WO2010079530A1 - Circuit and method for digital-analog conversion - Google Patents

Circuit and method for digital-analog conversion Download PDF

Info

Publication number
WO2010079530A1
WO2010079530A1 PCT/JP2009/000028 JP2009000028W WO2010079530A1 WO 2010079530 A1 WO2010079530 A1 WO 2010079530A1 JP 2009000028 W JP2009000028 W JP 2009000028W WO 2010079530 A1 WO2010079530 A1 WO 2010079530A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
digital
output
state
capacitor
Prior art date
Application number
PCT/JP2009/000028
Other languages
French (fr)
Japanese (ja)
Inventor
小島昭二
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Priority to PCT/JP2009/000028 priority Critical patent/WO2010079530A1/en
Priority to JP2010545621A priority patent/JP5226085B2/en
Publication of WO2010079530A1 publication Critical patent/WO2010079530A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0634Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale
    • H03M1/0636Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence by averaging out the errors, e.g. using sliding scale in the amplitude domain
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0602Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
    • H03M1/0612Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic over the full range of the converter, e.g. for correcting differential non-linearity
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/76Simultaneous conversion using switching tree

Definitions

  • the present invention relates to a digital / analog conversion circuit (DAC), and more particularly to a resistor string type DAC.
  • DAC digital / analog conversion circuit
  • various DACs including a resistor string type, an R-2R type, and a segment R-2R type are used.
  • the resistor string type DAC includes a plurality of resistors directly connected between two reference voltages, and a switch group that selects one of voltages generated at a connection point (tap) between adjacent resistors.
  • the resistor string type DAC controls a switch group according to the value of the digital input signal, and outputs an analog voltage according to the value of the digital signal.
  • the resistance accuracy is 1. Random variation Classified as position-dependent variation.
  • the position-dependent variation tends to have monotonic increase (or monotonic decrease) with respect to the coordinates. Due to such an error in resistance value, the resistance string type DAC is excellent in differential non-linearity (DNL) but poor in integral non-linearity (INL).
  • DNL differential non-linearity
  • INL integral non-linearity
  • the present invention has been made in view of such a situation, and an object thereof is to provide a highly accurate resistor string type DAC.
  • An embodiment of the present invention relates to a digital / analog conversion circuit that outputs an analog voltage corresponding to a digital input signal.
  • the digital / analog conversion circuit includes a first reference voltage terminal, a second reference voltage terminal, an output terminal, a resistor string, a plurality of taps, a reference voltage generation circuit, a first switch group, an output unit, Is provided.
  • the resistor string includes a plurality of resistors provided in series between the first and second reference voltage terminals. A plurality of taps are provided for each connection point of each resistor, and are provided for extracting a voltage generated in the corresponding resistor.
  • the reference voltage generation circuit generates a predetermined upper reference voltage and a predetermined lower reference voltage, and applies the upper reference voltage to the first reference voltage terminal and the lower reference voltage to the second reference voltage terminal in the first state.
  • the lower reference voltage is applied to the first reference voltage terminal
  • the upper reference voltage is applied to the second reference voltage terminal.
  • the first switch group selects one of the plurality of taps according to the digital input signal in the first state, and selects a tap at a position symmetrical to the tap selected in the first state in the second state.
  • the output unit averages and outputs the output voltage of the first switch group in the first state and the output voltage of the first switch group in the second state.
  • the two reference voltage terminals of the resistor string type DAC are exchanged for one digital input signal to perform D / A conversion twice, and the analog voltage generated in each is averaged. Therefore, it is possible to suitably cancel the in-plane variation of the resistance and realize high-precision digital / analog conversion.
  • the output unit may include a first capacitor having a fixed potential at one end, a second capacitor having a fixed potential at one end, and a second switch group.
  • the second switch group has a state in which the first capacitor is charged by the voltage of the tap selected by the first switch group in the first state, and a second capacitor by the voltage of the tap selected by the first switch group in the second state. And a state in which a voltage obtained by averaging the voltage of the first capacitor and the voltage of the second capacitor is output from the output terminal may be switched.
  • the output unit includes a first sample and hold circuit that samples and holds the output voltage of the first switch group in the first state, a second sample and hold circuit that samples and holds the output voltage of the first switch group in the second state, 1 and an averaging circuit that averages the output voltage of the second sample and hold circuit.
  • the digital / analog conversion circuit may further include a buffer that receives the output voltage of the first switch group and outputs the output voltage to the output unit. According to this aspect, the processing can be speeded up when the output impedance of the first switch group is high or when the load of the output unit is heavy.
  • a digital / analog conversion circuit controls a first switch group according to a first control signal having a predetermined relationship with a digital input signal in a first state, and 2 of the digital input signal in a second state.
  • a decoder circuit for controlling the first switch group in accordance with a second control signal having a predetermined relationship with the complement of each other may be further provided.
  • the second switch group includes a first switch provided between the output of the first switch group and the first capacitor, and a second switch provided between the output of the first switch group and the second capacitor. And a third switch provided between the first capacitor and the output terminal, and a fourth switch provided between the second capacitor and the output terminal.
  • the second switch group includes a first switch provided between the output of the first switch group and the first capacitor, and a second switch provided between the output of the first switch group and the second capacitor. And a fifth switch provided between the output of the first switch group and the output terminal. In this case, the number of switches can be reduced.
  • the second switch group includes a sixth switch having a first capacitor connected to one output terminal and a second capacitor connected to the other output terminal, an output of the first switch group, A seventh switch provided between the input terminal of the switch, a third switch provided between the first capacitor and the output terminal, a fourth switch provided between the second capacitor and the output terminal, May be included.
  • the first switch group may include a plurality of switch elements arranged in a tournament of m stages starting from a plurality of taps.
  • the switch element of the i-th stage (1 ⁇ i ⁇ m) is controlled according to the lower i-th bit of the digital input signal in the first state and according to the inverted signal of the lower i-th bit of the digital input signal in the second state. May be.
  • the first switch group includes ⁇ row lines associated with the matrix rows, ⁇ column lines associated with the matrix columns, a plurality of output switches, and a plurality of switch elements. But you can.
  • the plurality of output switches may be provided in association with ⁇ row lines, and each may be provided between the corresponding row line and the output terminal of the first switch group.
  • the plurality of switch elements are arranged in a matrix in association with the plurality of resistors, and one end of each switch element is connected to the corresponding resistor, and the other end of the switch element in the i-th row (1 ⁇ i ⁇ ⁇ ). May be connected to the i-th row line, and the control terminal of the switch element in the j-th column (1 ⁇ i ⁇ ⁇ ) may be connected to the j-th column line.
  • On / off of the plurality of output switches may be controlled according to the upper K bits of the digital input signal in the first state and according to the two's complement of the upper K bits of the digital input signal in the second state.
  • On / off of the plurality of switch elements may be controlled according to the lower L bits of the digital input signal in the first state and according to the two's complement of the lower L bits of the digital input signal in the second state.
  • the digital / analog conversion circuit may include a multi-channel output.
  • a plurality of output units may be provided for each of a plurality of channels.
  • the digital / analog conversion circuit may alternately use a plurality of output units for each digital input signal data in a time-sharing manner. In this case, the output voltage of the digital / analog conversion circuit can be continuously held, and a hold circuit or the like is not required in the subsequent stage.
  • a highly accurate digital / analog conversion circuit can be realized.
  • FIG. 1 is a circuit diagram showing a configuration of a digital / analog conversion circuit according to a first embodiment.
  • FIG. 2 is a time chart illustrating an operation of the digital / analog conversion circuit of FIG. 1. It is a figure which shows the input-output characteristic of the digital / analog converting circuit of FIG. It is a circuit diagram which shows the structure of the digital / analog converting circuit which concerns on a 1st modification.
  • 5 is a time chart illustrating an operation of the digital / analog conversion circuit of FIG. 4. It is a circuit diagram which shows the structure of the digital / analog converting circuit which concerns on a 2nd modification. 7 is a time chart illustrating the operation of the digital / analog conversion circuit of FIG. 6.
  • SYMBOLS 2 DESCRIPTION OF SYMBOLS 2 ... Resistor string, 10 ... Reference voltage generation circuit, 20 ... Decoder circuit, 30 ... Control part, SWG1 ... 1st switch group, SWG2 ... 2nd switch group, P1 ... 1st reference voltage terminal, P2 ... 2nd reference voltage Terminal, P3 ... output terminal, C1 ... first capacitor, C2 ... second capacitor, 100 ... digital / analog conversion circuit, SW1 ... first switch, SW2 ... second switch, SW3 ... third switch, SW4 ... fourth switch , SW5, fifth switch, SW6, sixth switch, SW7, seventh switch, OUT, output section, SH1, first sample and hold circuit, SH2, second sample and hold circuit SH2, and averaging circuit 40.
  • the state in which the member A is connected to the member B means that the member A and the member B are physically directly connected, or the member A and the member B are electrically connected. The case where it is indirectly connected through another member that does not affect the state is also included.
  • the state in which the member C is provided between the member A and the member B refers to the case where the member A and the member C or the member B and the member C are directly connected, as well as an electrical condition. It includes the case of being indirectly connected through another member that does not affect the connection state.
  • alphabets i, j, n, m, s, t, K, L, Greek letters ⁇ , ⁇ , and the like indicate integers.
  • “#” represents logical inversion or two's complement.
  • FIG. 1 is a circuit diagram showing a configuration of a digital / analog conversion circuit 100 according to the first embodiment.
  • the digital / analog conversion circuit 100 converts the digital input signal DIN into an analog voltage DACOUT and outputs it from the output terminal P3.
  • the digital / analog conversion circuit 100 includes a resistor string (R 1 to R n ), a plurality of voltage taps T 1 to T n + 1 , a reference voltage generation circuit 10, a decoder circuit 20, a first switch group SWG1, a second switch group SWG2, An output unit OUT is provided.
  • n 2 m ⁇ 1 is satisfied.
  • a plurality of resistors R 1 to R n provided in series between the first reference voltage terminal P 1 and the second reference voltage terminal P 2 form a resistor string 2.
  • Taps T 1 to T n + 1 are provided.
  • the plurality of resistors R 1 to R n are regularly arranged on the semiconductor chip in order, and more specifically, the plurality of resistors R 1 to R n are arranged with symmetry (point symmetry or line symmetry).
  • the reference voltage generation circuit 10 generates a predetermined upper reference voltage VRH and a lower reference voltage VRL.
  • the reference voltage generation circuit 10 applies the upper reference voltage VRH to the first reference voltage terminal P1 and the lower reference voltage VRL to the second reference voltage terminal P2.
  • the lower reference voltage VRL is applied to the first reference voltage terminal P1
  • the upper reference voltage VRH is applied to the second reference voltage terminal P2. That is, it is possible to apply voltages having opposite polarities between the first reference voltage terminal P1 and the second reference voltage terminal P2 in the first state S1 and the second state S2.
  • the upper reference voltage VRH is input to one input terminal of the switch SWI1
  • the lower reference voltage VRL is input to the other input terminal. The same applies to the switch SWI2.
  • the 2-input 1-output switch shown in each drawing in this specification indicates a state in which 0 is input as a control signal. When 1 is input, it conducts to the input node side opposite to the figure.
  • the first switch group SWG1 selects one of the voltages (tap voltages) V 1 to V n + 1 generated in the plurality of taps T 1 to T n + 1 according to the digital input signal DIN, and outputs it from the intermediate terminal P4.
  • the first switch group SWG1 selects one T s (1 ⁇ s ⁇ n + 1) corresponding to the digital input signal DIN from the plurality of taps T 1 to T n + 1 .
  • a tap T t (1 ⁇ t ⁇ n + 1) at a position symmetrical to the tap T s selected in the first state S1 is selected.
  • the topology of the first switch group SWG1 is arbitrary, but in the embodiment of FIG. 1, for example, the switch elements SW connected in a tree shape for selecting the tap voltages V 1 to V n + 1 in a tournament manner in m stages. [0, 1], SW [0, 2], SW [0, 3], SW [0, 4], SW [1, 1], SW [1, 2], SW [2, 1].
  • Each switch element SW [i, j] has two inputs and one output.
  • connection state of the switch SW [i, j] is controlled by the control signal Ci corresponding to the bit Bi of the digital input signal DIN.
  • the two input terminals of the switch SW [0, j] are connected to the taps T 2j-1 and T 2j , respectively.
  • the two input terminals of the switch SW [i, j] (i ⁇ 0) are connected to the switches SW [i ⁇ 1,2j ⁇ 1] and SW [i ⁇ 1,2j], respectively.
  • the decoder circuit 20 of FIG. 1 includes a plurality of exclusive OR gates XOR0 to XOR2 associated with each bit [B2: B0] of the digital input signal DIN.
  • the gate XORi outputs an exclusive OR of the bit Bi and the control signal ⁇ 1 as the control signal Ci. With this configuration, the value of the digital input signal DIN can be converted to 2's complement in the second state S2.
  • the output unit OUT averages the output voltage of the first switch group SWG1 in the first state S1 and the output voltage of the first switch group SWG1 in the second state S2, and outputs it as an analog voltage DACOUT.
  • the output unit OUT can be configured by using the property of a capacitor that stores electric charge according to voltage.
  • the output unit OUT includes a first capacitor C1, a second capacitor C2, and a second switch group SWG2.
  • the potential of one end of the first capacitor C1 is fixed.
  • the voltages generated in the first capacitor C1 and the second capacitor C2 are referred to as a first capacitor voltage VC1 and a second capacitor voltage VC2.
  • the capacitance values of the first capacitor C1 and the second capacitor C2 are designed to be equal.
  • the second switch group SWG2 is configured so that the following three states can be switched. 1. 1. State in which the first capacitor C1 is charged by the output voltage of the first switch group SWG1 in the first state S1. 2. State in which the second capacitor C2 is charged by the output voltage of the first switch group SWG1 in the second state S2. A state in which the charges of the first capacitor C1 and the second capacitor C2 are averaged, and the average voltage of the first capacitor voltage VC1 and the second capacitor voltage VC2 is applied to the output terminal P3.
  • the configuration of the second switch group SWG2 is arbitrary.
  • the second switch group SWG2 in FIG. 1 includes a first switch SW1, a second switch SW2, a third switch SW3, and a fourth switch SW4.
  • the first switch SW1 is provided between the output terminal (intermediate terminal) P4 of the first switch group SWG1 and the first capacitor C1.
  • the second switch SW2 is provided between the intermediate terminal P4 and the second capacitor C2.
  • the third switch SW3 is provided between the first capacitor C1 and the output terminal P3 of the digital / analog conversion circuit 100.
  • the fourth switch SW4 is provided between the second capacitor C2 and the output terminal P3 of the digital / analog conversion circuit 100.
  • the first switch SW1 to the fourth switch SW4 are switches with one input and one output. When 0 is input as a control signal, the first switch SW1 to the fourth switch SW4 are turned off (shut off). In each figure, a switch with 1 input and 1 output shows a state in which 0 is input as a control signal.
  • the first switch SW1 is controlled according to the control signal ⁇ 2, the second switch SW2 is controlled according to the control signal ⁇ 3, and the third switch SW3 and the fourth switch SW4 are controlled according to the common control signal ⁇ 4.
  • the control unit 30 generates control signals ⁇ 1 to ⁇ 4.
  • the buffer BUF1 receives the potential of the intermediate terminal P4 and outputs it to the output unit OUT.
  • the capacitances of the first capacitor C1 and the second capacitor C2 are large, or when the output impedance of the first switch group SWG1 is high (current supply capability is low), the charging time of the first capacitor C1 and the second capacitor C2 is long. There is a problem of becoming. Therefore, the charging time can be shortened by providing the buffer BUF1.
  • the buffer BUF1 may be a voltage follower circuit having a gain of 1 using an operational amplifier, an amplifier having a gain larger than 1, or an attenuator having a gain smaller than 1. That is, any circuit having an output impedance sufficient to charge the first capacitor C1 and the second capacitor C2 may be used.
  • Two buffers BUF1 may be provided in the charging paths of the first capacitor C1 and the second capacitor C2, respectively.
  • the buffer BUF1 may be omitted. Alternatively, even when the charging time of the first capacitor C1 and the second capacitor C2 becomes long, the signal processing can be omitted.
  • the buffer BUF1 can be provided as necessary, but for the sake of simplicity of explanation, the buffer BUF1 is omitted in the following figures.
  • FIG. 2 is a time chart illustrating the operation of the digital / analog conversion circuit 100 of FIG.
  • a period t0 to t7 indicates one cycle of D / A conversion.
  • the value of the digital input signal DIN changes. The value is “4” in decimal.
  • the control signal ⁇ 1 becomes low level (0), and the reference voltage generation circuit 10 is set to the first state S1.
  • the decoder circuit 20 generates control signals C0 to C2 according to the digital input signal DIN.
  • the voltage selected by the first switch group SWG1 is an analog voltage corresponding to the digital input signal DIN, and ideally coincides with the value 4.
  • the resistances R 1 to R n vary. Thus, the voltage deviates from 4.
  • the control signal ⁇ 2 becomes high level at time t1 and the first switch SW1 is turned on
  • the first capacitor C1 is charged with the voltage selected by the first switch group SWG1, 1 capacitor voltage VC1 rises.
  • the first capacitor voltage VC1 coincides with the output voltage of the first switch group SWG1 in the first state S1 after a certain period of time.
  • the control signal ⁇ 2 becomes low level, and the first switch SW1 is turned off.
