WO2010078815A1 - 感知无线电中次要用户的频谱接入方法及装置 - Google Patents

感知无线电中次要用户的频谱接入方法及装置 Download PDF

Info

Publication number
WO2010078815A1
WO2010078815A1 PCT/CN2009/076167 CN2009076167W WO2010078815A1 WO 2010078815 A1 WO2010078815 A1 WO 2010078815A1 CN 2009076167 W CN2009076167 W CN 2009076167W WO 2010078815 A1 WO2010078815 A1 WO 2010078815A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
primary
parameter
unit
markov model
Prior art date
Application number
PCT/CN2009/076167
Other languages
English (en)
French (fr)
Inventor
甘小莺
龙鑫
张炜
周元
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2010078815A1 publication Critical patent/WO2010078815A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the present invention relates to the field of network communications, and in particular, to a frequency access method and apparatus for a secondary user in a cognitive radio.
  • the primary user and the secondary user are usually distinguished.
  • the primary user has the wireless spectrum resource, and the secondary user can use the spectrum hole of the primary user channel without affecting the communication of the primary user or affecting less than a certain threshold. Send or receive data.
  • FIG. 1 shows the structure of the discrete-time Markov channel model:
  • the channel state transition probability of the discrete-time Markov channel model includes the probability that the state is from 0 to 1 and from 1 to 0, which can be represented by "and"
  • Another continuous time Markov channel model is shown in Figure 2:
  • the idle time of the channel is shown in Figure 2 ⁇ ⁇ ⁇ (7), the channel occupancy time is shown in Figure 2 ⁇ ( ⁇ 2 ... ... ) ;
  • the idle time and occupation time of the channel are respectively exponentially distributed.
  • the secondary user needs to estimate the channel usage of the primary user based on the adopted Markov channel model, and then selects the channel according to the usage, that is, uses the spectrum hole of the primary user channel.
  • the transmission or reception of data For example, taking the discrete-time Markov channel model as an example, as shown in FIG. 3 is a schematic diagram of a discrete-time model, and FIG. 3 is a usage of channels of two primary users (ie, primary channels); 1 , time slots 2 and 4 mean spectrum holes; for primary channel 2, time slots 1, 4 and 5 mean spectrum holes; thus secondary users can use the above-mentioned spectrum holes to transmit data or receive.
  • An embodiment of the present invention provides a frequency access method and apparatus for a secondary user in a cognitive radio, which can select an optimal primary channel for access by using channel parameter estimation when there are multiple primary channels, and satisfy Higher data transfer requirements improve system performance.
  • the embodiment of the invention provides a spectrum access method for a secondary user in a cognitive radio, including:
  • the estimated channel parameter is used to select the primary channel with the largest available bandwidth
  • Detecting the selected primary channel After detecting that the channel is idle, access the idle channel to transmit data.
  • the embodiment of the present invention further provides a frequency access device for a secondary user in a cognitive radio, including:
  • a parameter estimating unit configured to perform an estimation calculation on a channel parameter of the primary channel according to a Markov model adopted by the primary channel;
  • a channel selection unit configured to: when the primary channel is multiple, use the channel ⁇ : estimated by the parameter estimation unit to select a primary channel with the largest available bandwidth;
  • a channel detecting unit configured to detect a primary channel selected by the channel selecting unit, and an access unit, configured to: after the channel detecting unit detects that the channel is idle, access an idle channel to transmit data.
  • An embodiment of the present invention further provides a frequency access system for a secondary user in a cognitive radio, where the system includes a secondary user and a primary user;
  • the secondary user is configured to perform an estimation calculation on a channel parameter of the model according to a Markov model adopted by the primary channel; and when the primary user has multiple channels, use the estimated channel parameter to Selecting the channel with the largest available bandwidth; detecting the channel of the selected primary user, and after detecting that the channel is idle, accessing the idle channel to transmit data;
  • the primary user is configured to transmit data using the radio frequency resources owned by the user.
  • the channel parameters of the primary channel are first estimated and calculated according to the Markov model adopted by the primary channel; when the primary channel is multiple, the estimated The channel parameter selects the primary channel with the largest available bandwidth; detects the selected primary channel; and after detecting that the channel is idle, accesses the idle channel to transmit data.
  • the optimal primary channel can be selected by channel parameter estimation to meet higher data transmission requirements and improve system performance.
  • 1 is a schematic structural diagram of a discrete time Markov channel model in the prior art
  • 2 is a schematic structural diagram of a continuous time Markov channel model in the prior art
  • FIG. 3 is a schematic diagram of a spectrum hole in a discrete time Markov channel model in the prior art
  • FIG. 4 is a schematic flowchart of a method provided in Embodiment 1 of the present invention
  • FIG. 5a is a schematic structural diagram of an apparatus according to Embodiment 2 of the present invention.
  • FIG. 5b is a first schematic diagram of a parameter estimation unit structure of a device according to Embodiment 2 of the present invention
  • FIG. 5 is a second schematic diagram of a parameter estimation unit structure of a device according to Embodiment 2 of the present invention
  • Embodiments of the present invention provide a spectrum access method and apparatus for a secondary user in a cognitive radio.
  • a secondary user can select an optimal primary channel for access by estimating channel parameters. , to meet higher data transmission requirements, improve system performance.
  • Embodiment 1 of the present invention provides a method for sensing a frequency of a secondary user in a radio.
  • FIG. 4 is a schematic flowchart of a method provided in Embodiment 1, and the method includes: 41: Estimating and calculating the channel parameters of the primary channel according to the Markov model adopted by the primary channel.
  • the corresponding estimation calculation is selected, and then the channel parameters of the primary channel are estimated and calculated accordingly.
  • the types of Markov models employed by the primary channel may generally be continuous time Markov models and discrete time Markov models.
  • the estimation of the channel parameters can be divided into the following processes:
  • the estimation accuracy required by the foregoing system may specifically include a relative estimation error and a confidence probability, and the relative estimation error and the confidence probability may be set according to a manufacturer's accuracy requirement. In the implementation process, it can be calculated by the following formula:
  • the overall sampling result is obtained, and the channel parameter of the required precision of the system is obtained according to the specific sampling number and the overall sampling result, (the unit is Hertz Hz).
  • the unit is Hertz Hz.
  • the process of estimating the channel parameter may include the following process:
  • a small number of initial samples are used, for example, it can be set to 100 for sampling; after obtaining the sampling result, rough channel parameters are obtained according to the sampling result.
  • it can be calculated by the following formula: ( 1 )
  • "., “i, " 2 , “ 3 respectively represent four kinds of one-step transition cases (0, 0), (0, 1), (1, 0), (1, 1) of the primary channel state.
  • the number of occurrences, the total number of times they are set is the initial number of samples. For example, when the sampling result is "1 is 2 times,". For 38 times, "2 is 5 times," 3 is 55 times.
  • the rough channel parameters can be obtained as 0.05, /? is 0.08.
  • the specific number of samples is obtained based on the rough channel parameters obtained above, the estimated accuracy of the system requirements, and the standard normal distribution function.
  • the estimation accuracy required by the above system also includes the relative error and the confidence probability, which can be set according to the accuracy requirements of the manufacturer. In the implementation process, it can be calculated by the following formula:
  • the relative estimation error is expressed, p c" , p represents the confidence probability, ⁇ ( ⁇ ) represents the standard normal distribution function; and r " , respectively represents the specific number of samples required for the corresponding estimation accuracy and parameters, ⁇
  • the sampling is performed to obtain the total The sampling result of the body, and then obtain the channel parameter of the required precision of the system according to the formula 2.1, ⁇ . For example, if the obtained specific sample number 7 ⁇ is 31811, ⁇ is 30807 times. If the setting has been sampled 100 times , then for the channel parameter "requires re-sampling 31711 times to meet the estimation accuracy of the system requirements.
  • Step 42 When there are multiple primary channels, use the estimated channel parameters to select the primary channel with the largest available bandwidth.
  • the process of increasing the channel selection policy may specifically use the estimated channel parameters to select the primary channel with the largest available bandwidth.
  • ⁇ ' represents the bandwidth of the primary channel i; , meaning the channel parameter of the estimated primary channel i.
  • the above formula can be used to calculate the primary channel with the largest available bandwidth among the five primary channels. The primary channel with the largest available bandwidth is the selected primary channel.
