WO2010078770A1 - 控制信道的资源映射方法 - Google Patents

控制信道的资源映射方法 Download PDF

Info

Publication number
WO2010078770A1
WO2010078770A1 PCT/CN2009/074544 CN2009074544W WO2010078770A1 WO 2010078770 A1 WO2010078770 A1 WO 2010078770A1 CN 2009074544 W CN2009074544 W CN 2009074544W WO 2010078770 A1 WO2010078770 A1 WO 2010078770A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
broadcast control
frequency
occupied
resource units
Prior art date
Application number
PCT/CN2009/074544
Other languages
English (en)
French (fr)
Inventor
关艳峰
刘向宇
刘颖
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/143,067 priority Critical patent/US20110268070A1/en
Priority to EP09837327.7A priority patent/EP2373106B1/en
Priority to KR1020117015114A priority patent/KR101304114B1/ko
Publication of WO2010078770A1 publication Critical patent/WO2010078770A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • a base station refers to a device that provides services for a terminal, and communicates with the terminal through an uplink/downlink link, where downlink refers to the direction from the base station to the terminal, and uplink refers to the direction of the terminal to the base station.
  • downlink refers to the direction from the base station to the terminal
  • uplink refers to the direction of the terminal to the base station.
  • multiple terminals can simultaneously transmit data to the base station through the uplink, or can simultaneously receive data from the base station through the downlink.
  • scheduling allocation of system radio resources is performed by a base station.
  • the base station gives downlink resource allocation information when the base station performs downlink transmission, and uplink resource allocation information when the terminal performs uplink transmission.
  • the resource allocation information contains information such as the actual physical resource location and transmission method.
  • the communication system based on different technologies has different requirements and methods for resource allocation and resource mapping.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • mapping of radio resources and allocation of radio resources are performed by a base station.
  • the OFDMA technology is implemented based on Orthogonal Frequency Division Multiplexing (OFDM) technology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the main implementation process of this technology is: sub-channelizing available subcarriers and transmitting data on subcarriers. Multiple subcarriers are occupied to implement multiple access.
  • the base station determines system configuration and resource allocation information when performing downlink transmission from the base station to the terminal, and system configuration and resource allocation information when the terminal transmits to the base station, where system configuration, resource allocation information, and uplink in downlink transmission
  • the system configuration and resource allocation information at the time of transmission belong to system configuration and resource allocation information
  • the base station sends the system configuration and resource allocation information to the terminal through the control channel
  • the terminal receives the system configuration and resource allocation information on the determined control channel
  • the system configuration and resource allocation information are used to communicate with the base station, that is, data is received and transmitted between the terminal and the base station.
  • the control channel in the wireless communication system will be described below.
  • a control channel generally includes: a synchronization channel (Synchronization Channel, called a SCH), and a broadcast control channel (a broadcast control channel).
  • BCCH synchronization channel
  • Unicast Control Channel Unicast Control Channel
  • Multicast Control Channel etc.
  • SCH is a one-way control channel of "one-to-many point", and the terminal uses the SCH to complete the synchronization operation with the base station.
  • the BCCH is also called the Broadcast Channel (BCH).
  • BCH Broadcast Channel
  • the BCH (or BCCH) is also a "one-to-multipoint" unidirectional control channel, mainly used for base stations. Send or broadcast control information to multiple terminals.
  • the broadcast control channel Since the broadcast control channel usually transmits important system configuration and control information, the broadcast control channel is required to have high robustness and low error rate as compared to the transmission of normal data. However, due to the increasingly tight radio frequency resources and the increasingly harsh wireless channel environment, the broadcast control channel usually adopts a relatively low modulation and coding scheme to resist the bad channel environment to obtain a lower bit error rate, but this will cost More wireless resources. Further, in a wireless communication system based on OFDMA technology, a radio resource is a two-dimensional time-frequency resource composed of a time domain OFDM symbol and a frequency domain subcarrier, and the design of the control channel, especially the design of the physical structure, also needs to consider OFDMA. The resource mapping of the system and the limitation of the dry 4 especially suppression.
  • the resource mapping process of multi-carrier needs to consider the resource mapping problem in the frequency domain, so that the resource mapping process of the multi-carrier and the resource mapping process of the single carrier are very different, thus, OFDMA
  • the way in which the control channel in the system occupies resources needs to conform to the resource mapping design of the OFDMA system.
  • the interference problem is also an important problem that restricts the development of communication.
  • the OFDMA system can use the frequency reuse (Fractional Frequency Reuse) technology to perform interference suppression.
  • the design of the control channel needs to meet the technical requirements of FFR.
  • the present invention has been made in view of the problems of the control channel having the error rate, the resource mapping of the OFDMA system, the interference suppression, and the like, and the main object of the present invention is to provide a control channel.
  • a resource mapping method for a control channel includes: a broadcast control channel is located on a frequency partition, wherein the frequency partition includes one or more distributed resource units; The starting position of the track is set on the first distributed resource unit of the frequency partition.
  • the partial frequency reuse factor corresponding to the frequency partition is one of the following: 1, 1/3, 3.
  • the configuration information of the frequency partition is determined, and the location of the broadcast control channel is determined according to the configuration information, where the configuration information includes at least one of: a number of frequency partitions, a size of the frequency partition, a number of subbands in the frequency partition, The number of bands in the frequency partition, the number of distributed resource units in the frequency partition, and the number of consecutive resource units in the frequency partition.
  • the broadcast control channel includes a primary broadcast control channel and/or a secondary broadcast control channel.
  • the primary broadcast control channel occupies less than or equal to the minimum system bandwidth; or, the frequency difference between any two subcarriers occupied by the primary broadcast control channel is less than or equal to the minimum system bandwidth.
  • the method further includes: the primary broadcast control channel occupies a fixed number of distributed resource units; or the terminal acquires the number of distributed resource units occupied by the primary broadcast control channel by blind detection. Further, the method further includes: indicating, by the primary broadcast control channel, the number of distributed resource units occupied by the secondary broadcast control channel; or, the terminal, by blind detection, acquiring the number of distributed resource units occupied by the secondary broadcast control channel.
  • the method further includes: the distributed resource unit occupied by the primary broadcast control channel is adjacent to or not adjacent to the distributed resource unit occupied by the secondary broadcast control channel; wherein, if the primary broadcast control channel occupies a distributed resource unit and The distributed resource units occupied by the secondary broadcast control channel are not adjacent, and the primary broadcast control channel indicates location information of the distributed resource unit occupied by the secondary broadcast control channel.
  • a resource mapping method for a control channel includes: a broadcast control channel is located on a plurality of frequency partitions, wherein each frequency partition includes one or more distributed resource units; and a starting position of the broadcast control channel is set to multiple The first distributed resource unit of the frequency partition.
  • a partial frequency reuse factor corresponding to each frequency partition is 1/3 or 3; or, among a plurality of frequency partitions, a partial frequency reuse factor corresponding to one frequency partition is 1, and the rest The partial frequency reuse factor corresponding to the frequency partition is 1/3 or 3.
  • the configuration information of the multiple frequency partitions is determined, and the location of the broadcast control channel is determined according to the configuration information, where the configuration information includes at least one of the following: a number of frequency partitions, a size of each frequency partition, and a frequency partition neutron The number of bands, the number of microstrips in each frequency partition, the number of distributed resource units in each frequency partition, and the number of consecutive resource units in each frequency partition.
  • the broadcast control channel comprises a primary broadcast control channel and/or a secondary broadcast control channel.
  • the bandwidth occupied by the primary broadcast control channel is less than or equal to the minimum system bandwidth.
  • the frequency difference between any two subcarriers occupied by the primary broadcast control channel is less than or equal to the minimum system bandwidth.
  • the method further includes: the primary broadcast control channel occupies a fixed number of distributed resource units; or the terminal acquires the number of distributed resource units occupied by the primary broadcast control channel by blind detection.
  • the distributed resource unit occupied by the primary broadcast control channel is adjacent to or not adjacent to the distributed resource unit occupied by the secondary broadcast control channel; wherein, if the primary broadcast control channel occupies the distributed resource unit and the secondary broadcast control channel The distributed resource unit is not adjacent, and the primary broadcast control channel indicates location information of the distributed resource unit occupied by the secondary broadcast control channel. Further, the method further includes: the primary broadcast control channel indicates the number of distributed resource units occupied by the secondary broadcast control channel; or the terminal obtains the number of distributed resource units occupied by the secondary broadcast control channel by using blind detection. According to an aspect of the present invention, a resource mapping method for a control channel is provided.
  • the resource mapping method of the control channel includes: the number of all physical resource units is n, and k physical resource units of the n physical resource units form a frequency partition or a plurality of frequency partitions, and 1 Part or all of the k physical resource units in the frequency partition are mapped into distributed resource units, where n is greater than or equal to k; the broadcast control channel is set on one or more frequency partitions, wherein, the broadcast control The starting position of the channel is located on the first distributed resource unit of each frequency partition.
  • the value of n is determined by at least one of the following parameters: system bandwidth, multiple carrier frequency configuration.
  • k physical resource units are selected according to one of the following ways: k physical resource units are continuously extracted from one side of n physical resource units, k physical resource units are continuously extracted from n physical resource units, and n are from n The k physical resource units are continuously extracted on both sides of the physical resource unit.
  • the k value takes a fixed value; or, the k value is determined by at least one of the following parameters: system bandwidth, multiple carrier frequency configuration.
  • the partial frequency reuse factor corresponding to the frequency partition is one of the following: 1, 1/3 or 3.
  • the broadcast control channel includes a primary broadcast control channel and/or a secondary broadcast control channel.
  • the above method further includes: transmitting data by using a resource in the frequency partition that is not used for transmitting the primary broadcast control channel and/or the secondary broadcast control channel; or, not using the frequency partition, not for transmitting the primary broadcast control channel and/or the secondary broadcast
  • the resources of the control channel send data.
  • the primary broadcast control channel occupies less than or equal to the minimum system bandwidth; or, the frequency difference between any two subcarriers occupied by the primary broadcast control channel is less than or equal to the minimum system bandwidth.
  • the primary broadcast control channel occupies a fixed number of distributed resource units; or the terminal acquires the number of distributed resource units occupied by the primary broadcast control channel by blind detection.
  • the method further includes: indicating, by the primary broadcast control channel, the number and/or location of the distributed resource units occupied by the secondary broadcast control channel; or obtaining, by the terminal, the number of distributed resource units occupied by the secondary broadcast control channel by using blind detection And / or location.
  • a resource mapping method for a control channel includes: mapping physical subcarriers on one or more orthogonal frequency division multiple access symbols into distributed subcarriers; and setting the synchronization channel to one or more Orthogonal frequency division multiple access symbols, where distributed subcarriers are used to carry synchronization channels.
  • the synchronization channel includes a primary synchronization channel and a secondary synchronization channel, where the bandwidth occupied by the primary synchronization channel is less than or equal to the minimum system bandwidth.
  • the secondary primary synchronization channel occupies less than or equal to the minimum system bandwidth; or occupies the full system bandwidth.
  • the bandwidth occupied by the primary synchronization channel is less than or equal to the minimum system bandwidth, and the frequency difference between any two subcarriers occupied by the primary synchronization channel is less than or equal to the minimum system bandwidth.
  • the partial frequency reuse factor corresponding to the subcarrier occupied by the primary synchronization channel is 1
  • the partial frequency reuse factor corresponding to the subcarrier occupied by the secondary synchronization channel is 1/3 or 3.
  • the distributed subcarriers are completely discontinuous subcarriers or partially contiguous subcarriers, wherein the completely discontinuous subcarriers refer to: any two distributed subcarriers are physically discontinuous.
  • mapping the physical subcarriers on the one or more orthogonal frequency division multiple access symbols into distributed subcarriers includes: replacing the physical subcarriers into distributed subcarriers according to the permutation unit, and the permutation unit is the following One: one subcarrier, one carrier pair, where one carrier pair includes two subcarriers that are physically consecutive.
  • the one or more orthogonal frequency division multiple access symbols are the first orthogonal frequency division multiple access symbol in the subframe.
  • the resource mapping method of the control channel in the OFDMA system solves the problem of the resource location and mode occupied by the control channel, improves the performance of the control channel, and enables the control channel to conform to Various requirements in the related art, such as low bit error rate, resource mapping of OFDMA systems, and interference suppression, ensure the efficiency of the wireless communication system based on OFDMA technology.