  • the control signal ⁇ 1 becomes high level (1), and the reference voltage generation circuit 10 is set to the second state S2.
  • the decoder circuit 20 supplies the 2's complement of the digital input signal DIN as the control signals C0 to C2 to the first switch group SWG1.
  • the voltage selected by the first switch group SWG1 is an analog voltage corresponding to the digital input signal DIN and ideally matches the value 4, but in reality, the resistors R 1 to R due to variations in R n, it becomes a voltage shifted from 4.
  • the second capacitor C2 is charged with the voltage selected by the first switch group SWG1, and the second capacitor voltage VC2 rises.
  • the second capacitor voltage VC2 coincides with the output voltage of the first switch group SWG1 in the second state S2 after a certain time.
  • the control signal ⁇ 3 becomes low level at time t5, and the second switch SW2 is turned off.
  • both the third switch SW3 and the fourth switch SW4 are turned on, and the charges of the first capacitor C1 and the second capacitor C2 are smoothed.
  • the first capacitor voltage VC1 and the second capacitor voltage VC2 are averaged, and the respective voltages converge to the average value voltage (VC1 + VC2) / 2.
  • the average voltage is output from the output terminal P3 as an analog voltage DACOUT corresponding to the digital input signal DIN.
  • FIG. 3 is a diagram showing input / output characteristics of the digital / analog conversion circuit 100 of FIG.
  • the horizontal axis represents the digital input signal DIN.
  • the first capacitor voltage VC1 indicates a conversion characteristic in the first state S1
  • the second capacitor voltage VC2 indicates a conversion characteristic in the second state S2.
  • the variation in resistance values of the resistors R 1 to R n of the digital / analog conversion circuit 100 of FIG. 1 shows in-plane dependence. In the first state S1 and the second state S2, the high potential side and low potential of the DAC The side is reversed and used. As a result, the first capacitor voltage VC1 and the second capacitor VC2 have contrasting errors with respect to ideal linear characteristics.
  • the same digital input signal DIN is subjected to D / A conversion in two states, and the output voltages VC1 and VC2 in each state are averaged, thereby causing an error in resistance value. Cancel in-plane variation. As a result, the averaged output voltage DACOUT has a high linearity with respect to the digital input signal DIN.
  • the output voltage DACOUT is valid only during the period when the control signal ⁇ 4 is at a high level. Therefore, a hold circuit that holds the output voltage DACOUT may be provided as necessary. .
  • FIG. 4 is a circuit diagram showing a configuration of the digital / analog conversion circuit 100a according to the first modification.
  • the digital / analog conversion circuit 100a differs from the digital / analog conversion circuit 100 of FIG. 1 in the topology of the first switch group SWG1a and the second switch group SWG2a, and accordingly, the configuration of the decoder circuit 20a is different. ing.
  • the switch elements SW [0,1], SW [0,2], SW [0,3], SW [0,4], SW [1,1], SW [1, 2] is connected in the same manner as in FIG.
  • the switch element SW [m ⁇ 1, 1] is provided between the output terminal of the switch element SW [m ⁇ 2, 1] and the intermediate terminal P4.
  • the switch element SW [m-1, 2] is provided between the output terminal of the switch element SW [m-2, 2] and the intermediate terminal P4. It fulfills a part of the function of the second switch group SWG2 of FIG.
  • the decoder circuit 20a further includes AND gates AND1 and AND2 in addition to the decoder circuit 20 of FIG.
  • the gate AND1 generates a logical product of the control signal ⁇ 2 and the control signal C2, and outputs the logical product as the control signal C21 of the switch element SW [m ⁇ 1, 1].
  • the gate AND2 generates a logical product of the inversion # C2 of the control signal C2 and the control signal ⁇ 2, and outputs the logical product as the control signal C22 of the switch element SW [m ⁇ 1, 2].
  • the second switch group SWG2a includes a first switch SW1, a second switch SW2, and a fifth switch SW5.
  • the switch elements SW [m ⁇ 1, 1] and SW [m ⁇ 1, 2] described above are also part of the second switch group SWG2a.
  • the fifth switch SW5 is provided between the intermediate terminal P4 and the output terminal P3 of the digital / analog conversion circuit 100a.
  • FIG. 5 is a time chart illustrating the operation of the digital / analog conversion circuit 100a of FIG.
  • a period t0 to t9 indicates one cycle of D / A conversion.
  • the value of the digital input signal DIN changes.
  • the control signal ⁇ 1 becomes low level, and the reference voltage generation circuit 10 is set to the first state S1.
  • the decoder circuit 20 generates control signals C0, C1, C21, and C22 according to the digital input signal DIN.
  • the control signal ⁇ 2 becomes high level at time t2
  • one of the control signals C21 and C22 becomes high level, and any of the taps T 1 to T n + 1 is applied to the intermediate terminal P4. Voltage is generated.
  • the first switch SW1 When the control signal ⁇ 3 becomes high level at time t2, the first switch SW1 is turned on, the first capacitor C1 is charged with the voltage selected by the first switch group SWG1, and the first capacitor voltage VC1 rises. At time t3, the control signal ⁇ 3 becomes low level, and the first switch SW1 is turned off.
  • the control signal ⁇ 1 becomes high level, and the reference voltage generation circuit 10 is set to the second state S2.
  • the decoder circuit 20 generates control signals C0, C1, C21, and C22 corresponding to the two's complement #DIN of the digital input signal DIN, and supplies the control signals C0, C1, C21, and C22 to the first switch group SWG1a.
  • the control signal ⁇ 4 becomes high level and the second switch SW2 is turned on
  • the second capacitor C2 is charged with the voltage selected by the first switch group SWG1, and the second capacitor voltage VC2 rises.
  • the control signal ⁇ 2 becomes low level at time t6, and both the switch elements SW [2,1] and SW [2,2] are turned off.
  • the first capacitor C1 and the second capacitor C2 are coupled via the first switch SW1 and the second switch SW2, and the first capacitor voltage VC1 and the second capacitor are coupled.
  • the voltage VC2 is averaged.
  • the fifth switch SW5 is turned on, and the analog voltage DACOUT corresponding to the digital input signal DIN is output from the output terminal P3.
  • the above is the operation of the digital / analog conversion circuit 100a.
  • the digital / analog conversion circuit 100a of FIG. 4 the number of switches can be reduced as compared with the digital / analog conversion circuit 100 of FIG. 1, which is advantageous in terms of cost and circuit area.
  • FIG. 6 is a circuit diagram showing a configuration of a digital / analog conversion circuit 100b according to a second modification.
  • the digital / analog conversion circuit 100b differs from the digital / analog conversion circuit 100 of FIG. 1 in the topology of the second switch group SWG2b.
  • the second switch group SWG2b includes a third switch SW3, a fourth switch SW4, a sixth switch SW6, and a seventh switch SW7.
  • the sixth switch SW6 has one input and two outputs, and one output terminal is connected to the first capacitor C1, and the other output terminal is connected to the second capacitor C2.
  • the seventh switch SW7 is provided between the input terminal of the sixth switch SW6 and the intermediate terminal P4.
  • the sixth switch SW6 is controlled according to the control signal ⁇ 1
  • the seventh switch SW7 is controlled according to the control signal ⁇ 2.
  • FIG. 7 is a time chart illustrating the operation of the digital / analog conversion circuit 100b of FIG.
  • Period t0 to t8 represents one cycle of D / A conversion.
  • the value of the digital input signal DIN changes.
  • the control signal ⁇ 1 becomes low level, and the reference voltage generation circuit 10 is set to the first state S1.
  • the decoder circuit 20 generates control signals C0 to C2 corresponding to the digital input signal DIN.
  • the seventh switch SW7 is turned on, and the output voltage of the first switch group SWG1 is applied to the input terminal of the sixth switch SW6. It is done.
  • the sixth switch SW6 is conductive to the first capacitor C1 side.
  • the first capacitor C1 is charged with the voltage selected by the first switch group SWG1.
  • the control signal ⁇ 2 becomes low level, and the seventh switch SW7 is turned off.
  • the control signal ⁇ 1 becomes high level, and the reference voltage generation circuit 10 is set to the second state S2.
  • the decoder circuit 20 generates control signals C0 to C2 based on the 2's complement of the digital input signal DIN.
  • the control signal ⁇ 2 becomes high level again, and the seventh switch SW7 is turned on.
  • the sixth switch SW6 is electrically connected to the second capacitor C2.
  • the second capacitor C2 is charged with the voltage selected by the first switch group SWG1.
  • the control signal ⁇ 2 becomes low level, and the seventh switch SW7 is turned off.
  • both the third switch SW3 and the fourth switch SW4 are turned on, the first capacitor C1 and the second capacitor C2 are coupled, and the first capacitor voltage VC1 and the second capacitor SW2 are coupled.
  • An average voltage of the capacitor voltage VC2 is output from the output terminal P3.
  • FIG. 8 is a circuit diagram showing a configuration of a digital / analog conversion circuit 100c according to a third modification.
  • the digital / analog conversion circuit 100c differs from the digital / analog conversion circuit 100 of FIG. 1 in the topology of the first switch group SWG1.
  • a plurality of resistors R 1 to R n are provided in a ninety-nine fold shape so as to form a matrix of ⁇ rows and ⁇ columns. Specifically, the resistor strings R 1 to R n connected in series are arranged so as to be folded back for each row.
  • Switches MOS 1 to MOS n are provided in association with the resistors R 1 to R n .
  • CL ⁇ is provided.
  • the plurality of switches MOS 1 to MOS n and the plurality of output switches TG 1 to TG ⁇ constitute a first switch group SWG1c.
  • One end of the i-th (i ⁇ n) switch MOS i is connected to a connection point between the resistors R i and R i + 1 .
  • One end of the n-th switch MOS n is connected to the connection point of the resistors R n and the second reference voltage terminal P2.
  • the other end of the switch MOS connected to the i-th resistor R is connected to the i-th row line RL i .
  • the control terminal (gate) of the switch MOS connected to the resistor R in the j-th column is connected to the column line CL j in the j-th column.
  • the row line and the column line can be understood as an analogy with the relationship between the row address and the column address in the memory or the relationship between the scanning line and the data line in the display device.
  • the i-th output switch TG i is provided between the i-th row line RL i and the intermediate terminal P4.
  • the upper decoder circuit 20U generates signals to be given to the output switches TG 1 to TG ⁇ based on the upper K bits of the control signals Cm ⁇ 1 to C0 from the decoder circuit 20.
  • the upper decoder circuit 20U turns on the output switch TG x + 1 in the (x + 1) -th row, where x is a value representing the upper K bits of the control signals Cm ⁇ 1 to C0 in decimal.
  • the configuration of the upper decoder circuit 20U is not limited to the illustrated one.
  • the lower decoder circuit 20L generates signals to be applied to the column lines CL 1 to CL ⁇ based on the lower L bits of the control signals Cm ⁇ 1 to C0 from the decoder circuit 20.
  • the lower decoder circuit 20L turns on the switch MOS y + 1 in the (y + 1) -th column, where y is a value representing the lower L bits of the control signals Cm ⁇ 1 to C0 in decimal.
  • the configuration of the low-order decoder circuit 20L is not limited to that illustrated.
  • the upper decoder circuit 20H and the lower decoder circuit 20L turn on a switch corresponding to the digital input signal DIN, so that the output terminal P3 of the digital / analog conversion circuit 100c has a digital signal.
  • An analog voltage corresponding to the input signal DIN is generated.
  • the digital / analog conversion circuit 100c of FIG. 8 the D / A conversion is performed in each of the first state and the second state, and the voltage generated in each is averaged, whereby the same principle as in the above-described embodiment is obtained.
  • the variation in the resistances R 1 to R n can be preferably canceled.
  • FIG. 9 is a circuit diagram showing a configuration of a digital / analog conversion circuit 100d according to a fourth modification.
  • the digital / analog conversion circuit 100d includes two capacitor pairs C1 and C2 for averaging two voltages generated in the first state and the second state.
  • the digital / analog conversion circuit 100d includes two second switch groups SWG2 1 and SWG2 2 and an output switch SWOUT for switching between the two second switch groups SWG2 1 and SWG2 2 .
  • a set of capacitors C1 1 and C2 1 and a second switch group SWG2 1 (referred to as a first channel CH1), a set of capacitors C1 2 and C2 2 and a second switch group SWG2 2 (referred to as a second channel CH2), are used alternately in a time-sharing manner.
  • the control unit 30d generates control signals ⁇ 1 to ⁇ 8.
  • the switch SW1 1 on the first channel side is controlled by a control signal ⁇ 2, SW2 1 by ⁇ 3, and SW3 1 and SW4 1 by ⁇ 4.
  • Switch SW1 2 of the second channel side, the control signal .phi.5, SW2 2 by .phi.6, SW3 2 and SW4 2 are controlled by .phi.7.
  • the output switch SWOUT is controlled by a control signal ⁇ 8.
  • FIG. 10 is a time chart illustrating the operation of the digital / analog conversion circuit 100d of FIG.
  • the first channel side is used, and in the period t7 to t8, the second channel side is used.
  • the level of the control signal ⁇ 8 is switched.
  • the control signal ⁇ 8 is at a high level, and the output switch SWOUT is conducted to the second channel CH2 side.
  • the period t0 to t7 in FIG. 10 corresponds to the period t0 to t7 in FIG.
  • the control signal ⁇ 8 becomes low level, and the first channel CH1 side becomes valid.
  • the same processing as that in the period t0 to t7 is performed using the second channel CH2.
  • the control signal ⁇ 5 transitions at a timing corresponding to ⁇ 2, ⁇ 6 corresponds to ⁇ 3, and ⁇ 7 corresponds to ⁇ 4.
  • the effect of the digital / analog conversion circuit 100d of FIG. 9 becomes clear by comparing the time chart of FIG. 10 with other time charts (FIGS. 2, 5, and 7).
  • the output voltage DACOUT of the digital / analog conversion circuit 100 takes a correct value according to the digital input signal DIN only during the period t6 to t8, and fluctuates during other periods.
  • it is necessary to provide a hold circuit after the digital / analog conversion circuit 100 This has been described above.
  • FIG. 11 is a circuit diagram showing a configuration of a digital / analog conversion circuit 100e according to a fifth modification.
  • the digital / analog conversion circuit 100e includes a first sample hold circuit SH1, a second sample hold circuit SH2, and an averaging circuit 40 in place of the first capacitor C1, the second capacitor C2, and the second switch group SWG2 in FIG. .
  • the first sample hold circuit SH1 and the second sample hold circuit SH2 respectively sample the potential of the intermediate terminal P4 in synchronization with the control signals ⁇ 2 and ⁇ 3.
  • the output voltage Vsh1 of the first sample hold circuit SH1 and the output voltage Vsh2 of the second sample hold circuit SH2 are voltages corresponding to the capacitor voltages VC1 and VC2 in FIG.
  • the configurations of the first sample hold circuit SH1 and the second sample hold circuit SH2 are not limited.
  • the averaging circuit 40 averages the output voltages Vsh1 and Vsh2 of the first sample hold circuit SH1 and the second sample hold circuit SH2 and outputs them as an analog voltage DACOUT from the output terminal P3.
  • the configuration of the averaging circuit 40 is not limited, for example, resistance voltage division can be used.
  • the digital / analog conversion circuit 100e can perform the same processing as the digital / analog conversion circuit 100 of FIG. Further, the analog voltage DACOUT has a merit that it always takes an effective value.
  • FIG. 12 is a circuit diagram showing a configuration of a digital / analog conversion circuit 100f according to a sixth modification.
  • the digital / analog conversion circuit 100f of FIG. 12 is provided with output terminals P31 to P3M of M channels (M is an integer of 2 or more).
  • M is an integer of 2 or more.
  • a first sample hold circuit SH1 and a second sample hold circuit SH2 are provided for each channel.
  • a set of averaging circuits 40 (output units OUT1 to OUTM) is also provided.
  • the control signal ⁇ 2i is input to the first sample hold circuit SH1 of the i-th channel, and the control signal ⁇ 3i is input to the second sample hold circuit SH2.
  • the control unit 30f asserts the control signals ⁇ 2i and ⁇ 3i for the channels to be valid in a time division manner at a predetermined timing.
  • a single resistor string 2 can be used in a time-sharing manner by a plurality of output units OUT1 to OUTM.
  • FIG. 13 is a circuit diagram showing a configuration of a digital / analog conversion circuit 100g according to a seventh modification. Similar to the digital / analog conversion circuit 100f of FIG. 12, the digital / analog conversion circuit 100g includes M-channel output terminals P31 to P3M. For each channel, the output sections OUT1 to OUTM and the first switch group SWG11 to SWG1M is provided.
  • the plurality of first switch groups SWG11 to SWG1M are connected to a common resistor string 2.
  • the i-th channel first switch group SWG1i is controlled by i-channel control signals C0i to C2i generated by a decoder circuit 20 (not shown).
  • multi-channel digital / analog conversion can be realized by using a single resistor string 2 in the same manner as the digital / analog conversion circuit 100f in FIG. Further, the time division processing required in the circuit of FIG. 12 becomes unnecessary, and each channel can perform digital / analog conversion simultaneously and in parallel.
  • FIG. 14 is a circuit diagram showing a configuration of a digital / analog conversion circuit 200 according to the second embodiment.
  • the digital / analog conversion circuit 200 converts the digital input signal DIN into an analog voltage DACOUT and outputs it from the output terminal P3.
  • the digital / analog conversion circuit 200 includes a plurality of resistors R 1 to R n , switches SW 0 to SW n , ⁇ row lines RL 1 to RL ⁇ , ⁇ column lines CL 1 to CL ⁇ , and an output switch SWO. 1 to SWO ⁇ , an X decoder 210, and a Y decoder 220.
  • the plurality of resistors R 1 to R n are connected in series and arranged in a spiral shape.
  • the resistor strings R 1 to R n form a matrix of ⁇ rows and ⁇ columns.
  • An upper reference voltage VRH and a lower reference voltage VRL are applied to both ends of the resistor strings R 1 to R n .
  • Switches SW 0 ⁇ SW n each end is connected to corresponding resistors R 1 ⁇ R n.
  • One end of the switch SW arranged in the i-th row is connected to the i-th row line RL i .
  • the i-th row output switch SWO i is provided between the i-th row line RL i and the output terminal P3.
  • the X decoder 210 turns on the switch SW in the (y + 1) th column, where y is a value representing the lower L bits in decimal.
  • the Y decoder 220 turns on the switch SWO x + 1 in the (x + 1) -th row, where x is a value representing the upper K bits in decimal.
  • the functions of the X decoder 210 and the Y decoder 220 may be a logic circuit configured in hardware, or may be realized using software operations.
  • the above is the configuration of the digital / analog conversion circuit 200.
  • the digital / analog conversion circuit 200 of FIG. 14 by arranging the resistor strings R 1 to R n in a spiral shape, the influence of the in-plane variation of the resistance value can be preferably canceled, and nonlinearity is improved. can do.
  • the present invention can be used for electronic circuits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

A reference voltage generating circuit (10) applies an upper reference voltage (VRH) to a first reference voltage terminal (P1), and a lower reference voltage (VRL) to a second reference voltage terminal (P2) in a first state (S1), and the reference voltage generating circuit applies the voltages by opposite polarities in a second state (S2). A first switch group (SWG1) selects one tap, which corresponds to a digital input signal (DIN) from among a plurality of taps (T1-Tn+1) in the first state, and in the second state, the first switch group selects a tap at a position symmetrical to the tap selected in the first state.

