WO2010079787A1 - 無線基地局装置及び無線通信方法 - Google Patents

無線基地局装置及び無線通信方法 Download PDF

Info

Publication number
WO2010079787A1
WO2010079787A1 PCT/JP2010/050044 JP2010050044W WO2010079787A1 WO 2010079787 A1 WO2010079787 A1 WO 2010079787A1 JP 2010050044 W JP2010050044 W JP 2010050044W WO 2010079787 A1 WO2010079787 A1 WO 2010079787A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
control channel
uplink control
channel signal
unit
Prior art date
Application number
PCT/JP2010/050044
Other languages
English (en)
French (fr)
Inventor
輝雄 川村
信彦 三木
佐和橋 衛
Original Assignee
株式会社エヌ・ティ・ティ・ドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エヌ・ティ・ティ・ドコモ filed Critical 株式会社エヌ・ティ・ティ・ドコモ
Priority to US13/143,373 priority Critical patent/US20110317640A1/en
Priority to EP10729207.0A priority patent/EP2378687A4/en
Publication of WO2010079787A1 publication Critical patent/WO2010079787A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/003Orthogonal indexing scheme relating to orthogonal multiplex systems within particular systems or standards
    • H04J2211/006Single carrier frequency division multiple access [SC FDMA]

Definitions

  • the present invention relates to a radio base station apparatus and a radio communication method in a next-generation mobile communication system.
  • UMTS Universal Mobile Telecommunications System
  • WSDPA High Speed Downlink Packet Access
  • HSUPA High Speed Uplink Packet Access
  • CDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Multiple Access
  • Uplink signals transmitted on the uplink are transmitted from the mobile terminal apparatus to the radio base station apparatus as shown in FIG.
  • user data UE (User Equipment) # 1, UE # 2) is allocated to an uplink shared channel (PUSCH: Physical Uplink Shared Channel), and control information is an uplink control channel (PUCCH: Physical Uplink Control Channel).
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • downlink quality information CQI: Channel Quality Indicator
  • ACK / NACK retransmission response
  • the subframe configuration shown in FIG. 2 includes seven SC-FDMA symbols in one slot (1/2 subframe). Also, one SC-FDMA symbol includes 12 information symbols (subcarriers).
  • the CQI subframe configuration (CQI format) includes a reference signal (RS :) for the second symbol (# 2) and the sixth symbol (# 6) in the slot. Reference Signal) is multiplexed, and control information (CQI) is multiplexed to other symbols (first symbol, third symbol to fifth symbol, seventh symbol).
  • RS reference signal
  • CQI control information
  • the ACK / NACK subframe configuration (ACK / NACK format) includes reference signals (RS) in the third symbol (# 3) to the fifth symbol (# 5) in the slot. : Reference Signal) is multiplexed, and control information (ACK /) is transferred to other symbols (first symbol (# 1), second symbol (# 2), sixth symbol (# 6), and seventh symbol (# 7)). NACK) is multiplexed. In one subframe, the slot is repeated twice. Further, as shown in FIG. 1, frequency hopping is applied to two slots in one subframe.
  • the uplink control channel signals are orthogonally multiplexed so that the uplink control channel signal can be separated for each user in the radio base station apparatus.
  • orthogonal multiplexing methods include an orthogonal multiplexing method using a cyclic shift of a CAZAC (Constant Amplitude Zero Auto Correlation) code sequence and an orthogonal multiplexing method using block spreading.
  • An orthogonal multiplexing method using a cyclic shift of a CAZAC code sequence is a sequence CAZAC # 1 ( ⁇ p) obtained by cyclically shifting a CAZAC code sequence having a code length L by ⁇ p, and a sequence obtained by cyclically shifting the CAZAC code sequence by ⁇ q.
  • CAZAC # 1 ( ⁇ q) is an orthogonal multiplexing method utilizing orthogonality to each other. Therefore, in this method, an uplink control channel signal is orthogonally multiplexed for each user by modulating an SC-FDMA symbol in which control information is multiplexed using a CAZAC code sequence having a different cyclic shift amount. For example, as shown in FIG.
  • an uplink control channel signal having a CQI subframe structure is modulated with a CAZAC code sequence having a specific cyclic shift amount ( ⁇ ).
  • SC-FDMA symbols d 1 to d 10 in the same subframe are all modulated with the same CAZAC code sequence.
  • a different cyclic shift amount is assigned to each user, and the SC-FDMA symbol in the subframe is modulated with a CAZAC code sequence having the cyclic shift amount assigned to each user.
  • Orthogonality can be realized. Thereby, in the radio base station apparatus, it is possible to separate the uplink control channel signal for each user. Note that it is preferable that the cyclic shift interval of the CAZAC code sequence assigned to the user is set longer than the maximum delay amount of the multipath.
  • the number of multiplexed users is determined by the number of cyclic shifts in one SC-FDMA symbol, and typically the number of multiplexed users is 6 and 12 at the maximum.
  • the number of multiplexed users is determined by the number of SC-FDMA symbols for multiplexing control information in one slot, and the maximum number of multiplexed users is 5.
  • the number of users that can be multiplexed can be increased by increasing the number of cyclic shifts.
  • the present invention has been made in view of this point, and an object of the present invention is to provide a radio base station apparatus and a radio communication method in which reception characteristics are not deteriorated even when the number of multiplexed users of uplink control channel signals is increased.
  • the radio base station apparatus of the present invention includes a receiving means for receiving an uplink control channel signal orthogonally multiplexed between users, including a reference signal, and a demodulating means for demodulating the uplink control channel signal using maximum likelihood detection. It is characterized by comprising.
  • the radio communication method of the present invention includes a transmission step of transmitting an uplink control channel signal including a reference signal orthogonally multiplexed between users in a mobile terminal device, and reception of receiving the uplink control channel signal in a radio base station device. And a demodulation step of demodulating the uplink control channel signal using maximum likelihood detection.
  • the mobile terminal apparatus transmits an uplink control channel signal including a reference signal orthogonally multiplexed between users, the radio base station apparatus receives the uplink control channel signal, and the uplink control channel signal Therefore, even if the user multiplexing number of the uplink control channel signal is increased, the reception characteristics are not deteriorated.
  • (A), (b) is a figure which shows the sub-frame structure of an uplink control channel signal.
  • (A) is a figure for demonstrating the orthogonal multiplexing by cyclic shift using a CAZAC code series
  • (b) is a figure for demonstrating the orthogonal multiplexing by block spreading
  • (A), (b) is a figure which shows the structure of the maximum likelihood detection part in a wireless base station apparatus. It is a figure which shows schematic structure of the mobile terminal device which concerns on Embodiment 1 of this invention.
  • FIG. 4 is a diagram showing a schematic configuration of the radio base station apparatus according to Embodiment 1 of the present invention.
  • the radio base station apparatus shown in FIG. 4 includes a transmission system processing unit and a reception system processing unit.
  • the transmission system processing unit generates a BCH signal generation unit 401 that generates a BCH (Broadcast Channel) signal, and a downlink L1 / L2 control signal generation that generates a downlink control signal (L1 (layer 1) / L2 (layer 2) control signal).
  • Unit 402 and an OFDM signal generation unit 403 that generates an OFDM signal by multiplexing the BCH signal and the downlink L1 / L2 control signal.
  • the BCH signal generation unit 401 generates a BCH signal including broadcast information broadcast from the radio base station apparatus.
  • the BCH signal generation unit 401 outputs the BCH signal to the OFDM signal generation unit 403.
  • This BCH signal includes a CAZAC number indicating a CAZAC code sequence, a resource block number indicating a resource block (RB) to which an uplink control channel is mapped, a cyclic shift number corresponding to a cyclic shift amount, and the like.
  • Downlink L1 / L2 control signal generation section 402 generates a downlink L1 / L2 control signal to be transmitted through a downlink control channel (PDCCH: Physical Downlink Control Channel).
  • the downlink L1 / L2 control signal generation unit 402 outputs the downlink L1 / L2 control signal to the OFDM signal generation unit 403.
  • the downlink L1 / L2 control signal includes a CAZAC number indicating a CAZAC code sequence, a resource block number indicating a resource block (RB) to which an uplink control channel is mapped, a cyclic shift number corresponding to a cyclic shift amount, and the like.
  • the CAZAC number, the resource block number, and the cyclic shift number may be transmitted to the mobile terminal apparatus using BCH or may be transmitted to the mobile terminal apparatus using PDCCH. Or you may notify a CAZAC number, a resource block number, and a cyclic shift number to a mobile terminal apparatus by a higher layer.
  • the OFDM signal generation unit 403 performs discrete Fourier transform (DFT) on the downlink signal including at least the BCH signal and the downlink L1 / L2 control signal, maps it to a subcarrier, performs inverse fast Fourier transform (IFFT), and CP (Cyclic prefix). ) Is added to generate a downlink OFDM signal.
  • DFT discrete Fourier transform
  • IFFT inverse fast Fourier transform
  • CP Cyclic prefix
  • the reception system processing unit includes a CP removing unit 404 that removes the CP from the received signal, a cyclic shift separating unit 405 that separates the orthogonally multiplexed received signal using a cyclic shift number, and a fast Fourier transform of the separated received signal.
  • a despreading unit 409 that performs despreading using the CAZAC number, and a maximum likelihood detection unit 410 that performs maximum likelihood detection using the despread signal.
  • CP removing section 404 extracts a valid signal portion by removing a portion corresponding to CP from the received signal. CP removing section 404 outputs the signal after CP removal to cyclic shift separating section 405.
  • Cyclic shift demultiplexing section 405 demultiplexes the reception signals orthogonally multiplexed using cyclic shift using cyclic shift numbers.
  • the uplink control channel signal from the mobile terminal apparatus is given a cyclic shift with a different cyclic shift amount for each user. Therefore, by assigning a cyclic shift in the reverse direction by the same cyclic shift amount as that assigned by the mobile terminal apparatus, an uplink control channel signal to which no cyclic shift is assigned can be obtained.
  • the cyclic shift amount differs for each user and is associated with a cyclic shift number. For this reason, the cyclic shift separation unit 405 assigns a cyclic shift in the reverse direction using the cyclic shift amount corresponding to the cyclic shift number. This makes it possible to separate a user signal (uplink control channel signal) corresponding to the cyclic shift number.
  • Cyclic shift separation section 405 outputs the separated signal to FFT section 406.
  • the FFT unit 406 performs FFT on the separated received signal and converts it into a frequency domain signal.
  • FFT section 406 outputs the signal after FFT to subcarrier demapping section 407.
  • the subcarrier demapping unit 407 extracts an uplink control channel signal from the frequency domain signal.
  • the uplink control channel signal is extracted using the resource block number to which the uplink control channel signal is assigned.
  • Subcarrier demapping section 407 outputs the extracted uplink control channel signal to IDFT section 408.
  • the IDFT unit 408 performs IDFT on the extracted uplink control channel signal and converts it into a time domain signal. Further, the IDFT unit 408 outputs the signal converted into the time domain to the despreading unit 409.
  • the despreading unit 409 despreads the signal after IDFT using the CAZAC number. Therefore, despreading section 409 specifies the CAZAC code sequence from the CAZAC number corresponding to the CAZAC code sequence, and despreads the signal after IDFT using the CAZAC code sequence to obtain an SC-FDMA symbol. Despreading section 409 outputs the obtained SC-FDMA symbol to maximum likelihood detecting section 410.
  • the maximum likelihood detection unit 410 performs maximum likelihood detection (demodulation) on the signal after IDFT.
  • the maximum likelihood detection unit 410 performs maximum likelihood detection on the SC-FDMA symbol after despreading.
  • the maximum likelihood detection unit 410 includes a channel estimation unit 4101 that performs channel estimation using a reference signal (RS) included in an uplink control channel signal, and a channel obtained by the channel estimation unit 4101.
  • a replica generation unit 4102 that generates a symbol replica of the uplink control channel signal using the estimated value, and MLD (Maximum) for maximum likelihood detection between the generated symbol replica and the symbol (SC-FDMA symbol) of the uplink control channel signal Likelihood Detection) demodulator 4103.
  • channel estimation section 4101 obtains a channel estimation value (channel gain) using RS. This channel estimation value is output to replica generation section 4102.
  • replica generation section 4102 symbols of each pattern are determined from the symbol phases of all patterns (2 to 10 patterns) of SC-FDMA symbols (here, 10SC-FDMA symbols) and channel estimation values obtained by channel estimation section 4101. Create a replica.
  • the symbol replica of each pattern is output to the MLD demodulator 4103.
  • MLD demodulation section 4103 calculates the Euclidean distance between the received SC-FDMA symbol output from despreading section 409 and the symbol replica, adds the calculated Euclidean distance as a metric for all symbols, and the cumulative metric is minimum. Is reproduced as a transmission bit sequence (control information).
  • the maximum likelihood detection unit 410 may be configured as shown in FIG. That is, the maximum likelihood detection unit 410 performs channel estimation using a replica generation unit 4104 that generates a symbol replica of an uplink control channel signal, a reference signal included in the uplink control channel signal, And a joint MLD demodulator 4105 that detects the maximum likelihood between symbols.
  • replica generation section 4104 generates symbol replicas of all patterns (2 10 patterns) of SC-FDMA symbols (here, 10SC-FDMA symbols).
  • the symbol replica of each pattern is output to the joint MLD demodulator 4105.