  • an available bandwidth can be selected according to the bandwidth of the plurality of primary channels, the probability that the secondary user can utilize a certain primary channel, and the channel parameters of the plurality of primary channels.
  • h arg ⁇ ( ⁇ ⁇ ⁇ ⁇ + (1 _ ⁇ ⁇ a t )B i ( 3 2 )
  • 'represents the bandwidth of the primary channel i A. indicates that the secondary user can utilize some
  • the probability of the primary channel i which means the channel parameter of the primary channel i.
  • the above can be utilized.
  • the formula calculates the primary channel with the largest available bandwidth among the plurality of primary channels, and the primary channel with the largest available bandwidth is the selected primary channel.
  • the above formula 3.2 when using the above formula 3.2:
  • Equation 3.2 ⁇ (t - + (1 - ⁇ - 1)) ⁇ ifa(t) ⁇ i
  • a(t) is the time slot t , the channel index observed by the system; ) indicates the observation of the channel a observed in time slot t
  • the value is 1; when it is idle, the value is 0; other parameters have the same meaning as Equation 3.2.
  • the above formula can periodically correct the busy or idle state of each channel on each time slot based on the history and current observations.
  • Step 43 Detect the selected primary channel.
  • the detection of the primary channel can be initiated to determine if there is a free channel.
  • Step 44 If an idle channel is detected, then the idle channel can be utilized to transmit data.
  • the secondary user initiates detection of the primary channel, and if the channel is occupied, continues to detect; if the channel is detected to be idle, then the idle channel is utilized to transmit data.
  • the maximum threshold of the collision probability generated by the secondary user according to the set frequency, and the set correction factor, are used to obtain the duration of the transmitted data. In practical applications, it can be calculated by the following formula:
  • 7/ is the maximum threshold of the probability of collision generated by the secondary user constrained by the secondary user; for the correction factor, ⁇ ⁇ ( ⁇ ' 1 ), the correction factor can be based on the parameter
  • the estimation error and the channel mutation condition are set to provide 1 / -1 protection for the relative estimation error of the channel parameters, and also provide a buffer for the instantaneous increase of the collision probability caused by the sudden change of the channel parameters; Estimated channel parameters.
  • the channel can be detected again for the next transmission.
  • the duration of the transmitted data is the length of the time slot in the discrete time Markov model.
  • the secondary user can effectively obtain the spectrum hole of the primary channel when the channel parameter of the primary user channel model is unknown, and select by the estimation of the channel parameter when there are multiple primary channels.
  • the optimal primary channel is accessed to meet higher data transmission requirements and improve system performance. Since the secondary user only needs to monitor the optimal primary channel, the detection workload is also reduced.
  • the probability of the most recent collisions may be monitored when the primary user uses the primary channel. If the probability exceeds the set standard value, the channel parameter marking the continuous time Markov model is unavailable, and the estimation calculation of the channel parameter is restarted.
  • the set standard value may be based on the estimated channel parameters and the duration of the transmitted data Come to get it.
  • 4 is 1 Hz
  • ⁇ ⁇ is 0.2008 sec, set;
  • the estimation process of the channel parameters is restarted by monitoring the channel model, thereby effectively acquiring the spectrum hole of the primary channel, and using the spectrum hole information for data transmission. Thereby improving the performance of the system.
  • Embodiment 2 of the present invention provides a device for sensing a secondary user of a radio in a radio.
  • FIG. 5 is a schematic structural diagram of a device according to Embodiment 2 of the present invention, where the device includes: A parameter estimating unit 51, a channel selecting unit 52, a channel detecting unit 53, and an access unit 54, wherein:
  • the parameter estimating unit 51 is configured to perform estimation calculation on channel parameters of the primary channel according to a Markov model adopted by the primary channel. The manner in which the channel parameter estimation calculation is specifically performed is described in the above method embodiment 1.
  • the channel selection unit 52 is configured to select, by using the channel parameters estimated by the parameter estimation unit 51, the primary channel with the largest available bandwidth when the primary channel is multiple.
  • the channel detecting unit 53 is configured to detect the primary channel selected by the channel selecting unit 52.
  • the access unit 54 is configured to access the idle channel to transmit data after the channel detecting unit 53 detects that the channel is idle.
  • the parameter estimating unit 51 may further include: a first specific sampling number unit 511, configured to: when the primary channel adopts a continuous time Markov model, according to a relative estimation error required by the system, Confidence probability and standard normal distribution function to obtain specific sampling
  • the first sampling unit 512 is configured to perform sampling according to the obtained specific sampling number to obtain an overall sampling result.
  • the first channel parameter unit 513 is configured to obtain the required precision of the system according to the specific sampling number and the overall sampling result. Channel parameters.
  • the parameter estimating unit 51 may further include: a second sampling unit 515, configured to perform sampling by using the set initial sampling number, or after subtracting the initial sampling number according to the obtained specific sampling number.
  • the second channel parameter unit 516 is configured to obtain a rough channel parameter according to the number of times the channel state transition occurs under the sampling result obtained by the initial sampling number, or subtract the initial sampling according to the specific sampling number.
  • the second specific sampling number unit 517 is used according to the Obtained coarse channel parameters, relative estimation errors, confidence probabilities, and standard normal distribution functions to obtain a specific number of samples.
  • the foregoing apparatus may further include: a transmission time acquiring unit 55, configured to use the primary user of the set spectrum etiquette to use the primary user when the primary channel adopts the continuous time Markov model
  • a transmission time acquiring unit 55 configured to use the primary user of the set spectrum etiquette to use the primary user when the primary channel adopts the continuous time Markov model
  • the maximum threshold of the generated collision probability, the set correction factor, the set detection duration, and the channel parameters estimated by the parameter estimation unit 51 are used to obtain the duration of the transmission data.
  • the apparatus may further include: a parameter re-estimation unit 56, configured to monitor a probability of occurrence of recent conflicts when accessing an idle channel to transmit data when the primary channel adopts a continuous time Markov model If the probability exceeds the set standard value, the channel parameter marking the continuous time Markov model is unavailable, and the estimation calculation of the channel parameter is restarted.
  • the parameter re-estimation unit 56 and the access unit 54 belong to a parallel unit, that is, after the channel detecting unit 53 performs channel detection, the parameter re-estimation unit 56 and the access unit 54 are triggered to operate in parallel.
  • the process of specifically performing parameter re-estimation is as described in Embodiment 1 of the above method.
  • Embodiment 3 of the present invention also provides a spectrum of a secondary user in a cognitive radio.
  • FIG. 6 is a schematic structural diagram of a system according to Embodiment 3 of the present invention, where the system includes a secondary user 61 and a primary user 62, where:
  • the secondary user 61 is configured to perform an estimation calculation on a channel parameter of the model according to a Markov model adopted by the primary channel, and use the estimated channel parameter when the primary user has multiple channels. To select the channel with the largest available bandwidth; to detect the channel of the selected primary user, and after detecting that the channel is idle, access the idle channel to transmit data.
  • the primary user 62 is configured to transmit data using wireless spectrum resources owned by the primary user.
  • the secondary user 61 further includes: a transmission time acquiring unit 61 1 configured to use the estimated channel parameter and the preset spectrum etiquette constraint when the primary channel adopts a continuous time Markov model The maximum threshold of the collision probability generated by the secondary user for the use of the primary user, the preset correction factor, and the preset detection duration to obtain the duration of the data transmitted by the access unit.
  • the secondary user 61 may be the frequency access device in the second embodiment, including each unit of the frequency access device.
  • each unit included is only divided according to functional logic, but is not limited to the above division, as long as the corresponding function can be implemented;
  • the specific names are also for convenience of distinguishing from each other and are not intended to limit the scope of the present invention.
  • the storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the embodiment of the present invention can select an optimal primary channel for access by estimating channel parameters when there are multiple primary channels, satisfying higher data transmission requirements, and improving system performance.

