WO2010081948A1 - Systeme et procede de commande d'une transmission infiniment variable lors d'un demarrage en adherence faible - Google Patents

Systeme et procede de commande d'une transmission infiniment variable lors d'un demarrage en adherence faible Download PDF

Info

Publication number
WO2010081948A1
WO2010081948A1 PCT/FR2009/052470 FR2009052470W WO2010081948A1 WO 2010081948 A1 WO2010081948 A1 WO 2010081948A1 FR 2009052470 W FR2009052470 W FR 2009052470W WO 2010081948 A1 WO2010081948 A1 WO 2010081948A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
torque
ratio
variable transmission
continuously variable
Prior art date
Application number
PCT/FR2009/052470
Other languages
English (en)
Inventor
Julien Maynard
Original Assignee
Renault S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S. filed Critical Renault S.A.S.
Priority to JP2011545775A priority Critical patent/JP2012515313A/ja
Priority to EP09803827A priority patent/EP2379393A1/fr
Publication of WO2010081948A1 publication Critical patent/WO2010081948A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18172Preventing, or responsive to skidding of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/107Infinitely variable gearings with endless flexible members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18027Drive off, accelerating from standstill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • F02D41/0225Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission in relation with the gear ratio or shift lever position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/40Coefficient of friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/26Control of the engine output torque by applying a torque limit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/08Range selector apparatus
    • F16H2059/082Range selector apparatus with different modes
    • F16H2059/087Winter mode, e.g. to start on snow or slippery surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • F16H2061/0234Adapting the ratios to special vehicle conditions
    • F16H2061/0239Selecting ratios for preventing or cancelling wheel slip