  • joint MLD demodulating section 4105 the correlation between the received SC-FDMA symbol output from despreading section 409 and the symbol replica is subjected to in-phase addition averaging in 7 symbol sections including RSs belonging to the respective slots. Then, the correlation value after the in-phase addition averaging is averaged over the power in the 2-slot section. The reason for the power averaging is because frequency hopping is applied.
  • a symbol replica that gives the largest correlation peak after power addition averaging is reproduced as a transmission bit sequence (control information).
  • FIG. 6 is a diagram showing a schematic configuration of the mobile terminal apparatus according to Embodiment 1 of the present invention.
  • the mobile terminal apparatus shown in FIG. 6 includes a transmission system processing unit and a reception system processing unit.
  • the transmission system processing unit includes a CAZAC code generation unit 601 that generates a CAZAC code sequence corresponding to a CAZAC number, a block modulation unit 602 that modulates a predetermined number of symbols (blocks) using the CAZAC code sequence, and block modulation
  • a subcarrier mapping unit 604 that maps the signal of the signal to the subcarrier, an IFFT unit 605 that performs inverse fast Fourier transform (IFFT) on the mapped signal, and a cyclic shift unit 606 that applies a cyclic shift to the signal after IFFT,
  • a CP assigning unit 607 that assigns a CP to a signal to which a cyclic shift is applied.
  • the CAZAC code generation unit 601 prepares a CAZAC code sequence corresponding to the CAZAC number assigned to the user.
  • the CAZAC code generation unit 601 outputs the prepared CAZAC code sequence to the block modulation unit 602.
  • the block modulation unit 602 performs modulation using a CAZAC code sequence for each predetermined number of symbols (blocks). That is, a predetermined number of SC-FDMA symbols are taken as one block, and the unit block is modulated using a CAZAC code sequence. Specifically, individual SC-FDMA symbols are multiplied by individual codes of the CAZAC code sequence.
  • Block modulation section 602 outputs the block modulated signal to subcarrier mapping section 604.
  • the subcarrier mapping unit 604 maps the frequency domain signal to the subcarrier.
  • Subcarrier mapping section 604 maps the uplink control channel signal to the subcarrier of the resource block with the resource block number using the resource block number to which the uplink control channel signal is assigned.
  • Subcarrier mapping section 604 outputs the mapped uplink control channel signal to IFFT section 605.
  • the IFFT unit 605 performs IFFT on the mapped signal and converts it into a time domain signal.
  • IFFT section 605 outputs the signal after IFFT to cyclic shift section 606.
  • the cyclic shift unit 606 shifts the time domain signal by a predetermined cyclic shift amount. By this cyclic shift, the order of the SC-FDMA symbols included in the unit block is shifted. Note that the cyclic shift amount differs for each user and is associated with a cyclic shift number. Cyclic shift unit 606 outputs the signal to which the cyclic shift is added to CP adding unit 607.
  • the CP assigning unit 607 assigns a CP to the signal to which the cyclic shift is assigned. Thereby, a transmission signal including the uplink control channel signal is generated.
  • the reception system processing unit receives an OFDM signal receiving unit 608 that receives an OFDM signal, a BCH signal receiving unit 609 that receives a BCH signal, and a downlink L1 / L2 control signal reception that receives a downlink control signal (L1 / L2 control signal).
  • Unit 610 CQI estimation unit 611 that estimates CQI using a reference signal included in the downlink signal, and determination unit 612 that determines whether or not the received downlink shared data channel signal has been received without error.
  • the OFDM signal receiving unit 608 receives the downlink OFDM signal and separates it into signals for each channel. That is, CP is removed from the downlink OFDM signal, fast Fourier transform is performed, demapping is performed from the subcarrier, and inverse discrete Fourier transform is performed. This received signal is output to BCH signal receiving section 609 and downlink L1 / L2 control signal receiving section 610. Further, the reference signal is output to CQI estimating section 611 and the downlink shared data channel signal is output to determining section 612.
  • the BCH signal receiving unit 609 receives a BCH signal including broadcast information broadcast from the radio base station apparatus.
  • this BCH signal includes a CAZAC number indicating a CAZAC code sequence, a resource block number indicating a resource block (RB) to which an uplink control channel is mapped, a cyclic shift number corresponding to a cyclic shift amount, etc.
  • the BCH signal is received.
  • Unit 609 outputs the CAZAC number to CAZAC code generation unit 601, outputs the resource block number to subcarrier mapping unit 604, and outputs the cyclic shift number to cyclic shift unit 606.
  • the downlink L1 / L2 control signal receiving unit 610 receives the downlink L1 / L2 control signal transmitted through the downlink control channel.
  • the downlink L1 / L2 control signal includes a CAZAC number indicating a CAZAC code sequence, a resource block number indicating a resource block (RB) to which an uplink control channel is mapped, a cyclic shift number corresponding to a cyclic shift amount, etc.
  • the BCH signal reception unit 609 outputs the CAZAC number to the CAZAC code generation unit 601, outputs the resource block number to the subcarrier mapping unit 604, and outputs the cyclic shift number to the cyclic shift unit 606.
  • the CQI estimation unit 611 estimates a CQI used for scheduling and adaptive control in the radio base station apparatus using the reference signal, and generates a CQI bit sequence.
  • CQI estimation section 611 outputs this CQI bit sequence to block modulation section 602.
  • the determination unit 612 determines whether the received downlink shared data channel signal (PDSCH signal) can be received without error or whether it is within an allowable range even if there is an error, and outputs a determination result.
  • the determination result is expressed by acknowledgment information indicating an acknowledgment (ACK bit) or a negative response (NACK bit).
  • the determination unit 612 outputs the ACK / NACK bit to the block modulation unit 602.
  • a radio communication method using a radio base station apparatus and a mobile terminal apparatus having the above configuration will be described.
  • the mobile terminal apparatus transmits an uplink control channel signal including a reference signal orthogonally multiplexed between users
  • the radio base station apparatus receives the uplink control channel signal
  • the uplink control channel signal is demodulated using maximum likelihood detection.
  • CQI information having the subframe configuration shown in FIG. 2A is transmitted as control information using an uplink control channel.
  • the BCH signal generation unit 401 of the radio base station apparatus generates a BCH signal including a CAZAC number, a resource block number, and a cyclic shift number.
  • This BCH signal is broadcast to the mobile terminal apparatus as a downlink OFDM signal by the OFDM signal generation section 403.
  • the BCH signal reception unit 609 extracts the CAZAC number, the resource block number, and the cyclic shift number, and outputs the CAZAC number to the CAZAC code generation unit 601.
  • the resource block number is output to the subcarrier mapping unit 604, and the cyclic shift number is output to the cyclic shift unit 606.
  • the CAZAC code generation unit 601 of the mobile terminal apparatus prepares a CAZAC code sequence corresponding to the CAZAC number, and the block modulation unit 602 modulates CQI information as control information with the CAZAC code sequence.
  • the CQI information is a CQI bit sequence estimated by the CQI estimation unit 611 using a reference signal included in the downlink signal.
  • the subcarrier mapping section 604 maps the block-modulated signal to the subcarrier corresponding to the resource block number, and the IFFT section 605 performs IFFT on the mapped signal as a time domain signal.
  • cyclic shift section 606 assigns a cyclic shift corresponding to the cyclic shift number to the signal after IFFT.
  • the control information CQI information
  • CP grant 607 CP is given to the signal to which the cyclic shift is given, and this signal is transmitted to the radio base station apparatus as an uplink control channel signal.
  • the uplink control channel signal orthogonally multiplexed between users is received, and the CP removing section 404 removes the CP from the received signal.
  • cyclic shift separation section 405 assigns a cyclic shift amount corresponding to the cyclic shift number in the direction opposite to the direction assigned by the mobile terminal apparatus, to the signal after CP removal.
  • FFT section 406 performs FFT on the user-separated signal to generate a frequency domain signal
  • subcarrier demapping section 407 performs demapping from the subcarrier corresponding to the resource block number
  • IDFT section 408 performs post-demapping. Is subjected to IDFT to obtain a time domain signal.
  • despreading section 409 despreads the signal after IDFT using the CAZAC code sequence corresponding to the CAZAC number to obtain a received SC-FDMA symbol.
  • maximum likelihood detection section 410 performs maximum likelihood detection on the received SC-FDMA symbol and reproduces the most probable CQI information.
  • the radio base station apparatus performs scheduling and adaptive control using the regenerated CQI information.
  • the maximum likelihood detection is applied to the uplink control channel signal orthogonally multiplexed using the cyclic shift of the CAZAC code sequence, thereby increasing the number of multiplexed users in an environment where the delay spread is larger than the cyclic shift length. Also, it is possible to prevent deterioration of reception characteristics.
  • the control information is CQI information.
  • the control information is ACK / NACK information that is a result of determining whether or not to retransmit the PDSCH signal. Can be applied.
  • Embodiment 1 the case of the orthogonal multiplexing method using the cyclic shift of the CAZAC code sequence has been described.
  • the technical idea of the present invention is that the uplink control information is transmitted to the user by the orthogonal multiplexing method using block spreading. It can also be applied to multiplexing.
  • the channel coding rate when the information bits transmitted in one subframe are 10 bits is an SC-FDMA symbol in which information data in one slot is multiplexed Depends on the number.
  • the orthogonal multiplexing method using block spreading depends on the number of information symbols in one SC-FDMA symbol.
  • the orthogonal multiplexing method by block spreading is more advantageous.
  • FIG. 7 is a diagram showing a schematic configuration of a radio base station apparatus according to Embodiment 2 of the present invention.
  • the radio base station apparatus shown in FIG. 7 includes a transmission system processing unit and a reception system processing unit.
  • the transmission system processing unit includes a BCH signal generation unit 701 that generates a BCH signal, a downlink L1 / L2 control signal generation unit 702 that generates a downlink control signal (L1 / L2 control signal), a BCH signal and downlink L1 / L2 control.
  • An OFDM signal generation unit 703 that multiplexes the signals to generate an OFDM signal.
  • the BCH signal generation unit 701, downlink L1 / L2 control signal generation unit 702, and OFDM signal generation unit 703 are the same as the BCH signal generation unit 401, downlink L1 / L2 control signal generation unit 402, and OFDM signal generation unit in the first embodiment. Since it is the same as 403, detailed description thereof is omitted.
  • the reception system processing unit includes a CP removing unit 704 that removes the CP from the received signal, a block despreading unit 705 that despreads the orthogonally multiplexed received signal with a spreading code corresponding to the block spreading code number, An FFT unit 706 that performs FFT on the signal, a subcarrier demapping unit 707 that demaps the signal after FFT, an IDFT unit 708 that performs IDFT on the signal after demapping, and a maximum likelihood detection using the signal after IDFT And a likelihood detection unit 709.
  • CP removing section 704, FFT section 706, subcarrier demapping section 707, IDFT section 708, and maximum likelihood detecting section 709 are CP removing section 404, FFT section 406, subcarrier demapping section 407 in Embodiment 1.
  • the IDFT unit 408 and the maximum likelihood detection unit 410 are the same as the IDFT unit 408 and the detailed description thereof will be omitted.
  • the block despreading section 705 separates the reception signal orthogonally multiplexed using the block spreading code using the block spreading code number.
  • the uplink control channel signal from the mobile terminal apparatus is spread-modulated with a different block spreading code for each user. Therefore, an uplink control channel signal not subjected to spread modulation can be obtained by despreading with the same block spread code as that used for spread modulation in the mobile terminal apparatus.
  • the block spreading code is different for each user, and is associated with the block spreading code number. For this reason, the block despreading section 705 performs despreading using a block spreading code corresponding to the block spreading code number. This makes it possible to separate a user signal (uplink control channel signal) corresponding to the block spreading number.
  • Block despreading section 705 outputs the separated signal to FFT section 706.
  • FIG. 8 is a diagram showing a schematic configuration of the mobile terminal apparatus according to Embodiment 2 of the present invention.
  • the mobile terminal apparatus shown in FIG. 8 includes a transmission system processing unit and a reception system processing unit.
  • the transmission processing unit converts the control information into a channel encoding unit 801, performs data modulation on the channel-encoded signal, and converts the data-modulated signal into a frequency domain signal ( A DFT unit 803 that performs DFT, a subcarrier mapping unit 804 that maps a signal after DFT to a subcarrier, an IFFT unit 805 that performs IFFT on the signal after mapping, and block spreading that performs block spread modulation on the signal after IFFT Unit 806 and a CP assigning unit 807 that assigns a CP to the block spread signal.
  • a DFT unit 803 that performs DFT
  • a subcarrier mapping unit 804 that maps a signal after DFT to a subcarrier
  • an IFFT unit 805 that performs
  • subcarrier mapping section 804, IFFT section, and CP assignment section 807 are the same as subcarrier mapping section 604, IFFT section 605, and CP assignment section 607 in Embodiment 1, and thus detailed description thereof is omitted. To do.
  • the channel coding unit 801 performs error correction coding on a bit sequence representing control information.
  • Channel coding section 801 outputs the signal after error correction coding to data modulation section 802.
