the outer shape in the radial direction from the center point.
  • Three cross marks 22 may be drawn in a range that is inside the distance corresponding to the formation position of the arc portion 4 and outside the distance corresponding to the formation position of the outer straight line portion 3. That is, the cross mark 21 is formed at a position on the substrate on the outer peripheral side of the outer shape straight line portion 3 to be the outer periphery of the completed mold and on the inner peripheral side of the outer shape arc portion 4 to be the outer periphery of the completed mold.
  • the processing position is determined by the mark of the mark portion formed on the substrate before processing of the mold, and the unnecessary portion of the substrate is removed and the shape is formed in the processing step.
  • the imprint pattern region can be formed at an accurate position with respect to the shape of the mold. Therefore, there is no requirement for the pattern area formation position accuracy with respect to the shape of the substrate in the pattern drawing stage by electron beam irradiation, and the imprint pattern of the mold is transferred to the transfer substrate in the transfer device. For example, by aligning the center hole of the transfer substrate with respect to the center hole of the mold, the imprint pattern of the mold can be brought to the desired position of the transfer substrate. Can be transferred.
  • the mark 32 on the transparent mold 31 and the mark 34 on the transfer substrate 33 are used, for example, using a camera.
  • a method for adjusting the position by optical observation is known. That is, there is an example in which a mark (a so-called alignment mark) formed on the mold is used for the purpose of positioning the transparent mold and the transfer substrate during imprinting.
  • the mold itself manufactured by the manufacturing method of the present invention does not have a mark
  • the mark existing on the substrate before the processing step is used for alignment at the time of imprinting as shown in FIG. It is clear that it is different from the landmarks present in Moreover, according to the manufacturing method of this invention, there also exists an advantage that it is not necessary to use a transparent substrate especially for mold manufacture.
  • the present invention even when a mold having various shapes is manufactured, a cassette conforming to the substrate outline used for pattern drawing in the electron beam drawing apparatus, or a substrate outline used in the etching apparatus in the etching process. Since the jig used in the manufacturing stage of the combined cassette or the like is only required to match the shape of the substrate before processing, there is an advantage that it is not necessary to align such a jig according to various shapes of the mold.
  • FIGS. 6 (a) and 7 (a) when the mark portion 14 is located on the inner peripheral side of the pattern region 13 in the substrate 10, FIGS. 3 (a), 5 (a), and FIG. 8 (a) and FIG. 9 (a), when the marking speed is constant compared to the case where the mark portion 14 is positioned on the outer peripheral side of the pattern region 13 in the substrate 10, the mark portion 14 formed by the electron beam drawing apparatus is used. Drawing takes a short time. In addition, the smaller the size in the radial direction, the shorter the drawing time of the mark portion 14 is. 3A, FIG. 5A, FIG. 8A, and FIG. 9A, when the mark portion 14 is located on the outer peripheral side of the pattern region 13 in the substrate 10, FIG. As shown in FIGS.
  • FIGS. 11A to 11G show a mold manufacturing method using a lift-off method as another embodiment of the present invention.
  • the mold manufactured by this mold manufacturing method is the mold 1 having the shape shown in FIG.
  • a disk-shaped quartz substrate 50 having a resist layer 52 formed on the surface in a planar shape is prepared. Is done.
  • an electron beam (EB) resist is used as the resist layer 52.
  • the resist layer 52 on the substrate 50 is irradiated with an electron beam from above by an electron beam lithography apparatus (not shown), the resist layer 52 is exposed, and development is performed after exposure (electron beam lithography and development process). ).
  • the electron beam drawing apparatus controls the irradiation position of the electron beam with respect to the center point of the substrate 50 by the angle and the distance in the radial direction. It is executed from the side toward the outer peripheral side.
  • the portion irradiated with the electron beam is formed as a latent image on the resist layer 52 on the substrate 50.
  • the substrate 50 is subjected to development processing.
  • FIG. 11B the latent image portion of the resist layer 52 is dissolved and removed, and the surface of the substrate 50 is exposed, so that an uneven pattern is formed.
  • the concavo-convex pattern includes a pattern region 13 and a mark portion 14.
  • the mark of the mark part 14 may be the one shown in FIG. 5A, FIG. 6A, FIG. 7A, FIG. 8A, or FIG.
  • FIG. 11 (c) when a hard mask film 51 made of chromium (Cr) or the like is formed, 51a formed on the substrate 50 and 51b formed on the resist 52 are formed. Then, the film is formed (hard mask film forming step). Then, the resist layer 52 is dissolved and rubbed with a solvent or the like, and at the same time, the hard mask film 52b on the resist 52 is removed, and a hard mask pattern 71a as shown in FIG. 11D is produced (lift-off process). As a result, the surface of the substrate 50 is exposed except for the portion where the hard mask film 51 is formed. Further, the substrate 50 is subjected to substrate etching, and as shown in FIG. 11E, the unevenness is reversed (substrate etching process).
  • a processing step of the quartz substrate 50 is performed.
  • This processing step is executed by the processing machine as shown in FIG. That is, when the substrate 50 after the substrate etching process is set in step S11, in step S12, a camera (FIG. 3) is provided with the marks of the mark portions 14 (three gaps 16 in the case of FIG. 3A).
  • the cutting position is set using the mark as a position reference, and in step S14, the substrate 50 is cut according to the cutting position.
  • the hard mask film 51 remaining on the substrate 50 is removed as shown in FIG. 11G (hard mask removing step).
  • the mold 1 having the shape shown in FIG. 2 is completed.
  • a pattern formation method other than electron beam drawing using an X ⁇ -type electron beam drawing apparatus can be used as a pattern formation method on the resist layer.
  • a pattern forming method using an X ⁇ type laser drawing apparatus, a pattern forming method using an XY type electron beam drawing apparatus or a laser drawing apparatus, a pattern forming method using an interference exposure technique, or a classical printing technique is used as a pattern formation method on the resist layer.
  • a pattern forming method using an X ⁇ type laser drawing apparatus a pattern forming method using an XY type electron beam drawing apparatus or a laser drawing apparatus, a pattern forming method using an interference exposure technique, or a classical printing technique is used.
  • a pattern forming method such as a pattern forming method using a self-organization method with a pattern produced by using the pattern forming method as a guide.
  • the mold manufactured by this mold manufacturing method is the mold 1 having the shape shown in FIG.
  • the imprint referred to here is not limited to either UV thermal method, and any method can be used.
  • FIG. 12 (a) a disk-shaped quartz having a hard mask 61 and a resist layer 62 laminated on the surface.
  • a substrate (substrate before processing) 60 is prepared.
  • the hard mask 61 is exclusively made of metal such as chromium (Cr)
  • the resist layer 62 is a nanoimprint resist.
  • a stamper (mold) 63 is pressed in one direction of an arrow 64 from above with respect to the resist layer 62 on the substrate 60 by a nanoimprint transfer device (not shown), and the uneven pattern formed on the stamper 63 is a resist pattern. Transferred to the layer 62 (transfer process).
  • the concave / convex pattern formed on the stamper 63 corresponds to the pattern region 13 and the mark portion 14 described above. By this transfer process, a concavo-convex pattern is reversed and formed on the resist layer 62 on the substrate 60.
  • the resist layer 62 is etched (resist residual film layer etching step). As a result, as shown in FIG. 12C, the resist layer 62 becomes thinner as a whole, the remaining film layer portion of the recess is removed, and the corresponding hard mask 61 portion is exposed.
  • a pattern region 13 in FIG. 12C is a portion that should finally become the imprint pattern region 5 of the mold 1.
  • the mark portion 14 is located on the outer peripheral side or the inner peripheral side avoiding the pattern region 13, and exists in a portion that is finally removed by cutting the substrate 60 in a subsequent processing step.
  • FIG. 12D hard mask etching is performed on the hard mask 61 (hard mask etching step), and then the remaining resist layer 62 is formed as shown in FIG. It is removed (resist removal step).
  • a process for processing the quartz substrate 60 is performed as shown in FIG. After the processing step, the hard mask 61 remaining on the substrate 60 is removed as shown in FIG. 12 (h) (hard mask removing step).
  • FIG. 12D to FIG. 12H is the same as the step shown in FIG. 1E to FIG. 1G, so detailed description thereof is omitted here.
  • FIG. 13 (a) to 13 (h) show a mold manufacturing method using a lift-off method while forming a concavo-convex pattern on a resist layer by imprinting instead of electron beam drawing as another embodiment of the present invention.
  • the mold manufactured by this mold manufacturing method is the mold 1 having the shape shown in FIG.
  • the imprint referred to here is not limited to either UV thermal method, and any method can be used.
  • FIG. 13 (a) a disk-shaped quartz substrate 70 having a resist layer 72 formed in a planar shape on the surface is prepared. Is done.
  • a nanoimprint resist is used as the resist layer 72.
  • a stamper (mold) 73 is pressed in one direction of an arrow 74 with respect to the resist layer 72 on the substrate 70 by a nanoimprint transfer device (not shown) from above, and the uneven pattern formed on the stamper 73 is a resist pattern. Transferred to the layer 72 (transfer process).
  • the uneven pattern formed on the stamper 73 corresponds to the pattern region 13 and the mark portion 14 described above. By this transfer process, the concavo-convex pattern is reversed and formed on the resist layer 72 on the substrate 70.
  • the resist layer 72 is etched (resist residual film layer etching step). As a result, as shown in FIG. 13C, the resist layer 72 becomes thinner as a whole, the remaining film layer portion of the recess is removed, and the corresponding portion of the substrate 72 is exposed.
  • the pattern area 13 in FIG. 13C is a portion that should finally become the imprint pattern area 5 of the mold 1.
  • the mark portion 14 is located on the outer peripheral side or the inner peripheral side avoiding the pattern region 13 and is present in a portion that is finally removed by cutting the substrate 70 in the subsequent processing steps.
  • FIG. 13D when a hard mask film 71 made of chromium (Cr) or the like is formed, 71a formed on the substrate 70 and 71b formed on the resist 72 are formed. Then, the film is formed (hard mask film forming step). Then, the resist layer 72 is dissolved and removed with a solvent or the like, and at the same time, the hard mask film 71b on the resist layer 72 is removed, and a hard mask pattern 71a as shown in FIG. (Lift-off process). Further, the substrate 70 is subjected to substrate etching, and as shown in FIG. 13 (f), the unevenness is inverted (substrate etching process). Next, a process for processing the quartz substrate 70 is performed as shown in FIG. After the processing step, the hard mask film 71 remaining on the substrate 70 is removed as shown in FIG. 13H (hard mask removing step). As a result, the mold 1 having the shape shown in FIG. 2 is completed.
  • Cr chromium
  • the positioning accuracy between the stamper 63 and the substrate 60 in the transfer process of FIG. Similarly, the positioning accuracy between the stamper 73 and the substrate 70 in the transfer process of FIG. There is no problem even if there is a deviation of several hundred ⁇ m. This is because the cutting position of the substrate is set in the processing step using the mark of the mark portion 14 as a position reference.
  • the mark of the mark portion 14 is 3, but the mark is not limited to this and may be 2 or more. Further, the interval between the mark portions 14 is not limited to 120 degrees, but is preferably equal.
  • the mark portion 14 may be a contour line of the outer shape of the mold shape to be finally obtained.
  • the mark portion 14 as the contour line of the mold shape is drawn together with the pattern region 13 by electron beam drawing.
  • outer shape processing may be performed along the contour line that is the mark portion, and a mold in which the contour line does not remain may be obtained.
  • a mold-shaped outer shape composed of the outer straight line portion 3 and the outer arc portion 4 is drawn as a contour line, etched, and then processed according to the contour line by a processing apparatus. Further, processing may be performed until the shape of FIG.
  • the mold manufactured by the mold manufacturing method of the present invention is provided with three outer straight portions 3 at equal intervals in the outer peripheral region, but the shape of the outer peripheral region is limited to this. Alternatively, other shapes such as a circle and a polygon may be used. Furthermore, as shown in FIG. 2, the number of the external straight line portions 3 is not limited to 3 when the external straight line portions 3 are provided. Further, in the above-described embodiment, the outer straight line portions 3 are formed at equal intervals of 120 degrees and the same size with respect to the center point of the mold 1, but the present invention is not limited to this.
  • FIG. 14 shows a nano-imprint operation of a transfer apparatus in which the imprint patterns are simultaneously pressed and transferred onto both surfaces of a transfer substrate using two outer shape molds shown in FIG. Is shown in a flowchart.
  • FIGS. 15A and 15B show the pressure transfer state by the two molds. 15 (a) and 15 (b), the mold indicated by reference numeral 101 is an upper mold, the mold indicated by reference numeral 102 is a lower mold, and what is indicated by reference numeral 103 is This is a substrate to be transferred onto which the imprint pattern is transferred on both sides.
  • a controller (not shown) of the transfer device transports the upper mold 101 onto the mold holding surface of the upper mold holding portion (not shown) by a transfer device (not shown) (Step S1), after the conveyance, the upper mold 101 is fixed by holding the outer arc 101a of the upper mold 101 by the upper mold holding portion 109a (Step S2).
  • the upper mold gripping part 109a is driven, and the gripping part 109a fixes the upper mold 101 so as to be sandwiched from both sides at a predetermined upper holding position on the mold holding surface of the upper mold holding part.
  • the predetermined upper holding position is a position where the upper center pin 130a can move without contacting the center hole of the upper mold 101.
  • the controller causes the lower mold 102 to be transferred onto the mold holding surface of the lower mold holding unit by the transfer device (step S3), and after the transfer, the lower mold holding unit 109b causes the lower mold 102 to move.
  • the lower mold 102 is fixed by gripping the outer arc portion 102a (step S4).
  • step S4 the lower mold gripping part 109b is driven, and the gripping part 109b is fixed so as to sandwich the lower mold 102 from both sides at a predetermined lower holding position on the mold holding surface of the lower mold holding part.
  • the predetermined lower holding position is a position where the lower center pin 130b can move without contacting the center hole of the lower mold 102, and is in a vertical relationship with the predetermined upper holding position.
  • the controller transports the substrate 103 by the transport device described above and attaches it to the flange (not shown) at the tip of the lower center pin 130b (step S5). That is, at the position where the lower center pin 130b is inserted into the center hole of the substrate 103, the substrate 103 is moved along the tip convex portion (not shown) of the lower center pin 130b, whereby the lower center pin 130b. It is mounted on the flange of the front end portion. As a result, the substrate 103 can be aligned with the molds 101 and 102 held and fixed as described above.
  • step S6 After mounting the substrate 103, the controller performs mold pressing (step S6).
  • the mold When the mold is pressed, the upper stage pin 130a is moved downward by moving the upper stage (not shown) of the transfer device downward, and the concave portion (not shown) at the tip thereof is moved to the lower center pin 130b.
  • the upper mold 101 comes into contact with the upper transfer layer 103 a of the substrate 103 in combination with the above-mentioned tip convex portion.
  • a concavo-convex pattern having a concavo-convex state reversed from that of the imprint pattern formed on the lower mold 102 is formed on the surface portion of the lower transfer layer 103b. That is, by executing step S4, the double-sided simultaneous pattern transfer by the upper mold 101 and the lower mold 102 is performed on each of the upper transfer layer 103a and the lower transfer layer 103b of the substrate 103.
  • the grip portion 109 a that grips the upper mold 101 and the grip portion 109 b that grips the lower mold 102 exist at positions where they do not overlap each other.
  • the gripping portions 109a and the gripping portions 109b are alternately positioned at intervals of 60 degrees around the center pins 130a and 30b, the gripping portions 109a grip the outer arc portion 101a of the upper mold 101, and the gripping portions 109b are Since the outer circular arc portion 102a of the side mold 102 is gripped, the gripping portion 109a is located within the existing angle of the outer straight line portion 102b of the lower mold 102 and does not overlap the outer peripheral portion of the lower mold 102.
  • the gripping part 109 b is located within the existing angle of the outer straight line part 101 b of the upper mold 101 and is not in a position overlapping the outer peripheral part of the upper mold 101.
  • the outer straight portions 101b and 102b serve as so-called reliefs with respect to the grip portions 109b and 109a. Therefore, interference such as a collision between the gripping part 109a and the gripping part 109b, a collision between the gripping part 109a and the outer peripheral part of the lower mold 102, or a collision between the gripping part 109b and the outer peripheral part of the upper mold 101 in the pressing direction during pressing. Therefore, both surfaces of the substrate 103 can be simultaneously pressed by the upper mold 101 and the lower mold 102.
  • step S4 the controller drives the upper UV irradiation unit and the lower UV irradiation unit (not shown) of the transfer device to emit ultraviolet rays to cure the transfer layer material, so that the upper transfer layer 103a and the lower transfer layer of the substrate 103 are cured. Irradiate toward 103b (step S7).
  • the controller executes mold release to release the substrate 103 from the upper mold 101 and the lower mold 102 (step S8). .
  • the controller 200 moves the upper stage upward by a predetermined distance so that the lower mold 101 is separated from the upper transfer layer 604 a of the substrate 103.
  • the upper center pin 130a and the lower center pin 130b are coupled and moved upward, and the substrate 103 is lifted by the flange of the lower center pin 130b. As a result, the substrate 103 is released from the lower mold 102. To do.
  • the controller moves the upper center pin 130a upward, removes the substrate 103 from the lower center pin 130b, and unloads the substrate 103 by the transfer device (step S9).
  • step S10 determines whether or not a command indicating the end of the operation has been issued from the operation unit (not shown) of the transfer device (step S10). If it is determined in step S10 that a command indicating the end of the operation has been supplied, the controller ends the nanoimprint operation. On the other hand, when it is determined in step S10 that the command indicating the end of the operation is not supplied, the controller returns to the execution of step S5 and repeatedly executes the operations of steps S5 to S10. Thereby, pattern transfer is continuously performed on the newly mounted substrate 103.
  • the mold manufactured by the mold manufacturing method of the present invention can be applied to applications other than the above-described disc manufacturing applications.
  • it can be applied to manufacturing applications such as semiconductor manufacturing, solar cell manufacturing, antireflection structure manufacturing, structure manufacturing for increasing light extraction efficiency such as LED, microlens array manufacturing, and microfluid chip (biochip) manufacturing. .