Description

感知无线电中次要用户的频语接入方法及装置 本申请要求于 2009年 01月 06日提交中国专利局、 申请号为 200910001371.0、 发明名称为 "感知无线电中次要用户的频 i普接入方法及 装置" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及网络通信领域, 尤其涉及一种感知无线电中次要用户的频 i普接入方法及装置 发明背景
在无线通讯系统中, 最重要的是无线频谱资源, 而现有网络中的频谱 是由无线管理委员会为不同制式的通讯系统划分的, 在这种约束下, 很多 宝贵的频带资源没有得到充分的应用, 很多系统本身的通讯速率由于可用 频谱的带宽限制而受到约束。 故在现有技术中提出了感知无线电 (CR, Cognitive Radio ) 系统, 以便更好的利用无线频谱资源。
在 CR系统中, 通常区分首要用户和次要用户, 首要用户拥有无线频谱 资源, 而次要用户在不影响首要用户的通讯或者影响小于一定门限的情况 下, 可以利用首要用户信道的频谱空洞来发送或接收数据。
在 CR系统下, 常用的两种信道状态模型为离散时间马尔可夫模型和连 续时间马尔可夫信道模型。 如图 1所示为离散时间马尔可夫信道模型的结构 示意图: 离散时间马尔可夫信道模型的信道状态转移概率包括状态由 0到 1 和由 1到 0的概率, 可以分别用 "和 来表示; 另一种连续时间的马尔可夫信 道模型如图 2所示: 信道的空闲时间如图 2中的 Χ ί Χζ…… ) , 信道的占用 时间如图 2中的 Υ ( 丫2... ... ) ; 信道的空闲时间和占用时间都分别成指数 分布。 在现有技术中, 次要用户基于所采用的马尔可夫信道模型, 需要估计 首要用户的信道使用情况, 然后根据该使用情况来进行信道的选择, 也就 是利用首要用户信道的频谱空洞来进行数据的发送或接收。 举例来说, 以 离散时间马尔可夫信道模型为例, 如图 3所示为离散时间的模型示意图, 图 3中为两个首要用户的信道(即首要信道)的使用情况; 其中对于首要信道 1来说, 时隙 2和 4意味着频谱空洞; 对于首要信道 2来说, 时隙 1 , 4和 5意味 着频谱空洞; 这样次要用户就可以利用上述的频谱空洞来进行数据的发送 或接收。
从上述现有技术的方案可知, 上述的技术方案是假定马尔可夫模型的 参数已知且保持不变, 但在 CR实际应用的场景下, 可能存在多个首要信道 可供选择, 而次要用户有可能并不知道该多个首要信道所采用模型的信道 参数, 在这种情况下, 现有技术方案就无法选择出最优的首要信道进行接 入, 从而影响了系统性能。
发明内容
本发明实施例提供了一种感知无线电中次要用户的频讲接入方法及装 置, 能够在存在多个首要信道时, 通过信道参数的估计来选择出最优的首 要信道进行接入, 满足更高的数据传输要求, 提高系统的性能。
本发明实施例提供了一种感知无线电中次要用户的频谱接入方法, 包 括:
根据首要信道所采用的马尔科夫模型, 对所述首要信道的信道参数进 行估计计算;
当所述首要信道为多个时, 利用所估计出的信道参数选择出可用带宽 最大的首要信道;
对所选择出的首要信道进行检测; 在检测出信道空闲后, 接入空闲的信道来传送数据。
本发明实施例还提供了一种感知无线电中次要用户的频讲接入装置, 包括:
参数估计单元, 用于根据首要信道所采用的马尔科夫模型, 对所述首 要信道的信道参数进行估计计算;
信道选择单元, 用于在所述首要信道为多个时, 利用所述参数估计单 元所估计出的信道^:来选择出可用带宽最大的首要信道;
信道检测单元, 用于对所述信道选择单元选择出的首要信道进行检测; 接入单元, 用于在所述信道检测单元检测出信道空闲后, 接入空闲的 信道来传送数据。
本发明实施例还提供了一种感知无线电中次要用户的频 i普接入系统, 所述系统包括次要用户和首要用户;
所述次要用户, 用于根据首要信道所采用的马尔科夫模型, 对该模型 的信道参数进行估计计算; 并在所述首要用户的信道为多个时, 利用所估 计出的信道参数来选择出可用带宽最大的信道; 对所选择出的首要用户的 信道进行检测, 在检测出信道空闲后, 接入空闲的信道来传送数据;
所述首要用户, 用于利用自身拥有的无线频 资源来传输数据。
由上述所提供的技术方案可以看出, 首先根据首要信道所采用的马尔 科夫模型, 对所述首要信道的信道参数进行估计计算; 当所述首要信道为 多个时, 利用所估计出的信道参数选择出可用带宽最大的首要信道; 对所 选择出的首要信道进行检测; 在检测出信道空闲后, 接入空闲的信道来传 送数据。 这样就可以在存在多个首要信道时, 通过信道参数的估计来选择 出最优的首要信道进行接入, 满足更高的数据传输要求, 提高系统的性能。 附图简要说明
图 1为现有技术中离散时间马尔可夫信道模型的结构示意图; 图 2为现有技术中连续时间马尔可夫信道模型结构示意图;
图 3为现有技术中在离散时间马尔可夫信道模型下的频谱空洞示意图; 图 4为本发明实施例 1所提供方法的流程示意图;
图 5a为本发明实施例 2所提供装置的结构示意图;
图 5b为本发明实施例 2所提供装置的参数估计单元结构第一示意图; 图 5c为本发明实施例 2所提供装置的参数估计单元结构第二示意图; 图 6为本发明实施例 3所提供系统的结构示意图。
实施本发明的方式
本发明实施方式提供了一种感知无线电中次要用户的频谱接入方法及 装置, 次要用户可以在存在多个首要信道时, 通过信道参数的估计来选择 出最优的首要信道进行接入, 满足更高的数据传输要求, 提高系统的性能。
实施例 1 : 本发明实施例 1提供了一种感知无线电中次要用户的频 i普接 入方法, 如图 4所示为本实施例 1所提供方法的流程示意图, 所述方法包括: 步骤 41 : 根据首要信道所采用的马尔科夫模型, 对该首要信道的信道 参数进行估计计算。
在该步骤中, 首先根据首要信道所采用的马尔科夫模型的类型, 选择 相应的估计计算, 然后对首要信道的信道参数进行相应的估计计算。 所述 首要信道所采用的马尔科夫模型的类型一般可以是连续时间马尔科夫模型 和离散时间马尔科夫模型。
以首要信道采用连续时间马尔科夫模型为例, 信道参数的估计可以分 为以下过程:
首先根据系统所要求的估计精度和标准正态分布函数来获得具体的采 样数。 其中, 上述系统所要求的估计精度具体可以包括相对估计误差和置 信概率, 该相对估计误差和置信概率可以根据厂家的精度需求来进行设定。 在实现过程中, 可以通过如下公式 1.1来计算:
Figure imgf000007_0001
在以上公式 1.1中, 表示相对估计误差, 表示置信概率, φ(·)表示 标准正态分布函数。 举例来说, 设定 为 1 %, 为 99%时, 就可以按照以 上公式 1.2来计算得到具体采样数 =25758。
然后在根据所获得的具体采样数 η进行采样, 获取总体的采样结果, 并 根据该具体采样数和总体的采样结果获得系统所需精度的信道参数 ,^ (单位为赫兹 Hz )。 在实现过程中, 可以通过如下的公式 1.2来实现:
Figure imgf000007_0002
在以上的公式 1.2中, r表示 X和 Y的采样总数, 这里可以是计算得到的 具体采样数; , ,...)和 ^ = ( , ½,...)为所获取的总体采样结果, 即 观测序列。
另夕卜, 若所述首要信道采用离散时间马尔科夫模型, 则所述信道参数 估计的过程可以包括如下过程:
首先使用少量的初始采样数, 例如可以设定为 100来进行采样; 再获得 采样结果后, 根据该采样结果来获得粗略的信道参数。 在实现过程中, 可 以通过如下的公式来计算获得:
Figure imgf000007_0003
( 1 ) 以上公式 2.1中, "。, "i, "2, "3分别表示首要信道状态的 4种一步转移 情况 (0,0), (0, 1 ) ,(1 ,0),(1 ,1 )发生的次数,它们的总次数即为设定的初始采样 数。 例如当采样结果" 1为 2次, "。为 38次, "2为 5次, "3为 55次, 利用上述 公式 2.1即可获得粗略的信道参数"为 0.05, /?为 0.08。
根据以上所获取的粗略的信道参数、 系统要求的估计精度和标准正态分 布函数来获得具体采样数。 以上系统要求的估计精度同样也包括相对误差 和置信概率, 该相对误差和置信概率可以根据厂家的精度需求来进行设定。 在实现过程中, 可以通过如下的公式来计算获得:
Figure imgf000008_0001
1 = max(ra, r9) ( 2.2 )
以上公式 2.2中, 表示相对估计误差, pc" , p 表示置信概率, φ(·) 表示标准正态分布函数;而 r" , 分别表示对应估计精度下 和 参数所需的 具体采样数, ^为对应估计精度下的系统所需具体采样数。 举例来说, 当设 定 为 0.05, pc"为 99%时, 按照上述所得到的 为0.05, 为 0.08, 再利用 上述公式 2.2就可以得到具体采样数^ =3181 1 ; 同样的, 当设定 为 0.05, 7 ^为 99%时, 按照上述所得到的 "为 0.05, 为 0.08, 再利用上述公式 2.2 就可以得到具体采样数 Υβ =30807。
然后再根据所获得的具体采样数减去初始采样数进行采样, 以获取总 体的采样结果, 再根据公式 2.1来获得系统所需精度的信道参数", ^。 举 例来说, 若所得到的具体采样数7 ^为 31811 , ^为 30807次。 若设定已采 样 100次, 则对于信道参数《需要再采样 31711次以满足系统要求的估计精 度。
步骤 42: 当所述首要信道为多个时, 利用所估计出的信道参数选择出 可用带宽最大的首要信道。
在该步骤中, 当进行评估计算的首要信道为多个时, 增加信道选择策 略的过程, 具体可以利用所估计出的信道参数选择出可用带宽最大的首要 信道。
举例来说, 若该多个首要信道采用连续时间马尔科夫模型, 那么就可 以根据该多个首要信道的带宽和该多个首要信道的信道参数来选择出一个 可用带宽最大的首要信道。 在实际应用中, 可通过如下的公式来计算获得: 丄 = arg max—; ~~ y―. ~ B.
i=l '···' w (丄 +丄) ( 3.1 )
在以上公式 3.1中, β '表示首要信道 i的带宽; , 含义为所估计出的 首要信道 i的信道参数。 举例来说, 若有 5条首要信道可供选择, 则在对该 5 条首要信道的信道参数 进行估计后, 就可以利用上述的公式来计算出 该 5条首要信道中可用带宽最大的首要信道,该可用带宽最大的首要信道就 是所选择的首要信道。
若该首要信道采用离散时间马尔科夫模型, 那么就可以根据该多个首 要信道的带宽、 次要用户可以利用某个首要信道的概率和该多个首要信道 的信道参数来选择出一个可用带宽最大的首要信道。 在实际应用中, 可通 过如下的公式来计算获得: h = arg Ώ\^χ (μίβί + (1 _ μί at )Bi ( 3 2 ) 在以上公式 3.2中, '表示首要信道 i的带宽, A.表示次要用户可以利用 某个首要信道 i的概率, 含义为首要信道 i的信道参数。 同样的, 当有多 条首要信道可供选择时, 在对该多条首要信道的信道参数", 进行估计后, 就可以利用上述的公式来计算出该多条首要信道中可用带宽最大的首要信 道, 该可用带宽最大的首要信道就是所选择的首要信道。 另外, 在利用以 上公式 3.2时:
1 ifa(t)=i,ea( = l
^■( = 0 ifa(t)=i,0a( = O
^ (t - + (1 - ^ - 1))^ ifa(t)≠i 其中, a(t)为时隙 t, 系统观测的信道索引; )表示在时隙 t, 观测 a信道的观测结果,处于繁忙状态时,该值为 1 ; 处于空闲状态时,该值为 0; 其它参数意义同公式 3.2。上述公式可以周期性的根据历史和当前观测结果, 修正各个信道在每个时隙上的繁忙或空闲状态。
步骤 43: 对所选择出的首要信道进行检测。
在该步骤中, 当对首要信道的信道参数进行估计之后, 就可以启动对 该首要信道的检测, 以判断是否有空闲信道。
步骤 44: 如果检测出空闲信道, 那么就可以利用该空闲信道来传送数 据。
在该步骤中, 次要用户启动对首要信道的检测, 如果信道被占用, 则 继续检测; 如果检测到信道空闲, 那么就利用该空闲的信道来传送数据。
若该首要信道采用连续时间马尔科夫模型 , 则还可以根据所设定的频 i普礼仪约束的次要用户对首要用户的使用所产生冲突概率的最大门限、 所 设定的修正因子、 所设定的检测时长, 以及所估计的信道参数来获得所述 传送数据的持续时间。 在实际应用中, 可通过如下的公式来计算获得:
Figure imgf000011_0001
在以上公式 1.3中, 7/为频 i普礼仪约束的次要用户对首要用户的使用所 产生冲突概率的最大门限; 为修正因子, ^ ^ (Ο'1) , 该修正因子 可以根 据参数的估计误差和信道突变状况进行设置, 为信道参数的相对估计误差 提供 1 / - 1的保护, 也可以为由信道参数发生突然变化引起的冲突概率的 瞬间提高提供一个緩冲; 为检测时长; 为所估计的信道参数。 举例来 说, 按照以上公式 1.2得到^为 1 Ηζ, 并设定;/为 0.2, 为 0.9; Γΰ为 2秒, 则根据以上公式 1.3就可以得到持续时间 τρ =0.2008秒。