  • the drawings are intended to provide a further understanding of the invention, and are intended to be a part of the description of the invention.
  • FIG. 1 is a schematic diagram showing a frame structure of a wireless communication system according to the related art
  • FIG. 2 is a schematic diagram showing a resource structure of a wireless communication system according to the related art
  • FIG. 3 is a method according to the present invention.
  • FIG. 4 is a schematic diagram of the resource mapping process of the broadcast control channel when one frequency partition is used in the OFDMA/5 MHz system according to the first embodiment of the method of the present invention
  • FIG. 6 is a resource mapping of a broadcast control channel for two frequency partitions in an OFDMA/5 MHz system according to Embodiment 2 of the method of the present invention
  • FIG. 7 is a schematic diagram of a resource mapping process of a broadcast control channel in three frequency partitions in an OFDMA/5 MHz system according to Embodiment 2 of the method of the present invention
  • FIG. FIG. 8 is a schematic diagram of a resource mapping process of a broadcast control channel in four frequency partitions in an OFDMA/5 MHz system according to Embodiment 2 of the method of the present invention
  • FIG. 9 is a resource of a control channel according to Embodiment 3 of the method of the present invention
  • FIG. 10 is a schematic diagram of a mapping process of a broadcast control channel occupying a predetermined resource unit in an OFDMA/5 MHz system according to Embodiment 3 of the method of the present invention
  • FIG. 11 is an OFDMA according to Embodiment 3 of the method of the present invention.
  • FIG. 12 is a flowchart of a resource mapping method of a control channel according to Embodiment 4 of the method of the present invention.
  • FIG. 13 is a flowchart of a method for processing a control channel according to Embodiment 4 of the present invention; Schematic diagram of the mapping process of the primary synchronization channel in the OFDMA/10 MHz system;
  • FIG. 14 is a schematic diagram of the mapping process of the secondary synchronization channel in the OFDMA/10 MHz system according to the fourth embodiment of the method of the present invention.
  • the resource mapping process of the OFDMA technique will first be described. It should be noted that although the OFDMA technology is taken as an example in the embodiment of the present invention, the present invention is not limited to jt ⁇ , such as Long Term Evolution (Long Term Evolution, LTE), electrical and electronic. The present invention is equally applicable to multi-carrier systems such as the Institute for Electrical and Electronic Engineers (IEEE) 802.16m and other multi-carrier systems that may be present.
  • IEEE Institute for Electrical and Electronic Engineers
  • a resource mapping process can be understood as a process of mapping physical resources (such as physical subcarriers) into logical resources (such as logical resource units), for example, mapping physical subcarriers into logical resource blocks.
  • the base station implements scheduling of radio resources by scheduling logical resource blocks.
  • the main basis of resource mapping is the frame structure and resource structure of the OFDMA system.
  • radio resources are divided into different levels of units in the time domain for scheduling, for example, into a super frame, a frame, a subframe, and a symbol. For example, as shown in Figure 1, wireless resources are divided into superframes in the time domain, each superframe packet.
  • each frame contains 8 subframes, and each subframe is composed of 6 basic OFDM symbols.
  • the actual communication system supports the system bandwidth, coverage, length of the cyclic prefix, and uplink and downlink conversion interval according to the needs.
  • the factor determines the number of OFDM symbols specifically included in each level unit in the frame structure.
  • the broadcast control channel is located in the first subframe of the header in the superframe, so the broadcast control channel is also called a superframe header (SuperFrame Header, called SFH), and the broadcast control channel Including the primary broadcast control channel and/or the secondary broadcast control channel, so, equivalently, the superframe header includes a primary superframe header and/or a secondary superframe header; the synchronization channel includes a primary synchronization channel and/or a secondary synchronization channel, where The primary synchronization channel and the secondary synchronization channel are located on the first OFDM symbol in different frames.
  • SuperFrame Header called SFH
  • the resource structure divides the available frequency bands into frequency partitions (Frequency Partitions) according to factors such as coverage, FFR operation, terminal speed, and service type supported in the frequency domain, thereby dividing the frequency resources in the frequency partition into continuous resource regions. And/or distributed resource areas for scheduling.
  • the available physical subcarriers of one subframe are divided into three frequency partitions, and each frequency partition is divided into a continuous resource region and a distributed resource region to implement scheduling flexibility, and may also be required according to requirements.
  • the frequency partition is divided into 1, 2, 3 or 4 or more, and the present invention is not limited thereto.
  • n, k are integers greater than or equal to 1, and n is greater than or equal to k.
  • a distributed resource region is a physical resource unit that is mapped to a distributed resource unit (DRU).
  • the subcarriers included in the DRU are completely discontinuous or in pairs.
  • the four subcarriers are continuous; the continuous resource region means that the physical resource units are mapped to a continuous resource (Contigous Resource Unit, CCU), the subcarriers included in the CRU are continuous, and the CRU is also called centralized.
  • Resource unit (Localized Resource Unit, called LLRU).
  • the mapped resource unit is not physical but logical.
  • the DRU is a distributed logical resource unit (see DLRU) or a distributed distributed resource unit (see Logical Distributed Resource Unit, see Called LDRU), CRU is a continuous Contiguous Logical Resource Unit (see CLRU) or a Logical Contiguous Resource Unit (see LCRU).
  • the cartridges are called DRUs and CRUs.
  • the control channels described below include but are not limited to: a synchronization channel, a broadcast control channel. Based on this, the present invention is based on the characteristics of the frame structure of the OFDMA technology (for example, the frame structure shown in FIG. 1) and the resource structure (for example, the resource structure shown in FIG.
  • FIG. 3 is a flowchart of a resource mapping method of a control channel according to an embodiment of the present invention. It should be noted that, for convenience of description, the technical solution of the method embodiment of the present invention is shown and described in FIG.
  • the steps illustrated in Figure 3 may be performed in a computer system such as a set of computer executable instructions. Although a logical order is shown in FIG. 3, in some cases, the steps shown or described may be performed in an order different than that herein. As shown in Fig. 3, the method includes the following steps (step S302 to step S304).
  • the broadcast control channel is located on a frequency partition, that is, the broadcast control channel is set on a frequency partition, where the frequency partition includes one or more distributed resource units, and the frequency reuse factor of the one frequency partition includes the following One of: 1, 1/3, 3, wherein the configuration information of the frequency partition is determined (that is, the frequency partition has certain configuration information, and is predefined, the terminal obtains in advance, without notification), and can be based on The configuration information determines a location of the broadcast control channel, where the configuration information includes at least one of: a number of frequency partitions, a size of the frequency partition, a number of subbands in the frequency partition, a number of bands in the frequency partition, and a distributed resource in the frequency partition.
  • the control channel includes a primary broadcast control channel and a secondary broadcast control channel, where the primary broadcast control channel occupies a fixed number or a predetermined number of distributed resource units, and indicates the number of distributed resource units occupied by the secondary broadcast control channel, where
  • the manner in which the primary broadcast control channel occupies the distributed resource unit may be one of the following: the primary broadcast control channel occupies a fixed number of distributed resource units, and the terminal obtains the number of distributed resource units occupied by the primary broadcast control channel by blind detection;
  • the manner in which the secondary broadcast control channel occupies the distributed resource unit may be one of the following:
  • the control channel indicates the number of distributed resource units occupied by the secondary broadcast control channel, and the number of distributed resource units occupied by the terminal by the blind detection to obtain the secondary broadcast control channel.
  • the terminal may obtain configuration information of the frequency partition in advance, and determine the location of the control channel by using the configuration information, and the terminal acquires a fixed number or a predetermined number of distributed resource units occupied by the primary broadcast control channel by using blind detection. And obtaining the number of distributed resource units occupied by the secondary broadcast control channel.
  • the number of resources occupied by the primary broadcast control channel or the amount of resources it occupies may be obtained by blind detection, and the amount of resources occupied by the secondary broadcast control channel is indicated by the primary broadcast control channel.
  • the number of information that the primary broadcast control channel needs to transmit is determined, but one of several determined modulation and coding modes may be used, so the amount of resources occupied by it depends on the modulation coding mode actually used, but as long as the primary broadcast is determined
  • the starting position of the control channel can obtain the quantity information of the resource by blind detection and possible modulation and coding.
  • the bandwidth occupied by the primary broadcast control channel needs to meet one of the following conditions: The bandwidth occupied by the primary broadcast control channel is less than or equal to the minimum system bandwidth, and the frequency difference between any two subcarriers occupied by the primary broadcast control channel is less than or Equal to the minimum system bandwidth described above.
  • the broadcast control channel occupies less than the minimum system bandwidth of 5 MHz, so the bandwidth occupied by the primary broadcast control channel must also be less than the minimum system bandwidth of 5 MHz.
  • the distributed resource unit occupied by the primary broadcast control channel and the distributed resource unit occupied by the secondary broadcast control channel may be adjacent or not adjacent, where the distributed resource unit occupied by the primary broadcast control channel and the secondary broadcast control channel are occupied.
  • the distributed resource units are not adjacent, and the location information of the distributed resource unit occupied by the secondary broadcast control channel may be indicated on the primary broadcast control channel.
  • the present invention provides a resource mapping method for a control channel in an OFDMA system.
  • FIG. 4 is a schematic diagram of a resource mapping process of a broadcast control channel in one frequency partition in an OFDMA/5 MHz system according to Embodiment 1 of the method of the present invention.
  • the process of frequency partitioning in which the Fast Fourier Transform (called FFT) of the 5 MHz system has 512 points, and the number of available subcarriers in the subframe
  • FFT Fast Fourier Transform
  • the 432 is divided into 24 physical resource units, each of which is 18x6.
  • ⁇ 'J ⁇ Subband and Miniband are mapped to one frequency partition, and then all PRUs in the frequency partition are mapped into continuous resource units (subcarriers in consecutive resource units are continuous) and distributed resource units, as shown in FIG.
  • the first 12 resource elements ie [0,1,2,3,8,9,10,11, 16,17,18, 19] are used as continuous resource units, and the remaining 12 resource units are distributed by subcarrier replacement operations.
  • the resource unit, the unit of replacement is 1 subcarrier or 1 pair of subcarriers.
  • the distributed resource unit obtained after the replacement is a logical resource unit, so it may be called a distributed logical resource unit, and the corresponding continuous resource unit is called a continuous logical resource unit, and when no contradiction is caused, the cylinder is called For DRU and CRU, other similar, no longer praise. As shown in FIG.
  • FIG. 5 is a flowchart of a resource mapping method according to an embodiment of the present invention. As shown in FIG. 5, the following processing is included (step S502 to step S504).
  • Step S502 The broadcast control channel is located on multiple frequency partitions, where each frequency partition includes one or more distributed resource units, where each frequency partition corresponds to a partial frequency reuse factor of 1/3 or 3. Or, in the multiple frequency partitions, a partial frequency reuse factor corresponding to one frequency partition is 1, and a partial frequency reuse factor corresponding to the remaining frequency partitions is 1/3 or 3.
  • the configuration information of the frequency partition is determined (ie, frequency
  • frequency The partition has certain configuration information, and is predefined
  • the terminal obtains in advance, without notification, and can determine the location of the broadcast control channel according to the configuration information, where the configuration information includes at least one of the following: The size of the frequency partition, the number of subbands in the frequency partition, the number of bands in the frequency partition, the number of distributed resource units in the frequency partition, and the number of consecutive resource units in the frequency partition.
  • Step S504 setting a starting position of the broadcast control channel to the first distributed resource unit of the plurality of frequency partitions.
  • the control channel includes a primary broadcast control channel and a secondary broadcast control channel, where the primary broadcast control channel occupies a fixed number or a predetermined number of distributed resource units, and indicates the number of distributed resource units occupied by the secondary broadcast control channel, where
  • the manner in which the primary broadcast control channel occupies the distributed resource unit may be one of the following: the primary broadcast control channel occupies a fixed number of distributed resource units, and the terminal obtains the number of distributed resource units occupied by the primary broadcast control channel by blind detection;
  • the manner in which the secondary broadcast control channel occupies the distributed resource unit may be one of the following: the primary broadcast control channel indicates the number of distributed resource units occupied by the secondary broadcast control channel, and the terminal obtains the distributed resource occupied by the secondary broadcast control channel by using blind detection. The number of units.
  • the terminal may obtain configuration information of the frequency partition in advance, and determine the location of the control channel by using the configuration information, and the terminal acquires a fixed number or a predetermined number of distributed resource units occupied by the primary broadcast control channel by using blind detection. And obtaining the number of distributed resource units occupied by the secondary broadcast control channel.
  • the number of resources occupied by the primary broadcast control channel or the amount of resources it occupies may be obtained by blind detection, and the amount of resources occupied by the secondary broadcast control channel is indicated by the primary broadcast control channel.