Abstract

Disclosed is a method for producing a mold having an imprint pattern area to be transferred to a transfer receiving body by a transfer device, wherein the method is provided with a forming step for forming the imprint pattern area as well as a mark for shape processing of a base plate on the base plate of the mold, and a processing step for processing the base plate to a predetermined shape on the basis of the mark on the base plate.

Description

モールドの製造方法及びモールド用基板Mold manufacturing method and mold substrate
 本発明は、モールドを製造する製造方法及びモールド用基板に関する。 The present invention relates to a manufacturing method for manufacturing a mold and a mold substrate.
 モールドに形成された凹凸のインプリントパターンを転写装置によって被転写基板に転写させる場合に、インプリントパターンが被転写基板の所望の位置に転写されるようにモールドと被転写基板とを位置合わせをする必要がある。通常、モールド上に形成されたマークを用いて被転写基板に位置合わせをする方法と、被転写基板とモールドの形状で位置合わせをする方法とがある。前者の方法では、モールドに形成されたマークが被転写基板上の予め定められたポイントに位置するように位置調整することが行われる。このようなマークをモールドの製造時にインプリントパターンと共に形成することは特許文献1~3に開示されている。一方、後者の方法では、被転写基板及びモールド各々の例えば、中心孔等の形状で互いの位置合わせをすることが行われ、特許文献4と5に開示されている。 When transferring the uneven imprint pattern formed on the mold to the transfer substrate by the transfer device, align the mold and the transfer substrate so that the imprint pattern is transferred to the desired position on the transfer substrate. There is a need to. In general, there are a method of aligning the transfer substrate with a mark formed on the mold and a method of aligning the transfer substrate and the shape of the mold. In the former method, the position adjustment is performed so that the mark formed on the mold is positioned at a predetermined point on the substrate to be transferred. Patent Documents 1 to 3 disclose that such a mark is formed together with an imprint pattern when a mold is manufactured. On the other hand, in the latter method, each of the substrate to be transferred and the mold is aligned with each other, for example, in the shape of a central hole or the like, which is disclosed in Patent Documents 4 and 5.
特開2009-208240号公報JP 2009-208240 A 特開2007-230229号公報JP 2007-230229 A 特開平2-249908号公報JP-A-2-249908 特開2009-83195号公報JP 2009-83195A 特表2005-529436号公報JP 2005-529436 Gazette
 しかしながら、後者の方法では、モールドにおいてその形状に対して正確な位置にインプリントパターンを形成する必要がある。モールドと被転写基板との位置合わせが正確に行われたとしても、モールド上でインプリントパターンが所望の位置からずれて形成されていると、結果的に、転写されたインプリントパターンが被転写基板の所望の位置に転写されないという問題があった。 However, in the latter method, it is necessary to form an imprint pattern at an accurate position with respect to the shape of the mold. Even if the alignment between the mold and the substrate to be transferred is accurately performed, if the imprint pattern is formed out of the desired position on the mold, as a result, the transferred imprint pattern is transferred. There is a problem that the image is not transferred to a desired position on the substrate.
 そこで、本発明が解決しようとする課題は、モールドの形状に対してモールド上のインプリントパターンを高精度で配置することができるモールドの製造方法及びモールド用基板を提供することが本発明の目的である。 Therefore, the problem to be solved by the present invention is to provide a mold manufacturing method and a mold substrate capable of arranging an imprint pattern on the mold with high accuracy with respect to the shape of the mold. It is.
 請求項1に係る発明のモールドの製造方法は、転写装置によって被転写体に転写されるべきインプリントパターン領域を有するモールドの製造方法であって、前記モールドの基板に前記インプリントパターン領域と共に、前記基板の形状加工のための目印を形成する形成工程と、前記基板の前記目印に基づいて前記基板を所定形状に加工する加工工程と、を備えたことを特徴としている。 The mold manufacturing method of the invention according to claim 1 is a mold manufacturing method having an imprint pattern region to be transferred to a transfer object by a transfer device, together with the imprint pattern region on the substrate of the mold, A forming step of forming a mark for processing the shape of the substrate and a processing step of processing the substrate into a predetermined shape based on the mark of the substrate are provided.
 請求項10に係る発明のモールド用基板は、転写装置によって被転写体に転写されるべきインプリントパターン領域を有する所定形状のモールドに加工されるモールド用基板であって、前記インプリントパターン領域と、前記基板の一部を前記所定形状に加工するための目印が形成されていることを特徴としている。 A mold substrate according to a tenth aspect of the present invention is a mold substrate processed into a mold having a predetermined shape having an imprint pattern region to be transferred to a transfer object by a transfer device, and the imprint pattern region A mark for processing a part of the substrate into the predetermined shape is formed.
 請求項16に係る発明のモールドの製造方法は、被転写体の両面に凹凸パターンを転写するための転写装置に使用されるモールドの製造方法であって、インプリントパターン、及び、モールド基板の形状加工のための目印に対応するパターンを、レジストが塗布されたモールド基板に同一の描画装置で前記レジスト上に描画する描画工程と、前記レジスト上に描画された描画パターンに基づいてエッチング処理を行い、前記モールド基板上に凹凸構造を形成する凹凸パターン形成工程と、前記モールド基板上に形成された前記目印に対応する凹凸パターンに基づいて、加工装置を利用して前記モールド基板を所定形状に加工する加工工程と、を備えたことを特徴としている。 A mold manufacturing method according to a sixteenth aspect of the present invention is a mold manufacturing method used in a transfer device for transferring a concavo-convex pattern onto both surfaces of a transfer object, the imprint pattern and the shape of the mold substrate. A patterning process corresponding to a mark for processing is performed on the resist substrate by using the same drawing apparatus to draw a pattern on the resist, and an etching process is performed based on the drawing pattern drawn on the resist. Based on the concavo-convex pattern forming step for forming the concavo-convex structure on the mold substrate and the concavo-convex pattern corresponding to the mark formed on the mold substrate, the mold substrate is processed into a predetermined shape using a processing apparatus. And a processing step to be performed.
本発明の実施例としてモールドの製造方法を示す図である。It is a figure which shows the manufacturing method of a mold as an Example of this invention. 図1の製造方法によって製造されるモールドを示す平面図である。It is a top view which shows the mold manufactured by the manufacturing method of FIG. 基板上のパターン領域及び目印部の一例を示す平面図、並びに加工工程後の基板を示す平面図である。It is a top view which shows an example of the pattern area | region and mark part on a board | substrate, and a top view which shows the board | substrate after a process process. ガラス加工機における動作を示すフローチャートである。It is a flowchart which shows the operation | movement in a glass processing machine. 基板上のパターン領域及び目印部の他の例を示す平面図、並びに加工工程後の基板を示す平面図である。It is the top view which shows the other example of the pattern area | region and mark part on a board | substrate, and the top view which shows the board | substrate after a process process. 基板上のパターン領域及び目印部の他の例を示す平面図、並びに加工工程後の基板を示す平面図である。It is the top view which shows the other example of the pattern area | region and mark part on a board | substrate, and the top view which shows the board | substrate after a process process. 基板上のパターン領域及び目印部の他の例を示す平面図、並びに加工工程後の基板を示す平面図である。It is the top view which shows the other example of the pattern area | region and mark part on a board | substrate, and the top view which shows the board | substrate after a process process. 基板上のパターン領域及び目印部の他の例を示す平面図、並びに加工工程後の基板を示す平面図である。It is the top view which shows the other example of the pattern area | region and mark part on a board | substrate, and the top view which shows the board | substrate after a process process. 基板上のパターン領域及び目印部の他の例を示す平面図、並びに加工工程後の基板を示す平面図である。It is the top view which shows the other example of the pattern area | region and mark part on a board | substrate, and the top view which shows the board | substrate after a process process. インプリント時の被転写基板との位置合わせのためにモールド上に存在する目印を示す図である。It is a figure which shows the mark which exists on a mold for position alignment with the to-be-transferred substrate at the time of imprint. 本発明の他の実施例としてモールドの製造方法を示す図である。It is a figure which shows the manufacturing method of a mold as another Example of this invention. 本発明の他の実施例としてモールドの製造方法を示す図である。It is a figure which shows the manufacturing method of a mold as another Example of this invention. 本発明の他の実施例としてモールドの製造方法を示す図である。It is a figure which shows the manufacturing method of a mold as another Example of this invention. 図2に示したモールドを2つ1組として使用してインプリントパターンを被転写基板に両面転写する場合の転写装置のナノインプリント動作を示すフローチャートである。3 is a flowchart showing a nano-imprint operation of a transfer device when two imprint patterns are transferred onto a transfer substrate using two molds shown in FIG. 2 as a set. 図14のモールド押圧ステップの状態を示す図である。It is a figure which shows the state of the mold press step of FIG.
 請求項1及び16に係る発明のモールドの製造方法並びに請求項10に係る発明のモールド用基板によれば、基板の目印に基づいて基板が加工されるので、その加工後に得られるモールドにおいては形状に対するインプリントパターン領域の位置を高精度で配置させることができる。よって、転写装置においてモールドの形状に対して被転写基板を位置合わせするだけでモールドのインプリントパターン領域を被転写基板の所望の位置に転写させることができる。 According to the mold manufacturing method of the invention according to claims 1 and 16 and the mold substrate of the invention according to claim 10, the substrate is processed based on the mark of the substrate. The position of the imprint pattern area with respect to can be arranged with high accuracy. Therefore, the imprint pattern area of the mold can be transferred to a desired position on the transfer substrate simply by aligning the transfer substrate with respect to the shape of the mold in the transfer device.
 以下、本発明の実施例を図面を参照しつつ詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1(a)~(g)は本発明のモールドの製造方法を示している。この製造方法を説明する前に、図1(a)~(g)に示した製造方法で製造されるモールドは、図2に参照符号1で示すように、中心部に貫通した円形の中心孔2を有し、また、外形は外形直線部3と外形円弧部4とが交互に3箇所ずつ形成されたものである。この実施例では外形直線部3はモールド1の中心点について120度の等間隔で同一サイズに形成され、また、外形円弧部4も120度の等間隔で同一サイズに形成されている。そのモールド1の一方の表面には円環状のインプリントパターン領域5が形成されており、それは例えば、磁気ディスクのサーボデータパターンやデータトラックパターンが凹凸のインプリントパターンとして形成されている領域である。モールド1の他方の面は転写装置にて必要な平面度に加工された平面である。また、インプリントパターン領域5より内周側に中心孔2が位置し、中心孔2の円中心点と円環状のインプリントパターン領域5の中心点とは等しくされている。また、その中心点から同一距離の位置に外形円弧部4が位置している。図2の形状のモールドは、例えば本発明出願人により出願された国際出願番号PCT/JP2009/051473号に記載されているような被転写基板の両面に凹凸パターンを同時に転写する転写装置に用いられるモールドである。 1 (a) to 1 (g) show the mold manufacturing method of the present invention. Before explaining this manufacturing method, a mold manufactured by the manufacturing method shown in FIGS. 1 (a) to 1 (g) has a circular center hole penetrating the center portion as shown by reference numeral 1 in FIG. 2 and the outer shape linear portion 3 and the outer arc portion 4 are alternately formed at three locations. In this embodiment, the outer straight line portions 3 are formed at the same size at equal intervals of 120 degrees with respect to the center point of the mold 1, and the outer arc portions 4 are also formed at the same size at equal intervals of 120 degrees. An annular imprint pattern region 5 is formed on one surface of the mold 1, which is, for example, a region in which a servo data pattern or a data track pattern of a magnetic disk is formed as an uneven imprint pattern. . The other surface of the mold 1 is a flat surface processed to a required flatness by the transfer device. Further, the center hole 2 is located on the inner peripheral side from the imprint pattern region 5, and the circle center point of the center hole 2 is equal to the center point of the annular imprint pattern region 5. Further, the outer arc portion 4 is located at the same distance from the center point. The mold having the shape shown in FIG. 2 is used in a transfer device that simultaneously transfers a concavo-convex pattern onto both surfaces of a transfer substrate as described in, for example, International Application No. PCT / JP2009 / 051473 filed by the applicant of the present invention. It is a mold.
 図1(a)~(g)に従ってモールド1の製造方法を説明すると、先ず、図1(a)に示すように、石英基板の表面にハードマスク11とレジスト層12とが積層形成された円盤状の基板(加工前基板)10が用意される。この加工前基板は、後述する加工により形成されるモールド形状より大きければ、盤状、矩形状他いかなる形状でも良く中心孔を持つ基板、持たない基板何れでも構わない.望むべくは標準的な基板形状、基板寸法からモールド形状より大きなものを選択すれば、安定的に安価な基板を使用することも出来る。より望ましくは、電子ビーム描画装置に最適な形状なのが好ましい。例えば加工前基板を回転させながら電子ビーム露光を行うXθ型の回転型電子ビーム描画装置(例えば本発明出願人により出願された国際公開公報WO2008/1230331に記載されている電子線描画装置)であれば円盤状の加工前基板が好ましく、加工前基板をX軸Y軸の2軸方向に移動させながら電子ビーム露光を行うXY型の電子ビーム描画装置であれば矩形状の加工前基板が好ましい。ここでは、中心孔を持たない円盤状の加工前基板として説明を行う.ハードマスク11はクロム(Cr)等の金属が専ら用いられ石英基板にあらかじめ蒸着されている。ハードマスク11の上に形成されるレジスト層12としては電子線(EB)レジストが用いられる。ハードマスク11が形成された基板に電子線レジストをスピンコートしレジスト層12を形成する。その基板10上のレジスト層12に対し、その上方から電子ビーム描画装置(図示せず)によって電子ビームが照射され、レジスト層12が露光され、露光後に現像が行われる(電子ビーム描画及び現像工程)。描画されるべき凹凸パターン(後述するパターン領域13、目印部14)のパターン形状データを予め電子ビーム描画装置用に処理を施した描画データを作成しておき、描画時はこの描画データに基づき電子ビーム描画装置が駆動され、電子ビームの照射が実行される。電子ビーム照射がされた部分が基板10上のレジスト層12に潜像として形成される。すなわち、同一の電子ビーム描画装置により一括工程でパターン領域13に相当パターンと目印部14に相当するパターンの潜像がレジスト上に形成される。 1A to 1G, the manufacturing method of the mold 1 will be described. First, as shown in FIG. 1A, a disk in which a hard mask 11 and a resist layer 12 are laminated on the surface of a quartz substrate. A shaped substrate (substrate before processing) 10 is prepared. This pre-processed substrate may be any shape such as a disk shape, a rectangular shape, or a substrate with a central hole, as long as it is larger than the mold shape formed by processing described later. If desired, a substrate that is larger than the mold shape is selected from the standard substrate shape and substrate dimensions, and a stable and inexpensive substrate can be used. More desirably, the shape is optimal for an electron beam drawing apparatus. For example, an Xθ-type rotating electron beam lithography apparatus that performs electron beam exposure while rotating the substrate before processing (for example, an electron beam lithography apparatus described in International Publication WO2008 / 1230331 filed by the applicant of the present invention). For example, a disk-shaped pre-processed substrate is preferable, and a rectangular pre-processed substrate is preferable in the case of an XY-type electron beam drawing apparatus that performs electron beam exposure while moving the pre-processed substrate in two directions of the X axis and the Y axis. Here, the explanation is given as a disk-shaped pre-process substrate without a central hole. The hard mask 11 is exclusively made of metal such as chromium (Cr) and is pre-deposited on a quartz substrate. An electron beam (EB) resist is used as the resist layer 12 formed on the hard mask 11. An electron beam resist is spin-coated on the substrate on which the hard mask 11 is formed to form a resist layer 12. The resist layer 12 on the substrate 10 is irradiated with an electron beam from above by an electron beam lithography apparatus (not shown), the resist layer 12 is exposed, and development is performed after exposure (electron beam lithography and development process). ). Drawing data in which pattern shape data of a concavo-convex pattern to be drawn (a pattern area 13 and a mark portion 14 to be described later) is processed in advance for an electron beam drawing apparatus is created. The beam drawing apparatus is driven and the electron beam irradiation is executed. The portion irradiated with the electron beam is formed as a latent image on the resist layer 12 on the substrate 10. That is, a latent image of a pattern corresponding to the pattern region 13 and a pattern corresponding to the mark portion 14 is formed on the resist in a batch process by the same electron beam drawing apparatus.