Definitions

  • the field of the invention is the control of transmissions for motor vehicles, more specifically, the control of continuously variable transmissions (called “CVT” in the present description).
  • CVT continuously variable transmissions
  • variable speed ratio device In the case of certain continuously variable transmissions, it is not possible to modify the ratio when the vehicle is stationary. Indeed, the variable speed ratio device is stopped when the vehicle is stopped. It is therefore not possible, without assistance, to start with torque characteristics at the wheel and rotational speed of the drive members comparable to a start in second or third gear of a manual or automatic gearbox.
  • the US patent application US 2006-0014609 describes a method of controlling a continuously variable gearbox, also applicable to a manual or automatic gearbox, to reduce the torque to the wheel on slippery ground. For this, a mode of operation operated by the driver, reduces the engine torque. The torque at the wheel is reduced accordingly.
  • the torque reduction is achieved by means of a calibration, reducing the engine torque at low rotational speed of the drive member and modifying little torque at high rotational speed.
  • Several different calibrations are mentioned. However, it should be noted that the development of such calibrations is expensive and that their use is not adapted to the various conditions that may be encountered by a driver.
  • US patent application US5586953 discloses a control method for improving engine braking by limiting the ability of the transmission to return to short reports.
  • JP 1344109 discloses a method of limiting the torque ratio so that the vehicle stops at a torque ratio corresponding to the second gear. Thus, the vehicle restarts on a second report, promoting adhesion. It should be noted that these methods limit the ratio of the transmission before stopping the vehicle in order to avoid slippage. These methods have no effect if they are activated when the vehicle is stationary.
  • An object of the invention is a system and method for controlling a continuously variable transmission on slippery ground in which the engine torque is reduced in order to simulate for the driver a second or third gear ratio.
  • Another object of the invention is a system and method for controlling a continuously variable transmission which retains the perception of the driver of discrete ratios.
  • Another object of the invention is a system and method of controlling a continuously variable transmission allowing the driver to better dose the torque to the wheel to facilitate starting on slippery ground.
  • a method for controlling a continuously variable transmission mounted between an internal combustion engine of a motor vehicle, and the driving wheels, the continuously variable transmission being able to operate in at least one manual mode and a mode of assistance.
  • the control method comprises the steps in which:
  • a second torque ratio between the input torque and the output torque of the CVT is calculated at each instant, the first and the second ratios are compared, from which is deduced a limit torque of the internal combustion engine.
  • the calculation of the limit torque during a re-acceleration phase can be obtained from the comparison of the ratio of the transmission, the ratio resulting from a variogram in manual mode for the report considered, the ratio resulting from a variogram of the mode assistance and torque of the combustion engine. You can activate a second report snow mode when, at the same time:
  • the vehicle speed is lower than a first stored speed
  • the active operating mode is the manual mode
  • the active operating mode is the second report snow mode.
  • a system for controlling a continuously variable transmission mounted between an internal combustion engine of a motor vehicle, and the driving wheels, the continuously variable transmission being able to operate, is defined. in at least one manual mode and a mode of assistance.
  • the system includes:
  • multiplication means capable of determining at each instant a first torque ratio between the input torque and the output torque of the CVT
  • multiplication means capable of estimating a second torque ratio corresponding to a mode of assistance of the CVT
  • a calculation means capable of estimating a correction parameter as a function of the ratio between the first and second ratios, a determining means able to determine the limit torque of the internal combustion engine as a function of the correction parameter.
  • the control system may comprise at least one mapping of the ratio of the rotation speed of the internal combustion engine according to the speed of the vehicle for each report and for each mode.
  • the control system can then be able to determine the ratio and the limit torque as a function of at least one mapping and operating parameters of the vehicle.
  • the control system may comprise a memory and the continuously variable transmission may comprise among different modes of assistance at least one snow mode of ratio different from the first gear ratio.
  • the control system can then be able to memorize the report corresponding to the last active snow mode during a switch to manual mode.
  • FIG. 1 illustrates a method for controlling a continuously variable transmission on low adhesion
  • FIG. 2 illustrates the main elements included in and connected to a continuously variable transmission
  • FIG. 3a illustrates the main steps of the method for determining the conditions of activation or deactivation of the different modes of the control method
  • FIG. 3b illustrates the main storage steps of the control method.
  • FIG. 4 illustrates the main steps of the method of changing the snow mode of the control method
  • FIG. 5 illustrates the main steps of the method of calculating the ratio of the control method
  • FIG. 6 illustrates the main steps of the method of limiting the torque at the wheel of the control method
  • FIG. 7 illustrates the main steps of the method of limiting the torque to the wheel in the case of a re-acceleration
  • FIG. 8 illustrates the main elements of a control system.
  • Figure 1 illustrates the main steps of the control method 1 of a continuously variable transmission on slippery floor.
  • the control method comprises a method 2 for determining the conditions for activating or deactivating the various modes, a method 3 for calculating the ratio and a method 4 for limiting the torque to the wheel.
  • FIG. 2 illustrates the main elements included in and connected to a continuously variable transmission.
  • a motor 5 is connected at the input of a continuously variable transmission.
  • At least one drive wheel 1 1 is connected at the output of the continuously variable transmission.
  • the continuously variable transmission comprises a hydraulic torque converter 6, a device 7 for changing the direction of travel, a primary pulley 8, a secondary pulley 9 and a distribution device 10.
  • the hydraulic torque converter 6 comprises an impeller 6a, a stator 6b and a turbine 6c.
  • a switch 6d said lock-up is also present in order to be able to secure the turbine 6c to the impeller 6a in order to obtain a direct link between the primary shaft and the motor shaft.
  • variable Ratio is defined as the ratio between the speed of rotation of the primary pulley 8 and the speed of rotation of the secondary pulley 9.
  • Lockup variable that reports the state of the so-called lockup switch. This variable can take two values depending on whether the switch is engaged or disengaged.
  • FIG. 3a illustrates the main steps included in the method for determining the activation or deactivation conditions of the different modes of the control method.
  • the control method includes a manual mode, a second report snow mode and a third report snow mode.
  • the manual mode does not include take - off assistance and corresponds to a mode in which all the gear ratios are accessible according to conditions dependent on the speed of the vehicle.
  • the second-report snow mode corresponds to an assisted mode in which the behavior of a vehicle for which the second gear is active is simulated, thanks to a limitation of the engine torque by the continuously variable transmission. The driver thus perceives a behavior of the vehicle similar to the behavior that the vehicle would have if the second report of the manual mode was activated.
  • the third report snow mode corresponds to an assisted mode in which the third report is simulated. Switching from one mode to another can be triggered by a request from the driver.
  • the snow modes each include a snow take-off mode and a snow re-acceleration mode, mutually exclusive.
  • the mode of activation of these modes will be detailed later.
  • the normal manual mode includes, for each report, a map of the Engine_rev engine rotation speed as a function of the Veh_speed vehicle speed.
  • Limit mapping is also present in order to define the speed of rotation below which the primary pulley must not descend. Such mapping therefore limits the engine_rev engine rotation speed.
  • the set of mappings related to the manual mode is called variogram.
  • the control method begins in step 12 with the vehicle in the manual mode.
  • the stopping or crawling conditions of the vehicle are realized.
  • a vehicle is said in a ramping situation, if its speed is less than a threshold speed V l, determined by calibration.
  • step 13 corresponds to the so-called second takeoff snow mode. If the difference between the rotational speed of the Engine_Rev engine and the rotational speed of the turbine Turbine_Rev is less than a threshold Thdl, and the condition
  • Step 14 corresponds to the so-called second-rate re-acceleration snow mode. Indeed, the calculation of the limiting torque must be made differently in the cases of takeoff and cases of re-acceleration. If the difference between the rotation speed of the motor
  • step 13 the process continues in step 13.
  • step 13 the method can proceed to step 17 if the Ratio variable is less than or equal to the R2_exit value.
  • step 15 corresponds to the so-called snow-lift mode of the third gear. If the difference between the rotation speed of the motor
  • Step 16 corresponds to the so-called re-acceleration snow mode. third report. Indeed, the calculation of the limiting torque must be performed differently in the case of takeoff and cases of re-acceleration. If the difference between the engine rotation speed Engine_Rev and the turbine rotation speed Turbine_Rev is greater than a threshold Thd2, and the condition Accel_off is satisfied, then the process continues in step 15. Similarly, if the vehicle speed Veh_Speed is below the threshold Thd, the process continues in step 15. Following step 15 and step 16, the process can continue in step 17, if the variable Ratio is less than or equal to the R3_exit value. Following step 15 or step 16, if the driver makes a downshift request, the process proceeds to step 13 if the
  • Ratio is greater than R2_exit. If the Ratio value is less than or equal to the R2_exit value, the process continues in step 17.
  • Step 17 corresponds to a standard manual mode without assistance. If the vehicle stops, the process proceeds to the previously defined step 12. If a value corresponding to the second report in snow mode is stored, and if the ratio is greater than or equal to the value R2_act then the process continues in step 14. If a value corresponding to the third report in snow mode is stored, and if the Ratio is greater than or equal to the value R3_act then the process continues in step 16.
  • FIG. 3b illustrates the rules for storing and erasing the storage of the various snow modes applied by the control method.
  • the storage method of Figure 3b is performed in parallel with the control method of Figure 3a.
  • the storage method starts with step 18 in which no storage is present.
  • the storage method continues in step 19, by storing the activation of the snow mode 2. of a transition to the snow mode 3, the storage method continues in step 20, by storing the activation of the snow mode 3.
  • the storage method continues to step 19, by storing the activation of the snow mode 2.
  • the storage method When the storage method is in steps 19 or 20, if the vehicle speed Veh_Speed is greater than or equal to a value V2, the storage method continues in step 18 by erasing the storage.
  • step 18 by erasing the storage.
  • a gearshift request when the vehicle is stopped or in ramp and in the manual mode causes the passage in the snow mode 2.
  • a subsequent request to change gear uphill causes the passage in snow mode 3.
  • a downshift request for a gear while the vehicle is in snow mode 3 causes the switch to snow mode 2.
  • a downshift gear change request while the vehicle is in snow mode 2 causes the switch to normal manual mode.
  • a value corresponding to the last activated snow mode can be memorized.
  • a vehicle whose ratio falls below the ratio corresponding to the snow mode 2 keeps in the form of a memorized value that the last active snow mode was the snow mode 2.
  • a vehicle which exceeds the mode ratio snow 3 keeps in the form of a stored value that the last active snow mode was snow mode 3.
  • This memorization of the last activated snow mode can be erased if the vehicle speed deviates above a calibrated limit speed V2.