另外, 在次要用户利用该空闲信道传送一次数据结束后, 可以再进行 信道的检测, 以进行下一次的传送。
另外, 若该首要信道采用离散时间马尔科夫模型, 则所述传送数据的 持续时间为该离散时间马尔科夫模型中的时隙长度。
通过以上技术方案的实施, 就可以使次要用户在首要用户信道模型的 信道参数未知的情况下, 有效的获取首要信道的频谱空洞, 在存在多个首 要信道时, 通过信道参数的估计来选择出最优的首要信道进行接入, 满足 更高的数据传输要求, 提高系统的性能。 由于次要用户只需针对最优的首 要信道进行监测, 也减小了检测工作量。
另外, 若所述首要信道是采用连续时间马尔科夫模型, 则在对所述首 要信道的信道参数进行估计计算之后, 还可以在次要用户使用首要信道时, 监测最近若干次冲突的发生概率 , 如果该概率 超过设定的标准值, 则 标记所述连续时间马尔科夫模型的信道参数为不可用 , 并重新启动所述信 道参数的估计计算。
该设定的标准值可以根据所估计的信道参数和所述传送数据的持续时 间来获得。 在实际应用过程中, 该标准值可以为 [αΡ, ^, 其中 0<a<1, b>l ,而参数 ρ4艮据公式尸/ = Ρ{Χ≤ΤΡ) = 1 - β λχΤρ≤ η来获得,该公 式中的参数 、 ;/和 的含义和以上公式 1.3的含义相同。 举例来说, 按照 以上公式 1.2得到 4为 1 Hz;按照以上公式 1.3得到 Γρ为 0.2008秒,设定; /为
0.2; 则根据上述公式就可以计算得到 S=0.1819, 从而就可以得到标准值 的范围。
这样就可以在信道参数动态变化的情况下, 通过对信道模型的监测来 重新启动对该信道参数的估计过程, 从而有效的获取首要信道的频谱空洞, 并利用该频谱空洞信息进行数据的传输, 从而提高了系统的性能。
实施例 2: 本发明实施例 2提供了一种感知无线电中次要用户的频 i普接 入装置, 如图 5a所示为本发明实施例 2所提供装置的结构示意图, 所述装置 包括: 参数估计单元 51、信道选择单元 52、信道检测单元 53和接入单元 54, 其中:
所述参数估计单元 51, 用于根据首要信道所采用的马尔科夫模型, 对 所述首要信道的信道参数进行估计计算。 具体进行信道参数估计计算的方 式见以上方法实施例 1中所述。
信道选择单元 52, 用于在所述首要信道为多个时, 利用所述参数估计 单元 51所估计出的信道参数来选择出可用带宽最大的首要信道。
信道检测单元 53 , 用于对所述信道选择单元 52选择出的首要信道进行 检测。
接入单元 54, 用于在所述信道检测单元 53检测出信道空闲后, 接入空 闲的信道来传送数据。
其中, 如图 5b所示, 所述参数估计单元 51可以进一步包括: 第一具体 采样数单元 511, 用于在所述首要信道采用连续时间马尔科夫模型时,根据 系统要求的相对估计误差、 置信概率和标准正态分布函数来获得具体采样 数; 第一采样单元 512, 用于按照所获得的具体采样数进行采样, 获取总体 的采样结果; 第一信道参数单元 513, 用于根据该具体采样数和总体的采样 结果获得系统所需精度的信道参数。
或者, 如图 5c所示, 所述参数估计单元 51可以进一步包括: 第二采样 单元 515, 用于使用设定的初始采样数进行采样, 或者按照获得的具体采样 数减去初始采样数之后进行采样,获得采样结果后;第二信道参数单元 516, 用于根据初始采样数获得的采样结果下信道状态的转移情况发生的次数来 获得粗略的信道参数, 或者, 根据具体采样数减去初始采样数之后获取的 总体采样结果下信道状态的转移情况发生的次数来获得系统所需精度的信 道参数,输出该所需精度的信道参数给其他单元;第二具体采样数单元 517, 用于根据所获得的粗略的信道参数、 相对估计误差、 置信概率和标准正态 分布函数来获得具体采样数。
另外, 以上所述装置中还可以包括: 传输时间获取单元 55, 用于在所 述首要信道采用连续时间马尔科夫模型时, 利用所设定的频谱礼仪约束的 次要用户对首要用户的使用所产生冲突概率的最大门限、 所设定的修正因 子、 所设定的检测时长, 以及所述参数估计单元 51所估计的信道参数来获 得所述传送数据的持续时间。
另外, 所述装置还可包括: 参数重估计单元 56, 用于在所述首要信道 采用连续时间马尔科夫模型时, 在接入空闲的信道来传送数据时, 监测最 近若干次冲突的发生概率, 如果该概率超过设定的标准值, 则标记所述连 续时间马尔科夫模型的信道参数为不可用 , 并重新启动所述信道参数的估 计计算。 该参数重估计单元 56和所述接入单元 54属于并行的单元, 也就是 在所述信道检测单元 53进行信道检测之后 , 并行触发该参数重估计单元 56 和接入单元 54进行工作。具体进行参数重估计的过程见以上方法实施例 1中 所述。
实施例 3: 本发明实施例 3还提供了一种感知无线电中次要用户的频谱 接入系统, 如图 6所示为本发明实施例 3所提供系统的结构示意图, 所述系 统包括次要用户 61和首要用户 62, 其中:
所述次要用户 61, 用于根据首要信道所采用的马尔科夫模型, 对该模 型的信道参数进行估计计算; 并在所述首要用户的信道为多个时, 利用所 估计出的信道参数来选择出可用带宽最大的信道; 对所选择出的首要用户 的信道进行检测, 在检测出信道空闲后, 接入空闲的信道来传送数据。
所述首要用户 62, 用于利用自身拥有的无线频谱资源来传输数据。 另外, 所述次要用户 61中还包括: 传输时间获取单元 61 1, 用于在所述 首要信道采用连续时间马尔科夫模型时, 利用所估计出的信道参数、 预设 的频谱礼仪约束的次要用户对首要用户的使用所产生冲突概率的最大门 限、 预设的修正因子和预设的检测时长来获得所述接入单元传送数据的持 续时间。
另外, 以上所述系统中, 该次要用户 61可以为实施例 2中的频 i普接入装 置, 包括该频侮接入装置的各个单元。
值得注意的是, 以上的装置和系统实施例中, 所包括的各个单元只是 按照功能逻辑进行划分的, 但并不局限于上述的划分, 只要能够实现相应 的功能即可; 另外, 各功能单元的具体名称也只是为了便于相互区分, 并 不用于限制本发明的保护范围。
另外, 本领域普通技术人员可以理解实现上述实施例方法中的全部或 部分步骤是可以通过程序来指令相关的硬件完成, 相应的程序可以存储于 一种计算机可读存储介质中, 上述提到的存储介质可以是只读存储器, 磁 盘或光盘等。
综上所述, 本发明实施例可以在存在多个首要信道时, 通过信道参数 的估计来选择出最优的首要信道进行接入, 满足更高的数据传输要求, 提 高系统的性能。