 描画後の基板10が電子ビーム描画装置から取り出された後、基板10に対して現像処理が施される。この現像処理の結果、図1(b)に示すように、レジスト層12の潜像部分が溶解除去されてハードマスク11の表面が露出することになる。図3(a)は、基板10に描画されたパターンを模式的に示した図である。レジスト層12の描画された凹凸パターンは図3(a)に示すように、パターン領域13と目印部14とからなる。パターン領域13は最終的に上記のモールド1のインプリントパターン領域5となるべき部分であり、それは例えば、磁気ディスクのサーボデータパターンやデータトラックパターンに相当するレジスト12の凹凸パターンが形成されている領域である。目印部14、湾曲ライン15と間隙16の組み合わせからなるパターンであり、同一半径上に湾曲ライン15と間隙16が交互に現れるように描画されている。この目印部14はパターン領域13を避けた外周側に位置し(もちろん最終的なモールド形状によっては内周側に目印部があてもよいことはいうまでもない)、後述の加工工程において最終的に基板10を図2に示す形状に加工することにより除去される部分に存在する。目印部14は図1(b)においては、一つの大きな凹みとして、また図3(a)において線としてそれぞれ表現されている。後述するカメラにより認識できる形状であれば、線状ではなく、ラインアンドスペース形状、ドットの集合等のより微細な形状が集まって形成される領域であっても良い.目印部14は図3(a)の例では基板10中心点から半径方向において同一距離上に電子ビーム描画された3箇所の同一長の湾曲ライン15からなり、湾曲ライン15間には同一長の間隙16が設けられている。すなわち、1つの円上の3箇所の不連続箇所が間隙16とされている。また、目印部14は加工工程において加工位置の位置合わせの目印として利用される。図3(a)の例の場合に目印は例えば、各湾曲ライン15の一端又は間隙16である。 After the drawn substrate 10 is taken out from the electron beam drawing apparatus, the substrate 10 is subjected to development processing. As a result of this development processing, as shown in FIG. 1B, the latent image portion of the resist layer 12 is dissolved and removed, and the surface of the hard mask 11 is exposed. FIG. 3A is a diagram schematically showing a pattern drawn on the substrate 10. The concavo-convex pattern drawn on the resist layer 12 includes a pattern region 13 and a mark portion 14 as shown in FIG. The pattern area 13 is a portion that should eventually become the imprint pattern area 5 of the mold 1. For example, a concavo-convex pattern of the resist 12 corresponding to a servo data pattern or a data track pattern of a magnetic disk is formed. It is an area. The pattern is a combination of the mark portion 14, the curved line 15, and the gap 16, and is drawn so that the curved line 15 and the gap 16 appear alternately on the same radius. This mark portion 14 is located on the outer peripheral side avoiding the pattern region 13 (of course, depending on the final mold shape, there may be a mark portion on the inner peripheral side). The substrate 10 exists in a portion to be removed by processing the substrate 10 into the shape shown in FIG. The mark portion 14 is represented as one large dent in FIG. 1 (b) and as a line in FIG. 3 (a). As long as the shape can be recognized by a camera, which will be described later, it may be a region formed by collecting finer shapes such as a line-and-space shape and a set of dots instead of a linear shape. In the example shown in FIG. 3A, the mark portion 14 is composed of three curved lines 15 having the same length drawn by an electron beam on the same distance in the radial direction from the center point of the substrate 10. A gap 16 is provided. That is, three discontinuous portions on one circle are the gap 16. Further, the mark portion 14 is used as a mark for aligning the machining position in the machining process. In the case of the example of FIG. 3A, the mark is, for example, one end of each curved line 15 or the gap 16.
 次に、図1(c)に示すように、ハードマスク11に対してハードマスクエッチングが施される(ハードマスクエッチング工程)。ハードマスク11が露出しているレジスト層12のパターン領域13及び目印部14おいてハードマスク11がエッチングされる。よって、パターン領域13と目印部14では基板10の表面が露出する。 Next, as shown in FIG. 1C, hard mask etching is performed on the hard mask 11 (hard mask etching process). The hard mask 11 is etched in the pattern region 13 and the mark portion 14 of the resist layer 12 where the hard mask 11 is exposed. Therefore, the surface of the substrate 10 is exposed at the pattern region 13 and the mark portion 14.
 更に、図1(d)に示すように、基板10に対して基板エッチングが施される(基板エッチング工程)。ハードマスク11のパターン領域13及び目印部14のハードマスク11が露出した部分において基板10の石英基板がエッチングされる。この結果、パターン部13と目印部14では基板10の石英基板に凹部が生ずる。その後、残っているレジスト層12は図1(e)に示すように除去される(レジスト除去工程)。 Further, as shown in FIG. 1 (d), substrate etching is performed on the substrate 10 (substrate etching step). The quartz substrate of the substrate 10 is etched at a portion of the hard mask 11 where the pattern region 13 and the mark portion 14 are exposed. As a result, a concave portion is formed in the quartz substrate of the substrate 10 at the pattern portion 13 and the mark portion 14. Thereafter, the remaining resist layer 12 is removed as shown in FIG. 1E (resist removal step).
 次いで、図1(f)に示すように基板エッチングが行われた基板10の加工工程が行われる。この加工工程は加工機あるいは加工装置(図示せず)によって実行される。加工機においては、図4に示すように、先ず、レジスト除去工程後の基板10がセットされる(ステップS11)。目印部14の目印(図3(a)の場合の3つの間隙16)が加工機に備えられたカメラ(図示せず)によって検出されその座標が測定される(ステップS12)。その間隙16の座標を基準として加工位置が計算される(ステップS13:加工位置計算工程)。すなわち、加工機のコントローラ(図示せず)には予め加工位置と目印との座標関係を示すデータが保存されているので、ステップS12で3つの目印の座標位置が検出されることにより、ステップS13ではその保存データを元に、例えば基板を加工するための刃物(エンドミル等)を動かす直線の式等が計算される。 Next, as shown in FIG. 1 (f), a processing step of the substrate 10 that has been subjected to substrate etching is performed. This processing step is executed by a processing machine or a processing apparatus (not shown). In the processing machine, as shown in FIG. 4, first, the substrate 10 after the resist removal process is set (step S11). A mark (three gaps 16 in the case of FIG. 3A) of the mark portion 14 is detected by a camera (not shown) provided in the processing machine, and its coordinates are measured (step S12). A machining position is calculated with reference to the coordinates of the gap 16 (step S13: machining position calculation step). That is, since data indicating the coordinate relationship between the machining position and the mark is stored in advance in the controller (not shown) of the processing machine, the coordinate position of the three marks is detected in step S12, so that step S13 is performed. Then, based on the stored data, for example, a straight line equation for moving a blade (end mill or the like) for processing the substrate is calculated.
 ステップS13の実行後、その計算された加工位置に従って不要部分が除去される(ステップS14)。ステップS14では、上記のモールド1の中心孔2が形成され、更に外形直線部3と外形円弧部4とが形成されるように加工機により基板10に加工が行われる。すなわち、基板10の表面において外形直線部3の延長線が互いに交差するように、基板10上の目印を有する複数の部分を直線状に切り取ることで、目印を有する部分をモールドの本体部分から除去することが行われる。パターン領域13と目印部14とが図3(a)に示したように形成されている場合には、この加工工程により加工位置に従って中心孔が形成され、外周領域が除去された基板10が図3(b)に示すように得られる。図3(b)の破線Aがその基板10の加工によって除去された部分に存在する目印部14を示している。図3(b)の例では例えば加工方法として切断を用いている。 After execution of step S13, unnecessary portions are removed according to the calculated machining position (step S14). In step S14, the substrate 10 is processed by the processing machine so that the center hole 2 of the mold 1 is formed, and the outer straight line portion 3 and the outer arc portion 4 are further formed. That is, by removing a plurality of portions having marks on the substrate 10 in a straight line so that the extended lines of the outer straight portions 3 intersect each other on the surface of the substrate 10, the portions having the marks are removed from the main body portion of the mold. To be done. When the pattern region 13 and the mark portion 14 are formed as shown in FIG. 3A, the substrate 10 in which the center hole is formed according to the processing position and the outer peripheral region is removed by this processing step is shown. As shown in 3 (b). A broken line A in FIG. 3B indicates a mark portion 14 existing in a portion removed by processing the substrate 10. In the example of FIG. 3B, for example, cutting is used as a processing method.
 加工工程後、基板10上に残っているハードマスク11が図1(g)に示すように除去される(ハードマスク除去工程)。この結果、電子ビーム描画により形成したレジストの凹凸パターン(パターン領域13)は最終的にインプリントパターン領域5に変換され、加えてその形状に対してインプリントパターン領域5を正確な位置に配した図2に示した形状のモールド1が完成する。 After the processing step, the hard mask 11 remaining on the substrate 10 is removed as shown in FIG. 1 (g) (hard mask removing step). As a result, the concavo-convex pattern (pattern region 13) of the resist formed by electron beam drawing is finally converted to the imprint pattern region 5, and in addition, the imprint pattern region 5 is arranged at an accurate position with respect to the shape. The mold 1 having the shape shown in FIG. 2 is completed.
 図5(a)は本発明の他の実施例として目印部14をパターン領域13と共に示している。図5(a)の例では、目印部14が円環状のパターン領域13よりも外側に位置している。目印部14は基板10中心点から半径方向において同一距離上に位置する3つの点17からなる。3つの点17は電子ビーム照射によって120度間隔で丸印として描画形成される。 FIG. 5A shows a mark portion 14 together with a pattern region 13 as another embodiment of the present invention. In the example of FIG. 5A, the mark portion 14 is located outside the annular pattern region 13. The mark part 14 includes three points 17 located on the same distance in the radial direction from the center point of the substrate 10. Three points 17 are drawn and formed as circles at intervals of 120 degrees by electron beam irradiation.
 3つの点17は上記のステップS12で加工機に備えられたカメラによって目印部14の目印として検出される。その後のステップS13でその目印を位置基準として加工位置が設定され、ステップS14でその加工位置に従って基板10がハードマスク11と共に除去されると、図5(b)に示すように基板形状が得られ、3つの点17からなる目印部14は外形直線部3と外形円弧部4とを形成するための基板10の不要部分が加工の際に除去される。すなわち、目印部14は、パターン領域13よりも外周部分を外形直線部3を形成するために直線状に除去することで除去されるような位置に形成されている。図5(b)の破線Bはその基板10の加工によって除去された部分に存在する3つの点17を示している。 The three points 17 are detected as marks of the mark portion 14 by the camera provided in the processing machine in the above step S12. In subsequent step S13, a processing position is set with the mark as a position reference. In step S14, when the substrate 10 is removed together with the hard mask 11 in accordance with the processing position, a substrate shape is obtained as shown in FIG. In the mark portion 14 composed of the three points 17, unnecessary portions of the substrate 10 for forming the outer straight line portion 3 and the outer arc portion 4 are removed during processing. That is, the mark portion 14 is formed at a position that is removed by removing the outer peripheral portion of the pattern region 13 linearly in order to form the outer straight portion 3. A broken line B in FIG. 5B indicates three points 17 existing in a portion removed by processing the substrate 10.
 図6(a)は本発明の他の実施例として目印部14をパターン領域13と共に更に示している。図6(a)の例では、目印部14が円環状のパターン領域13よりも内側に位置している。目印部14は基板10中心点についての円18と、その円と交差する半径方向に伸びた3つのライン19とからなる。円18及び3つのライン19は電子ビーム照射によって描画形成される。3つのライン19は120度間隔で配置されている。 FIG. 6A further shows a mark portion 14 together with a pattern region 13 as another embodiment of the present invention. In the example of FIG. 6A, the mark portion 14 is located inside the annular pattern region 13. The mark portion 14 includes a circle 18 about the center point of the substrate 10 and three lines 19 extending in the radial direction intersecting the circle. The circle 18 and the three lines 19 are drawn and formed by electron beam irradiation. The three lines 19 are arranged at intervals of 120 degrees.
 円18と3つのライン19とによる交差点は上記のステップS12で加工機に備えられたカメラによって目印部14の目印として検出される。その後のステップS13でその目印を位置基準として加工のための座標が設定され、ステップS14でその加工座標に従って基板10の不要部が除去されると、図6(b)に示すように基板形状が得られ、円18と3つのライン19とからなる目印部14は中心孔2の形成により除去される。図6(b)の破線Cはその基板10の加工によって除去された部分に存在する円18と3つのライン19を示している。 The intersection of the circle 18 and the three lines 19 is detected as a mark of the mark portion 14 by the camera provided in the processing machine in the above step S12. In step S13, coordinates for processing are set with the mark as a position reference. In step S14, when unnecessary portions of the substrate 10 are removed according to the processing coordinates, the substrate shape is changed as shown in FIG. As a result, the mark portion 14 including the circle 18 and the three lines 19 is removed by forming the center hole 2. A broken line C in FIG. 6B shows a circle 18 and three lines 19 existing in a portion removed by processing the substrate 10.
