WO2010079304A2 - Procédé de mesure d'au moins une caractéristique géométrique d'une section plane à mesurer sur une pièce. - Google Patents

Procédé de mesure d'au moins une caractéristique géométrique d'une section plane à mesurer sur une pièce. Download PDF

Info

Publication number
WO2010079304A2
WO2010079304A2 PCT/FR2010/050019 FR2010050019W WO2010079304A2 WO 2010079304 A2 WO2010079304 A2 WO 2010079304A2 FR 2010050019 W FR2010050019 W FR 2010050019W WO 2010079304 A2 WO2010079304 A2 WO 2010079304A2
Authority
WO
WIPO (PCT)
Prior art keywords
section
measured
reference surface
optical
image
Prior art date
Application number
PCT/FR2010/050019
Other languages
English (en)
Other versions
WO2010079304A3 (fr
Inventor
Patrick Lechaptois
Original Assignee
Technip France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technip France filed Critical Technip France
Priority to BRPI1006064-2A priority Critical patent/BRPI1006064B1/pt
Priority to GB1111693.6A priority patent/GB2478262B/en
Publication of WO2010079304A2 publication Critical patent/WO2010079304A2/fr
Publication of WO2010079304A3 publication Critical patent/WO2010079304A3/fr
Priority to DK201170373A priority patent/DK178405B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques

Definitions

  • the present invention relates to a method for measuring at least one geometric characteristic of a flat section to be measured on a part, the method comprising the following steps:
  • the optical measuring apparatus comprising an optic capable of collecting an image of the section to be measured and an image forming assembly collected by optics;
  • This method applies to the measurement of the geometrical characteristics of the plane section of the part, this part possibly being in particular an elongated element having a substantially constant cross section.
  • the elongated element is advantageously a metal strip intended to form a carcass of a flexible fluid transport pipe, or a stapled metal wire, intended to constitute a pressure vault for such a pipe.
  • Such flexible pipes are used in particular for the extraction of hydrocarbons from submarine deposits, and are for example described in the normative document API RP 17B "Recommended Practice for Flexible Pipe” published by the American Petroleum Institute.
  • the elongated elements are wound helically during manufacture of the pipe to form a tubular layer.
  • the metal strip is profiled and stapled on itself by forming folds along its longitudinal edges to ensure a good tensile strength of the carcass, while maintaining adequate flexibility.
  • the stapled strip has for example an elongated S-shaped cross section. To ensure good mechanical properties to the pipe, it is necessary to verify, during manufacture of the carcass, that the geometry of the stapled strip is in accordance with that desired by the manufacturer.
  • defects in the geometry of the stapled strip are likely to affect the mechanical strength of the carcass and may in particular reduce its resistance to external pressure.
  • an operator removes and cuts into the carcass, very precisely, a strip sample stapled in a radial plane relative to the axis of the tube.
  • An object of the invention is therefore to obtain a method of measuring a flat section of a workpiece, which is simple to implement, while providing improved accuracy, especially of the order of a hundredth of a millimeter.
  • an object of the invention is to verify the conformity of the part by precisely raising the outer contour of the flat section so as to measure geometric quantities representative of the flat section, such as heights and / or angles of different parts of the flat section, without accurately measuring its flatness or its parallelism with the second cut section.
  • An object of the invention is therefore to accurately measure the profile of the part, that is to say the intersection of the side faces of the cut piece with the average cutting plane.
  • the subject of the invention is a method of the aforementioned type, characterized in that the step of disposing comprises the application of the flat section to be measured on the reference surface, in order to arrange the reference surface between the section plane to be measured and the optics, the measurement of the plane section to be measured being made by the optics through the measurement support.
  • the method according to the invention may comprise one or more of the following characteristics, taken alone or in any combination (s) technically possible (s):
  • the measurement support has a transparent full portion defining the reference surface, the measurement of the flat section to be measured being made through the transparent full portion;
  • the reference surface comprises a planar region over an extent at least equal to the planar section to be measured, the method comprising the application of the plane section to the planar region;
  • the measurement support comprises means for biasing the flat section to be measured against the reference surface, the disposition step comprising maintaining the part applied to the reference surface by the biasing means;
  • the step of reading the section comprises taking an image of the flat section to be measured by the image forming assembly, the determination of the or each geometrical characteristic being carried out on the image;
  • the optical measuring apparatus comprises a light source, the recording step comprising sending incident light rays from the light source onto the flat section to be measured through the measuring medium, the reflection of the light rays incident on the flat section to be measured and the collection of the light rays reflected on the section to be measured by the optics;
  • the supply step comprises a cutting of the workpiece to form the flat section to be measured
  • the piece is an elongated element that has a local curvature, the cut being made in a plane perpendicular to a tangent to the local curvature at the level of the flat section to be measured;
  • the measurement support has a transparent full part delimiting the reference surface, the reference surface extending opposite the optical measuring device so that the optical device raises the flat section to be measured through the part; full transparent; and
  • the optics defines an optical axis for collecting light rays coming from the section to be measured, the optical axis being perpendicular to the reference surface.
  • the invention further relates to a device for measuring at least one geometric characteristic of a flat section to be measured on a part, the device comprising:
  • a measurement support having a reference surface on which the part is intended to be applied
  • an optical measuring device placed opposite the support for raising the section to be measured, the optical measuring apparatus comprising an optical device capable of collecting an image of the section to be measured and an image forming assembly collected by the optical; a computing unit connected to the optical measuring apparatus for calculating the or each geometrical characteristic on the basis of the section taken up by the optical measuring apparatus; characterized in that the reference surface extends opposite the optics in the measuring medium, the planar surface to be measured to be applied to the reference surface so that the reference surface is disposed between the flat section to measure and optics when applying the flat surface to be measured against the reference surface.
  • the device is characterized in that the measuring medium has a transparent solid portion delimiting the reference surface, the reference surface extending opposite the optical measuring apparatus for the optical apparatus to raise the flat section. to measure through the transparent full part.
  • FIG. 1 is a schematic elevational view of a first measuring device according to the invention, during a step of measuring a first method according to the invention
  • FIG. 2 is a top view, taken from the optical measuring apparatus of the device of FIG. 1, illustrating the measurement support of the device of FIG. 1;
  • - Figure 3 is a sectional view along the plane III of Figure 2 showing a detail of the measurement support and the piece to be measured received in this support;
  • FIG. 4 is an example of a flexible pipe having a carcass whose geometric characteristics are measured by the implementation of the method according to the invention
  • FIG. 5 is a schematic sectional view along a radial plane of the carcass of the pipe of Figure 4;
  • FIG. 6 is a schematic end view of the carcass of the pipe shown in Figure 4, to illustrate the cutting planes used to obtain a piece to be measured from the carcass;
  • FIG. 7 is a partial schematic elevational view of a measuring device not according to the invention, illustrating the lack of precision of the measurement when the measuring medium according to the invention is not used;
  • Figure 8 is a view of a section taken up by the optical apparatus of the device of Figure 1.
  • a first method according to the invention for measuring the geometric characteristics of a flat section 10 on a part 12 is implemented in a measuring device 14 shown schematically in FIGS. 1 to 3.
  • This method is intended in particular to measure the geometric characteristics of the section 10, in order to verify the conformity of the part 12.
  • the piece 12 is for example a sample of an elongated element intended to manufacture a layer of a flexible fluid transport pipe 16 shown schematically in FIG. 4.
  • the elongate element is a profiled metal strip 20 wound helically to form a tubular carcass 22 of resistance to the pressure prevailing outside the pipe 16, in particular the pressure hydrostatic in the case of submarine applications.
  • the carcass 22 is disposed inside a sheath 23 of fluid transport.
  • the sheath 23 is a sealed polymeric sheath generally made by extrusion.
  • the section 10 to be measured is a radial section of the metal strip 20 forming the carcass 22.
  • the strip 20 has two edges folded longitudinally on a central portion, of flattened S-shaped section, as shown in FIG. 5.
  • the section S-section of the strip thus comprises a generally U-shaped lower portion 30, an inclined intermediate portion 32 and an U-shaped upper portion 34 having, in the vicinity of its free end, a bearing wave 36, commonly referred to as "nipple".
  • the lower portion 30 of the section 10 of the strip is folded towards the intermediate portion 32 externally with respect to the inclined portion 32. It receives the upper portion 34 of an adjacent section.
  • the upper portion 34 is folded toward the intermediate portion 32 internally with respect to the inclined portion 32.
  • the upper portion 34 and the pin 36 of the section 10 are received in the lower portion 30 of an adjacent section.
  • the characteristics to be measured are, for example, the height h3 of the lower part 30, taken radially with respect to a the axis of the carcass 20, the total height h2 of the section 10, or / and the height h1 of the nipple 36.
  • the part 12 also has a bearing surface 37 situated opposite the flat section 10 to be measured.
  • the bearing surface 37 is not necessarily parallel to the flat section 10 and is not necessarily flat.
  • the elongated element to be characterized is a metal wire 37A of shape intended to create a pressure vault 38 disposed around the sheath 23 and intended to take up the forces related to the pressure prevailing inside the conle 16
  • the wire 37A is helically wound around the sheath 23 and generally has a section of complex geometry, in particular Z-shaped, T, U, K, X or I.
  • the device 14 comprises a support base 40, a mobile support 42, placed in abutment on the base 40, and an optical measuring device 44 arranged opposite and above the support 42.
  • Device 14 further comprises a control and calculation unit 46.
  • the support 42 comprises a perforated frame 50, a reference plate 52, a mobile plate 54 for applying the part 12 under the plate 52, and means 56 for biasing the mobile plate 54 towards the plate 52.
  • the openwork frame 50 is of generally parallelepipedic shape extending along a longitudinal horizontal axis A-A '.
  • the frame 50 comprises two vertical uprights 58A, 58B for guiding the movable plate 54, a horizontal upper frame 60 for guiding the reference plate 52, visible in FIG. 2, and wings 62 for supporting the frame 60 that project from from an amount 58B, away from the moving plate 54.
  • the frame 50 further comprises a lower horizontal surface 63 for supporting the biasing means 56.
  • the posts 58A, 58B extend perpendicularly to the axis AA 'between the lower surface 63 and the frame 60.
  • the posts 58A, 58B are arranged in support on the base 40. They define between them an interior volume 64 of circulation of the plate 54 intended to receive the plate 54 and the part 12.
  • the interior volume 64 opens laterally between the uprights 58A, 58B.
  • the upper frame 60 has a length, taken along the axis A-A ', greater than the length of the plate 52. It defines longitudinal sliding rails of the horizontal plate 52.
  • the plate 52 has a thickness less than that of the frame 60. It defines a planar bottom surface 70 of reference, extending opposite the apparatus 14 for receiving in abutment the flat section 10 to be measured, and an upper flat surface 72 extending opposite the device 14.
  • the reference surface 70 has a planar extent greater than the flat section 10 of the part 12.
  • the surface 70 is substantially parallel to an upper surface of the base 40, when the support 42 is placed on the base 40.
  • the reference plate 52 is transparent between the upper surface 72 and the lower surface 70.
  • the visible light for example in the wavelengths between 400 nanometers and 800 nanometers, is likely to pass through the plate 52 with a transmission coefficient of greater than 75%, advantageously greater than 90%.