Claims

权利要求
1、 一种感知无线电中的频 i普接入方法, 其特征在于,
根据首要信道所采用的马尔科夫模型, 对所述首要信道的信道参数进 行估计计算;
当所述首要信道为多个时, 利用所估计出的信道参数选择出可用带宽 最大的首要信道;
对所选择出的首要信道进行检测;
在检测出信道空闲后, 接入空闲的信道。
2、 如权利要求 1所述的方法, 其特征在于, 所述方法还包括: 确定所述接入空闲的信道时间, 包括:
根据频谱礼仪约束对所述首要用户的使用所产生冲突概率的最大门 限、 所设定的修正因子、 所设定的检测时长, 以及所述信道参数获得所述 传送数据的持续时间。
3、 如权利要求 1所述的方法, 其特征在于, 若所述选择出的首要信道 采用连续时间马尔科夫模型, 则对所述首要信道的信道参数进行估计计算 包括:
根据系统要求的相对估计误差、 置信概率和标准正态分布函数来获得 具体采样数;
按照所获得的具体采样数进行采样, 获取总体的采样结果, 并根据该 具体采样数和总体的采样结果获得系统所需精度的信道参数。
4、 如权利要求 1所述的方法, 其特征在于, 若所述首要信道采用离散 时间马尔科夫模型, 则对所述首要信道的信道参数进行估计计算, 包括: 使用设定的初始采样数进行采样, 获得采样结果后, 根据该采样结果 下信道状态的转移情况发生的次数来获得粗略的信道参数;
根据所获得的粗略的信道参数、 相对估计误差、 置信概率和标准正态 分布函数来获得具体采样数; 按照所获得的具体采样数减去所述初始采样数之后进行采样, 获取总 体采样结果 , 并根据该总体采样结果下信道状态的转移情况发生的次数来 获得系统所需精度的信道参数。
5、 如权利要求 3所述的方法, 其特征在于, 在接入空闲的信道来传送 数据时, 所述方法还包括:
监测冲突的发生概率;
如果该概率超过设定的标准值, 则标记所述连续时间马尔科夫模型的 信道参数为不可用, 并重新启动所述信道参数的估计计算;
所述设定的标准值根据所估计出的信道参数和所述传送数据的持续时 间来获得。
6、 如权利要求 1所述的方法, 其特征在于, 所述利用所估计出的信道 参数选择出可用带宽最大的首要信道包括:
若所述首要信道采用连续时间马尔科夫模型, 则根据该多个首要信道 的带宽和所估计出的该多个首要信道的信道参数来选择出一个可用带宽最 大的首要信道;
若所述首要信道采用离散时间马尔科夫模型, 则根据该多个首要信道 的带宽、 次要用户可以利用某个首要信道的概率和所估计出的该多个首要 信道的信道参数来选择出一个可用带宽最大的首要信道。
7、 一种感知无线电中次要用户的频谱接入装置, 其特征在于, 包括: 参数估计单元, 用于根据首要信道所采用的马尔科夫模型, 对所述首 要信道的信道参数进行估计计算;
信道选择单元, 用于在所述首要信道为多个时, 利用所述参数估计单 元所估计出的信道^:来选择出可用带宽最大的首要信道;
信道检测单元, 用于对所述信道选择单元选择出的首要信道进行检测; 接入单元, 用于在所述信道检测单元检测出信道空闲后, 接入空闲的 信道。
8、 如权利要求 7所述的装置, 其特征在于, 所述参数估计单元进一步 包括:
第一具体采样数单元, 用于在所述首要信道采用连续时间马尔科夫模 型时, 根据系统要求的相对估计误差、 置信概率和标准正态分布函数来获 得具体采样数;
第一采样单元, 用于按照所述第一具体采样数单元所获得的具体采样 数进行采样, 获取总体的采样结果;
第一信道参数单元, 用于根据该具体采样数和总体的采样结果获得系 统所需精度的信道参数。
9、 如权利要求 7所述的装置, 其特征在于, 所述装置包括:
传输时间获取单元, 用于根据频傅礼仪约束对所述首要用户的使用所 产生冲突概率的最大门限、 所设定的修正因子、 所设定的检测时长, 以及 所述信道参数获得所述传送数据的持续时间
10、 如权利要求 7所述的装置, 其特征在于, 所述装置还包括: 参数重估计单元, 用于在所述首要信道采用连续时间马尔科夫模型时, 在接入空闲的信道来传送数据时, 监测若干次冲突的发生概率, 如果该概 率超过设定的标准值, 则标记所述连续时间马尔科夫模型的信道参数为不 可用, 并重新启动所述信道参数的估计计算。
1 1、 一种感知无线电中次要用户的频 接入系统, 其特征在于, 所述 系统包括次要用户和首要用户;
所述次要用户, 用于根据首要信道所采用的马尔科夫模型, 对该模型 的信道参数进行估计计算; 并在所述首要用户的信道为多个时, 利用所估 计出的信道参数来选择出可用带宽最大的信道; 对所选择出的首要用户的 信道进行检测, 在检测出信道空闲后, 接入空闲的信道来传送数据;
所述首要用户, 用于利用自身拥有的无线频讲资源来传输数据。
12、如权利要求 1 1所述的系统, 其特征在于, 所述次要用户中还包括: 传输时间获取单元, 用于在所述首要信道采用连续时间马尔科夫模型 时, 利用所述参数估计单元所估计出的信道参数、 预设的频 i普礼仪约束的 次要用户对首要用户的使用所产生冲突概率的最大门限、 预设的修正因子 和预设的检测时长来获得所述接入单元传送数据的持续时间。
PCT/CN2009/076167 2009-01-06 2009-12-29 感知无线电中次要用户的频谱接入方法及装置 WO2010078815A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910001371.0 2009-01-06
CN200910001371.0A CN101771476B (zh) 2009-01-06 2009-01-06 感知无线电中次要用户的频谱接入方法及装置

Publications (1)

Publication Number Publication Date
WO2010078815A1 true WO2010078815A1 (zh) 2010-07-15

Family