 図7(a)は本発明の他の実施例として目印部14をパターン領域13と共に更に示している。図7(a)の例では、目印部14が円環状のパターン領域13よりも内側に位置している。目印部14は基板10中心点から半径方向において同一距離上に位置する3つの小円20からなる。3つの小円20は電子ビーム照射によって120度間隔で描画形成される。 FIG. 7A further shows a mark portion 14 together with a pattern region 13 as another embodiment of the present invention. In the example of FIG. 7A, the mark portion 14 is located inside the annular pattern region 13. The mark portion 14 is composed of three small circles 20 located on the same distance in the radial direction from the center point of the substrate 10. Three small circles 20 are drawn and formed at intervals of 120 degrees by electron beam irradiation.
 3つの小円20は上記のステップS12で加工機に備えられたカメラによって目印部14の目印として検出される。その後のステップS13でその目印を位置基準として加工のための座標が設定され、ステップS14でその加工座標に従って基板10の不要部分が除去されると、図7(b)に示すように基板形状が得られ、3つの小円20からなる目印部14は中心孔2の形成により除去される。図7(b)の破線Dは、その基板10の加工によって除去された部分に存在する3つの小円20を示している。 The three small circles 20 are detected as marks of the mark portion 14 by the camera provided in the processing machine in the above step S12. In the subsequent step S13, coordinates for processing are set with the mark as a position reference. In step S14, when unnecessary portions of the substrate 10 are removed according to the processing coordinates, the substrate shape is changed as shown in FIG. As a result, the mark portion 14 composed of the three small circles 20 is removed by forming the center hole 2. A broken line D in FIG. 7B shows three small circles 20 existing in a portion removed by processing the substrate 10.
 図8(a)は本発明の他の実施例として目印部14をパターン領域13と共に示している。図8(a)の例では、目印部14が円環状のパターン領域13よりも外側に位置している。目印部14は基板10中心点から半径方向において同一距離上に位置する3つの十字印21からなる。3つの十字印21は電子ビーム照射によって120度間隔で描画形成される。 FIG. 8A shows a mark portion 14 together with a pattern region 13 as another embodiment of the present invention. In the example of FIG. 8A, the mark portion 14 is located outside the annular pattern region 13. The mark portion 14 includes three cross marks 21 located on the same distance in the radial direction from the center point of the substrate 10. Three cross marks 21 are drawn and formed at intervals of 120 degrees by electron beam irradiation.
 3つの十字印21は上記のステップS12で加工機に備えられたカメラによって目印部14の目印として検出される。その後のステップS13でその目印を位置基準として加工のための座標が設定され、ステップS14でその加工座標に従って基板10の不要部が除去されると、図8(b)に示すように基板形状が得られ、3つの十字印21からなる目印部14は外形直線部3と外形円弧部4とを形成するために基板10の外形加工の際に除去される。図8(b)の破線Eはその基板10の加工によって除去された部分に存在する3つの十字印21を示している。 The three cross marks 21 are detected as marks of the mark part 14 by the camera provided in the processing machine in the above step S12. Then, in step S13, coordinates for processing are set using the mark as a position reference, and in step S14, when unnecessary portions of the substrate 10 are removed according to the processing coordinates, the substrate shape is changed as shown in FIG. The obtained mark portion 14 composed of three cross marks 21 is removed when the substrate 10 is contoured to form the contour straight line portion 3 and the contour arc portion 4. A broken line E in FIG. 8B indicates three cross marks 21 existing in a portion removed by processing the substrate 10.
 図8(a)に示した3つの十字印21は中心点から外形円弧部4に相当する距離よりも外側に位置するが、図9(a)に示すように、中心点から半径方向において外形円弧部4の形成位置に相当する距離よりも内側であって外形直線部3の形成位置に相当する距離よりも外側の範囲内に3つの十字印22を描画しても良い。すなわち、完成したモールドの外周となるべき外形直線部3より外周側、かつ、完成したモールドの外周となるべき前記外形円弧部4より内周側の基板上の位置に、十字印21が形成される。図9(b)の完成モールド形状の例では、図示はしていないが、図9(a) 完成したモールドの外周となるべき外形直線部3より外周側、かつ、完成したモールドの外周となるべき前記外形円弧部4より内周側という条件を満たす領域は、基板10上に3箇所存在する。その3箇所それぞれに、十字印21が描画され、エッチング工程を経て十字印21に対応する凹凸パターンが基板10上に形成される。Xθ型の電子ビーム描画機を用いる場合には、より中心に近い位置への描画の方が短時間で完了することが可能であり、全体の描画時間を短時間に終えることができる。3つの十字印22は基板10の不要部に位置するので、ステップS14で前記不要部の除去と同時に除去される。図9(b)の破線Fは、基板10の加工によって除去された3つの十字印22を示している。 The three crosses 21 shown in FIG. 8 (a) are located outside the distance corresponding to the outer arc portion 4 from the center point, but as shown in FIG. 9 (a), the outer shape in the radial direction from the center point. Three cross marks 22 may be drawn in a range that is inside the distance corresponding to the formation position of the arc portion 4 and outside the distance corresponding to the formation position of the outer straight line portion 3. That is, the cross mark 21 is formed at a position on the substrate on the outer peripheral side of the outer shape straight line portion 3 to be the outer periphery of the completed mold and on the inner peripheral side of the outer shape arc portion 4 to be the outer periphery of the completed mold. The In the example of the completed mold shape in FIG. 9 (b), although not shown in FIG. 9 (a), the outer periphery of the finished mold and the outer periphery of the finished mold, and the outer periphery of the finished mold, There are three areas on the substrate 10 that satisfy the condition of the inner circumference side of the outer arcuate portion 4. A cross mark 21 is drawn at each of the three locations, and an uneven pattern corresponding to the cross mark 21 is formed on the substrate 10 through an etching process. When an Xθ-type electron beam drawing machine is used, drawing at a position closer to the center can be completed in a shorter time, and the entire drawing time can be completed in a shorter time. Since the three cross marks 22 are located in unnecessary portions of the substrate 10, they are removed simultaneously with the removal of the unnecessary portions in step S14. A broken line F in FIG. 9B indicates three cross marks 22 removed by processing the substrate 10.
 このように、本発明によれば、モールドの加工前基板に形成された目印部の目印によって加工位置を定めて加工工程でその基板の不要部を除去しその形状を形成するので、製造されたモールドの形状に対してインプリントパターン領域を正確な位置に形成させることができる。よって、電子ビーム照射によるパターン描画段階において基板の形状に対するパターン領域の形成位置精度が要求されることはなく、また、転写装置においてモールドのインプリントパターンを被転写基板に転写するインプリント時には、モールドの形状に対して被転写基板を位置合わせするだけで、例えば、モールドの中心孔に対して被転写基板の中心孔を位置合わせするだけでモールドのインプリントパターンを被転写基板の所望の位置に転写させることができる。 As described above, according to the present invention, the processing position is determined by the mark of the mark portion formed on the substrate before processing of the mold, and the unnecessary portion of the substrate is removed and the shape is formed in the processing step. The imprint pattern region can be formed at an accurate position with respect to the shape of the mold. Therefore, there is no requirement for the pattern area formation position accuracy with respect to the shape of the substrate in the pattern drawing stage by electron beam irradiation, and the imprint pattern of the mold is transferred to the transfer substrate in the transfer device. For example, by aligning the center hole of the transfer substrate with respect to the center hole of the mold, the imprint pattern of the mold can be brought to the desired position of the transfer substrate. Can be transferred.
 転写装置においてモールドのインプリントパターンを被転写基板に転写するインプリント時には、例えば、図10に示すように、透明モールド31上の目印32と被転写基板33上の目印34を例えば、カメラを用いた光学的観察により位置調整する方法が知られている。すなわち、インプリント時に透明モールドと被転写基板との位置合わせを目的として、モールドに形成された目印(いわゆるアライメントマーク)を利用する例がある。 At the time of imprinting in which the imprint pattern of the mold is transferred to the transfer substrate in the transfer device, for example, as shown in FIG. 10, the mark 32 on the transparent mold 31 and the mark 34 on the transfer substrate 33 are used, for example, using a camera. A method for adjusting the position by optical observation is known. That is, there is an example in which a mark (a so-called alignment mark) formed on the mold is used for the purpose of positioning the transparent mold and the transfer substrate during imprinting.
 しかしながら、本発明の製造方法により製造されたモールド自体は目印を有していないので、加工工程前の基板に存在する目印は図10に示したようなインプリント時の位置合わせ用のためにモールドに存在する目印とは異なることは明らかである。また、本発明の製造方法によれば、モールド製造のために特に透明な基板を用いる必要がないという利点もある。 However, since the mold itself manufactured by the manufacturing method of the present invention does not have a mark, the mark existing on the substrate before the processing step is used for alignment at the time of imprinting as shown in FIG. It is clear that it is different from the landmarks present in Moreover, according to the manufacturing method of this invention, there also exists an advantage that it is not necessary to use a transparent substrate especially for mold manufacture.
 更に、本発明によれば、様々な形状のモールドを製造する場合であっても電子ビーム描画装置においてパターン描画する際に用いる基板外形に合わせたカセット、又はエッチング工程においてエッチング装置で用いる基板外形に合わせたカセット等の製造段階で用いる治具は加工前基板の形状に合わせたものであれば良いので、そのような治具をモールドの様々な形状に合わせて揃える必要がないという利点もある。 Furthermore, according to the present invention, even when a mold having various shapes is manufactured, a cassette conforming to the substrate outline used for pattern drawing in the electron beam drawing apparatus, or a substrate outline used in the etching apparatus in the etching process. Since the jig used in the manufacturing stage of the combined cassette or the like is only required to match the shape of the substrate before processing, there is an advantage that it is not necessary to align such a jig according to various shapes of the mold.
 また、本発明によれば、加工前基板の形状に合わせて正確な位置に電子ビーム描画を行う必要がないという利点もある。 Further, according to the present invention, there is an advantage that it is not necessary to perform electron beam drawing at an accurate position according to the shape of the substrate before processing.
 図6(a)及び図7(a)に示したように基板10において目印部14がパターン領域13より内周側に位置する場合には、図3(a)、図5(a)、図8(a)及び図9(a)に示したように基板10において目印部14がパターン領域13より外周側に位置する場合に比べて、描画速度一定とすると電子ビーム描画装置による目印部14の描画が短時間で済む。また、半径方向のサイズが小さい目印であるほど目印部14の描画が短時間で済む。図3(a)、図5(a)、図8(a)及び図9(a)に示したように基板10において目印部14がパターン領域13より外周側に位置する場合には、図6(a)及び図7(a)に示したように基板10において目印部14がパターン領域13より内周側に位置する場合に比べて、より高精度に基板10の加工位置を特定することが出来るという利点がある.用途に応じ、短時間の描画、精細な加工位置精度とのバランスから何れかを選択すればよい.
 図11(a)~(g)は本発明の他の実施例としてリフトオフ法を用いたモールド製造方法を示している。このモールド製造方法で製造されるモールドは、図2に示した形状を有するモールド1である。
As shown in FIGS. 6 (a) and 7 (a), when the mark portion 14 is located on the inner peripheral side of the pattern region 13 in the substrate 10, FIGS. 3 (a), 5 (a), and FIG. 8 (a) and FIG. 9 (a), when the marking speed is constant compared to the case where the mark portion 14 is positioned on the outer peripheral side of the pattern region 13 in the substrate 10, the mark portion 14 formed by the electron beam drawing apparatus is used. Drawing takes a short time. In addition, the smaller the size in the radial direction, the shorter the drawing time of the mark portion 14 is. 3A, FIG. 5A, FIG. 8A, and FIG. 9A, when the mark portion 14 is located on the outer peripheral side of the pattern region 13 in the substrate 10, FIG. As shown in FIGS. 7A and 7A, it is possible to specify the processing position of the substrate 10 with higher accuracy than in the case where the mark portion 14 is located on the inner peripheral side of the pattern region 13 in the substrate 10. There is an advantage that it can be done. Depending on the application, you can select one from the balance between short-time drawing and fine machining position accuracy.
FIGS. 11A to 11G show a mold manufacturing method using a lift-off method as another embodiment of the present invention. The mold manufactured by this mold manufacturing method is the mold 1 having the shape shown in FIG.
 図11(a)~(g)に従ってモールド製造方法を説明すると、先ず、図11(a)に示すように、表面にレジスト層52とが平面状に形成された円盤状の石英基板50が用意される。レジスト層52としては電子線(EB)レジストが用いられる。その基板50上のレジスト層52に対し、その上方から電子ビーム描画装置(図示せず)によって電子ビームが照射され、レジスト層52が露光され、露光後に現像が行われる(電子ビーム描画及び現像工程)。電子ビーム描画装置は基板50の中心点について角度と半径方向の距離とで電子ビームの照射位置が制御されるものであり、描画されるべき凹凸パターンのデータに応じて電子ビームの照射が内周側から外周側に向けて実行される。電子ビーム照射がされた部分が基板50上のレジスト層52に潜像として形成される。そのような描画後の基板50が電子ビーム描画装置から取り出された後、基板50に対して現像処理が施される。この現像処理の結果、図11(b)に示すように、レジスト層52の潜像部分が溶解除去されて基板50の表面が露出することになるので、凹凸パターンが形成される。凹凸パターンは図3(a)に示すように、パターン領域13と目印部14とからなる。目印部14の目印は図5(a)、図6(a)、図7(a)、図8(a)又は図9(a)に示したものでも良い。 The mold manufacturing method will be described with reference to FIGS. 11A to 11G. First, as shown in FIG. 11A, a disk-shaped quartz substrate 50 having a resist layer 52 formed on the surface in a planar shape is prepared. Is done. As the resist layer 52, an electron beam (EB) resist is used. The resist layer 52 on the substrate 50 is irradiated with an electron beam from above by an electron beam lithography apparatus (not shown), the resist layer 52 is exposed, and development is performed after exposure (electron beam lithography and development process). ). The electron beam drawing apparatus controls the irradiation position of the electron beam with respect to the center point of the substrate 50 by the angle and the distance in the radial direction. It is executed from the side toward the outer peripheral side. The portion irradiated with the electron beam is formed as a latent image on the resist layer 52 on the substrate 50. After such a drawn substrate 50 is taken out from the electron beam drawing apparatus, the substrate 50 is subjected to development processing. As a result of this development processing, as shown in FIG. 11B, the latent image portion of the resist layer 52 is dissolved and removed, and the surface of the substrate 50 is exposed, so that an uneven pattern is formed. As shown in FIG. 3A, the concavo-convex pattern includes a pattern region 13 and a mark portion 14. The mark of the mark part 14 may be the one shown in FIG. 5A, FIG. 6A, FIG. 7A, FIG. 8A, or FIG.