Description

デジタル/アナログ変換回路および方法Digital / analog conversion circuit and method
 本発明は、デジタル/アナログ変換回路(DAC)に関し、特に抵抗ストリング型DACに関する。 The present invention relates to a digital / analog conversion circuit (DAC), and more particularly to a resistor string type DAC.
 デジタル信号をアナログ信号に変換するために、抵抗ストリング型、R-2R型、セグメントR-2R型をはじめとする種々のDACが利用される。抵抗ストリング型DACは、2つの基準電圧の間に直接に接続された複数の抵抗と、隣接する抵抗の接続点(タップ)に生ずる電圧のいずれかを選択するスイッチ群と、を備える。抵抗ストリング型DACは、デジタル入力信号の値に応じてスイッチ群を制御し、デジタル信号の値に応じたアナログ電圧を出力する。
米国特許第5,343,199号明細書 米国特許第4,462,021号明細書 米国特許第5,014,054号明細書 米国特許第5,343,199号明細書
In order to convert a digital signal into an analog signal, various DACs including a resistor string type, an R-2R type, and a segment R-2R type are used. The resistor string type DAC includes a plurality of resistors directly connected between two reference voltages, and a switch group that selects one of voltages generated at a connection point (tap) between adjacent resistors. The resistor string type DAC controls a switch group according to the value of the digital input signal, and outputs an analog voltage according to the value of the digital signal.
US Pat. No. 5,343,199 US Pat. No. 4,462,021 US Pat. No. 5,014,054 US Pat. No. 5,343,199
 抵抗ストリング型DACを半導体基板上にLSIとして集積化する場合、個々の抵抗の精度のばらつきが問題となる。この場合の抵抗の精度は、
 1.ランダムばらつき
 2.位置依存ばらつき
に分類される。位置依存ばらつきは、座標に対して単調増加性(または単調減少性)を有する傾向がある。このような抵抗値の誤差に起因して、抵抗ストリング型DACは、微分非直線性(DNL:Differential Non-Linearity)に優れるが、積分非直線性(INL:Integral Non-Linearity)が悪いという性質を有する。
When a resistor string type DAC is integrated as an LSI on a semiconductor substrate, variations in the accuracy of individual resistors become a problem. In this case, the resistance accuracy is
1. Random variation Classified as position-dependent variation. The position-dependent variation tends to have monotonic increase (or monotonic decrease) with respect to the coordinates. Due to such an error in resistance value, the resistance string type DAC is excellent in differential non-linearity (DNL) but poor in integral non-linearity (INL). Have
 抵抗ストリング型DACのINLを改善するために、複数の抵抗のレイアウトを工夫する技術がいくつか提案されているが(特許文献2~4参照)、さらなる改善の余地がある。 In order to improve the INL of the resistor string type DAC, several techniques for devising the layout of a plurality of resistors have been proposed (see Patent Documents 2 to 4), but there is room for further improvement.
 本発明はかかる状況に鑑みてなされたものであり、その目的は、高精度な抵抗ストリング型DACの提供にある。 The present invention has been made in view of such a situation, and an object thereof is to provide a highly accurate resistor string type DAC.
 本発明のある態様は、デジタル入力信号に応じたアナログ電圧を出力するデジタル/アナログ変換回路に関する。デジタル/アナログ変換回路は、第1基準電圧端子と、第2基準電圧端子と、出力端子と、抵抗ストリングと、複数のタップと、基準電圧発生回路と、第1スイッチ群と、出力部と、を備える。抵抗ストリングは、第1、第2基準電圧端子の間に直列に設けられた複数の抵抗を含む。複数のタップは、各抵抗の接続点ごとに設けられ、対応する抵抗に生ずる電圧を取り出すために設けられる。基準電圧発生回路は、所定の上側基準電圧と所定の下側基準電圧を生成し、第1状態において、上側基準電圧を第1基準電圧端子に、下側基準電圧を第2基準電圧端子に印加し、第2状態において、下側基準電圧を第1基準電圧端子に、上側基準電圧を第2基準電圧端子に印加する。第1スイッチ群は、複数のタップから、第1状態において、デジタル入力信号に応じたひとつを選択し、第2状態において、第1状態において選択されたタップと対称な位置にあるタップを選択する。出力部は、第1状態における第1スイッチ群の出力電圧と、第2状態における第1スイッチ群の出力電圧とを平均化して出力する。 An embodiment of the present invention relates to a digital / analog conversion circuit that outputs an analog voltage corresponding to a digital input signal. The digital / analog conversion circuit includes a first reference voltage terminal, a second reference voltage terminal, an output terminal, a resistor string, a plurality of taps, a reference voltage generation circuit, a first switch group, an output unit, Is provided. The resistor string includes a plurality of resistors provided in series between the first and second reference voltage terminals. A plurality of taps are provided for each connection point of each resistor, and are provided for extracting a voltage generated in the corresponding resistor. The reference voltage generation circuit generates a predetermined upper reference voltage and a predetermined lower reference voltage, and applies the upper reference voltage to the first reference voltage terminal and the lower reference voltage to the second reference voltage terminal in the first state. In the second state, the lower reference voltage is applied to the first reference voltage terminal, and the upper reference voltage is applied to the second reference voltage terminal. The first switch group selects one of the plurality of taps according to the digital input signal in the first state, and selects a tap at a position symmetrical to the tap selected in the first state in the second state. . The output unit averages and outputs the output voltage of the first switch group in the first state and the output voltage of the first switch group in the second state.
 この態様によれば、ひとつのデジタル入力信号に対して、抵抗ストリング型DACの2つの基準電圧端子を入れ換えて2回のD/A変換を行い、それぞれにおいて生成されたアナログ電圧を平均化することにより、抵抗の面内ばらつきを好適にキャンセルし、高精度なデジタル/アナログ変換が実現できる。 According to this aspect, the two reference voltage terminals of the resistor string type DAC are exchanged for one digital input signal to perform D / A conversion twice, and the analog voltage generated in each is averaged. Therefore, it is possible to suitably cancel the in-plane variation of the resistance and realize high-precision digital / analog conversion.
 出力部は、一端の電位が固定された第1キャパシタと、一端の電位が固定された第2キャパシタと、第2スイッチ群を含んでもよい。第2スイッチ群は、第1状態において第1スイッチ群により選択されたタップの電圧によって第1キャパシタを充電する状態と、第2状態において第1スイッチ群により選択されたタップの電圧によって第2キャパシタを充電する状態と、第1キャパシタの電圧と第2キャパシタの電圧を平均化した電圧を、出力端子から出力する状態と、が切りかえ可能に構成されてもよい。 The output unit may include a first capacitor having a fixed potential at one end, a second capacitor having a fixed potential at one end, and a second switch group. The second switch group has a state in which the first capacitor is charged by the voltage of the tap selected by the first switch group in the first state, and a second capacitor by the voltage of the tap selected by the first switch group in the second state. And a state in which a voltage obtained by averaging the voltage of the first capacitor and the voltage of the second capacitor is output from the output terminal may be switched.
 出力部は、第1状態における前記第1スイッチ群の出力電圧をサンプルホールドする第1サンプルホールド回路と、第2状態における第1スイッチ群の出力電圧をサンプルホールドする第2サンプルホールド回路と、第1、第2サンプルホールド回路の出力電圧を平均化する平均化回路と、を含んでもよい。 The output unit includes a first sample and hold circuit that samples and holds the output voltage of the first switch group in the first state, a second sample and hold circuit that samples and holds the output voltage of the first switch group in the second state, 1 and an averaging circuit that averages the output voltage of the second sample and hold circuit.
 ある態様のデジタル/アナログ変換回路は、第1スイッチ群の出力電圧を受け、出力部へと出力するバッファをさらに備えてもよい。この態様によれば、第1スイッチ群の出力インピーダンスが高い場合、あるいは出力部の負荷が重い場合に、処理を高速化することができる。 The digital / analog conversion circuit according to an aspect may further include a buffer that receives the output voltage of the first switch group and outputs the output voltage to the output unit. According to this aspect, the processing can be speeded up when the output impedance of the first switch group is high or when the load of the output unit is heavy.
 ある態様のデジタル/アナログ変換回路は、第1状態において、デジタル入力信号と所定の関係を有する第1の制御信号に応じて第1スイッチ群を制御し、第2状態において、デジタル入力信号の2の補数と所定の関係を有する第2の制御信号に応じて第1スイッチ群を制御するデコーダ回路をさらに備えてもよい。
 デジタル入力信号の2の補数を生成する回路を設けることにより、第1スイッチ群が選択すべきタップの位置を、簡易に反転することができる。
A digital / analog conversion circuit according to an aspect controls a first switch group according to a first control signal having a predetermined relationship with a digital input signal in a first state, and 2 of the digital input signal in a second state. A decoder circuit for controlling the first switch group in accordance with a second control signal having a predetermined relationship with the complement of each other may be further provided.
By providing a circuit for generating the 2's complement of the digital input signal, the position of the tap to be selected by the first switch group can be easily inverted.
 ある態様において、第2スイッチ群は、第1スイッチ群の出力と第1キャパシタの間に設けられた第1スイッチと、第1スイッチ群の出力と第2キャパシタの間に設けられた第2スイッチと、第1キャパシタと出力端子の間に設けられた第3スイッチと、第2キャパシタと出力端子の間に設けられた第4スイッチと、を含んでもよい。 In one aspect, the second switch group includes a first switch provided between the output of the first switch group and the first capacitor, and a second switch provided between the output of the first switch group and the second capacitor. And a third switch provided between the first capacitor and the output terminal, and a fourth switch provided between the second capacitor and the output terminal.
 ある態様において、第2スイッチ群は、第1スイッチ群の出力と第1キャパシタの間に設けられた第1スイッチと、第1スイッチ群の出力と第2キャパシタの間に設けられた第2スイッチと、第1スイッチ群の出力と出力端子の間に設けられた第5スイッチと、を含んでもよい。この場合、スイッチの個数を減らすことができる。 In one aspect, the second switch group includes a first switch provided between the output of the first switch group and the first capacitor, and a second switch provided between the output of the first switch group and the second capacitor. And a fifth switch provided between the output of the first switch group and the output terminal. In this case, the number of switches can be reduced.
 ある態様において、第2スイッチ群は、一方の出力端子に第1キャパシタが接続され、他端の出力端子に第2キャパシタが接続された第6スイッチと、第1スイッチ群の出力と、第6スイッチの入力端子との間に設けられた第7スイッチと、第1キャパシタと出力端子の間に設けられた第3スイッチと、第2キャパシタと出力端子の間に設けられた第4スイッチと、を含んでもよい。 In one aspect, the second switch group includes a sixth switch having a first capacitor connected to one output terminal and a second capacitor connected to the other output terminal, an output of the first switch group, A seventh switch provided between the input terminal of the switch, a third switch provided between the first capacitor and the output terminal, a fourth switch provided between the second capacitor and the output terminal, May be included.
 デジタル入力信号がmビット(mは自然数)のとき、第1スイッチ群は、複数のタップを起点としてm段のトーナメント状に配置された複数のスイッチ素子を含んでもよい。i段目(1≦i≦m)のスイッチ素子は、第1状態においてデジタル入力信号の下位iビット目に応じて、第2状態においてデジタル入力信号の下位iビット目の反転信号に応じて制御されてもよい。 When the digital input signal is m bits (m is a natural number), the first switch group may include a plurality of switch elements arranged in a tournament of m stages starting from a plurality of taps. The switch element of the i-th stage (1 ≦ i ≦ m) is controlled according to the lower i-th bit of the digital input signal in the first state and according to the inverted signal of the lower i-th bit of the digital input signal in the second state. May be.
 デジタル入力信号がmビット(mは自然数)のとき、抵抗ストリングの複数の抵抗は、α行β列(α=2、β=2、K+L=m、いずれも自然数)のマトリクスを形成するように、折り返し配置されてもよい。第1スイッチ群は、マトリクスの行に対応づけられたα本の行ラインと、マトリクスの列に対応づけられたβ本の列ラインと、複数の出力スイッチと、複数のスイッチ素子と、を含んでもよい。
 複数の出力スイッチは、α本の行ラインに対応づけて設けられ、それぞれが、対応する行ラインと第1スイッチ群の出力端子の間に設けられてもよい。複数のスイッチ素子は、複数の抵抗と対応づけてマトリクス状に配置され、スイッチ素子それぞれの一端は対応する抵抗と接続されており、i行目(1≦i≦α)のスイッチ素子の他端はi行目の行ラインと接続され、j列目(1≦i≦β)のスイッチ素子の制御端子はj列目の列ラインと接続されもよい。複数の出力スイッチのオン、オフは、第1状態においてデジタル入力信号の上位Kビットに応じて、第2状態においてデジタル入力信号の上位Kビットの2の補数に応じて制御されてもよい。複数のスイッチ素子のオン、オフは、第1状態においてデジタル入力信号の下位Lビットに応じて、第2状態においてデジタル入力信号の下位Lビットの2の補数に応じて制御されてもよい。
When the digital input signal is m bits (m is a natural number), the resistors of the resistor string form a matrix of α rows and β columns (α = 2 K , β = 2 L , K + L = m, all natural numbers). In this way, it may be arranged in a folded manner. The first switch group includes α row lines associated with the matrix rows, β column lines associated with the matrix columns, a plurality of output switches, and a plurality of switch elements. But you can.
The plurality of output switches may be provided in association with α row lines, and each may be provided between the corresponding row line and the output terminal of the first switch group. The plurality of switch elements are arranged in a matrix in association with the plurality of resistors, and one end of each switch element is connected to the corresponding resistor, and the other end of the switch element in the i-th row (1 ≦ i ≦ α). May be connected to the i-th row line, and the control terminal of the switch element in the j-th column (1 ≦ i ≦ β) may be connected to the j-th column line. On / off of the plurality of output switches may be controlled according to the upper K bits of the digital input signal in the first state and according to the two's complement of the upper K bits of the digital input signal in the second state. On / off of the plurality of switch elements may be controlled according to the lower L bits of the digital input signal in the first state and according to the two's complement of the lower L bits of the digital input signal in the second state.
 ある態様において、デジタル/アナログ変換回路は、複数チャンネルの出力を備えてもよい。出力部は、複数のチャンネルごとに複数個、設けられてもよい。デジタル/アナログ変換回路は、デジタル入力信号のデータごとに、複数の出力部を、交互に時分割的に使用してもよい。
 この場合、デジタル/アナログ変換回路の出力電圧を連続的に保持し続けることができ、後段にホールド回路などが不要となる。
In one embodiment, the digital / analog conversion circuit may include a multi-channel output. A plurality of output units may be provided for each of a plurality of channels. The digital / analog conversion circuit may alternately use a plurality of output units for each digital input signal data in a time-sharing manner.
In this case, the output voltage of the digital / analog conversion circuit can be continuously held, and a hold circuit or the like is not required in the subsequent stage.
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置などの間で相互に置換したものもまた、本発明の態様として有効である。 It should be noted that an arbitrary combination of the above-described constituent elements and those in which constituent elements and expressions of the present invention are mutually replaced between methods and apparatuses are also effective as an aspect of the present invention.
 本発明のある態様によれば、高精度なデジタル/アナログ変換回路が実現できる。 According to an aspect of the present invention, a highly accurate digital / analog conversion circuit can be realized.
第1の実施の形態に係るデジタル/アナログ変換回路の構成を示す回路図である。1 is a circuit diagram showing a configuration of a digital / analog conversion circuit according to a first embodiment. FIG. 図1のデジタル/アナログ変換回路の動作を例示するタイムチャートである。2 is a time chart illustrating an operation of the digital / analog conversion circuit of FIG. 1. 図1のデジタル/アナログ変換回路の入出力特性を示す図である。It is a figure which shows the input-output characteristic of the digital / analog converting circuit of FIG. 第1の変形例に係るデジタル/アナログ変換回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the digital / analog converting circuit which concerns on a 1st modification. 図4のデジタル/アナログ変換回路の動作を例示するタイムチャートである。5 is a time chart illustrating an operation of the digital / analog conversion circuit of FIG. 4. 第2の変形例に係るデジタル/アナログ変換回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the digital / analog converting circuit which concerns on a 2nd modification. 図6のデジタル/アナログ変換回路の動作を例示するタイムチャートである。7 is a time chart illustrating the operation of the digital / analog conversion circuit of FIG. 6. 第3の変形例に係るデジタル/アナログ変換回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the digital / analog converting circuit which concerns on a 3rd modification. 第4の変形例に係るデジタル/アナログ変換回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the digital / analog converting circuit based on a 4th modification. 図9のデジタル/アナログ変換回路の動作を例示するタイムチャートである。10 is a time chart illustrating an operation of the digital / analog conversion circuit of FIG. 9. 第5の変形例に係るデジタル/アナログ変換回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the digital / analog converting circuit based on a 5th modification. 第6の変形例に係るデジタル/アナログ変換回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the digital / analog converting circuit based on a 6th modification. 第7の変形例に係るデジタル/アナログ変換回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the digital / analog converting circuit based on a 7th modification. 第2の実施の形態に係るデジタル/アナログ変換回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the digital / analog converting circuit based on 2nd Embodiment.
符号の説明Explanation of symbols
2…抵抗ストリング、10…基準電圧発生回路、20…デコーダ回路、30…制御部、SWG1…第1スイッチ群、SWG2…第2スイッチ群、P1…第1基準電圧端子、P2…第2基準電圧端子、P3…出力端子、C1…第1キャパシタ、C2…第2キャパシタ、100…デジタル/アナログ変換回路、SW1…第1スイッチ、SW2…第2スイッチ、SW3…第3スイッチ、SW4…第4スイッチ、SW5…第5スイッチ、SW6…第6スイッチ、SW7…第7スイッチ、OUT…出力部、SH1…第1サンプルホールド回路、SH2…第2サンプルホールド回路SH2、平均化回路40。 DESCRIPTION OF SYMBOLS 2 ... Resistor string, 10 ... Reference voltage generation circuit, 20 ... Decoder circuit, 30 ... Control part, SWG1 ... 1st switch group, SWG2 ... 2nd switch group, P1 ... 1st reference voltage terminal, P2 ... 2nd reference voltage Terminal, P3 ... output terminal, C1 ... first capacitor, C2 ... second capacitor, 100 ... digital / analog conversion circuit, SW1 ... first switch, SW2 ... second switch, SW3 ... third switch, SW4 ... fourth switch , SW5, fifth switch, SW6, sixth switch, SW7, seventh switch, OUT, output section, SH1, first sample and hold circuit, SH2, second sample and hold circuit SH2, and averaging circuit 40.
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. The embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 本明細書において、「部材Aが、部材Bに接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合や、部材Aと部材Bが、電気的な接続状態に影響を及ぼさない他の部材を介して間接的に接続される場合も含む。同様に、「部材Cが、部材Aと部材Bの間に設けられた状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、電気的な接続状態に影響を及ぼさない他の部材を介して間接的に接続される場合も含む。 In this specification, “the state in which the member A is connected to the member B” means that the member A and the member B are physically directly connected, or the member A and the member B are electrically connected. The case where it is indirectly connected through another member that does not affect the state is also included. Similarly, “the state in which the member C is provided between the member A and the member B” refers to the case where the member A and the member C or the member B and the member C are directly connected, as well as an electrical condition. It includes the case of being indirectly connected through another member that does not affect the connection state.