  • the data modulation unit 802 performs data modulation on the bit sequence after error correction coding.
  • Data modulation section 802 outputs the data-modulated signal to DFT section 803.
  • the channel coding scheme and the data modulation scheme are notified from the radio base station apparatus in advance.
  • the block spreading unit 806 performs spread modulation on the time domain signal with a block spreading code.
  • the block spreading code is different for each user, and is associated with the block spreading code number.
  • Block spreading section 806 outputs the spread modulated signal to CP adding section 807.
  • the reception system processing unit receives an OFDM signal reception unit 808 that receives an OFDM signal, a BCH signal reception unit 809 that receives a BCH signal, and a downlink L1 / L2 control signal reception that receives a downlink control signal (L1 / L2 control signal) Unit 810, CQI estimation unit 811 that estimates CQI using a reference signal included in the downlink signal, and determination unit 812 that determines whether or not the received downlink shared data channel signal has been received without error.
  • the OFDM receiver 808, the BCH signal receiver 809, the downlink L1 / L2 control signal receiver 810, the CQI estimator 811, and the determination unit 812 are the OFDM receiver 608, BCH signal receiver 609, Since it is the same as each of the downlink L1 / L2 control signal receiving unit 610, the CQI estimating unit 611, and the determining unit 612, detailed description thereof is omitted.
  • a radio communication method using a radio base station apparatus and a mobile terminal apparatus having the above configuration will be described.
  • CQI information having the subframe configuration shown in FIG. 2A is transmitted as control information using an uplink control channel.
  • the BCH signal generation unit 701 of the radio base station apparatus generates a BCH signal including a resource block number and a block spreading code number.
  • This BCH signal is broadcast to the mobile terminal apparatus by the OFDM signal generation section 703 as a downlink OFDM signal.
  • the OFDM signal generation section 703 As a downlink OFDM signal.
  • the resource block number and the block spreading code number are extracted by the BCH signal receiving unit 809, and the resource block number is output to the subcarrier mapping unit 804,
  • the block spreading code number is output to the block spreading unit 806.
  • the channel coding unit 801 performs error correction coding on CQI information as control information, and the data modulation unit 802 performs data modulation.
  • the CQI information is a CQI bit sequence estimated by the CQI estimation unit 811 using a reference signal included in the downlink signal.
  • DFT section 803 performs DFT on the modulated signal to generate a frequency domain signal
  • subcarrier mapping section 804 maps the post-DFT signal to a subcarrier corresponding to the resource block number
  • IFFT section 805 The signal after mapping is IFFT to be a time domain signal.
  • the block spreading section 806 performs spread modulation on the signal after IFFT with a block spreading code.
  • control information CQI information
  • CP assignment 807 CP is assigned to the signal subjected to block spread modulation, and this signal is transmitted to the radio base station apparatus as an uplink control channel signal.
  • an uplink control channel signal orthogonally multiplexed between users is received, and a CP removing section 704 removes the CP from the received signal.
  • block despreading section 705 despreads the signal after CP removal with a block spreading code corresponding to the block spreading code number.
  • the uplink control channel signal is not subjected to block spread modulation.
  • FFT section 706 performs FFT on the user-separated signal to generate a frequency domain signal
  • subcarrier demapping section 707 performs demapping from the subcarrier corresponding to the resource block number
  • IDFT section 708 performs demapping. IDFT is performed to obtain received SC-FDMA symbols in the time domain.
  • maximum likelihood detection section 709 performs maximum likelihood detection on the received SC-FDMA symbol and reproduces the most probable CQI information.
  • the radio base station apparatus performs scheduling and adaptive control using the regenerated CQI information.
  • control information is CQI information.
  • control information is ACK / NACK information that is a result of determining whether or not to retransmit the PDSCH signal. Can be applied.
  • orthogonal multiplexing using block spreading has a large coding gain, so the required reception power to satisfy the required reception quality is reduced compared to orthogonal multiplexing using cyclic shift. It becomes possible to do.
  • orthogonal multiplexing using cyclic shift can reduce the required received power to satisfy the required reception quality compared to orthogonal multiplexing using block spreading. Become. This is because orthogonal multiplexing using block spreading realizes orthogonalization in units of slots, whereas orthogonal multiplexing using cyclic shift realizes orthogonalization in units of SC-FDMA symbols.
  • the delay spread is determined and the orthogonal multiplexing method of the uplink control channel signal is switched according to the determination result. That is, the orthogonal multiplexing method using block spreading is applied when the delay spread is small, and the orthogonal multiplexing method using cyclic shift is applied when the delay spread is large.
  • FIG. 9 is a diagram showing a schematic configuration of the radio base station apparatus according to Embodiment 3 of the present invention.
  • the radio base station apparatus shown in FIG. 9 includes a transmission system processing unit and a reception system processing unit.
  • the transmission system processing unit includes a BCH signal generation unit 901 that generates a BCH signal, a downlink L1 / L2 control signal generation unit 902 that generates a downlink control signal (L1 / L2 control signal), a BCH signal and downlink L1 / L2 control.
  • An OFDM signal generation unit 903 that multiplexes the signals to generate an OFDM signal.
  • the BCH signal generation unit 901, downlink L1 / L2 control signal generation unit 902, and OFDM signal generation unit 903 are the BCH signal generation unit 401, downlink L1 / L2 control signal generation unit 402, and OFDM signal generation unit in the first embodiment. Since it is the same as 403, detailed description thereof is omitted.
  • the orthogonal multiplexing sequence using the cyclic shift of the reception system processing unit includes a CP removal unit 904 that removes the CP from the received signal, and a cyclic shift separation unit 905 that separates the orthogonal multiplexed reception signal using a cyclic shift number.
  • An FFT unit 906 that performs FFT on the separated received signal, a subcarrier demapping unit 907 that demaps the signal after FFT, an IDFT unit 908 that IDFTs the signal after demapping, and a signal after IDFT,
  • a despreading unit 909 that despreads using the CAZAC number and a maximum likelihood detection unit 910 that detects maximum likelihood using the despread signal are included.
  • CP removal section 904, cyclic shift separation section 905, FFT section 906, subcarrier demapping section 907, IDFT section 908, despreading section 909, and maximum likelihood detection section 910 are CP removal section 404 in Embodiment 1.
  • the cyclic shift demultiplexing unit 405, the FFT unit 406, the subcarrier demapping unit 407, the IDFT unit 408, the despreading unit 409, and the maximum likelihood detecting unit 410 are the same, and detailed description thereof is omitted.
  • the orthogonal multiplexing sequence using block spreading of the reception processing unit includes a CP removing unit 911 that removes the CP from the received signal, and a block that is despread with a spreading code corresponding to the block spreading code number to the orthogonal multiplexed received signal.
  • a maximum likelihood detection unit 916 that detects maximum likelihood using the above signal.
  • CP removing section 911, block despreading section 912, FFT section 913, subcarrier demapping section 914, IDFT section 915, and maximum likelihood detecting section 916 are CP removing section 704, block despreading section in the second embodiment. 705, FFT unit 706, subcarrier demapping unit 707, IDFT unit 708, and maximum likelihood detection unit 709 are the same, and detailed description thereof is omitted.
  • the radio base station apparatus includes a delay spread determination unit 918 that detects a delay spread and determines the size of the delay spread, and an SW 919 that switches reception processing depending on the determination result of the delay spread.
  • the delay spread is detected by using a reference signal included in the uplink signal, and the magnitude of the delay spread is determined by comparison with a preset threshold value.
  • Information on this determination result that is, switching information, is output to SW 919 and used as information for switching the reception processing unit (orthogonal multiplex sequence using cyclic shift, orthogonal multiplex sequence using block spreading).
  • the separation method of the uplink control channel signal that is orthogonally multiplexed is switched.
  • the processing of each reception system processing unit is the same as in the first and second embodiments.
  • the information of this determination result is included in the BCH signal and notified to the mobile terminal apparatus, and is used as information for switching the transmission system processing unit.
  • This switching information may be notified to the mobile terminal apparatus through the downlink L1 / L2 control channel, or may be notified to the mobile terminal apparatus via an upper layer.
  • FIG. 10 is a diagram showing a schematic configuration of the mobile terminal apparatus according to Embodiment 3 of the present invention.
  • the mobile terminal apparatus shown in FIG. 10 includes a transmission system processing unit and a reception system processing unit.
  • the orthogonal multiplexing sequence using block modulation of the transmission system processing unit includes a channel coding unit 1001 that channel-codes control information, a data modulation unit 1002 that performs data modulation on a signal after channel coding, DFT section 1003 that performs DFT on the signal, subcarrier mapping section 1004 that maps the signal after DFT to a subcarrier, IFFT section 1005 that performs IFFT on the signal after mapping, and a block that performs block spread modulation on the signal after IFFT
  • a spreading unit 1006 and a CP giving unit 1007 for giving a CP to the block-spread signal are included.
  • channel coding section 1001, data modulation section 1002, DFT section 1003, subcarrier mapping section 1004, IFFT section 1005, block spreading section 1006, and CP assignment section 1007 are the same as channel coding section 801 and data in Embodiment 2. Since the modulation unit 802, the DFT unit 803, the subcarrier mapping unit 804, the IFFT unit 805, the block spreading unit 806, and the CP adding unit 807 are the same, detailed description thereof is omitted.
  • the orthogonal multiplexing sequence using the cyclic shift of the transmission processing unit is modulated using a CAZAC code generation unit 1008 that generates a CAZAC code sequence corresponding to the CAZAC number, and a CAZAC code sequence for each predetermined number of symbols (blocks).
  • a shift unit 1013 and a CP assigning unit 1014 that assigns a CP to a signal to which a cyclic shift is applied are included.
  • the CAZAC code generation unit 1008, the block modulation unit 1009, the subcarrier mapping unit 1011, the IFFT unit 1012, the cyclic shift unit 1013, and the CP assignment unit 1014 are the CAZAC code generation unit 601 and the block modulation unit 602 in the first embodiment.
  • the subcarrier mapping unit 604, the IFFT unit 605, the cyclic shift unit 606, and the CP assigning unit 607 are the same, and detailed description thereof is omitted.
  • the reception system processing unit receives an OFDM signal receiving unit 1015 that receives an OFDM signal, a BCH signal receiving unit 1016 that receives a BCH signal, and a downlink L1 / L2 control signal reception that receives a downlink control signal (L1 / L2 control signal).
  • the OFDM receiving unit 1015, the BCH signal receiving unit 1016, the downlink L1 / L2 control signal receiving unit 1017, the CQI estimating unit 1018, and the determining unit 1019 are the OFDM receiving unit 608, the BCH signal receiving unit 609 in Embodiment 1, Since it is the same as each of the downlink L1 / L2 control signal receiving unit 610, the CQI estimating unit 611, and the determining unit 612, detailed description thereof is omitted.
  • the mobile terminal device includes SW 1020 for switching the transmission system processing unit according to switching information generated based on the delay spread detected by the radio base station device.
  • the switching information as a result of determining whether the delay spread is large or small in the radio base station apparatus is received by the BCH signal in the mobile terminal apparatus and output to the SW 1020.
  • the transmission processing unit (orthogonal multiplex sequence using cyclic shift, orthogonal multiplex sequence using block spreading) is switched according to this switching information.
  • the processing of each transmission system processing unit is the same as in the first and second embodiments. Further, this switching information may be notified through the downlink L1 / L2 control channel, or may be notified via an upper layer.
  • an orthogonal multiplexing method with low required reception power for satisfying the required reception quality can be appropriately selected according to the size of the delay spread.
  • the present invention is not limited to this, and the orthogonal multiplexing sequence using the cyclic shift according to the requirement for the number of multiplexed users.
  • the present invention can also be applied to switching orthogonal multiplex sequences using block spreading. That is, when the number of multiplexed users exceeds a certain threshold, switching to an orthogonal multiplexed sequence using cyclic shift is performed, and when the number of multiplexed users is equal to or less than a certain threshold, switching to an orthogonal multiplexed sequence using block spreading is performed.
  • the determination of the number of multiple users is performed by the radio base station apparatus, and the determination result is notified to the mobile terminal apparatus as switching information in the same manner as described above.
  • the present invention is not limited to the above embodiment, and can be implemented with various modifications.
  • the number of processing units and the processing procedure in the above description can be appropriately changed and implemented.
  • Each element shown in the figure represents a function, and each functional block may be realized by hardware or software. Other modifications can be made without departing from the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)