 次に、図11(c)に示すように、クロム(Cr)等からなるハードマスク膜51を成膜すると、基板50上に成膜される51aとレジスト52上に成膜される51bとにわかれて成膜される(ハードマスク成膜工程)。そして、レジスト層52を溶媒等で溶解所擦ると同時にレジスト52上のハードマスク膜52bが除去され、図11(d)に示すようなハードマスクパターン71aが作製される(リフトオフ工程)。この結果、ハードマスク膜51が成膜された部分以外は基板50の表面が露出する。更に、その基板50に対して基板エッチングが施されて、図11(e)に示すように、凹凸が反転形成される(基板エッチング工程)。 Next, as shown in FIG. 11 (c), when a hard mask film 51 made of chromium (Cr) or the like is formed, 51a formed on the substrate 50 and 51b formed on the resist 52 are formed. Then, the film is formed (hard mask film forming step). Then, the resist layer 52 is dissolved and rubbed with a solvent or the like, and at the same time, the hard mask film 52b on the resist 52 is removed, and a hard mask pattern 71a as shown in FIG. 11D is produced (lift-off process). As a result, the surface of the substrate 50 is exposed except for the portion where the hard mask film 51 is formed. Further, the substrate 50 is subjected to substrate etching, and as shown in FIG. 11E, the unevenness is reversed (substrate etching process).
 次いで、図11(f)に示すように石英基板50の加工工程が行われる。この加工工程は加工機によって図4に示したように実行される。すなわち、ステップS11で基板エッチング工程後の基板50がセットされると、ステップS12で目印部14の目印(図3(a)の場合の3つの間隙16)が加工機に備えられたカメラ(図示せず)によって検出され、ステップS13でその目印を位置基準として切断位置が設定され、ステップS14で切断位置に従って基板50の切断が実行される。 Next, as shown in FIG. 11 (f), a processing step of the quartz substrate 50 is performed. This processing step is executed by the processing machine as shown in FIG. That is, when the substrate 50 after the substrate etching process is set in step S11, in step S12, a camera (FIG. 3) is provided with the marks of the mark portions 14 (three gaps 16 in the case of FIG. 3A). In step S13, the cutting position is set using the mark as a position reference, and in step S14, the substrate 50 is cut according to the cutting position.
 加工工程後、基板50上に残っているハードマスク膜51が図11(g)に示すように除去される(ハードマスク除去工程)。この結果、図2に示した形状のモールド1が完成する。 After the processing step, the hard mask film 51 remaining on the substrate 50 is removed as shown in FIG. 11G (hard mask removing step). As a result, the mold 1 having the shape shown in FIG. 2 is completed.
 なお、レジスト層へのパターン形成の方法としては、Xθ型の電子ビーム描画装置を用いた電子ビーム描画以外のパターン形成方法を用いることができる。例えば、Xθ型のレーザー描画装置を用いたパターン形成方法、XY型の電子ビーム描画装置やレーザー描画装置を用いたパターン形成方法、干渉露光技術を用いたパターン形成方法、古典的な印刷技術を用いたパターン形成方法、更には、上記パターン形成方法を用いて作製したパターンをガイドとし自己組織化手法を用いたパターン形成方法等のパターン形成方法がある。 In addition, as a pattern formation method on the resist layer, a pattern formation method other than electron beam drawing using an Xθ-type electron beam drawing apparatus can be used. For example, a pattern forming method using an Xθ type laser drawing apparatus, a pattern forming method using an XY type electron beam drawing apparatus or a laser drawing apparatus, a pattern forming method using an interference exposure technique, or a classical printing technique is used. In addition, there is a pattern forming method such as a pattern forming method using a self-organization method with a pattern produced by using the pattern forming method as a guide.
 図12(a)~(h)は本発明の他の実施例として電子ビーム描画に代えてインプリントでレジスト層に凹凸パターンを形成するモールド製造方法を示している。このモールド製造方法で製造されるモールドは、図2に示した形状を有するモールド1である。なお、ここで言うインプリントとはUV式熱式どちらかに限定されるものではなく、何れの方法も用いることが出来る。 12 (a) to 12 (h) show a mold manufacturing method for forming a concavo-convex pattern on a resist layer by imprinting instead of electron beam drawing as another embodiment of the present invention. The mold manufactured by this mold manufacturing method is the mold 1 having the shape shown in FIG. The imprint referred to here is not limited to either UV thermal method, and any method can be used.
 図12(a)~(h)に従ってモールド1の製造方法を説明すると、先ず、図12(a)に示すように、表面にハードマスク61とレジスト層62とが積層形成された円盤状の石英基板(加工前基板)60が用意される。ハードマスク61はクロム(Cr)等の金属が専ら用いられ、レジスト層62としてはナノインプリントレジストが用いられる。その基板60上のレジスト層62に対し、その上方からナノインプリントの転写装置(図示せず)によってスタンパ(モールド)63が矢印64の一方向に押圧され、スタンパ63に形成されている凹凸パターンがレジスト層62に転写される(転写工程)。スタンパ63に形成されている凹凸パターンは上記のパターン領域13と目印部14と対応したものである。この転写工程により基板60上のレジスト層62には凹凸パターンが反転形成される。 The manufacturing method of the mold 1 will be described with reference to FIGS. 12 (a) to 12 (h). First, as shown in FIG. 12 (a), a disk-shaped quartz having a hard mask 61 and a resist layer 62 laminated on the surface. A substrate (substrate before processing) 60 is prepared. The hard mask 61 is exclusively made of metal such as chromium (Cr), and the resist layer 62 is a nanoimprint resist. A stamper (mold) 63 is pressed in one direction of an arrow 64 from above with respect to the resist layer 62 on the substrate 60 by a nanoimprint transfer device (not shown), and the uneven pattern formed on the stamper 63 is a resist pattern. Transferred to the layer 62 (transfer process). The concave / convex pattern formed on the stamper 63 corresponds to the pattern region 13 and the mark portion 14 described above. By this transfer process, a concavo-convex pattern is reversed and formed on the resist layer 62 on the substrate 60.
 凹凸パターンが転写されたレジスト層62では凹部がハードマスク61まで達していないので、レジスト層62がエッチングされる(レジスト残膜層エッチング工程)。これにより、図12(c)に示すようにレジスト層62が全体的に薄くなり凹部の残膜層部分が除去され対応するハードマスク61の部分が露出する。図12(c)のパターン領域13は最終的に上記のモールド1のインプリントパターン領域5となるべき部分である。目印部14はパターン領域13を避けた外周側もしくは内周側に位置し、その後の加工工程において最終的に基板60の切断により除去される部分に存在する。 In the resist layer 62 to which the concavo-convex pattern has been transferred, since the concave portion does not reach the hard mask 61, the resist layer 62 is etched (resist residual film layer etching step). As a result, as shown in FIG. 12C, the resist layer 62 becomes thinner as a whole, the remaining film layer portion of the recess is removed, and the corresponding hard mask 61 portion is exposed. A pattern region 13 in FIG. 12C is a portion that should finally become the imprint pattern region 5 of the mold 1. The mark portion 14 is located on the outer peripheral side or the inner peripheral side avoiding the pattern region 13, and exists in a portion that is finally removed by cutting the substrate 60 in a subsequent processing step.
 次に、図12(d)に示すように、ハードマスク61に対してハードマスクエッチングが施され(ハードマスクエッチング工程)、その後、残っているレジスト層62は図12(f)に示すように除去される(レジスト除去工程)。次いで、図12(g)に示すように石英基板60の加工工程が行われる。加工工程後、基板60上に残っているハードマスク61が図12(h)に示すように除去される(ハードマスク除去工程)。この結果、図2に示した形状のモールド1が完成する。この図12(d)~図12(h)の各工程は図1(e)~図1(g)に示した工程と同一であるので、ここでの詳細な説明は省略される。 Next, as shown in FIG. 12D, hard mask etching is performed on the hard mask 61 (hard mask etching step), and then the remaining resist layer 62 is formed as shown in FIG. It is removed (resist removal step). Next, a process for processing the quartz substrate 60 is performed as shown in FIG. After the processing step, the hard mask 61 remaining on the substrate 60 is removed as shown in FIG. 12 (h) (hard mask removing step). As a result, the mold 1 having the shape shown in FIG. 2 is completed. Each step of FIG. 12D to FIG. 12H is the same as the step shown in FIG. 1E to FIG. 1G, so detailed description thereof is omitted here.
 図13(a)~(h)は本発明の他の実施例として電子ビーム描画に代えてインプリントでレジスト層に凹凸パターンを形成すると共にリフトオフ法を用いたモールド製造方法を示している。このモールド製造方法で製造されるモールドは、図2に示した形状を有するモールド1である。なお、ここで言うインプリントとはUV式熱式どちらかに限定されるものではなく、何れの方法も用いることが出来る。 13 (a) to 13 (h) show a mold manufacturing method using a lift-off method while forming a concavo-convex pattern on a resist layer by imprinting instead of electron beam drawing as another embodiment of the present invention. The mold manufactured by this mold manufacturing method is the mold 1 having the shape shown in FIG. The imprint referred to here is not limited to either UV thermal method, and any method can be used.
 図13(a)~(h)に従ってモールド製造方法を説明すると、先ず、図13(a)に示すように、表面にレジスト層72とが平面状に形成された円盤状の石英基板70が用意される。レジスト層72としてはナノインプリントレジストが用いられる。その基板70上のレジスト層72に対し、その上方からナノインプリントの転写装置(図示せず)によってスタンパ(モールド)73が矢印74の一方向に押圧され、スタンパ73に形成されている凹凸パターンがレジスト層72に転写される(転写工程)。スタンパ73に形成されている凹凸パターンは上記のパターン領域13と目印部14と対応したものである。この転写工程により基板70上のレジスト層72には凹凸パターンが反転形成される。 The mold manufacturing method will be described with reference to FIGS. 13 (a) to 13 (h). First, as shown in FIG. 13 (a), a disk-shaped quartz substrate 70 having a resist layer 72 formed in a planar shape on the surface is prepared. Is done. As the resist layer 72, a nanoimprint resist is used. A stamper (mold) 73 is pressed in one direction of an arrow 74 with respect to the resist layer 72 on the substrate 70 by a nanoimprint transfer device (not shown) from above, and the uneven pattern formed on the stamper 73 is a resist pattern. Transferred to the layer 72 (transfer process). The uneven pattern formed on the stamper 73 corresponds to the pattern region 13 and the mark portion 14 described above. By this transfer process, the concavo-convex pattern is reversed and formed on the resist layer 72 on the substrate 70.
 凹凸パターンが転写されたレジスト層72では凹部が基板70まで達していないので、レジスト層72がエッチングされる(レジスト残膜層エッチング工程)。これにより、図13(c)に示すようにレジスト層72が全体的に薄くなり、凹部の残膜層部分が除去され対応する基板72の部分が露出する。図13(c)のパターン領域13は最終的に上記のモールド1のインプリントパターン領域5となるべき部分である。目印部14はパターン領域13を避けた外周側もしくは内周側に位置し、その後の加工工程において最終的に基板70の切断により除去される部分に存在する。 In the resist layer 72 to which the concavo-convex pattern has been transferred, since the concave portion does not reach the substrate 70, the resist layer 72 is etched (resist residual film layer etching step). As a result, as shown in FIG. 13C, the resist layer 72 becomes thinner as a whole, the remaining film layer portion of the recess is removed, and the corresponding portion of the substrate 72 is exposed. The pattern area 13 in FIG. 13C is a portion that should finally become the imprint pattern area 5 of the mold 1. The mark portion 14 is located on the outer peripheral side or the inner peripheral side avoiding the pattern region 13 and is present in a portion that is finally removed by cutting the substrate 70 in the subsequent processing steps.
 次に、図13(d)に示すように、クロム(Cr)等からなるハードマスク膜71を成膜すると、基板70上に成膜される71aとレジスト72上に成膜される71bとにわかれて成膜される(ハードマスク成膜工程)。そして、レジスト層72を溶媒等で溶解除去すると同時にレジスト層72上のハードマスク膜71bが除去され、図13(e)に示すようなハードマスクパターン71aが作製される。(リフトオフ工程)。更に、その基板70に対して基板エッチングが施されて、図13(f)に示すように、凹凸が反転形成される(基板エッチング工程)。次いで、図13(g)に示すように石英基板70の加工工程が行われる。加工工程後、基板70上に残っているハードマスク膜71が図13(h)に示すように除去される(ハードマスク除去工程)。この結果、図2に示した形状のモールド1が完成する。 Next, as shown in FIG. 13D, when a hard mask film 71 made of chromium (Cr) or the like is formed, 71a formed on the substrate 70 and 71b formed on the resist 72 are formed. Then, the film is formed (hard mask film forming step). Then, the resist layer 72 is dissolved and removed with a solvent or the like, and at the same time, the hard mask film 71b on the resist layer 72 is removed, and a hard mask pattern 71a as shown in FIG. (Lift-off process). Further, the substrate 70 is subjected to substrate etching, and as shown in FIG. 13 (f), the unevenness is inverted (substrate etching process). Next, a process for processing the quartz substrate 70 is performed as shown in FIG. After the processing step, the hard mask film 71 remaining on the substrate 70 is removed as shown in FIG. 13H (hard mask removing step). As a result, the mold 1 having the shape shown in FIG. 2 is completed.
 この図13(d)~図13(h)の各工程は図11(e)~図11(g)に示した工程と同一であるので、ここでの詳細な説明は省略される。 Since the steps shown in FIGS. 13 (d) to 13 (h) are the same as those shown in FIGS. 11 (e) to 11 (g), detailed description thereof is omitted here.
 なお、図12(b)の転写工程におけるスタンパ63と基板60との位置決め精度は問われない。同様に、図13(b)の転写工程におけるスタンパ73と基板70との位置決め精度は問われない。数百μmのずれがあっても問題はない。これは加工工程で目印部14の目印を位置基準として基板の切断位置が設定されるからである。 Note that the positioning accuracy between the stamper 63 and the substrate 60 in the transfer process of FIG. Similarly, the positioning accuracy between the stamper 73 and the substrate 70 in the transfer process of FIG. There is no problem even if there is a deviation of several hundred μm. This is because the cutting position of the substrate is set in the processing step using the mark of the mark portion 14 as a position reference.
 上記した各実施例においては、目印部14の目印は3であるが、これに限定されず2以上であれば良い。また、目印部14の間隔は120度に限定されないが、等間隔であることが好ましい。 In each of the above-described embodiments, the mark of the mark portion 14 is 3, but the mark is not limited to this and may be 2 or more. Further, the interval between the mark portions 14 is not limited to 120 degrees, but is preferably equal.
 また、目印部14を最終的に得たいモールド形状の外形の輪郭線としてもよい。この場合、電子ビーム描画により、パターン領域13とともにモールド形状の輪郭線としての目印部14が描画される。そして加工工程にて、目印部である輪郭線に沿って外形加工が行われ、輪郭線が残らないモールドを得るようにしてもよい。例えば、図3(b)のような、外形直線部3と外形円弧部4からなるモールド形状の外形を輪郭線として描画し、エッチング処理をしたのち、加工装置にて輪郭線にしたがって加工を行い、図3(b)の形状になるまで加工してもよい。 Also, the mark portion 14 may be a contour line of the outer shape of the mold shape to be finally obtained. In this case, the mark portion 14 as the contour line of the mold shape is drawn together with the pattern region 13 by electron beam drawing. Then, in the processing step, outer shape processing may be performed along the contour line that is the mark portion, and a mold in which the contour line does not remain may be obtained. For example, as shown in FIG. 3B, a mold-shaped outer shape composed of the outer straight line portion 3 and the outer arc portion 4 is drawn as a contour line, etched, and then processed according to the contour line by a processing apparatus. Further, processing may be performed until the shape of FIG.