 本明細書において、アルファベットi、j、n、m、s、t、K、Lやギリシャ文字α、β等は、整数を示す。またにおいて”#”は論理反転または2の補数を表す。 In this specification, alphabets i, j, n, m, s, t, K, L, Greek letters α, β, and the like indicate integers. In addition, “#” represents logical inversion or two's complement.
(第1の実施の形態)
 図1は、第1の実施の形態に係るデジタル/アナログ変換回路100の構成を示す回路図である。デジタル/アナログ変換回路100は、デジタル入力信号DINをアナログ電圧DACOUTに変換し、出力端子P3から出力する。デジタル入力信号DINはmビットのバイナリデータ[Bm-1:B0]であり、図にはm=3の場合が例示されている。
(First embodiment)
FIG. 1 is a circuit diagram showing a configuration of a digital / analog conversion circuit 100 according to the first embodiment. The digital / analog conversion circuit 100 converts the digital input signal DIN into an analog voltage DACOUT and outputs it from the output terminal P3. The digital input signal DIN is m-bit binary data [Bm-1: B0], and the case where m = 3 is illustrated in the figure.
 デジタル/アナログ変換回路100は、抵抗ストリング(R~R)、複数の電圧タップT~Tn+1、基準電圧発生回路10、デコーダ回路20、第1スイッチ群SWG1、第2スイッチ群SWG2、出力部OUTを備える。図1では、n=2-1の関係を満たす。 The digital / analog conversion circuit 100 includes a resistor string (R 1 to R n ), a plurality of voltage taps T 1 to T n + 1 , a reference voltage generation circuit 10, a decoder circuit 20, a first switch group SWG1, a second switch group SWG2, An output unit OUT is provided. In FIG. 1, the relationship n = 2 m −1 is satisfied.
 第1基準電圧端子P1と第2基準電圧端子P2の間に直列に設けられた複数の抵抗R~Rは、抵抗ストリング2を形成する。隣接する抵抗RとRi+1(i=1、2、…、n-1)の接続点ならびに第1基準電圧端子P1および第2基準電圧端子P2には、電圧を取り出すための(n+1)個のタップT~Tn+1が設けられている。複数の抵抗R~Rは、半導体チップ上に、順に規則的に配置され、より具体的には複数の抵抗R~Rは対称性(点対称もしくは線対称)をもって配置される。 A plurality of resistors R 1 to R n provided in series between the first reference voltage terminal P 1 and the second reference voltage terminal P 2 form a resistor string 2. The connection point between the adjacent resistors R i and R i + 1 (i = 1, 2,..., N−1) and the first reference voltage terminal P1 and the second reference voltage terminal P2 have (n + 1) pieces for taking out the voltage. Taps T 1 to T n + 1 are provided. The plurality of resistors R 1 to R n are regularly arranged on the semiconductor chip in order, and more specifically, the plurality of resistors R 1 to R n are arranged with symmetry (point symmetry or line symmetry).
 基準電圧発生回路10は、所定の上側基準電圧VRH、下側基準電圧VRLを生成する。基準電圧発生回路10は、第1状態S1において、上側基準電圧VRHを第1基準電圧端子P1に、下側基準電圧VRLを第2基準電圧端子P2に印加する。また第2状態S2において、下側基準電圧VRLを第1基準電圧端子P1に、上側基準電圧VRHを第2基準電圧端子P2に印加する。つまり、第1基準電圧端子P1と第2基準電圧端子P2の間に、第1状態S1と第2状態S2とで逆極性の電圧を印加可能となっている。 The reference voltage generation circuit 10 generates a predetermined upper reference voltage VRH and a lower reference voltage VRL. In the first state S1, the reference voltage generation circuit 10 applies the upper reference voltage VRH to the first reference voltage terminal P1 and the lower reference voltage VRL to the second reference voltage terminal P2. In the second state S2, the lower reference voltage VRL is applied to the first reference voltage terminal P1, and the upper reference voltage VRH is applied to the second reference voltage terminal P2. That is, it is possible to apply voltages having opposite polarities between the first reference voltage terminal P1 and the second reference voltage terminal P2 in the first state S1 and the second state S2.
 基準電圧発生回路10は、2入力1出力のスイッチSWI1、SWI2を含む。スイッチSWI1、SWI2はそれぞれ、第1状態S1と第2状態S2で異なる値をとる制御信号φ1が入力される。具体的には第1状態S1においてφ1=0、第2状態S2においてφ1=1である。スイッチSWI1の一方の入力端子には上側基準電圧VRHが、他方の入力端子には下側基準電圧VRLが入力される。スイッチSWI2も同様である。 The reference voltage generation circuit 10 includes two-input one-output switches SWI1 and SWI2. Each of the switches SWI1 and SWI2 receives a control signal φ1 that takes different values in the first state S1 and the second state S2. Specifically, φ1 = 0 in the first state S1, and φ1 = 1 in the second state S2. The upper reference voltage VRH is input to one input terminal of the switch SWI1, and the lower reference voltage VRL is input to the other input terminal. The same applies to the switch SWI2.
 スイッチSWI1は、第1状態S1(φ1=0)において、上側基準電圧VRHを選択し、第2状態S2(φ1=1)において、下側基準電圧VRLを選択し、選択した電圧を第1基準電圧端子P1に与える。同様に、スイッチSWI2は、第1状態S1(φ1=0)において、下側基準電圧VRLを選択し、第2状態S2(φ1=1)において、上側基準電圧VRHを選択し、選択した電圧を第2基準電圧端子P2に与える。 The switch SWI1 selects the upper reference voltage VRH in the first state S1 (φ1 = 0), selects the lower reference voltage VRL in the second state S2 (φ1 = 1), and selects the selected voltage as the first reference. Apply to voltage terminal P1. Similarly, the switch SWI2 selects the lower reference voltage VRL in the first state S1 (φ1 = 0), selects the upper reference voltage VRH in the second state S2 (φ1 = 1), and selects the selected voltage. This is applied to the second reference voltage terminal P2.
 本明細書の各図に示される2入力1出力スイッチは、制御信号として0が入力された状態を示している。1が入力された場合、図示とは反対の入力ノード側と導通する。 The 2-input 1-output switch shown in each drawing in this specification indicates a state in which 0 is input as a control signal. When 1 is input, it conducts to the input node side opposite to the figure.
 第1スイッチ群SWG1は、複数のタップT~Tn+1に生ずる電圧(タップ電圧)V~Vn+1から、デジタル入力信号DINに応じたひとつを選択し、中間端子P4から出力する。 The first switch group SWG1 selects one of the voltages (tap voltages) V 1 to V n + 1 generated in the plurality of taps T 1 to T n + 1 according to the digital input signal DIN, and outputs it from the intermediate terminal P4.
 具体的には、第1スイッチ群SWG1は第1状態S1において、複数のタップT~Tn+1から、デジタル入力信号DINに応じたひとつT(1≦s≦n+1)を選択する。また第2状態S2において、第1状態S1において選択されたタップTと対称な位置にあるタップT(1≦t≦n+1)を選択する。ここで(t+s)/2=(n+1)/2が成立する。 Specifically, in the first state S1, the first switch group SWG1 selects one T s (1 ≦ s ≦ n + 1) corresponding to the digital input signal DIN from the plurality of taps T 1 to T n + 1 . In the second state S2, a tap T t (1 ≦ t ≦ n + 1) at a position symmetrical to the tap T s selected in the first state S1 is selected. Here, (t + s) / 2 = (n + 1) / 2 is established.
 第1スイッチ群SWG1のトポロジーは任意であるが、たとえば図1の実施の形態では、タップ電圧V~Vn+1を、m段階でトーナメント方式で選択するためのツリー状に接続されたスイッチ素子SW[0,1]、SW[0,2]、SW[0,3]、SW[0,4]、SW[1,1]、SW[1,2]、SW[2,1]を備える。各スイッチ素子SW[i,j]は、2入力1出力である。 The topology of the first switch group SWG1 is arbitrary, but in the embodiment of FIG. 1, for example, the switch elements SW connected in a tree shape for selecting the tap voltages V 1 to V n + 1 in a tournament manner in m stages. [0, 1], SW [0, 2], SW [0, 3], SW [0, 4], SW [1, 1], SW [1, 2], SW [2, 1]. Each switch element SW [i, j] has two inputs and one output.
 スイッチSW[i,j]は、デジタル入力信号DINのビットBiに対応した制御信号Ciによって接続状態が制御される。 The connection state of the switch SW [i, j] is controlled by the control signal Ci corresponding to the bit Bi of the digital input signal DIN.
 スイッチSW[0,j]の2つの入力端子はそれぞれ、タップT2j-1とT2jと接続される。
 スイッチSW[i,j](i≠0)の2つの入力端子はそれぞれ、スイッチSW[i-1,2j-1]と、SW[i-1,2j]と接続される。
The two input terminals of the switch SW [0, j] are connected to the taps T 2j-1 and T 2j , respectively.
The two input terminals of the switch SW [i, j] (i ≠ 0) are connected to the switches SW [i−1,2j−1] and SW [i−1,2j], respectively.
 デコーダ回路20は、第1スイッチ群SWG1を制御するための制御信号C0~C2を生成する。具体的にデコーダ回路20は、第1状態S1において、デジタル入力信号DIN(=[B2:B0])と所定の関係を有する制御信号[C2:C0]に応じて、第1スイッチ群SWG1を制御する。また第2状態S2において、デジタル入力信号DINの2の補数(#DIN)と所定の関係を有する第2の制御信号[C2:C0]に応じて第1スイッチ群SWG1を制御する。
 第1状態S1において、Ci=Biであり、第2状態S2においてCi=#Biである。
The decoder circuit 20 generates control signals C0 to C2 for controlling the first switch group SWG1. Specifically, in the first state S1, the decoder circuit 20 controls the first switch group SWG1 according to the control signal [C2: C0] having a predetermined relationship with the digital input signal DIN (= [B2: B0]). To do. In the second state S2, the first switch group SWG1 is controlled in accordance with the second control signal [C2: C0] having a predetermined relationship with the two's complement (#DIN) of the digital input signal DIN.
In the first state S1, Ci = Bi, and in the second state S2, Ci = # Bi.
 図1のデコーダ回路20は、デジタル入力信号DINの各ビット[B2:B0]それぞれに対応づけられた複数の排他的論理和ゲートXOR0~XOR2を含む。
 ゲートXORiは、ビットBiと制御信号φ1の排他的論理和を制御信号Ciとして出力する。この構成によって、デジタル入力信号DINの値が第2状態S2において、2の補数に変換することができる。
The decoder circuit 20 of FIG. 1 includes a plurality of exclusive OR gates XOR0 to XOR2 associated with each bit [B2: B0] of the digital input signal DIN.
The gate XORi outputs an exclusive OR of the bit Bi and the control signal φ1 as the control signal Ci. With this configuration, the value of the digital input signal DIN can be converted to 2's complement in the second state S2.
 出力部OUTは、第1状態S1における第1スイッチ群SWG1の出力電圧と、第2状態S2における第1スイッチ群SWG1の出力電圧とを平均化し、アナログ電圧DACOUTとして出力する。 The output unit OUT averages the output voltage of the first switch group SWG1 in the first state S1 and the output voltage of the first switch group SWG1 in the second state S2, and outputs it as an analog voltage DACOUT.
 出力部OUTは、電圧に応じた電荷を蓄えるキャパシタの性質を利用して構成することができる。出力部OUTは、第1キャパシタC1、第2キャパシタC2、第2スイッチ群SWG2を含む。 The output unit OUT can be configured by using the property of a capacitor that stores electric charge according to voltage. The output unit OUT includes a first capacitor C1, a second capacitor C2, and a second switch group SWG2.
 第1キャパシタC1は、その一端の電位が固定される。第2キャパシタC2も同様である。第1キャパシタC1、第2キャパシタC2に生ずる電圧を第1キャパシタ電圧VC1、第2キャパシタ電圧VC2と称する。第1キャパシタC1と第2キャパシタC2の容量値は等しく設計される。 The potential of one end of the first capacitor C1 is fixed. The same applies to the second capacitor C2. The voltages generated in the first capacitor C1 and the second capacitor C2 are referred to as a first capacitor voltage VC1 and a second capacitor voltage VC2. The capacitance values of the first capacitor C1 and the second capacitor C2 are designed to be equal.
 第2スイッチ群SWG2は、以下の3つの状態が切りかえ可能に構成される。
 1. 第1状態S1における第1スイッチ群SWG1の出力電圧によって、第1キャパシタC1を充電する状態
 2. 第2状態S2における第1スイッチ群SWG1の出力電圧によって、第2キャパシタC2を充電する状態
 3. 第1キャパシタC1と第2キャパシタC2の電荷を平均化し、第1キャパシタ電圧VC1と第2キャパシタ電圧VC2の平均電圧を出力端子P3に印加する状態。
The second switch group SWG2 is configured so that the following three states can be switched.
1. 1. State in which the first capacitor C1 is charged by the output voltage of the first switch group SWG1 in the first state S1. 2. State in which the second capacitor C2 is charged by the output voltage of the first switch group SWG1 in the second state S2. A state in which the charges of the first capacitor C1 and the second capacitor C2 are averaged, and the average voltage of the first capacitor voltage VC1 and the second capacitor voltage VC2 is applied to the output terminal P3.
 以上の3つの機能が切りかえ可能であれば、第2スイッチ群SWG2の構成は任意である。たとえば図1の第2スイッチ群SWG2は、第1スイッチSW1、第2スイッチSW2、第3スイッチSW3、第4スイッチSW4を含む。 If the above three functions can be switched, the configuration of the second switch group SWG2 is arbitrary. For example, the second switch group SWG2 in FIG. 1 includes a first switch SW1, a second switch SW2, a third switch SW3, and a fourth switch SW4.
 第1スイッチSW1は、第1スイッチ群SWG1の出力端子(中間端子)P4と第1キャパシタC1の間に設けられる。第2スイッチSW2は、中間端子P4と第2キャパシタC2の間に設けられる。第3スイッチSW3は、第1キャパシタC1とデジタル/アナログ変換回路100の出力端子P3の間に設けられる。第4スイッチSW4は、第2キャパシタC2とデジタル/アナログ変換回路100の出力端子P3の間に設けられる。第1スイッチSW1~第4スイッチSW4は、1入力1出力のスイッチであり、制御信号として0が入力されるとオフ状態(遮断)となり、1が入力されるとオン状態(導通)となる。各図において、1入力1出力のスイッチは、制御信号として0が入力された状態を示している。第1スイッチSW1は制御信号φ2に応じて、第2スイッチSW2は制御信号φ3に応じて、第3スイッチSW3、第4スイッチSW4は共通の制御信号φ4に応じて制御される。 The first switch SW1 is provided between the output terminal (intermediate terminal) P4 of the first switch group SWG1 and the first capacitor C1. The second switch SW2 is provided between the intermediate terminal P4 and the second capacitor C2. The third switch SW3 is provided between the first capacitor C1 and the output terminal P3 of the digital / analog conversion circuit 100. The fourth switch SW4 is provided between the second capacitor C2 and the output terminal P3 of the digital / analog conversion circuit 100. The first switch SW1 to the fourth switch SW4 are switches with one input and one output. When 0 is input as a control signal, the first switch SW1 to the fourth switch SW4 are turned off (shut off). In each figure, a switch with 1 input and 1 output shows a state in which 0 is input as a control signal. The first switch SW1 is controlled according to the control signal φ2, the second switch SW2 is controlled according to the control signal φ3, and the third switch SW3 and the fourth switch SW4 are controlled according to the common control signal φ4.
 制御部30は、制御信号φ1~φ4を生成する。 The control unit 30 generates control signals φ1 to φ4.
 バッファBUF1は、中間端子P4の電位を受け、出力部OUTに出力する。第1キャパシタC1、第2キャパシタC2の容量が大きく、あるいは第1スイッチ群SWG1の出力インピーダンスが高い場合(電流供給能力が低い)には、第1キャパシタC1、第2キャパシタC2の充電時間が長くなるという問題がある。そこでバッファBUF1を設けることにより充電時間を短縮することができる。バッファBUF1は、演算増幅器を用いた利得1のボルテージフォロア回路であってもよいし、利得が1より大きい増幅器であってもよいし、あるいは利得が1より小さい減衰器であっても構わない。つまり第1キャパシタC1、第2キャパシタC2を充電するのに足る出力インピーダンスを有する回路であればよい。 The buffer BUF1 receives the potential of the intermediate terminal P4 and outputs it to the output unit OUT. When the capacitances of the first capacitor C1 and the second capacitor C2 are large, or when the output impedance of the first switch group SWG1 is high (current supply capability is low), the charging time of the first capacitor C1 and the second capacitor C2 is long. There is a problem of becoming. Therefore, the charging time can be shortened by providing the buffer BUF1. The buffer BUF1 may be a voltage follower circuit having a gain of 1 using an operational amplifier, an amplifier having a gain larger than 1, or an attenuator having a gain smaller than 1. That is, any circuit having an output impedance sufficient to charge the first capacitor C1 and the second capacitor C2 may be used.
 2つのバッファBUF1を、第1キャパシタC1と第2キャパシタC2それぞれの充電経路に設けてもよい。 Two buffers BUF1 may be provided in the charging paths of the first capacitor C1 and the second capacitor C2, respectively.
 反対に、第1キャパシタC1、第2キャパシタC2の容量値が小さく、あるいは第1スイッチ群SWG1の出力インピーダンスが十分に低い(電流供給能力が高い)場合には、バッファBUF1を省略してもよい。あるいは第1キャパシタC1、第2キャパシタC2の充電時間が長くなっても信号処理に支障を来さない場合にも省略することができる。 On the other hand, when the capacitance values of the first capacitor C1 and the second capacitor C2 are small or the output impedance of the first switch group SWG1 is sufficiently low (the current supply capability is high), the buffer BUF1 may be omitted. . Alternatively, even when the charging time of the first capacitor C1 and the second capacitor C2 becomes long, the signal processing can be omitted.
 その他の図に示されるデジタル/アナログ変換回路についても、必要に応じてバッファBUF1を設けることができることはいうまでもないが、説明の簡略化のため、以下の図ではバッファBUF1を省略する。 Also in the digital / analog conversion circuit shown in the other figures, it is needless to say that the buffer BUF1 can be provided as necessary, but for the sake of simplicity of explanation, the buffer BUF1 is omitted in the following figures.
 以上がデジタル/アナログ変換回路100の構成である。続いてその動作を説明する。図2は、図1のデジタル/アナログ変換回路100の動作を例示するタイムチャートである。 The above is the configuration of the digital / analog conversion circuit 100. Next, the operation will be described. FIG. 2 is a time chart illustrating the operation of the digital / analog conversion circuit 100 of FIG.
 期間t0~t7が、D/A変換の1サイクルを示す。時刻t0に、デジタル入力信号DINの値が遷移する。その値は10進数で”4”である。時刻t0に制御信号φ1がローレベル(0)となり、基準電圧発生回路10が第1状態S1に設定される。この状態でデコーダ回路20は、デジタル入力信号DINに応じて制御信号C0~C2を生成する。このとき、第1スイッチ群SWG1により選択された電圧は、デジタル入力信号DINに応じたアナログ電圧であり、理想的には値4と一致するが、現実的には抵抗R~Rのばらつきによって、4からずれた電圧となる。デジタル入力信号DINの値が確定した後、時刻t1に制御信号φ2がハイレベルとなり、第1スイッチSW1がオンすると、第1キャパシタC1が第1スイッチ群SWG1によって選択された電圧により充電され、第1キャパシタ電圧VC1が上昇する。第1キャパシタ電圧VC1は、ある時間を経て、第1状態S1の第1スイッチ群SWG1の出力電圧と一致する。時刻t2に制御信号φ2がローレベルとなり、第1スイッチSW1がオフする。 A period t0 to t7 indicates one cycle of D / A conversion. At time t0, the value of the digital input signal DIN changes. The value is “4” in decimal. At time t0, the control signal φ1 becomes low level (0), and the reference voltage generation circuit 10 is set to the first state S1. In this state, the decoder circuit 20 generates control signals C0 to C2 according to the digital input signal DIN. At this time, the voltage selected by the first switch group SWG1 is an analog voltage corresponding to the digital input signal DIN, and ideally coincides with the value 4. However, in reality, the resistances R 1 to R n vary. Thus, the voltage deviates from 4. After the value of the digital input signal DIN is determined, when the control signal φ2 becomes high level at time t1 and the first switch SW1 is turned on, the first capacitor C1 is charged with the voltage selected by the first switch group SWG1, 1 capacitor voltage VC1 rises. The first capacitor voltage VC1 coincides with the output voltage of the first switch group SWG1 in the first state S1 after a certain period of time. At time t2, the control signal φ2 becomes low level, and the first switch SW1 is turned off.