ID=41800673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/076167 WO2010078815A1 (zh) 2009-01-06 2009-12-29 感知无线电中次要用户的频谱接入方法及装置

Country Status (5)

Country Link
US (1) US8463188B2 (zh)
EP (1) EP2205016B1 (zh)
CN (1) CN101771476B (zh)
AT (1) ATE515158T1 (zh)
WO (1) WO2010078815A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102843199A (zh) * 2011-06-23 2012-12-26 中兴通讯股份有限公司 终端噪声干扰监测方法及装置
CN103441806A (zh) * 2013-07-30 2013-12-11 长春理工大学 认知无线电的纯不连续马尔可夫过程频谱感知方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9055512B2 (en) * 2010-04-15 2015-06-09 Nokia Technologies Oy Methods and apparatus for secondary bandwidth detection and allocation
EP2421297B1 (de) * 2010-08-18 2013-03-27 Siemens Aktiengesellschaft Verfahren zum Kanalwechsel in einem drahtlosen Kommunikationsnetzwerk
US8351861B2 (en) * 2010-09-30 2013-01-08 Deutsche Telekom Ag Opportunistic spectrum access in mobile cognitive radio networks
CN102404751A (zh) * 2011-12-05 2012-04-04 昆明理工大学 一种基于跳频的跨层认知无线电网络用户接入方法
CN103326797B (zh) * 2013-06-21 2015-10-28 上海交通大学 认知网络中的合作式频谱感知方法
US9813914B2 (en) * 2013-12-06 2017-11-07 Qualcomm Incorporated System and method for management of spectrum interference rights and secondary use permissions
CN104796206B (zh) * 2014-01-17 2018-03-02 普天信息技术有限公司 一种获取可用频谱资源的方法及系统
CN103874213B (zh) * 2014-03-11 2017-11-10 新华三技术有限公司 一种信道宽度选择方法和装置
CN104202761A (zh) * 2014-09-15 2014-12-10 南通大学 信道状态转移概率估计方法
CN104767579A (zh) * 2015-03-30 2015-07-08 西南科技大学 一种认知无线电频谱检测间隔的自适应调节方法
FR3039351B1 (fr) 2015-07-21 2019-03-15 Institut National Des Sciences Appliquees (Insa) Procede d'acces opportuniste au spectre
US10390364B2 (en) 2017-04-18 2019-08-20 Government Of The United States Of America, As Represented By The Secretary Of Commerce Apparatus and method for dynamically controlling spectrum access
US11272375B2 (en) 2019-04-15 2022-03-08 Government Of The United States Of America, As Represented By The Secretary Of Commerce Dynamic physical resource block control apparatus and process for dynamically controlling allocation of a physical resource block
CN111294128B (zh) * 2019-12-30 2021-04-30 中国人民解放军军事科学院国防科技创新研究院 一种基于马尔可夫信道模型的机会频谱接入方法
CN113613341B (zh) * 2020-06-12 2023-07-21 南京理工大学 一种认知无线电网络的动态信道接入方法
CN113098641B (zh) * 2021-03-26 2022-09-09 天津(滨海)人工智能军民融合创新中心 一种能量受限情况下的机会频谱接入方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1265255A (zh) * 1997-06-04 2000-08-30 法国电信局 蜂窝无线通信网中的动态信道分配方法
CN1592166A (zh) * 2003-09-05 2005-03-09 深圳市中兴通讯股份有限公司南京分公司 基于wcdma系统的多用户类型分布式环境下的接纳控制方法
WO2005071903A1 (en) * 2004-01-22 2005-08-04 Telefonaktiebolaget Lm Ericsson (Publ) Access control for multicast channel request