  • the number of information that the primary broadcast control channel needs to transmit is determined, but one of several determined modulation and coding modes may be used, so the amount of resources occupied by it depends on the modulation coding mode actually used, but as long as the primary broadcast is determined
  • the starting position of the control channel can obtain the quantity information of the resource by blind detection and possible modulation and coding.
  • the bandwidth occupied by the primary broadcast control channel needs to meet one of the following conditions: The bandwidth occupied by the primary broadcast control channel is less than or equal to the minimum system bandwidth, and the frequency difference between any two subcarriers occupied by the primary broadcast control channel is less than or Equal to the minimum system bandwidth described above.
  • the bandwidth occupied by the broadcast control channel is less than the minimum system bandwidth of 5 MHz. Therefore, the bandwidth occupied by the primary broadcast control channel must also be less than the minimum system bandwidth of 5 MHz.
  • the distributed resource unit occupied by the primary broadcast control channel and the distributed resource unit occupied by the secondary broadcast control channel may be adjacent or not adjacent, where the distributed resource unit occupied by the primary broadcast control channel and the secondary broadcast control channel are occupied. Distributed resource units are not adjacent, they can be The broadcast control channel indicates location information of the distributed resource unit occupied by the secondary broadcast control channel.
  • the present invention provides a resource mapping method for a control channel in an OFDMA system.
  • Example 2 Figure 6 depicts the resource mapping process of the broadcast control channel for the OFDMA/5 MHz system of the present invention with two frequency partitions.
  • FIG. 1 is similar to the resource mapping process of Figure 4, with the difference that Figure 4 includes one frequency partition, but Figure 6 contains two frequency partitions.
  • the partial frequency reuse factor of frequency partition 0 is 1
  • the frequency reuse factor of frequency partition 1 is 1/3.
  • the frequency partition 0 includes 2 Subbands, 4 Minibands, and 12 physical resource units.
  • the frequency partition 1 includes 1 Subband, 8 Minibands, 12 physical resource units, and the first 8 of the frequency partitions 0.
  • the physical resource unit is a continuous resource unit, and the last four are distributed resource units.
  • the first four physical resource units in frequency partition 1 are continuous resource units, and the last eight are physical resource units mapped to distributed resource unit resources.
  • FIG. 7 illustrates a resource mapping process of a broadcast control channel for three frequency partitions in an OFDMA/5 MHz system according to the present invention.
  • This example 2 is similar to the resource mapping process of the example 1. The difference is that the two frequencies are included in FIG.
  • FIG. 7 contains three frequency partitions. As shown in FIG. 7, the frequency partition 0, the frequency partition 1 and the frequency partition 2 are included, wherein a partial frequency reuse factor of the frequency partition 0 is 1 and a partial frequency reuse factor of the frequency partition 1 is 2/3, and the frequency partition is The partial frequency reuse factor of 2 is 1/3. In this way, the frequency partition 0 and the frequency partition 2 are selected to design the broadcast control channel. Since there are frequency partitions with frequency reuse factors of 1 and 1/3, the design of the broadcast control channel is similar to that of FIG. 5 and will not be described here.
  • Example 4 FIG. 8 illustrates a resource mapping process of a broadcast control channel for four frequency partitions in an OFDMA/5 MHz system according to the present invention.
  • FIG. 8 contains four frequency partitions.
  • the frequency partition 0, the frequency partition 1, the frequency partition 2, and the frequency partition 3 are included, wherein a partial frequency reuse factor of the frequency partition 0 is 1, a frequency partition 1, a frequency partition 2, and a portion of the frequency partition 3
  • the frequency reuse factor is 2/3. Since there is no frequency partition with a partial frequency reuse factor of 1/3, the broadcast control channel can only occupy the distributed resource unit in frequency partition 0.
  • Method Embodiment 3 According to an embodiment of the present invention, a resource mapping method for a control channel is provided. FIG.
  • Step S902 is a flowchart of a resource mapping method of a control channel according to Embodiment 2 of the method of the present invention. As shown in FIG. 9, the following processing is included (step S902 to step S904). Step S902, the number of all the physical resource units is n, and the k physical resource units of the n physical resource units form a frequency partition or a plurality of frequency partitions, and the frequency reuse factor of the frequency partition includes the following One: 1, 1/3 or 3; 4 wins k physical resources in the frequency partition
  • Step S904 setting a broadcast control channel on the one or more frequency partitions, where a starting position of the broadcast control channel is located on a first distributed resource unit of the frequency partition, and a physical bandwidth occupied by the control channel Less than or equal to the minimum system bandwidth.
  • the control channel may include only a primary broadcast control channel or a primary broadcast control channel and a secondary broadcast control channel.
  • the distributed resource list within the frequency partition The element is only used to carry the primary broadcast control channel. If the primary broadcast control channel and the secondary broadcast control channel are included, the distributed resource unit in the frequency partition is used to carry the primary broadcast control channel and the secondary broadcast control channel.
  • the primary broadcast control channel occupies a fixed number or a predetermined number of distributed resource units, and indicates the number of distributed resource units occupied by the secondary broadcast control channel.
  • the primary broadcast control channel occupies a fixed number or a predetermined number of distributed resource units, and indicates the number of distributed resource units occupied by the secondary broadcast control channel, where the manner of acquiring the distributed resource unit occupied by the primary broadcast control channel may be One of the following:
  • the primary broadcast control channel occupies a fixed number of distributed resource units, and the terminal obtains the number of distributed resource units occupied by the primary broadcast control channel by using blind detection;
  • the manner of obtaining the distributed resource unit occupied by the secondary broadcast control channel may be One of the following:
  • the primary broadcast control channel indicates the number of distributed resource units occupied by the secondary broadcast control channel, and the terminal obtains the number of distributed resource units occupied by the secondary broadcast control channel by blind detection.
  • the terminal may obtain configuration information of the frequency partition in advance, and determine the location of the control channel by using the configuration information, and the terminal acquires a fixed number or a predetermined number of distributed resource units occupied by the primary broadcast control channel by using blind detection. And obtaining the number of distributed resource units occupied by the secondary broadcast control channel.
  • the number of resources occupied by the primary broadcast control channel or the number of resources occupied by the primary broadcast control channel may be obtained by blind detection, and the amount of resources occupied by the secondary broadcast control channel is indicated by the primary broadcast control channel.
  • the number of information that the primary broadcast control channel needs to transmit is determined, but one of several determined modulation and coding modes may be used, so the amount of resources occupied by it depends on the modulation coding mode actually used, but as long as the primary broadcast is determined
  • the starting position of the control channel can obtain the quantity information of the resource by blind detection and possible modulation and coding.
  • the bandwidth occupied by the primary broadcast control channel needs to meet one of the following conditions: The bandwidth occupied by the primary broadcast control channel is less than or equal to the minimum system bandwidth, and the frequency difference between any two subcarriers occupied by the primary broadcast control channel is less than or Equal to the minimum system bandwidth described above.
  • data may be transmitted using resources other than the resources used to transmit the primary broadcast control channel and/or the secondary broadcast control channel in the frequency partition.
  • an OFDMA system includes n physical resource units, and k physical resource units are extracted from n physical resource units for transmitting a broadcast control channel.
  • the k physical resource units form a frequency partition, and the remaining (n - k) physical resource units perform normal resource mapping.
  • the terminal obtains the configuration information of the frequency partition in advance, determines the location of the control channel by using the configuration information, and obtains a fixed number or a predetermined number of distributed resource units occupied by the primary broadcast control channel by blind detection, so as to obtain the distributed occupied by the secondary broadcast control channel.
  • the number of resource units is not limited to transmit resource units.
  • the k physical resource units may be selected according to one of the following methods: k physical resource units are continuously extracted from one side of the n physical resource units, k physical resource units are continuously extracted from the middle of the n physical resource units, and n physical units are extracted from n physical units.
  • the k physical resource units are continuously extracted on both sides of the resource unit.
  • the physical resource units are [12, 13, 14 35], and the remaining physical resource units are [0, 1, 2, ...
  • FIG. 10 illustrates a mapping process in which a broadcast control channel occupies a predetermined resource unit in an OFDMA/5MHZ system according to an embodiment of the method of the present invention.
  • the FFT point number of the 5 MHz system is 512
  • the available subcarriers in the subframe are 432, divided into 24 physical resource units, each size is 18x6.
  • the specific mapping process is as follows: First, a certain number of physical resource units are extracted from 24 physical resource units, and the specific quantity depends on the amount of data to be sent by the broadcast control channel, for example, physical resource units 0 and 23 are extracted, and the two resource units are performed. Subcarrier-to-stage replacement results in two distributed resource units for carrying the broadcast control channel, and the remaining 22 physical resource units perform resource mapping as shown in Examples 1 to 3.
  • Example 6 FIG. 11 illustrates a mapping process in which the broadcast control channel occupies a predetermined partition in the OFDMA/5MHZ system. As shown in FIG. 11, the FFT point number of the 5 MHz system is 512, and the available subcarriers in the subframe are 432, which are divided into physical resources.
  • the specific mapping process is as follows: First, a certain number of physical resource units are extracted from 24 physical resource units, and the specific quantity depends on the amount of data to be sent by the broadcast control channel, and the principle of extraction is that the remaining physical resource units must be continuous, and the extraction is performed.
  • the method can be extracted from both sides and extracted on one side. For example, four consecutive physical resource units 0, 1, 2, and 3 are sequentially extracted from the starting side, and the four resource units form a partition and load control channel.
  • the four physical resource units in the sub-area perform sub-carrier-level replacement to obtain four distributed resource units, and the remaining 20 physical resource lists
  • the element performs resource mapping as shown in Examples 1 to 3.
  • FIG. 12 is a flowchart of a resource mapping method according to Embodiment 4 of the method of the present invention. As shown in FIG. 12, the following processing is included (step S1202 to step S1204).
  • Step S1202 Mapping physical subcarriers on one or more orthogonal frequency division multiple access symbols into distributed subcarriers, where the one or more orthogonal frequency division multiple access symbols are corresponding The first orthogonal frequency division multiple access symbol in the subframe, specifically, the physical subcarrier on the orthogonal frequency division multiple access symbol may be replaced by a distributed subcarrier according to the permutation unit, and the replacement unit is One of the following: one subcarrier, one carrier pair, where one carrier pair includes two physically consecutive subcarriers, where the distributed subcarriers include completely discontinuous subcarriers or partially consecutive subcarriers, where A completely discontinuous subcarrier means that any two distributed subcarriers are physically discontinuous.
  • Step S1204 Set the synchronization channel to one or more orthogonal frequency division multiple access symbols, where the distributed subcarriers are used to carry the synchronization channel.
  • the synchronization channel may include a primary synchronization channel and a secondary synchronization channel, where the bandwidth occupied by the primary synchronization channel is less than or equal to the minimum system bandwidth.
  • the frequency difference between any two subcarriers occupied by the primary synchronization channel may be smaller than Or equal to the minimum system bandwidth; the bandwidth occupied by the secondary primary synchronization channel may be less than or equal to the minimum system bandwidth, and the secondary primary synchronization channel may also occupy the full system bandwidth.
  • FIG. 13 is a schematic diagram of a mapping process of a primary synchronization channel in an OFDMA/10 MHz system according to an embodiment of the method of the present invention. As shown in FIG. 13, the FFT point number of the 10 MHz system is 1024.
  • the specific mapping process is: first, the subcarriers in the middle 5 MHz of 10 MHz are extracted, That is, 512 subcarriers are extracted, and the available subcarriers in the 512 subcarriers are 432 subcarriers; then, the 432 available subcarriers are subjected to subcarrier replacement operations, and the permutation unit is 1 physical subcarrier or 1 subcarrier pair. Mapping the available subcarriers into distributed subcarriers, where the distributed frequency subcarriers correspond to a partial frequency reuse coefficient of 1; finally, using the distributed subcarriers to carry the primary synchronization channel, that is, the primary synchronization The sequence is modulated onto these distributed subcarriers for transmission.
  • FIG. 14 is a schematic diagram of a mapping process of a secondary synchronization channel in an OFDMA/10 MHz system according to an embodiment of the method of the present invention.
  • the FFT point number of the 10 MHz system is 1024.
  • the specific mapping process is as follows: First, the available subcarriers in the middle of 10 MHz are extracted. For example, the protection subcarriers and the DC carrier can be removed to obtain available subcarriers, and the number of available subcarriers is 864.
  • the present invention provides a resource mapping method for a control channel in an OFDMA system, which solves the problem of resource location and mode occupied by a broadcast control channel, and enables broadcasting.
  • the channel can meet various requirements in the related art, such as low error rate, resource mapping of the OFDMA system, interference suppression, etc., improving the performance of the broadcast channel, and the process of identifying the control channel by the terminal, and ensuring the wireless communication system based on the OFDMA technology. Spectral efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