 また、本発明のモールド製造方法で製造されるモールドは、図2に示したように外周領域に等間隔に3つの外形直線部3が設けられているが、外周領域の形状はこれに限定されず、円形、多角形等の他の形状であっても良い。更に、図2示したように外形直線部3が設けられる場合にその外形直線部3の数は3に限定されない。また、上記した実施例においてはモールド1の中心点について外形直線部3は120度の等間隔でかつ同一のサイズで形成されているが、これに限定されない。 Further, as shown in FIG. 2, the mold manufactured by the mold manufacturing method of the present invention is provided with three outer straight portions 3 at equal intervals in the outer peripheral region, but the shape of the outer peripheral region is limited to this. Alternatively, other shapes such as a circle and a polygon may be used. Furthermore, as shown in FIG. 2, the number of the external straight line portions 3 is not limited to 3 when the external straight line portions 3 are provided. Further, in the above-described embodiment, the outer straight line portions 3 are formed at equal intervals of 120 degrees and the same size with respect to the center point of the mold 1, but the present invention is not limited to this.
 図14は図2に示した外形形状のモールドを2つ1組として使用して被転写基板を挟むようにしてその被転写体基板の両面にインプリントパターンを同時に押圧転写する場合の転写装置のナノインプリント動作をフローチャートで示している。また、図15(a)及び(b)はその2つのモールドによる押圧転写状態を示している。図15(a)及び(b)において、参照符号101で示されたモールドが上側モールドであり、参照符号102で示されたモールドが下側モールドであり、参照符号103で示されたものは、インプリントパターンが両面に転写される被転写基板である。 FIG. 14 shows a nano-imprint operation of a transfer apparatus in which the imprint patterns are simultaneously pressed and transferred onto both surfaces of a transfer substrate using two outer shape molds shown in FIG. Is shown in a flowchart. FIGS. 15A and 15B show the pressure transfer state by the two molds. 15 (a) and 15 (b), the mold indicated by reference numeral 101 is an upper mold, the mold indicated by reference numeral 102 is a lower mold, and what is indicated by reference numeral 103 is This is a substrate to be transferred onto which the imprint pattern is transferred on both sides.
 転写装置の動作においては、先ず、転写装置のコントローラ(図示せず)は、搬送装置(図示せず)によって上側モールド101を上側モールド保持部(図示せず)のモールド保持面上に搬送させ(ステップS1)、その搬送後、上側モールド把持部109aによって上側モールド101の外形円弧部101aを把持させて上側モールド101を固定させる(ステップS2)。ステップS2の実行により、上側モールド把持部109aを駆動し、把持部109aは上記の上側モールド保持部のモールド保持面上の所定上側保持位置に上側モールド101を両側から挟むように固定する。所定上側保持位置は上側センターピン130aが上側モールド101の中心孔内を接触することなく移動することができる位置である。 In the operation of the transfer device, first, a controller (not shown) of the transfer device transports the upper mold 101 onto the mold holding surface of the upper mold holding portion (not shown) by a transfer device (not shown) ( Step S1), after the conveyance, the upper mold 101 is fixed by holding the outer arc 101a of the upper mold 101 by the upper mold holding portion 109a (Step S2). By executing step S2, the upper mold gripping part 109a is driven, and the gripping part 109a fixes the upper mold 101 so as to be sandwiched from both sides at a predetermined upper holding position on the mold holding surface of the upper mold holding part. The predetermined upper holding position is a position where the upper center pin 130a can move without contacting the center hole of the upper mold 101.
 次に、コントローラは、上記の搬送装置によって下側モールド102を下側モールド保持部のモールド保持面上に搬送させ(ステップS3)、その搬送後、下側モールド把持部109bによって下側モールド102の外形円弧部102aを把持させて下側モールド102を固定させる(ステップS4)。ステップS4の実行により、下側モールド把持部109bを駆動し、把持部109bは上記の下側モールド保持部のモールド保持面上の所定下側保持位置に下側モールド102を両側から挟むように固定する。所定下側保持位置は下側センターピン130bが下側モールド102の中心孔内を接触することなく移動することができる位置であり、所定上側保持位置と上下対象関係にある。 Next, the controller causes the lower mold 102 to be transferred onto the mold holding surface of the lower mold holding unit by the transfer device (step S3), and after the transfer, the lower mold holding unit 109b causes the lower mold 102 to move. The lower mold 102 is fixed by gripping the outer arc portion 102a (step S4). By executing step S4, the lower mold gripping part 109b is driven, and the gripping part 109b is fixed so as to sandwich the lower mold 102 from both sides at a predetermined lower holding position on the mold holding surface of the lower mold holding part. To do. The predetermined lower holding position is a position where the lower center pin 130b can move without contacting the center hole of the lower mold 102, and is in a vertical relationship with the predetermined upper holding position.
 次いで、コントローラは、上記の搬送装置によって基板103を搬送させそれを下側センターピン130bの先端部分のフランジ(図示せず)に装着させる(ステップS5)。すなわち、基板103の中心孔内に下側センターピン130bが挿入される位置において基板103は下側センターピン130bの先端凸部(図示せず)に沿って移動されることにより下側センターピン130bの先端部分のフランジに載置される。これにより、上記したように保持固定されたモールド101,102に対する基板103の位置合わせを行うことができる。 Next, the controller transports the substrate 103 by the transport device described above and attaches it to the flange (not shown) at the tip of the lower center pin 130b (step S5). That is, at the position where the lower center pin 130b is inserted into the center hole of the substrate 103, the substrate 103 is moved along the tip convex portion (not shown) of the lower center pin 130b, whereby the lower center pin 130b. It is mounted on the flange of the front end portion. As a result, the substrate 103 can be aligned with the molds 101 and 102 held and fixed as described above.
 基板103の装着後、コントローラは、モールド押圧を行う(ステップS6)。モールド押圧の際には転写装置の上側ステージ(図示せず)を下方向に移動させることにより上側センターピン130aが下方向に移動してその先端の凹部(図示せず)が下側センターピン130bの上記の先端凸部に結合して上側モールド101が基板103の上側転写層103aに接触する。 After mounting the substrate 103, the controller performs mold pressing (step S6). When the mold is pressed, the upper stage pin 130a is moved downward by moving the upper stage (not shown) of the transfer device downward, and the concave portion (not shown) at the tip thereof is moved to the lower center pin 130b. The upper mold 101 comes into contact with the upper transfer layer 103 a of the substrate 103 in combination with the above-mentioned tip convex portion.
 上側ステージ及び上側センターピン130aが上側モールド101及び基板103と共に更に下方向に移動すると、下側センターピン130bを押し下げることになり、やがて基板103の下側転写層103bが下側モールド102と接触する。基板103の両面が上側モールド101及び下側モールド102によって加圧されるので、上側モールド101の凸部が上側転写層103aに押し込まれ、同時に下側モールド102の凸部が下側転写層103bに押し込まれる。よって、上側転写層103aの表面部には、上側モールド101に形成されているインプリントパターンとは凹凸の状態が反転した凸凹パターンが形成される。一方、下側転写層103bの表面部には、下側モールド102に形成されているインプリントパターンとは凹凸の状態が反転した凸凹パターンが形成される。すなわち、かかるステップS4の実行により、基板103の上側転写層103a及び下側転写層103b各々に対して、上側モールド101及び下側モールド102による両面同時パターン転写が為されるのである。 When the upper stage and the upper center pin 130a move further downward together with the upper mold 101 and the substrate 103, the lower center pin 130b is pushed down, and the lower transfer layer 103b of the substrate 103 eventually comes into contact with the lower mold 102. . Since both surfaces of the substrate 103 are pressed by the upper mold 101 and the lower mold 102, the convex portion of the upper mold 101 is pushed into the upper transfer layer 103a, and at the same time, the convex portion of the lower mold 102 is applied to the lower transfer layer 103b. Pushed in. Therefore, a convex / concave pattern is formed on the surface of the upper transfer layer 103a. The concave / convex pattern is reversed from the imprint pattern formed on the upper mold 101. On the other hand, on the surface portion of the lower transfer layer 103b, a concavo-convex pattern having a concavo-convex state reversed from that of the imprint pattern formed on the lower mold 102 is formed. That is, by executing step S4, the double-sided simultaneous pattern transfer by the upper mold 101 and the lower mold 102 is performed on each of the upper transfer layer 103a and the lower transfer layer 103b of the substrate 103.
 モールド押圧においては、図15(a)及び(b)に示すように上側モールド101を把持する把持部109aと、下側モールド102を把持する把持部109bとが互いに重ならない位置に存在する。すなわち、センターピン130a,30bを中心にして把持部109aと把持部109bとが60度間隔で交互に位置し、把持部109aは上側モールド101の外形円弧部101aを把持し、把持部109bは下側モールド102の外形円弧部102aを把持するので、把持部109aが下側モールド102の外形直線部102bの存在角度内に位置して下側モールド102の外周部分と重なる位置とならず、同様に、把持部109bが上側モールド101の外形直線部101bの存在角度内に位置して上側モールド101の外周部分と重なる位置にない。これにより外形直線部101b,102bが把持部109b,109aに対してのいわゆる逃げとなっている。よって、押圧時に押圧方向において把持部109aと把持部109bとの衝突、把持部109aと下側モールド102の外周部分との衝突、或いは把持部109bと上側モールド101の外周部分との衝突等の干渉が互いに起きることがないので、基板103の両面を上側モールド101及び下側モールド102によって同時に加圧することができるのである。 In the mold pressing, as shown in FIGS. 15A and 15B, the grip portion 109 a that grips the upper mold 101 and the grip portion 109 b that grips the lower mold 102 exist at positions where they do not overlap each other. In other words, the gripping portions 109a and the gripping portions 109b are alternately positioned at intervals of 60 degrees around the center pins 130a and 30b, the gripping portions 109a grip the outer arc portion 101a of the upper mold 101, and the gripping portions 109b are Since the outer circular arc portion 102a of the side mold 102 is gripped, the gripping portion 109a is located within the existing angle of the outer straight line portion 102b of the lower mold 102 and does not overlap the outer peripheral portion of the lower mold 102. The gripping part 109 b is located within the existing angle of the outer straight line part 101 b of the upper mold 101 and is not in a position overlapping the outer peripheral part of the upper mold 101. As a result, the outer straight portions 101b and 102b serve as so-called reliefs with respect to the grip portions 109b and 109a. Therefore, interference such as a collision between the gripping part 109a and the gripping part 109b, a collision between the gripping part 109a and the outer peripheral part of the lower mold 102, or a collision between the gripping part 109b and the outer peripheral part of the upper mold 101 in the pressing direction during pressing. Therefore, both surfaces of the substrate 103 can be simultaneously pressed by the upper mold 101 and the lower mold 102.
 ステップS4の実行後、コントローラは、転写装置の共に図示しない上側UV照射ユニット及び下側UV照射ユニットを駆動して転写層材料を硬化させるべき紫外線を基板103の上側転写層103a及び下側転写層103bに向けて照射させる(ステップS7)。これにより上側転写層103a及び下側転写層103b各々の転写層材料が硬化した後、コントローラは、上側モールド101及び下側モールド102から基板103を離型させるべき離型を実行する(ステップS8)。この離型においては、コントローラ200は、上側ステージが所定距離だけ上方向に移動して下側モールド101が基板103の上側転写層604aから離間する。更に、上側センターピン130a及び下側センターピン130bが結合した状態で上方向に移動させて下側センターピン130bの上記のフランジにより基板103が持ち上がり、結果として下側モールド102から基板103が離型する。 After the execution of step S4, the controller drives the upper UV irradiation unit and the lower UV irradiation unit (not shown) of the transfer device to emit ultraviolet rays to cure the transfer layer material, so that the upper transfer layer 103a and the lower transfer layer of the substrate 103 are cured. Irradiate toward 103b (step S7). Thus, after the transfer layer material of each of the upper transfer layer 103a and the lower transfer layer 103b is cured, the controller executes mold release to release the substrate 103 from the upper mold 101 and the lower mold 102 (step S8). . In this mold release, the controller 200 moves the upper stage upward by a predetermined distance so that the lower mold 101 is separated from the upper transfer layer 604 a of the substrate 103. Furthermore, the upper center pin 130a and the lower center pin 130b are coupled and moved upward, and the substrate 103 is lifted by the flange of the lower center pin 130b. As a result, the substrate 103 is released from the lower mold 102. To do.
 そして、離型後、コントローラは、上側センターピン130aを上方向に移動させると共に、基板103を下側センターピン130bから離脱させて上記の搬送装置によって基板103を搬出させる(ステップS9)。 Then, after releasing the mold, the controller moves the upper center pin 130a upward, removes the substrate 103 from the lower center pin 130b, and unloads the substrate 103 by the transfer device (step S9).
 次に、コントローラは、動作終了を示す指令が転写装置の操作部(図示せず)から発せられているか否かを判定する(ステップS10)。ステップS10において動作終了を示す指令が供給されたと判定された場合、コントローラは、このナノインプリント動作を終了する。一方、ステップS10にて動作終了を表す指令が供給されていないと判定された場合、コントローラは、上記のステップS5の実行に戻ってステップS5~S10の動作を繰り返し実行する。これにより、新たに装着された基板103に対して連続してパターン転写を行うのである。 Next, the controller determines whether or not a command indicating the end of the operation has been issued from the operation unit (not shown) of the transfer device (step S10). If it is determined in step S10 that a command indicating the end of the operation has been supplied, the controller ends the nanoimprint operation. On the other hand, when it is determined in step S10 that the command indicating the end of the operation is not supplied, the controller returns to the execution of step S5 and repeatedly executes the operations of steps S5 to S10. Thereby, pattern transfer is continuously performed on the newly mounted substrate 103.
 更に、本発明のモールド製造方法で製造されるモールドは、上記のディスク製造用途以外への適用も可能である。例えば、半導体製造、太陽電池製造、反射防止構造製造、LED等の光取りだし効率を上げるための構造製造、マイクロレンズアレイ製造、マイクロフルードチップ(バイオチップ)製造等の製造用途に適用することができる。 Furthermore, the mold manufactured by the mold manufacturing method of the present invention can be applied to applications other than the above-described disc manufacturing applications. For example, it can be applied to manufacturing applications such as semiconductor manufacturing, solar cell manufacturing, antireflection structure manufacturing, structure manufacturing for increasing light extraction efficiency such as LED, microlens array manufacturing, and microfluid chip (biochip) manufacturing. .