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2794589B1 (fr) * 1999-06-02 2001-08-24 France Telecom Procede de communications radiomobiles amrt iteratif
FR2821217B1 (fr) * 2001-02-21 2003-04-25 France Telecom Procede et systeme de codage-decodage iteratif de flux de donnees numeriques codees par combinaisons spatio-temporelles, en emission et reception multiple
US7164649B2 (en) * 2001-11-02 2007-01-16 Qualcomm, Incorporated Adaptive rate control for OFDM communication system
US8245251B2 (en) * 2002-12-06 2012-08-14 General Instrument Corporation Method and apparatus for predictive tuning in digital content receivers
US7092437B2 (en) * 2003-04-25 2006-08-15 Duke University Methods and systems for determining an optimal training interval in a communications system
US7848440B2 (en) * 2005-07-07 2010-12-07 University Of Utah Research Foundation Multi-channel communication method and apparatus using plural Markov Chain Monte Carlo simulations
US7573964B2 (en) * 2004-12-16 2009-08-11 Motorola, Inc. Channel estimator with extended channel bandwidth
US7412020B1 (en) * 2005-06-27 2008-08-12 The United States Of America As Represented By The Secretary Of The Army Training for time-selective wireless fading channels using cutoff rate
US7746970B2 (en) * 2005-11-15 2010-06-29 Qualcomm Incorporated Method and apparatus for filtering noisy estimates to reduce estimation errors
US7733989B2 (en) * 2005-12-05 2010-06-08 Telefonaktiebolaget Lm Ericsson (Publ) Method and system of channel estimation
KR101217628B1 (ko) * 2006-02-16 2013-01-02 삼성전자주식회사 전력선 통신 네트워크 상의 패킷 집합 방법 및 장치
US9538388B2 (en) * 2006-05-12 2017-01-03 Shared Spectrum Company Method and system for dynamic spectrum access
US8144723B2 (en) * 2006-12-11 2012-03-27 New Jersey Institute Of Technology Method and system for stable throughput of cognitive radio
EP1936894A1 (en) * 2006-12-21 2008-06-25 Fujitsu Ltd. Pilot block-based channel estimation in a OFDM system
KR100824602B1 (ko) * 2007-08-23 2008-04-24 한국전자통신연구원 인식 무선 기반의 채널 상태 예측장치 및 그 방법
KR100932919B1 (ko) * 2007-09-05 2009-12-21 한국전자통신연구원 동적 채널 할당을 위한 채널 집합 관리 방법 및 시스템
US20100246825A1 (en) * 2007-09-07 2010-09-30 University Of Maryland Wireless communication method and system for transmission authentication at the physical layer
DE102007044671B4 (de) * 2007-09-18 2013-02-21 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Schätzung von Parametern eines in einer dynamischen Mehrwegeumgebung empfangenen GNSS-Navigationssignals
CN101242333B (zh) * 2008-02-29 2010-06-09 浙江大学 一种基于信道感知和预测的多址接入方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1265255A (zh) * 1997-06-04 2000-08-30 法国电信局 蜂窝无线通信网中的动态信道分配方法
CN1592166A (zh) * 2003-09-05 2005-03-09 深圳市中兴通讯股份有限公司南京分公司 基于wcdma系统的多用户类型分布式环境下的接纳控制方法
WO2005071903A1 (en) * 2004-01-22 2005-08-04 Telefonaktiebolaget Lm Ericsson (Publ) Access control for multicast channel request

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102843199A (zh) * 2011-06-23 2012-12-26 中兴通讯股份有限公司 终端噪声干扰监测方法及装置
CN102843199B (zh) * 2011-06-23 2016-08-24 中兴通讯股份有限公司 终端噪声干扰监测方法及装置
CN103441806A (zh) * 2013-07-30 2013-12-11 长春理工大学 认知无线电的纯不连续马尔可夫过程频谱感知方法
CN103441806B (zh) * 2013-07-30 2015-03-11 长春理工大学 认知无线电的纯不连续马尔可夫过程频谱感知方法

Also Published As

Publication number Publication date
US8463188B2 (en) 2013-06-11
ATE515158T1 (de) 2011-07-15
EP2205016B1 (en) 2011-06-29
CN101771476A (zh) 2010-07-07
CN101771476B (zh) 2013-04-24
EP2205016A1 (en) 2010-07-07
US20100173587A1 (en) 2010-07-08

Similar Documents

Publication Publication Date Title
WO2010078815A1 (zh) 感知无线电中次要用户的频谱接入方法及装置
US9866418B2 (en) Cognitive multi-user OFDMA
US7778170B2 (en) Spectrum and medium access allocation for fairness
EP1861958B1 (en) MEASURING AND MONITORING QoS IN SERVICE DIFFERENTIATED WIRELESS NETWORKS
WO2006077562A1 (en) Measuring and monitoring qos in service differentiated wireless networks
CN111010207B (zh) 一种基于量化相关性的跳频方法及装置
GB2486963A (en) A wireless communication node adjusts a differentiated services control parameter setting based on a priority level assigned to received data
JP2012142931A (ja) 無線ネットワークにおける動的データ管理のためのシステムおよび方法
WO2013119355A1 (en) Co-channel utilization estimation
WO2021233331A1 (zh) 通信信道优化方法和装置、电子设备、存储介质
JP5497047B2 (ja) 媒体アクセス制御における緩和された決定論的バックオフ方法の送信スロットの選択
CN102577479A (zh) 感知无线网络的协作频谱感知方法和感知节点
US7342900B2 (en) Apparatus and method for estimating device availability
CN111313994B (zh) 公平性原则下基于多臂赌博机模型的多用户频谱接入方法
WO2013000240A1 (zh) 一种多节点联合的频谱感知方法和系统
JP5378268B2 (ja) 無線基地局、無線通信システム、無線基地局のトラヒックレベル決定方法
US10873922B2 (en) Communication device and method for execution of at least one positioning function in a communication network
CN102984805B (zh) 感知无线电中次要用户的频谱接入方法及装置
JP6432085B2 (ja) 利用リソース取得装置、利用リソース取得方法、及びプログラム
JP2023124488A (ja) 通信品質推定装置、通信品質推定方法、プログラム
JP2018195983A (ja) 通信制御装置、通信制御システム、通信制御プログラム、及び通信制御方法
Oo et al. Spectrum Sensing for DCF in Opportunistic Spectrum Access Environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09837372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09837372

Country of ref document: EP

Kind code of ref document: A1