 続いて、時刻t3に制御信号φ1がハイレベル(1)となり、基準電圧発生回路10が第2状態S2に設定される。この状態でデコーダ回路20は、制御信号C0~C2としてデジタル入力信号DINの2の補数を、第1スイッチ群SWG1に供給する。第2状態S2においても、第1スイッチ群SWG1により選択された電圧は、デジタル入力信号DINに応じたアナログ電圧であり、理想的には値4と一致するが、現実的には抵抗R~Rのばらつきによって、4からずれた電圧となる。時刻t4に、制御信号φ3がハイレベルとなり、第2スイッチSW2がオンすると、第2キャパシタC2が第1スイッチ群SWG1によって選択された電圧により充電され、第2キャパシタ電圧VC2が上昇する。第2キャパシタ電圧VC2は、ある時間を経て、第2状態S2の第1スイッチ群SWG1の出力電圧と一致する。第2キャパシタ電圧VC2が安定化すると、時刻t5に制御信号φ3がローレベルとなり、第2スイッチSW2がオフする。 Subsequently, at time t3, the control signal φ1 becomes high level (1), and the reference voltage generation circuit 10 is set to the second state S2. In this state, the decoder circuit 20 supplies the 2's complement of the digital input signal DIN as the control signals C0 to C2 to the first switch group SWG1. Also in the second state S2, the voltage selected by the first switch group SWG1 is an analog voltage corresponding to the digital input signal DIN and ideally matches the value 4, but in reality, the resistors R 1 to R due to variations in R n, it becomes a voltage shifted from 4. At time t4, when the control signal φ3 becomes a high level and the second switch SW2 is turned on, the second capacitor C2 is charged with the voltage selected by the first switch group SWG1, and the second capacitor voltage VC2 rises. The second capacitor voltage VC2 coincides with the output voltage of the first switch group SWG1 in the second state S2 after a certain time. When the second capacitor voltage VC2 is stabilized, the control signal φ3 becomes low level at time t5, and the second switch SW2 is turned off.
 続く時刻t6に、制御信号φ4がハイレベルとなると、第3スイッチSW3、第4スイッチSW4がともにオンとなり、第1キャパシタC1と第2キャパシタC2の電荷が平滑化される。その結果、第1キャパシタ電圧VC1と第2キャパシタ電圧VC2は平均化され、それぞれの電圧は、平均値電圧(VC1+VC2)/2に収束する。 When the control signal φ4 becomes high level at the subsequent time t6, both the third switch SW3 and the fourth switch SW4 are turned on, and the charges of the first capacitor C1 and the second capacitor C2 are smoothed. As a result, the first capacitor voltage VC1 and the second capacitor voltage VC2 are averaged, and the respective voltages converge to the average value voltage (VC1 + VC2) / 2.
 この平均値電圧は、出力端子P3から、デジタル入力信号DINに応じたアナログ電圧DACOUTとして出力される。 The average voltage is output from the output terminal P3 as an analog voltage DACOUT corresponding to the digital input signal DIN.
 以上がデジタル/アナログ変換回路100の動作である。図3は、図1のデジタル/アナログ変換回路100の入出力特性を示す図である。横軸は、デジタル入力信号DINを示す。第1キャパシタ電圧VC1は、第1状態S1における変換特性を、第2キャパシタ電圧VC2は、第2状態S2における変換特性を示す。図1のデジタル/アナログ変換回路100の抵抗R~Rの抵抗値のばらつきは、面内依存性を示すところ、第1状態S1と第2状態S2では、DACの高電位側と低電位側が反転して使用される。その結果、第1キャパシタ電圧VC1と第2キャパシタVC2は、理想的な線形特性に対して、対照的な誤差を有する。図1のデジタル/アナログ変換回路100では、同じデジタル入力信号DINに対して、2つの状態でD/A変換を行い、各状態の出力電圧VC1、VC2を平均化することで、抵抗値の誤差の面内ばらつきをキャンセルする。その結果、平均化された出力電圧DACOUTは、デジタル入力信号DINに対して、高い線形性を有することになる。 The above is the operation of the digital / analog conversion circuit 100. FIG. 3 is a diagram showing input / output characteristics of the digital / analog conversion circuit 100 of FIG. The horizontal axis represents the digital input signal DIN. The first capacitor voltage VC1 indicates a conversion characteristic in the first state S1, and the second capacitor voltage VC2 indicates a conversion characteristic in the second state S2. The variation in resistance values of the resistors R 1 to R n of the digital / analog conversion circuit 100 of FIG. 1 shows in-plane dependence. In the first state S1 and the second state S2, the high potential side and low potential of the DAC The side is reversed and used. As a result, the first capacitor voltage VC1 and the second capacitor VC2 have contrasting errors with respect to ideal linear characteristics. In the digital / analog conversion circuit 100 of FIG. 1, the same digital input signal DIN is subjected to D / A conversion in two states, and the output voltages VC1 and VC2 in each state are averaged, thereby causing an error in resistance value. Cancel in-plane variation. As a result, the averaged output voltage DACOUT has a high linearity with respect to the digital input signal DIN.
 このように、図1のデジタル/アナログ変換回路100によれば、従来のレイアウトの工夫では除去できない誤差を減少させることができ、精度を改善できる。 Thus, according to the digital / analog conversion circuit 100 of FIG. 1, errors that cannot be removed by the conventional layout device can be reduced, and the accuracy can be improved.
 なお、図1のデジタル/アナログ変換回路100では、出力電圧DACOUTが有効なのは、制御信号φ4がハイレベルの期間だけであるから、必要に応じて出力電圧DACOUTを保持するホールド回路を設けてもよい。 In the digital / analog conversion circuit 100 shown in FIG. 1, the output voltage DACOUT is valid only during the period when the control signal φ4 is at a high level. Therefore, a hold circuit that holds the output voltage DACOUT may be provided as necessary. .
 図4は、第1の変形例に係るデジタル/アナログ変換回路100aの構成を示す回路図である。デジタル/アナログ変換回路100aは、図1のデジタル/アナログ変換回路100と比べて、第1スイッチ群SWG1a、第2スイッチ群SWG2aのトポロジーが異なっており、それに併せて、デコーダ回路20aの構成が異なっている。 FIG. 4 is a circuit diagram showing a configuration of the digital / analog conversion circuit 100a according to the first modification. The digital / analog conversion circuit 100a differs from the digital / analog conversion circuit 100 of FIG. 1 in the topology of the first switch group SWG1a and the second switch group SWG2a, and accordingly, the configuration of the decoder circuit 20a is different. ing.
 第1スイッチ群SWG1aに着目すると、スイッチ素子SW[0,1]、SW[0,2]、SW[0,3]、SW[0,4]、SW[1,1]、SW[1,2]については、図1と同様に接続される。 Focusing on the first switch group SWG1a, the switch elements SW [0,1], SW [0,2], SW [0,3], SW [0,4], SW [1,1], SW [1, 2] is connected in the same manner as in FIG.
 図4では、デジタル入力信号DINの最上位ビットBm-1に応じた制御信号Cm-1(=C2)により制御されるスイッチの構成が異なっている。具体的には、図1のスイッチ素子SW[m-1,1]に代えて、1入力1出力のスイッチ素子SW[m-1,1]、SW[m-1,2]が設けられている。スイッチ素子SW[m-1,1]は、スイッチ素子SW[m-2,1]の出力端子と中間端子P4の間に設けられる。スイッチ素子SW[m-1,2]は、スイッチ素子SW[m-2,2]の出力端子と中間端子P4の間に設けられる。図1の第2スイッチ群SWG2の機能の一部を果たす。 In FIG. 4, the configuration of the switch controlled by the control signal Cm-1 (= C2) corresponding to the most significant bit Bm-1 of the digital input signal DIN is different. Specifically, instead of the switch element SW [m−1, 1] of FIG. 1, switch elements SW [m−1, 1] and SW [m−1, 2] having one input and one output are provided. Yes. The switch element SW [m−1, 1] is provided between the output terminal of the switch element SW [m−2, 1] and the intermediate terminal P4. The switch element SW [m-1, 2] is provided between the output terminal of the switch element SW [m-2, 2] and the intermediate terminal P4. It fulfills a part of the function of the second switch group SWG2 of FIG.
 デコーダ回路20aは、図1のデコーダ回路20に加えて、論理積ゲートAND1、AND2をさらに含む。ゲートAND1は、制御信号φ2と制御信号C2の論理積を生成し、スイッチ素子SW[m-1、1]の制御信号C21として出力する。ゲートAND2は、制御信号C2の反転#C2と、制御信号φ2との論理積を生成し、スイッチ素子SW[m-1、2]の制御信号C22として出力する。 The decoder circuit 20a further includes AND gates AND1 and AND2 in addition to the decoder circuit 20 of FIG. The gate AND1 generates a logical product of the control signal φ2 and the control signal C2, and outputs the logical product as the control signal C21 of the switch element SW [m−1, 1]. The gate AND2 generates a logical product of the inversion # C2 of the control signal C2 and the control signal φ2, and outputs the logical product as the control signal C22 of the switch element SW [m−1, 2].
 第2スイッチ群SWG2aは、第1スイッチSW1、第2スイッチSW2、第5スイッチSW5を含む。なお、上述のスイッチ素子SW[m-1,1]、SW[m-1,2]もまた、第2スイッチ群SWG2aの一部である。 The second switch group SWG2a includes a first switch SW1, a second switch SW2, and a fifth switch SW5. The switch elements SW [m−1, 1] and SW [m−1, 2] described above are also part of the second switch group SWG2a.
 第5スイッチSW5は、中間端子P4とデジタル/アナログ変換回路100aの出力端子P3の間に設けられる。 The fifth switch SW5 is provided between the intermediate terminal P4 and the output terminal P3 of the digital / analog conversion circuit 100a.
 以上が図4のデジタル/アナログ変換回路100aの構成である。続いてその動作を説明する。図5は、図4のデジタル/アナログ変換回路100aの動作を例示するタイムチャートである。 The above is the configuration of the digital / analog conversion circuit 100a in FIG. Next, the operation will be described. FIG. 5 is a time chart illustrating the operation of the digital / analog conversion circuit 100a of FIG.
 期間t0~t9が、D/A変換の1サイクルを示す。時刻t0に、デジタル入力信号DINの値が遷移する。時刻t1に制御信号φ1がローレベルとなり、基準電圧発生回路10が第1状態S1に設定される。この状態でデコーダ回路20は、デジタル入力信号DINに応じた制御信号C0、C1、C21、C22を生成する。デジタル入力信号DINの値が確定した後、時刻t2に制御信号φ2がハイレベルとなると、制御信号C21、C22のいずれかがハイレベルとなり、中間端子P4には、タップT~Tn+1のいずれかの電圧が発生する。 A period t0 to t9 indicates one cycle of D / A conversion. At time t0, the value of the digital input signal DIN changes. At time t1, the control signal φ1 becomes low level, and the reference voltage generation circuit 10 is set to the first state S1. In this state, the decoder circuit 20 generates control signals C0, C1, C21, and C22 according to the digital input signal DIN. After the value of the digital input signal DIN is determined, when the control signal φ2 becomes high level at time t2, one of the control signals C21 and C22 becomes high level, and any of the taps T 1 to T n + 1 is applied to the intermediate terminal P4. Voltage is generated.
 また時刻t2に制御信号φ3がハイレベルになると、第1スイッチSW1がオンし、第1キャパシタC1が第1スイッチ群SWG1によって選択された電圧により充電され、第1キャパシタ電圧VC1が上昇する。時刻t3に制御信号φ3がローレベルとなり、第1スイッチSW1がオフする。 When the control signal φ3 becomes high level at time t2, the first switch SW1 is turned on, the first capacitor C1 is charged with the voltage selected by the first switch group SWG1, and the first capacitor voltage VC1 rises. At time t3, the control signal φ3 becomes low level, and the first switch SW1 is turned off.
 続いて、時刻t4に制御信号φ1がハイレベルとなり、基準電圧発生回路10が第2状態S2に設定される。この状態でデコーダ回路20は、デジタル入力信号DINの2の補数#DINに応じた制御信号C0、C1、C21、C22を生成し、第1スイッチ群SWG1aに供給する。時刻t5に、制御信号φ4がハイレベルとなり、第2スイッチSW2がオンすると、第2キャパシタC2が第1スイッチ群SWG1によって選択された電圧により充電され、第2キャパシタ電圧VC2が上昇する。第2キャパシタ電圧VC2が安定化すると、時刻t6に制御信号φ2がローレベルとなり、スイッチ素子SW[2,1]、SW[2,2]がともにオフする。 Subsequently, at time t4, the control signal φ1 becomes high level, and the reference voltage generation circuit 10 is set to the second state S2. In this state, the decoder circuit 20 generates control signals C0, C1, C21, and C22 corresponding to the two's complement #DIN of the digital input signal DIN, and supplies the control signals C0, C1, C21, and C22 to the first switch group SWG1a. At time t5, when the control signal φ4 becomes high level and the second switch SW2 is turned on, the second capacitor C2 is charged with the voltage selected by the first switch group SWG1, and the second capacitor voltage VC2 rises. When the second capacitor voltage VC2 is stabilized, the control signal φ2 becomes low level at time t6, and both the switch elements SW [2,1] and SW [2,2] are turned off.
 続く時刻t7に、制御信号φ3が再びハイレベルとなると、第1スイッチSW1、第2スイッチSW2を介して第1キャパシタC1と第2キャパシタC2がカップリングされ、第1キャパシタ電圧VC1と第2キャパシタ電圧VC2が平均化される。そして、時刻t8に制御信号φ5がハイレベルとなると第5スイッチSW5がオンし、出力端子P3からデジタル入力信号DINに応じたアナログ電圧DACOUTが出力される。 When the control signal φ3 becomes high level again at the subsequent time t7, the first capacitor C1 and the second capacitor C2 are coupled via the first switch SW1 and the second switch SW2, and the first capacitor voltage VC1 and the second capacitor are coupled. The voltage VC2 is averaged. When the control signal φ5 becomes high level at time t8, the fifth switch SW5 is turned on, and the analog voltage DACOUT corresponding to the digital input signal DIN is output from the output terminal P3.
 以上がデジタル/アナログ変換回路100aの動作である。図4のデジタル/アナログ変換回路100aによれば、図1のデジタル/アナログ変換回路100に比べて、スイッチの個数を減らすことができ、コストや回路面積の観点で有利である。 The above is the operation of the digital / analog conversion circuit 100a. According to the digital / analog conversion circuit 100a of FIG. 4, the number of switches can be reduced as compared with the digital / analog conversion circuit 100 of FIG. 1, which is advantageous in terms of cost and circuit area.
 図6は、第2の変形例に係るデジタル/アナログ変換回路100bの構成を示す回路図である。デジタル/アナログ変換回路100bは、図1のデジタル/アナログ変換回路100と比べて、第2スイッチ群SWG2bのトポロジーが異なっている。 FIG. 6 is a circuit diagram showing a configuration of a digital / analog conversion circuit 100b according to a second modification. The digital / analog conversion circuit 100b differs from the digital / analog conversion circuit 100 of FIG. 1 in the topology of the second switch group SWG2b.
 第2スイッチ群SWG2bは、第3スイッチSW3、第4スイッチSW4、第6スイッチSW6、第7スイッチSW7を含む。
 第6スイッチSW6は1入力2出力であり、一方の出力端子が第1キャパシタC1に、他方の出力端子が第2キャパシタC2に接続される。第7スイッチSW7は、第6スイッチSW6の入力端子と、中間端子P4の間に設けられる。第6スイッチSW6は制御信号φ1に応じて、第7スイッチSW7は制御信号φ2に応じて制御される。
The second switch group SWG2b includes a third switch SW3, a fourth switch SW4, a sixth switch SW6, and a seventh switch SW7.
The sixth switch SW6 has one input and two outputs, and one output terminal is connected to the first capacitor C1, and the other output terminal is connected to the second capacitor C2. The seventh switch SW7 is provided between the input terminal of the sixth switch SW6 and the intermediate terminal P4. The sixth switch SW6 is controlled according to the control signal φ1, and the seventh switch SW7 is controlled according to the control signal φ2.
 図7は、図6のデジタル/アナログ変換回路100bの動作を例示するタイムチャートである。 FIG. 7 is a time chart illustrating the operation of the digital / analog conversion circuit 100b of FIG.
 期間t0~t8が、D/A変換の1サイクルを示す。時刻t0に、デジタル入力信号DINの値が遷移する。時刻t1に制御信号φ1がローレベルとなり、基準電圧発生回路10が第1状態S1に設定される。この状態でデコーダ回路20は、デジタル入力信号DINに応じた制御信号C0~C2を生成する。デジタル入力信号DINの値が確定した後、時刻t2に制御信号φ2がハイレベルとなると、第7スイッチSW7がオンし、第1スイッチ群SWG1の出力電圧が、第6スイッチSW6の入力端子に与えられる。このとき制御信号φ1はローレベルであるため、第6スイッチSW6は第1キャパシタC1側に導通している。その結果、第1キャパシタC1が、第1スイッチ群SWG1によって選択された電圧により充電される。時刻t3に制御信号φ2がローレベルとなり、第7スイッチSW7がオフする。 Period t0 to t8 represents one cycle of D / A conversion. At time t0, the value of the digital input signal DIN changes. At time t1, the control signal φ1 becomes low level, and the reference voltage generation circuit 10 is set to the first state S1. In this state, the decoder circuit 20 generates control signals C0 to C2 corresponding to the digital input signal DIN. After the value of the digital input signal DIN is confirmed, when the control signal φ2 becomes high level at time t2, the seventh switch SW7 is turned on, and the output voltage of the first switch group SWG1 is applied to the input terminal of the sixth switch SW6. It is done. At this time, since the control signal φ1 is at the low level, the sixth switch SW6 is conductive to the first capacitor C1 side. As a result, the first capacitor C1 is charged with the voltage selected by the first switch group SWG1. At time t3, the control signal φ2 becomes low level, and the seventh switch SW7 is turned off.
 続いて、時刻t4に制御信号φ1がハイレベルとなり、基準電圧発生回路10が第2状態S2に設定される。この状態でデコーダ回路20は、デジタル入力信号DINの2の補数にもとづき制御信号C0~C2を生成する。続く時刻t5に、制御信号φ2が再びハイレベルとなり、第7スイッチSW7がオンする。このとき、制御信号φ1はハイレベルであるため、第6スイッチSW6は第2キャパシタC2側に導通している。その結果、第2キャパシタC2が、第1スイッチ群SWG1によって選択された電圧により充電される。時刻t6に制御信号φ2がローレベルとなり、第7スイッチSW7がオフする。 Subsequently, at time t4, the control signal φ1 becomes high level, and the reference voltage generation circuit 10 is set to the second state S2. In this state, the decoder circuit 20 generates control signals C0 to C2 based on the 2's complement of the digital input signal DIN. At subsequent time t5, the control signal φ2 becomes high level again, and the seventh switch SW7 is turned on. At this time, since the control signal φ1 is at a high level, the sixth switch SW6 is electrically connected to the second capacitor C2. As a result, the second capacitor C2 is charged with the voltage selected by the first switch group SWG1. At time t6, the control signal φ2 becomes low level, and the seventh switch SW7 is turned off.
 続く時刻t7に、制御信号φ3がハイレベルとなると、第3スイッチSW3、第4スイッチSW4がともにオンとなり、第1キャパシタC1と第2キャパシタC2がカップリングされ、第1キャパシタ電圧VC1と第2キャパシタ電圧VC2の平均電圧が、出力端子P3から出力される。 At the subsequent time t7, when the control signal φ3 becomes high level, both the third switch SW3 and the fourth switch SW4 are turned on, the first capacitor C1 and the second capacitor C2 are coupled, and the first capacitor voltage VC1 and the second capacitor SW2 are coupled. An average voltage of the capacitor voltage VC2 is output from the output terminal P3.
 図8は、第3の変形例に係るデジタル/アナログ変換回路100cの構成を示す回路図である。デジタル/アナログ変換回路100cは、図1のデジタル/アナログ変換回路100と比べて、第1スイッチ群SWG1のトポロジーが異なっている。 FIG. 8 is a circuit diagram showing a configuration of a digital / analog conversion circuit 100c according to a third modification. The digital / analog conversion circuit 100c differs from the digital / analog conversion circuit 100 of FIG. 1 in the topology of the first switch group SWG1.
 図8において、複数の抵抗R~Rは、α行β列のマトリクスを形成するように、九十九折り(ジグザグ)状に設けられる。具体的には、直列に接続された抵抗ストリングR~Rが、行ごとに折り返すようにして配置されている。ここでα=2、β=2、K+L=mが成立する。 In FIG. 8, a plurality of resistors R 1 to R n are provided in a ninety-nine fold shape so as to form a matrix of α rows and β columns. Specifically, the resistor strings R 1 to R n connected in series are arranged so as to be folded back for each row. Here, α = 2 K , β = 2 L , and K + L = m are established.
 各抵抗R~Rに対応付けて、スイッチMOS~MOSが設けられる。また、マトリクスの行に対応づけられたα本の行ラインRL~RLαおよび出力スイッチ(トランスファゲート)TG~TGαと、マトリクスの列に対応づけられたβ本の列ラインCL~CLβが設けられる。複数のスイッチMOS~MOSおよび複数の出力スイッチTG~TGαは、第1スイッチ群SWG1cを構成する。 Switches MOS 1 to MOS n are provided in association with the resistors R 1 to R n . In addition, α row lines RL 1 to RL α and output switches (transfer gates) TG 1 to TG α associated with the matrix rows, and β column lines CL 1 to CL associated with the matrix columns. CL β is provided. The plurality of switches MOS 1 to MOS n and the plurality of output switches TG 1 to TG α constitute a first switch group SWG1c.
 i番目(i≠n)のスイッチMOSの一端は、抵抗RとRi+1の接続点と接続される。n番目のスイッチMOSの一端は、抵抗Rと第2基準電圧端子P2の接続点と接続される。 One end of the i-th (i ≠ n) switch MOS i is connected to a connection point between the resistors R i and R i + 1 . One end of the n-th switch MOS n is connected to the connection point of the resistors R n and the second reference voltage terminal P2.