  • the plate 52 is for example made of plexiglass or glass.
  • the plate 52 is fixed vertically relative to the frame 60 and relative to the support 42. It is mounted to slide parallel to the longitudinal axis AA 'of the support 42, between an upward closing position of the internal volume 64, in which the plate 52 extends opposite the plate 54 between the uprights 58A, 58B, and an access position to the interior volume 64 from above, in which the plate 52 extends in part opposite the wings 62 to releasing an access to the interior volume 64.
  • the movable platen 54 has a central portion 80 disposed in the interior volume 64 between the uprights 58A, 58B and two lateral gripping lugs 82 that protrude laterally out of the volume 64 for the displacement of the plate 54 .
  • the central portion 80 has an upper surface 84 of dark color to improve the contrast of the optical measurement of the workpiece 12.
  • the bearing surface 37 of the workpiece 12 is intended to be applied to the upper surface 84.
  • This upper surface 84 is for example provided with an elastic layer formed for example by a layer of thin foam to compensate for the irregularities of the bearing surface 37 of the part 12.
  • the plate 54 is displaceable in the interior volume 64 between a lower position located in the vicinity of the base 40, a plurality of intermediate positions for gripping the workpiece 12, and an upper support position on the frame 60. As illustrated by FIG. 3, the plate 54 is further inclined relative to the plane defined by the reference surface 70, to compensate for the inclination ⁇ of the bearing surface 37 with respect to the reference surface 70.
  • the biasing means 56 comprise an elastic biasing member 90 interposed between the lower surface of the plate 52 and the lower bearing surface 63.
  • the elastic biasing member 90 is able to permanently urge the movable plate 54 towards its upper position, so that the upper planar section of the piece 12 is in perfect contact, and therefore coplanar, with the reference surface. 70 of the reference plate 52 when the bearing surface 37 is disposed on the plate 54.
  • the support 42 is movable between a loading position of the sample 12, located away from the base 40, and a measuring position of the sample 12, which is supported on the base 40.
  • the reference surface 70 is substantially perpendicular to the axis B-B 'being situated at a given distance from the optical measuring apparatus 44.
  • the support 42 is permanently mounted on the base 40.
  • the optical measuring apparatus 44 is a profile projector operating in reflection mode with annular illumination.
  • Such an apparatus is for example described in US application US 2008/0285254. As will be seen below, such an apparatus makes it possible to illuminate the flat section to be picked up and to form an image of this section by collecting the rays reflected on this section.
  • It comprises a light source 100 disposed opposite the base 40 and the support 42, and an optical measurement module 102 which, in this example, is interposed between the light source 100 and the support 42 to collect the light rays emitted by the source 100 which have reflected on the surface 10 to be measured of the part 12.
  • the source 100 and the module 102 are arranged coaxially along a vertical optical axis B-B 'passing through the base 40 and the support 42, perpendicular to the reference surface 70
  • the source 100 thus has a radial extent around the axis B-B 'greater than the radial extent of the module 102. It comprises a dome 104 for focusing the light towards the support 42 and a plurality of light elements
  • the dome 104 has a concave bottom surface 108 for directing the light rays emitted by the light elements 106 to the support 42, preferably via reflectors.
  • the light elements 106 are arranged annularly in the concave surface 108 radially away from the module 102. They are thus able to emit incident light rays 1 10 which are directed around the module 102 towards the support 42 and in particular towards the interior volume 64.
  • the module 102 is situated above the light source 100, the source 100 then being disposed between the base 40 and the module 102.
  • the apparatus 44 is a profile projector operating in reflection mode with coaxial episcopic illumination. In this case, the source 100 illuminates the surface 10 through the module 102 coaxially with the optical axis B-B '.
  • Such an apparatus is described for example in US application US 2008/0252904.
  • the measurement module 102 comprises an optic January 12 able to collect and filter the reflected rays 1 13 on the section 10 in the support 42, and a detector 1 14 able to form an image from the rays transmitted by the optical 1 12.
  • the optic 1 12 is mounted in a lower part of the module 102 facing the plate 52. It is able to transmit to the detector 11 the rays reflected in the support 42 by the part 12 which extend substantially parallel to the 'B-B' axis, excluding substantially completely reflected rays of non-zero inclination with respect to the axis B-B '.
  • the reference surface 70 is placed in the field of optics 112 perpendicular to the axis B-B 'passing through optics 112 at a predefined distance to obtain a desired magnification and image sharpness.
  • the detector 1 14 is for example formed based on a matrix of photoelectric sensors CCD type ("Charge Coupled Device") or sensors CMOS type ("Complementary Metal Oxide Semi Conductor”).
  • This matrix is able to form an image of homothetic dimensions to that of the section 10 on the basis of the reflected light rays filtered by the optic 1 12.
  • the control and calculation unit 46 is capable of triggering the taking of an image by the detector 14. It is furthermore able to collect the image formed by the detector 14, then to process it mathematically to determine the geometrical magnitudes measured on section 10 and displaying section 10 read and measured quantities.
  • a first measuring method according to the invention, implemented using the device 14 will now be described.
  • This method is in this example for measuring the geometric characteristics of the section 10 of a metal strip 20 forming a carcass 22 of a flexible pipe 18 as shown in FIG. 4.
  • a tubular carcass section 22 is formed by tubular helical winding of the strip 20, previously profiled, about a longitudinal axis of CC tube.
  • the method then comprises providing a part 12 having a section to be measured by cutting the part 12 in a section of the tubular winding of the strip 20.
  • a first cut of the flat section 10 to be measured is performed very precisely by radially cutting the strip 20 perpendicular to the tangent T at the external surface of the carcass 22 at the point cutting.
  • the first cut of the section to be measured 10 which will be in contact with the reference surface 70, is made in a radial plane relative to the carcass 22, that is to say the plane containing the on the one hand, the axis CC of the carcass 22 and on the other hand a radius of the carcass.
  • the piece 12 thus cut is brought into the support 42.
  • the support 42 is then placed in its loading position of the sample 12.
  • the plate 52 occupies its position of access to the internal volume 64, substantially away from the plate 54.
  • the mobile plate 54 occupies its upper position bearing against the frame 60.
  • the piece 12 is then placed resting on the movable plate 54 through the frame 60 by applying its bearing surface 37 on the upper surface 84 of the plate 54 and directing its measuring section 10 upwards facing the optical measuring apparatus 14. Then, the operator presses the ears 82 to lower the plate 54 to its lower position in contact with the elastic biasing member 90. During this movement, the piece 12 penetrates completely into the interior volume 64. This being done, the operator slides the transparent plate 52 to its closed position so that it is placed opposite the plate 54 to close up the inner volume 64, above the section 10.
  • the operator releases the movable plate 54.
  • the plate 54 rises towards the transparent plate 52 until the section 10 to be measured of the Part 12 applies to the reference surface 70.
  • the support 42 is then placed on the base 40 in its measuring position.
  • the section 10 to be measured is situated in a plane perpendicular to the axis B-B ', of orientation and of axial position perfectly referenced along this axis B-B' with respect to the optical measuring apparatus 44.
  • the upper planar section 10 of the part 12, in contact with the reference surface 70 is disposed in the field of the optical apparatus, perpendicular to the optical axis B-B ', and at a predetermined distance from the objective allowing to obtain the desired magnification and image sharpness.
  • the reference surface 70 is then located between the section to be measured 10 and the optical 1 12.
  • the operator then activates the control unit 46 to raise an image of the section 10.
  • the light elements 106 are activated to generate incident light rays that converge toward the support 42 and penetrate the interior volume 64 through the transparent plate 52. Part of the incident rays 1 10 is reflected against the section 10 of the part 12 and crosses the transparent plate 52 upwards to form reflected rays 113 directed towards the measurement module 102.
  • the optic 112 collects a part of the reflected rays 1 13 and advantageously filters them to retain only those which are substantially parallel to the axis B-B 'to transmit them to the detector 114 and form an image.
  • the image of the section 1 10 is formed integrally in one piece, without displacement of the optics 1 12 relative to the reference surface 70 when taking the image.
  • the image formed by the detector 1 14 is then transmitted to the control and calculation unit 46 which calculates the geometric quantities representative of the section, such as the heights h1 to h3, the angle ⁇ 1 or other quantities .
  • the unit 46 also displays an image of the section 10 and the numerical values of the quantities.
  • the method according to the invention is therefore very simple to implement since it requires a single precise cut of the part 12 to be measured; only the cutting of the flat section 10 to be measured must be performed very precisely, the cutting of the bearing surface 37 does not require special precautions. Indeed, the fact that the bearing surface 37 is not flat and / or is not parallel to the flat section 10 has no influence on the accuracy of the measurement since the irregularities and / or the inclination of the bearing surface 37 are compensated by the device according to the invention.
  • section 10 to be measured is perfectly referenced with respect to the measuring device 44, whatever the nature and the geometry of the bearing surface 37, even if this geometry is not flat. and / or non-parallel to the planar section 10 to be measured. This makes it possible to obtain an accuracy of the order of one hundredth of a millimeter.
  • the biasing means 56 comprise means for moving the plate 54 manually operable by an operator, for example by a wheel.
  • the apparatus 44 is located below the support 42.
  • the reference surface is then formed by the upper surface 72 of the plate.
  • the piece 12 is then placed on the upper reference surface 72 of the plate 52 and the section 10 to be measured is kept pressed against the reference surface 72 under the effect of the weight of the part 12.
  • the piece to be measured is taken from another elongated element of a flexible pipe such as a wire 37A of a pressure vault 38.
  • the invention could also be applied to the geometric control of components cables and umbilicals, in particular submarine umbilicals, such as, for example, conductors, reinforcing wires, tubes or filling rods, these components constituting for these structures elongate elements wound helically or in SZ .
  • the image of the section 10 to be measured collected by the optics 112 is projected with a large preset magnification and is known on a large screen, the reading being done manually by an operator on this screen.
  • the piece to be measured 12 may comprise a simple flat section to be measured, whatever the shape of the part 12.
  • the light source 100 is a non-monochromatic light source, for example with a spectral width greater than 10 nm, preferably broadband and preferably in the visible range, for example from about 380 nm to about 780 nm, from in order to avoid the formation of interference fringes which could impair the clarity of the reading of the flat section 10 to be measured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Eyeglasses (AREA)