控制信道的资源映射方法
技术领域 本发明涉及通信领域, 尤其涉及一种控制信道的资源映射方法。 背景技术 在无线通信系统中, 基站是指为终端提供服务的设备, 其通过上 /下行 链路与终端进行通信, 其中, 下行是指基站到终端的方向, 上行是指终端到 基站的方向。 就数据传输而言, 多个终端可以通过上行链路同时向基站发送 数据 , 也可以通过下行链路同时从基站接收数据。 在采用基站实现无线资源 调度控制的无线通信系统中, 系统无线资源的调度分配由基站完成。 例如, 由基站给出基站进行下行传输时的下行资源分配信息以及终端进行上行传输 时的上行资源分配信息等。 资源分配信息包含了实际的物理资源位置和传输 方法等信息, 基于不同技术实现的通信系统, 其资源分配和资源映射的要求 和方法也有所不同。 在基于正交频分多址 ( Orthogonal Frequency Division Multiple Access , 筒称为 OFDMA ) 技术的无线通信系统中, 由基站完成无线资源的映射和无 线资源的分配。 OFDMA 技术基于正交频分复用 ( Orthogonal Frequency Division Multiplexing, 筒称为 OFDM )技术实现, 该技术的主要实现过程是: 对可用子载波进行子信道化 , 并在子载波上传输数据 , 用户通过占用不同的 子载波来实现多址接入。 例如, 基站确定出基站到终端的下行传输时的系统 配置和资源分配信息, 以及终端到基站的上行传输时的系统配置和资源分配 信息 , 其中, 下行传输时的系统配置和资源分配信息和上行传输时的系统配 置和资源分配信息统均属于系统配置和资源分配信息, 基站通过控制信道向 终端发送该系统配置和资源分配信息 , 终端在确定的控制信道上接收该系统 配置和资源分配信息 , 通过这些系统配置和资源分配信息与基站进行通信, 即终端与基站之间进行数据的接收和发送。 下面对无线通信系统中的控制信道进行说明。 在无线通信系统中,控制信道一般分为包括: 同步信道( Synchronization Channel, 筒称为 SCH )、 广播控制信道( Broadcast Control Channel, 筒称为 BCCH )、 单播控制信道 ( Unicast Control Channel )、 多播控制信道 ( Multicast Control Channel ) 等。 其中, SCH是 "一点对多点" 的单向控制信道, 终端 利用 SCH完成与基站的同步操作。 BCCH在默认为讨论控制信道的前提下 , 也筒称为广播信道( Broadcast Channel, BCH ),与 SCH相同 , BCH(或 BCCH ) 也是 "一点对多点" 的单向控制信道, 主要用于基站向多个终端发送或者广 播控制信息。 由于广播控制信道通常传输重要的系统配置和控制信息, 相对 于普通数据的传输, 要求广播控制信道具有高稳健性, 低错误率的特点。 但 是, 由于目前的无线频 i普资源日益紧张, 无线信道环境日益恶劣, 广播控制 信道通常采用比较低的调制编码方式来抵抗恶劣的信道环境 , 以获得较低的 误码率, 但这样会耗费较多的无线资源。 进一步地, 在基于 OFDMA 技术的无线通信系统中, 其无线资源是由 时域 OFDM符号和频域子载波组成的二维时频资源, 控制信道的设计, 尤其 是物理结构的设计还需要考虑 OFDMA系统的资源映射和干 4尤抑制的限制。 由于基于 OFDMA技术的系统属于多载波系统, 而多载波的资源映射过程需 要考虑频域的资源映射问题, 使得多载波的资源映射过程与单载波的资源映 射过程存在非常大的差异, 这样, OFDMA 系统中的控制信道占用资源的方 式需要符合 OFDMA系统的资源映射设计。 另夕卜, 干扰问题也是制约通信发 展的重要难题, OFDMA 系统可以采用部分频率复用 (Fractional Frequency Reuse, 筒称为 FFR ) 技术进行干扰抑制, 控制信道的设计需要符合 FFR的 技术要求。 可以看出, 目前控制信道存在氐误码率、 OFDMA系统的资源映射、 干 扰抑制等要求的问题, 然而, 至今尚未提出能够使控制信道满足上述要求, 来提高控制信道的应用性能的技术方案。 发明内容 考虑到相关技术中存在的控制信道存在氐误码率、 OFDMA系统的资源 映射、 干 4尤抑制等要求的问题而提出本发明, 为此, 本发明的主要目的在于 提供一种控制信道的资源映射方法及装置, 以解决上述问题的至少之一。 根据本发明的一个方面, 提供一种控制信道的资源映射方法。 根据本发明的控制信道的资源映射方法包括:广播控制信道位于一个频 率分区上, 其中, 频率分区包含一个或多个分布式资源单元; 将广播控制信 道的起始位置设置于频率分区的第一个分布式资源单元上。 其中, 频率分区对应的部分频率复用因子为以下之一: 1、 1/3、 3。 优选地, 频率分区的配置信息是确定的, 根据配置信息确定广播控制信 道的位置, 其中, 配置信息包括以下至少之一: 频率分区的数目、 频率分区 的大小、 频率分区中子带的数目、 频率分区中 带的数目、 频率分区中分布 式资源单元的数目、 频率分区中连续资源单元的数目。 其中, 广播控制信道包括主广播控制信道和 /或辅广播控制信道。 优选地,主广播控制信道占用的带宽小于或等于最小的系统带宽;或者 , 主广播控制信道占用的任意两个子载波之间的频点差值小于或等于最小的系 统带宽。 进一步地, 上述方法还包括: 主广播控制信道占用固定数目的分布式资 源单元; 或者, 终端通过盲检测获取主广播控制信道占用的分布式资源单元 的数目。 进一步地, 上述方法还包括: 在主广播控制信道指示辅广播控制信道占 用的分布式资源单元的数目; 或者, 终端通过盲检测获取辅广播控制信道占 用的分布式资源单元的数目。 优选地, 上述方法还包括: 主广播控制信道占用的分布式资源单元与辅 广播控制信道占用的分布式资源单元相邻或不相邻; 其中, 如果主广播控制 信道占用的分布式资源单元与辅广播控制信道占用的分布式资源单元不相 邻, 在主广播控制信道指示辅广播控制信道占用的分布式资源单元的位置信 息。 根据本发明的一个方面, 提供一种控制信道的资源映射方法。 根据本发明的控制信道的资源映射方法包括:广播控制信道位于多个频 率分区上, 其中, 每个频率分区包括一个或多个分布式资源单元; 将广播控 制信道的起始位置设置于多个频率分区的第一个分布式资源单元上。 其中, 多个频率分区中, 每个频率分区对应的部分频率复用因子均为 1/3或 3; 或者, 多个频率分区中, 一个频率分区对应的部分频率复用因子为 1 , 而其余频率分区对应的部分频率复用因子均为 1/3或 3。 优选地, 多个频率分区的配置信息是确定的, 根据配置信息确定广播控 制信道的位置, 其中, 配置信息包括以下至少之一: 频率分区的数目、 各频 率分区的大小、 各频率分区中子带的数目、 各频率分区中微带的数目、 各频 率分区中分布式资源单元的数目、 各频率分区中连续资源单元的数目。 优选地, 广播控制信道包括主广播控制信道和 /或辅广播控制信道。 其中, 主广播控制信道占用的带宽小于或等于最小的系统带宽; 或者, 主广播控制信道占用的任意两个子载波之间的频点差值小于或等于最小的系 统带宽。 进一步地, 上述方法还包括: 主广播控制信道占用固定数目的分布式资 源单元; 或者, 终端通过盲检测获取主广播控制信道占用的分布式资源单元 的数目。 其中 ,主广播控制信道占用的分布式资源单元与辅广播控制信道占用的 分布式资源单元相邻或不相邻; 其中, 如果主广播控制信道占用的分布式资 源单元与辅广播控制信道占用的分布式资源单元不相邻, 在主广播控制信道 指示辅广播控制信道占用的分布式资源单元的位置信息。 进一步地, 上述方法还包括: 主广播控制信道指示辅广播控制信道占用 的分布式资源单元的数目; 或者, 终端通过盲检测获取辅广播控制信道占用 的分布式资源单元的数目。 根据本发明的一个方面, 提供一种控制信道的资源映射方法。 根据本发明的控制信道的资源映射方法包括:所有的物理资源单元的数 目为 n, n个物理资源单元中的 k个物理资源单元组成一个频率分区或多 个频率分区 , 并^1频率分区中的 k个物理资源单元中的部分或全部物理资源 单元映射成分布式资源单元, 其中, n 大于或等于 k; 将广播控制信道设置 于一个或多个频率分区上, 其中, 广播控制信道的起始位置位于每个频率分 区的第一个分布式资源单元上。 其中, n值由以下至少一个参数确定: 系统带宽、 多载频配置。 优选地 , 按照以下方式之一选取 k个物理资源单元: 从 n个物理资源单 元的一侧连续抽取 k个物理资源单元、 从 n个物理资源单元中间连续抽取 k 个物理资源单元、 从 n个物理资源单元的两侧连续抽取 k个物理资源单元。 其中, k值取固定值; 或者, k值由以下至少一个参数确定: 系统带宽、 多载频配置。 其中, 频率分区对应的部分频率复用因子为以下之一: 1、 1/3或 3。 其中, 广播控制信道包括主广播控制信道和 /或辅广播控制信道。 进一步地, 上述方法还包括: 利用频率分区中不用于发送主广播控制信 道和 /或辅广播控制信道的资源发送数据; 或者 , 不利用频率分区中不用于发 送主广播控制信道和 /或辅广播控制信道的资源发送数据。 优选地,主广播控制信道占用的带宽小于或等于最小的系统带宽;或者 , 主广播控制信道占用的任意两个子载波之间的频点差值小于或等于最小的系 统带宽。 优选地, 主广播控制信道占用固定数目的分布式资源单元; 或者, 终端 通过盲检测获取主广播控制信道占用的分布式资源单元的数目。 进一步地, 上述方法还包括: 在主广播控制信道指示辅广播控制信道占 用的分布式资源单元的数目和 /或位置; 或者, 终端通过盲检测获取辅广播控 制信道占用的分布式资源单元的数目和 /或位置。 根据本发明的一个方面, 提供一种控制信道的资源映射方法。 才艮据本发明的控制信道的资源映射方法包括:将一个或多个正交频分多 址接入符号上的物理子载波映射成分布式的子载波; 将同步信道设置于一个 或多个正交频分多址接入符号上, 其中,分布式的子载波用于承载同步信道。 其中, 同步信道包括主同步信道和辅同步信道, 其中, 主同步信道占用 的带宽小于或等于最小的系统带宽。 优选地, 辅主同步信道占用的带宽小于或等于最小的系统带宽; 或者占 用全系统带宽。 优选地, 主同步信道占用的带宽小于或等于最小的系统带宽包括: 主同 步信道占用的任意两个子载波之间的频点差值小于或等于最小的系统带宽。 其中, 主同步信道占用的子载波对应的部分频率复用因子为 1 , 辅同步 信道占用的子载波对应的部分频率复用因子为 1/3或 3。 其中, 分布式的子载波是完全不连续的子载波或部分连续的子载波, 其 中, 完全不连续的子载波是指: 任何两个分布式的子载波在物理上都是不连 续的。 另外 ,将一个或多个正交频分多址接入符号上的物理子载波映射成分布 式的子载波包括: 按照置换单位将物理子载波置换成分布式的子载波, 置换 单位为以下之一: 一个子载波、 一个载波对, 其中, 一个载波对包括物理上 连续的两个子载波。 优选地 ,一个或多个正交频分多址接入符号均为子帧中的第一个正交频 分多址接入符号。 通过本发明的上述至少一个技术方案, 通过本发明提供的 OFDMA 系 统中控制信道的资源映射方法, 解决了控制信道占用的资源位置和方式的问 题, 改进了控制信道的性能, 使得控制信道能够符合相关技术中低误码率、 OFDMA系统的资源映射、 干扰抑制等各种要求 , 确保了基于 OFDMA技术 的无线通信系统的频 i普效率。 附图说明 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本 发明的实施例一起用于解释本发明 , 并不构成对本发明的限制。 在附图中: 图 1是才艮据相关技术的无线通信系统的帧结构的示意图; 图 2是才艮据相关技术的无线通信系统的资源结构的示意图; 图 3是才艮据本发明方法实施例一的控制信道的资源映射方法的流程图; 图 4是才艮据本发明方法实施例一的 OFDMA/5MHz系统中, 1个频率分 区时广播控制信道的资源映射过程示意图; 图 5是才艮据本发明方法实施例二的控制信道的资源映射方法的流程图; 图 6是才艮据本发明方法实施例二的 OFDMA/5MHz系统中 , 2个频率分 区时广播控制信道的资源映射过程示意图; 图 7是才艮据本发明方法实施例二的 OFDMA/5MHz系统中, 3个频率分 区时广播控制信道的资源映射过程示意图; 图 8是才艮据本发明方法实施例二的 OFDMA/5MHz系统中, 4个频率分 区时广播控制信道的资源映射过程示意图; 图 9是才艮据本发明方法实施例三的控制信道的资源映射方法的流程图; 图 10是才艮据本发明方法实施例三的 OFDMA/5MHz系统中, 广播控制 信道占用预定资源单元的映射过程示意图; 图 11才艮据本发明方法实施例三的 OFDMA/5MHz系统中, 广播控制信 道占用预定分区的映射过程示意图; 图 12 是才艮据本发明方法实施例四的控制信道的资源映射方法的流程 图; 图 13才艮据本发明方法实施例四的 OFDMA/ 10MHz系统中,主同步信道 占的映射过程示意图; 图 14才艮据本发明方法实施例四的 OFDMA/ 10MHz系统中,辅同步信道 占的映射过程示意图。 具体实施方式 功能相克述 在描述本发明的实施例之前, 首先对 OFDMA技术的资源映射过程进 行筒要描述。 需要说明的是, 虽然在本发明实施例中是以 OFDMA技术为例 来进行说明的, 但是本发明不限于 jt匕, 在诸如长期演进系统 (Long Term Evolution , 筒称为 LTE )、 电气和电子工程师十办会 ( Institute for Electrical and Electronic Engineers , 筒称为 IEEE ) 802.16m等多载波系统以及^)夺来可能出 现的其他多载波系统中, 同样可以应用本发明。 在基于 OFDMA技术的无线通信系统中, 资源映射过程可以理解为将 物理资源 (如物理子载波) 映射为逻辑资源 (如逻辑资源单元) 的过程, 例 如, 将物理子载波映射为逻辑资源块, 这样, 基站通过调度逻辑资源块实现 对无线资源的调度。 而资源映射的主要依据是 OFDMA系统的帧结构和资源 结构。 在帧结构中, 将无线资源在时域上划分为不同等级的单位进行调度, 例如, 划分为超帧 (Super frame )、 帧 ( Frame )、 子帧 ( Subframe ) 和符号 ( Symbol )。 例如, 图 1 所示, 无线资源在时域上划分为超帧, 每个超帧包 含 4个帧,每个帧又包含 8个子帧,每个子帧由 6个基本的 OFDM符号组成, 实际的通信系统根据需要支持的系统带宽、 覆盖范围、 循环前缀的长度和上 下行转换间隔等因素,确定帧结构中各个等级单位中具体包含的 OFDM符号 数量。 另夕卜, 如图 1所示, 广播控制信道位于超帧中头部的第一个子帧, 所 以广播控制信道也被称作超帧头 ( SuperFrame Header, 筒称为 SFH ), 广播 控制信道包括主广播控制信道和 /或辅广播控制信道, 所以, 等价地说, 超帧 头包括主超帧头和 /或辅超帧头; 同步信道包含主同步信道和 /或辅同步信道, 其中, 主同步信道和辅同步信道位于不同帧中的第一个 OFDM符号上。 资源结构在频域上根据需要支持的覆盖范围、 FFR操作、 终端的速度和 业务类型等因素将可用的频带分成多个频率分区( Frequency Partition ), 进而 将频率分区内的频率资源分成连续资源区域和 /或分布式资源区域进行调度。 如图 2所示, 一个子帧的可用物理子载波被分成 3个频率分区, 每个频率分 区分为连续资源区域和分布式资源区域, 以实现调度的灵活性, 才艮据需要, 也可以分为 1 个、 2个、 3个或 4个及以上的频率分区, 本发明对此没有限 制。 在以下的实施例中, 如果没有特别说明, 则 n、 k均为大于或等于 1的 整数, 且 n大于或等于 k。 分布式资源区域是指其中的物理资源单元均被映 射为分布式资源单元 (Distributed Resource Unit, 筒称为 DRU ), DRU中包 含的子载波是完全不连续的或成对连续的, 还可以每 4个子载波是连续的; 连续资源区域是指其中的物理资源单元均被映射为连续资源 ( Contigous Resource Unit, 筒称为 CRU ), CRU中包含的子载波是连续的, CRU也称作 集中式资源单元( Localized Resource Unit , 筒称为 LLRU )。 映射后的资源单 元不是物理的,而是逻辑的,所以, DRU是分布式的逻辑资源单元( Distributed Logical Resource Unit, 见称为 DLRU ) 或還辑的分布式资源单元 (Logical Distributed Resource Unit, 见称为 LDRU ), CRU 是连续的還辑资源单元 ( Contiguous Logical Resource Unit, 见称为 CLRU ) 或還辑的连续资源单元 ( Logical Contiguous Resource Unit, 见称为 LCRU )。 而在不引起矛盾时 , 筒 称为 DRU和 CRU。 另夕卜, 需要说明的是, 下文所述的控制信道包括但不限 于: 同步信道、 广播控制信道。 基于此, 本发明根据 OFDMA技术的帧结构 (例如, 图 1 所示的帧结 构) 和资源结构 (例如, 图 2所示的资源结构) 的特点, 针对控制信道的设 计上存在的性能和资源的平衡问题, 提出了一种 OFDMA系统中控制信道的 资源映射方案, 以确保 OFDMA的无线通信系统的频 i普效率。 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组 合。 以下结合附图对本发明的优选实施例进行说明 , 应当理解 , 此处所描述 的优选实施例仅用于说明和解释本发明, 并不用于限定本发明。 方法实施例一 才艮据本发明实施例, 提供了一种控制信道的资源映射方法。 图 3是根据本发明实施例的控制信道的资源映射方法的流程图,需要说 明的是, 为了便于描述, 在图 3中以步骤的形式示出并描述了本发明的方法 实施例的技术方案, 在图 3中所示出的步骤可以在诸如一组计算机可执行指 令的计算机系统中执行。 虽然在图 3中示出了逻辑顺序,但是在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤。 如图 3所示, 该方法包 括以下步骤 (步骤 S302至步骤 S304 )。 步骤 S302, 广播控制信道位于一个频率分区上, 即, 将广播控制信道 设置于一个频率分区上, 其中, 频率分区包含一个或多个分布式资源单元, 该一个频率分区的频率复用因子包括以下之一: 1、 1/3、 3 , 其中, 频率分区 的配置信息是确定的 (即, 频率分区具有确定的配置信息, 且是预定义的, 终端预先获得,无需通知),并可以根据该配置信息确定广播控制信道的位置, 其中, 配置信息包括以下至少之一: 频率分区的数目、 频率分区的大小、 频 率分区中子带的数目、 频率分区中 带的数目、 频率分区中分布式资源单元 的数目、 频率分区中连续资源单元的数目。 步骤 S304, 将广播控制信道的起始位置设置于频率分区的第一个分布 式资源单元上 ,且广播控制信道占用的物理带宽小于或等于最小的系统带宽。 上述控制信道包括主广播控制信道和辅广播控制信道, 其中, 主广播控 制信道占用固定数目或预定数目的分布式资源单元, 并指示辅广播控制信道 占用的分布式资源单元的数目, 其中, 获取主广播控制信道占用的分布式资 源单元的方式可以为以下之一: 主广播控制信道占用固定数目的分布式资源 单元、 终端通过盲检测获取主广播控制信道占用的分布式资源单元的数目; 获取辅广播控制信道占用的分布式资源单元的方式可以为以下之一: 主广播 控制信道指示辅广播控制信道占用的分布式资源单元的数目、 终端通过盲检 测获取辅广播控制信道占用的分布式资源单元的数目。 例如, 在具体实施过 程中, 终端可以预先获取频率分区的配置信息, 并通过配置信息确定控制信 道的位置, 终端通过盲检测获取主广播控制信道占用的固定数目或预定数目 的分布式资源单元, 并获取辅广播控制信道占用的分布式资源单元的数目。 主广播控制信道占用确定的资源数量或其占用的资源数量可以通过盲检测获 得, 辅广播控制信道占用的资源数量由主广播控制信道指示。 例如, 主广播 控制信道需要发送的信息数量是确定的 , 但可能采用几个确定调制编码方式 中的一种, 所以其占用的资源数量与其实际采用的调制编码方式有关, 但只 要确定了主广播控制信道的起始位置, 可以通过盲检测及可能的调制编码方 式获得资源的数量信息。 并且, 主广播控制信道占用的带宽需要满足以下条件之一: 主广播控制 信道占用的带宽小于或等于最小的系统带宽、 主广播控制信道占用的任意两 个子载波之间的频点差值小于或等于上述最小的系统带宽。 例如, 如图 4所 示, 广播控制信道占用的带宽小于最小的系统带宽为 5MHz, 所以, 主广播 控制信道占用的带宽也必然小于最小的系统带宽为 5MHz。 另外 ,主广播控制信道占用的分布式资源单元与辅广播控制信道占用的 分布式资源单元可以相邻或不相邻, 其中, 如果主广播控制信道占用的分布 式资源单元与辅广播控制信道占用的分布式资源单元不相邻, 则可以在主广 播控制信道指示辅广播控制信道占用的分布式资源单元的位置信息。 本发明提供了 OFDMA 系统中控制信道的资源映射方法, 通过将广播 控制信道设置于一个频率分区的分布式资源单元上, 解决了广播控制信道占 用的资源位置和方式的问题, ?丈进了广播控制信道的性能, 使得广播信道能 够符合相关技术中低误码率、 OFDMA 系统的资源映射、 干扰抑制等各种要 求, 可以筒化终端识别控制信道的过程, 确保基于 OFDMA技术的无线通信 系统的频语效率。 实例 1 图 4是才艮据本发明方法实施例一的 OFDMA/5MHz系统中, 1个频率分 区时广播控制信道的资源映射过程示意图, 首先以图 4为例, 说明 5MHz系 统无线通信系统中获得频率分区的过程, 其中, 5MHz 系统的快速傅里叶变 换(Fast Fourier Transform, 筒称为 FFT ) 点数为 512, 子帧内可用子载波数 为 432, 共分成 24个物理资源单元, 每个大小为 18x6, 其中, 获得频率分 区的过程如下描述: 首先夺 24 个物理资源单元分成多个 Subband, 每个 Subband包含连续的 N1个物理资源单元, 例如 N1 =4, 则为 6个 Subband, 对 Subband进行置换或从 Subband中等间隔抽取 KSB个 subband, 例如, KSB =3, 采用行列置换, 置换矩阵为 [0, 1; 2, 3; 4, 5], 则置换前的顺序为【0, 1, 2, 3, 4, 5, 6】 置换后的顺序为 【0, 2, 4, 1, 3, 5】。 夺剩余的物理 资源单元分成多个 Miniband,每个 Subband包含连续的 N2个物理资源单元, Ϊ列 口 Nl = 1, 贝' J为 12个 Minibband, 对 Miniband进行置换操作。 ^'J ^ Subband和 Miniband映射到一个频率分区, 再将频率分区内的所有 PRU映 射为连续资源单元(连续资源单元内的子载波是连续的)和分布式资源单元, 如图 3所示, 前 12个资源单元, 即 [0,1,2,3,8,9,10,11, 16,17,18, 19]用作连续资 源单元, 剩余 12 个资源单元进行子载波置换操作得到分布式资源单元, 置 换的单位为 1个子载波或 1对子载波。 例如, 此时置换后得到的分布式资源 单元是逻辑资源单元, 所以, 可以称作分布式逻辑资源单元, 相应的连续资 源单元称作连续的逻辑资源单元, 而在不引起矛盾时, 筒称为 DRU和 CRU, 其它类似, 不再赞述。 如图 4所示, 当频率分区的部分频率复用因子为 1时, 广播控制信道位 于分布式资源单元中的第一个和第二个; 当该频率分区的部分频率复用因子 为 1/3或 3时,广播控制信道占用每个扇区的最开始的两个分布式资源单元。 实际用于传输控制信道的资源单元的数量取决于控制信道需要发送的信息 量, 该实例仅以占用 2个分布式资源单元仅用于说明, 但并不限于 jt匕。 方法实施例二 才艮据本发明实施例, 提供了一种控制信道的资源映射方法。 图 5是根据本发明实施例的资源映射方法的流程图, 如图 5所示, 包括 以下处理 (步骤 S502至步骤 S504 )。 步骤 S502, 广播控制信道位于多个频率分区上, 其中, 每个频率分区 包括一个或多个分布式资源单元; 其中, 每个频率分区对应的部分频率复用 因子均为 1/3 或 3, 或者, 在上述多个频率分区中, 一个频率分区对应的部 分频率复用因子为 1,而其余频率分区对应的部分频率复用因子均为 1/3或 3。 并且, 对应每个频率分区, 该频率分区的配置信息是确定的(即, 频率 分区具有确定的配置信息, 且是预定义的, 终端预先获得, 无需通知), 并可 以才艮据该配置信息确定广播控制信道的位置, 其中, 配置信息包括以下至少 之一: 频率分区的数目、 频率分区的大小、 频率分区中子带的数目、 频率分 区中 ^啟带的数目、 频率分区中分布式资源单元的数目、 频率分区中连续资源 单元的数目。 步骤 S504, 将广播控制信道的起始位置设置于多个频率分区的第一个 分布式资源单元上。 上述控制信道包括主广播控制信道和辅广播控制信道, 其中, 主广播控 制信道占用固定数目或预定数目的分布式资源单元, 并指示辅广播控制信道 占用的分布式资源单元的数目, 其中, 获取主广播控制信道占用的分布式资 源单元的方式可以为以下之一: 主广播控制信道占用固定数目的分布式资源 单元、 终端通过盲检测获取主广播控制信道占用的分布式资源单元的数目; 获取辅广播控制信道占用的分布式资源单元的方式可以为以下之一: 主广播 控制信道指示辅广播控制信道占用的分布式资源单元的数目、 终端通过盲检 测获取辅广播控制信道占用的分布式资源单元的数目。 例如, 在具体实施过 程中, 终端可以预先获取频率分区的配置信息, 并通过配置信息确定控制信 道的位置, 终端通过盲检测获取主广播控制信道占用的固定数目或预定数目 的分布式资源单元, 并获取辅广播控制信道占用的分布式资源单元的数目。 主广播控制信道占用确定的资源数量或其占用的资源数量可以通过盲检测获 得, 辅广播控制信道占用的资源数量由主广播控制信道指示。 例如, 主广播 控制信道需要发送的信息数量是确定的 , 但可能采用几个确定调制编码方式 中的一种, 所以其占用的资源数量与其实际采用的调制编码方式有关, 但只 要确定了主广播控制信道的起始位置 , 可以通过盲检测及可能的调制编码方 式获得资源的数量信息。 并且, 主广播控制信道占用的带宽需要满足以下条件之一: 主广播控制 信道占用的带宽小于或等于最小的系统带宽、 主广播控制信道占用的任意两 个子载波之间的频点差值小于或等于上述最小的系统带宽。 例如, 如图 6、 7 和 8所示, 广播控制信道占用的带宽小于最小的系统带宽为 5MHz, 所以, 主广播控制信道占用的带宽也必然小于最小的系统带宽为 5MHz。 另外,主广播控制信道占用的分布式资源单元与辅广播控制信道占用的 分布式资源单元可以相邻或不相邻, 其中, 如果主广播控制信道占用的分布 式资源单元与辅广播控制信道占用的分布式资源单元不相邻, 则可以在主广 播控制信道指示辅广播控制信道占用的分布式资源单元的位置信息。 本发明提供了 OFDMA 系统中控制信道的资源映射方法, 通过将广播 控制信道设置于多个频率分区的分布式资源单元上 , 解决了广播控制信道占 用的资源位置和方式的问题, ?丈进了广播控制信道的性能, 使得广播信道能 够符合相关技术中低误码率、 OFDMA 系统的资源映射、 干扰抑制等各种要 求, 可以筒化终端识别控制信道的过程, 确保基于 OFDMA技术的无线通信 系统的频语效率。 下面结合图实例 2、 实例 3和实例 4对方法实施例二的方法进行说明。 实例 2 图 6描述了本发明中的 OFDMA/5MHz系统, 2个频率分区时广播控制 信道的资源映射过程。 该实例 1与图 4的资源映射过程类似, 不同点是图 4 中包括一个频率分区, 但图 6包含两个频率分区。 如图 6所示, 包括频率分区 0和频率分区 1 , 频率分区 0的部分频率复 用因子为 1 , 频率分区 1的部分频率复用因子为 1/3。 其中, 频率分区 0包含 2个 Subband, 4个 Miniband, 共 12个物理资源单元, 频率分区 1 中包含 1 个 Subband, 8个 Miniband, 共 12个物理资源单元, 且频率分区 0中的前 8 个物理资源单元为连续资源单元, 后 4个为分布式资源单元, 频率分区 1中 的前 4个物理资源单元为连续资源单元, 后 8个为物理资源单元为分布式资 源单元资源映射的到的多个频率分区中必须存在部分频率复用因子为 1 或 1/3的频率分区。 由于广播控制信道只能在频率复用因子为 1的频率分区,或频率复用因 子为 1/3的频率分区上, 即广播控制信道不能既在频率分区 0上发送, 又在 频率分区 1上发送, 只能在频率分区 0和频率分区 1中选择一个频率分区。 即当存在多个频率分区时, 广播控制信道不能同时出现在频率复用因子为 1 和 1/3的频率分区中。 实施 3 图 7描述了本发明中的 OFDMA/5MHz系统, 3个频率分区时广播控制 信道的资源映射过程, 该实例 2与实例 1的资源映射过程类似, 不同点是图 6中包括两个频率分区, 但图 7包含三个频率分区。 如图 7所示, 包括频率分区 0、 频率分区 1和频率分区 2 , 其中, 频率 分区 0的部分频率复用因子为 1 , 频率分区 1的部分频率复用因子均为 2/3 , 频率分区 2的部分频率复用因子均为 1/3。 这样, 会选择频率分区 0和频率 分区 2设计广播控制信道, 由于存在频率复用因子为 1和 1/3的频率分区, 所以, 广播控制信道设计与图 5类似, 这里不再赘述。 实例 4 图 8描述了本发明中的 OFDMA/5MHz系统, 4个频率分区时广播控制 信道的资源映射过程, 该实例 3与实例 2的资源映射过程类似, 不同点是图 7中包括三个频率分区, 但图 8包含四个频率分区。 如图 8所示, 包括频率分区 0、 频率分区 1、 频率分区 2和频率分区 3 , 其中, 频率分区 0的部分频率复用因子为 1 , 频率分区 1、 频率分区 2、 频率 分区 3的部分频率复用因子均为 2/3。 由于没有部分频率复用因子为 1/3的频 率分区, 这样, 广播控制信道只能占用频率分区 0中的分布式资源单元。 方法实施例三 才艮据本发明实施例, 提供一种控制信道的资源映射方法。 图 9是才艮据本发明方法实施例二的控制信道的资源映射方法的流程图, 如图 9所示, 包括以下处理 (步骤 S902至步骤 S904 )。 步骤 S902, 所有的物理资源单元的数目为 n, 4夺所述 n个物理资源单元 中的 k个物理资源单元组成一个频率分区或多个频率分区, 该频率分区的频 率复用因子包括以下之一: 1、 1/3或 3; 4夺所述频率分区中的 k个物理资源
- k ) 个物理资源单元为连续的物理资源单元, 其中, n的取值大于或等于 k 的取值, 且 n 的取值由以下至少一个参数确定: 系统带宽、 多载频配置; k 可以取固定值; 也可以由以下至少一个参数确定: 系统带宽、 多载频配置。 步骤 S904, 将广播控制信道设置于所述一个或多个频率分区上, 其中, 广播控制信道的起始位置位于所述频率分区的第一个分布式资源单元上, 该 控制信道占用的物理带宽小于或等于最小的系统带宽。 该控制信道可以只包括主广播控制信道,或者包括主广播控制信道和辅 广播控制信道, 如果只包括主广播控制信道, 则频率分区内的分布式资源单 元仅用于承载主广播控制信道,如果包括主广播控制信道和辅广播控制信道, 则频率分区内的分布式资源单元用于承载主广播控制信道和辅广播控制信 道。 其中, 主广播控制信道占用固定数目或预定数目的分布式资源单元, 并 指示辅广播控制信道占用的分布式资源单元的数目。 其中, 主广播控制信道占用固定数目或预定数目的分布式资源单元, 并 指示辅广播控制信道占用的分布式资源单元的数目, 其中, 获取主广播控制 信道占用的分布式资源单元的方式可以为以下之一: 主广播控制信道占用固 定数目的分布式资源单元、 终端通过盲检测获取主广播控制信道占用的分布 式资源单元的数目; 获取辅广播控制信道占用的分布式资源单元的方式可以 为以下之一: 主广播控制信道指示辅广播控制信道占用的分布式资源单元的 数目、 终端通过盲检测获取辅广播控制信道占用的分布式资源单元的数目。 例如, 在具体实施过程中, 终端可以预先获取频率分区的配置信息, 并通过 配置信息确定控制信道的位置, 终端通过盲检测获取主广播控制信道占用的 固定数目或预定数目的分布式资源单元, 并获取辅广播控制信道占用的分布 式资源单元的数目。 主广播控制信道占用确定的资源数量或其占用的资源数 量可以通过盲检测获得, 辅广播控制信道占用的资源数量由主广播控制信道 指示。 例如, 主广播控制信道需要发送的信息数量是确定的, 但可能采用几 个确定调制编码方式中的一种, 所以其占用的资源数量与其实际采用的调制 编码方式有关, 但只要确定了主广播控制信道的起始位置, 可以通过盲检测 及可能的调制编码方式获得资源的数量信息。 并且, 主广播控制信道占用的带宽需要满足以下条件之一: 主广播控制 信道占用的带宽小于或等于最小的系统带宽、 主广播控制信道占用的任意两 个子载波之间的频点差值小于或等于上述最小的系统带宽。 另外, 可以利用所述频率分区中发送所述主广播控制信道和 /或辅广播 控制信道所用的资源之外的资源发送数据。 例如, OFDMA系统包括 n个物理资源单元, 从 n个物理资源单元中抽 取 k个物理资源单元用于发送广播控制信道。 k个物理资源单元组成一个频 率分区, 剩余( n - k ) 个物理资源单元进行正常的资源映射。 终端预先获取 频率分区的配置信息, 通过配置信息确定控制信道的位置, 并通过盲检测获 取主广播控制信道占用的固定数目或预定数目的分布式资源单元, 来获取辅 广播控制信道占用的分布式资源单元的数目。 可以按照如下方式之一选取 k个物理资源单元:从 n个物理资源单元的 一侧连续抽取 k个物理资源单元、 从 n个物理资源单元的中间连续抽取 k个 物理资源单元、 从 n个物理资源单元的两侧连续抽取 k个物理资源单元。 例如, 個设最小的系统带宽为 5MHz, 10MHz的系统可能包括 48个资 源单元, 即, n=48 , 如果从中间连续抽取 24个物理资源单元, 带宽为 5MHz, 即 k=24, 抽取的 24个物理资源单元为 [12、 13、 14 35] , 剩余的物理 资源单元为 [0、 1、 2、 ...9、 10、 11]和 [36、 37、 38 45、 46、 47]。 下面结合图实例 5和实例 6对本发明方法实施例三所示的方法进行详细 说明。 实例 5 图 10描述了本发明方法实施例的 OFDMA/5MHZ系统中, 广播控制信 道占用预定资源单元的映射过程, 如图 10所示, 5MHz 系统的 FFT点数为 512 , 子帧内可用子载波为 432个, 共分成物理资源单元 24个, 每个大小为 18x6。 具体的映射过程为: 首先从 24个物理资源单元抽取一定数量的物理资 源单元, 具体数量依赖于广播控制信道需要发送的数据量, 例如抽取物理资 源单元 0和 23 ,将这两个资源单元进行子载波对级的置换得到 2个分布式资 源单元, 用于承载广播控制信道, 剩余 22个物理资源单元进行如图实例 1 ~ 实例 3所示的资源映射。 实例 6 图 11描述了 OFDMA/5MHZ系统中, 广播控制信道占用预定分区的映 射过程, 如图 11所示, 5MHz系统的 FFT点数为 512, 子帧内可用子载波为 432个, 共分成物理资源单元 24个, 每个大小为 18x6。 具体的映射过程为: 首先从 24个物理资源单元抽取一定数量的物理资 源单元, 具体数量依赖于广播控制信道需要发送的数据量, 而抽取的原则为 剩余的物理资源单元必须为连续的 ,抽取的方法可以从两侧抽取、一侧抽取, 例如从开始一侧顺序抽取连续的 4个物理资源单元 0, 1 , 2和 3 , 这 4个资 源单元组成一个分区用与 载控制信道, 对该分区内的这个 4个物理资源单 元进行子载波对级的置换得到 4个分布式资源单元, 剩余 20个物理资源单 元进行如实例 1 ~实例 3所示的资源映射。 方法实施例四 才艮据本发明实施例 , 提供一种资源映射方法。 图 12 是 居本发明方法实施例四的资源映射方法的流程图, 如图 12 所示, 包括以下处理 (步骤 S1202至步骤 S1204 )。 步骤 S1202, 将一个或多个正交频分多址接入符号上的物理子载波映射 成分布式的子载波, 其中, 上述一个或多个正交频分多址接入符号均为相应 的子帧中的第一个正交频分多址接入符号, 具体地, 可以按照置换单位将正 交频分多址接入符号上的物理子载波置换成分布式的子载波, 置换单位为以 下之一: 一个子载波、 一个载波对, 其中, 一个载波对包括两个物理上连续 的子载波, 其中, 分布式的子载波包括完全不连续的子载波或部分连续的子 载波, 其中, 完全不连续的子载波是指: 任何两个分布式的子载波在物理上 都是不连续的。 步骤 S1204, 将同步信道设置于一个或多个正交频分多址接入符号上, 其中, 分布式的子载波用于承载同步信道。 上述同步信道可以包括主同步信道和辅同步信道, 其中, 主同步信道占 用的带宽小于或等于最小的系统带宽, 具体地, 主同步信道占用的任意两个 子载波之间的频点差值可以小于或等于最小的系统带宽; 辅主同步信道占用 的带宽可以小于或等于最小的系统带宽, 辅主同步信道也可以占用全系统带 宽。 另外, 主同步信道占用的子载波对应的部分频率复用因子可以为 1 , 辅 同步信道占用的子载波对应的部分频率复用因子可以为 1/3或 3。 下面通过实例 7和实例 8对本发明方法实施例四所示的方法进行说明。 实例 7 图 13是才艮据本发明方法实施例的是 OFDMA/ 10MHz系统中,主同步信 道占的映射过程示意图, 如图 13所示, 10MHz系统的 FFT点数为 1024。 具体的映射过程为:首先将 10MHz的中间 5MHz内的子载波抽取出来, 即抽取 512个子载波, 该 512个子载波中的可用子载波为 432个子载波; 然 后, 将该 432个可用子载波进行子载波置换操作, 按照置换单位为 1个物理 子载波或 1个子载波对, 将上述可用子载波映射成分布式的子载波, 其中, 这些分布式的子载波对应的部分频率复用系数为 1 ; 最后, 利用这些分布式 的子载波承载主同步信道, 即,将主同步序列调制到这些分布式的子载波上, 进行发送。 实例 8 图 14才艮据本发明方法实施例的是 OFDMA/ 10MHz系统中,辅同步信道 占的映射过程示意图, 如图 14所示, 10MHz系统的 FFT点数为 1024。 具体的映射过程为: 首先将 10MHz的中间的可用子载波抽取出来, 例 如, 可以去掉保护子载波和直流载波, 来获得可用子载波, 支设可用子载波 的个数为 864个; 然后, 将该 864个可用子载波进行子载波置换操作, 按照 置换单位为 1个物理子载波或 1个子载波对, 将上述可用子载波映射为分布 式的子载波, 其中, 这些分布式的子载波对应的部分频率复用系数为 1/3或 3; 最后, 利用这些分布式的子载波承载辅同步信道, 即, 将辅同步序列调 制到这些分布式的子载波上, 进行发送。 如上, 借助于本发明提供的控制信道的资源映射方法和 /或装置, 本发 明提供了 OFDMA系统中控制信道的资源映射方法, 解决了广播控制信道占 用的资源位置和方式的问题,并且使广播信道能够符合相关技术中低误码率、 OFDMA 系统的资源映射、 干扰抑制等各种要求, 改进了广播信道的性能, 可以筒化终端识别控制信道的过程, 确保基于 OFDMA技术的无线通信系统 的频谱效率。 以上仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域 的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 ?丈进等, 均应包含在本发明的保护范围 之内。