 i行目の抵抗Rと接続されるスイッチMOSの他端は、i行目の行ラインRLと接続される。またj列目の抵抗Rと接続されるスイッチMOSの制御端子(ゲート)は、j列目の列ラインCLと接続される。 The other end of the switch MOS connected to the i-th resistor R is connected to the i-th row line RL i . The control terminal (gate) of the switch MOS connected to the resistor R in the j-th column is connected to the column line CL j in the j-th column.
 行ラインおよび列ラインは、メモリにおける行アドレスと列アドレスの関係、あるいはディスプレイ装置における走査線およびデータ線の関係とのアナロジーとして理解できる。 The row line and the column line can be understood as an analogy with the relationship between the row address and the column address in the memory or the relationship between the scanning line and the data line in the display device.
 i行目の出力スイッチTGは、i行目の行ラインRLと、中間端子P4の間に設けられる。 The i-th output switch TG i is provided between the i-th row line RL i and the intermediate terminal P4.
 また上位デコーダ回路20Uは、デコーダ回路20からの制御信号Cm-1~C0のうち、上位Kビットにもとづいて、出力スイッチTG~TGαに与える信号を生成する。上位デコーダ回路20Uは、制御信号Cm-1~C0の上位Kビットを10進数で表記した値をxとするとき、(x+1)行目の出力スイッチTGx+1をオンさせる。上位デコーダ回路20Uの構成は図示されたものに限定されない。 The upper decoder circuit 20U generates signals to be given to the output switches TG 1 to TG α based on the upper K bits of the control signals Cm−1 to C0 from the decoder circuit 20. The upper decoder circuit 20U turns on the output switch TG x + 1 in the (x + 1) -th row, where x is a value representing the upper K bits of the control signals Cm−1 to C0 in decimal. The configuration of the upper decoder circuit 20U is not limited to the illustrated one.
 下位デコーダ回路20Lは、デコーダ回路20からの制御信号Cm-1~C0のうち、下位Lビットにもとづいて、列ラインCL~CLβに与える信号を生成する。下位デコーダ回路20Lは、制御信号Cm-1~C0の下位Lビットを10進数で表記した値をyとするとき、(y+1)列目のスイッチMOSy+1をオンさせる。下位デコーダ回路20Lの構成は図示されたものに限定されない。 The lower decoder circuit 20L generates signals to be applied to the column lines CL 1 to CL β based on the lower L bits of the control signals Cm−1 to C0 from the decoder circuit 20. The lower decoder circuit 20L turns on the switch MOS y + 1 in the (y + 1) -th column, where y is a value representing the lower L bits of the control signals Cm−1 to C0 in decimal. The configuration of the low-order decoder circuit 20L is not limited to that illustrated.
 その他の構成は図1のそれと同様である。図8のデジタル/アナログ変換回路100cでは、上位デコーダ回路20Hと下位デコーダ回路20Lが、デジタル入力信号DINに応じたスイッチをオンすることにより、デジタル/アナログ変換回路100cの出力端子P3には、デジタル入力信号DINに応じたアナログ電圧が発生する。 Other configurations are the same as those in FIG. In the digital / analog conversion circuit 100c of FIG. 8, the upper decoder circuit 20H and the lower decoder circuit 20L turn on a switch corresponding to the digital input signal DIN, so that the output terminal P3 of the digital / analog conversion circuit 100c has a digital signal. An analog voltage corresponding to the input signal DIN is generated.
 図8のデジタル/アナログ変換回路100cによっても、第1状態と第2状態それぞれにおいてD/A変換を行い、それぞれにおいて生成された電圧を平均化することにより、上述の実施の形態と同様の原理によって、抵抗R~Rのばらつきを、好適にキャンセルすることができる。 Also by the digital / analog conversion circuit 100c of FIG. 8, the D / A conversion is performed in each of the first state and the second state, and the voltage generated in each is averaged, whereby the same principle as in the above-described embodiment is obtained. Thus, the variation in the resistances R 1 to R n can be preferably canceled.
 図9は、第4の変形例に係るデジタル/アナログ変換回路100dの構成を示す回路図である。デジタル/アナログ変換回路100dは、第1状態と第2状態で生成される2つの電圧を平均化するためのキャパシタのペアC1、C2が、2組設けられている。それに併せて、デジタル/アナログ変換回路100dは、2つの第2スイッチ群SWG2、SWG2、および2つの第2スイッチ群SWG2、SWG2を切りかえるための出力スイッチSWOUTを備えている。 FIG. 9 is a circuit diagram showing a configuration of a digital / analog conversion circuit 100d according to a fourth modification. The digital / analog conversion circuit 100d includes two capacitor pairs C1 and C2 for averaging two voltages generated in the first state and the second state. At the same time, the digital / analog conversion circuit 100d includes two second switch groups SWG2 1 and SWG2 2 and an output switch SWOUT for switching between the two second switch groups SWG2 1 and SWG2 2 .
 キャパシタC1、C2、第2スイッチ群SWG2のセット(第1チャンネルCH1と称する)と、キャパシタC1、C2、第2スイッチ群SWG2のセット(第2チャンネルCH2と称する)と、は、交互に時分割的に使用される。 A set of capacitors C1 1 and C2 1 and a second switch group SWG2 1 (referred to as a first channel CH1), a set of capacitors C1 2 and C2 2 and a second switch group SWG2 2 (referred to as a second channel CH2), Are used alternately in a time-sharing manner.
 制御部30dは、制御信号φ1~φ8を生成する。第1チャンネル側のスイッチSW1は、制御信号φ2によって、SW2はφ3によって、SW3およびSW4はφ4によって制御される。第2チャンネル側のスイッチSW1は、制御信号φ5によって、SW2はφ6によって、SW3およびSW4はφ7によって制御される。出力スイッチSWOUTは、制御信号φ8によって制御される。 The control unit 30d generates control signals φ1 to φ8. The switch SW1 1 on the first channel side is controlled by a control signal φ2, SW2 1 by φ3, and SW3 1 and SW4 1 by φ4. Switch SW1 2 of the second channel side, the control signal .phi.5, SW2 2 by .phi.6, SW3 2 and SW4 2 are controlled by .phi.7. The output switch SWOUT is controlled by a control signal φ8.
 図10は、図9のデジタル/アナログ変換回路100dの動作を例示するタイムチャートである。期間t0~t7では、第1チャンネル側を利用して、期間t7~t8では第2チャンネル側が利用される。デジタル入力信号DINの遷移ごとに、制御信号φ8のレベルが切りかえられる。期間t0~t7において制御信号φ8がハイレベルであり、出力スイッチSWOUTが第2チャンネルCH2側に導通する。 FIG. 10 is a time chart illustrating the operation of the digital / analog conversion circuit 100d of FIG. In the period t0 to t7, the first channel side is used, and in the period t7 to t8, the second channel side is used. At each transition of the digital input signal DIN, the level of the control signal φ8 is switched. In the period t0 to t7, the control signal φ8 is at a high level, and the output switch SWOUT is conducted to the second channel CH2 side.
 図10の期間t0~t7は、図2の期間t0~t7に対応する。 The period t0 to t7 in FIG. 10 corresponds to the period t0 to t7 in FIG.
 時刻t7に、続くデジタル入力信号DINが入力されると、制御信号φ8がローレベルとなり、第1チャンネルCH1側が有効となる。期間t7~t8は、第2チャンネルCH2を利用して、期間t0~t7と同様の処理が行われる。制御信号φ5はφ2と、φ6はφ3と、φ7はφ4と対応するタイミングで遷移する。 When the subsequent digital input signal DIN is input at time t7, the control signal φ8 becomes low level, and the first channel CH1 side becomes valid. In the period t7 to t8, the same processing as that in the period t0 to t7 is performed using the second channel CH2. The control signal φ5 transitions at a timing corresponding to φ2, φ6 corresponds to φ3, and φ7 corresponds to φ4.
 図9のデジタル/アナログ変換回路100dの効果は、図10のタイムチャートを、その他のタイムチャート(図2、図5、図7)と比較することによって明確となる。
 たとえば図2のタイムチャートを参照すると、デジタル/アナログ変換回路100の出力電圧DACOUTは、期間t6~t8の間だけ、デジタル入力信号DINに応じた正しい値をとり、それ以外の期間は変動するため、デジタル/アナログ変換回路100が使用される状況によっては、デジタル/アナログ変換回路100の後段にホールド回路を設ける必要がある。このことは上述した。
The effect of the digital / analog conversion circuit 100d of FIG. 9 becomes clear by comparing the time chart of FIG. 10 with other time charts (FIGS. 2, 5, and 7).
For example, referring to the time chart of FIG. 2, the output voltage DACOUT of the digital / analog conversion circuit 100 takes a correct value according to the digital input signal DIN only during the period t6 to t8, and fluctuates during other periods. Depending on the situation in which the digital / analog conversion circuit 100 is used, it is necessary to provide a hold circuit after the digital / analog conversion circuit 100. This has been described above.
 これに対して、図10のタイムチャートを参照すると、2つのキャパシタペア(C1、C2)と(C1、C2)を、デジタル入力信号DINの1シンボルごとに、交互に利用することにより、一方のチャンネルのキャパシタペアC1、C2を利用する間、他方のキャパシタペアC1、C2の電荷を保持し続けることができる。つまり、デジタル/アナログ変換回路100dの出力電圧DACOUTを、長時間、安定させることができるため、ホールド回路が不要となるというメリットがある。 On the other hand, referring to the time chart of FIG. 10, two capacitor pairs (C1 1 , C2 1 ) and (C1 2 , C2 2 ) are alternately used for each symbol of the digital input signal DIN. Thus, while the capacitor pair C1 1 , C2 1 of one channel is used, the charge of the other capacitor pair C1 2 , C2 2 can be held. In other words, the output voltage DACOUT of the digital / analog conversion circuit 100d can be stabilized for a long time, so that there is an advantage that a hold circuit is unnecessary.
 上述したデジタル/アナログ変換回路100~100dにおいては、電位のホールドおよび電圧の平均化を、キャパシタを利用して行うものであった。これに対して、以下で説明する図11~図13のデジタル/アナログ変換回路100e~100gでは、サンプルホールド回路を用いて同等の処理を行う。 In the digital / analog conversion circuits 100 to 100d described above, potential holding and voltage averaging are performed using capacitors. On the other hand, in the digital / analog conversion circuits 100e to 100g of FIGS. 11 to 13 described below, an equivalent process is performed using a sample and hold circuit.
 図11は、第5の変形例に係るデジタル/アナログ変換回路100eの構成を示す回路図である。 FIG. 11 is a circuit diagram showing a configuration of a digital / analog conversion circuit 100e according to a fifth modification.
 デジタル/アナログ変換回路100eは、図1における第1キャパシタC1、第2キャパシタC2および第2スイッチ群SWG2に代えて、第1サンプルホールド回路SH1、第2サンプルホールド回路SH2および平均化回路40を備える。第1サンプルホールド回路SH1および第2サンプルホールド回路SH2はそれぞれ、制御信号φ2、φ3と同期して、中間端子P4の電位をサンプリングする。第1サンプルホールド回路SH1の出力電圧Vsh1、第2サンプルホールド回路SH2の出力電圧Vsh2はそれぞれ、図1のキャパシタ電圧VC1、VC2に対応する電圧である。第1サンプルホールド回路SH1、第2サンプルホールド回路SH2の構成は限定されない。 The digital / analog conversion circuit 100e includes a first sample hold circuit SH1, a second sample hold circuit SH2, and an averaging circuit 40 in place of the first capacitor C1, the second capacitor C2, and the second switch group SWG2 in FIG. . The first sample hold circuit SH1 and the second sample hold circuit SH2 respectively sample the potential of the intermediate terminal P4 in synchronization with the control signals φ2 and φ3. The output voltage Vsh1 of the first sample hold circuit SH1 and the output voltage Vsh2 of the second sample hold circuit SH2 are voltages corresponding to the capacitor voltages VC1 and VC2 in FIG. The configurations of the first sample hold circuit SH1 and the second sample hold circuit SH2 are not limited.
 平均化回路40は、第1サンプルホールド回路SH1および第2サンプルホールド回路SH2それぞれの出力電圧Vsh1、Vsh2を平均化し、出力端子P3からアナログ電圧DACOUTとして出力する。平均化回路40の構成は限定されないが、たとえば抵抗分圧を利用することができる。 The averaging circuit 40 averages the output voltages Vsh1 and Vsh2 of the first sample hold circuit SH1 and the second sample hold circuit SH2 and outputs them as an analog voltage DACOUT from the output terminal P3. Although the configuration of the averaging circuit 40 is not limited, for example, resistance voltage division can be used.
 デジタル/アナログ変換回路100eによれば、図1のデジタル/アナログ変換回路100と同様の処理を行うことができる。さらに、アナログ電圧DACOUTは、常時有効な値をとるというメリットがある。 The digital / analog conversion circuit 100e can perform the same processing as the digital / analog conversion circuit 100 of FIG. Further, the analog voltage DACOUT has a merit that it always takes an effective value.
 図12は、第6の変形例に係るデジタル/アナログ変換回路100fの構成を示す回路図である。図12のデジタル/アナログ変換回路100fには、Mチャンネル(Mは2以上の整数)の出力端子P31~P3Mが設けられ、各チャンネルごとに、第1サンプルホールド回路SH1、第2サンプルホールド回路SH2および平均化回路40のセット(出力部OUT1~OUTM)が設けられている。 FIG. 12 is a circuit diagram showing a configuration of a digital / analog conversion circuit 100f according to a sixth modification. The digital / analog conversion circuit 100f of FIG. 12 is provided with output terminals P31 to P3M of M channels (M is an integer of 2 or more). For each channel, a first sample hold circuit SH1 and a second sample hold circuit SH2 are provided. A set of averaging circuits 40 (output units OUT1 to OUTM) is also provided.
 i番目のチャンネルの第1サンプルホールド回路SH1には、制御信号φ2iが入力され、第2サンプルホールド回路SH2には制御信号φ3iが入力される。制御部30fは、有効とすべきチャンネルの制御信号φ2i、φ3iを、所定のタイミングで時分割的にアサートする。 The control signal φ2i is input to the first sample hold circuit SH1 of the i-th channel, and the control signal φ3i is input to the second sample hold circuit SH2. The control unit 30f asserts the control signals φ2i and φ3i for the channels to be valid in a time division manner at a predetermined timing.
 図12のデジタル/アナログ変換回路100fによれば、単一の抵抗ストリング2を複数の出力部OUT1~OUTMによって時分割的に利用することができる。 According to the digital / analog conversion circuit 100f of FIG. 12, a single resistor string 2 can be used in a time-sharing manner by a plurality of output units OUT1 to OUTM.
 図13は、第7の変形例に係るデジタル/アナログ変換回路100gの構成を示す回路図である。このデジタル/アナログ変換回路100gは、図12のデジタル/アナログ変換回路100fと同様、Mチャンネルの出力端子P31~P3Mを備え、各チャンネルごとに、出力部OUT1~OUTMと、第1スイッチ群SWG11~SWG1Mを備える。 FIG. 13 is a circuit diagram showing a configuration of a digital / analog conversion circuit 100g according to a seventh modification. Similar to the digital / analog conversion circuit 100f of FIG. 12, the digital / analog conversion circuit 100g includes M-channel output terminals P31 to P3M. For each channel, the output sections OUT1 to OUTM and the first switch group SWG11 to SWG1M is provided.
 複数の第1スイッチ群SWG11~SWG1Mは、共通の抵抗ストリング2と接続される。第iチャンネルの第1スイッチ群SWG1iは、図示しないデコーダ回路20により生成されるiチャンネル用の制御信号C0i~C2iによって制御される。 The plurality of first switch groups SWG11 to SWG1M are connected to a common resistor string 2. The i-th channel first switch group SWG1i is controlled by i-channel control signals C0i to C2i generated by a decoder circuit 20 (not shown).
 図13のデジタル/アナログ変換回路100gによれば、図12のデジタル/アナログ変換回路100fと同様に、単一の抵抗ストリング2を利用して多チャンネルのデジタル/アナログ変換が実現できる。さらに、図12の回路で必要であった時分割処理が不要となり、各チャンネルが同時並列的にデジタル/アナログ変換を行うことが可能となる。 According to the digital / analog conversion circuit 100g in FIG. 13, multi-channel digital / analog conversion can be realized by using a single resistor string 2 in the same manner as the digital / analog conversion circuit 100f in FIG. Further, the time division processing required in the circuit of FIG. 12 becomes unnecessary, and each channel can perform digital / analog conversion simultaneously and in parallel.
(第2の実施の形態)
 続いて、上述の実施の形態とは別の思想によって、抵抗のレイアウトを工夫することにより、デジタル/アナログ変換回路の抵抗ばらつきをキャンセルする技術を説明する。
(Second Embodiment)
Next, a technique for canceling the resistance variation of the digital / analog conversion circuit by devising the resistor layout based on a concept different from the above embodiment will be described.
 図14は、第2の実施の形態に係るデジタル/アナログ変換回路200の構成を示す回路図である。デジタル/アナログ変換回路200は、デジタル入力信号DINをアナログ電圧DACOUTに変換し、出力端子P3から出力する。デジタル入力信号DINはmビット(mは整数)のバイナリデータ[Bm-1:B0]であり、m=6の場合が例示されている。 FIG. 14 is a circuit diagram showing a configuration of a digital / analog conversion circuit 200 according to the second embodiment. The digital / analog conversion circuit 200 converts the digital input signal DIN into an analog voltage DACOUT and outputs it from the output terminal P3. The digital input signal DIN is binary data [Bm-1: B0] of m bits (m is an integer), and the case where m = 6 is illustrated.
 デジタル/アナログ変換回路200は、複数の抵抗R~R、スイッチSW~SWと、α本の行ラインRL~RLα、β本の列ラインCL~CLβ、出力スイッチSWO~SWOα、Xデコーダ210、Yデコーダ220、を備える。 The digital / analog conversion circuit 200 includes a plurality of resistors R 1 to R n , switches SW 0 to SW n , α row lines RL 1 to RL α , β column lines CL 1 to CL β , and an output switch SWO. 1 to SWO α , an X decoder 210, and a Y decoder 220.
 n=2であり、図14ではn=64である。複数の抵抗R~Rは直列に接続されており、渦巻き状に配置されている。この抵抗ストリングR~Rは、α行β列のマトリクスを形成している。抵抗ストリングR~Rの両端には、上側基準電圧VRHと下側基準電圧VRLが印加されている。 n = 2 m , and n = 64 in FIG. The plurality of resistors R 1 to R n are connected in series and arranged in a spiral shape. The resistor strings R 1 to R n form a matrix of α rows and β columns. An upper reference voltage VRH and a lower reference voltage VRL are applied to both ends of the resistor strings R 1 to R n .
 スイッチSW~SWそれぞれの一端は、対応する抵抗R~Rと接続される。またi行目に配置されるスイッチSWの一端は、i行目の行ラインRLと接続される。i行目の出力スイッチSWOは、i行目の行ラインRLと出力端子P3の間に設けられる。 Switches SW 0 ~ SW n each end is connected to corresponding resistors R 1 ~ R n. One end of the switch SW arranged in the i-th row is connected to the i-th row line RL i . The i-th row output switch SWO i is provided between the i-th row line RL i and the output terminal P3.
 Xデコーダ210は、デジタル入力信号DINのうち、下位L(=3)ビット[B2:B0]にもとづいて、スイッチSW~SWに与える信号を生成する。Xデコーダ210は、下位Lビットを10進数で表記した値をyとするとき、(y+1)列目のスイッチSWをオンさせる。 The X decoder 210 generates a signal to be given to the switches SW 0 to SW n based on the lower L (= 3) bits [B2: B0] in the digital input signal DIN. The X decoder 210 turns on the switch SW in the (y + 1) th column, where y is a value representing the lower L bits in decimal.
 Yデコーダ220は、デジタル入力信号DINのうち、上位K(=3)ビット[B5:B3]にもとづいて、出力スイッチSWO~SWOαに与える信号を生成する。Yデコーダ220は、上位Kビットを10進数で表記した値をxとするとき、(x+1)行目のスイッチSWOx+1をオンさせる。 The Y decoder 220 generates a signal to be given to the output switches SWO 1 to SWO α based on the upper K (= 3) bits [B5: B3] in the digital input signal DIN. The Y decoder 220 turns on the switch SWO x + 1 in the (x + 1) -th row, where x is a value representing the upper K bits in decimal.
 Xデコーダ210、Yデコーダ220の機能は、ハードウェア的に構成された論理回路であってもよいし、ソフトウェア的な演算を利用して実現してもよい。 The functions of the X decoder 210 and the Y decoder 220 may be a logic circuit configured in hardware, or may be realized using software operations.
 以上がデジタル/アナログ変換回路200の構成である。図14のデジタル/アナログ変換回路200によれば、抵抗ストリングR~Rを渦巻き状に配置することにより、抵抗値の面内ばらつきの影響を好適にキャンセルすることができ、非線形性を改善することができる。 The above is the configuration of the digital / analog conversion circuit 200. According to the digital / analog conversion circuit 200 of FIG. 14, by arranging the resistor strings R 1 to R n in a spiral shape, the influence of the in-plane variation of the resistance value can be preferably canceled, and nonlinearity is improved. can do.
 実施の形態にもとづき本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が可能である。 Although the present invention has been described based on the embodiments, the embodiments merely show the principle and application of the present invention, and the embodiments depart from the idea of the present invention defined in the claims. Many modifications and arrangements can be made without departing from the scope.
 本発明は、電子回路に利用できる。 The present invention can be used for electronic circuits.

