JP2018195983A - 通信制御装置、通信制御システム、通信制御プログラム、及び通信制御方法 - Google Patents

通信制御装置、通信制御システム、通信制御プログラム、及び通信制御方法 Download PDF

Info

Publication number
JP2018195983A
JP2018195983A JP2017098344A JP2017098344A JP2018195983A JP 2018195983 A JP2018195983 A JP 2018195983A JP 2017098344 A JP2017098344 A JP 2017098344A JP 2017098344 A JP2017098344 A JP 2017098344A JP 2018195983 A JP2018195983 A JP 2018195983A
Authority
JP
Japan
Prior art keywords
data
communication
quality
communication control
sets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017098344A
Other languages
English (en)
Other versions
JP6995496B2 (ja
Inventor
侑希 西口
Yuki Nishiguchi
侑希 西口
愛 矢野
Ai Yano
愛 矢野
茂紀 福田
Shigenori Fukuda
茂紀 福田
菜美 長田
Nami Osada
菜美 長田
角田 潤
Jun Tsunoda
潤 角田
松倉 隆一
Ryuichi Matsukura
隆一 松倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2017098344A priority Critical patent/JP6995496B2/ja
Priority to US15/981,261 priority patent/US10667167B2/en
Publication of JP2018195983A publication Critical patent/JP2018195983A/ja
Application granted granted Critical
Publication of JP6995496B2 publication Critical patent/JP6995496B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • H04W28/065Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information using assembly or disassembly of packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】データの受信品質を所定の品質に維持しつつ、効率よくデータを収集する。【解決手段】パケットサイズ調整システム1は、センサデバイス10と、センサデバイス10からデータを受信するGW20とを有する。GW20は、サンプリングセット数決定部26と送信部27とを有する。サンプリングセット数決定部26は、センサデバイス10との間の無線品質に応じて、センサデバイス10が1つのパケットに搭載するデータのセット数を決定する。送信部27は、決定されたセット数を、センサデバイス10に通知する。センサデバイス10は、通信状況測定部11と送信部14とを有する。通信状況測定部11は、通信状況を測定する。送信部14は、上記測定の結果を示すデータを送信する際、送信部27により通知された、パケットに搭載可能な最大のサンプリングセット数分の上記データを、1つのパケットに搭載して、GW20へ送信する。【選択図】図3