Abstract

 上り制御チャネル信号のユーザ多重数を増加しても、受信特性が劣化しない無線基地局装置及び無線通信方法を提供すること。本発明の無線通信方法は、移動端末装置において、ユーザ間で直交多重した、参照信号を含む上り制御チャネル信号を送信する送信工程と、無線基地局装置において、前記上り制御チャネル信号を受信する受信工程と、前記上り制御チャネル信号に対して最尤検出を用いて復調する復調工程と、を具備することを特徴とする。

Description

無線基地局装置及び無線通信方法
 本発明は、次世代移動通信システムにおける無線基地局装置及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいては、周波数利用効率の向上、データレートの向上を目的として、HSDPA(High Speed Downlink Packet Access)やHSUPA(High Speed Uplink Packet Access)を採用することにより、W-CDMA(Wideband Code Division Multiple Access)をベースとしたシステムの特徴を最大限に引き出すことが行われている。このUMTSネットワークについては、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が検討されている(非特許文献1)。LTEでは、多重方式として、下り回線(下りリンク)にW-CDMAとは異なるOFDMA(Orthogonal Frequency Division Multiple Access)を用い、上り回線(上りリンク)にSC-FDMA(Single Carrier Frequency Division Multiple Access)を用いている。
 上りリンクで送信される上り信号は、図1に示すようにして移動端末装置から無線基地局装置に送信される。この場合において、ユーザデータ(UE(User Equipment)#1,UE#2)は、上り共有チャネル(PUSCH:Physical Uplink Shared Channel)に割り当てられ、制御情報は、上り制御チャネル(PUCCH:Physical Uplink Control Channel)に割り当てられる。この上り制御チャネルでは、下りリンクの品質情報(CQI:Channel Quality Indicator)や下り共有チャネルの再送応答(ACK/NACK)などが伝送される。
 PUCCHにおいては、CQIとACK/NACKとで異なるサブフレーム構成を採っている(図2)。図2に示すサブフレーム構成は、1スロット(1/2サブフレーム)に7つのSC-FDMAシンボルを含む。また、1SC-FDMAシンボルは、12個の情報シンボル(サブキャリア)を含む。具体的には、CQIのサブフレーム構成(CQIフォーマット)は、図2(a)に示すように、スロット内の第2シンボル(#2)、第6シンボル(#6)に参照信号(RS:Reference Signal)を多重し、他のシンボル(第1シンボル、第3シンボル~第5シンボル、第7シンボル)に制御情報(CQI)が多重される。また、ACK/NACKのサブフレーム構成(ACK/NACKフォーマット)は、図2(b)に示すように、スロット内の第3シンボル(#3)~第5シンボル(#5)に参照信号(RS:Reference Signal)を多重し、他のシンボル(第1シンボル(#1)、第2シンボル(#2)、第6シンボル(#6)、第7シンボル(#7))に制御情報(ACK/NACK)が多重される。1サブフレームにおいては、前記スロットが2回繰り返されている。また、図1に示すように、1サブフレーム内の2スロットに周波数ホッピングが適用される。
 PUCCHで複数のユーザの上り制御チャネル信号を多重する場合、無線基地局装置においてユーザ毎に上り制御チャネル信号を分離できるように、上り制御チャネル信号を直交多重している。このような直交多重方法としては、CAZAC(Constant Amplitude Zero Auto Correlation)符号系列の巡回シフトを用いた直交多重法や、ブロック拡散を用いた直交多重法が挙げられる。
 CAZAC符号系列の巡回シフトを用いた直交多重法は、符号長LのCAZAC符号系列を△pだけ巡回シフトした系列CAZAC#1(△p)と、そのCAZAC符号系列を△qだけ巡回シフトした系列CAZAC#1(△q)とは互いに直交することを利用した直交多重法である。したがって、この方法においては、巡回シフト量を変えたCAZAC符号系列を用いて制御情報が多重されたSC-FDMAシンボルを変調することにより、上り制御チャネル信号をユーザ毎に直交多重する。例えば、図3(a)に示すように、CQIのサブフレーム構成の上り制御チャネル信号を特定の巡回シフト量(△)を持つCAZAC符号系列で変調する。このとき、同じサブフレーム内のSC-FDMAシンボルd~d10を、すべて同じCAZAC符号系列で変調する。そして、ユーザ毎に異なる巡回シフト量を割り当て、ユーザ毎に割り当てられた巡回シフト量を持つCAZAC符号系列でサブフレーム内のSC-FDMAシンボルを変調することにより、ユーザ毎の上り制御チャネル信号間の直交を実現することができる。これにより、無線基地局装置において、ユーザ毎の上り制御チャネル信号を分離することが可能となる。なお、ユーザに割り当てるCAZAC符号系列の巡回シフトの間隔は、マルチパスの最大遅延量よりも長く設定することが好ましい。
 ブロック拡散を用いた直交多重法は、直交符号を用いた直交多重法である。したがって、この方法においては、SC-FDMAシンボルを直交符号で拡散変調し、その拡散信号をSC-FDMAシンボルにマッピングする。例えば、図3(b)に示すように、拡散符号XでCQI(制御情報)を拡散変調し、これにより得られた拡散信号c~cをSC-FDMAシンボル(第1シンボル、第3シンボル~第5シンボル、第7シンボル)にマッピングする。このとき、1SC-FDMAシンボルには、12個の情報シンボル(D=d~d12)が多重される。これにより、ユーザ毎の上り制御チャネル信号間の直交を実現することができ、無線基地局装置において、ユーザ毎の上り制御チャネル信号を分離することが可能となる。
3GPP, TR25.912 (V7.1.0), "Feasibility study for Evolved UTRA and UTRAN", Sep. 2006
 CAZAC符号系列の巡回シフトを用いた直交多重法において、多重ユーザ数は1SC-FDMAシンボル内の巡回シフト数により決まり、典型的には多重ユーザ数が6であり、最大で12である。一方、ブロック拡散を用いた直交多重法において、多重ユーザ数は1スロット内の制御情報を多重するSC-FDMAシンボル数により決まり、多重ユーザ数が最大で5である。このように、CAZAC符号系列の巡回シフトを用いた直交多重法においては、原理的には、巡回シフト数を増大することにより、多重可能ユーザ数を増加することができると考えられる。
 しかしながら、CAZAC符号系列の巡回シフトを用いた直交多重法については、遅延スプレッドが巡回シフト長に比較して大きい場合には、CAZAC符号系列間の相関が大きくなり、直交性が崩れてしまう。このため、無線基地局装置側で要求受信品質を満足するための所要平均受信電力が増大し、受信特性が劣化する。
 本発明はかかる点に鑑みてなされたものであり、上り制御チャネル信号のユーザ多重数を増加しても、受信特性が劣化しない無線基地局装置及び無線通信方法を提供することを目的とする。
 本発明の無線基地局装置は、参照信号を含み、ユーザ間で直交多重した上り制御チャネル信号を受信する受信手段と、前記上り制御チャネル信号に対して最尤検出を用いて復調する復調手段と、を具備することを特徴とする。
 本発明の無線通信方法は、移動端末装置において、ユーザ間で直交多重した、参照信号を含む上り制御チャネル信号を送信する送信工程と、無線基地局装置において、前記上り制御チャネル信号を受信する受信工程と、前記上り制御チャネル信号に対して最尤検出を用いて復調する復調工程と、を具備することを特徴とする。
 本発明によれば、移動端末装置において、ユーザ間で直交多重した、参照信号を含む上り制御チャネル信号を送信し、無線基地局装置において、前記上り制御チャネル信号を受信し、前記上り制御チャネル信号に対して最尤検出を用いて復調するので、上り制御チャネル信号のユーザ多重数を増加しても、受信特性が劣化しない。
上りリンクの信号の構成を説明するための図である。 (a),(b)は、上り制御チャネル信号のサブフレーム構成を示す図である。 (a)は、CAZAC符号系列を用いた巡回シフトによる直交多重を説明するための図であり、(b)は、ブロック拡散による直交多重を説明するための図である。 本発明の実施の形態1に係る無線基地局装置の概略構成を示す図である。 (a),(b)は、無線基地局装置における最尤検出部の構成を示す図である。 本発明の実施の形態1に係る移動端末装置の概略構成を示す図である。 本発明の実施の形態2に係る無線基地局装置の概略構成を示す図である。 本発明の実施の形態2に係る移動端末装置の概略構成を示す図である。 本発明の実施の形態3に係る無線基地局装置の概略構成を示す図である。 本発明の実施の形態3に係る移動端末装置の概略構成を示す図である。
 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。
 (実施の形態1)
 本実施の形態においては、CAZAC符号系列の巡回シフトを用いた直交多重法を用いて上り制御情報をユーザ多重する場合について説明する。
 図4は、本発明の実施の形態1に係る無線基地局装置の概略構成を示す図である。図4に示す無線基地局装置は、送信系処理部と、受信系処理部とを備えている。送信系処理部は、BCH(Broadcast Channel)信号を生成するBCH信号生成部401と、下り制御信号(L1(レイヤ1)/L2(レイヤ2)制御信号)を生成する下りL1/L2制御信号生成部402と、BCH信号及び下りL1/L2制御信号を多重してOFDM信号を生成するOFDM信号生成部403とを有する。
 BCH信号生成部401は、無線基地局装置から報知する報知情報を含むBCH信号を生成する。BCH信号生成部401は、BCH信号をOFDM信号生成部403に出力する。このBCH信号には、CAZAC符号系列を示すCAZAC番号、上り制御チャネルをマッピングするリソースブロック(RB)を示すリソースブロック番号、巡回シフト量に対応する巡回シフト番号などを含む。
 下りL1/L2制御信号生成部402は、下り制御チャネル(PDCCH:Physical Downlink Control Channel)で送信する下りL1/L2制御信号を生成する。下りL1/L2制御信号生成部402は、下りL1/L2制御信号をOFDM信号生成部403に出力する。この下りL1/L2制御信号には、CAZAC符号系列を示すCAZAC番号、上り制御チャネルをマッピングするリソースブロック(RB)を示すリソースブロック番号、巡回シフト量に対応する巡回シフト番号などを含む。
 なお、CAZAC番号、リソースブロック番号、巡回シフト番号は、BCHで移動端末装置に送信しても良く、PDCCHで移動端末装置に送信しても良い。あるいは、CAZAC番号、リソースブロック番号、巡回シフト番号は、上位レイヤで移動端末装置に通知しても良い。