  • the memory can also be cleared if the driver actuates the control lever, for example to engage a higher gear, a lower gear or the driving mode, whether the snow mode is active or not.
  • Driving mode (“drive" mode) is generally present in automatic or continuously variable gearboxes.
  • the control method activates the snow mode 2. Similarly, if the storage of the snow mode 3 is active and the value Ratio higher at a stored value R3_act, the control method activates the snow mode 3.
  • FIG. 4 describes the main steps of the method of changing the snow mode of the control method.
  • FIG. 4 illustrates the case of the snow mode 3.
  • the case of the snow mode 2 can be illustrated in an identical way by substituting the references relating to the snow mode 3 and the corresponding references relating to the snow mode 2.
  • the mode change process begins with step 21 in which it is determined whether the snow mode 3 is activated or stored. If the snow mode 3 is activated or stored, the method continues in step 22, otherwise the standard manual mode is activated in step 25. In step 22, it is determined whether the vehicle speed Veh_speed is greater than or equal to the limit speed V3. If this is the case, the method continues in step 23, otherwise the first report ratio setpoint is issued in step 26. In step 23, it is determined whether the active ratio variable is greater than or equal to the limit value R3_exit.
  • step 24 the ratio setpoint is determined according to the mapping of the standard manual mode in step 27.
  • step 24 it is determined whether the vehicle is in a take-off phase, ie if a snow mode is activated and the re-acceleration snow mode is not activated. If this is the case, the method continues in step 29, otherwise the method continues in step 28 during which the ratio setpoint is determined according to the velocity dependent limit map. In step 29, the ratio setpoint is determined according to the mapping of the third gear manual mode.
  • FIG. 5 illustrates the main elements of a limit torque calculation method.
  • the elements present in this figure correspond to block 4 of FIG. 1.
  • the torque limitation described in this figure corresponds to an operation of the vehicle while the snow mode is activated. This calculation is done when the second take-off snow mode or the third gear takeoff snow mode is activated.
  • the calculation method begins with step 30 during which the target ratio of the transmission as a function of the vehicle speed Veh_speed is determined using the manual mode second gear mapping.
  • the target ratio is the ratio setpoint, which is the ratio that we want transmission to adopt.
  • step 31 the target ratio of the transmission as a function of the vehicle speed Veh_speed is determined using the manual mode of third gear mapping.
  • step 32 it is determined which ratio calculated during steps 30 and 31 should be used according to the active snow mode at the time of calculation.
  • the ratio thus used is represented by the variable Rneige.
  • the ratio Rneige represents the ratio that the driver would like to have and that will be simulated since the physical system can not actually adopt this ratio guideline.
  • step 33 the rotational speed of the turbine is determined in snow Turbine_rev_Rneige mode by producing the product of the ratio Rneige by the speed of rotation of the secondary pulley Sec_pulley_rev.
  • step 34 the torque at the outlet of the turbine is determined in Snow Turbine_Torque_Rneige mode as a function of the engine rotation speed Engine_rev, the speed of rotation of the turbine in snow mode Turbine_rev_Rneige, the state of the Lockup, CVT_Oil_Temp continuously variable transmission oil temperature and Engine_Torque_Driver driver torque request.
  • step 35 the torque at the output of the secondary pulley in snow mode Sec_Pulley_tq_neige is determined by multiplying the output torque of the turbine in snow mode Turbine_Torque_Rneige by the ratio in snowfall mode Rneige determined in step 32.
  • step 36 the torque ratio in snow mode Rcouple_neige is determined by dividing the output torque of the secondary pulley in snow mode Sec_Pulley_tq_neige of step 35 by the motor torque request of the driver Engine_Torque_Driver.
  • step 39 the torque at the outlet of the turbine is determined
  • step 40 the output torque of the secondary pulley Sec_Pulley_tq is determined by multiplying the torque at the output of the turbine Turbine_Torque by the variable Ratio.
  • step 41 the torque ratio Rcouple is determined by dividing the output torque of the secondary pulley Sec_Pulley_tq of step 40 by the motor torque Engine_torque.
  • step 37 the torque limiting factor Tq_limit_factor is determined by dividing the torque ratio in snowfall mode of step 36 by the torque ratio Rcouple of step 41.
  • step 38 the the Raw_Engine_Tq_limit motor torque limiting raw value by realizing the torque limiting factor product Tq_limit_factor by the engine torque request of the driver Engine_Torque_Driver.
  • the control method comprises a method for determining the ratio in snow mode, a method for determining the torque ratio in snow mode and a method for determining the current torque ratio.
  • the method for determining the ratio in snow mode comprises the steps 30, 31 and 32. It determines the target ratio of torque as a function of the speed of the vehicle and according to the chosen snow mode ratio. It has the advantage of simultaneously determining the second and third ratio ratios. The determining process during step 32 which of the two ratios to choose, according to the report in active snow mode.
  • the method for determining the current torque ratio comprises steps 39 to 41.
  • the torque ratio of the continuously variable transmission is calculated at each instant.
  • the torque ratio Rcouple is defined as the ratio between the torque at the output of the secondary pulley of the continuously variable transmission Sec_pulley_tq and the Engine_Torque torque of the motor at the input of the continuously variable transmission.
  • the output torque of the secondary pulley of the continuously variable transmission Sec_pulley_tq is defined as the product of the torque at the output of the turbine Turbine_Torque by the variable Ratio which corresponds to the ratio of the speed of rotation of the primary pulley by the speed of the pulley secondary.
  • Turbine_Torque Engine_Torque
  • the output torque of the turbine Turbine_Torque is then estimated as a function of the characteristics of the converter, the turbine rotation speed Turbine_rev, the engine rotation speed Engine_rev, and the temperature of the continuously variable transmission oil Temp_CVT.
  • the output torque of the Turbine_Torque turbine is determined by the following calculation:
  • Turbine_Torque Z (i, CVT_Oil_Temp) • Engine_rev 2 • K (i, CVT_Oil_Temp)
  • the method for determining the torque ratio in snow mode comprises the steps 33 to 36.
  • the torque ratio of the continuously variable transmission corresponding to the chosen snow mode ratio is calculated at each instant.
  • the steps of the method are similar to steps 39 to 41, considering the snow mode variables corresponding to the common variables used in these steps.
  • the output torque of the turbine in Turbine_Torque_Rneige snow mode is determined by performing a calculation similar to that used to determine the output torque of the turbine Turbine_Torque, using the speed of rotation of the turbine in snow mode Turbine_rev_Rneige instead of the rotational speed of turbine Turbine_rev.
  • the i_neige variable is defined as:
  • Turbine_rev_Rneige i_neige -
  • the control method then has the value of the torque ratio Rcouple and the value of the torque ratio in snow mode Rcouple_neige. It is then possible to determine the factor resulting from the ratio between these two values, then to determine the torque limit of the engine Raw_Engine_Tq_limit by multiplying said factor by the torque request of the driver.
  • Figure 6 illustrates an alternative method of determining the Rneige ratio taking into account the speed of the vehicle Veh_Speed and the depression of the accelerator pedal TVO.
  • the alternative method of determining the Rneige ratio begins with a step 42 in which a fine determination of a correction variable called Delta_Ratio is made as a function of the vehicle speed Veh_Speed and the depression of the accelerator pedal TVO .
  • the Delta_Ratio variable is an adjustment variable that allows you to precisely control the Snow variable depending on the speed of the vehicle and depending on the depression of the accelerator pedal through certain settings.
  • a step 43 makes it possible to determine the rotation speed of the primary pulley in manual mode Npri_manual as a function of the vehicle speed Veh_Speed.
  • the manual ratio Ratio_Manual is determined by dividing the speed of rotation of the primary pulley into manual mode.
  • step 45 the ratio Rneige is determined by adding the Ratio value of step 42 and the manual Ratio_manuel ratio of step 44. The Rneige value is then substituted for the value calculated by the control method at step 44. from step 32 of FIG.
  • Figure 7 illustrates the main elements of the wheel torque limiting method in the case where the third gear re-acceleration snow mode is active.
  • the selected ratio is the third report, but the method can be adapted to the second report by replacing the third report variables with the second report variables.
  • the method starts at step 46 by subtracting the Ratio value of the snow mode reference ratio for the third ratio Cxx_snw_trq_lim_3.
  • the Cxx_snw_trq_lim_3 Cxx_snw_trq_lim_3 snow mode reference ratio is a calibration value to determine the maximum torque limitation for the third gear re-acceleration snow mode.
  • Step 47 determines the difference between the reference ratio in snow mode for the third report Cxx_snw_trq_lim_3 and the ratio of third report Cxx_man_3_gear.
  • the third gear ratio Cxx_man_3_gear is a calibration value representing the third gear target ratio.
  • step 48 the deviation of the current ratio and the third ratio ratio is determined by dividing the result of step 46 by the result of step 47.
  • the deviation represents the difference between the current ratio and the target ratio.
  • step 49 this deviation is limited between the values 0 and 1. In other words, any value greater than the value 1 is replaced by the value 1. Similarly, any value less than the value
  • 0 is replaced by the value 0.
  • the values between 0 and 1 are kept as they are.
  • step 50 the torque limitation is determined in the case of a snow mode in re-acceleration Rtq_limit_reac according to a mapping depending on the deviation Rdeviation.
  • the limited torque is determined in the case of a Raw_Engine_Tq_Limit re-acceleration snow mode by multiplying the engine_Torque_driver driver torque demand by the torque limitation in the case of a snow mode in the same mode. - acceleration Rtq_limit_reac.
  • Figure 8 illustrates the main elements included in a control system according to the invention.
  • Sensors 64 are connected to maps 52 and 53.
  • Mapping 52 corresponds to the second report snow mode
  • mapping 53 corresponds to the third report snow mode.
  • the outputs of the maps 52 and 53 are connected to at least one input of the switching means 54.
  • the means 54 also receives from the sensors 64 a two-state logic signal corresponding to the second or third report snow mode.
  • the output of the switching means 54 is connected to a means 55 for multiplication.
  • the multiplying means 55 is connected by its other input to the sensors 64.
  • the output of the multiplication means 55 is connected to the means 56 for determining the torque of the turbine in snow mode.
  • the determining means 56 is input-connected to the sensors 64.
  • the computation means 57 of the torque of the secondary pulley is connected at input to the determination means 56 of the torque of the turbine in snow mode and to the switching means 54, and is connected to the output by means of multiplication 58.
  • the multiplication means 58 is furthermore connected to the sensors 64 at the input, and at the output to the calculation means 59.
  • the determining means 61 is input-connected to the sensors 64.
  • the computation means 62 of the current torque of the secondary pulley is input-connected to the turbine torque determination means 61 and to the sensors 64, and is connected to the output multiplication means 63.
  • the multiplication means 63 is furthermore connected to the input sensors 64 and output to the calculation means 59.
  • the calculation means 59 is connected by its output to the limit torque determining means 60, itself connected to the internal combustion engine 5 by a control means 65.
  • the control method and the control system of a continuously variable transmission make it possible to limit the slippage of the driving wheels of a motor vehicle when starting on slippery ground.
  • the torque and driver ratio requests are taken into account in order to adapt the engine torque according to the actual ratio of the transmission to simulate different transmission ratios of the actual ratio.
  • Such a system makes it possible to maintain the sensation of the gear ratios while allowing the driver to exercise optimum control of the torque at the wheel, allowing easy starting and without slipping.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