Description

本発明は、通信制御装置、通信制御システム、通信制御プログラム、及び通信制御方法に関する。
近年、IoT(Internet of Things)ネットワークが普及しつつある。IoTは、Bluetooth(登録商標)、ZigBee(登録商標)等の近距離無線通信を用いて、センサ等のデバイスやGW(Gate Way)を接続し、センサネットワークを構築することが多い。しかしながら、センサネットワークは、外部環境の変化やデバイスの故障により、障害が発生することがある。センサネットワークに障害が発生すると、様々なIoTサービスで利用するユーザデータ(例えば、温湿度、発電量)の収集が困難となる。そのため、IoTネットワークを安定運用してデータを収集することが重要である。
そこで、IoTネットワークでは、上記の様なユーザデータに加えて、通信状況の判断に寄与する運用管理データをサンプリングすることにより、障害を検知したり、障害内容や発生箇所を判定したりする。運用管理データは、例えば、デバイス間の無線品質、各デバイスのCPU(Central Processing Unit)やメモリの使用状況、バッテリ残量等のデバイス状態をデバイス毎に示すデータである。ところが、これらの運用管理データの内、無線品質に関するデータは、極めて変化が速い。そのため、無線チャネルの挙動を常時把握するためには、無線品質に関するデータは、数百ミリ秒間隔程度の短周期で各デバイスにてサンプリングされ、GWへ送信される。特に、IoTネットワークにおいて使用頻度の高いBluetoothやZigBeeは、無線LAN(Local Area Network)等に比較して、1チャネル当たりの占有帯域幅が非常に狭い。そのため、各デバイスは、データを高効率かつ喪失なくGWへ送信することが求められる。
このような状況に対処するため、各デバイスが、プロトコルで許容される最大パケットサイズで複数回分の計測データを一括送信する技術が知られている。これにより、パケットのオーバヘッドを抑制した高効率なデータ送信が実現される。
特開2012−257016号公報
しかしながら、複数のデバイスが最大パケットサイズでデータを送信すると、デバイス間でパケットの衝突が発生し易くなり、データ喪失につながる可能性が高くなる。そのため、パケットサイズが最大値に設定されたとしても、データの伝送効率は必ずしも高まらない。一方、パケットサイズを小さくしてデータを送信すると、パケットの衝突確率は減少するものの、オーバヘッドが増大してしまい、データの伝送効率が低下する。この様な問題は、狭帯域のIoTネットワークにおいて、特に顕著となる。
開示の技術は、上記に鑑みてなされたものであって、データの受信品質を所定の品質に維持しつつ、効率よくデータを収集することのできる通信制御装置、通信制御システム、通信制御プログラム、及び通信制御方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本願の開示する通信制御装置は、一つの態様において、決定部と通知部とを有する。前記決定部は、通信装置との間の無線品質に応じて、前記通信装置が1つのパケットに搭載するデータのセット数を決定する。前記通知部は、前記決定部により決定されたセット数を、前記通信装置に通知する。
本願の開示する通信制御装置の一つの態様によれば、データの受信品質を所定の品質に維持しつつ、効率よくデータを収集することができる。
図1は、本実施例に係るパケットサイズ調整方法の概要の一例を示す図である。 図2は、本実施例に係るパケットサイズの決定方法の一例を説明するための図である。 図3は、本実施例に係るパケットサイズ調整システムの一例を示す図である。 図4は、本実施例に係るパケットサイズ調整システムのハードウェアの一例を示す図である。 図5は、実施例1に係るGWの動作の一例を説明するためのフローチャートである。 図6は、実施例2に係るGWの動作の一例を説明するためのフローチャートである。
以下に、本願の開示する通信制御装置、通信制御システム、通信制御プログラム、及び通信制御方法の実施例を、図面を参照しながら詳細に説明する。なお、以下の実施例により本願の開示する通信制御装置、通信制御システム、通信制御プログラム、及び通信制御方法が限定されるものではない。
図1は、本実施例に係るパケットサイズ調整方法の概要の一例を示す図である。図1に示す様に、本実施例に係るパケットサイズ調整方法では、運用管理データは、障害検知アルゴリズムによって要求されるデータの品質が維持される範囲で、伝送効率が最大となるパケットサイズにより送信される。GWは、各デバイスとの間のデータの品質を定期的に監視し、要求された品質を維持しているか否かを判定する。そして、要求された品質が維持されていない場合には、GWは、無線品質を改善するためにパケットサイズを小さくする。図1に示す例では、要求された無線品質が維持されていない場合、1パケットで送信される運用管理データのサンプリングセット数が、例えば5から4に変更される。これにより、パケットサイズが小さくなり、他のデバイスから送信されたパケットと衝突する確率を低減できる。
ここで、サンプリングセットとは、障害検知アルゴリズムが要求する、異なる種別の運用管理データをサンプリング単位で纏めたデータ群(セット)を示す。運用管理データは、例えば、デバイス間の無線品質、各デバイスのCPU(Central Processing Unit)やメモリの使用状況、バッテリ残量等のデバイス状態をデバイス毎に示すデータである。デバイス間の無線品質としては、例えば、RSSI(Received Signal Strength Indication)やLQI(Link Quality Indicator)等が考えられる。なお、各デバイスが、1つのサンプリングセットを更に複数のパケットに分割して送信することで、より柔軟にパケットサイズを調整することもできる。しかし、デバイスでのデータ読み出しの処理やGWでのデータ再構成の処理が複雑になり、IoTで使用されることの多い、低リソースを有するデバイスには適さない可能性が高い。そのため、本実施例では、1サンプリングセット単位でのパケットサイズ調整を想定する。
図2は、本実施例に係るパケットサイズの決定方法の一例を説明するための図である。例えば図2に示す様に、上記パケットサイズに相当するNpayloadは、通信媒体のMTU(Maximum Transmission Unit)とプロトコルのMTUとの大小関係により、決定される。ここで、通信媒体(media)は、例えば、Bluetooth、ZigBee、無線LAN等である。プロトコル(protocol)は、例えば、HTIP(Home-network Topology Identifying Protocol)、DLNA(登録商標)(Digital Living Network Alliance)等である。
図2において、MTUprotocolは、通信プロトコルのMTUであり、MTUmediaは、通信媒体のMTUである。また、OHcupsuleは、例えば、GRE(Generic Routing Encapsulation)等のカプセル化に必要な1送信当たりのオーバヘッドである。また、OHprotocolは、通信プロトコルのオーバヘッドであり、OHmediaは、通信媒体のオーバヘッドである。GWは、パケットサイズの決定に際し、MTUprotocol<MTUmediaが成立する場合には、Npayload=MTUprotocol−OHprotocolにより、パケットサイズに相当するNpayloadを決定する。これに対して、MTUmedia≦MTUprotocolが成立する場合には、GWは、Npayload=MTUmedia−OHcupsule−OHmedia−OHprotocolにより、パケットサイズに相当するNpayloadを決定する。これにより、センサネットワークにおけるデータの品質に応じた、適切なパケットサイズに相当するNpayloadを決定することができる。
図3は、本実施例に係るパケットサイズ調整システム1の一例を示す図である。パケットサイズ調整システム1は、通信制御システムの一例である。例えば図3に示す様に、センサデバイス10は、通信状況測定部11とデバイス状態測定部12とバッファ13と送信部14と受信部15とを有する。これら各構成部分は、一方向又は双方向に、信号やパケットの入出力が可能な様に接続されている。また、GW(Gate Way)20は、受信部21とDB(Data Base)22と障害検知部23と無線品質判定部24と無線品質設定部25とサンプリングセット数決定部26と送信部27とを有する。これら各構成部分は、一方向又は双方向に、信号やパケットの入出力が可能な様に接続されている。なお、図3において、破線矢印は、運用管理データの流れを示し、実線矢印は、サンプリングセット数の設定に必要な情報の流れを示す。通信状況測定部11は、測定部の一例である。また、無線品質判定部24は、判定部の一例である。また、サンプリングセット数決定部26は、決定部の一例である。また、送信部27は、通知部の一例である。
各構成部分の処理については、動作説明において後述するが、例えば、センサデバイス10の通信状況測定部11は、運用管理データの内、例えばRSSI、LQI等の通信状況を表すデータを測定し、該測定データをバッファ13内に蓄積する。同様に、デバイス状態測定部12は、運用管理データの内、例えばCPUやメモリの使用状況、バッテリ残量等のデバイス状態を表すデータを測定し、該測定データをバッファ13内に蓄積する。
図4は、本実施例に係るパケットサイズ調整システム1のハードウェア構成を示す図である。図4に示す様に、センサデバイス10は、ハードウェアの構成要素として、CPU10aとメモリ10bと通信I/F(Inter Face)10cとセンサ10dとHDD(Hard Disk Drive)10eとを有する。メモリ10bは、例えば、SDRAM(Synchronous Dynamic Random Access Memory)等のRAM(Random Access Memory)、ROM(Read Only Memory)、またはフラッシュメモリ等である。
CPU10aは、各種演算処理を実行する。通信I/F10cは、GW20との間で無線通信を行い、GW20との間でデータの送信および受信を行う。メモリ10bは、各種情報を一時的に記憶する。HDD10eには、通信状況測定プログラム10e−1およびデバイス状態測定プログラム10e−2が格納されている。
CPU10aは、通信状況測定プログラム10e−1をHDD10eから読み出してメモリ10b内のRAMに、通信状況測定プロセスとして展開する。そして、CPU10aは、RAMに展開された通信状況測定プロセスを実行することにより、センサ10dと協働して通信状況測定部11の機能を実現する。また、CPU10aは、デバイス状態測定プログラム10e−2をHDD10eから読み出してメモリ10b内のRAMに、デバイス状態測定プロセスとして展開する。そして、CPU10aは、RAMに展開されたデバイス状態測定プロセスを実行することにより、センサ10dと協働してデバイス状態測定部12の機能を実現する。また、バッファ13は、例えばHDD10eにより実現される。送信部14、受信部15は、例えば通信I/F10cにより実現される。
なお、通信状況測定プログラム10e−1およびデバイス状態測定プログラム10e−2は、必ずしも最初からHDD10e内に格納されていなくてもよい。例えば、CPU10aは、メモリカード等の記憶媒体に記憶された通信状況測定プログラム10e−1およびデバイス状態測定プログラム10e−2を、当該記憶媒体から読み出して実行するようにしてもよい。また、これらのプログラムは、無線回線、公衆回線、インターネット、LAN、WAN(Wide Area Network)等を介してセンサデバイス10に接続されるコンピュータ(またはサーバ)等に記憶させておいてもよい。この場合、センサデバイス10のCPU10aが、無線回線等を介して、当該コンピュータからこれらのプログラムを取得して実行する。
図4に示す様に、GW20は、ハードウェアの構成要素として、CPU20aとメモリ20bと通信I/F20cとHDD20dとを有する。メモリ20bは、例えば、SDRAM等のRAM、ROM、またはフラッシュメモリ等である。CPU20aは、各種演算処理を実行する。通信I/F20cは、センサデバイス10との間で無線通信を行い、センサデバイス10との間でデータの送信および受信を行う。メモリ20bは、各種情報を一時的に記憶する。
HDD20dには、障害検知プログラム20d−1およびパケットサイズ調整プログラム20d−2が格納されている。また、HDD20dには、ユーザデータ、運用管理データ、サンプリングセット数、無線品質判定用の閾値等のデータが格納される。CPU20aは、障害検知プログラム20d−1をHDD20dから読み出してメモリ20b内のRAMに、障害検知プロセスとして展開する。そして、CPU10aは、RAMに展開された障害検知プロセスを実行することにより、障害検知部23の機能を実現する。また、CPU20aは、パケットサイズ調整プログラム20d−2をHDD20dから読み出してメモリ20b内のRAMに、パケットサイズ調整プロセスとして展開する。そして、CPU10aは、RAMに展開されたパケットサイズ調整プロセスを実行することにより、無線品質判定部24、無線品質設定部25、およびサンプリングセット数決定部26の各機能を実現する。また、受信部21および送信部27は、例えば通信I/F20cにより実現される。DB22は、例えばHDD20dにより実現される。
なお、障害検知プログラム20d−1およびパケットサイズ調整プログラム20d−2は、必ずしも最初からHDD20d内に格納されていなくてもよい。例えば、CPU20aは、メモリカード等の記憶媒体に記憶された障害検知プログラム20d−1およびパケットサイズ調整プログラム20d−2を、当該記憶媒体から読み出して実行するようにしてもよい。また、これらのプログラムは、無線回線、公衆回線、インターネット、LAN、WAN等を介してGW20に接続されるコンピュータ(またはサーバ)等に記憶させておいてもよい。この場合、GW20のCPU20aが、無線回線等を介して、当該コンピュータからこれらのプログラムを取得して実行する。
次に、GW20の動作について、図3と共に、以下に示すフローチャートを参照しながら説明する。
図5は、実施例1に係るGW20の動作の一例を説明するためのフローチャートである。まず、無線品質設定部25には、GW20と各デバイス10との間の無線通信回線における障害検知を実行するために要求される無線品質を示す要求品質が、例えばパケットサイズ調整システム1の管理者等により設定される(S1)。
次に、サンプリングセット数決定部26は、使用する無線通信方式と、センサネットワーク規格プロトコルのMTUと、送信する運用管理データのデータ長とに基づき、1つのパケットに搭載可能な最大のサンプリングセット数を決定する。1つのパケットに搭載可能な最大のサンプリングセット数は、例えば図1に示したように例えば“5”に決定される。その後、サンプリングセット数決定部26は、送信部27を介してセンサデバイス10へ、決定されたサンプリングセット数を通知する(S2)。サンプリングセット数の通知に用いられるプロトコルは、センサネットワークを安定的に運用する観点から、例えば、HTIP、DLNA等が望ましいが、他のプロトコルであってもよい。
次に、センサデバイス10の受信部15は、GW20から送信されたサンプリングセット数に関する通知を受信する。そして、センサデバイス10の送信部14は、GW20から通知されたサンプリングセット数分の運用管理データを、バッファ13から取得する。そして、送信部14は、取得された運用管理データを、1つのパケットに搭載して、GW20へ送信する。GW20の受信部21は、センサデバイス10から送信された1パケット分の運用管理データを受信する(S3)。そして、受信部21は、受信した運用管理データをDB22内に格納する。
次に、無線品質判定部24は、所定時間または所定数のパケット受信毎に、センサデバイス10からのデータ受信時の無線品質を測定する(S4)。本実施例において、無線品質判定部24は、センサデバイス10から受信したパケットのPER(Packet Error Rate)を、センサデバイス10からのデータ受信時の無線品質として測定する。そして、無線品質判定部24は、測定された無線品質をサンプリングセット数決定部26へ出力する。サンプリングセット数決定部26は、ステップS1において無線品質設定部25に設定された要求品質と、無線品質判定部24から出力された無線品質とを比較し、無線品質設定部25に設定された要求品質が維持されているか否かを判定する(S5)。
無線品質設定部25に設定された要求品質が維持されていると判定された場合(S5;Yes)、再びステップS3に示した処理が実行される。すなわち、受信部21は、センサデバイス10から運用管理データを受信し、受信したデータをDB22内へ格納する。
一方、無線品質設定部25に設定された要求品質が維持されていないと判定された場合(S5;No)には、サンプリングセット数決定部26は、現在のサンプリングセット数を、例えば1つ減少させる(S6)。その結果、1つのパケットに搭載可能な最大のサンプリングセット数は、例えば“5”から“4”に減少する。その後、サンプリングセット数決定部26は、送信部27を介してセンサデバイス10へ、減少後のサンプリングセット数を通知する(S7)。そして、再びステップS3に示した処理が実行される。
なお、減少前のサンプリングセット数が1である場合、サンプリングセット数決定部26は、サンプリングセット数を減少させずに維持してもよい。この場合、センサデバイス10は、前回通知されたサンプリングセット数のまま、GW20へのデータの送信を継続することとなる。更に、サンプリングセット数決定部26は、無線品質設定部25に設定された要求品質を維持できないことを、障害検知部23に対して通知してもよい。
以上、実施例1について説明した。上記説明から明らかなように、パケットサイズ調整システム1は、センサデバイス10と、センサデバイス10からデータを受信するGW20とを有する。GW20は、サンプリングセット数決定部26と送信部27とを有する。サンプリングセット数決定部26は、センサデバイス10との間の無線品質が、要求される無線品質を維持しているか否かに応じて、センサデバイス10が1つのパケットに搭載する運用管理データのセット数(パケットサイズ)を決定する。送信部27は、サンプリングセット数決定部26により決定されたセット数を、センサデバイス10に通知する。センサデバイス10は、通信状況測定部11と送信部14とを有する。通信状況測定部11は、他のセンサデバイス10との間における例えばRSSIおよびLQI等の通信状況を測定する。送信部14は、上記測定の結果を示す運用管理データを送信する際、GW20の送信部27から通知された、パケットに搭載可能な最大のサンプリングセット数分の運用管理データを、1つのパケットに搭載してGW20へ送信する。
また、実施例1に係るパケットサイズ調整システム1において、GW20は、センサデバイス10との間の無線品質が要求品質を満たすか否かを判定する無線品質判定部24を更に有してもよい。サンプリングセット数決定部26は、無線品質判定部24により、センサデバイス10との間の無線品質が要求品質を満たさないと判定された場合、運用管理データのセット数を減少させてもよい。
上述した様に、狭帯域のIoTネットワークでは、大きなパケットサイズで複数サンプリングを纏めて送信すると、パケット衝突の可能性が高くなる一方、小さなパケットサイズでサンプリング毎に送信すると、オーバヘッドが大きくなり効率が悪い。そこで、本実施例に係るGW20は、各センサデバイス10が複数のサンプリングセットを纏めて送信する際に、データの受信品質を所定の品質に維持することが困難である場合には、サンプリングセット数を減らしてデータ長を調整する。これにより、本実施例のパケットサイズ調整システム1は、データの伝送効率の向上とデータの受信品質の向上とを両立させることが可能となる。
ここで、データの受信品質が所定の品質に維持されるということは、パケットの衝突確率が所定値以下に低減されているということである。そのため、本実施例のGW20は、パケットの衝突確率を抑制しつつ極力大きなサイズでデータ(特に、運用管理データの内、無線品質に関するデータ)をGWへ送信することができる。すなわち、センサデバイス10がGW20へデータを送信する際、データの受信品質を所定の品質に維持することが困難である場合には、パケットの衝突確率が所定値以下となる最大のパケットサイズまでパケットサイズを減らして送信する。これにより、パケットサイズ調整システム1は、障害検知に必要な無線品質を維持しつつ、効率的にデータを収集することができる。その結果、安定した運用管理データの収集が実現される。
次に、実施例2について説明する。実施例2に係るパケットサイズ調整システム1の構成は、図3及び図4に示した実施例1に係るパケットサイズ調整システム1の構成と、同様である。従って、共通する構成要素には、同一の符号を付すと共に、その図示及び詳細な説明は省略する。以下、図6を参照しながら、実施例2に係るパケットサイズ調整システム1の動作について、実施例1との相違点を中心として説明する。
図6は、実施例2に係るGW20の動作の一例を説明するためのフローチャートである。図6は、実施例1の動作説明において参照した図5と、同様の処理を複数含むことから、共通するステップには、末尾が同一の参照符号を付すと共に、その詳細な説明は省略する。具体的には、図6のステップT1及びT3〜T7の各処理は、図5に示したステップS1及びS3〜S7の各処理にそれぞれ対応するため、その詳細な説明を省略する。
実施例1におけるサンプリングセット数決定部26は、例えば図5のステップS2に示したように、パケットに搭載可能な最大のサンプリングセット数を決定する。これに対し、実施例2におけるサンプリングセット数決定部26は、例えば図6のステップT2に示すように、各センサデバイス10から送信されたパケットの無線品質に基づいて、要求品質を満たすサンプリングセット数を推定する。本実施例において、無線品質は、各センサデバイス10から受信されるパケットのPERである。なお、無線品質は、各センサデバイス10によって測定されたPERであってもよい。PERは、BER(Bit Error Rate)を用いて、例えば下記数式(1)のように表される。
PER=1−(1−BER) ・・・(1)
上記数式(1)において、Nはパケット長(単位はbit)を表す。
ここで、BER<<1と仮定すると、上記数式(1)は、下記数式(2)の様に表すことができる。
PER≒1−(1−N・BER)
≒N・BER ・・・(2)
サンプリングセット数決定部26は、サンプリングセット数の推定に際し、まず、センサデバイス10から受信されたパケットのPERを測定する。なお、サンプリングセット数決定部26は、例えば、センサデバイス10から収集された運用管理データに含まれる、センサデバイス10によって測定されたPERを使用してもよい。
BERは、パケット長の最大値Nmax(単位はbit)と、測定されたPERであるPERと、上記数式(2)とを用いて、例えば以下の数式(3)の様に推定することができる。
BER=PER/Nmax ・・・(3)
ここで、BERは、短時間では変化しないと仮定すると、要求されたデータの品質であるPERを満たすパケット長Nは、上記数式(2)により、下記数式(4)の様に表すことができる。
N=PER/BER ・・・(4)
上記数式(4)に示す様に、パケット長Nは、無線品質に相当するPERの低下に伴って短くなる。また、無線品質の増減幅に応じて、パケット長Nの増減幅も変化することが判る。具体的には、パケット長Nの値は、無線品質PERの値に比例する。
従って、ステップT2において、サンプリングセット数決定部26は、Nmaxと、PERと、PERとを、上記数式(3)及び(4)に適用することより、要求されたデータの品質であるPERを満たすパケット長Nを推定することができる。そして、サンプリングセット数決定部26は、推定されたパケット長Nを超えないパケット長を実現するサンプリングセット数を、送信部27を介してセンサデバイス10に通知する(T2)。
本実施例2に係るパケットサイズ調整システム1において、サンプリングセット数決定部26は、上記無線品質(例えば、PER)が要求品質を満たすセット数を推定し、推定されたセット数を、センサデバイス10に通知するセット数として決定する。本実施例2に係るパケットサイズ調整システム1によれば、GW20は、サンプリングセット数の初期値を、要求品質を満たす最大のサンプリングセット数に近い値にすることができる。これにより、GW20は、サンプリングセット数をより早期に収束させることができる。
なお、開示の技術は、上記した実施例に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。
(変形例1)
例えば、実施例2では、GW20が、要求品質が維持されているか否かを判定する際に、無線品質を測定する指標としてパケット誤り率(PER)を用いた。しかしながら、無線品質を測定する指標はこれに限られず、リンク品質(LQI)等のPERと相関のある数値が用いられてもよい。更に、パケットの衝突確率の抑制により、再送回数が減少する。そして、再送回数が減少すると、応答時間が短縮し、ひいては無線品質の向上に繋がる。そのため、無線品質を測定する指標は、到達可能性を調べるために送信したECHOパケットの応答時間等が用いられてもよい。
また、GW20は、これらの指標の内、少なくとも2つの指標を組み合わせて使用してもよい。例えば、指標毎に、パケットの衝突確率が所定値以上となる場合の指標の閾値を、GW20内のDB22等に予め登録しておく。そして、無線品質判定部24が、指標毎に、指標の値が、パケットの衝突確率が所定値以上となる場合の閾値を越えたか否かを判定する。そして、いずれかの指標の値が閾値を越えた場合、サンプリングセット数決定部26は、サンプリングセット数を例えば1つ減少させる。そして、サンプリングセット数決定部26は、減少後のサンプリングセット数をセンサデバイス10に通知する。なお、サンプリングセット数決定部26は、全ての指標の値が閾値を越えた場合に、サンプリングセット数を例えば1つ減少させてもよい。更に、サンプリングセット数決定部26は、指標の組み合わせに際して、適宜重み付けを行ってもよい。
本変形例1に係るパケットサイズ調整システム1において、上記無線品質を表す指標としてLQIが用いられることにより、GW20とセンサデバイス10との間の無線の状態を精度よくサンプリングセット数に反映させることができる。
(変形例2)
実施例2では、GW20が、要求品質が維持されているか否かを判定する際に、該判定のタイミングの直前にセンサデバイス10から送信された運用管理データを用いる。しかしながら、開示の技術はこれに限られない。例えば、判定のタイミングの直前にセンサデバイス10から送信された運用管理データだけでなく、複数回のサンプリング分の運用管理データに基づいて、上記判定が行われてもよい。即ち、センサデバイス10とGW20との間の無線品質が、要求される品質を満たすか否かの判定は、該判定のタイミングの直前にセンサデバイス10から送信された運用管理データを含む過去複数回のサンプリング分の運用管理データに基づいて行われてもよい。
かかる態様では、GW20は、用いられる上記指標に応じて、該指標に適した判定方法を適宜選択することができる。例えば、GW20は、複数回のサンプリング分の運用管理データを用いることで、平均値、中央値、標準偏差等の統計値、回帰直線の傾き、あるいは、外れ値の発生頻度等を考慮した上記判定が可能となる。
本変形例2において、無線品質判定部24は、上記無線品質が上記要求品質を満たすか否かの判定を、該判定のタイミングの直前にセンサデバイス10から送信された上記運用管理データを含む複数回のサンプリング分の上記運用管理データに基づいて行う。本変形例2に係るパケットサイズ調整システム1によれば、GW20は、要求品質が維持されているか否かを、より高精度に判定することが可能となる。
上述した各実施例及び変形例では、センサデバイス10とGW20間の通信媒体(無線通信方式)として、Bluetooth、ZigBee、無線LANを例示したが、開示の技術はこれらに限られない。センサデバイス10とGW20間の通信媒体としては、例えば、IrDA(Infrared Data Association)、NFC(Near Field Communication)等を用いてもよい。
また、GW20の各構成要素は、必ずしも物理的に図示の如く構成されていなくてもよい。すなわち、各装置の分散・統合の具体的態様は、図示のものに限らず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することもできる。例えば、GW20の無線品質判定部24と無線品質設定部25、あるいは、無線品質判定部24とサンプリングセット数決定部26をそれぞれ1つの構成要素として統合してもよい。反対に、GW20のサンプリングセット数決定部26に関し、例えば、パケットに搭載可能な最大のサンプリングセット数を決定する部分と、要求された無線品質を満たすサンプリングセット数を推定する部分とに分散してもよい。更に、メモリ20b等の記憶装置を、GW20の外部装置としてネットワークやケーブル経由で接続する様にしてもよい。
更に、上記説明では、実施例及び変形例毎に、個別の構成及び動作を説明した。しかしながら、各実施例及び変形例に係る歪補償装置は、他の実施例や変形例に特有の構成要素を併せて有するものとしてもよい。また、実施例、変形例毎の組合せについても、2つに限らず、3つ以上の組合せ等、任意の形態を採ることが可能である。例えば、変形例2に係る複数回サンプリング分による判定方法を、実施例1に係るGW20に適用してもよい。更に、1つのGW20が、実施例1、2及び変形例1、2において説明した全ての構成要素を併有するものとしてもよい。
また、上記した各実施例のGW20において、サンプリングセット数決定部26は、無線品質設定部25に設定された要求品質が維持されていると判定された場合、現在のサンプリングセット数を維持する。しかし、開示の技術はこれに限られない。例えば、サンプリングセット数決定部26は、無線品質判定部24によって測定されたデータの品質が要求品質よりも所定品質以上よい場合には、現在のサンプリングセット数を増加させてもよい。これにより、サンプリングセット数決定部26は、無線品質判定部24によって測定されたデータの品質が変動する場合に、要求品質が満たされる範囲で、サンプリングセット数を多くすることができる。従って、GW20は、データの受信品質を所定の品質に維持しつつ、データの収集効率を高めることができる。
1 パケットサイズ調整システム
10 センサデバイス
10a CPU(Central Processing Unit)
10b メモリ
10c 通信I/F
10d センサ
10e HDD(Hard Disk Drive)
10e−1 通信状況測定プログラム
10e−2 デバイス状態測定プログラム
10e−3 バッファ
11 通信状況測定部
12 デバイス状態測定部
13 バッファ
14 送信部
15 受信部
20 GW(Gate Way)
20a CPU
20b メモリ
20c 通信I/F
20d HDD
20d−1 障害検知プログラム
20d−2 無線品質判定プログラム
20d−3 DB(Data Base)
21 受信部
22 DB
23 障害検知部
24 無線品質判定部
25 無線品質設定部
26 サンプリングセット数決定部
27 送信部
100 コンピュータ
110 CPU
120 入力装置
130 モニタ
140 無線通信装置
150 RAM(Random Access Memory)
151 パケットサイズ調整プロセス
160 ハードディスク装置
161 パケットサイズ調整プログラム
162 パケットサイズ調整処理関連データ

Claims (8)

  1. 通信装置との間の無線品質に応じて、前記通信装置が1つのパケットに搭載するデータのセット数を決定する決定部と、
    前記決定部により決定されたセット数を、前記通信装置に通知する通知部と
    を有することを特徴とする通信制御装置。
  2. 前記通信装置との間の無線品質が要求品質を満たすか否かを判定する判定部を更に有し、
    前記決定部は、前記判定部により、前記無線品質が前記要求品質を満たさないと判定された場合、前記セット数を減少させることを特徴とする請求項1に記載の通信制御装置。
  3. 前記決定部は、前記通信装置から送信された前記パケットの品質に基づいて前記無線品質が要求品質を満たすセット数を推定し、前記推定されたセット数を前記セット数として決定することを特徴とする請求項1に記載の通信制御装置。
  4. 前記無線品質を表す指標は、LQI(Link Quality Indicator)であることを特徴とする請求項1に記載の通信制御装置。
  5. 前記判定部は、前記無線品質が前記要求品質を満たすか否かの判定を、該判定のタイミングの直前に前記通信装置から送信された前記データを含む複数回のサンプリング分の前記データに基づいて行うことを特徴とする請求項2に記載の通信制御装置。
  6. 通信装置と、該通信装置からデータを受信する通信制御装置とを有する通信制御システムにおいて、
    前記通信制御装置は、
    前記通信装置との間の無線品質に応じて、前記通信装置が1つのパケットに搭載するデータのセット数を決定する決定部と、
    前記決定部により決定されたセット数を、前記通信装置に通知する通知部と
    を有し、
    前記通信装置は、
    通信状況を測定する測定部と、
    前記測定の結果を示すデータを送信する際、前記通知部により通知されたセット数分の前記データを、1つのパケットに搭載して、前記通信制御装置へ送信する送信部と
    を有する通信制御システム。
  7. コンピュータに、
    通信装置との間の無線品質に応じて、前記通信装置が1つのパケットに搭載するデータのセット数を決定し、
    決定されたセット数を、前記通信装置に通知する
    処理を実行させることを特徴とする通信制御プログラム。
  8. 通信制御装置が、
    通信装置との間の無線品質に応じて、前記通信装置が1つのパケットに搭載するデータのセット数を決定し、
    決定されたセット数を、前記通信装置に通知する
    ことを特徴とする通信制御方法。
JP2017098344A 2017-05-17 2017-05-17 通信制御装置、通信制御システム、通信制御プログラム、及び通信制御方法 Active JP6995496B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017098344A JP6995496B2 (ja) 2017-05-17 2017-05-17 通信制御装置、通信制御システム、通信制御プログラム、及び通信制御方法
US15/981,261 US10667167B2 (en) 2017-05-17 2018-05-16 Communication control apparatus, communication control system, communication control method, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017098344A JP6995496B2 (ja) 2017-05-17 2017-05-17 通信制御装置、通信制御システム、通信制御プログラム、及び通信制御方法