Claims

权 利 要 求 书
1. 一种控制信道的资源映射方法, 其特征在于, 包括:
广播控制信道位于一个频率分区上, 其中, 所述频率分区包含一个 或多个分布式资源单元;
将所述广播控制信道的起始位置设置于所述频率分区的第一个分 布式资源单元上。
2. 根据权利要求 1所述的方法, 其特征在于, 所述频率分区对应的部分频 率复用因子为以下之一: 1、 1/3、 3。
3. 根据权利要求 1所述的方法, 其特征在于, 所述频率分区的配置信息是 确定的, 根据所述配置信息确定所述广播控制信道的位置, 其中, 所述 配置信息包括以下至少之一: 频率分区的数目、 频率分区的大小、 频率 分区中子带的数目、 频率分区中 ^啟带的数目、 频率分区中分布式资源单 元的数目、 频率分区中连续资源单元的数目。
4. 根据权利要求 1至 3中任一项所述的方法, 其特征在于, 所述广播控制 信道包括主广播控制信道和 /或辅广播控制信道。
5. 根据权利要求 4所述的方法, 其特征在于, 所述主广播控制信道占用的 带宽小于或等于最小的系统带宽; 或者, 所述主广播控制信道占用的任 意两个子载波之间的频点差值小于或等于所述最小的系统带宽。
6. 根据权利要求 4所述的方法, 其特征在于, 所述方法还包括:
所述主广播控制信道占用固定数目的分布式资源单元; 或者, 终端通过盲检测获取所述主广播控制信道占用的分布式资源单元 的数目。
7. 根据权利要求 4所述的方法, 其特征在于, 所述方法还包括:
在所述主广播控制信道指示所述辅广播控制信道占用的分布式资 源单元的数目; 或者,
终端通过盲检测获取所述辅广播控制信道占用的分布式资源单元 的数目。
8. 根据权利要求 4所述的方法, 其特征在于, 所述方法还包括:
所述主广播控制信道占用的分布式资源单元与所述辅广播控制信 道占用的分布式资源单元相邻或不相邻;
其中,如果所述主广播控制信道占用的分布式资源单元与所述辅广 播控制信道占用的分布式资源单元不相邻, 在所述主广播控制信道指示 所述辅广播控制信道占用的分布式资源单元的位置信息。
9. 一种控制信道的资源映射方法, 其特征在于, 包括:
广播控制信道位于多个频率分区上, 其中, 每个频率分区包括一个 或多个分布式资源单元;
将所述广播控制信道的起始位置设置于所述多个频率分区的第一 个分布式资源单元上。
10. 根据权利要求 9所述的方法, 其特征在于,
所述多个频率分区中,每个频率分区对应的部分频率复用因子均为 1/3或 3; 或者,
所述多个频率分区中,一个频率分区对应的部分频率复用因子为 1 , 而其余频率分区对应的部分频率复用因子均为 1/3或 3。
11. 根据权利要求 9所述的方法 , 其特征在于 , 所述多个频率分区的配置信 息是确定的, 才艮据所述配置信息确定所述广播控制信道的位置, 其中, 所述配置信息包括以下至少之一: 频率分区的数目、各频率分区的大小、 各频率分区中子带的数目、 各频率分区中 ^啟带的数目、 各频率分区中分 布式资源单元的数目、 各频率分区中连续资源单元的数目。
12. 根据权利要求 9至 11中任一项所述的方法, 其特征在于, 所述广播控制 信道包括主广播控制信道和 /或辅广播控制信道。
13. 根据权利要求 12所述的方法, 其特征在于, 所述主广播控制信道占用的 带宽小于或等于最小的系统带宽; 或者, 所述主广播控制信道占用的任 意两个子载波之间的频点差值小于或等于所述最小的系统带宽。
14. 根据权利要求 12所述的方法, 其特征在于, 所述方法还包括:
所述主广播控制信道占用固定数目的分布式资源单元; 或者, 终端通过盲检测获取所述主广播控制信道占用的分布式资源单元 的数目。
15. 才艮据权利要求 12所述的方法, 其特征在于,
所述主广播控制信道占用的分布式资源单元与所述辅广播控制信 道占用的分布式资源单元相邻或不相邻;
其中,如果所述主广播控制信道占用的分布式资源单元与所述辅广 播控制信道占用的分布式资源单元不相邻, 在所述主广播控制信道指示 所述辅广播控制信道占用的分布式资源单元的位置信息。
16. 根据权利要求 12所述的方法, 其特征在于, 所述方法还包括:
所述主广播控制信道指示所述辅广播控制信道占用的分布式资源 单元的数目; 或者,
终端通过盲检测获取所述辅广播控制信道占用的分布式资源单元 的数目。
17. 一种控制信道的资源映射方法, 其特征在于, 包括:
所有的物理资源单元的数目为 η , 4夺所述 n个物理资源单元中的 k 个物理资源单元组成一个频率分区或多个频率分区, 并^1所述频率分区 单元, 其中, n大于或等于 k;
将广播控制信道设置于所述一个或多个频率分区上, 其中, 所述广 播控制信道的起始位置位于所述每个频率分区的第一个分布式资源单元 上。
18. 根据权利要求 17所述的方法, 其特征在于, 所述 n值由以下至少一个参 数确定: 系统带宽、 多载频配置。
19. 根据权利要求 17 所述的方法, 其特征在于, 按照以下方式之一选取 k 个物理资源单元: 从所述 n个物理资源单元的一侧连续抽取 k个物理资 源单元、 从所述 n个物理资源单元的中间连续抽取 k个物理资源单元、 从所述 n个物理资源单元的两侧连续抽取 k个物理资源单元。
20. 根据权利要求 17所述的方法, 其特征在于 ,
所述 k值取固定值; 或者, 所述 k值由以下至少一个参数确定: 系统带宽、 多载频配置。
21. 才艮据权利要求 17所述的方法, 其特征在于, 所述频率分区对应的部分频 率复用因子为以下之一: 1、 1/3或 3。
22. 根据权利要求 17至 21 中任一项所述的方法, 其特征在于, 所述广播控 制信道包括主广播控制信道和 /或辅广播控制信道。
23. 根据权利要求 22所述的方法, 其特征在于, 所述方法还包括:
利用所述频率分区中不用于发送所述主广播控制信道和 /或辅广播 控制信道的资源发送数据; 或者,
不利用所述频率分区中不用于发送所述主广播控制信道和 /或辅广 播控制信道的资源发送数据。
24. 才艮据权利要求 22所述的方法, 其特征在于, 所述主广播控制信道占用的 带宽小于或等于最小的系统带宽; 或者, 所述主广播控制信道占用的任 意两个子载波之间的频点差值小于或等于所述最小的系统带宽。
25. 根据权利要求 22所述的方法, 其特征在于,
所述主广播控制信道占用固定数目的分布式资源单元; 或者, 终端通过盲检测获取所述主广播控制信道占用的分布式资源单元 的数目。
26. 根据权利要求 22所述的方法, 其特征在于, 所述方法还包括:
在所述主广播控制信道指示所述辅广播控制信道占用的分布式资 源单元的数目和 /或位置; 或者,
终端通过盲检测获取所述辅广播控制信道占用的分布式资源单元 的数目和 /或位置。
27. 一种控制信道的资源映射方法, 其特征在于, 包括:
将一个或多个正交频分多址接入符号上的物理子载波映射成分布 式的子载波;
将同步信道设置于所述一个或多个正交频分多址接入符号上, 其 中, 所述分布式的子载波用于承载所述同步信道。
28. 才艮据权利要求 27所述的方法, 其特征在于, 所述同步信道包括主同步信 道和辅同步信道, 其中, 所述主同步信道占用的带宽小于或等于最小的 系统带宽。
29. 根据权利要求 28所述的方法 , 其特征在于 , 所述辅主同步信道占用的带 宽小于或等于最小的系统带宽; 或者占用全系统带宽。
30. 根据权利要求 28所述的方法, 其特征在于 , 所述主同步信道占用的带宽 小于或等于最小的系统带宽包括:
所述主同步信道占用的任意两个子载波之间的频点差值小于或等 于所述最小的系统带宽。
31. 才艮据权利要求 28所述的方法, 其特征在于 , 所述主同步信道占用的子载 波对应的部分频率复用因子为 1 , 所述辅同步信道占用的子载波对应的 部分频率复用因子为 1/3或 3。
32. 根据权利要求 27至 31 中任一项所述的方法, 其特征在于, 所述分布式 的子载波是完全不连续的子载波或部分连续的子载波, 其中, 完全不连 续的子载波是指: 任何两个分布式的子载波在物理上都是不连续的。
33. 根据权利要求 27至 31 中任一项所述的方法, 其特征在于, 所述将一个 或多个正交频分多址接入符号上的物理子载波映射成分布式的子载波包 括:
按照置换单位将物理子载波置换成分布式的子载波 ,所述置换单位 为以下之一: 一个子载波、 一个载波对, 其中, 所述一个载波对包括物 理上连续的两个子载波。
34. 根据权利要求 27至 31 中任一项所述的方法, 其特征在于, 所述一个或 多个正交频分多址接入符号均为子帧中的第一个正交频分多址接入符 号。
PCT/CN2009/074544 2009-01-07 2009-10-21 控制信道的资源映射方法 WO2010078770A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/143,067 US20110268070A1 (en) 2009-01-07 2009-10-21 Resource Mapping Methods for Control Channels
EP09837327.7A EP2373106B1 (en) 2009-01-07 2009-10-21 Resource mapping methods for control channels
KR1020117015114A KR101304114B1 (ko) 2009-01-07 2009-10-21 제어채널의 자원 매핑 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910001826A CN101771646A (zh) 2009-01-07 2009-01-07 控制信道的资源映射方法
CN200910001826.9 2009-01-07