Claims (16)

  1.  転写装置によって被転写体に転写されるべきインプリントパターン領域を有するモールドの製造方法であって、
     前記モールドの基板に前記インプリントパターン領域と共に、前記基板の形状加工のための目印を形成する形成工程と、
     前記基板の前記目印に基づいて前記基板を所定形状に加工する加工工程と、を備えたことを特徴とする製造方法。
    A method of manufacturing a mold having an imprint pattern region to be transferred to a transfer target by a transfer device,
    A forming step for forming a mark for shape processing of the substrate together with the imprint pattern region on the substrate of the mold;
    And a processing step of processing the substrate into a predetermined shape based on the mark of the substrate.
  2.  前記基板は円盤状であり、前記目印は前記インプリントパターン領域の領域外に複数形成されていることを特徴とする請求項1記載の製造方法。 The manufacturing method according to claim 1, wherein the substrate has a disk shape, and a plurality of the marks are formed outside the imprint pattern region.
  3.  前記基板は円盤状であり、前記インプリントパターンは円環状に形成され、前記目印は前記インプリントパターン領域が形成されていない前記基板の内周側あるいは外周側に形成されていることを特徴とする請求項1記載の製造方法。 The substrate is disk-shaped, the imprint pattern is formed in an annular shape, and the mark is formed on an inner peripheral side or an outer peripheral side of the substrate in which the imprint pattern region is not formed. The manufacturing method according to claim 1.
  4. 前記加工工程において、少なくとも前記目印が形成された前記基板の所定部分を除去することにより前記所定形状のモールドに加工することを特徴とする請求項1乃至請求項3のいずれか1記載の製造方法。 4. The manufacturing method according to claim 1, wherein in the processing step, at least a predetermined portion of the substrate on which the mark is formed is removed to process the mold into the predetermined shape. 5. .
  5.  前記モールドは、中心部に貫通した円形の中心孔を有し、外周に外形直線部と外形円弧部とが交互に複数形成された形状を有することを特徴とする請求項1乃至請求項4のいずれか1記載の製造方法。 5. The mold according to claim 1, wherein the mold has a circular center hole penetrating through the center portion, and has a shape in which a plurality of outer straight line portions and outer arc portions are alternately formed on the outer periphery. The manufacturing method of any one.
  6.  前記目印は、前記モールドとなるべき前記外形直線部より外周側、かつ、前記モールドとなるべき前記外形円弧部より内周側の前記基板上の位置に形成されることを特徴とする請求項5記載の製造方法。 The said mark is formed in the position on the said board | substrate of the outer peripheral side from the said external shape linear part which should become the said mold, and the inner peripheral side from the said external arc part which should become the said mold. The manufacturing method as described.
  7. 前記加工工程において、前記外形直線部の延長線が互いに交差するように、前記目印を有する領域を複数箇所直線状に切り取ることを特徴とする請求項5乃至請求項6のいずれか1記載の製造方法。 The manufacturing method according to any one of claims 5 to 6, wherein, in the processing step, a plurality of regions having the mark are cut out in a straight line shape so that extended lines of the external straight line portions intersect each other. Method.
  8.  前記形成工程において前記目印は少なくも2箇所に形成されることを特徴とする請求項1乃至請求項7のいずれか1記載の製造方法。 The manufacturing method according to any one of claims 1 to 7, wherein the mark is formed in at least two places in the forming step.
  9.  前記目印は前記基板の一円周上に互いに等間隔で設けられていることを特徴とする請求項1乃至請求項8のいずれか1記載の製造方法。 The manufacturing method according to any one of claims 1 to 8, wherein the marks are provided at equal intervals on one circumference of the substrate.
  10.  転写装置によって被転写体に転写されるべきインプリントパターン領域を有する所定形状のモールドに加工されるモールド用基板であって、
     前記インプリントパターン領域と、前記基板の一部を前記所定形状に加工するための目印が形成されていることを特徴とするモールド用基板。
    A mold substrate processed into a mold having a predetermined shape having an imprint pattern region to be transferred to a transfer target by a transfer device,
    A mold substrate, wherein the imprint pattern region and a mark for processing a part of the substrate into the predetermined shape are formed.
  11.  前記モールド用基板は、前記モールド用基板の一方の表面に、前記インプリントパターン領域と、前記目印がエッチングにより形成されていることを特徴とする請求項10記載のモールド用基板。 The mold substrate according to claim 10, wherein the imprint pattern region and the mark are formed by etching on one surface of the mold substrate.
  12.  前記目印は、前記インプリントパターン領域以外の領域に設けられていることを特徴とする請求項11記載のモールド用基板。 The mold substrate according to claim 11, wherein the mark is provided in an area other than the imprint pattern area.
  13.  前記目印は、加工によって除去すべき部分に形成されていることを特徴とする請求項10乃至は請求項12記載のモールド用基板。 13. The mold substrate according to claim 10, wherein the mark is formed in a portion to be removed by processing.
  14.  前記目印は、前記基板の前記インプリントパターン領域よりも外周の領域の複数箇所を直線状に除去して外形直線部を形成した際に除去される部分に形成されていることを特徴とする請求項13記載のモールド用基板。 The mark is formed in a portion that is removed when a plurality of locations in an outer peripheral area than the imprint pattern area of the substrate are linearly removed to form an outer straight line portion. Item 14. A mold substrate according to Item 13.
  15.  前記外形直線部の延長線が互いに交差するように除去されることを特徴とする請求項14記載のモールド用基板。 15. The mold substrate according to claim 14, wherein the extension lines of the outer straight line portions are removed so as to intersect each other.
  16.  被転写体の両面に凹凸パターンを転写するための転写装置に使用されるモールドの製造方法であって、
     インプリントパターン、及び、モールド基板の形状加工のための目印に対応するパターンを、レジストが塗布されたモールド基板に同一の描画装置で前記レジスト上に描画する描画工程と、
     前記レジスト上に描画された描画パターンに基づいてエッチング処理を行い、前記モールド基板上に凹凸構造を形成する凹凸パターン形成工程と、
     前記モールド基板上に形成された前記目印に対応する凹凸パターンに基づいて、加工装置を利用して前記モールド基板を所定形状に加工する加工工程と、を備えたことを特徴とするモールドの製造方法。
     