 OFDM信号生成部403は、BCH信号及び下りL1/L2制御信号を少なくとも含む下り信号について、離散フーリエ変換(DFT)し、サブキャリアにマッピングし、逆高速フーリエ変換(IFFT)し、CP(Cyclic prefix)を付加することにより、下りOFDM信号を生成する。
 受信系処理部は、受信信号からCPを除去するCP除去部404と、直交多重された受信信号を、巡回シフト番号を用いて分離する巡回シフト分離部405と、分離された受信信号を高速フーリエ変換(FFT)するFFT部406と、FFT後の信号をデマッピングするサブキャリアデマッピング部407と、デマッピング後の信号を逆離散フーリエ変換(IDFT)するIDFT部408と、IDFT後の信号を、CAZAC番号を用いて逆拡散する逆拡散部409と、逆拡散後の信号を用いて最尤検出する最尤検出部410とを有する。
 CP除去部404は、受信信号からCPに相当する部分を除去して有効な信号部分を抽出する。CP除去部404は、CP除去後の信号を巡回シフト分離部405に出力する。
 巡回シフト分離部405は、巡回シフトを用いて直交多重された受信信号を、巡回シフト番号を用いて分離する。移動端末装置からの上り制御チャネル信号には、ユーザ毎に異なる巡回シフト量で巡回シフトが付与されている。したがって、移動端末装置で付与された巡回シフト量と同じ巡回シフト量だけ逆方向に巡回シフトを付与することにより、巡回シフトが付与されていない上り制御チャネル信号とすることができる。なお、巡回シフト量はユーザ毎に異なり、巡回シフト番号に対応づけられている。このため、巡回シフト分離部405においては、巡回シフト番号に対応した巡回シフト量を用いて逆方向に巡回シフトを付与する。これにより、前記巡回シフト番号に対応するユーザの信号(上り制御チャネル信号)を分離することが可能となる。巡回シフト分離部405は、分離後の信号をFFT部406に出力する。
 FFT部406は、分離された受信信号をFFTして周波数領域の信号に変換する。FFT部406は、FFT後の信号をサブキャリアデマッピング部407に出力する。
 サブキャリアデマッピング部407は、周波数領域の信号から上り制御チャネル信号を抽出する。サブキャリアデマッピング部407においては、上り制御チャネル信号が割り当てられるリソースブロック番号を用いて、上り制御チャネル信号を抽出する。サブキャリアデマッピング部407は、抽出された上り制御チャネル信号をIDFT部408に出力する。
 IDFT部408は、抽出された上り制御チャネル信号に対してIDFTして時間領域の信号に変換する。また、IDFT部408は、時間領域に変換された信号を逆拡散部409に出力する。
 逆拡散部409は、IDFT後の信号を、CAZAC番号を用いて逆拡散する。したがって、逆拡散部409は、CAZAC符号系列に対応するCAZAC番号からCAZAC符号系列を特定し、そのCAZAC符号系列を用いてIDFT後の信号を逆拡散してSC-FDMAシンボルを得る。逆拡散部409は、得られたSC-FDMAシンボルを最尤検出部410に出力する。
 最尤検出部410はIDFT後の信号を最尤検出(復調)する。この最尤検出部410においては、逆拡散後のSC-FDMAシンボルに対して最尤検出する。最尤検出部410は、図5(a)に示すように、上り制御チャネル信号に含まれる参照信号(RS)を用いてチャネル推定するチャネル推定部4101と、チャネル推定部4101で得られたチャネル推定値を用いて上り制御チャネル信号のシンボルレプリカを生成するレプリカ生成部4102と、生成されたシンボルレプリカと上り制御チャネル信号のシンボル(SC-FDMAシンボル)との間で最尤検出するMLD(Maximum Likelihood Detection)復調部4103とを有する。
 図5(a)に示す構成の最尤検出部410においては、チャネル推定部4101でRSを用いてチャネル推定値(チャネル利得)を得る。このチャネル推定値はレプリカ生成部4102に出力される。レプリカ生成部4102においては、SC-FDMAシンボル(ここでは10SC-FDMAシンボル)のすべてのパターン(210通り)のシンボル位相と、チャネル推定部4101で得られたチャネル推定値とから各パターンのシンボルレプリカを生成する。この各パターンのシンボルレプリカはMLD復調部4103に出力される。MLD復調部4103においては、逆拡散部409から出力された受信SC-FDMAシンボルと、シンボルレプリカとのユークリッド距離を算出し、算出されたユークリッド距離をメトリックとして全シンボル分加算し、累積メトリックが最小となるシンボルレプリカを送信ビット系列(制御情報)として再生する。
 最尤検出部410は、図5(b)に示す構成であっても良い。すなわち、最尤検出部410は、上り制御チャネル信号のシンボルレプリカを生成するレプリカ生成部4104と、上り制御チャネル信号に含まれる参照信号を用いてチャネル推定すると共に、シンボルレプリカと上り制御チャネル信号のシンボルとの間で最尤検出するジョイントMLD復調部4105とを有する。
 図5(b)に示す構成の最尤検出部410においては、レプリカ生成部4104でSC-FDMAシンボル(ここでは10SC-FDMAシンボル)のすべてのパターン(210通り)のシンボルレプリカを生成する。この各パターンのシンボルレプリカはジョイントMLD復調部4105に出力される。ジョイントMLD復調部4105においては、逆拡散部409から出力された受信SC-FDMAシンボルと、シンボルレプリカとの間の相関をそれぞれのスロットに属するRSを含む7シンボル区間で同相加算平均する。そして、同相加算平均後の相関値を2スロット区間で電力加算平均する。このように電力加算平均するのは、周波数ホッピングが適用されているからである。電力加算平均後の最も大きな相関ピークを与えるシンボルレプリカを送信ビット系列(制御情報)として再生する。
 このようにして最尤検出することにより、送信ビット系列(制御信号)である、CQI(Channel Quality Indicator)ビット系列やACK/NACKビットが得られる。
 図6は、本発明の実施の形態1に係る移動端末装置の概略構成を示す図である。図6に示す移動端末装置は、送信系処理部と、受信系処理部とを備えている。送信系処理部は、CAZAC番号に対応するCAZAC符号系列を生成するCAZAC符号生成部601と、所定数のシンボル(ブロック)毎にCAZAC符号系列を用いて変調するブロック変調部602と、ブロック変調後の信号をサブキャリアにマッピングするサブキャリアマッピング部604と、マッピング後の信号を逆高速フーリエ変換(IFFT)するIFFT部605と、IFFT後の信号に対して巡回シフトを付与する巡回シフト部606と、巡回シフトを付与した信号にCPを付与するCP付与部607とを有する。
 CAZAC符号生成部601は、ユーザに割り当てられているCAZAC番号に対応するCAZAC符号系列を準備する。CAZAC符号生成部601は、準備されたCAZAC符号系列をブロック変調部602に出力する。
 ブロック変調部602は、所定数のシンボル(ブロック)毎にCAZAC符号系列を用いて変調する。すなわち、所定数のSC-FDMAシンボルを1ブロックとして、この単位ブロックにCAZAC符号系列を用いて変調する。具体的には、CAZAC符号系列の個々の符号が個々のSC-FDMAシンボルに乗算される。ブロック変調部602は、ブロック変調された信号をサブキャリアマッピング部604に出力する。
 サブキャリアマッピング部604は、周波数領域の信号をサブキャリアにマッピングする。サブキャリアマッピング部604においては、上り制御チャネル信号が割り当てられるリソースブロック番号を用いて、上り制御チャネル信号を前記リソースブロック番号のリソースブロックのサブキャリアにマッピングする。サブキャリアマッピング部604は、マッピングされた上り制御チャネル信号をIFFT部605に出力する。
 IFFT部605は、マッピングされた信号をIFFTして時間領域の信号に変換する。IFFT部605は、IFFT後の信号を巡回シフト部606に出力する。
 巡回シフト部606は、時間領域の信号を所定の巡回シフト量だけシフトする。この巡回シフトにより、前記単位ブロックに含まれるSC-FDMAシンボルの順序をずらす。なお、巡回シフト量はユーザ毎に異なり、巡回シフト番号に対応づけられている。巡回シフト部606は、巡回シフトが付与された信号をCP付与部607に出力する。
 CP付与部607は、巡回シフトが付与された信号にCPを付与する。これにより、上り制御チャネル信号を含む送信信号が生成される。
 受信系処理部は、OFDM信号を受信するOFDM信号受信部608と、BCH信号を受信するBCH信号受信部609と、下り制御信号(L1/L2制御信号)を受信する下りL1/L2制御信号受信部610と、下り信号に含まれる参照信号を用いてCQIを推定するCQI推定部611と、受信した下り共有データチャネル信号が誤りなく受信できたか否かを判定する判定部612とを有する。
 OFDM信号受信部608は、下りOFDM信号を受信し、各チャネルの信号に分離する。すなわち、下りOFDM信号からCPを除去し、高速フーリエ変換し、サブキャリアからデマッピングし、逆離散フーリエ変換する。この受信信号は、BCH信号受信部609、下りL1/L2制御信号受信部610に出力される。また、参照信号はCQI推定部611に出力され、下り共有データチャネル信号は判定部612に出力される。
 BCH信号受信部609は、無線基地局装置から報知する報知情報を含むBCH信号を受信する。このBCH信号に、CAZAC符号系列を示すCAZAC番号、上り制御チャネルをマッピングするリソースブロック(RB)を示すリソースブロック番号、巡回シフト量に対応する巡回シフト番号などが含まれる場合には、BCH信号受信部609は、CAZAC番号をCAZAC符号生成部601に出力し、リソースブロック番号をサブキャリアマッピング部604に出力し、巡回シフト番号を巡回シフト部606に出力する。
 下りL1/L2制御信号受信部610は、下り制御チャネルで送信された下りL1/L2制御信号を受信する。下りL1/L2制御信号に、CAZAC符号系列を示すCAZAC番号、上り制御チャネルをマッピングするリソースブロック(RB)を示すリソースブロック番号、巡回シフト量に対応する巡回シフト番号などが含まれる場合には、BCH信号受信部609は、CAZAC番号をCAZAC符号生成部601に出力し、リソースブロック番号をサブキャリアマッピング部604に出力し、巡回シフト番号を巡回シフト部606に出力する。
 CQI推定部611は、参照信号を用いて、無線基地局装置におけるスケジューリングや適応制御などに用いられるCQIを推定し、CQIビット系列を生成する。CQI推定部611は、このCQIビット系列をブロック変調部602に出力する。
 判定部612は、受信した下り共有データチャネル信号(PDSCH信号)が誤りなく受信できたか否か又は誤りがあったとしても許容範囲か否かを判定し、判定結果を出力する。判定結果は、肯定応答(ACKビット)又は否定応答(NACKビット)を表す送達確認情報で表現される。判定部612は、ACK/NACKビットをブロック変調部602に出力する。
 上記構成を有する無線基地局装置と移動端末装置とを用いた本発明に係る無線通信方法について説明する。本発明に係る無線通信方法においては、移動端末装置で、ユーザ間で直交多重した、参照信号を含む上り制御チャネル信号を送信し、無線基地局装置で、前記上り制御チャネル信号を受信し、前記上り制御チャネル信号に対して最尤検出を用いて復調する。ここでは、制御情報として、図2(a)に示すサブフレーム構成を有するCQI情報を上り制御チャネルで送信する場合について説明する。