Claims (12)

  1.  デジタル入力信号に応じたアナログ電圧を出力するデジタル/アナログ変換回路であって、
     第1基準電圧端子と、
     第2基準電圧端子と、
     出力端子と、
     前記第1、第2基準電圧端子の間に直列に設けられた複数の抵抗を含む抵抗ストリングと、
     各抵抗の接続点ごとに設けられた複数のタップと、
     所定の上側基準電圧と所定の下側基準電圧を生成し、第1状態において、前記上側基準電圧を前記第1基準電圧端子に、前記下側基準電圧を前記第2基準電圧端子に印加し、第2状態において、前記下側基準電圧を前記第1基準電圧端子に、前記上側基準電圧を前記第2基準電圧端子に印加する基準電圧発生回路と、
     前記複数のタップから、前記第1状態において、前記デジタル入力信号に応じたひとつを選択し、前記第2状態において、前記第1状態において選択されたタップと対称な位置にあるタップを選択する第1スイッチ群と、
     前記第1状態における前記第1スイッチ群の出力電圧と、前記第2状態における前記第1スイッチ群の出力電圧とを平均化して出力する出力部と、
     を備えることを特徴とするデジタル/アナログ変換回路。
    A digital / analog conversion circuit that outputs an analog voltage corresponding to a digital input signal,
    A first reference voltage terminal;
    A second reference voltage terminal;
    An output terminal;
    A resistor string including a plurality of resistors provided in series between the first and second reference voltage terminals;
    A plurality of taps provided for each connection point of each resistor;
    Generating a predetermined upper reference voltage and a predetermined lower reference voltage, and applying the upper reference voltage to the first reference voltage terminal and the lower reference voltage to the second reference voltage terminal in a first state; A reference voltage generating circuit for applying the lower reference voltage to the first reference voltage terminal and the upper reference voltage to the second reference voltage terminal in a second state;
    A first tap is selected from the plurality of taps according to the digital input signal in the first state, and a tap at a position symmetrical to the tap selected in the first state is selected in the second state. 1 switch group,
    An output unit that averages and outputs the output voltage of the first switch group in the first state and the output voltage of the first switch group in the second state;
    A digital / analog conversion circuit comprising:
  2.  前記出力部は、
     一端の電位が固定された第1キャパシタと、
     一端の電位が固定された第2キャパシタと、
     前記第1状態において前記第1スイッチ群により選択されたタップの電圧によって前記第1キャパシタを充電する状態と、前記第2状態において前記第1スイッチ群により選択されたタップの電圧によって前記第2キャパシタを充電する状態と、前記第1キャパシタの電圧と前記第2キャパシタの電圧を平均化した電圧を、前記出力端子から出力する状態と、が切りかえ可能に構成された第2スイッチ群と、
     を含むことを特徴とする請求項1に記載のデジタル/アナログ変換回路。
    The output unit is
    A first capacitor having a fixed potential at one end;
    A second capacitor having a fixed potential at one end;
    A state in which the first capacitor is charged by the voltage of the tap selected by the first switch group in the first state, and a state of the second capacitor by the voltage of the tap selected by the first switch group in the second state A second switch group configured to be able to switch between a state in which the first capacitor voltage and a voltage obtained by averaging the voltage of the first capacitor and the voltage of the second capacitor are output from the output terminal;
    The digital / analog conversion circuit according to claim 1, comprising:
  3.  前記出力部は、
     前記第1状態における前記第1スイッチ群の出力電圧をサンプルホールドする第1サンプルホールド回路と、
     前記第2状態における前記第1スイッチ群の出力電圧をサンプルホールドする第2サンプルホールド回路と、
     前記第1、第2サンプルホールド回路の出力電圧を平均化する平均化回路と、
    を含むことを特徴とする請求項1に記載のデジタル/アナログ変換回路。
    The output unit is
    A first sample and hold circuit that samples and holds an output voltage of the first switch group in the first state;
    A second sample-and-hold circuit that samples and holds the output voltage of the first switch group in the second state;
    An averaging circuit for averaging the output voltages of the first and second sample and hold circuits;
    The digital / analog conversion circuit according to claim 1, comprising:
  4.  前記第1スイッチ群の出力電圧を受け、前記出力部へと出力するバッファをさらに備えることを特徴とする請求項1から3のいずれかに記載のデジタル/アナログ変換回路。 4. The digital / analog conversion circuit according to claim 1, further comprising a buffer that receives an output voltage of the first switch group and outputs the output voltage to the output unit.
  5.  前記第1状態において、前記デジタル入力信号と所定の関係を有する第1の制御信号に応じて、前記第1スイッチ群を制御し、前記第2状態において、前記デジタル入力信号の2の補数と前記所定の関係を有する第2の制御信号に応じて前記第1スイッチ群を制御するデコーダ回路をさらに備えることを特徴とする請求項1から3のいずれかに記載のデジタル/アナログ変換回路。 In the first state, the first switch group is controlled according to a first control signal having a predetermined relationship with the digital input signal, and in the second state, the two's complement of the digital input signal and the 4. The digital / analog conversion circuit according to claim 1, further comprising a decoder circuit that controls the first switch group in accordance with a second control signal having a predetermined relationship.
  6.  前記第2スイッチ群は、
     前記第1スイッチ群の出力と前記第1キャパシタの間に設けられた第1スイッチと、
     前記第1スイッチ群の出力と前記第2キャパシタの間に設けられた第2スイッチと、
     前記第1キャパシタと前記出力端子の間に設けられた第3スイッチと、
     前記第2キャパシタと前記出力端子の間に設けられた第4スイッチと、
     を含むことを特徴とする請求項2に記載のデジタル/アナログ変換回路。
    The second switch group includes:
    A first switch provided between the output of the first switch group and the first capacitor;
    A second switch provided between the output of the first switch group and the second capacitor;
    A third switch provided between the first capacitor and the output terminal;
    A fourth switch provided between the second capacitor and the output terminal;
    The digital / analog conversion circuit according to claim 2, comprising:
  7.  前記第2スイッチ群は、
     前記第1スイッチ群の出力と前記第1キャパシタの間に設けられた第1スイッチと、
     前記第1スイッチ群の出力と前記第2キャパシタの間に設けられた第2スイッチと、
     前記第1スイッチ群の出力と前記出力端子の間に設けられた第5スイッチと、
     を含むことを特徴とする請求項2に記載のデジタル/アナログ変換回路。
    The second switch group includes:
    A first switch provided between the output of the first switch group and the first capacitor;
    A second switch provided between the output of the first switch group and the second capacitor;
    A fifth switch provided between the output of the first switch group and the output terminal;
    The digital / analog conversion circuit according to claim 2, comprising:
  8.  前記第2スイッチ群は、
     一方の出力端子に前記第1キャパシタが接続され、他端の出力端子に前記第2キャパシタが接続された第6スイッチと、
     前記第1スイッチ群の出力と、前記第6スイッチの入力端子との間に設けられた第7スイッチと、
     前記第1キャパシタと前記出力端子の間に設けられた第3スイッチと、
     前記第2キャパシタと前記出力端子の間に設けられた第4スイッチと、
     を含むことを特徴とする請求項2に記載のデジタル/アナログ変換回路。
    The second switch group includes:
    A sixth switch having one output terminal connected to the first capacitor and the other output terminal connected to the second capacitor;
    A seventh switch provided between the output of the first switch group and the input terminal of the sixth switch;
    A third switch provided between the first capacitor and the output terminal;
    A fourth switch provided between the second capacitor and the output terminal;
    The digital / analog conversion circuit according to claim 2, comprising:
  9.  前記デジタル入力信号がmビット(mは自然数)のとき、
     前記第1スイッチ群は、前記複数のタップを起点としてm段のトーナメント状に配置された複数のスイッチ素子を含み、i段目(1≦i≦m)のスイッチ素子は、前記第1状態において前記デジタル入力信号の下位iビット目に応じて、前記第2状態において前記デジタル入力信号の下位iビット目の反転信号に応じて制御されることを特徴とする請求項1から3のいずれかに記載のデジタル/アナログ変換回路。
    When the digital input signal is m bits (m is a natural number)
    The first switch group includes a plurality of switch elements arranged in an m-stage tournament starting from the plurality of taps, and the i-th (1 ≦ i ≦ m) switch elements are in the first state. 4. The control according to claim 1, wherein control is performed in accordance with a lower i-th bit of the digital input signal in accordance with an inverted signal of the lower i-th bit of the digital input signal in the second state. The digital / analog conversion circuit described.
  10.  前記デジタル入力信号がmビット(mは自然数)のとき、
     前記抵抗ストリングの前記複数の抵抗は、α行β列(α=2、β=2、K+L=m、いずれも自然数)のマトリクスを形成するように、折り返し配置され、
     前記第1スイッチ群は、
     前記マトリクスの行に対応づけられたα本の行ラインと、
     前記マトリクスの列に対応づけられたβ本の列ラインと、
     前記α本の行ラインに対応づけて設けられ、それぞれが、対応する行ラインと前記第1スイッチ群の出力端子の間に設けられた複数の出力スイッチと、
     前記複数の抵抗と対応づけてマトリクス状に配置された複数のスイッチ素子であって、スイッチ素子それぞれの一端は対応する前記抵抗と接続されており、i行目(1≦i≦α)の前記スイッチ素子の他端はi行目の行ラインと接続され、j列目(1≦i≦β)の前記スイッチ素子の制御端子はj列目の列ラインと接続されている、複数のスイッチ素子と、
     を含み、
     前記複数の出力スイッチのオン、オフは、前記第1状態において前記デジタル入力信号の上位Kビットに応じて、前記第2状態において前記デジタル入力信号の上位Kビットの2の補数に応じて制御され、前記複数のスイッチ素子のオン、オフは、前記第1状態において前記デジタル入力信号の下位Lビットに応じて、前記第2状態において前記デジタル入力信号の下位Lビットの2の補数に応じて制御されることを特徴とする請求項1に記載のデジタル/アナログ変換回路。
    When the digital input signal is m bits (m is a natural number)
    The plurality of resistors of the resistor string are arranged in a folded manner so as to form a matrix of α rows and β columns (α = 2 K , β = 2 L , K + L = m, all natural numbers),
    The first switch group includes:
    Α row lines associated with rows of the matrix;
    Β column lines associated with columns of the matrix;
    A plurality of output switches provided in association with the α row lines, each provided between a corresponding row line and an output terminal of the first switch group;
    A plurality of switch elements arranged in a matrix in association with the plurality of resistors, wherein one end of each switch element is connected to the corresponding resistor, and the i-th row (1 ≦ i ≦ α) The other end of the switch element is connected to the i-th row line, and the control terminal of the switch element in the j-th column (1 ≦ i ≦ β) is connected to the j-th column line. When,
    Including
    On / off of the plurality of output switches is controlled according to the upper K bits of the digital input signal in the first state and according to the two's complement of the upper K bits of the digital input signal in the second state. The on / off of the plurality of switch elements is controlled according to the lower L bits of the digital input signal in the first state and according to the two's complement of the lower L bits of the digital input signal in the second state. The digital / analog conversion circuit according to claim 1, wherein:
  11.  本デジタル/アナログ変換回路は、複数チャンネルの出力を備え、
     前記出力部は、複数のチャンネルごとに複数個、設けられており、
     前記デジタル入力信号のデータごとに、複数の前記出力部を、交互に時分割的に使用することを特徴とする請求項1から3のいずれかに記載のデジタル/アナログ変換回路。
    This digital / analog converter circuit has a multi-channel output,
    A plurality of the output units are provided for each of a plurality of channels,
    4. The digital / analog conversion circuit according to claim 1, wherein a plurality of the output units are alternately used in a time division manner for each data of the digital input signal.
  12.  デジタル入力信号をアナログ電圧に変換する方法であって、
     直列に設けられた複数の抵抗を含む抵抗ストリングの一端に上側基準電圧を印加し、他端に下側基準電圧を印加する第1ステップと、
     各抵抗の接続点ごとに設けられた複数のタップから、前記デジタル入力信号に応じたひとつを選択する第2ステップと、
     前記抵抗ストリングの前記一端に下側基準電圧を印加し、前記他端に上側基準電圧を印加する第3ステップと、
     前記複数のタップから、前記第2ステップにおいて選択したタップと対称な位置にあるタップを選択する第4ステップと、
     前記第2ステップ、第4ステップそれぞれにおいて選択された2つの電圧を平均化して出力する第5ステップと、
     を備えることを特徴とする方法。
    A method of converting a digital input signal into an analog voltage,
    A first step of applying an upper reference voltage to one end of a resistor string including a plurality of resistors provided in series and applying a lower reference voltage to the other end;
    A second step of selecting one corresponding to the digital input signal from a plurality of taps provided for each connection point of each resistor;
    Applying a lower reference voltage to the one end of the resistor string and applying an upper reference voltage to the other end;
    A fourth step of selecting a tap at a position symmetrical to the tap selected in the second step from the plurality of taps;
    A fifth step of averaging and outputting the two voltages selected in each of the second step and the fourth step;
    A method comprising the steps of:
PCT/JP2009/000028 2009-01-07 2009-01-07 Circuit and method for digital-analog conversion WO2010079530A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/000028 WO2010079530A1 (en) 2009-01-07 2009-01-07 Circuit and method for digital-analog conversion
JP2010545621A JP5226085B2 (en) 2009-01-07 2009-01-07 Digital / analog conversion circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/000028 WO2010079530A1 (en) 2009-01-07 2009-01-07 Circuit and method for digital-analog conversion