Abstract

Ce procédé comprend la fourniture d'une pièce (12) présentant une section plane (10) à mesurer, la disposition de la pièce (12) sur une surface de référence (70) d'un support de mesure (42), le relevé de la section plane (10) à mesurer à l'aide d'une optique (112) d'un appareil de mesure optique (44) et le calcul de la caractéristique géométrique sur la base de la section relevée par l'appareil de mesure optique (44). L'étape de disposition comprend l'application de la section plane (10) à mesurer sur la surface de référence (70), pour disposer la surface de référence (70) entre la section plane (10) à mesurer et l'optique (112). Le relevé de la section est effectué à travers le support de mesure (42).

Description

Procédé de mesure d'au moins une caractéristique géométrique d'une section plane à mesurer sur une pièce
La présente invention concerne un procédé de mesure d'au moins une caractéristique géométrique d'une section plane à mesurer sur une pièce, le procédé comprenant les étapes suivantes :
- fourniture d'une pièce présentant une section plane à mesurer ;
- disposition de la pièce sur une surface de référence d'un support de mesure ;
- relevé de la section plane à mesurer à l'aide d'un appareil de mesure optique, l'appareil de mesure optique comprenant une optique propre à recueillir une image de la section à mesurer et un ensemble de formation de l'image recueillie par l'optique ; et
- calcul de la caractéristique géométrique sur la base de la section relevée par l'appareil de mesure optique. Ce procédé s'applique à la mesure des caractéristiques géométriques de la section plane de la pièce, cette pièce pouvant être notamment un élément allongé présentant une section transversale sensiblement constante.
L'élément allongé est avantageusement un feuillard métallique destiné à former une carcasse d'une conduite flexible de transport de fluide, ou un fil métallique agrafé, destiné à constituer une voûte de pression pour une telle conduite. De telles conduites flexibles sont notamment utilisées pour l'extraction d'hydrocarbures à partir de gisements sous-marins, et sont par exemple décrites dans le document normatif API RP 17B « Recommended Practice for Flexible Pipe » publié par l'American Petroleum Institute. Les éléments allongés sont enroulés hélicoïdalement lors de la fabrication de la conduite pour former une couche tubulaire.
Dans le cas de la carcasse, le feuillard métallique est profilé et agrafé sur lui-même en formant des replis le long de ses bords longitudinaux pour assurer une bonne tenue à la traction de la carcasse, tout en préservant une flexibilité adéquate. Le feuillard agrafé présente par exemple une section transversale en forme de S allongé. Pour assurer de bonnes propriétés mécaniques à la conduite, il est nécessaire de vérifier, lors de la fabrication de la carcasse, que la géométrie du feuillard agrafé est conforme à celle souhaitée par le fabricant.
En effet, des défauts sur la géométrie du feuillard agrafé sont susceptibles d'affecter la résistance mécanique de la carcasse et peuvent réduire notamment sa résistance à la pression extérieure.
Pour pallier ce problème, il est connu de mesurer les caractéristiques géométriques d'une section plane du feuillard agrafé destiné à former la carcasse au début de la production de cette carcasse, afin de valider et de lancer la fabrication de la carcasse.
A cet effet, un opérateur prélève et découpe dans la carcasse, de manière très précise, un échantillon de feuillard agrafé dans un plan radial par rapport à l'axe du tube.
A cet effet, il réalise deux coupes radiales parallèles d'un secteur angulaire donné d'une spire du feuillard agrafé.
Puis, il applique une des deux sections ainsi formées sur une surface de référence d'un dispositif de mesure. Il relève les caractéristiques géométriques de la section découpée située en saillie à l'opposé de la surface de référence à l'aide d'un appareil de mesure optique. Une telle opération doit donc être effectuée avec un grand soin pour s'assurer que les deux coupes sont bien représentatives de la section du feuillard agrafé à mesurer. Ainsi, il est essentiel que la section découpée soit perpendiculaire à la tangente au point de découpe pour assurer une bonne précision de la mesure. Compte tenu de la courbure du feuillard agrafé, il est en outre nécessaire que la première section découpée soit relativement proche de la deuxième section découpée.
Un tel procédé est fastidieux à mettre en œuvre. Il n'est en outre suffisamment précis que pour des conduites de faible diamètre dont la carcasse est réalisée avec un feuillard agrafé de petite section, qui doit être mis en forme avec une grande précision. Pour des feuillards de faible épaisseur, la précision de la mesure, de l'ordre du dixième de millimètre, est insuffisante pour déterminer avec précision toutes les caractéristiques géométriques de la section.
Un but de l'invention est donc d'obtenir un procédé de mesure d'une section plane d'une pièce, qui soit simple à mettre en œuvre, tout en offrant une précision améliorée, notamment de l'ordre du centième de millimètre.
En particulier, un but de l'invention est de vérifier la conformité de la pièce en relevant précisément le contour extérieur de la section plane de manière à mesurer des grandeurs géométriques représentatives de la section plane, telles que des hauteurs et/ou des angles de différentes parties de la section plane, sans mesurer précisément sa planéité ni son parallélisme avec la deuxième section découpée.
Un but de l'invention est donc bien de mesurer de manière précise le profil de la pièce, c'est-à-dire l'intersection des faces latérales de la pièce découpée avec le plan moyen de coupe.
A cet effet, l'invention a pour objet un procédé du type précité, caractérisé en ce que l'étape de disposition comprend l'application de la section plane à mesurer sur la surface de référence, pour disposer la surface de référence entre la section plane à mesurer et l'optique, le relevé de la section plane à mesurer étant effectué par l'optique à travers le support de mesure.
Le procédé selon l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou suivant toute(s) combinaison(s) techniquement possible(s) :
- le support de mesure présente une partie pleine transparente délimitant la surface de référence, le relevé de la section plane à mesurer étant effectué à travers la partie pleine transparente ;
- la surface de référence comprend une région plane sur une étendue au moins égale à la section plane à mesurer, le procédé comprenant l'application de la section plane sur la région plane ; - le support de mesure comprend des moyens de sollicitation de la section plane à mesurer contre la surface de référence, l'étape de disposition comprenant le maintien de la pièce appliquée sur la surface de référence par les moyens de sollicitation ; - l'étape de relevé de la section comprend la prise d'une image de la section plane à mesurer par l'ensemble de formation de l'image, la détermination de la ou de chaque caractéristique géométrique étant effectuée sur l'image ;
- l'appareil de mesure optique comprend une source lumineuse, l'étape de relevé comprenant l'envoi de rayons lumineux incidents provenant de la source lumineuse sur la section plane à mesurer à travers le support de mesure, la réflexion des rayons lumineux incidents sur la section plane à mesurer et le recueil des rayons lumineux réfléchis sur la section à mesurer par l'optique ;
- l'étape de fourniture comprend une découpe de la pièce pour former la section plane à mesurer ; et
- la pièce est un élément allongé qui présente une courbure locale, la découpe étant effectuée suivant un plan perpendiculaire à une tangente à la courbure locale au niveau de la section plane à mesurer ; et
- le support de mesure présente une partie pleine transparente délimitant la surface de référence, la surface de référence s'étendant à l'opposé de l'appareil de mesure optique pour que l'appareil optique relève la section plane à mesurer à travers la partie pleine transparente ; et
- l'optique définit un axe optique de recueil des rayons lumineux provenant de la section à mesurer, l'axe optique étant perpendiculaire à la surface de référence.
L'invention a en outre pour objet un dispositif de mesure d'au moins une caractéristique géométrique d'une section plane à mesurer sur une pièce, le dispositif comprenant :
- un support de mesure présentant une surface de référence sur laquelle la pièce est destinée à être appliquée ;
- un appareil de mesure optique placé en regard du support pour relever la section à mesurer, l'appareil de mesure optique comprenant une optique propre à recueillir une image de la section à mesurer et un ensemble de formation de l'image recueillie par l'optique ; - une unité de calcul reliée à l'appareil de mesure optique pour calculer la ou chaque caractéristique géométrique sur la base de la section relevée par l'appareil de mesure optique ; caractérisé en ce que la surface de référence s'étend à l'opposé de l'optique dans le support de mesure, la surface plane à mesurer étant destinée à être appliquée sur la surface de référence pour que la surface de référence soit disposée entre la section plane à mesurer et l'optique lors de l'application de la surface plane à mesurer contre la surface de référence.
Le dispositif se caractérise en ce que le support de mesure présente une partie pleine transparente délimitant la surface de référence, la surface de référence s'étendant à l'opposé de l'appareil de mesure optique pour que l'appareil optique relève la section plane à mesurer à travers la partie pleine transparente.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en se référant aux dessins annexés, sur lesquels :
- la Figure 1 est une vue schématique en élévation d'un premier dispositif de mesure selon l'invention, lors d'une étape de mesure d'un premier procédé selon l'invention ;
- la Figure 2 est une vue de dessus, prise à partir de l'appareil de mesure optique du dispositif de la Figure 1 , illustrant le support de mesure du dispositif de la Figure 1 ; - la Figure 3 est une vue prise en coupe suivant le plan III de la Figure 2 représentant un détail du support de mesure et de la pièce à mesurer reçue dans ce support ;
- la Figure 4 est un exemple de conduite flexible présentant une carcasse dont les caractéristiques géométriques sont mesurées par la mise en œuvre du procédé selon l'invention ;
- la Figure 5 est une vue schématique en coupe suivant un plan radial de la carcasse de la conduite de la Figure 4 ;
- la Figure 6 est une vue schématique en bout de la carcasse de la conduite représentée sur la Figure 4, pour illustrer les plans de coupe utilisés pour obtenir une pièce à mesurer à partir de la carcasse ;