 まず、無線基地局装置のBCH信号生成部401において、CAZAC番号、リソースブロック番号及び巡回シフト番号を含むBCH信号を生成する。このBCH信号は、OFDM信号生成部403で下りOFDM信号として移動端末装置に報知される。移動端末装置においては、下りOFDM信号をOFDM受信部608で受信すると、BCH信号受信部609でCAZAC番号、リソースブロック番号及び巡回シフト番号が抽出されて、CAZAC番号がCAZAC符号生成部601に出力され、リソースブロック番号がサブキャリアマッピング部604に出力され、巡回シフト番号が巡回シフト部606に出力される。
 移動端末装置のCAZAC符号生成部601では、CAZAC番号に応じたCAZAC符号系列を準備し、ブロック変調部602において前記CAZAC符号系列で制御情報であるCQI情報を変調する。このCQI情報は、下り信号に含まれる参照信号を用いてCQI推定部611で推定されたCQIビット系列である。
 次いで、サブキャリアマッピング部604において、ブロック変調後の信号をリソースブロック番号に対応するサブキャリアにマッピングし、IFFT部605において、マッピング後の信号をIFFTして時間領域の信号とする。
 次いで、巡回シフト部606において、IFFT後の信号に巡回シフト番号に対応する巡回シフトを付与する。このとき、ユーザ毎に異なる巡回シフトが付与されるので、ユーザ間で制御情報(CQI情報)は直交多重される。次いで、CP付与607において、巡回シフトが付与された信号にCPが付与され、この信号が上り制御チャネル信号として無線基地局装置に送信される。
 無線基地局装置においては、ユーザ間で直交多重した上り制御チャネル信号を受信し、CP除去部404で受信信号からCPが除去される。次いで、巡回シフト分離部405において、CP除去後の信号に対して、巡回シフト番号に対応する巡回シフト量を移動端末装置で付与した方向と逆方向に付与する。これにより、巡回シフトが付与されていない上り制御チャネル信号とする。次いで、FFT部406において、ユーザ分離した信号にFFTして周波数領域の信号とし、サブキャリアデマッピング部407において、リソースブロック番号に対応するサブキャリアからデマッピングし、IDFT部408において、デマッピング後の信号をIDFTして時間領域の信号とする。
 次いで、逆拡散部409において、CAZAC番号に対応するCAZAC符号系列を用いてIDFT後の信号を逆拡散して、受信SC-FDMAシンボルを得る。次いで、最尤検出部410において、受信SC-FDMAシンボルに対して最尤検出を行って、最も確からしいCQI情報を再生する。無線基地局装置は、再生されたCQI情報を用いてスケジューリングや適応制御を行う。
 このように、CAZAC符号系列の巡回シフトを用いて直交多重した上り制御チャネル信号について、最尤検出を適用することにより、遅延スプレッドが巡回シフト長よりも大きい環境において、多重ユーザ数を多くしても受信特性の劣化を防止することができる。なお、上記説明では、制御情報がCQI情報である場合について説明しているが、本発明においては、制御情報がPDSCH信号の再送要否判定結果であるACK/NACK情報である場合にも同様に適用することができる。
 (実施の形態2)
 本実施の形態においては、ブロック拡散を用いた直交多重法で上り制御情報をユーザ多重する場合について説明する。
 実施の形態1においては、CAZAC符号系列の巡回シフトを用いた直交多重法の場合について説明しているが、本発明の技術的思想は、ブロック拡散を用いた直交多重法で上り制御情報をユーザ多重する場合にも適用することができる。
 一般に、多ビットの情報を伝送する場合、セルのカバレッジを広くする観点からは、誤り訂正符号化の符号化利得の大きい方が好ましい。誤り訂正符号化利得が大きいと、所要品質を達成するのに必要な送信電力は少なくて良いからである。実施の形態1におけるCAZAC符号系列を用いた直交多重法の場合、1サブフレームで送信する情報ビットを10ビットとしたときのチャネル符号化率は1スロット内の情報データを多重するSC-FDMAシンボル数に依存する。例えば、図2に示すサブフレーム構成では、チャネル符号化率は、R=10/{5×2(スロット数)×2(QPSK)}=1/2となる。一方、ブロック拡散を用いた直交多重法の場合、1SC-FDMAシンボル内の情報シンボル数に依存する。例えば、図2に示すサブフレーム構成では、チャネル符号化率は、R=10/{12×2(スロット数)×2(QPSK)}=5/24となる。このように、符号化利得の観点(又は信頼性を向上させる観点)からは、ブロック拡散による直交多重法の方が有利である。
 図7は、本発明の実施の形態2に係る無線基地局装置の概略構成を示す図である。図7に示す無線基地局装置は、送信系処理部と、受信系処理部とを備えている。送信系処理部は、BCH信号を生成するBCH信号生成部701と、下り制御信号(L1/L2制御信号)を生成する下りL1/L2制御信号生成部702と、BCH信号及び下りL1/L2制御信号を多重してOFDM信号を生成するOFDM信号生成部703とを有する。なお、BCH信号生成部701、下りL1/L2制御信号生成部702及びOFDM信号生成部703は、実施の形態1におけるBCH信号生成部401、下りL1/L2制御信号生成部402及びOFDM信号生成部403と同じであるので、その詳細な説明は省略する。
 受信系処理部は、受信信号からCPを除去するCP除去部704と、直交多重された受信信号にブロック拡散符号番号に対応する拡散符号で逆拡散するブロック逆拡散部705と、逆拡散後の信号をFFTするFFT部706と、FFT後の信号をデマッピングするサブキャリアデマッピング部707と、デマッピング後の信号をIDFTするIDFT部708と、IDFT後の信号を用いて最尤検出する最尤検出部709とを有する。なお、CP除去部704、FFT部706、サブキャリアデマッピング部707、IDFT部708、及び最尤検出部709は、実施の形態1におけるCP除去部404、FFT部406、サブキャリアデマッピング部407、IDFT部408、及び最尤検出部410とそれぞれ同じであるので、その詳細な説明は省略する。
 ブロック逆拡散部705は、ブロック拡散符号を用いて直交多重された受信信号を、ブロック拡散符号番号を用いて分離する。移動端末装置からの上り制御チャネル信号には、ユーザ毎に異なるブロック拡散符号で拡散変調されている。したがって、移動端末装置での拡散変調に用いられたブロック拡散符号と同じブロック拡散符号で逆拡散することにより、拡散変調されていない上り制御チャネル信号とすることができる。なお、ブロック拡散符号はユーザ毎に異なり、ブロック拡散符号番号に対応づけられている。このため、ブロック逆拡散部705においては、ブロック拡散符号番号に対応したブロック拡散符号を用いて逆拡散する。これにより、前記ブロック拡散番号に対応するユーザの信号(上り制御チャネル信号)を分離することが可能となる。ブロック逆拡散部705は、分離後の信号をFFT部706に出力する。
 図8は、本発明の実施の形態2に係る移動端末装置の概略構成を示す図である。図8に示す移動端末装置は、送信系処理部と、受信系処理部とを備えている。送信系処理部は、制御情報をチャネル符号化するチャネル符号化部801と、チャネル符号化後の信号をデータ変調するデータ変調部802と、データ変調後の信号を周波数領域の信号に変換する(DFTする)DFT部803と、DFT後の信号をサブキャリアにマッピングするサブキャリアマッピング部804と、マッピング後の信号をIFFTするIFFT部805と、IFFT後の信号に対してブロック拡散変調するブロック拡散部806と、ブロック拡散した信号にCPを付与するCP付与部807とを有する。なお、サブキャリアマッピング部804、IFFT部、及びCP付与部807は、実施の形態1におけるサブキャリアマッピング部604、IFFT部605、及びCP付与部607とそれぞれ同じであるのでその詳細な説明は省略する。
 チャネル符号化部801は、制御情報を表すビット系列に対して誤り訂正符号化を行う。チャネル符号化部801は、誤り訂正符号化後の信号をデータ変調部802に出力する。データ変調部802は、誤り訂正符号化後のビット系列をデータ変調する。データ変調部802は、データ変調後の信号をDFT部803に出力する。なお、チャネル符号化方式及びデータ変調方式は、事前に無線基地局装置から通知される。
 ブロック拡散部806は、時間領域の信号に対してブロック拡散符号で拡散変調する。なお、ブロック拡散符号はユーザ毎に異なり、ブロック拡散符号番号に対応づけられている。ブロック拡散部806は、拡散変調された信号をCP付与部807に出力する。
 受信系処理部は、OFDM信号を受信するOFDM信号受信部808と、BCH信号を受信するBCH信号受信部809と、下り制御信号(L1/L2制御信号)を受信する下りL1/L2制御信号受信部810と、下り信号に含まれる参照信号を用いてCQIを推定するCQI推定部811と、受信した下り共有データチャネル信号が誤りなく受信できたか否かを判定する判定部812とを有する。なお、OFDM受信部808、BCH信号受信部809、下りL1/L2制御信号受信部810、CQI推定部811、及び判定部812は、実施の形態1におけるOFDM受信部608、BCH信号受信部609、下りL1/L2制御信号受信部610、CQI推定部611、及び判定部612とそれぞれ同じであるので、その詳細な説明は省略する。
 上記構成を有する無線基地局装置と移動端末装置とを用いた本発明に係る無線通信方法について説明する。ここでは、制御情報として、図2(a)に示すサブフレーム構成を有するCQI情報を上り制御チャネルで送信する場合について説明する。
 まず、無線基地局装置のBCH信号生成部701において、リソースブロック番号及びブロック拡散符号番号を含むBCH信号を生成する。このBCH信号は、OFDM信号生成部703で下りOFDM信号として移動端末装置に報知される。移動端末装置においては、下りOFDM信号をOFDM受信部808で受信すると、BCH信号受信部809でリソースブロック番号及びブロック拡散符号番号が抽出されて、リソースブロック番号がサブキャリアマッピング部804に出力され、ブロック拡散符号番号がブロック拡散部806に出力される。
 移動端末装置では、チャネル符号化部801で、制御情報であるCQI情報に誤り訂正符号化し、データ変調部802でデータ変調する。このCQI情報は、下り信号に含まれる参照信号を用いてCQI推定部811で推定されたCQIビット系列である。
 次いで、DFT部803において、変調後の信号をDFTして周波数領域の信号とし、サブキャリアマッピング部804において、DFT後の信号をリソースブロック番号に対応するサブキャリアにマッピングし、IFFT部805において、マッピング後の信号をIFFTして時間領域の信号とする。
 次いで、ブロック拡散部806において、IFFT後の信号をブロック拡散符号で拡散変調する。このとき、ユーザ毎に異なるブロック拡散符号が用いられるので、ユーザ間で制御情報(CQI情報)は直交多重される。次いで、CP付与807において、ブロック拡散変調された信号にCPが付与され、この信号が上り制御チャネル信号として無線基地局装置に送信される。