Publications (1)

Publication Number Publication Date
WO2010079530A1 true WO2010079530A1 (en) 2010-07-15

Family

ID=42316311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000028 WO2010079530A1 (en) 2009-01-07 2009-01-07 Circuit and method for digital-analog conversion

Country Status (2)

Country Link
JP (1) JP5226085B2 (en)
WO (1) WO2010079530A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114696832A (en) * 2020-12-29 2022-07-01 圣邦微电子(北京)股份有限公司 Analog-to-digital converter and analog-to-digital conversion method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0983369A (en) * 1995-09-06 1997-03-28 Nec Corp Resistor string type d/a converter and serial-parallel type a/d converter
JP2001094427A (en) * 1999-08-31 2001-04-06 Texas Instr Inc <Ti> Resistor string d/a converter adopting boosting control baesd on differential input between consecutive input words
JP2001168718A (en) * 1999-11-05 2001-06-22 Texas Instr Inc <Ti> Improved potential difference digital/analog converter with stability of ratio meter output voltage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0983369A (en) * 1995-09-06 1997-03-28 Nec Corp Resistor string type d/a converter and serial-parallel type a/d converter
JP2001094427A (en) * 1999-08-31 2001-04-06 Texas Instr Inc <Ti> Resistor string d/a converter adopting boosting control baesd on differential input between consecutive input words
JP2001168718A (en) * 1999-11-05 2001-06-22 Texas Instr Inc <Ti> Improved potential difference digital/analog converter with stability of ratio meter output voltage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114696832A (en) * 2020-12-29 2022-07-01 圣邦微电子(北京)股份有限公司 Analog-to-digital converter and analog-to-digital conversion method

Also Published As

Publication number Publication date
JP5226085B2 (en) 2013-07-03
JPWO2010079530A1 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
JP3281621B2 (en) High precision DA conversion circuit
US8081097B2 (en) Analog-to-digital converter and related calibrating comparator
JP5427663B2 (en) A / D converter
US7501970B2 (en) Digital to analog converter architecture and method having low switch count and small output impedance
US7375670B1 (en) Digital-to-analog converter
JP5166375B2 (en) Digital / analog converter having a circuit architecture for improving switch losses
CN110247658B (en) Method for linearizing transfer characteristics by dynamic element matching
JP5835005B2 (en) D / A converter
TW200814542A (en) Digital-to-analog converter and image display device
JP4648779B2 (en) Digital / analog converter
JP4941029B2 (en) D / A converter
CN108540135B (en) Digital-to-analog converter and conversion circuit
JP2001136069A (en) Digital/analog conversion circuit
KR101686217B1 (en) Two-Channel Asynchronous SAR ADC
CN109391271B (en) Multi-string, multi-output digital-to-analog converter and method of converting a digital input stream into respective first and second analog outputs
JP5226085B2 (en) Digital / analog conversion circuit
JP5187782B2 (en) Cyclic A / D converter, image sensor device, and method for generating digital signal from analog signal
KR100514320B1 (en) Digital-to-analog converter
CN111106832A (en) DAC layout structure and resistance voltage-dividing type DAC
US8830100B2 (en) Digital-analog converter and control method thereof
JP5623618B2 (en) A / D converter
US20050206546A1 (en) Device and method for low non-linearity analog-to-digital converter
JP2005252663A (en) Current cell matrix type digital/analog converter
US7411536B1 (en) Digital-to-analog converter
KR101096088B1 (en) Digital-Analog Converter using resistor-string

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09837421

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010545621

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09837421

Country of ref document: EP

Kind code of ref document: A1