    A method for producing a mold used in a transfer device for transferring a concavo-convex pattern to both surfaces of a transfer object,
    A drawing process of drawing an imprint pattern and a pattern corresponding to a mark for shape processing of the mold substrate on the resist with the same drawing apparatus on the mold substrate coated with the resist,
    An etching process is performed based on a drawing pattern drawn on the resist, and a concavo-convex pattern forming step for forming a concavo-convex structure on the mold substrate;
    A mold manufacturing method comprising: a processing step of processing the mold substrate into a predetermined shape using a processing device based on a concavo-convex pattern corresponding to the mark formed on the mold substrate. .
PCT/JP2010/062725 2010-07-28 2010-07-28 Method for producing mold and base plate for mold WO2012014299A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/062725 WO2012014299A1 (en) 2010-07-28 2010-07-28 Method for producing mold and base plate for mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/062725 WO2012014299A1 (en) 2010-07-28 2010-07-28 Method for producing mold and base plate for mold

Publications (1)

Publication Number Publication Date
WO2012014299A1 true WO2012014299A1 (en) 2012-02-02

Family

ID=45529544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062725 WO2012014299A1 (en) 2010-07-28 2010-07-28 Method for producing mold and base plate for mold

Country Status (1)

Country Link
WO (1) WO2012014299A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018501987A (en) * 2014-12-15 2018-01-25 ゲオマール ヘルムホルツ−ツェントルム フュア オツェアンフォアシュング キールGEOMAR Helmholtz−Zentrum fuer Ozeanforschung Kiel Method and apparatus for potting an LED lighting device potted in a potting material, and LED lighting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296742A (en) * 1997-04-25 1998-11-10 Hoya Corp Manufacture of molding tool
JP2008265028A (en) * 2007-04-16 2008-11-06 Dainippon Printing Co Ltd Method of manufacturing imprint mold
JP2008276920A (en) * 2007-03-30 2008-11-13 Pioneer Electronic Corp Imprint device and imprint method
JP2009072956A (en) * 2007-09-19 2009-04-09 Toppan Printing Co Ltd Method of manufacturing imprint mold

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296742A (en) * 1997-04-25 1998-11-10 Hoya Corp Manufacture of molding tool
JP2008276920A (en) * 2007-03-30 2008-11-13 Pioneer Electronic Corp Imprint device and imprint method
JP2008265028A (en) * 2007-04-16 2008-11-06 Dainippon Printing Co Ltd Method of manufacturing imprint mold
JP2009072956A (en) * 2007-09-19 2009-04-09 Toppan Printing Co Ltd Method of manufacturing imprint mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018501987A (en) * 2014-12-15 2018-01-25 ゲオマール ヘルムホルツ−ツェントルム フュア オツェアンフォアシュング キールGEOMAR Helmholtz−Zentrum fuer Ozeanforschung Kiel Method and apparatus for potting an LED lighting device potted in a potting material, and LED lighting device

Similar Documents

Publication Publication Date Title
US8865046B2 (en) Imprinting of partial fields at the edge of the wafer
TWI413176B (en) Alignment for edge field nano-imprinting
JP6028413B2 (en) Method for producing nanoimprint template and template
JP4478424B2 (en) Microfabrication apparatus and device manufacturing method
JP6069689B2 (en) Nanoimprint template
JP6019685B2 (en) Nanoimprint method and nanoimprint apparatus
JP2010080630A (en) Stamping device and method of manufacturing article
TW200902434A (en) Method of forming fine pattern, mold formed by the method, transfer method and fine pattern forming method using the mold
JP2010239118A (en) Imprint apparatus and method
JP2012004515A (en) Mold for imprinting, alignment method, imprinting method, and imprinting device
JP2012134214A (en) Imprint apparatus and manufacturing method of goods
JP2007019466A (en) Process for producing member having pattern, pattern transfer device and mold
JP2013507770A (en) Nanoimprinting of large area linear arrays
JP2013197107A (en) Imprint device and article production method
JP6106949B2 (en) Pattern formation method
WO2012014299A1 (en) Method for producing mold and base plate for mold
JP4881413B2 (en) Template with identification mark and manufacturing method thereof
US20190278167A1 (en) Manufacturing method of replica template, manufacturing method of semiconductor device, and master template
JP2013229447A (en) Transfer device and method for manufacturing article
US8231821B2 (en) Substrate alignment
JP5671410B2 (en) Imprint apparatus, imprint method, and article manufacturing method
JP5900589B2 (en) Imprint mold, alignment method, imprint method, and imprint apparatus
JP6384537B2 (en) Nanoimprint template
JP6540848B2 (en) Template for nanoimprint
JP5327421B2 (en) Stamper for imprint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10855309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP