WO2010078840A1 - 永磁发电机及其转子 - Google Patents

永磁发电机及其转子 Download PDF

Info

Publication number
WO2010078840A1
WO2010078840A1 PCT/CN2010/070036 CN2010070036W WO2010078840A1 WO 2010078840 A1 WO2010078840 A1 WO 2010078840A1 CN 2010070036 W CN2010070036 W CN 2010070036W WO 2010078840 A1 WO2010078840 A1 WO 2010078840A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
permanent magnet
solid
generator rotor
shell
Prior art date
Application number
PCT/CN2010/070036
Other languages
English (en)
French (fr)
Inventor
石为民
Original Assignee
Shi Weimin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shi Weimin filed Critical Shi Weimin
Publication of WO2010078840A1 publication Critical patent/WO2010078840A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/01Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for shielding from electromagnetic fields, i.e. structural association with shields
    • H02K11/012Shields associated with rotating parts, e.g. rotor cores or rotary shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the invention relates to a permanent magnet generator and a rotor therefor.
  • the principle of the existing generator is that the rotor is regarded as a rotating magnetic field, and the rotating magnetic field is further divided into two types: an exciting magnetic field and a permanent magnetic field. Regardless of which magnetic field is a purpose, the magnetic radiation of the rotating magnetic field is induced to the winding of the stator of the stator, and the magnetic field of the continuously changing polarity is passed through the winding of the winding to generate an electromotive force.
  • the existing generator is towing the load, the rotational speed drops sharply. As the load increases, the drive torque of the generator also increases. This phenomenon is usually 'Cutting magnetic field line ' To explain.
  • the winding of the winding wire 9 of the permanent magnet generator is an oblong shape, and the effective part of receiving the rotating magnetic field is a straight line segment placed in the groove of the stator core 16.
  • the arcuate segment portion 92 of the coil winding 9 that is outside the line slot is not capable of performing work in the forward direction, but instead blocks the operation of the rotating magnetic field, and the line-packed magnetic field line 11 generated by the coil winding 9 and the permanent magnet 5 of the rotor 13 are generated.
  • the rotating magnetic field lines 12 are twisted together. This phenomenon is the root cause of the decrease in the speed of the generator when the heavy load is dragged. Because the generator output current is larger, the resistance of the wire winding to the reaction magnetic field of the rotating magnetic field is greater.
  • the technical problem to be solved by the present invention is to provide a permanent magnet generator and a rotor thereof capable of improving the load surface and efficiency.
  • a permanent magnet generator rotor comprising a main shaft, a solid magnetic shell, a magnetic isolation plate and a plurality of permanent magnets
  • the solid magnetic shell has the first in the axial direction of the main shaft
  • the end portion and the second end portion, at least one of the first end portion and the second end portion is fixed with a magnetic isolation plate
  • the solid magnetic shell and the magnetic isolation plate form an integral part
  • the integral part and the main shaft are fixed
  • the permanent magnet is fixed on the fixed magnetic field
  • the shell extends in the axial direction
  • the magnetic shield can shield at least part of the magnetic lines of force of the permanent magnet.
  • the first end portion and the second end portion are each fixed with a magnetic isolation plate, and the permanent magnet is located between the two magnetic isolation plates; since two magnetic isolation plates are provided, the magnetic lines of the permanent magnet can be limited to the two magnetic isolation plates as much as possible. Therefore, the magnetic lines of force can be separated from the lines of magnetic force of the windings of the wire package as much as possible.
  • a gap is left between the two ends of the permanent magnet in the axial direction and the two magnetic isolation plates.
  • a permanent magnet is fixed to an outer peripheral surface of the solid magnetic shell.
  • the solid magnetic shell is a shield capable of shielding at least part of the magnetic lines of force of the permanent magnet, so that the magnetic field radiation of the side of the solid magnetic shell that does not require the magnetic field lines to radiate can be as small as possible.
  • a permanent magnet generator includes a stator and a rotor.
  • a permanent magnet generator rotor includes a main shaft, a permanent magnet, a solid magnetic shell and two magnetic isolation plates, and the two magnetic isolation plates are respectively fixed at two ends of the solid magnetic shell to form an integral part, an integral part
  • the main shaft is fixedly connected to the main shaft, and the solid magnetic shell is provided with a solid magnetic groove, and the permanent magnet is embedded in the solid magnetic groove, and the magnetic isolation plate is a shielding body capable of shielding at least part of the magnetic lines of the permanent magnet.
  • the invention has the beneficial effects that by providing the magnetic isolation plate, the magnetic lines of the permanent magnet can be shielded to a certain extent, and the magnetic field radiation range of the permanent magnet is reduced, and when the permanent magnet generator has a current output, the magnetic flux of the winding wire of the stator is reduced.
  • the degree of resistance to the magnetic field of the rotating magnetic field of the permanent magnet is reduced, and the resistance of the reacting magnetic field of the winding wind to the rotating magnetic field is also reduced, thereby reducing the amplitude of the falling speed of the generator during heavy load and improving the generator. Efficiency and load side.
  • FIG. 1 is a schematic view showing the distribution of magnetic lines of a conventional permanent magnet generator
  • FIG. 2 is a schematic structural view of a permanent magnet generator rotor of the embodiment
  • FIG. 3 is a schematic view showing a magnetic line distribution of a permanent magnet generator of the embodiment
  • FIG. 4 is a schematic structural view of a solid magnetic shell to which a permanent magnet is fixed according to the embodiment
  • FIG. 5 is a comparison diagram of efficiency curves of a conventional permanent magnet generator and a permanent magnet generator to which the rotor of the present embodiment is applied;
  • FIG. 6 is a comparison diagram of a rotational speed curve of a conventional permanent magnet generator and a permanent magnet generator to which the rotor of the present embodiment is applied;
  • Fig. 7 is a structural schematic view showing another perspective of the rotor of the present embodiment equipped with a bearing.
  • the permanent magnet generator rotor 13 of the present embodiment includes a main shaft 1, a permanent magnet 5, a solid magnetic shell 8 and two magnetic shield plates 4.
  • the main shaft 1 can be fixed to the base of the permanent magnet generator via a bearing 15.
  • the solid magnetic shell 8 may be a cylinder having a cylindrical cavity 81 penetrating forward and backward in the axial direction (i.e., the axial direction) of the main shaft 1, the cylindrical cavity 81 being surrounded by the inner peripheral surface 82 of the solid magnetic shell 8, and the main shaft 1 passing through
  • the cylindrical cavity 81, the outer peripheral surface 83 of the solid magnetic shell 8 may be recessed with a plurality of bottomed solid magnetic grooves 7, which may be inverted T-shaped grooves having a wide groove bottom 71 and a narrow notch 72, each Each of the solid magnetic grooves 7 may extend in the axial direction of the main shaft 1 , and the plurality of solid magnetic grooves 7 may be uniformly distributed at an equal angular interval from the main axis 1 , and each of the solid magnetic grooves 7 is embedded with a permanent magnet 5 .
  • the solid magnetic groove 7 effectively holds the permanent magnet 5 so that the permanent magnet 5 does not come off the solid magnetic shell 8 due to the centrifugal force when the rotor rotates.
  • the first end portion 84 and the second end portion 85 of the solid magnetic shell 8 in the axial direction of the main shaft 1 may be fixed with a circular magnetic shield plate 4 by rivets or screws 3, the two magnetic partition plates 4 and the solid magnetic shell 8 is integrally connected to form an integral member 14, and the end portions of the permanent magnet 5 in the axial direction of the main shaft 1 are respectively provided with a gap 10 between the two magnetic shield plates 4.
  • the first end portion 84 and the second end portion 85 may be a first end surface and a second end surface of the inner peripheral surface 82 and the outer peripheral surface 83 of the solid magnetic shell 8, and the reinforcing magnetic groove 7 may penetrate the first end surface and the first end The through groove of the two end faces.
  • the length of the reinforcing magnetic groove 7 may be larger than the length of the permanent magnet 5 in the axial direction of the main shaft 1.
  • the solid magnetic shell 8, the magnetic shield 4 and the main shaft 1 may be coaxial.
  • the main shaft 1 may be provided with an inner key groove 6 for mounting the integral member 14, and the integral member 14 is provided with a key (not shown) that cooperates with the inner key groove 6, and the integral member 14 is fixed to the main shaft by the cooperation of the key and the inner key groove 6.
  • the integral part 14 can rotate synchronously with the main shaft 1.
  • the main shaft 1 is provided with an inner key groove, and at least one of the magnetic shielding plates 4 is provided with a key, and the fixed connection of the main shaft 1 and the integral part 14 is realized by the cooperation of the key and the inner key groove;
  • the upper key is set, and the inner key groove is correspondingly arranged on the magnetic shield plate 4.
  • a key or a keyway may be provided on the solid magnetic shell 8.
  • the main shaft 1 and the integral member 14 may also be fasteners fixed, tightly fitted, welded, bonded, snapped, or otherwise secured.
  • the permanent magnet 5 When the permanent magnet generator rotor is assembled, the permanent magnet 5 is first mounted in the T-shaped solid magnetic groove 7 of the solid magnetic shell 8, and a distance is opened at both ends of the permanent magnet 5, and the distance refers to one end of the permanent magnet 5.
  • the distance between the portion and the magnetic shield 4 at one end of the solid magnetic shell 8 and the distance between the other end of the permanent magnet 5 and the magnetic shield 4 at the other end of the solid magnetic shell 8 are again at both ends of the solid magnetic shell 8.
  • the magnetic shield 4 is fixed by rivets or screws 3 to form an integral part, and at the same time, a gap 10 is formed between the two ends of the permanent magnet 5 and the magnetic shield 4 at both ends of the solid magnetic shell 8, and the integral part is placed thereon.
  • the key presses the integral part to the corresponding position along the inner keyway 6 on the main shaft 1 and is fixed.
  • the assembly process can also be changed as required.
  • the permanent magnet 5 is fixed on the outer peripheral surface of the solid magnetic shell 8, and the solid magnetic shell 8 can be made of a material capable of shielding magnetic lines of force, so that at least part of the magnetic lines of force of the permanent magnet 5 can be shielded, so that the side that does not require the magnetic flux is radiated.
  • the magnetic field line radiation is as small as possible (even if the magnetic field radiation that can enter the cylindrical cavity 81 of the solid magnetic shell 8 is as small as possible), and the permanent magnet is fixed by the magnetic shielding plate 4 capable of shielding the magnetic lines of force fixed at both ends of the solid magnetic shell 8.
  • the magnetic lines of the end portion of the 5 end are restricted as much as possible between the two magnetic shielding plates 4, the magnetic flux of the permanent magnet 5 is reduced, and the magnetic lines of the permanent magnet 5 are more concentrated.
  • the present invention uses the permanent magnet 5 and the magnetic fixing.
  • the integral part of the case 8 and the magnetic shield 4 is fixed to the main shaft 1, and the core of the rotor of the prior art is eliminated, the manufacturing cost is low, the weight is light, and the energy conversion efficiency can also be improved.
  • the permanent magnet generator includes a stator 2 and a rotor of the embodiment, the stator 2 includes a wire winding 9 disposed on the stator core, and when the permanent magnet generator outputs current,
  • the magnetic field line distribution of the permanent magnet generator is as shown in Fig. 3.
  • the magnetic field lines 11 of the coil winding 9 are separated from the magnetic lines 12 of the rotating magnetic field (i.e., the magnetic lines of the permanent magnet).
  • the reason is that a gap 10 is left between the both ends of the permanent magnet 5 mounted on the solid magnetic shell 8 and the magnetic shield 4, and the magnetic lines of the end of the permanent magnet 5 are restricted between the two magnetic shields 4.
  • the magnetic lines of force of the rotating magnetic field are concentrated as much as possible on the straight section portion 91 of the winding wire 9 so that the magnetic lines of force are little or impossible to radiate to the curved segment portion 92 of the winding of the wire package 9.
  • the present embodiment effectively separates the magnetic field lines of the rotating magnetic field from the magnetic field lines of the winding of the wire package winding 9.
  • the factors affecting the rotation of the rotating magnetic field are naturally small.
  • the generator is under heavy load, the magnitude of the speed drop is small, that is, the frequency of the magnetic polarity exchange frequency is reduced, the efficiency naturally goes up, and the load surface is wide.
  • the A curve in FIG. 5 represents the efficiency curve of the existing generator
  • the B curve represents the efficiency curve of the generator to which the rotor of the present embodiment is applied.
  • the electromechanical conversion efficiency is obviously improved; moreover, as can be seen from Fig.
  • the existing permanent magnet generator can no longer drive the load, and the permanent magnet generator of the embodiment still has high efficiency and can Normally drive the load.
  • the A curve shows the rotor speed of the conventional generator
  • the B curve shows the rotor speed in the permanent magnet generator to which the rotor of the present embodiment is applied. When the load is larger, the rotor speed is remarkably improved.
  • a permanent magnet generator For a permanent magnet generator, it includes a stator and a rotor.
  • the stator may be fixed to a base of a permanent magnet generator, which may include a wire package winding disposed on the stator core.
  • the rotor comprises a main shaft, a solid magnetic shell, a magnetic isolation plate and a plurality of permanent magnets, the solid magnetic shell has a first end portion and a second end portion, and at least one of the first end portion and the second end portion is fixed with a magnetic isolation plate
  • the solid magnetic shell and the magnetic isolation plate form an integral part, the integral part and the main shaft are fixed, and the permanent magnet is fixed on the solid magnetic shell, and the magnetic isolation board can shield at least part of the magnetic lines of the permanent magnet, such as the magnetic shielding board capable of shielding the permanent magnet The magnetic field lines at the ends of the neighbors. Since the magnetic shield can shield the magnetic lines of the permanent magnet, the magnetic lines of the permanent magnet can be separated from the magnetic lines of the winding of the winding as much as
  • the magnetic isolation plate There may be one magnetic isolation plate, that is, only one of the first end portion and the second end portion is fixed with a magnetic isolation plate; in order to further improve the effect of shielding the magnetic lines of the permanent magnet (ie, reducing the radiation range of the magnetic field lines), the magnetic separation plate There may also be two, that is, the first end portion and the second end portion are each fixed with a magnetic isolation plate, and the permanent magnet is located between the two magnetic isolation plates, so that the magnetic lines of the permanent magnet can be limited to two magnetic isolation plates as much as possible. Loop through.
  • the first end portion and the second end portion may be two end faces of the magnetic shield plate in the axial direction, respectively, or portions adjacent to the end faces.
  • the fixing method of the solid magnetic shell and the magnetic isolation plate may be fixed by screws or rivets, or may be fixed by snap fixing, tight fitting fixing, welding fixing, bonding fixing, and the like.
  • the magnetic isolation plate may be higher than the outer circumferential surface of the solid magnetic shell, so that the magnetic isolation plate is in the range of the magnetic flux of the permanent magnet, so that at least part of the magnetic lines of force can be shielded; of course, the magnetic isolation plate can be equal to or higher than the permanent magnet, which can be improved. Shielding effect.
  • the high and low relative positions between the magnetic shield plate and the outer peripheral surface and the permanent magnet may be based on the radial direction of the main shaft.
  • the ends of the magnetic shield plate and the permanent magnet can be directly contacted or left with a gap, so that the shielding effect can be further improved.
  • the permanent magnet may be fixed on the outer peripheral surface of the solid magnetic shell, and the outer peripheral surface is a contour surface facing the stator of the solid magnetic shell, and the solid magnetic shell may be a shield capable of shielding magnetic lines of force, so as to at least partially shield the magnetic lines of the permanent magnet.
  • the magnetic flux of the solid magnetic shell that does not require the radiation of the magnetic field lines is as small as possible.
  • the fixing method of the permanent magnet and the solid magnetic shell comprises: providing a concave solid magnetic groove on the outer peripheral surface to embed and fix the permanent magnet in the fixed magnetic groove; fixing or welding the permanent magnet to the outer peripheral surface; The permanent magnet is fixed to the outer peripheral surface, or other fixing means capable of fixing the solid magnetic shell and the permanent magnet.
  • the permanent magnet can be fixed by the inverted T-shaped solid magnetic groove, or fixed by bonding, or fixed by tight fitting, or other connection method capable of preventing the permanent magnet from being separated from the solid magnetic shell by centrifugal force.
  • the solid magnetic groove may be uniformly distributed around the main axis at an equal angle, and of course, other distribution modes may be adopted as required.
  • the solid magnetic flux grooves may have an odd number or an even number.
  • the permanent magnet When the solid magnetic groove is disposed, the permanent magnet may be entirely located inside the solid magnetic groove, that is, the permanent magnet is lower than the outer peripheral surface of the solid magnetic shell; of course, the permanent magnet may also be partially located inside the solid magnetic groove, that is, the permanent magnet partially protrudes.
  • the outer peripheral surface of the magnetic shell When the solid magnetic groove is disposed, the permanent magnet may be entirely located inside the solid magnetic groove, that is, the permanent magnet is lower than the outer peripheral surface of the solid magnetic shell; of course, the permanent magnet may also be partially located inside the solid magnetic groove, that is, the permanent magnet partially protrudes. The outer peripheral surface of the magnetic shell.
  • the solid magnetic shell may be cylindrical, such as a cylinder, and of course, may also be a polygonal cylinder; of course, the solid magnetic shell may also be designed in a columnar shape or other shape as required.
  • the shape of the magnetic shield may correspond to the shape of the solid magnetic shell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

永磁发电机及其转子 技术领域
本发明涉及一种永磁发电机及其转子。
背景技术
众所周知,现有发电机的原理为,将转子视为旋转磁场,旋转磁场又分为:励磁磁场和永久磁场两种。不管是哪种磁场都是一个目的,就是要将旋转磁场的磁辐射感应到定子的线包绕组上,让线包绕组内有不断变换极性的磁场穿过而产生电动势。但是现有发电机在拖带负载时,转速就会急剧的下降。随着负载的加重,发电机的驱动扭矩也随之加大,此种现象通常都以 ' 切割磁力线 ' 来解释。由于发电机在输出电流时,随着负载的加重,发电机的驱动扭矩也随之加大的客观现象存在,就导致发电机的负载面相当窄,只要负载超过发电机的额定值,发电机的效率就急剧下降。
仔细分析线包绕组的磁力线分布,如图1所示,永磁发电机的线包绕组9为长圆形,接受旋转磁场的有效部位是置放在定子铁芯16的线槽内的直线段部分91。线包绕组9的悬露在线槽外部的弧形线段部分92是不能正向做功的,反而会阻碍旋转磁场的运转,线包绕组9产生的线包磁力线11与转子13的永久磁铁5产生的旋转磁场磁力线12绞在了一起,此现象就是发电机拖动重负载时转速下降的根本原因所在。因为发电机输出电流越大,线包绕组对旋转磁场的反作用磁场的阻力也就越大。
在能源越来越紧张的今天,若能将发电机的负载面加宽,使发电机在不改变其基本结构的情况下,使其效率得以提高,将具有相当重要的经济意义和社会意义。
技术问题
本发明所要解决的技术问题是,提供一种能够提高负载面和效率的永磁发电机及其转子。
技术解决方案
本发明解决其技术问题所采用的技术方案是:一种永磁发电机转子,包括主轴、固磁壳、隔磁板及多个永久磁铁,在主轴的轴向上,固磁壳具有第一端部和第二端部,第一端部和第二端部中至少之一固定有隔磁板,固磁壳和隔磁板组成一体部件,一体部件和主轴固定,永久磁铁固定在固磁壳上并在轴向上延伸,且隔磁板能够屏蔽永久磁铁的至少部分磁力线。
第一端部和第二端部均固定有隔磁板,永久磁铁位于两个隔磁板之间;由于设置两个隔磁板,可以尽量将永久磁铁的磁力线限制在两个隔磁板之间,从而可以尽量将该磁力线与线包绕组的磁力线分开。
永久磁铁在轴向上的两端部分别与两个隔磁板之间留有间隙。
永久磁铁固定于所述固磁壳的外周面。固磁壳为能够屏蔽所述永久磁铁的至少部分磁力线的屏蔽体,从而能够使固磁壳的不需要磁力线辐射的一面的磁力线辐射尽可能小。
一种永磁发电机,包括定子及转子。
一种永磁发电机转子,包括主轴、永久磁铁、固磁壳及两个隔磁板,两个所述隔磁板分别固定于固磁壳的两个端部而组成为一体部件,一体部件与所述主轴固定连接,固磁壳上设有固磁槽,永久磁铁嵌设于固磁槽内,且所述隔磁板为能够屏蔽永久磁铁的至少部分磁力线的屏蔽体。
有益效果
本发明的有益效果是,通过设置隔磁板,能够一定程度的屏蔽永久磁铁的磁力线,缩小了永久磁铁的磁场辐射范围,永磁发电机有电流输出时,减小了定子的线包绕组磁力线与永久磁铁的旋转磁场磁力线绞在一起的程度,线包绕组对旋转磁场的反作用磁场的阻力也就减小了,进而减小了发电机在重载时转速下降的幅度,提高了发电机的效率和负载面。
附图说明
图1是现有永磁发电机的磁力线分布示意图;
图2是本实施方式永磁发电机转子的结构示意图;
图3是本实施方式永磁发电机的磁力线分布示意图;
图4是本实施方式的固定有永久磁铁的固磁壳的结构示意图;
图5是现有永磁发电机与应用本实施方式转子的永磁发电机的效率曲线的对比图;
图6是现有永磁发电机与应用本实施方式转子的永磁发电机的转速曲线的对比图;
图7是装有轴承的本实施方式转子的另一个视角的结构示意图。
本发明的实施方式