Procédé de commande d'une transmission continûment variable, montée entre un moteur à combustion interne (5) d'un véhicule automobile, et les roues motrices (11), la transmission continûment variable pouvant fonctionner selon au moins un mode manuel et un mode d' assistance. Le procédé de commande comprend les étapes au cours desquelles : -on estime un premier rapport de couple correspondant à un mode d' assistance de la CVT, -on calcule à chaque instant un deuxième rapport de couple entre le couple en entrée et le couple en sortie de la CVT, -on compare le premier et le deuxième rapports, -on en déduit un couple limite du moteur à combustion interne.

Description

Système et procédé de commande d'une transmission infiniment variable lors d'un démarrage en adhérence faible
Le domaine de l'invention est la commande de transmissions pour véhicules automobiles, plus précisément, la commande de transmissions continûment variables (dites « CVT » dans la présente description) .
Le démarrage d'un véhicule automobile sur un sol à faible coefficient d' adhérence sans patinage des roues motrices implique un abaissement du couple à la roue. Pour obtenir de telles conditions, les conducteurs de véhicules munis d'une boite de vitesse manuelle ou automatique à plusieurs rapports se placent généralement sur le deuxième ou troisième rapport afin d' obtenir une réduction du couple à la roue.
Dans le cas de certaines transmissions continûment variables, il n' est pas possible de modifier le rapport lorsque le véhicule est immobile. En effet, le dispositif de rapport à vitesse variable est arrêté lorsque le véhicule est arrêté. Il n' est donc pas possible, sans assistance, de démarrer avec des caractéristiques de couple à la roue et vitesse de rotation des organes moteurs comparable à un démarrage en second ou en troisième rapport d'une boite manuelle ou automatique.
La demande de brevet américain US 2006-0014609 décrit un procédé de commande d'une boite de vitesses continûment variable, applicable également à une boite de vitesses manuelle ou automatique, permettant de réduire le couple à la roue sur sol glissant. Pour cela, un mode de fonctionnement actionné par le conducteur, réduit le couple moteur. Le couple à la roue est réduit en conséquence. La réduction de couple est réalisée par l' intermédiaire d'une calibration, réduisant les couples moteurs à basse vitesse de rotation de l' organe moteur et modifiant peu les couples moteurs à haute vitesse de rotation. Plusieurs calibrations différentes sont évoquées . Cependant, il doit être noté que la mise au point de telles calibrations est coûteuse et que leur utilisation s ' adapte peu aux diverses conditions pouvant être rencontrées par un conducteur.
La demande de brevet américain US5586953 décrit un procédé de commande permettant d' améliorer le freinage moteur en limitant la capacité de la transmission à revenir vers des rapports courts.
La demande de brevet j aponais JP l 1344109 décrit un procédé de limitation du rapport de couple de façon que le véhicule s ' arrête sur un rapport de couple correspondant au deuxième rapport. Ainsi, le véhicule redémarre sur un deuxième rapport, favorisant l' adhérence. II est à noter que ces procédés limitent le ratio de la transmission avant l' arrêt du véhicule afin d' éviter les glissements. Ces procédés n' ont pas d' effet s 'ils sont activés lorsque le véhicule est à l' arrêt.
Un objet de l'invention est un système et un procédé de commande d'une transmission continûment variable sur sol glissant dans lesquels le couple moteur est réduit afin de simuler pour le conducteur un second ou un troisième rapport de vitesse.
Un autre objet de l' invention est un système et un procédé de commande d'une transmission continûment variable conservant la perception du conducteur de rapports discrets .
Un autre objet de l'invention est un système et procédé de commande d'une transmission continûment variable permettant au conducteur de mieux doser le couple à la roue afin de faciliter les démarrages sur sol glissant. Selon un mode de réalisation, on définit un procédé de commande d'une transmission continûment variable (CVT), montée entre un moteur à combustion interne d'un véhicule automobile, et les roues motrices, la transmission continûment variable pouvant fonctionner selon au moins un mode manuel et un mode d' assistance. Le procédé de commande comprend les étapes au cours desquelles :
-on estime un premier rapport de couple correspondant à un mode d' assistance de la CVT,
-on calcule à chaque instant un deuxième rapport de couple entre le couple en entrée et le couple en sortie de la CVT, -on compare le premier et le deuxième rapports, -on en déduit un couple limite du moteur à combustion interne. Pour une transmission continûment variable comprenant parmi différents modes d' assistance au moins un mode neige de rapport différent du premier rapport de boite de vitesse, on peut activer une phase de décollage ou une phase de ré-accélération du mode neige selon la requête de couple du conducteur et la différence entre la vitesse de rotation du moteur et la vitesse de rotation en entrée de la transmission continûment variable par rapport à un seuil mémorisé. Le calcul du couple limite lors d'une phase de ré-accélération peut être issu de la comparaison du ratio de la transmission, du ratio issu d'un variogramme en mode manuel pour le rapport considéré, du ratio issu d'un variogramme du mode d' assistance et du couple du moteur à combustion thermique. On peut activer un mode neige de deuxième rapport lorsque, simultanément, :
- le conducteur requiert le passage d'un rapport supérieur,
- la vitesse du véhicule est inférieure à une première vitesse mémorisée, et - le mode de fonctionnement actif est le mode manuel.
On peut activer un mode neige de troisième rapport lorsque, simultanément :
- on requiert le passage d'un rapport supérieur, et
- le mode de fonctionnement actif est le mode neige de deuxième rapport.
On peut mémoriser lors du passage d'un mode d' assistance à un mode manuel, le mode d' assistance précédemment actif afin de procéder à une réactivation ultérieure dudit mode d' assistance lorsque les conditions de ratio sont satisfaites. Selon un autre mode de réalisation, on définit un système de commande d'une transmission continûment variable, montée entre un moteur à combustion interne d'un véhicule automobile, et les roues motrices, la transmission continûment variable pouvant fonctionner selon au moins un mode manuel et un mode d' assistance. Le système comprend:
-un moyen de multiplication apte à déterminer à chaque instant un premier rapport de couple entre le couple en entrée et le couple en sortie de la CVT,
-un moyen de multiplication apte à estimer un deuxième rapport de couple correspondant à un mode d' assistance de la CVT,
-un moyen de calcul apte à estimer un paramètre de correction en fonction du rapport entre le premier et le deuxième rapports, -un moyen de détermination apte à déterminer le couple limite du moteur à combustion interne en fonction du paramètre de correction.
Le système de commande peut comprendre au moins une cartographie du ratio de la vitesse de rotation du moteur à combustion interne en fonction de la vitesse du véhicule pour chaque rapport et pour chaque mode. Le système de commande peut alors être apte à déterminer le ratio et le couple limite en fonction d' au moins une cartographie et de paramètres de fonctionnement du véhicule.
Le système de commande peut comprendre une mémoire et la transmission continûment variable peut comprendre parmi différents modes d' assistance au moins un mode neige de rapport différent du premier rapport de boite de vitesse. Le système de commande peut alors être apte à mémoriser le rapport correspondant au dernier mode neige actif lors d'un passage en mode manuel. D' autres buts, caractéristiques et avantages de l' invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d'exemple non limitatif et faite en référence au dessin annexé sur lequel :
-la figure 1 illustre un procédé de commande d'une transmission continûment variable sur faible adhérence,
-la figure 2 illustre les principaux éléments compris dans et connectés à une transmission continûment variable, -la figure 3a illustre les principales étapes du procédé de détermination des conditions d' activation ou désactivation des différents modes du procédé de commande,
-la figure 3b illustre les principales étapes de mémorisation du procédé de commande.
-la figure 4 illustre les principales étapes du procédé de changement de mode neige du procédé de commande,
-la figure 5 illustre principales étapes du procédé de calcul de ratio du procédé de commande, -la figure 6 illustre les principales étapes du procédé de limitation du couple à la roue du procédé de commande,
-la figure 7 illustre les principales étapes du procédé de limitation du couple à la roue dans le cas d'une ré-accélération, et
-la figure 8 illustre les principaux éléments d'un système de commande.
La figure 1 illustre les principales étapes du procédé de commande 1 d'une transmission continûment variable sur sol glissant. Le procédé de commande comprend un procédé 2 de détermination des conditions d' activation ou désactivation des différents modes, un procédé 3 de calcul de ratio et un procédé 4 de limitation du couple à la roue.
La figure 2 illustre les principaux éléments compris dans et connectés à une transmission continûment variable. Un moteur 5 est relié en entrée d'une transmission continûment variable. Au moins une roue motrice 1 1 est reliée en sortie de la transmission continûment variable. La transmission continûment variable comprend un convertisseur de couple hydraulique 6, un dispositif 7 de changement de direction d' avancement, une poulie primaire 8, une poulie secondaire 9 et un dispositif de distribution 10. Le convertisseur de couple hydraulique 6 comprend un impulseur 6a, un stator 6b et une turbine 6c. Un interrupteur 6d dit de lock-up est également présent afin de pouvoir solidariser la turbine 6c à l' impulseur 6a afin d' obtenir un lien direct entre l' arbre primaire et l' arbre moteur. Plusieurs grandeurs permettent de caractériser certains des organes décrits ci-dessus. On peut citer la vitesse du véhicule Veh_Speed, le couple en sortie de la turbine Turbine_Torque, la vitesse de rotation du moteur Engine_rev, la température de l'huile de la transmission continûment variable CVT_Oil_Temp, le couple en sortie de la poulie secondaire Sec_Pulley_tq et la vitesse de rotation de la turbine Turbine_rev.
Par ailleurs, on définit la variable Ratio comme le rapport entre la vitesse de rotation de la poulie primaire 8 et la vitesse de rotation de la poulie secondaire 9.
On définit également la variable Lockup qui rend compte de l'état de l'interrupteur dit de lockup. Cette variable peut prendre deux valeurs selon que l'interrupteur est engagé ou désengagé.
La figure 3a illustre les principales étapes comprises dans le procédé de détermination des conditions d' activation ou de désactivation des différents modes du procédé de commande.
Le procédé de commande comprend un mode manuel, un mode neige de deuxième rapport et un mode neige de troisième rapport. Le mode manuel ne comprend pas d' assistance au décollage et correspond à un mode dans lequel tous les rapports de boite de vitesses sont accessibles suivant des conditions dépendant de la vitesse du véhicule.
En particulier, à l' arrêt, seul le premier rapport est activable. Le mode neige de deuxième rapport correspond à un mode assisté dans lequel on simule le comportement d'un véhicule pour lequel le second rapport est actif, grâce à une limitation du couple moteur par la transmission continûment variable. Le conducteur perçoit ainsi un comportement du véhicule semblable au comportement que le véhicule aurait si le second rapport du mode manuel était activé. De même, le mode neige de troisième rapport correspond à un mode assisté dans lequel le troisième rapport est simulé. Le passage d'un mode à l' autre peut être déclenché par une requête du conducteur.
Par ailleurs, les modes neiges comprennent chacun un mode neige de décollage et un mode neige de ré-accélération, mutuellement exclusifs. Les modalités d' activations de ces modes seront détaillées ultérieurement.
Le mode manuel normal comprend pour chaque rapport une cartographie de la vitesse de rotation du moteur Engine_rev en fonction la vitesse du véhicule Veh_speed.
Une cartographie limite est également présente de façon à définir la vitesse de rotation en dessous de laquelle la poulie primaire ne doit pas descendre. Une telle cartographie limite par conséquent la vitesse de rotation du moteur Engine_rev. L' ensemble des cartographies liées au mode manuel est appelé variogramme.
Le procédé de commande débute à l' étape 12, le véhicule étant dans le mode manuel. Les conditions d' arrêt ou de rampage du véhicule sont réalisées. Un véhicule est dit dans une situation de rampage, si sa vitesse est inférieure à une vitesse de seuil V l , déterminée par calibration.
Si la vitesse du véhicule est inférieure à la valeur V l , et que le conducteur demande un changement de rapport pour un rapport supérieur, et que la condition Accel_off est vérifiée, alors le procédé se poursuit à l' étape 13, le mode actif étant alors le mode neige 2. La condition Accel_off est vraie si la pédale d' accélération est relâchée. Plus particulièrement, l' étape 13 correspond au mode neige dit de décollage du deuxième rapport. Si la différence entre la vitesse de rotation du moteur Engine_Rev et la vitesse de rotation de la turbine Turbine_Rev est inférieure à un seuil Thdl , et que la condition
Accel_off est vérifiée, alors le procédé se poursuit à l' étape 14. L'étape 14 correspond au mode neige dit de ré-accélération de deuxième rapport. En effet, le calcul du couple de limitation doit être réalisé de façon différente dans les cas de décollage et les cas de ré- accélération. Si la différence entre la vitesse de rotation du moteur
Engine_Rev et la vitesse de rotation de la turbine Turbine_Rev est supérieure à un seuil Thd2, et que la condition Accel_off est vérifiée, alors le procédé se poursuit à l' étape 13. De même, si la vitesse du véhicule Veh_Speed est inférieure au seuil Thd, le procédé se poursuit à l' étape 13. A la suite de l' étape 13 et l'étape 14, le procédé peut se poursuivre à l' étape 17, si la variable Ratio est inférieure ou égale à la valeur R2_exit.
A la suite de l' étape 13 ou de l' étape 14, si la vitesse du véhicule est inférieure à la valeur V l , et que le conducteur demande un changement de rapport pour un rapport supérieur, et que la condition Accel_off est vérifiée, alors le procédé se poursuit à l'étape 15, le mode actif étant alors le mode neige 3. Plus particulièrement, l'étape 15 correspond au mode neige dit de décollage du troisième rapport. Si la différence entre la vitesse de rotation du moteur
Engine_Rev et la vitesse de rotation de la turbine Turbine_Rev est inférieure à un seuil Thdl , et que la condition Accel_off est vérifiée, alors le procédé se poursuit à l' étape 16. L' étape 16 correspond au mode neige dit de ré-accélération du troisième rapport. En effet, le calcul du couple de limitation doit être réalisé de façon différente dans les cas de décollage et les cas de ré-accélération. Si la différence entre la vitesse de rotation du moteur Engine_Rev et la vitesse de rotation de la turbine Turbine_Rev est supérieure à un seuil Thd2, et que la condition Accel_off est vérifiée, alors le procédé se poursuit à l'étape 15. De même, si la vitesse du véhicule Veh_Speed est inférieure au seuil Thd, le procédé se poursuit à l' étape 15. A la suite de l' étape 15 et l'étape 16, le procédé peut se poursuivre à l' étape 17, si la variable Ratio est inférieure ou égale à la valeur R3_exit. A la suite de l' étape 15 ou de l' étape 16, si le conducteur procède à une demande de descente de rapport, le procédé se poursuit à l' étape 13 si la valeur
Ratio est supérieure à la valeur R2_exit. Si la valeur Ratio est inférieure ou égale à la valeur R2_exit, le procédé se poursuit à l'étape 17.
L' étape 17 correspond à un mode manuel standard sans assistance. Si le véhicule s' arrête, le procédé se poursuit à l' étape 12 précédemment définie. Si une valeur correspondante au deuxième rapport en mode neige est mémorisée, et si le Ratio est supérieur ou égal à la valeur R2_act alors le procédé se poursuit à l' étape 14. Si une valeur correspondante au troisième rapport en mode neige est mémorisée, et si le Ratio est supérieur ou égal à la valeur R3_act alors le procédé se poursuit à l' étape 16.
La figure 3b illustre les règles de mémorisation et d' effacement de la mémorisation des différents modes neige appliquées par le procédé de commande.
Le procédé de mémorisation de la figure 3b est exécuté en parallèle du procédé de commande de la figure 3a.
Le procédé de mémorisation débute par l'étape 18 au cours de laquelle aucune mémorisation n' est présente. Dés que le mode neige 2 est activé, par exemple lors du passage de l' étape 12 à l' étape 13, le procédé de mémorisation de poursuit à l' étape 19, par la mémorisation de l' activation du mode neige 2. Lors d'un passage au mode neige 3, le procédé de mémorisation de poursuit à l' étape 20, par la mémorisation de l' activation du mode neige 3. Inversement, si le mode neige 2 est réactivé, le procédé de mémorisation se poursuit à l' étape 19, par la mémorisation de l' activation du mode neige 2.
Lorsque le procédé de mémorisation se trouve dans les étapes 19 ou 20, si la vitesse du véhicule Veh_Speed est supérieure ou égale à une valeur V2, le procédé de mémorisation se poursuit à l' étape 18 par un effacement de la mémorisation.
De même, lorsque le procédé de mémorisation se trouve dans les étapes 19 ou 20, si une demande de changement de rapport est effectuée alors que la vitesse du véhicule est supérieure ou égale à la valeur V l , le procédé de mémorisation se poursuit à l' étape 18 par un effacement de la mémorisation.
En d' autres termes, une requête de changement de rapport lorsque le véhicule est à l' arrêt ou en rampage et dans le mode manuel, provoque le passage dans le mode neige 2. Une requête ultérieure de changement de rapport en montée provoque le passage en mode neige 3.
Par opposition, une requête de changement de rapport en descente alors que le véhicule est en mode neige 3 provoque le passage en mode neige 2. Une requête de changement de rapport en descente alors que le véhicule est en mode neige 2 provoque le passage en mode manuel normal.
Lorsque un changement de mode est requis, une valeur correspondant au dernier mode neige activé peut être mémorisée. Ainsi, un véhicule dont le ratio passe en dessous du rapport correspondant au mode neige 2, conserve sous la forme d'une valeur mémorisée que le dernier mode neige activé était le mode neige 2. De même, un véhicule qui dépasse le rapport du mode neige 3, conserve sous la forme d'une valeur mémorisée que le dernier mode neige activé était le mode neige 3.
Cette mémorisation du dernier mode neige activé peut être effacée si la vitesse du véhicule dévient supérieure à une vitesse limite V2 calibrable. La mémorisation peut également être effacée si le conducteur actionne le levier de commande, par exemple pour engager un rapport supérieur, un rapport inférieur ou le mode conduite, que le mode neige soit actif ou non. Le mode conduite (mode « drive » en anglais) est généralement présent dans les boites de vitesses automatiques ou continûment variables .
Dans le cas où une valeur de mode neige est mémorisée, un mécanisme supplémentaire de changement de mode est possible, illustré sur la figure 3a.
Si la mémorisation du mode neige 2 est active et que la valeur Ratio est supérieure à une valeur mémorisée R2_act, le procédé de commande active le mode neige 2. De même, si la mémorisation du mode neige 3 est active et que la valeur Ratio supérieure à une valeur mémorisée R3_act, le procédé de commande active le mode neige 3.
Par contre, si le mode neige 2 est actif et que la valeur Ratio est inférieure à une valeur mémorisée R2_exit, le procédé de commande désactive le mode neige 2 au profit du mode manuel standard. Si le mode neige 3 est actif et que la valeur Ratio est inférieure à une valeur mémorisée R3_exit, le procédé de commande désactive le mode neige 3 au profit du mode manuel standard. Dans ces deux derniers cas, la variable Ratio correspond au rapport engagé, il n' est donc pas nécessaire de limiter le couple à la roue. La figure 4 décrit les principales étapes du procédé de changement de mode neige du procédé de commande. La figure 4 illustre le cas du mode neige 3. Le cas du mode neige 2 peut être illustré d'une façon identique en substituant les références relatives au mode neige 3 pas les références correspondantes relatives au mode neige 2. La figure 4 correspond au bloc 3 de la figure 1.
Le procédé de changement de mode débute avec l' étape 21 au cours de laquelle on détermine si le mode neige 3 est activé ou mémorisé. Si le mode neige 3 est activé ou mémorisé, le procédé se poursuit à l' étape 22, sinon le mode manuel standard est activé à l'étape 25. A l' étape 22, on détermine si la vitesse du véhicule Veh_speed est supérieure ou égale à la vitesse limite V3. Si tel est le cas, le procédé se poursuit à l' étape 23, sinon la consigne de ratio de premier rapport est émise à l' étape 26. A l'étape 23, on détermine si la variable Ratio actif est supérieure ou égale à la valeur limite R3_exit.
Si tel est le cas, le procédé se poursuit à l'étape 24, sinon la consigne de ratio est déterminée en fonction de la cartographie du mode manuel standard au cours de l'étape 27. A l' étape 24, on détermine si le véhicule se trouve dans une phase de décollage, c'est-à-dire si un mode neige est activé et le mode neige de ré-accélération n'est pas activé. Si tel est le cas, le procédé se poursuit à l' étape 29, sinon le procédé se poursuit à l' étape 28 au cours de laquelle la consigne de ratio est déterminée en fonction de la cartographie limite dépendant de la vitesse. A l' étape 29, la consigne de ratio est déterminée en fonction de la cartographie du mode manuel de troisième rapport.
Apres les étapes 25 à 29, le procédé reprend à l' étape 21. La figure 5 illustre les principaux éléments d'un procédé de calcul de couple limite. Les éléments présents dans cette figure correspondent au bloc 4 de la figure 1. La limitation de couple décrite sur cette figure correspond à un fonctionnement du véhicule alors que le mode neige est activé. Ce calcul est effectué lorsque le mode neige de décollage du deuxième rapport ou le mode neige de décollage du troisième rapport est activé. Le procédé de calcul commence avec l' étape 30 au cours de laquelle on détermine le ratio cible de la transmission en fonction de la vitesse du véhicule Veh_speed en utilisant la cartographie du mode manuel de deuxième rapport. Le ratio cible correspond à la consigne de ratio, c'est-à-dire au ratio que l' on veut que la transmission adopte.
Au cours de l' étape 31 , on détermine le ratio cible de la transmission en fonction de la vitesse du véhicule Veh_speed en utilisant la cartographie du mode manuel de troisième rapport. Au cours de l' étape 32, on détermine lequel des ratios calculés au cours des étapes 30 et 31 doit être utilisé en fonction du mode neige actif à l'instant du calcul. Le ratio ainsi utilisé est représenté par la variable Rneige. Le ratio Rneige représente le ratio que le conducteur voudrait avoir et qui va être simulé puisque le système physique ne peut par réellement adopter cette consigne de ratio . A l' étape 33, on détermine la vitesse de rotation de la turbine en mode neige Turbine_rev_Rneige en réalisant le produit du ratio Rneige par la vitesse de rotation de la poulie secondaire Sec_pulley_rev. A l' étape 34, on détermine le couple en sortie de la turbine en mode neige Turbine_Torque_Rneige en fonction de la vitesse de rotation du moteur Engine_rev, de la vitesse de rotation de la turbine en mode neige Turbine_rev_Rneige, de l' état du Lockup, de la température de l'huile de la transmission continûment variable CVT_Oil_Temp, et de la requête de couple moteur du conducteur Engine_Torque_Driver. A l' étape 35, on détermine le couple en sortie de la poulie secondaire en mode neige Sec_Pulley_tq_neige en multipliant le couple en sortie de la turbine en mode neige Turbine_Torque_Rneige par le ratio en mode neige Rneige déterminé à l'étape 32. A l' étape 36, on détermine le ratio de couple en mode neige Rcouple_neige en divisant le couple en sortie de la poulie secondaire en mode neige Sec_Pulley_tq_neige de l'étape 35 par la requête de couple moteur du conducteur Engine_Torque_Driver.
A l' étape 39, on détermine le couple en sortie de la turbine
Turbine_Torque en fonction de la vitesse de rotation du moteur
Engine_rev, de la vitesse de rotation de la turbine Turbine_rev, de l' état du Lockup, de la température de l'huile de la transmission continûment variable CVT_Oil_Temp, et du couple moteur Engine_Torque. A l' étape 40, on détermine le couple en sortie de la poulie secondaire Sec_Pulley_tq en multipliant le couple en sortie de la turbine Turbine_Torque par la variable Ratio. A l'étape 41 , on détermine le ratio de couple Rcouple en divisant le couple en sortie de la poulie secondaire Sec_Pulley_tq de l' étape 40 par le couple moteur Engine_torque.
A l' étape 37, on détermine le facteur de limitation du couple Tq_limit_factor en divisant le ratio de couple en mode neige Rneige de l'étape 36 par le ratio de couple Rcouple de l' étape 41. A l' étape 38, on détermine la valeur brute de limitation du couple moteur Raw_Engine_Tq_limit en réalisant le produit du facteur de limitation du couple Tq_limit_factor par la requête de couple moteur du conducteur Engine_Torque_Driver. En d' autres termes, le procédé de commande comprend un procédé de détermination du ratio en mode neige, un procédé de détermination du ratio de couple en mode neige et un procédé de détermination du ratio de couple courant.
Le procédé de détermination du ratio en mode neige comprend les étapes 30, 31 et 32. Il permet de déterminer le ratio cible de couple en fonction de la vitesse du véhicule et selon le rapport en mode neige choisi. Il présente l' avantage de déterminer simultanément les ratios de second et troisième rapport. Le procédé déterminant au cours de l'étape 32 lequel des deux ratios choisir, selon le rapport en mode neige actif.
Le procédé de détermination du ratio de couple courant comprend les étapes 39 à 41. On calcule à chaque instant le ratio en couple de la transmission continûment variable.
Le ratio de couple Rcouple est défini comme le rapport entre le couple à la sortie de la poulie secondaire de la transmission continûment variable Sec_pulley_tq et le couple Engine_Torque du moteur en entrée de la transmission continûment variable.
_. , Sec pulley tq
Rcouple = — —
Engine_Torque Le couple en sortie de la poulie secondaire de la transmission continûment variable Sec_pulley_tq est défini comme le produit du couple en sortie de la turbine Turbine_Torque par la variable Ratio qui correspond au rapport de la vitesse de rotation de la poulie primaire par la vitesse de la poulie secondaire.
_, . Pri pulley Rev
Ratio = — —
Sec_pulley_Rev
Lorsque l' interrupteur de Lockup est fermé, on a :
Turbine_Torque = Engine_Torque
II est ainsi possible de déterminer le rapport de couple Rcouple. Cependant, lorsque l'interrupteur de Lockup est ouvert, le calcul précédent n' est plus possible, la valeur du couple en sortie de la turbine Turbine_Torque n'étant pas accessible directement. Afin de pouvoir déterminer le ratio en couple, on estime alors le couple en sortie de la turbine Turbine_Torque en fonction des caractéristiques du convertisseur, de la vitesse de rotation de la turbine Turbine_rev, de la vitesse de rotation du moteur Engine_rev, et de la température de l'huile de la transmission continûment variable Temp_CVT.
Le couple en sortie de la turbine Turbine_Torque est déterminé grâce au calcul suivant :
Turbine_Torque = Z(i, CVT_Oil_Temp) • Engine_rev2 • K(i, CVT_Oil_Temp)
Avec i = Turbine_rev/ Engine_rev ,
K : le gain en couple du convertisseur et Z : le facteur TAU du convertisseur
Le procédé de détermination du ratio de couple en mode neige comprend les étapes 33 à 36. On calcule à chaque instant le ratio en couple de la transmission continûment variable correspondant au rapport de mode neige choisi. Les étapes du procédé sont semblable aux étapes 39 à 41 , en considérant les variables relatives au mode neige correspondant aux variables courantes utilisées dans ces étapes.
Le mode neige correspondant à une abstraction non représentative de l' état courant du véhicule, la vitesse de rotation de la turbine en mode neige Turbine_Rev_neige n' est pas accessible par la mesure. Elle est déterminée indirectement de la façon suivante :
Turbine_Rev_neige = Sec_pulley_rev • Rneige
Le couple en sortie de la turbine en mode neige Turbine_Torque_Rneige est déterminé en réalisant un calcul semblable à celui utilisé pour déterminer le couple en sortie de la turbine Turbine_Torque, en utilisant la vitesse de rotation de la turbine en mode neige Turbine_rev_Rneige à la place de la vitesse de rotation de la turbine Turbine_rev.
Le couple en sortie de la turbine en mode neige Turbine_Torque_Rneige est alors défini de la façon suivante :
Turbine _ Torq 4ue - Rneig ëe = • • •
• • • Z(i_neige, CVT_Oil_Temp) • Engine_rev • K(i_neige, CVT_Oil_Temp)
La variable i_neige est définie ainsi :
Turbine_rev_Rneige i_neige = —
En 1gOine rev
A l'issue de ces deux procédés de détermination de rapports de couples, le procédé de commande dispose alors de la valeur du rapport de couple Rcouple et de la valeur du rapport de couple en mode neige Rcouple_neige. Il est alors possible de déterminer le facteur issu du rapport entre ces deux valeurs, puis d' en déterminer la limite de couple du moteur Raw_Engine_Tq_limit en multipliant ledit facteur par la requête de couple du conducteur. La figure 6 illustre un procédé alternatif de détermination du ratio Rneige tenant compte de la vitesse du véhicule Veh_Speed et de l' enfoncement du la pédale d' accélérateur TVO. Le procédé alternatif de détermination du ratio Rneige commence par une étape 42 au cours de laquelle on réalise une détermination fine d'une variable de correction appelée Delta_Ratio en fonction de la vitesse du véhicule Veh_Speed et de l' enfoncement de la pédale d' accélérateur TVO. La variable Delta_Ratio est une variable d' ajustement qui permet de contrôler précisément la variable Rneige en fonction de la vitesse du véhicule et en fonction de l'enfoncement de la pédale d' accélérateur grâce à certains réglages . Par ailleurs, une étape 43 permet de déterminer la vitesse de rotation de la poulie primaire en mode manuel Npri_manual en fonction de la vitesse du véhicule Veh_Speed. Au cours de l' étape 44, on détermine le ratio manuel Ratio_Manuel en divisant la vitesse de rotation de la poulie primaire en mode manuel
Npri_manual par la vitesse de rotation de la poulie secondaire Sec_Pulley_Rev. A l' étape 45, on détermine le ratio Rneige en additionnant la valeur Ratio de l' étape 42 et le ratio manuel Ratio_manuel de l' étape 44. La valeur Rneige est alors substituée à la valeur calculée par le procédé de commande à l' issue de l'étape 32 de la figure 5.
La figure 7 illustre les principaux éléments du procédé de limitation du couple à la roue dans le cas où le mode neige de réaccélération de troisième rapport est actif. Le rapport choisi est le troisième rapport, mais le procédé peut être adapté au second rapport en remplaçant les variables relatives au troisième rapport par les variables relatives au second rapport.
Le procédé débute à l' étape 46 par la soustraction de la valeur Ratio du ratio de référence en mode neige pour le troisième rapport Cxx_snw_trq_lim_3. Le ratio de référence en mode neige pour le troisième rapport Cxx_snw_trq_lim_3 est une valeur de calibration permettant de déterminer la limitation de couple maximum pour le mode neige de ré-accélération de troisième rapport. L' étape 47 permet de déterminer la différence entre le ratio de référence en mode neige pour le troisième rapport Cxx_snw_trq_lim_3 et le ratio de troisième rapport Cxx_man_3_gear. Le ratio de troisième rapport Cxx_man_3_gear est une valeur de calibration représentant le ratio cible de troisième rapport. A l' étape 48, on détermine la déviation Rdéviation entre le ratio courant et le ratio de troisième rapport, en réalisant la division du résultat de l' étape 46 par le résultat de l'étape 47. La déviation Rdéviation représente l' écart entre le ratio courant et le ratio cible. A l' étape 49 , on limite cette déviation entre les valeurs 0 et 1. En d' autres termes, toute valeur supérieure à la valeur 1 est remplacée par la valeur 1. De même, toute valeur inférieure à la valeur
0 est remplacée par la valeur 0. Les valeurs comprises entre 0 et 1 sont conservées telles quelles .
A l' étape 50, on détermine la limitation de couple dans le cas d'un mode neige en ré-accélération Rtq_limit_reac d' après une cartographie dépendante de la déviation Rdéviation.
Au cours de l' étape 51 , on détermine le couple limité dans le cas d'un mode neige en ré-accélération Raw_Engine_Tq_Limit en multipliant la demande de couple du conducteur Engine_Torque_driver par la limitation de couple dans le cas d'un mode neige en ré- accélération Rtq_limit_reac .
Lors du passage du mode neige, dans lequel la requête de couple du conducteur est limitée, au mode manuel, dans lequel la requête de couple du conducteur n' est pas limitée, il est important que la requête de couple ne varie pas brusquement. Pour cela, un gradient peut être appliqué afin d' augmenter progressivement la requête de couple acceptable par le système de façon à limiter les à-coups .
La figure 8 illustre les principaux éléments compris dans un système de commande selon l' invention. Des capteurs 64 sont reliés à des cartographies 52 et 53. La cartographie 52 correspond au mode neige de deuxième rapport, la cartographie 53 correspond au mode neige de troisième rapport. Les sorties des cartographies 52 et 53 sont reliées à au moins une entrée du moyen de commutation 54. Le moyen 54 reçoit également des capteurs 64 un signal logique à deux états correspondant au mode neige de deuxième ou de troisième rapport. La sortie du moyen de commutation 54 est reliée à un moyen 55 de multiplication. Le moyen de multiplication 55 est relié par son autre entrée aux capteurs 64. La sortie du moyen de multiplication 55 est reliée au moyen de détermination 56 du couple de la turbine en mode neige.
Le moyen de détermination 56 est relié en entrée aux capteurs 64. Le moyen de calcul 57 du couple de la poulie secondaire est relié en entrée au moyen de détermination 56 du couple de la turbine en mode neige et au moyen de commutation 54, et est connecté en sortie au moyen de multiplication 58. Le moyen de multiplication 58 est connecté par ailleurs aux capteurs 64 en entrée, et en sortie au moyen de calcul 59.
Le moyen de détermination 61 est relié en entrée aux capteurs 64. Le moyen de calcul 62 du couple courant de la poulie secondaire est relié en entrée au moyen de détermination 61 du couple de la turbine et aux capteurs 64, et est connecté en sortie au moyen de multiplication 63. Le moyen de multiplication 63 est connecté par ailleurs aux capteurs 64 en entrée, et en sortie au moyen de calcul 59.
Le moyen de calcul 59 est relié par sa sortie au moyen de détermination du couple limite 60, lui-même relié au moteur à combustion interne 5 par un moyen de commande 65.
Le procédé de commande et le système de commande d'une transmission continûment variable permettent de limiter le glissement des roues motrices d'un véhicule automobile lors d'un démarrage sur sol glissant. Les requêtes de couple et de rapport du conducteur sont prises en compte afin d' adapter le couple moteur en fonction du ratio réel de la transmission pour simuler des rapports de transmission différents du rapport réel. Un tel système permet de conserver la sensation des rapports de vitesse tout en permettant au conducteur d'exercer un contrôle optimum du couple à la roue, permettant un démarrage aisé et sans glissement.

Claims

REVENDICATIONS
1. Procédé de commande d'une transmission continûment variable, montée entre un moteur à combustion interne (5) d'un véhicule automobile, et les roues motrices ( 1 1 ), la transmission continûment variable pouvant fonctionner selon au moins un mode manuel et un mode d' assistance, caractérisé par le fait qu'il comprend les étapes au cours desquelles :
-on estime un premier rapport de couple correspondant à un mode d' assistance de la transmission continûment variable,
-on calcule à chaque instant un deuxième rapport de couple entre le couple en entrée et le couple en sortie de la transmission continûment variable,
-on compare le premier et le deuxième rapports, -on en déduit un couple limite du moteur à combustion interne.
2. Procédé de commande selon la revendication 1 , pour une transmission comprenant parmi différents modes d' assistance au moins un mode neige de rapport différent du premier rapport de boite de vitesse, dans lequel on active une phase de décollage ou une phase de ré-accélération du mode neige selon la requête de couple du conducteur et la différence entre la vitesse de rotation du moteur et la vitesse de rotation en entrée de la transmission continûment variable par rapport à un seuil mémorisé.
3. Procédé de commande selon l'une des revendications précédentes, dans lequel le calcul du couple limite lors d'une phase de ré-accélération est issu de la comparaison du ratio de la transmission, du ratio issu d'un variogramme en mode manuel pour le rapport considéré, du ratio issu d'un variogramme du mode d' assistance et du couple du moteur à combustion thermique.
4. Procédé de commande selon l'une des revendications 2 à 3, dans lequel on active un mode neige de deuxième rapport lorsque, simultanément, :
- le conducteur requiert le passage d'un rapport supérieur, - la vitesse du véhicule est inférieure à une première vitesse mémorisée, et
- le mode de fonctionnement actif est le mode manuel.
5. Procédé de commande selon la revendication 4, dans lequel on active un mode neige de troisième rapport lorsque, simultanément, :
- on requiert le passage d'un rapport supérieur, et
- le mode de fonctionnement actif est le mode neige de deuxième rapport.
6. Procédé de commande selon l'une des revendications précédentes, dans lequel on mémorise lors du passage d'un mode d' assistance à un mode manuel, le mode d' assistance précédemment actif afin de procéder à une réactivation ultérieure dudit mode d' assistance lorsque les conditions de ratio sont satisfaites .
7. Système de commande d'une transmission continûment variable, montée entre un moteur à combustion interne (5) d'un véhicule automobile, et les roues motrices ( 1 1 ), la transmission continûment variable pouvant fonctionner selon au moins un mode manuel et un mode d' assistance, caractérisé par le fait qu' il comprend:
-un moyen de multiplication (58) apte à déterminer à chaque instant un premier rapport de couple entre le couple en entrée et le couple en sortie de la CVT,
-un moyen de multiplication (63) apte à estimer un deuxième rapport de couple correspondant à un mode d' assistance de la CVT,
-un moyen de calcul (59) apte à estimer un paramètre de correction en fonction du rapport entre le premier et le deuxième rapports,
-un moyen de détermination (60) apte à déterminer le couple limite du moteur à combustion interne en fonction du paramètre de correction.
8. Système de commande selon la revendication 7, comprenant au moins une cartographie du ratio de la vitesse de rotation du moteur à combustion interne (5) en fonction de la vitesse du véhicule pour chaque rapport et pour chaque mode, le système de commande étant apte à déterminer le ratio et le couple limite en fonction d' au moins une cartographie et de paramètres de fonctionnement du véhicule.
9. Système de commande selon une des revendications 7 ou 8 pour une transmission continûment variable comprenant parmi différents modes d' assistance au moins un mode neige de rapport différent du premier rapport de boite de vitesse, le système de commande comprenant une mémoire, le système de commande est apte à mémoriser le rapport correspondant au dernier mode neige actif lors d'un passage en mode manuel.
PCT/FR2009/052470 2009-01-19 2009-12-10 Systeme et procede de commande d'une transmission infiniment variable lors d'un demarrage en adherence faible WO2010081948A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011545775A JP2012515313A (ja) 2009-01-19 2009-12-10 低グリップ状態において発進時に連続無段変速機を制御するシステム及び方法
EP09803827A EP2379393A1 (fr) 2009-01-19 2009-12-10 Systeme et procede de commande d'une transmission infiniment variable lors d'un demarrage en adherence faible

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0950307 2009-01-19
FR0950307A FR2941268B1 (fr) 2009-01-19 2009-01-19 Systeme et procede de commande d'une transmission infiniment variable lors d'un demarrage en adherence faible.

Publications (1)

Publication Number Publication Date
WO2010081948A1 true WO2010081948A1 (fr) 2010-07-22

Family

ID=40909927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/052470 WO2010081948A1 (fr) 2009-01-19 2009-12-10 Systeme et procede de commande d'une transmission infiniment variable lors d'un demarrage en adherence faible

Country Status (5)

Country Link
EP (1) EP2379393A1 (fr)
JP (1) JP2012515313A (fr)
KR (1) KR20110113749A (fr)
FR (1) FR2941268B1 (fr)
WO (1) WO2010081948A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102709278B1 (ko) * 2021-12-24 2024-09-24 주식회사 현대케피코 연속 가변 변속기의 제어 장치 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5586953A (en) 1994-01-31 1996-12-24 Nissan Motor Co., Ltd. System for controlling a continuously variable transmission in response to a sensed wheel deceleration
JPH11344109A (ja) 1998-06-03 1999-12-14 Nissan Motor Co Ltd 変速機の変速制御装置
EP1336527A1 (fr) * 2002-02-15 2003-08-20 Ford Global Technologies, Inc. Procédé de régulation du couple moteur et système pour sa mise en oeuvre
US20040209732A1 (en) * 2003-01-29 2004-10-21 Takahiro Eguchi Control system for vehicle
US20060014609A1 (en) 2004-07-15 2006-01-19 Peter Sporl Method for driving a vehicle with manually shifted transmission, automatic transmission or continous transmission on streets with low friction value
FR2910420A1 (fr) * 2006-12-22 2008-06-27 Renault Sas Procede de commande d'une transmission continument variable pour vehicule automobile.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3892403B2 (ja) * 2003-01-29 2007-03-14 本田技研工業株式会社 車両の制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5586953A (en) 1994-01-31 1996-12-24 Nissan Motor Co., Ltd. System for controlling a continuously variable transmission in response to a sensed wheel deceleration
JPH11344109A (ja) 1998-06-03 1999-12-14 Nissan Motor Co Ltd 変速機の変速制御装置
EP1336527A1 (fr) * 2002-02-15 2003-08-20 Ford Global Technologies, Inc. Procédé de régulation du couple moteur et système pour sa mise en oeuvre
US20040209732A1 (en) * 2003-01-29 2004-10-21 Takahiro Eguchi Control system for vehicle
US20060014609A1 (en) 2004-07-15 2006-01-19 Peter Sporl Method for driving a vehicle with manually shifted transmission, automatic transmission or continous transmission on streets with low friction value
FR2910420A1 (fr) * 2006-12-22 2008-06-27 Renault Sas Procede de commande d'une transmission continument variable pour vehicule automobile.

Also Published As

Publication number Publication date
EP2379393A1 (fr) 2011-10-26
JP2012515313A (ja) 2012-07-05
KR20110113749A (ko) 2011-10-18
FR2941268B1 (fr) 2011-02-18
FR2941268A1 (fr) 2010-07-23

Similar Documents

Publication Publication Date Title
EP2111515B1 (fr) Procede et dispositif d'aide a la conduite d'un véhicule
FR2863213A1 (fr) Dispositif et procede de commande de la deceleration destines a un vehicule
FR2863214A1 (fr) Dispositif et procede de commande de la deceleration destines a un vehicule
FR2863215A1 (fr) Dispositif et procede de commande de la deceleration destines a un vehicule
EP3727970B1 (fr) Procede de determination de la consigne de couple d'un moteur de vehicule automobile
EP1791743B1 (fr) Procede d'elaboration d'une consigne de commande adaptee a une situation de freinage pour un dispositif de transmission d'un groupe motopropulseur de vehicule automobile et dispositif correspondant
WO2009101331A1 (fr) Procede de fonctionnement d'un systeme d'assistance au demarrage d'un vehicule automobile en cote
EP3287672A1 (fr) Procede de controle d'un couple moteur d'un vehicule, notamment automobile
EP1791715B1 (fr) Procede de commande a plusieurs modes de fonctionnement d'une transmission automatisee pour un vehicule automobile, notamment pour un avancement au ralenti du vehicule automobile avec frein active et dispositif correspondant
EP2379393A1 (fr) Systeme et procede de commande d'une transmission infiniment variable lors d'un demarrage en adherence faible
FR2846606A1 (fr) Procede de regulation de la vitesse d'un vehicule
EP1846647B1 (fr) Procede de controle de l'inversion de la puissance dans un systeme comportant un convertisseur de couple et ensemble mecanique integrant ledit procede
WO2006030142A1 (fr) Procede d'elaboration d'une consigne adaptee a une situation de virage pour un dispositif de transmission d'un groupe motopropulseur de vehicule automobile et dispositif correspondant
FR3043046A1 (fr) Procede de commande du couple d’un moteur dans un vehicule automobile
FR2936984A1 (fr) Systeme de regulation automatique de la motricite d'un vehicule automobile pendant une phase de glissement des roues motrices du vehicule et suite a une saturation du couple moteur par le conducteur
EP1590561B1 (fr) Procede et dispositif de commande du groupe moto-propulseur d'un vehicule automobile anime par un moteur a combustion interne
FR2971221A1 (fr) Procede de controle d'une assistance de direction
EP2231457B1 (fr) Dispositif et procede de pilotage d'une transmission automatisee d'un groupe motopropulseur d'un vehicule automobile
EP4371837A1 (fr) Procédé de détermination d'une consigne de couple d'un moteur de véhicule automobile fonctionnant selon un mode économique en énergie, ainsi que véhicule
FR2994897A1 (fr) Procede de gestion du glissement d'une roue motrice d'un vehicule automobile
FR2910420A1 (fr) Procede de commande d'une transmission continument variable pour vehicule automobile.
EP2836746B1 (fr) Procédé de commande des changements de rapports de transmission d'un groupe motopropulseur et système associé
FR3103440A1 (fr) Procede de determination du couple transmis par le moteur a la chaine de traction
FR2952983A3 (fr) Procede de pilotage en mode rampage d'un embrayage de vehicule automobile
FR3052214A1 (fr) Procede d'adaptation du couple delivre par le moteur d'un vehicule, notamment automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09803827

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009803827

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009803827

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011545775

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117019291

Country of ref document: KR

Kind code of ref document: A