Publications (2)

Publication Number Publication Date
JP2018195983A true JP2018195983A (ja) 2018-12-06
JP6995496B2 JP6995496B2 (ja) 2022-01-14

Family

ID=64272288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017098344A Active JP6995496B2 (ja) 2017-05-17 2017-05-17 通信制御装置、通信制御システム、通信制御プログラム、及び通信制御方法

Country Status (2)

Country Link
US (1) US10667167B2 (ja)
JP (1) JP6995496B2 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030147369A1 (en) * 2001-12-24 2003-08-07 Singh Ram Naresh Secure wireless transfer of data between different computing devices
JP2004260658A (ja) * 2003-02-27 2004-09-16 Matsushita Electric Ind Co Ltd 無線lan装置
US20100166015A1 (en) * 2008-12-31 2010-07-01 Silver Spring Networks, Inc. Methods and systems for dynamic fragmentation of packets by communication network nodes
JP2010193303A (ja) * 2009-02-19 2010-09-02 Fuji Electric Fa Components & Systems Co Ltd 無線通信システム
JP2011055119A (ja) * 2009-08-31 2011-03-17 Adcore-Tech Co Ltd 通信端末装置、伝送システム及び通信方法
JP2012129805A (ja) * 2010-12-15 2012-07-05 Hitachi Ltd 無線ネットワークシステム、及び、無線通信装置
JP2012257016A (ja) * 2011-06-08 2012-12-27 Panasonic Corp 無線システム
US20160309420A1 (en) * 2015-04-15 2016-10-20 Qualcomm Incorporated Adaptation of transmission power and packet size in a wireless docking environment

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191583A (en) * 1989-11-03 1993-03-02 Microcom Systems, Inc. Method and apparatus for effecting efficient transmission of data
US7184426B2 (en) * 2002-12-12 2007-02-27 Qualcomm, Incorporated Method and apparatus for burst pilot for a time division multiplex system
US6888848B2 (en) * 2000-12-14 2005-05-03 Nortel Networks Limited Compact segmentation of variable-size packet streams
JP2002290459A (ja) * 2001-03-27 2002-10-04 Nec Corp パケット転送装置および方法
US7519030B2 (en) * 2001-11-19 2009-04-14 At&T Intellectual Property Ii, L.P. Adaptive MAC fragmentation and rate selection for 802.11 wireless networks
US7218645B2 (en) * 2002-02-19 2007-05-15 Broadcom Corporation Method and apparatus optimizing a radio link
US7471681B2 (en) * 2002-10-10 2008-12-30 Intel Corporation Determining network path transmission unit
CN101171818B (zh) * 2005-03-08 2013-05-08 高通股份有限公司 结合脉冲调制和分层调制的发射方法和装置
US20060245384A1 (en) * 2005-05-02 2006-11-02 Talukdar Anup K Method and apparatus for transmitting data
US8289952B2 (en) * 2005-05-25 2012-10-16 Telefonaktiebolaget Lm Ericsson (Publ) Enhanced VoIP media flow quality by adapting speech encoding based on selected modulation and coding scheme (MCS)
US20140169162A1 (en) * 2012-12-17 2014-06-19 St. Jude Medical Ab Method and system to manage real-time and non-real-time data transmission over a shared link with an imd
CN103716137B (zh) * 2013-12-30 2017-02-01 上海交通大学 一种识别ZigBee传感器网络丢包原因的方法及其系统
US10277512B1 (en) * 2015-02-03 2019-04-30 State Farm Mutual Automobile Insurance Company Method, device, and computer-readable medium for automatic network traffic engineering

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030147369A1 (en) * 2001-12-24 2003-08-07 Singh Ram Naresh Secure wireless transfer of data between different computing devices
JP2004260658A (ja) * 2003-02-27 2004-09-16 Matsushita Electric Ind Co Ltd 無線lan装置
US20100166015A1 (en) * 2008-12-31 2010-07-01 Silver Spring Networks, Inc. Methods and systems for dynamic fragmentation of packets by communication network nodes
JP2010193303A (ja) * 2009-02-19 2010-09-02 Fuji Electric Fa Components & Systems Co Ltd 無線通信システム
JP2011055119A (ja) * 2009-08-31 2011-03-17 Adcore-Tech Co Ltd 通信端末装置、伝送システム及び通信方法
JP2012129805A (ja) * 2010-12-15 2012-07-05 Hitachi Ltd 無線ネットワークシステム、及び、無線通信装置
JP2012257016A (ja) * 2011-06-08 2012-12-27 Panasonic Corp 無線システム
US20160309420A1 (en) * 2015-04-15 2016-10-20 Qualcomm Incorporated Adaptation of transmission power and packet size in a wireless docking environment

Also Published As

Publication number Publication date
JP6995496B2 (ja) 2022-01-14
US20180338263A1 (en) 2018-11-22
US10667167B2 (en) 2020-05-26

Similar Documents

Publication Publication Date Title
US8817809B2 (en) Communication link allocation based on dynamic trend analysis
KR101786041B1 (ko) 다수의 액세스 포인트들을 갖는 무선 네트워크에서의 부하 밸런싱
US10117286B1 (en) System for distributing data using multiple communication channels
CN107113530B (zh) 用于可靠通信的冗余链路
EP2962434B1 (en) Apparatus and method for measuring and using congestion in a wireless communication system
US20180199217A1 (en) Performing an analysis of information to identify a source of an error related to a device
WO2015069944A1 (en) Systems and methods for proactive congestion detection in radio access networks
KR20080113380A (ko) 검출된 데이터 쓰루풋을 사용하는 리소스 선택 방법 및 장치
JP6882684B2 (ja) 通信装置、通信システム、通信制御方法、及び通信制御プログラム
US10187179B1 (en) System for configuring a packet detection threshold of an audio device
EP3582548A1 (en) Communication network system, wireless system, wireless device, communication control method, and program
CN106797261B (zh) 基于分组间接收功率的补救动作
US11190430B2 (en) Determining the bandwidth of a communication link
US10104571B1 (en) System for distributing data using a designated device
JP6995496B2 (ja) 通信制御装置、通信制御システム、通信制御プログラム、及び通信制御方法
JP7259937B2 (ja) 情報処理装置、通信設定方法、及びプログラム
US11159965B2 (en) Quality of experience measurements for control of Wi-Fi networks
US10177929B1 (en) System for distributing data to multiple devices
US10652159B2 (en) Mobile packet data rate control based on radio load and other measures
JP5776981B2 (ja) ネットワーク中継装置
US9882751B2 (en) Communication system, communication controller, communication control method, and medium
JP2014112779A (ja) データ送信制御装置、データ送信制御方法、および、コンピュータ・プログラム
KR101488610B1 (ko) 인지 무선 기반 2차 네트워크 무선 통신 방법 및 장치
US11144420B2 (en) Dynamic resource allocation in a wireless access point to support event capture
US10158440B1 (en) System for configuring distributed audio output using an access point

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210301

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210301

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210312

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210316

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210423

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210427

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210803

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211005

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211102

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211207

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211215

R150 Certificate of patent or registration of utility model

Ref document number: 6995496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150