如图2、图3、图4及图7所示,本实施方式永磁发电机转子13包括主轴1、永久磁铁5,固磁壳8和两个隔磁板4。主轴1可以通过轴承15固定在永磁发电机的底座上。固磁壳8可以为具有在主轴1的轴线方向(即轴向)上前后贯穿的筒腔81的圆筒,该筒腔81由固磁壳8的内周面82围出,主轴1穿过该筒腔81,固磁壳8的外周面83可以凹设有多个有底的固磁槽7,该固磁槽7可以为槽底71宽、槽口72窄的倒T型槽,每个固磁槽7可以均在主轴1的轴向上延伸,且该多个固磁槽7可以主轴1为中心同圆周等角度间隔均匀分布,每个固磁槽7内均嵌入有永久磁铁5,固磁槽7有效的固定住永久磁铁5,使在转子转动时,永久磁铁5不会因为离心力而脱离固磁壳8。固磁壳8的在主轴1轴向上的第一端部84和第二端部85均可以通过铆钉或螺钉3固定有圆形隔磁板4,该两个隔磁板4及固磁壳8固定连接而组成一体部件14,永久磁铁5的在主轴1轴向上的两个端部分别与两个隔磁板4之间留有间隙10。该第一端部84和第二端部85可以是固磁壳8的连接内周面82和外周面83的第一端面和第二端面,固磁槽7可以为贯穿该第一端面和第二端面的贯穿槽。对于该间隙10的形成,可以是在主轴1的轴向上,固磁槽7的长度大于永久磁铁5的长度。该固磁壳8、隔磁板4和主轴1可以同轴线。
主轴1上可以设有用于安装一体部件14的内键槽6,一体部件14设有与内键槽6配合的键(图中未示出),一体部件14通过键与内键槽6的配合固定在主轴1上,当主轴1旋转时,一体部件14可以随主轴1同步旋转。在一种实施方式中,主轴1上设有内键槽,至少一个隔磁板4上对应设有键,通过键和内键槽的配合实现主轴1和一体部件14的固定连接;也可以是主轴1上设置键,而在隔磁板4上对应设置内键槽。在其它的实施方式中,也可以是在固磁壳8上设置键或键槽。当然,主轴1和一体部件14也可以是紧固件固定、紧配合固定、焊接固定、粘接固定、卡扣固定或其它方式固定。
永磁发电机转子组装时,先将永久磁铁5装在固磁壳8的T型固磁槽7中,并在永久磁铁5的两端空开有距离,该距离是指永久磁铁5的一端部与固磁壳8一端的隔磁板4之间的距离及永久磁铁5的另一端部与固磁壳8另一端的隔磁板4之间的距离,再在固磁壳8的两端用铆钉或螺钉3固定隔磁板4,从而组成一体部件,同时,永久磁铁5的两端部分别与固磁壳8两端的隔磁板4之间就有了间隙10,再将一体部件上的键沿着主轴1上的内键槽6将一体部件压至相应位置并固定。当然,该组装过程也可以根据要求进行变换。
本实施方式是将永久磁铁5固定在固磁壳8外周面上,固磁壳8可以由能够屏蔽磁力线的材料制成,从而能够至少屏蔽永久磁铁5的部分磁力线,使不需要磁力线辐射的一面的磁力线辐射尽可能小(即使能够进入到固磁壳8筒腔81内的磁力线辐射尽可能小),并利用在固磁壳8两端固定的能够屏蔽磁力线的隔磁板4,将永久磁铁5端部的磁力线尽可能的限制在两块隔磁板4之间循环,缩小了永久磁铁5的磁力线辐射范围,使永久磁铁5的磁力线更加集中;另外,本发明采用永久磁铁5、固磁壳8和隔磁板4组成的一体部件固定在主轴1上,取消了现有技术中转子的铁芯,制造成本低,重量轻,且能量转换效率也可以得到提高。
对于具有本实施方式转子的永磁发电机,该永磁发电机包括定子2及本实施方式转子,该定子2包括设在定子铁芯上的线包绕组9,永磁发电机输出电流时,永磁发电机的磁力线分布如图3所示,线包绕组9的磁力线11与旋转磁场的磁力线12(即永久磁铁的磁力线)相互隔开了。原因是:固磁壳8上安装的永久磁铁5的两端部与隔磁板4之间留有间隙10,永久磁铁5端部的磁力线就被限制在两块隔磁板4之间循环了。相对来讲,旋转磁场的磁力线被尽量集中在线包绕组9的直线段部分91,使磁力线很少或无法辐射到线包绕组9的弧形线段部分92了。
本实施方式有效的将旋转磁场磁力线与线包绕组9磁场磁力线相互隔开,当发电机有电流输出时,影响旋转磁场旋转的因素自然就小了。发电机在重负载时转速下降的幅度就小,即磁极性交换频率降幅小了,效率自然就上去了,负载面也就宽了。从图5和图6中可以明显看出,图5中A曲线表示的是现有发电机的效率曲线,B曲线表示的是应用本实施方式转子的发电机的效率曲线,当负载越大,机电转换效率明显得到改善;而且,由图5可知,当负载增大到一定程度时,现有永磁发电机已不能带动负载,而本实施方式永磁发电机仍具有较高的效率,能够正常带动负载。图6中A曲线表示的是现有发电机的转子速度,B曲线表示的是应用本实施方式转子的永磁发电机中的转子速度,当负载越大,转子的转速明显得到提高。
对于永磁发电机,其包括定子及转子。该定子可以固定在永磁发电机的底座上,该定子可以包括设置在定子铁芯上的线包绕组。该转子包括主轴、固磁壳、隔磁板及多个永久磁铁,固磁壳具有第一端部和第二端部,第一端部和第二端部中至少之一固定有隔磁板,固磁壳和隔磁板组成一体部件,一体部件和主轴固定,永久磁铁固定在固磁壳上,隔磁板能够屏蔽永久磁铁的至少部分磁力线,如能够屏蔽永久磁铁的与隔磁板相邻的端部的磁力线。由于隔磁板能够屏蔽永久磁铁的磁力线,使永久磁铁的磁力线能够尽量与线包绕组的磁力线分开。
隔磁板可以有一个,即第一端部和第二端部中只有一个固定有隔磁板;为了更进一步提高屏蔽永久磁铁磁力线的效果(即减小磁力线的辐射范围),该隔磁板也可以有两个,即第一端部和第二端部均固定有隔磁板,永久磁铁位于两个隔磁板之间,从而能够将永久磁铁的磁力线尽量限制在两个隔磁板之间进行循环。该第一端部和第二端部可以分别是隔磁板在轴向上的两个端面,或者是邻近端面的部分。固磁壳和隔磁板的固定方式可以是螺钉或铆钉固定,也可以是卡扣固定、紧配合固定、焊接固定、粘接固定等固定方式。
隔磁板可以高于固磁壳的外周面,使隔磁板处于永久磁铁的磁力线辐射范围上,从而能够屏蔽至少部分磁力线;当然,也可以使隔磁板等于或高于永久磁铁,可以提高屏蔽效果。隔磁板与外周面、永久磁铁之间高、低相对位置可以是以主轴的径向为基准方向。
隔磁板和永久磁铁的端部可以直接接触,也可以留有间隙,从而能够进一步提高屏蔽效果。
永久磁铁可以固定在固磁壳的外周面上,该外周面为固磁壳的面向定子的轮廓面,固磁壳可以是能够屏蔽磁力线的屏蔽体,从而能够至少部分屏蔽永久磁铁的磁力线,使固磁壳的不需要磁力线辐射的一面的磁力线辐射尽可能小。
永久磁铁和固磁壳的固定方式包括:在外周面设置凹入的固磁槽而使永久磁铁嵌入固定于该固磁槽;将永久磁铁粘接或焊接固定在该外周面;通过紧固件将永久磁铁固定在该外周面,或者是其它能够实现固磁壳和永久磁铁固定的固定方式。设置固磁槽时,可以通过倒T型固磁槽实现永久磁铁的固定,或者通过粘接固定,或者是通过紧配合固定,或者其它能够防止永久磁铁因离心力而脱离固磁壳的连接方式固定。对于固磁槽的分布方式,可以是固磁槽围绕主轴等角度间隔均匀分布,当然,也可以根据要求采用其它分布方式。固磁槽可以有奇数个,也可以有偶数个。
设置固磁槽时,永久磁铁可以整体位于固磁槽内部,即永久磁铁低于固磁壳的外周面;当然,永久磁铁也可以仅部分位于固磁槽内部,即永久磁铁有部分伸出固磁壳的外周面。
固磁壳可以为筒状,如圆筒,当然,也可以为多边形筒;当然,固磁壳也可以根据要求设计成柱状或其它形状。隔磁板的形状可以与固磁壳的形状对应。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (18)

  1. 一种永磁发电机转子,其特征在于:包括主轴、固磁壳、隔磁板及多个永久磁铁,在所述主轴的轴向上,所述固磁壳具有第一端部和第二端部,所述第一端部和第二端部中至少之一固定有所述隔磁板,所述固磁壳和所述隔磁板组成一体部件,所述一体部件和所述主轴固定,所述永久磁铁固定在所述固磁壳上并在所述轴向上延伸,且所述隔磁板能够屏蔽所述永久磁铁的至少部分磁力线。
  2. 如权利要求1所述的永磁发电机转子,其特征在于:所述第一端部和所述第二端部均固定有所述隔磁板,所述永久磁铁位于两个所述隔磁板之间。
  3. 如权利要求2所述的永磁发电机转子,其特征在于:所述永久磁铁在所述轴向上的两端部分别与两个所述隔磁板之间留有间隙。
  4. 如权利要求3所述的永磁发电机转子,其特征在于:所述永久磁铁固定于所述固磁壳的外周面。
  5. 如权利要求4所述的永磁发电机转子,其特征在于:所述隔磁板高于所述外周面。
  6. 如权利要求4所述的永磁发电机转子,其特征在于:所述隔磁板不低于所述永久磁铁。
  7. 如权利要求4所述的永磁发电机转子,其特征在于:所述固磁壳为能够屏蔽所述永久磁铁的至少部分磁力线的屏蔽体。
  8. 如权利要求4-7中任意一项所述的永磁发电机转子,其特征在于:所述外周面凹设有多个在所述轴向上贯穿所述固磁壳的有底固磁槽,每个所述固磁槽内均固定有所述永久磁铁。
  9. 如权利要求8所述的永磁发电机转子,其特征在于:多个所述固磁槽围绕所述主轴等角度间隔均匀分布。
  10. 如权利要求9所述的永磁发电机转子,其特征在于:所述固磁壳为具有内周面的圆筒,所述内周面围出在所述轴向上贯穿的筒腔,所述主轴穿过所述筒腔,所述隔磁板为圆形板,所述固磁壳、隔磁板及主轴同轴线,所述第一端部和第二端部为连接所述外周面和所述内周面的端面。
  11. 如权利要求10所述的永磁发电机转子,其特征在于:所述固磁槽为槽底宽、槽口窄的倒T型槽。
  12. 一种永磁发电机,其特征在于:包括定子及如权利要求1-11中任意一项所述的永磁发电机转子。
  13. 一种永磁发电机转子,其特征在于:包括主轴、永久磁铁、固磁壳及两个隔磁板,两个所述隔磁板分别固定于所述固磁壳的两个端部而组成为一体部件,所述一体部件与所述主轴固定连接,所述固磁壳上设有固磁槽,所述永久磁铁嵌设于所述固磁槽内,且所述隔磁板为能够屏蔽所述永久磁铁的至少部分磁力线的屏蔽体。
  14. 如权利要求13所述的永磁发电机转子,其特征在于:所述永久磁铁的两端部分别与所述固磁壳两端部的隔磁板之间留有间隙。
  15. 如权利要求14所述的永磁发电机转子,其特征在于:所述固磁槽均匀排列于所述固磁壳上。
  16. 如权利要求15所述的永磁发电机转子,其特征在于:所述固磁槽为槽底宽、槽口窄的倒T型槽。
  17. 如权利要求13-16中任意一项所述的永磁发电机转子,其特征在于:所述固磁壳为能够屏蔽所述永久磁铁的至少部分磁力线的屏蔽体。
  18. 如权利要求17所述的永磁发电机转子,其特征在于:所述固磁壳为圆筒,所述隔磁板为圆形板。
PCT/CN2010/070036 2009-01-06 2010-01-06 永磁发电机及其转子 WO2010078840A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910104940.4 2009-01-06
CN200910104940A CN101771311A (zh) 2009-01-06 2009-01-06 一种永磁发电机转子

Publications (1)

Publication Number Publication Date
WO2010078840A1 true WO2010078840A1 (zh) 2010-07-15

Family

ID=42316261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070036 WO2010078840A1 (zh) 2009-01-06 2010-01-06 永磁发电机及其转子

Country Status (2)

Country Link
CN (1) CN101771311A (zh)
WO (1) WO2010078840A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2555384A1 (en) * 2011-08-01 2013-02-06 Siemens Aktiengesellschaft Field structure of an electrical machine
WO2018185525A1 (en) * 2017-04-06 2018-10-11 Van Der Walt, Louis, Stephanus An electric rotary machine having magnetically isolated pairs of magnetic poles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103440954B (zh) * 2013-09-18 2016-07-06 安吉司润磁性材料有限公司 一种旋转磁场发生器及旋转磁场产生的方法
CN103683726B (zh) * 2013-12-05 2015-09-09 张学义 组合永磁与无刷电磁混合励磁发电机转子生产方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541884B1 (en) * 1999-01-19 2003-04-01 Gabriele Croci Pump unit particularly for medical and food use
CN1667923A (zh) * 2005-03-11 2005-09-14 何飞 高稳压精度稀土永磁单相同步发电机
CN1332501C (zh) * 2004-08-23 2007-08-15 吉林大学 集成一体化永磁同步起动发电机
CN200969534Y (zh) * 2006-11-08 2007-10-31 常州阿尔泰动力机械有限公司 稀土永磁同步发电机转子
CN100442638C (zh) * 2006-11-22 2008-12-10 北京佐腾达制冷空调设备有限公司 永磁同步电动机
CN201226459Y (zh) * 2008-02-18 2009-04-22 石为民 一种永磁发电机转子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541884B1 (en) * 1999-01-19 2003-04-01 Gabriele Croci Pump unit particularly for medical and food use
CN1332501C (zh) * 2004-08-23 2007-08-15 吉林大学 集成一体化永磁同步起动发电机
CN1667923A (zh) * 2005-03-11 2005-09-14 何飞 高稳压精度稀土永磁单相同步发电机
CN200969534Y (zh) * 2006-11-08 2007-10-31 常州阿尔泰动力机械有限公司 稀土永磁同步发电机转子
CN100442638C (zh) * 2006-11-22 2008-12-10 北京佐腾达制冷空调设备有限公司 永磁同步电动机
CN201226459Y (zh) * 2008-02-18 2009-04-22 石为民 一种永磁发电机转子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2555384A1 (en) * 2011-08-01 2013-02-06 Siemens Aktiengesellschaft Field structure of an electrical machine
US9048711B2 (en) 2011-08-01 2015-06-02 Siemens Aktiengesellschaft Field structure of an electrical machine
WO2018185525A1 (en) * 2017-04-06 2018-10-11 Van Der Walt, Louis, Stephanus An electric rotary machine having magnetically isolated pairs of magnetic poles

Also Published As

Publication number Publication date
CN101771311A (zh) 2010-07-07

Similar Documents

Publication Publication Date Title
US7187098B2 (en) Axial gap rotating electrical machine
EP1850454B1 (en) Traction drive for elevator
US7423357B2 (en) Electric rotating machine
US10491067B2 (en) Rotor for an electric motor or generator
EP2106948B1 (en) Housing structure of in-wheel motor
AU2005242216B2 (en) Motor
JP3868974B2 (ja) ハイブリッド車両用駆動装置およびハイブリッド車両用駆動装置の製造方法
US8035266B2 (en) Axial gap motor
CN102447318A (zh) 多间隙旋转电机
WO2010078840A1 (zh) 永磁发电机及其转子
JPH09149610A (ja) 横方向磁束モータ
US7557482B2 (en) Axial-flux electric machine
WO2023284219A1 (zh) 一种车用永磁电机转子冲片及其斜极结构
CN110311525B (zh) 一种轴径向混合磁通大力矩永磁电机
JP3654377B2 (ja) 内磁形同期モータ
EP0734112B1 (en) Elevator motor with damper winding
JP2006254561A (ja) 回転電機
JP4605480B2 (ja) アキシャルギャップ型モータ
JP2012152062A (ja) 直流三相モータ
CN110266165A (zh) 永磁曳引电机
CN115589089B (zh) 一种磁悬浮盘式电机
JP7217205B2 (ja) 外転型表面磁石回転電機
CN213521436U (zh) 切向充磁方向转子结构及永磁同步曳引机
JP2005151731A (ja) ブレーキ付き永久磁石電動機
CN112688519A (zh) 一种定子永磁型轴向磁场永磁电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10729099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 10729099

Country of ref document: EP

Kind code of ref document: A1