 無線基地局装置においては、ユーザ間で直交多重した上り制御チャネル信号を受信し、CP除去部704で受信信号からCPが除去される。次いで、ブロック逆拡散部705において、CP除去後の信号に対して、ブロック拡散符号番号に対応するブロック拡散符号で逆拡散する。これにより、ブロック拡散変調されていない上り制御チャネル信号となる。次いで、FFT部706において、ユーザ分離した信号にFFTして周波数領域の信号とし、サブキャリアデマッピング部707において、リソースブロック番号に対応するサブキャリアからデマッピングし、IDFT部708において、デマッピング後の信号をIDFTして時間領域の受信SC-FDMAシンボルを得る。次いで、最尤検出部709において、受信SC-FDMAシンボルに対して最尤検出を行って、最も確からしいCQI情報を再生する。無線基地局装置は、再生されたCQI情報を用いてスケジューリングや適応制御を行う。
 このように、ブロック拡散を用いて直交多重した上り制御チャネル信号についても、最尤検出を適用することができる。この場合においては、符号化利得を大きくして、所要品質を達成するために必要な送信電力を少なくすることが可能となる。なお、上記説明では、制御情報がCQI情報である場合について説明しているが、本発明においては、制御情報がPDSCH信号の再送要否判定結果であるACK/NACK情報である場合にも同様に適用することができる。
 (実施の形態3)
 本実施の形態においては、CAZAC符号系列の巡回シフトを用いた直交多重法と、ブロック拡散を用いた直交多重法とを切り替えて上り制御情報をユーザ多重する場合について説明する。
 遅延スプレッドが相対的に小さい環境においては、ブロック拡散を用いた直交多重は、符号化利得が大きいので、巡回シフトを用いた直交多重に比べて、要求受信品質を満たすための所要受信電力を低減することが可能となる。一方、遅延スプレッドが相対的に大きい環境においては、巡回シフトを用いた直交多重は、ブロック拡散を用いた直交多重に比べて、要求受信品質を満たすための所要受信電力を低減することが可能となる。これは、ブロック拡散を用いた直交多重がスロット単位で直交化を実現するのに対して、巡回シフトを用いた直交多重は、SC-FDMAシンボル単位で直交化を実現するからである。
 このため、本実施の形態においては、遅延スプレッドを判定し、その判定結果に応じて、上り制御チャネル信号の直交多重法を切り替える場合について説明する。すなわち、遅延スプレッドが小さい場合にブロック拡散を用いた直交多重法を適用し、遅延スプレッドが大きい場合に巡回シフトを用いた直交多重法を適用する。
 図9は、本発明の実施の形態3に係る無線基地局装置の概略構成を示す図である。図9に示す無線基地局装置は、送信系処理部と、受信系処理部とを備えている。送信系処理部は、BCH信号を生成するBCH信号生成部901と、下り制御信号(L1/L2制御信号)を生成する下りL1/L2制御信号生成部902と、BCH信号及び下りL1/L2制御信号を多重してOFDM信号を生成するOFDM信号生成部903とを有する。なお、BCH信号生成部901、下りL1/L2制御信号生成部902及びOFDM信号生成部903は、実施の形態1におけるBCH信号生成部401、下りL1/L2制御信号生成部402及びOFDM信号生成部403と同じであるので、その詳細な説明は省略する。
 受信系処理部の巡回シフトを用いた直交多重の系列は、受信信号からCPを除去するCP除去部904と、直交多重された受信信号を、巡回シフト番号を用いて分離する巡回シフト分離部905と、分離された受信信号をFFTするFFT部906と、FFT後の信号をデマッピングするサブキャリアデマッピング部907と、デマッピング後の信号をIDFTするIDFT部908と、IDFT後の信号を、CAZAC番号を用いて逆拡散する逆拡散部909と、逆拡散後の信号を用いて最尤検出する最尤検出部910とを有する。なお、CP除去部904、巡回シフト分離部905、FFT部906、サブキャリアデマッピング部907、IDFT部908、逆拡散部909、及び最尤検出部910は、実施の形態1におけるCP除去部404、巡回シフト分離部405、FFT部406、サブキャリアデマッピング部407、IDFT部408、逆拡散部409、及び最尤検出部410とそれぞれ同じであるので、その詳細な説明は省略する。
 受信系処理部のブロック拡散を用いた直交多重の系列は、受信信号からCPを除去するCP除去部911と、直交多重された受信信号にブロック拡散符号番号に対応する拡散符号で逆拡散するブロック逆拡散部912と、逆拡散後の信号をFFTするFFT部913と、FFT後の信号をデマッピングするサブキャリアデマッピング部914と、デマッピング後の信号をIDFTするIDFT部915と、IDFT後の信号を用いて最尤検出する最尤検出部916とを有する。なお、CP除去部911、ブロック逆拡散部912、FFT部913、サブキャリアデマッピング部914、IDFT部915、及び最尤検出部916は、実施の形態2におけるCP除去部704、ブロック逆拡散部705、FFT部706、サブキャリアデマッピング部707、IDFT部708、及び最尤検出部709とそれぞれ同じであるので、その詳細な説明は省略する。
 無線基地局装置においては、遅延スプレッドを検出し、遅延スプレッドの大小を判定する遅延スプレッド判定部918と、遅延スプレッドの大小の判定結果により、受信系処理を切り替えるSW919とを備えている。ここで、遅延スプレッドは、上り信号に含まれる参照信号を用いて遅延スプレッドを検出し、予め設定したしきい値との比較などにより遅延スプレッドの大小を判定する。この判定結果の情報、すなわち切替情報は、SW919に出力されて受信系処理部(巡回シフトを用いた直交多重系列、ブロック拡散を用いた直交多重系列)を切り替える情報として用いられる。これにより、直交多重されている上り制御チャネル信号の分離方式を切り替える。なお、それぞれの受信系処理部の処理は、実施の形態1,2と同様である。
 また、この判定結果の情報は、BCH信号に含められて移動端末装置に通知され、送信系処理部を切り替える情報として用いられる。なお、この切替情報は、下りL1/L2制御チャネルで移動端末装置に通知しても良く、上位レイヤを介して移動端末装置に通知しても良い。
 図10は、本発明の実施の形態3に係る移動端末装置の概略構成を示す図である。図10に示す移動端末装置は、送信系処理部と、受信系処理部とを備えている。送信系処理部のブロック変調を用いた直交多重の系列は、制御情報をチャネル符号化するチャネル符号化部1001と、チャネル符号化後の信号をデータ変調するデータ変調部1002と、データ変調後の信号をDFTするDFT部1003と、DFT後の信号をサブキャリアにマッピングするサブキャリアマッピング部1004と、マッピング後の信号をIFFTするIFFT部1005と、IFFT後の信号に対してブロック拡散変調するブロック拡散部1006と、ブロック拡散した信号にCPを付与するCP付与部1007とを有する。なお、チャネル符号化部1001、データ変調部1002、DFT部1003、サブキャリアマッピング部1004、IFFT部1005、ブロック拡散部1006及びCP付与部1007は、実施の形態2におけるチャネル符号化部801、データ変調部802、DFT部803、サブキャリアマッピング部804、IFFT部805、ブロック拡散部806及びCP付与部807とそれぞれ同じであるのでその詳細な説明は省略する。
 送信系処理部の巡回シフトを用いた直交多重の系列は、CAZAC番号に対応するCAZAC符号系列を生成するCAZAC符号生成部1008と、所定数のシンボル(ブロック)毎にCAZAC符号系列を用いて変調するブロック変調部1009と、ブロック変調後の信号をサブキャリアにマッピングするサブキャリアマッピング部1011と、マッピング後の信号をIFFTするIFFT部1012と、IFFT後の信号に対して巡回シフトを付与する巡回シフト部1013と、巡回シフトを付与した信号にCPを付与するCP付与部1014とを有する。なお、CAZAC符号生成部1008、ブロック変調部1009、サブキャリアマッピング部1011、IFFT部1012、巡回シフト部1013、及びCP付与部1014は、実施の形態1におけるCAZAC符号生成部601、ブロック変調部602、サブキャリアマッピング部604、IFFT部605、巡回シフト部606、及びCP付与部607とそれぞれ同じであるので、その詳細な説明は省略する。
 受信系処理部は、OFDM信号を受信するOFDM信号受信部1015と、BCH信号を受信するBCH信号受信部1016と、下り制御信号(L1/L2制御信号)を受信する下りL1/L2制御信号受信部1017と、下り信号に含まれる参照信号を用いてCQIを推定するCQI推定部1018と、受信した下り共有データチャネル信号が誤りなく受信できたか否かを判定する判定部1019とを有する。なお、OFDM受信部1015、BCH信号受信部1016、下りL1/L2制御信号受信部1017、CQI推定部1018、及び判定部1019は、実施の形態1におけるOFDM受信部608、BCH信号受信部609、下りL1/L2制御信号受信部610、CQI推定部611、及び判定部612とそれぞれ同じであるので、その詳細な説明は省略する。
 移動端末装置においては、無線基地局装置で検出した遅延スプレッドに基づいて生成された切替情報により送信系処理部を切り替えるSW1020を備えている。無線基地局装置で遅延スプレッドの大小が判定された結果の切替情報は、移動端末装置においてBCH信号で受信してSW1020に出力される。そして、この切替情報にしたがって送信系処理部(巡回シフトを用いた直交多重系列、ブロック拡散を用いた直交多重系列)を切り替える。なお、それぞれの送信系処理部の処理は、実施の形態1,2と同様である。また、この切替情報は、下りL1/L2制御チャネルで通知を受けても良く、上位レイヤを介して通知を受けても良い。
 このように、本実施の形態に係る無線通信方法によれば、遅延スプレッドの大小に応じて、要求受信品質を満たすための所要受信電力の低い直交多重法を適宜選択することができる。
 上記説明においては、遅延スプレッドの大小で直交多重法を選択する場合について説明しているが、本発明はこれに限定されず、多重ユーザ数の要求条件に応じて巡回シフトを用いた直交多重系列、ブロック拡散を用いた直交多重系列を切り替える場合にも適用することができる。すなわち、多重ユーザ数がある閾値を超えたときに、巡回シフトを用いた直交多重系列に切り替え、多重ユーザ数がある閾値以下のときに、ブロック拡散を用いた直交多重系列に切り替える。なお、多重ユーザ数の判定は、無線基地局装置で行い、その判定結果は切替情報として、上記と同じようにして移動端末装置に通知する。
 本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。例えば、本発明の範囲を逸脱しない限りにおいて、上記説明における処理部の数、処理手順については適宜変更して実施することが可能である。また、図に示される要素の各々は機能を示しており、各機能ブロックがハードウエアで実現されても良く、ソフトウエアで実現されてもよい。その他、本発明の範囲を逸脱しないで適宜変更して実施することが可能である。
 本出願は、2009年1月7日出願の特願2009-002063に基づく。この内容はすべてここに含めておく。
 

Claims (14)

  1.  参照信号を含み、ユーザ間で直交多重した上り制御チャネル信号を受信する受信手段と、前記上り制御チャネル信号に対して最尤検出を用いて復調する復調手段と、を具備することを特徴とする無線基地局装置。
  2.  前記復調手段は、前記参照信号を用いてチャネル推定値を得るチャネル推定手段と、前記チャネル推定値を用いて前記制御チャネル信号のシンボルレプリカを生成するレプリカ生成手段と、前記シンボルレプリカと前記上り制御チャネル信号のシンボルとの間で最尤検出する最尤検出手段と、を具備することを特徴とする請求項1記載の無線基地局装置。
  3.  前記復調手段は、前記制御チャネル信号のシンボルレプリカを生成するレプリカ生成手段と、前記参照信号を用いてチャネル推定すると共に、前記シンボルレプリカと前記上り制御チャネル信号のシンボルとの間で最尤検出するジョイント最尤検出手段と、を具備することを特徴とする請求項1記載の無線基地局装置。
  4.  前記上り制御チャネル信号は、チャネル品質情報を送信する際のサブフレーム構成又は再送応答を送信する際のサブフレーム構成を含むことを特徴とする請求項1から請求項3のいずれかに記載の無線基地局装置。
  5.  前記上り制御チャネル信号が巡回シフトを用いて直交多重されている場合において、前記巡回シフトでユーザ毎の上り制御チャネル信号を分離する分離手段を具備することを特徴とする請求項1から請求項4のいずれかに記載の無線基地局装置。
  6.  前記上り制御チャネル信号がブロック拡散符号を用いて直交多重されている場合において、前記ブロック拡散符号でユーザ毎の上り制御チャネル信号を分離する分離手段を具備することを特徴とする請求項1から請求項5のいずれかに記載の無線基地局装置。
  7.  前記参照信号を用いて得られた遅延スプレッドから直交多重されている上り制御チャネル信号の分離方式を切り替える切り替え手段を具備することを特徴とする請求項1から請求項6のいずれかに記載の無線基地局装置。
  8.  移動端末装置において、ユーザ間で直交多重した、参照信号を含む上り制御チャネル信号を送信する送信工程と、無線基地局装置において、前記上り制御チャネル信号を受信する受信工程と、前記上り制御チャネル信号に対して最尤検出を用いて復調する復調工程と、を具備することを特徴とする無線通信方法。
  9.  前記復調工程は、前記参照信号を用いてチャネル推定値を得るチャネル推定工程と、前記チャネル推定値を用いて前記制御チャネル信号のシンボルレプリカを生成するレプリカ生成工程と、前記シンボルレプリカと前記上り制御チャネル信号のシンボルとの間で最尤検出する最尤検出工程と、を具備することを特徴とする請求項8記載の無線通信方法。
  10.  前記復調工程は、前記制御チャネル信号のシンボルレプリカを生成するレプリカ生成工程と、前記参照信号を用いてチャネル推定すると共に、前記シンボルレプリカと前記上り制御チャネル信号のシンボルとの間で最尤検出するジョイント最尤検出工程と、を具備することを特徴とする請求項8記載の無線通信方法。
  11.  前記上り制御チャネル信号は、チャネル品質情報を送信する際のサブフレーム構成又は再送応答を送信する際のサブフレーム構成を含むことを特徴とする請求項8から請求項10のいずれかに記載の無線通信方法。
  12.  前記移動端末装置において、前記上り制御チャネル信号が巡回シフトを用いて直交多重されている場合に、前記無線基地局装置において、前記巡回シフトでユーザ毎の上り制御チャネル信号を分離する分離工程を具備することを特徴とする請求項8から請求項11のいずれかに記載の無線通信方法。
  13.  前記移動端末装置において、前記上り制御チャネル信号がブロック拡散符号を用いて直交多重されている場合に、前記無線基地局装置において、前記ブロック拡散符号でユーザ毎の上り制御チャネル信号を分離する分離工程を具備することを特徴とする請求項8から請求項12のいずれかに記載の無線通信方法。
  14.  前記無線基地局装置において、前記参照信号を用いて得られた遅延スプレッドから直交多重されている上り制御チャネル信号の分離方式を切り替える工程を具備することを特徴とする請求項8から請求項13のいずれかに記載の無線通信方法。
PCT/JP2010/050044 2009-01-07 2010-01-06 無線基地局装置及び無線通信方法 WO2010079787A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/143,373 US20110317640A1 (en) 2009-01-07 2010-01-06 Radio base station apparatus and radio communication method
EP10729207.0A EP2378687A4 (en) 2009-01-07 2010-01-06 RADIO BASIS STATION DEVICE AND METHOD FOR CORDLESS COMMUNICATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-002063 2009-01-07
JP2009002063A JP5108794B2 (ja) 2009-01-07 2009-01-07 無線基地局装置及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2010079787A1 true WO2010079787A1 (ja) 2010-07-15

Family

ID=42316553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050044 WO2010079787A1 (ja) 2009-01-07 2010-01-06 無線基地局装置及び無線通信方法

Country Status (4)

Country Link
US (1) US20110317640A1 (ja)
EP (1) EP2378687A4 (ja)
JP (1) JP5108794B2 (ja)
WO (1) WO2010079787A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2733900A1 (en) * 2012-11-19 2014-05-21 Sony Mobile Communications, Inc. Alignment of MIMO-OFDM transmissions between multiple antenna paths
WO2016112537A1 (en) * 2015-01-16 2016-07-21 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for extracting resource block from signal
WO2016127409A1 (zh) * 2015-02-13 2016-08-18 华为技术有限公司 传输上行控制信息的方法、用户设备和接入网设备
EP3667971B1 (en) * 2017-08-10 2022-10-05 LG Electronics Inc. Method for transmitting and receiving uplink control channel and device therefor
KR102395353B1 (ko) * 2017-10-11 2022-05-10 한국전자통신연구원 부트스트랩 신호 복호화 장치 및 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002063A (ja) 2007-06-22 2009-01-08 Kobayashi Kogu Seisakusho:Kk 螺旋杭立設具

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4634672B2 (ja) * 2001-09-25 2011-02-16 三菱電機株式会社 サイトダイバーシチ送受信装置
JP4287686B2 (ja) * 2003-03-31 2009-07-01 パナソニック株式会社 マルチキャリア受信装置及び回線補償方法
JP4403010B2 (ja) * 2004-02-03 2010-01-20 株式会社エヌ・ティ・ティ・ドコモ 信号分離装置
US8041364B2 (en) * 2007-10-30 2011-10-18 Sharp Laboratories Of America, Inc. Systems and methods for transmitting control information via a control signaling channel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002063A (ja) 2007-06-22 2009-01-08 Kobayashi Kogu Seisakusho:Kk 螺旋杭立設具

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Feasibility study for Evolved UTRA and UTRAN", 3GPP, TR25. 912 (V7.1.0, September 2006 (2006-09-01)
MOTOROLA: "CQI Coding Schemes", 3GPP TSG RAN1#51-BIS R1-080096, 14 January 2008 (2008-01-14), pages 1 - 3, XP050108631 *
MOTOROLA: "Uplink CQI Channel Structure", 3GPP TSG RAN1 #49-BIS R1-072705, 25 June 2007 (2007-06-25), pages 1 - 5, XP050106393 *
RYOTA TAKAHASHI ET AL.: "Channel Fugoka Joho o Mochiiru Saiyu Kenshutsu o Tekiyo shitatoki no Junkai Shift Taju Oyobi Block Kakusan Taju no Tokusei Hikaku, RCS2008-159", IEICE TECHNICAL REPORT, vol. 108, no. 358, 11 December 2008 (2008-12-11), pages 49 - 54, XP008140505 *
RYOTA TAKAHASHI ET AL.: "Junkai Shift Taju o Mochiiru CDMA ni Okeru Channel Fugoka Joho o Mochiiru Saiyu Kenshutsu no Tokusei", PROCEEDINGS OF THE 2008 IEICE INFORMATION AND SYSTEM SOCIETY CONFERENCE 1, - 2 September 2008 (2008-09-02), pages 339, XP008140504 *
RYOTA TAKAHASHI ET AL.: "Shuhasu Hopping o Tekiyo shita Junkai Shift Oyobi Block Kakusan CDMA ni Okeru Channel Fugoka Joho o Mochiiru Saiyu Kenshutsu no Tokusei Hikaku, RCS2009-152", IEICE TECHNICAL REPORT, vol. 109, no. 305, 19 November 2009 (2009-11-19), pages 115 - 120, XP008140497 *
See also references of EP2378687A4 *
SHARP: "Embedded Coding for PUCCH Transmissions of CQI+ACK/NACK", 3GPP TSG-RAN WG1#51BIS R1-080509, 14 January 2008 (2008-01-14), pages 1 - 8, XP050109025 *
TAKAHASHI, R. ET AL.: "Performance Comparison Between Cyclic Shift and Block Spreading CDMA Using MLD with Channel Coding Information for Uplink Control Signals", VEHICULAR TECHNOLOGY CONFERENCE FALL (VTC 2009-FALL), 2009 IEEE 70TH, - 20 September 2009 (2009-09-20), pages 1 - 5, XP031600105 *

Also Published As

Publication number Publication date
JP2010161599A (ja) 2010-07-22
US20110317640A1 (en) 2011-12-29
JP5108794B2 (ja) 2012-12-26
EP2378687A4 (en) 2013-10-02
EP2378687A1 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
US8817753B2 (en) Mobile terminal apparatus and radio communication method
JP5301323B2 (ja) 移動端末装置及び無線通信方法
US9313062B2 (en) Transmission of acknowledge/not acknowledge (ACK/NACK) bits and their embedding in the reference signal
JP5443317B2 (ja) 移動端末装置及び無線通信方法
JP4988923B2 (ja) 移動通信システムにおけるリソース割り当て装置及び方法
KR100880989B1 (ko) 이동통신 시스템에서 셀간 간섭을 랜덤화하기 위한제어정보 송수신 방법 및 장치
CA2802198C (en) Mobile terminal apparatus and radio communication method
US8711815B2 (en) Mobile terminal apparatus, radio base station apparatus and radio communication method
WO2008100076A1 (en) Method and apparatus for transmitting and receiving control information in a single carrier fdma system
JP5108794B2 (ja) 無線基地局装置及び無線通信方法
JP5280959B2 (ja) 無線基地局装置、移動端末装置及び無線通信方法
JP5714088B2 (ja) 移動端末装置、無線通信方法及び無線通信システム
JP2014096805A (ja) 移動端末装置、無線通信方法及び無線通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10729207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010729207

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13143373

Country of ref document: US