- la Figure 7 est une vue schématique partielle en élévation d'un dispositif de mesure non conforme à l'invention, illustrant le manque de précision de la mesure lorsque le support de mesure conforme à l'invention n'est pas utilisé ; - la Figure 8 est une vue d'une section relevée par l'appareil optique du dispositif de la Figure 1.
Un premier procédé selon l'invention de mesure des caractéristiques géométriques d'une section plane 10 sur une pièce 12 est mis en œuvre dans un dispositif de mesure 14 représenté schématiquement sur les Figures 1 à 3.
Ce procédé est destiné notamment à mesurer les caractéristiques géométriques de la section 10, afin de vérifier la conformité de la pièce 12.
La pièce 12 est par exemple un échantillon d'un élément allongé destiné à fabriquer une couche d'une conduite flexible 16 de transport de fluide représentée schématiquement sur la Figure 4.
Dans l'exemple représenté sur les Figures 1 à 7, l'élément allongé est un feuillard métallique 20 profilé et enroulé en hélice pour former une carcasse tubulaire 22 de résistance à la pression régnant à l'extérieur de la conduite 16, notamment la pression hydrostatique dans le cas des applications sous-marines. La carcasse 22 est disposée à l'intérieur d'une gaine 23 de transport de fluide. La gaine 23 est une gaine polymérique étanche généralement réalisée par extrusion.
La section 10 à mesurer est une section radiale du feuillard métallique 20 formant la carcasse 22. Le feuillard 20 présente deux bords repliés longitudinalement sur une partie centrale, de section en forme de S aplati, telle qu'illustrée par la Figure 5.
La section 10 en S du feuillard comprend ainsi une partie inférieure 30 en forme générale de U, une partie intermédiaire inclinée 32 et une partie supérieure 34 en forme générale de U présentant, au voisinage de son extrémité libre, une onde d'appui 36, communément désignée par le terme « téton ». La partie inférieure 30 de la section 10 du feuillard est repliée vers la partie intermédiaire 32 extérieurement par rapport à la partie inclinée 32. Elle reçoit la partie supérieure 34 d'une section adjacente. La partie supérieure 34 est repliée vers la partie intermédiaire 32 intérieurement par rapport à la partie inclinée 32. La partie supérieure 34 et le téton 36 de la section 10 sont reçus dans la partie inférieure 30 d'une section adjacente.
Comme illustré par la Figure 8, les caractéristiques à mesurer sont par exemple la hauteur h3 de la partie inférieure 30, prise radialement par rapport à un axe de la carcasse 20, la hauteur h2 totale de la section 10, ou/et la hauteur h1 du téton 36.
D'autres caractéristiques géométriques, telles que l'angle α1 formé par la partie intermédiaire 32 par rapport à un axe longitudinal de la carcasse 20 peuvent également être mesurées.
La pièce 12 présente en outre une surface d'appui 37 située à l'opposé de la section plane 10 à mesurer.
Comme on le verra plus bas, la surface d'appui 37 n'est pas nécessairement parallèle à la section plane 10 et n'est pas non plus nécessairement plane.
Dans une variante, l'élément allongé à caractériser est un fil métallique 37A de forme destiné à réaliser une voûte de pression 38 disposée autour de la gaine 23 et destinée à reprendre les efforts liés à la pression régnant à l'intérieur de la conuite 16. Le fil métallique 37A est enroulé en hélice autour de la gaine 23 et présente généralement une section de géométrie complexe, notamment en forme de Z, de T, de U, de K, de X ou de I.
Comme illustré par la Figure 1 , le dispositif 14 comprend un socle d'appui 40, un support mobile 42, disposé en appui sur le socle 40, et un appareil 44 de mesure optique disposé en regard et au-dessus du support 42. Le dispositif 14 comprend en outre une unité de commande et de calcul 46.
Le support 42 comprend un bâti ajouré 50, une plaque de référence 52, un plateau mobile 54 d'application de la pièce 12 sous la plaque 52, et des moyens 56 de sollicitation du plateau mobile 54 vers la plaque 52.
Le bâti ajouré 50 est de forme généralement parallélépipédique s'étendant le long d'un axe horizontal longitudinal A-A'.
Le bâti 50 comprend deux montants verticaux 58A, 58B de guidage du plateau mobile 54, un cadre supérieur horizontal 60 de guidage de la plaque de référence 52, visible sur la Figure 2, et des ailes 62 de support du cadre 60 qui font saillie à partir d'un montant 58B, à l'écart du plateau mobile 54. Le bâti 50 comprend en outre une surface horizontale inférieure 63 de support des moyens de sollicitation 56.
Les montants 58A, 58B s'étendent perpendiculairement à l'axe A-A' entre la surface inférieure 63 et le cadre 60. Les montants 58A, 58B sont disposés en appui sur le socle 40. Ils définissent entre eux un volume intérieur 64 de circulation du plateau 54 destiné à recevoir le plateau 54 et la pièce 12.
Le volume intérieur 64 débouche latéralement entre les montants 58A, 58B.
Il débouche en outre dans une ouverture centrale du cadre 60 pour permettre l'insertion de la pièce 12 dans le volume 64. Il est obturé au moins en partie vers le bas par la surface inférieure 63.
Le cadre supérieur 60 présente une longueur, prise le long de l'axe A-A', supérieure à la longueur de la plaque 52. Il définit des rails longitudinaux de coulissement horizontal de la plaque 52. La plaque 52 présente une épaisseur inférieure à celle du cadre 60. Elle définit une surface inférieure plane 70 de référence, s'étendant à l'opposé de l'appareil 14 pour recevoir en appui la section plane 10 à mesurer, et une surface plane supérieure 72 s'étendant en regard de l'appareil 14.
La surface de référence 70 présente une étendue plane supérieure à la section plane 10 de la pièce 12. La surface 70 est sensiblement parallèle à une surface supérieure du socle 40, lorsque le support 42 est posé sur le socle 40.
La plaque de référence 52 est transparente entre la surface supérieure 72 et la surface inférieure 70. Ainsi, la lumière visible, par exemple dans les longueurs d'ondes comprises entre 400 nanomètres et 800 nanomètres, est susceptible de passer à travers la plaque 52 avec un coefficient de transmission supérieur à 75%, avantageusement supérieur à 90%. La plaque 52 est par exemple réalisée en plexiglas ou en verre.
La plaque 52 est fixe verticalement par rapport au cadre 60 et par rapport au support 42. Elle est montée mobile à coulissement parallèlement à l'axe A-A' longitudinal du support 42, entre une position d'obturation vers le haut du volume intérieur 64, dans laquelle la plaque 52 s'étend en regard du plateau 54 entre les montants 58A, 58B, et une position d'accès au volume intérieur 64 par le haut, dans laquelle la plaque 52 s'étend en partie en regard des ailes 62 pour libérer un accès au volume intérieur 64. Le plateau mobile 54 présente une partie centrale 80 disposée dans le volume intérieur 64 entre les montants 58A, 58B et deux oreilles latérales 82 de préhension qui font saillie latéralement hors du volume 64 pour le déplacement du plateau 54. La partie centrale 80 présente une surface supérieure 84 de couleur foncée pour améliorer le contraste de la mesure optique de la pièce 12. La surface d'appui 37 de la pièce 12 est destinée à être appliquée sur la surface supérieure 84. Cette surface supérieure 84 est par exemple munie d'une couche élastique formée par exemple par une couche de mousse de faible épaisseur permettant de compenser les irrégularités de la surface d'appui 37 de la pièce 12.
Le plateau 54 est déplaçable dans le volume intérieur 64 entre une position inférieure située au voisinage du socle 40, une pluralité de positions intermédiaires d'enserrement de la pièce 12, et une position supérieure d'appui sur le cadre 60. Comme illustré par la Figure 3, le plateau 54 est en outre inclinable par rapport au plan défini par la surface de référence 70, pour compenser l'inclinaison α de la surface d'appui 37 par rapport à la surface de référence 70.
Les moyens de sollicitation 56 comprennent un organe de sollicitation élastique 90 interposé entre la surface inférieure de la plaque 52 et la surface inférieure d'appui 63.
L'organe de sollicitation élastique 90 est propre à solliciter en permanence le plateau mobile 54 vers sa position supérieure, de façon à ce que la section plane 10 supérieure de la pièce 12 soit en parfait contact, et donc coplanaire, avec la surface de référence 70 de la plaque de référence 52 lorsque la surface d'appui 37 est disposée sur le plateau 54.
Comme le montre la Figure 3, même si la pièce 12 présente une surface d'appui 37 non parallèle à la section à mesurer, ce non-parallélisme n'a pas d'influence sur la précision de la mesure, ce qui est un avantage par rapport aux procédés de l'art antérieur. L'organe de sollicitation élastique 90 et le plateau 54 sont ainsi propres à accommoder le non-parallélisme des deux surfaces 10, 37.
Dans l'exemple représenté sur la Figure 1 , le support 42 est mobile entre une position de chargement de l'échantillon 12, située à l'écart du socle 40 et une position de mesure de l'échantillon 12, située en appui sur le socle 40.
Dans la position de mesure, la surface de référence 70 est sensiblement perpendiculaire à l'axe B-B' en étant située à une distance donnée de l'appareil de mesure optique 44.
En variante, le support 42 est monté à demeure sur le socle 40. Dans l'exemple représenté sur la Figure 1 , l'appareil de mesure optique 44 est un projecteur de profil (« profile projector» en anglais) fonctionnant en mode réflexion avec un éclairage annulaire. Un tel appareil est par exemple décrit dans la demande américaine US 2008/0285254. Comme on le verra plus bas, un tel appareil permet d'illuminer la section plane à relever puis de former une image de cette section en recueillant les rayons réfléchis sur cette section.
Il comprend une source de lumière 100 disposée en regard du socle 40 et du support 42, et un module de mesure optique 102 qui, dans cet exemple, est interposé entre la source lumineuse 100 et le support 42 pour recueillir les rayons lumineux émis par la source 100 qui se sont réfléchis sur la surface 10 à mesurer de la pièce 12.
La source 100 et le module 102 sont disposés coaxialement le long d'un axe optique vertical B-B' passant par le socle 40 et par le support 42, perpendiculairement à la surface de référence 70
La source 100 présente ainsi une étendue radiale autour de l'axe B-B' supérieure à l'étendue radiale du module 102. Elle comprend un dôme 104 de focalisation de la lumière vers le support 42 et une pluralité d'éléments lumineux
106 montés dans le dôme 104. Le dôme 104 présente une surface inférieure 108 concave pour diriger les rayons lumineux émis par les éléments lumineux 106 vers le support 42, avantageusement par l'intermédiaire de réflecteurs.
Les éléments lumineux 106 sont disposés annulairement dans la surface concave 108 à l'écart radialement du module 102. Ils sont ainsi propres à émettre des rayons lumineux incidents 1 10 qui sont dirigés autour du module 102 vers le support 42 et notamment vers le volume intérieur 64.
Dans une variante représentée en pointillés sur la Figure 1 , le module 102 est situé au-dessus de la source de lumière 100, la source 100 étant alors disposée entre le socle 40 et le module 102. Dans une autre variante non représentée, l'appareil 44 est un projecteur de profil fonctionnant en mode réflexion avec un éclairage épiscopique coaxial. Dans ce cas, la source 100 éclaire la surface 10 à travers le module 102 coaxialement à l'axe optique B-B'. Un tel appareil est décrit par exemple dans la demande américaine US 2008/0252904.
Le module de mesure 102 comprend une optique 1 12 propre à recueillir et à filtrer les rayons réfléchis 1 13 sur la section 10 dans le support 42, et un détecteur 1 14 propre à former une image à partir des rayons transmis par l'optique 1 12.
L'optique 1 12 est montée dans une partie inférieure du module 102 située en regard de la plaque 52. Elle est propre à transmettre au détecteur 1 14 les rayons réfléchis dans le support 42 par la pièce 12 qui s'étendent sensiblement parallèlement à l'axe B-B', en excluant sensiblement totalement les rayons réfléchis d'inclinaison non nulle par rapport à l'axe B-B'.
La surface de référence 70 est placée dans le champ de l'optique 112 perpendiculairement à l'axe B-B' passant par l'optique 1 12 à une distance prédéfinie permettant d'obtenir un grossissement et une netteté d'image souhaitée.
Le détecteur 1 14 est par exemple formé à base d'une matrice de capteurs à effets photoélectrique de type CCD (« Charge Coupled Device ») ou de capteurs de type CMOS (« Complementary Métal Oxyde Semi Conductor »).
Cette matrice est propre à former une image de dimensions homothétiques à celle de la section 10 sur la base des rayons lumineux réfléchis filtrés par l'optique 1 12.
L'unité 46 de commande et de calcul est propre à déclencher la prise d'une image par le détecteur 1 14. Elle est en outre propre à recueillir l'image formée par le détecteur 1 14, puis à la traiter mathématiquement pour déterminer les grandeurs géométriques mesurées sur la section 10 et à afficher la section 10 relevée ainsi que les grandeurs mesurées.
Un premier procédé de mesure selon l'invention, mis en œuvre à l'aide du dispositif 14 va maintenant être décrit. Ce procédé est dans cet exemple destiné à mesurer les caractéristiques géométriques de la section 10 d'un feuillard métallique 20 formant une carcasse 22 d'une conduite flexible 18 telle que représentée sur la Figure 4. Initialement, un tronçon tubulaire de carcasse 22 est formé par enroulement hélicoïdal tubulaire du feuillard 20, préalablement profilé, autour d'un axe longitudinal de tube C-C.
Le procédé comprend ensuite la fourniture d'une pièce 12 présentant une section à mesurer 10 par découpe de la pièce 12 dans un tronçon de l'enroulement tubulaire du feuillard 20.
A cet effet, comme illustré par la Figure 6, une première découpe de la section plane 10 à mesurer est effectuée de manière très précise en découpant radialement le feuillard 20 perpendiculairement à la tangente T à la surface extérieure de la carcasse 22 au niveau du point de découpe.
Puis, une découpe rapide de la surface d'appui 37 de la pièce 12 est effectuée, sans qu'il soit nécessaire de procéder à des précautions particulières pour la découpe de cette surface d'appui 37. En particulier, il n'est pas nécessaire que les deux plans de découpe respectifs des surfaces 10, 37 soient parallèles, un défaut de parallélisme de 20° à 30° est acceptable, dès lors que l'organe de sollicitation élastique 90 et le plateau 54 sont capables de l'accommoder.
La seule condition est que la première découpe de la section à mesurer 10, qui sera en contact avec la surface 70 de référence, soit effectuée dans un plan radial par rapport à la carcasse 22, c'est-à-dire le plan contenant d'une part, l'axe C-C de la carcasse 22 et d'autre part un rayon de la carcasse.
Puis, la pièce 12 ainsi découpée est amenée dans le support 42. Le support 42 est alors placé dans sa position de chargement de l'échantillon 12.
La plaque 52 occupe sa position d'accès au volume intérieur 64, sensiblement à l'écart du plateau 54. Le plateau mobile 54 occupe sa position supérieure en appui contre le cadre 60.
La pièce 12 est alors posée en appui sur le plateau mobile 54 à travers le cadre 60 en appliquant sa surface d'appui 37 sur la surface supérieure 84 du plateau 54 et en dirigeant sa section à mesurer 10 vers le haut en regard de l'appareil 14 de mesure optique. Puis, l'opérateur appuie sur les oreilles 82 pour descendre le plateau 54 vers sa position inférieure à rencontre de l'organe de sollicitation élastique 90. Lors de ce déplacement, la pièce 12 pénètre totalement dans le volume intérieur 64. Ceci étant fait, l'opérateur fait coulisser la plaque transparente 52 vers sa position d'obturation pour qu'elle se place en regard du plateau 54 afin d'obturer vers le haut le volume intérieur 64, au dessus de la section 10.
Puis, l'opérateur relâche le plateau mobile 54. Sous l'effet de la force de sollicitation engendrée par l'organe de sollicitation 90, le plateau 54 remonte vers la plaque transparente 52 jusqu'à ce que la section 10 à mesurer de la pièce 12 s'applique sur la surface de référence 70.
Le support 42 est alors disposé sur le socle 40 dans sa position de mesure.
La section 10 à mesurer est située dans un plan perpendiculaire à l'axe B- B', d'orientation et de position axiale parfaitement référencée le long de cet axe B- B' par rapport à l'appareil de mesure optique 44.
La section plane supérieure 10 de la pièce 12, en contact avec la surface de référence 70 est disposée dans le champ de l'appareil optique, perpendiculairement à l'axe optique B-B', et à une distance prédéfinie de l'objectif permettant d'obtenir le grossissement et la netteté d'image souhaitées.
Cette position axiale et cette orientation sont garanties quelles que soient la nature et la géométrie de la surface d'appui 37, même si cette géométrie n'est pas plane ou est non parallèle à la section à mesurer 10. Ceci augmente grandement la précision de la mesure par rapport au cas où la pièce 12, présentant une surface d'appui 37 non plane ou non parallèle avec la section à mesure 10, serait directement posée sur le socle 40 du mesureur de profil 44 fonctionnant en mode réflexion, comme illustré par la Figure 7. Bien que la face supérieure 41 du socle 40 soit perpendiculaire à l'axe optique B-B', cette configuration de mesure, non conforme à la présente invention, ne permettrait pas de garantir la perpendicularité entre la section à mesurer 10 et l'axe optique B-B', ce qui provoquerait une déformation de l'image formée par le détecteur 1 14, cette dernière n'étant pas homothétique de la section 10.
La surface de référence 70 est alors située entre la section à mesurer 10 et l'optique 1 12. L'opérateur active ensuite l'unité de commande 46 pour relever une image de la section 10. A cet effet, les éléments lumineux 106 sont activés pour engendrer des rayons lumineux incidents 1 10 qui convergent vers le support 42 et pénètrent dans le volume intérieur 64 à travers la plaque transparente 52. Une partie des rayons incidents 1 10 se réfléchit contre la section 10 de la pièce 12 et retraverse la plaque transparente 52 vers le haut pour former des rayons réfléchis 113 dirigés vers le module de mesure 102.
L'optique 112 recueille une partie des rayons réfléchis 1 13 et, avantageusement les filtre pour ne conserver que ceux qui sont sensiblement parallèles à l'axe B-B' pour les transmettre au détecteur 114 et former une image.
L'image de la section 1 10 est formée globalement d'un seul tenant, sans déplacement de l'optique 1 12 par rapport à la surface de référence 70 lors de la prise de l'image. L'image formée par le détecteur 1 14 est alors transmise à l'unité de commande et de calcul 46 qui calcule les grandeurs géométriques représentatives de la section, telles que les hauteurs h1 à h3, l'angle α1 ou encore d'autres grandeurs.
L'unité 46 affiche en outre une image de la section 10 et les valeurs numériques des grandeurs.
Le procédé selon l'invention est donc très simple à mettre en œuvre puisqu'il requiert une seule découpe précise de la pièce 12 à mesurer ; seule la découpe de la section plane 10 à mesurer doit être effectuée de manière très précise, la découpe de la surface d'appui 37 ne nécessitant pas de précautions particulières. En effet, le fait que la surface d'appui 37 n'est pas plane et/ou n'est pas parallèle à la section plane 10 n'a pas d'influence sur la précision de la mesure puisque les irrégularités et/ou l'inclinaison de la surface d'appui 37 sont compensées par le dispositif selon l'invention.
Il est en outre très précis puisque la section 10 à mesurer est parfaitement référencée par rapport à l'appareil de mesure 44, quelles que soient la nature et la géométrie de la surface d'appui 37, même si cette géométrie n'est pas plane et/ou non parallèle à la section plane 10 à mesurer. Ceci permet d'obtenir une précision de l'ordre du centième de millimètres.
Dans une variante, les moyens de sollicitation 56 comprennent des moyens de déplacement du plateau 54 actionnables manuellement par un opérateur, par exemple par une mollette.
Dans une autre variante, l'appareil 44 est situé en dessous du support 42. La surface de référence est alors formée par la surface supérieure 72 de la plaque transparente 52. La pièce 12 est alors posée sur la surface supérieure de référence 72 de la plaque 52 et la section 10 à mesurer est maintenue appliquée contre la surface de référence 72 sous l'effet du poids de la pièce 12.
Dans d'autres variantes, la pièce à mesurer est prélevée dans un autre élément allongé d'une conduite flexible tel qu'un fil métallique 37A d'une voûte de pression 38. L'invention pourrait aussi s'appliquer au contrôle géométrique de composants de câbles et d'ombilicaux, notamment d'ombilicaux sous-marins, tels que par exemple des conducteurs, des fils de renfort, des tubes ou des joncs de remplissage, ces composants constituant pour ces structures des éléments allongés enroulés en hélice ou en S-Z.
Dans une variante, l'image de la section 10 à mesurer recueillie par l'optique 112 est projetée avec un fort agrandissement préréglé et connu sur un écran de grandes dimensions, le relevé étant effectué manuellement par un opérateur sur cet écran. Plus généralement, la pièce à mesurer 12 peut comprendre une simple section plane à mesurer, quelle que soit la forme de la pièce 12.
Avantageusement, la source de lumière 100 est une source de lumière non monochromatique, par exemple de largeur spectrale supérieure à 10 nm, de préférence large bande et de préférence dans le domaine visible, par exemple d'environ 380 nm à environ 780 nm, de manière à éviter la formation de franges d'interférences qui pourraient nuire à la clarté du relevé de la section plane 10 à mesurer.

Claims

REVENDICATIONS
1.- Procédé de mesure d'au moins une caractéristique géométrique d'une section plane (10) sur une pièce (12), le procédé comprenant les étapes suivantes : - fourniture d'une pièce (12) présentant une section plane (10) à mesurer ;
- disposition de la pièce (12) sur une surface de référence (70) d'un support (42) de mesure ;
- relevé de la section plane (10) à mesurer à l'aide d'un appareil de mesure optique (44), l'appareil de mesure optique (44) comprenant une optique (1 12) propre à recueillir une image de la section à mesurer et un ensemble (114) de formation de l'image recueillie par l'optique (1 12), l'étape de relevé comprenant la formation par l'ensemble (1 14) de formation de l'image d'une image de dimensions homothétiques à celle de la section plane (10) à mesurer ;
- calcul de la caractéristique géométrique sur la base de la section relevée par l'appareil de mesure optique (44), caractérisé en ce que l'étape de disposition comprend l'application de la section plane (10) à mesurer sur la surface de référence (70), pour disposer la surface de référence (70) entre la section plane (10) à mesurer et l'optique (1 12), le relevé de la section plane (10) à mesurer étant effectué par l'optique (1 12) à travers le support de mesure (42).
2.- Procédé selon la revendication 1 , caractérisé en ce que le support de mesure (42) présente une partie pleine (52) transparente délimitant la surface de référence (70), le relevé de la section plane (10) à mesurer étant effectué à travers la partie pleine transparente (52).
3.- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la surface de référence (70) comprend une région plane sur une étendue au moins égale à la section plane (10) à mesurer, le procédé comprenant l'application de la section plane (10) sur la région plane.
4.- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le support de mesure (42) comprend des moyens (56) de sollicitation de la section plane (10) à mesurer contre la surface de référence (70), l'étape de disposition comprenant le maintien de la pièce (12) appliquée sur la surface de référence (70) par les moyens de sollicitation (56).
5.- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape de relevé de la section comprend la prise d'une image de la section plane à mesurer par l'ensemble (1 14) de formation de l'image, la détermination de la ou de chaque caractéristique géométrique étant effectuée sur l'image.
6.- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'appareil de mesure optique (44) comprend une source lumineuse (100), l'étape de relevé comprenant l'envoi de rayons lumineux incidents (11 1 ) provenant de la source lumineuse (100) sur la section plane à mesurer (10) à travers le support de mesure (42), la réflexion des rayons lumineux incidents (1 1 1 ) sur la section plane (10) à mesurer et le recueil des rayons lumineux réfléchis (1 13) sur la section à mesurer (10) par l'optique (1 12).
7.- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'appareil de mesure optique (44) est un projecteur de profil fonctionnant en mode réflexion.
8.- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape de fourniture comprend une découpe de la pièce (12) pour former la section plane (10) à mesurer.
9.- Procédé selon la revendication 8, caractérisé en ce que la pièce (12) est un élément allongé qui présente une courbure locale, la découpe étant effectuée suivant un plan perpendiculaire à une tangente (T) à la courbure locale au niveau de la section plane (10) à mesurer.
10.- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'optique (1 12) définit un axe optique (B-B') de recueil des rayons lumineux provenant de la section à mesurer (10), l'axe optique (B-B') étant perpendiculaire à la surface de référence (70).
1 1.- Dispositif (14) de mesure d'au moins une caractéristique géométrique d'une section plane (10) à mesurer sur une pièce (12), le dispositif (14) comprenant : - un support de mesure (42) présentant une surface de référence (70) sur laquelle la pièce (12) est destinée à être appliquée ;
- un appareil de mesure optique (44) placé en regard du support (42) pour relever la section à mesurer, l'appareil de mesure optique (44) comprenant une optique (1 12) propre à recueillir une image de la section à mesurer et un ensemble (1 14) de formation de l'image recueillie par l'optique (112), l'ensemble (1 14) de formation de l'image étant propre à former une image de dimensions homothétiques à celle de la section plane (10) à mesurer ; - une unité de calcul (46) reliée à l'appareil de mesure optique (44) pour calculer la ou chaque caractéristique géométrique sur la base de la section relevée par l'appareil de mesure optique (44) ; caractérisé en ce que la surface de référence (70) s'étend à l'opposé de l'optique (1 12) dans le support de mesure (42), la surface plane (10) à mesurer étant destinée à être appliquée sur la surface de référence (70) pour que la surface de référence (70) soit disposée entre la section plane (10) à mesurer et l'optique (1 12) lors de l'application de la surface plane (10) à mesurer contre la surface de référence (70).
12.- Dispositif (14) selon la revendication 1 1 , caractérisé en ce que le support de mesure (42) présente une partie pleine transparente (52) délimitant la surface de référence (70), la surface de référence (70) s'étendant à l'opposé de l'appareil de mesure optique (44) pour que l'appareil optique (44) relève la section plane (10) à mesurer à travers la partie pleine transparente (52).
PCT/FR2010/050019 2009-01-09 2010-01-07 Procédé de mesure d'au moins une caractéristique géométrique d'une section plane à mesurer sur une pièce. WO2010079304A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BRPI1006064-2A BRPI1006064B1 (pt) 2009-01-09 2010-01-07 Processo e dispositivo de medição de pelo menos uma característica geométrica de uma seção plana sobre uma peça
GB1111693.6A GB2478262B (en) 2009-01-09 2010-01-07 Method for measuring at least one geometric characteristic of a planar cross-section to be measured on part
DK201170373A DK178405B1 (en) 2009-01-09 2011-07-08 Method for measuring at least one geometric characteristic of a planar cross-section to be measured on part

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0950094 2009-01-09
FR0950094A FR2941042B1 (fr) 2009-01-09 2009-01-09 Procede de mesure d'au moins une caracteristique geometrique d'une section plane a mesurer sur une piece

Publications (2)

Publication Number Publication Date
WO2010079304A2 true WO2010079304A2 (fr) 2010-07-15
WO2010079304A3 WO2010079304A3 (fr) 2010-12-02

Family

ID=40999982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/050019 WO2010079304A2 (fr) 2009-01-09 2010-01-07 Procédé de mesure d'au moins une caractéristique géométrique d'une section plane à mesurer sur une pièce.

Country Status (4)

Country Link
BR (1) BRPI1006064B1 (fr)
FR (1) FR2941042B1 (fr)
GB (1) GB2478262B (fr)
WO (1) WO2010079304A2 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080252904A1 (en) 2007-04-12 2008-10-16 Mitutoyo Corporation Optical measuring machine
US20080285254A1 (en) 2007-02-20 2008-11-20 Mitutoyo Corporation Illumination device and vision measuring instrument

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3065663A (en) * 1957-07-22 1962-11-27 Donnelly Mirrors Inc Fringe comparator
US6633387B1 (en) * 1999-10-07 2003-10-14 Mitutoyo Corporation Method and apparatus for measuring opposite surfaces
AU2001260975A1 (en) * 2000-01-25 2001-08-20 Zygo Corporation Optical systems for measuring form and geometric dimensions of precision engineered parts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080285254A1 (en) 2007-02-20 2008-11-20 Mitutoyo Corporation Illumination device and vision measuring instrument
US20080252904A1 (en) 2007-04-12 2008-10-16 Mitutoyo Corporation Optical measuring machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"API RP 17B", AMERICAN PETROLEUM INSTITUTE

Also Published As

Publication number Publication date
BRPI1006064B1 (pt) 2019-09-24
FR2941042B1 (fr) 2011-07-08
BRPI1006064A2 (pt) 2016-04-19
GB2478262B (en) 2014-05-21
GB2478262A (en) 2011-08-31
WO2010079304A3 (fr) 2010-12-02
FR2941042A1 (fr) 2010-07-16
GB201111693D0 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
EP1605259B1 (fr) Installation de contrôle non destructif d'une pièce
EP3207361B1 (fr) Procédé, dispositif et ligne d'inspection pour visualiser la planéité d'une surface de bague de récipient
EP2577224B1 (fr) Procédé et dispositif d'aide au contrôle en production de la traversabilité de tubes
EP2951565B1 (fr) Dispositif et procédé pour le contrôle non destructif de pneumatiques par tomographie
EP0080418B1 (fr) Procédé d'examen d'un assemblage combustible de réacteur nucléaire et machine d'examen pour la mise en oeuvre de ce procédé
FR3073044A1 (fr) Procede et dispositif de mesure de dimensions par rayons x, sur des recipients en verre vide defilant en ligne
EP2577706A1 (fr) Systeme de detection de cathodoluminescence souple et microscope mettant en oeuvre un tel systeme
EP2954284B1 (fr) Dispositif de mesure de l'etat de surface d'une surface
EP3542027B1 (fr) Dispositif mobile d'inspection d'une ligne de production immergée partiellement dans une étendue d'eau, apte à franchir une courbure de la ligne de production, installation et procédé associé
FR2897158A1 (fr) Dispositif et procede manuel de positionnement d'une source de radiographie par rayons gamma d'au moins une soudure d'une tubulure.
FR3007522A1 (fr) Dispositif de sollicitations mecaniques en traction/compression et/ou torsion
EP2326913B1 (fr) Dispositif de mesure et de correction d'un defaut de parallelisme d'un crayon de combustible nucleaire
EP3542028B1 (fr) Dispositif mobile d'inspection d'une ligne de production, apte à franchir une zone d'éclaboussement dans une étendue d'eau, installation et procédé associé
WO2010079304A2 (fr) Procédé de mesure d'au moins une caractéristique géométrique d'une section plane à mesurer sur une pièce.
EP2684006B1 (fr) Dispositif de mesure de l'etat de surface d'une surface
FR2968073A1 (fr) Procede et dispositif de controle d'un filetage de joint tubulaire utilise dans l'industrie du petrole
FR2898881A1 (fr) Procede et installation d'inspection d'une bande enroulee
EP1493532B1 (fr) Capteur de position d'outil a détection déportée
WO2002052222A1 (fr) Procede et dispositif de mesure de l'epaisseur d'une couche d'oxyde sur la gaine de crayons dans un assemblage de combustible
EP3489665B1 (fr) Système de surveillance de la dégradation et de l'encrassement d'un miroir
DK178405B1 (en) Method for measuring at least one geometric characteristic of a planar cross-section to be measured on part
WO2020254567A1 (fr) Procede de mesure de la vitesse de sedimentation d'un echantillon de sang dispose dans un tube de prelevement
EP1814693B1 (fr) Dispositif et procédé d'acquisition de caractéristiques géométriques d'une monture de lunettes
WO2016083003A1 (fr) Dispositif pour objectif de microscope, et procede d'utilisation d'un tel dispositif
FR2563760A1 (fr) Systeme de manutention pour un equipement d'inspection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10706287

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 1111693

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20100107

WWE Wipo information: entry into national phase

Ref document number: 1111693.6

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10706287

Country of ref document: EP

Kind code of ref document: A2

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1006064

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1006064

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110708