Publications (1)

Publication Number Publication Date
WO2010078770A1 true WO2010078770A1 (zh) 2010-07-15

Family

ID=42316226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074544 WO2010078770A1 (zh) 2009-01-07 2009-10-21 控制信道的资源映射方法

Country Status (5)

Country Link
US (1) US20110268070A1 (zh)
EP (2) EP2905920A3 (zh)
KR (1) KR101304114B1 (zh)
CN (1) CN101771646A (zh)
WO (1) WO2010078770A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8391173B2 (en) * 2009-05-11 2013-03-05 Motorola Mobility Llc Method and apparatus for radio resource allocation in an orthogonal frequency division multiplexing communication system
CN101925184B (zh) * 2009-06-11 2015-07-22 中兴通讯股份有限公司 广播控制信道的资源映射方法
EP2341656B1 (en) * 2009-12-29 2019-06-05 Acer Incorporated Resource allocation method, resource indication method and mobile station using the same
WO2012074326A2 (ko) * 2010-12-02 2012-06-07 엘지전자 주식회사 다중 노드 시스템에서 자원 할당 방법 및 장치
EP2769519B1 (en) * 2011-10-18 2019-02-27 LG Electronics Inc. -1- Method and apparatus of primary cell indication for enhanced control channel demodulation
US9131468B2 (en) 2011-11-08 2015-09-08 Industrial Technology Research Institute Method of handling resource allocation for MTC and related communication device
US9166754B2 (en) * 2011-11-08 2015-10-20 Industrial Technology Research Institute Method of handling shortened resource block for machine type communication device and related communication device
EP2887760A1 (en) * 2013-12-23 2015-06-24 Telefonica S.A. A method and a system for performing virtualization of a radio access technology over Orthogonal Frequency-Division Multiple Access (OFDMA) wireless networks and computer program products thereof
US10420054B2 (en) 2014-03-28 2019-09-17 Qualcomm Incorporated Wireless communications in a system that supports a first subframe type having a first symbol duration and a second subframe type having a second symbol duration
US10021677B2 (en) * 2014-10-31 2018-07-10 Qualcomm Incorporated Two-stage PDCCH with DCI flag and DCI format size indicator
JP6313519B2 (ja) 2015-03-20 2018-04-18 株式会社東芝 無線通信装置
WO2016152683A1 (ja) 2015-03-20 2016-09-29 株式会社 東芝 無線通信用集積回路および無線通信方法
EP3243341B1 (en) 2015-04-10 2019-06-26 HFI Innovation Inc. Resource allocation design for low cost machine-type communication
CN109478969B (zh) * 2016-08-10 2021-11-16 Lg 电子株式会社 用于在移动通信系统中收发广播信道信号的方法和装置
CN106303929B (zh) * 2016-09-14 2019-11-12 宇龙计算机通信科技(深圳)有限公司 一种资源分区聚合方法和装置
CN109392139B (zh) * 2017-08-11 2020-04-14 维沃移动通信有限公司 一种接收广播消息的资源位置指示方法、装置及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070165731A1 (en) * 2006-01-18 2007-07-19 Motorola, Inc. Method and apparatus for conveying control channel information in ofdma system
CN101228727A (zh) * 2005-06-14 2008-07-23 株式会社Ntt都科摩 基站、移动台以及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG147300A1 (en) * 2000-02-02 2008-11-28 Ntt Docomo Inc A single carrier/ds-cdma packet transmission method, an uplink packet transmission method in a multi-carrier/ds-cdma mobile communications system, and a structure of a downlink channel in a multi-carrier/ds-cdma mobile communications system
CN1832464B (zh) * 2005-03-11 2010-09-15 中兴通讯股份有限公司 正交频分复用系统的导频分配装置及其方法
CN1933390B (zh) * 2005-09-15 2014-08-13 三星电子株式会社 在正交频分多址通信系统中生成帧的方法
KR100827064B1 (ko) * 2006-01-18 2008-05-02 삼성전자주식회사 Ofdm 기반 셀룰러 무선통신시스템의 동기 신호 송신 방법 및 장치
US8059728B2 (en) * 2006-02-11 2011-11-15 Samsung Electronics Co., Ltd Method and apparatus for transmitting/receiving broadcast channels in cellular communication systems supporting scalable bandwidth
WO2008053429A1 (en) * 2006-10-31 2008-05-08 Koninklijke Philips Electronics N.V. Method for transmitting data packets using different frequency reuse factors
US9516580B2 (en) * 2007-03-19 2016-12-06 Texas Instruments Incorporated Enabling down link reception of system and control information from intra-frequency neighbors without gaps in the serving cell in evolved-UTRA systems
US7986613B2 (en) * 2008-12-27 2011-07-26 Intel Corporation Downlink subchannelization scheme for 802.16M

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101228727A (zh) * 2005-06-14 2008-07-23 株式会社Ntt都科摩 基站、移动台以及方法
US20070165731A1 (en) * 2006-01-18 2007-07-19 Motorola, Inc. Method and apparatus for conveying control channel information in ofdma system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARK CUDAK ET AL.: "Proposed Text of UL PHY Structure for the IEEE 802.16m amendment", IEEE 802.16 BROADBAND WIRELESS ACCESS WORKING GROUP (IEEE 802.16M-08/1442)., vol. 4, 4 November 2008 (2008-11-04), pages 6 - 7, XP008151418 *
See also references of EP2373106A4 *

Also Published As

Publication number Publication date
KR20110098766A (ko) 2011-09-01
KR101304114B1 (ko) 2013-09-05
EP2905920A2 (en) 2015-08-12
EP2373106B1 (en) 2014-12-31
EP2373106A4 (en) 2014-03-05
EP2373106A1 (en) 2011-10-05
CN101771646A (zh) 2010-07-07
US20110268070A1 (en) 2011-11-03
EP2905920A3 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
WO2010078770A1 (zh) 控制信道的资源映射方法
JP6541762B2 (ja) 無線通信システムにおいて時分割複信フレーム構成情報送受信方法及び装置
US9485071B2 (en) Method and apparatus for allocating a control channel resource of a relay node in a backhaul subframe
JP5709348B2 (ja) 無線通信方法、無線通信システム、基地局及び加入局
US8290067B2 (en) Spectrum sharing in a wireless communication network
US7813315B2 (en) Spectrum sharing in a wireless communication network
US20110032850A1 (en) Signal transmission with fixed subcarrier spacing within ofdma communication systems
US20110164549A1 (en) Mobile communication system
US8811255B2 (en) Method for allocating resource for multicast and/or broadcast service data in wireless communication system and an apparatus therefor
CN104012015A (zh) 无线通信系统中发送专用参考信号的控制信道发送方法及设备
WO2010075704A1 (zh) 系统信息传输方法
JP2019535178A (ja) 狭帯域用の物理的に分離されたチャンネル、低複雑な受信機
CN102577169B (zh) 发送和接收参考信号的方法和装置
WO2010139155A1 (zh) 帧结构及其配置方法、通信方法
EP2288216B1 (en) Method and apparatus for allocating a control channel resource of a relay node in a backhaul subframe
JP5451642B2 (ja) フレームを用いた通信方法
WO2011003308A1 (zh) 确定子载波置换的方法以及确定小区导频模式的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09837327

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117015114

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13143067

Country of ref document: US

Ref document number: 2009837327

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE