WO2010076877A1 - Solenoid core manufacturing method - Google Patents

Solenoid core manufacturing method Download PDF

Info

Publication number
WO2010076877A1
WO2010076877A1 PCT/JP2009/071545 JP2009071545W WO2010076877A1 WO 2010076877 A1 WO2010076877 A1 WO 2010076877A1 JP 2009071545 W JP2009071545 W JP 2009071545W WO 2010076877 A1 WO2010076877 A1 WO 2010076877A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
solenoid
annular
manufacturing
piece
Prior art date
Application number
PCT/JP2009/071545
Other languages
French (fr)
Japanese (ja)
Inventor
平 吉森
Original Assignee
株式会社エス・エッチ・ティ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エス・エッチ・ティ filed Critical 株式会社エス・エッチ・ティ
Priority to JP2010544866A priority Critical patent/JPWO2010076877A1/en
Publication of WO2010076877A1 publication Critical patent/WO2010076877A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/005Impregnating or encapsulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding

Definitions

  • the present invention relates to a method for manufacturing a solenoid core comprising a fixed core piece and a movable core piece.
  • a solenoid used for a solenoid valve or the like includes a U-shaped fixed core piece (10) and a movable core piece (20) disposed opposite to both end faces of the fixed core piece (10). ) And a pair of coils (30) and (30) wound around two parallel arms of the fixed core piece (10), and the movable core piece (20) is unidirectional by springs (6) and (6).
  • the load (7) is connected to the movable core piece (20).
  • the load (7) such as a valve is reciprocated by turning on / off the energization to the coils (30) (30).
  • electromagnetic soft iron or electromagnetic stainless steel is generally used as a material for the fixed core piece (10) and the movable core piece (20) (see Patent Document 1), and a block made of such a material is used.
  • the fixed core piece (10) and the movable core piece (20) are produced by cutting into a predetermined shape.
  • a directional silicon steel sheet having a low holding force of about 10 (A / m) and a maximum magnetic permeability of about 7000 as the core material.
  • an object of the present invention is to achieve high accuracy in the outer dimension of the core piece in a method for manufacturing a solenoid core using a strip-shaped steel plate as a material for the core piece.
  • the method for manufacturing a solenoid core according to the present invention comprises a U-shaped fixed core piece (1) and a movable core piece (2) to be arranged to face both end faces of the fixed core piece (1).
  • a method of manufacturing a solenoid core comprising: A core winding process for producing the annular core (13) by winding the belt-shaped steel sheet in an annular shape; A molding step for producing an annular mold core (18) by covering the surface of the produced annular core (13) with a mold resin; A cutting step of dividing the produced mold core (18) into two to obtain the fixed core piece (1) and the movable core piece (2);
  • the surface of the annular core (13) is covered with a mold resin.
  • the annular core (13) is hardened from the periphery by the mold resin. Therefore, the steel plate constituting the annular core (13) does not swell due to the spring back.
  • the annular core (13) constituting the mold core (18) is molded resin. Therefore, the surface steel plate of the mold core (18) is not turned up. As a result, high accuracy can be obtained in the external dimensions of the fixed core piece (1) and the movable core piece (2).
  • a directional silicon steel plate is used as the steel plate in the core winding step.
  • the grain-oriented silicon steel sheet has a low holding force of about 10 (A / m) and a maximum magnetic permeability of about 7000. Therefore, the directional silicon steel sheet has a high response and a sufficiently large attractive force.
  • the solenoid using (1) and the movable core piece (2) has sufficient operating performance.
  • a mold core (18) having a predetermined outer dimension is obtained by covering the entire surface of the annular core (13) with a mold resin having a substantially uniform thickness.
  • the annular core (13) has an annular shape having four arcuate corners.
  • the vicinity of two arcuate corners adjacent to each other is set as a cutting position.
  • the steel plates are stacked closely together, particularly at the four arcuate corners.
  • the molding process is performed.
  • the annular core (13) has a large distortion at its corners, but the annealing of the annular core (13) eliminates the deterioration of the characteristics due to the large distortion at the corners.
  • Another method for manufacturing a solenoid core according to the present invention is as follows.
  • the mold core (18) is formed in the process of cutting the mold core (18) by the cutting process to obtain two fixed core pieces (1) (1). Since the annular core (13) is hardened from the periphery by the mold resin, the steel sheet of the surface layer of the mold core (18) is not turned up. As a result, high accuracy can be obtained in the external dimensions of the fixed core piece (1).
  • FIG. 1 is a partially broken side view of a solenoid using a fixed core piece and a movable core piece according to the present invention.
  • FIG. 2 is a partially cutaway side view of a conventional solenoid.
  • FIG. 3 is a process diagram showing a method for manufacturing a solenoid core according to the present invention.
  • FIG. 4 is a diagram for explaining each step in the first half of the manufacturing method.
  • FIG. 5 is a diagram for explaining each step in the latter half of the manufacturing method.
  • FIG. 6 is a partially cutaway side view of another solenoid using the fixed core piece according to the present invention.
  • FIG. 7 is a process diagram showing the second half of the method for manufacturing a solenoid core according to the present invention.
  • FIG. 1 shows a solenoid having a fixed core piece (1) and a movable core piece (2) manufactured by the method for manufacturing a solenoid core according to the present invention, and has a U-shaped fixed core piece (1). And the movable core piece (2) arranged with a predetermined gap between both end faces of the fixed core piece (1), the respective surfaces are covered with the mold resin (4) (5). .
  • a pair of coils (3) and (3) are wound around a pair of parallel arms of the fixed core piece (1).
  • the movable core piece (2) is biased in one direction by springs (6) and (6), and a load (7) is connected to the movable core piece (2).
  • the coil (3) (3) is turned on / off to reciprocate the movable core piece (2) to drive the load (7) such as a valve.
  • FIG. 3 shows a series of steps P1 to P6 for manufacturing the fixed core piece (1) and the movable core piece (2).
  • a core material (11) is prepared in which a directional silicon steel sheet having a certain thickness is wound in a roll shape.
  • the steel plate is unwound from the core material (11), and the steel plate is wound around the prismatic jig (12).
  • An annular core (13) having one arcuate corner and four linear parts connecting two arcuate corners adjacent to each other is produced.
  • step P3 as shown in FIG. 4C, the annular core (13) is accommodated in an electric furnace (14) provided with a heater (15), and the annular core (13) is annealed. As a result, the internal strain generated at the four corners of the annular core (13) is relaxed, and the magnetic properties are restored.
  • step P4 as shown in FIG. 5A, the annular core (13) is immersed in the impregnating resin liquid (16), and the annular core (13) is impregnated with varnish.
  • the varnish penetrates between the layers of the laminated steel plates constituting the annular core (13), and the bonding strength between the layers of the laminated steel plates is increased.
  • step P5 as shown in FIG. 5 (b), the annular core (13) is insert-molded (resin-sealed), and the entire surface of the annular core (13) is formed by a mold resin (17) having a substantially uniform thickness.
  • An annular mold core (18) having a predetermined outer dimension is obtained by covering. With such an insert mold, a high dimensional accuracy can be obtained for the mold core (18).
  • step P6 as shown in FIG. 5 (c), two linear portions of the mold core (18) extending in parallel with each other are respectively positioned near the arcuate corners (more specifically, the linear portion of the core and the circular portion).
  • the cutter (19) divides it into two, and as shown in FIG. 5 (d), the U-shaped fixed core piece (1) and the I-shaped movable core piece (2) obtain.
  • the annular core (13) is hardened from the periphery by the mold resin (17), the laminated steel sheet constituting the annular core (13) does not peel off and has a high dimension. Accuracy is maintained.
  • the solenoid shown in FIG. 1 is assembled using the fixed core piece (1) and the movable core piece (2) thus obtained.
  • a directional silicon steel plate is used as the material of the fixed core piece (1) and the movable core piece (2), so that the response is higher than that of the conventional solenoid made of soft iron. A large suction force can be obtained. Therefore, high operating characteristics can be realized as a solenoid for driving a solenoid valve or the like at high speed.
  • the fixed core piece (1) and the movable core piece (2) are entirely covered with the mold resin (4) (5) having a substantially constant thickness, high dimensional accuracy can be obtained in the outer shape. In addition, a rust prevention effect and high electrical insulation can be obtained.
  • FIG. 6 shows a solenoid having a fixed core piece (1) and a movable core piece (8) manufactured by another method for manufacturing a solenoid core according to the present invention.
  • the surface of 1) is covered with the mold resin (4).
  • a pair of coils (3) and (3) are wound around a pair of parallel arms of the fixed core piece (1).
  • the movable core piece (8) is biased in one direction by springs (6) and (6), and a load (7) is connected to the movable core piece (2).
  • the coil (3) (3) is turned on / off to reciprocate the movable core piece (8) to drive the load (7) such as a valve.
  • annular core (13) subjected to annealing is manufactured in the same manner as in Steps P1 to P3 shown in FIGS.
  • the annular core (13) is impregnated with varnish in the same manner as in Step P4 shown in FIG.
  • step P5 an insert mold is applied to the annular core (13), and the entire surface of the annular core (13) is covered with a molding resin (17) having a substantially uniform thickness.
  • An annular mold core (18) having the following outer dimensions is obtained.
  • step P6 ′ as shown in FIG. 7B, the mold core (18) is divided into two by the cutter (19) at the center position of the linear portion connecting the two arcuate corners adjacent to each other.
  • FIG. 7C two U-shaped fixed core pieces (1) and (1) are obtained.
  • the laminated steel sheet constituting the annular core (13) does not peel off and has a high dimension. Accuracy is maintained.
  • the movable core piece (8) can be produced, for example, by laminating flat steel plates.
  • the solenoid In the solenoid, a directional silicon steel plate is used as the material of the fixed core piece (1). Therefore, the solenoid is more responsive than the conventional solenoid made of soft iron, and a large suction force can be obtained. Therefore, high operating characteristics can be realized as a solenoid for driving a solenoid valve or the like at high speed.
  • the fixed core piece (1) is covered with the mold resin (4) having a substantially constant thickness on the entire surface, not only high dimensional accuracy can be obtained in the outer shape, but also the rust prevention effect and high electrical performance. Insulation is obtained.
  • the steel plate used as the material of the annular core (13) is not limited to the directional silicon steel plate, and a known steel plate having the same characteristics as the directional silicon steel plate can be employed.
  • Mold resin (1) Fixed core piece (2) Movable core piece (3) Coil (4) Mold resin (5) Mold resin (11) Core material (12) Jig (13) Ring core (14) Electric furnace (17) Mold resin (18) Mold core (19) Cutter

Abstract

In a manufacturing method for a solenoid core which utilizes a belt-shaped steel plate as the core piece material, a high level of precision in the external dimensions of the core piece is achieved. The solenoid core manufacturing method is a method for manufacturing a solenoid core comprising a U-shaped stationary core piece (1) and a movable core piece (2) to be disposed to face both end surfaces of said stationary core piece (1). The method comprises a core roll-up step in which a ring-shaped core (13) is produced by rolling a belt-shaped steel plate into a ring shape, a molding step in which a ring-shaped molded core (18) is produced by coating the surface of the aforementioned ring-shaped core (13) that was produced with a molding resin, and a cutting step in which the aforementioned molded core (18) that was produced is cut into two pieces to obtain the stationary core piece (1) and the movable core piece (2).

Description

ソレノイド用コアの製造方法Manufacturing method of solenoid core
 本発明は、固定コア片と可動コア片からなるソレノイド用コアの製造方法に関するものである。 The present invention relates to a method for manufacturing a solenoid core comprising a fixed core piece and a movable core piece.
 電磁弁等に用いられるソレノイドは、例えば図2に示す如く、U字状の固定コア片(10)と、該固定コア片(10)の両端面に対向して設置される可動コア片(20)と、固定コア片(10)の2つの平行アーム部に巻装される一対のコイル(30)(30)とを具え、可動コア片(20)はバネ(6)(6)によって一方向に付勢されており、可動コア片(20)には負荷(7)が繋がっている。
 該ソレノイドにおいては、コイル(30)(30)に対する通電をオン/オフすることによって、弁等の負荷(7)を往復駆動する。
For example, as shown in FIG. 2, a solenoid used for a solenoid valve or the like includes a U-shaped fixed core piece (10) and a movable core piece (20) disposed opposite to both end faces of the fixed core piece (10). ) And a pair of coils (30) and (30) wound around two parallel arms of the fixed core piece (10), and the movable core piece (20) is unidirectional by springs (6) and (6). The load (7) is connected to the movable core piece (20).
In the solenoid, the load (7) such as a valve is reciprocated by turning on / off the energization to the coils (30) (30).
 従来のソレノイドにおいては、一般に固定コア片(10)及び可動コア片(20)の材料として、電磁軟鉄や電磁ステンレス鋼が用いられており(特許文献1参照)、この様な材料からなるブロックを所定の形状に削り出すことによって、固定コア片(10)及び可動コア片(20)が作製される。 In conventional solenoids, electromagnetic soft iron or electromagnetic stainless steel is generally used as a material for the fixed core piece (10) and the movable core piece (20) (see Patent Document 1), and a block made of such a material is used. The fixed core piece (10) and the movable core piece (20) are produced by cutting into a predetermined shape.
特開2008-169451号公報JP 2008-169451 A
 ソレノイドを例えば電磁弁として用いる場合、超高速の切り替え動作が要求されることがある。しかしながら、電磁軟鉄や電磁ステンレス鋼をコア材料とした従来のソレノイドにおいては、これらの材料の保持力が80(A/m)程度と高く、然も最大透磁率も1000~2500程度と小さいため、応答性が低く、吸引力も充分な大きさではなく、充分な動作性能が得られない問題があった。 When using a solenoid as an electromagnetic valve, for example, an ultra-high speed switching operation may be required. However, in conventional solenoids that use electromagnetic soft iron or electromagnetic stainless steel as a core material, the holding power of these materials is as high as about 80 (A / m), and the maximum magnetic permeability is as small as about 1000 to 2500. There is a problem that the responsiveness is low, the suction force is not sufficiently large, and sufficient operation performance cannot be obtained.
 そこで、保持力が10(A/m)程度と低く、然も最大透磁率も7000程度と大きな方向性珪素鋼板をコア材料として採用することが考えられる。
 この様な帯状の鋼板を用いてコア片を作製する場合、鋼板を治具の周囲に環状に巻回することによって環状コアを作製した後、該環状コアを中央で切断することにより、2つのU字状コア片を得て、その内の1つのコア片を固定コア片として用いることになる。
Accordingly, it is conceivable to employ a directional silicon steel sheet having a low holding force of about 10 (A / m) and a maximum magnetic permeability of about 7000 as the core material.
When producing a core piece using such a strip-shaped steel plate, after producing an annular core by winding the steel plate around the jig in an annular shape, the annular core is cut at the center to obtain two pieces. A U-shaped core piece is obtained, and one of the core pieces is used as a fixed core piece.
 ところが、帯状鋼板を環状に巻回してなる環状コアにおいては、スプリングバックによって鋼板が膨らむため、完成した状態での外形寸法の精度が悪く、所定形状のコア片を得ることが出来ない問題がある。
 又、環状コアを切断することによって得られるコア片は、複数枚の鋼板を積層したものとなるので、切断に伴って表層の鋼板がめくれ上がる問題がある。
 この様に外形寸法に大きな誤差を有するコア片は、ソレノイドの大形化や信頼性の低下を招くことになる。
However, in an annular core formed by annularly winding a belt-shaped steel plate, the steel plate swells due to the spring back, so that there is a problem that the accuracy of the outer dimensions in the completed state is poor and a core piece of a predetermined shape cannot be obtained. .
Moreover, since the core piece obtained by cutting | disconnecting an annular core becomes what laminated | stacked several steel plates, there exists a problem which the steel plate of a surface layer turns up with a cutting | disconnection.
In this way, the core piece having a large error in the outer dimensions causes the solenoid to become large and have a low reliability.
 そこで本発明の目的は、帯状鋼板をコア片の素材とするソレノイド用コアの製造方法において、コア片の外形寸法に高い精度を実現することである。 Therefore, an object of the present invention is to achieve high accuracy in the outer dimension of the core piece in a method for manufacturing a solenoid core using a strip-shaped steel plate as a material for the core piece.
 本発明に係るソレノイド用コアの製造方法は、U字状の固定コア片(1)と該固定コア片(1)の両端面に対向して配置されるべき可動コア片(2)とからなるソレノイド用コアを製造する方法であって、
 帯状の鋼板を環状に巻き取ることによって環状コア(13)を作製するコア巻き取り工程と、
 前記作製された環状コア(13)の表面をモールド樹脂により覆って環状のモールドコア(18)を作製するモールド工程と、
 前記作製されたモールドコア(18)を2つに分断して、前記固定コア片(1)と前記可動コア片(2)とを得る切断工程
とを有している。
The method for manufacturing a solenoid core according to the present invention comprises a U-shaped fixed core piece (1) and a movable core piece (2) to be arranged to face both end faces of the fixed core piece (1). A method of manufacturing a solenoid core, comprising:
A core winding process for producing the annular core (13) by winding the belt-shaped steel sheet in an annular shape;
A molding step for producing an annular mold core (18) by covering the surface of the produced annular core (13) with a mold resin;
A cutting step of dividing the produced mold core (18) into two to obtain the fixed core piece (1) and the movable core piece (2);
 上記本発明に係るソレノイド用コアの製造方法においては、コア巻き取り工程によって環状コア(13)を作製した後、該環状コア(13)の表面をモールド樹脂により覆うので、これによって作製されたモールドコア(18)の状態では、環状コア(13)がモールド樹脂によって周囲から固められている。従って、環状コア(13)を構成する鋼板がスプリングバックによって膨らむことはない。
 又、切断工程によってモールドコア(18)を切断して、固定コア片(1)と可動コア片(2)とを得る過程で、モールドコア(18)を構成する環状コア(13)がモールド樹脂によって周囲から固められているので、モールドコア(18)の表層の鋼板がめくれ上がることもない。
 この結果、固定コア片(1)と可動コア片(2)の外形寸法に高い精度が得られることになる。
In the method for manufacturing a solenoid core according to the present invention, after the annular core (13) is produced by the core winding process, the surface of the annular core (13) is covered with a mold resin. In the state of the core (18), the annular core (13) is hardened from the periphery by the mold resin. Therefore, the steel plate constituting the annular core (13) does not swell due to the spring back.
Further, in the process of cutting the mold core (18) by the cutting process to obtain the fixed core piece (1) and the movable core piece (2), the annular core (13) constituting the mold core (18) is molded resin. Therefore, the surface steel plate of the mold core (18) is not turned up.
As a result, high accuracy can be obtained in the external dimensions of the fixed core piece (1) and the movable core piece (2).
 具体的構成において、前記コア巻き取り工程では、前記鋼板として、方向性珪素鋼板を用いる。
 方向性珪素鋼板は、保持力が10(A/m)程度と低く、然も最大透磁率も7000程度と大きいので、応答性が高く、吸引力も充分な大きさとなり、本発明の固定コア片(1)と可動コア片(2)を用いたソレノイドには、充分な動作性能が得られる。
In a specific configuration, a directional silicon steel plate is used as the steel plate in the core winding step.
The grain-oriented silicon steel sheet has a low holding force of about 10 (A / m) and a maximum magnetic permeability of about 7000. Therefore, the directional silicon steel sheet has a high response and a sufficiently large attractive force. The solenoid using (1) and the movable core piece (2) has sufficient operating performance.
 更に具体的な構成において、前記モールド工程では、前記環状コア(13)の全表面を略均一な厚さのモールド樹脂によって覆うことにより、所定の外形寸法を有するモールドコア(18)を得る。
 これによって、モールドコア(18)の外形寸法に高い精度が得られるばかりでなく、防錆や電気絶縁性に優れた効果が得られる。
In a more specific configuration, in the molding step, a mold core (18) having a predetermined outer dimension is obtained by covering the entire surface of the annular core (13) with a mold resin having a substantially uniform thickness.
As a result, not only high accuracy can be obtained in the outer dimensions of the mold core (18), but also an effect excellent in rust prevention and electrical insulation can be obtained.
 又、前記環状コア(13)は、4つの円弧状角部を有する環状を呈し、前記切断工程では、互いに隣接する2つの円弧状角部の近傍を切断位置とする。
 4つの円弧状角部を有する環状コア(13)においては、特に4つの円弧状角部で鋼板が互いに緊密に積層されるため、切断工程で、互いに隣接する2つの円弧状角部の近傍を切断することによって、固定コア片(1)と可動コア片(2)の対向部分には、特に高い寸法精度が得られる。
The annular core (13) has an annular shape having four arcuate corners. In the cutting step, the vicinity of two arcuate corners adjacent to each other is set as a cutting position.
In the annular core (13) having four arcuate corners, the steel plates are stacked closely together, particularly at the four arcuate corners. By cutting, a particularly high dimensional accuracy can be obtained in the facing portion of the fixed core piece (1) and the movable core piece (2).
 又、前記コア巻き取り工程によって作製された環状コア(13)に焼鈍を施した後、前記モールド工程を実施する。
 環状コア(13)は、その角部で大きな歪みを生じるが、環状コア(13)に焼鈍を施すことによって、角部における大きな歪みに起因する特性の劣化が解消される。
Further, after the annular core (13) produced by the core winding process is annealed, the molding process is performed.
The annular core (13) has a large distortion at its corners, but the annealing of the annular core (13) eliminates the deterioration of the characteristics due to the large distortion at the corners.
 本発明に係る他のソレノイド用コアの製造方法は、
 帯状の鋼板を環状に巻き取ることによって環状コア(13)を作製するコア巻き取り工程と、
 前記作製された環状コア(13)の表面をモールド樹脂により覆って環状のモールドコア(18)を作製するモールド工程と、
 前記作製されたモールドコア(18)を2つに分断して、2つの固定コア片(1)(1)を得る切断工程
とを有している。
Another method for manufacturing a solenoid core according to the present invention is as follows.
A core winding process for producing the annular core (13) by winding the belt-shaped steel sheet in an annular shape;
A molding step for producing an annular mold core (18) by covering the surface of the produced annular core (13) with a mold resin;
And cutting the produced mold core (18) into two to obtain two fixed core pieces (1) (1).
 上記本発明のソレノイド用コアの製造方法によれば、切断工程によってモールドコア(18)を切断して、2つの固定コア片(1)(1)を得る過程で、モールドコア(18)を構成する環状コア(13)がモールド樹脂によって周囲から固められているので、モールドコア(18)の表層の鋼板がめくれ上がることもない。この結果、固定コア片(1)の外形寸法に高い精度が得られることになる。 According to the method for manufacturing a solenoid core of the present invention, the mold core (18) is formed in the process of cutting the mold core (18) by the cutting process to obtain two fixed core pieces (1) (1). Since the annular core (13) is hardened from the periphery by the mold resin, the steel sheet of the surface layer of the mold core (18) is not turned up. As a result, high accuracy can be obtained in the external dimensions of the fixed core piece (1).
 本発明に係るソレノイド用コアの製造方法によれば、帯状鋼板をコア片の素材とした場合にもコア片の外形寸法に高い精度を実現することが出来る。 According to the method for manufacturing a solenoid core according to the present invention, it is possible to achieve high accuracy in the outer dimensions of the core piece even when a strip steel plate is used as the material of the core piece.
図1は、本発明に係る固定コア片及び可動コア片を用いたソレノイドの一部破断側面図である。FIG. 1 is a partially broken side view of a solenoid using a fixed core piece and a movable core piece according to the present invention. 図2は、従来のソレノイドの一部破断側面図である。FIG. 2 is a partially cutaway side view of a conventional solenoid. 図3は、本発明に係るソレノイド用コアの製造方法を示す工程図である。FIG. 3 is a process diagram showing a method for manufacturing a solenoid core according to the present invention. 図4は、該製造方法の前半における各工程を説明する図である。FIG. 4 is a diagram for explaining each step in the first half of the manufacturing method. 図5は、該製造方法の後半における各工程を説明する図である。FIG. 5 is a diagram for explaining each step in the latter half of the manufacturing method. 図6は、本発明に係る固定コア片を用いた他のソレノイドの一部破断側面図である。FIG. 6 is a partially cutaway side view of another solenoid using the fixed core piece according to the present invention. 図7は、本発明に係るソレノイド用コアの製造方法の後半を示す工程図である。FIG. 7 is a process diagram showing the second half of the method for manufacturing a solenoid core according to the present invention.
 以下、本発明の実施の形態につき、図面に沿って具体的に説明する。
 図1は、本発明に係るソレノイド用コアの製造方法によって製造した固定コア片(1)と可動コア片(2)を具えたソレノイドを表わしており、U字状を呈する固定コア片(1)と、該固定コア片(1)の両端面との間に所定のギャップをおいて配置された可動コア片(2)は、それぞれの表面がモールド樹脂(4)(5)によって覆われている。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
FIG. 1 shows a solenoid having a fixed core piece (1) and a movable core piece (2) manufactured by the method for manufacturing a solenoid core according to the present invention, and has a U-shaped fixed core piece (1). And the movable core piece (2) arranged with a predetermined gap between both end faces of the fixed core piece (1), the respective surfaces are covered with the mold resin (4) (5). .
 固定コア片(1)の一対の平行アーム部には一対のコイル(3)(3)が巻装されている。可動コア片(2)はバネ(6)(6)によって一方向に付勢されており、該可動コア片(2)に負荷(7)が繋がっている。
 該ソレノイドにおいては、コイル(3)(3)に対する通電をオン/オフすることにより、可動コア片(2)を往復移動させて、弁等の負荷(7)を駆動する。
A pair of coils (3) and (3) are wound around a pair of parallel arms of the fixed core piece (1). The movable core piece (2) is biased in one direction by springs (6) and (6), and a load (7) is connected to the movable core piece (2).
In the solenoid, the coil (3) (3) is turned on / off to reciprocate the movable core piece (2) to drive the load (7) such as a valve.
 図3は、固定コア片(1)と可動コア片(2)を製造するための一連の工程P1~P6を表わしている。
 工程P1では、図4(a)の如く、一定厚さの帯状を呈する方向性珪素鋼板がロール状に巻き取られたコア素材(11)を準備する。
 工程P2では、図4(b)の如く、治具(12)を回転させつつ、コア素材(11)から鋼板を繰り出して、角柱状の治具(12)の周囲に鋼板を巻き取り、4つの円弧状角部と、互いに隣接する2つの円弧状角部を繋ぐ4つの直線状部分とを有する環状コア(13)を作製する。
FIG. 3 shows a series of steps P1 to P6 for manufacturing the fixed core piece (1) and the movable core piece (2).
In the process P1, as shown in FIG. 4A, a core material (11) is prepared in which a directional silicon steel sheet having a certain thickness is wound in a roll shape.
In the process P2, as shown in FIG. 4B, while rotating the jig (12), the steel plate is unwound from the core material (11), and the steel plate is wound around the prismatic jig (12). An annular core (13) having one arcuate corner and four linear parts connecting two arcuate corners adjacent to each other is produced.
 工程P3では、図4(c)の如く、ヒータ(15)を具えた電気炉(14)の中に環状コア(13)を収容し、環状コア(13)に焼鈍を施す。
 これによって、環状コア(13)の4つの角部に生じている内部歪みが緩和されて、磁気特性が回復することになる。
In step P3, as shown in FIG. 4C, the annular core (13) is accommodated in an electric furnace (14) provided with a heater (15), and the annular core (13) is annealed.
As a result, the internal strain generated at the four corners of the annular core (13) is relaxed, and the magnetic properties are restored.
 その後、工程P4では、図5(a)の如く、環状コア(13)を含浸樹脂液(16)中に浸漬し、環状コア(13)にワニス含浸を施す。
 これによって、環状コア(13)を構成している積層鋼板の層間にワニスが浸透して、積層鋼板の層間の接合強度が高められる。
Thereafter, in step P4, as shown in FIG. 5A, the annular core (13) is immersed in the impregnating resin liquid (16), and the annular core (13) is impregnated with varnish.
As a result, the varnish penetrates between the layers of the laminated steel plates constituting the annular core (13), and the bonding strength between the layers of the laminated steel plates is increased.
 工程P5では、図5(b)の如く、環状コア(13)にインサートモールド(樹脂封止)を施して、環状コア(13)の全表面を略均一な厚さのモールド樹脂(17)によって覆い、所定の外形寸法を有する環状のモールドコア(18)を得る。
 この様なインサートモールドによって、モールドコア(18)には高い寸法精度が得られる。
In step P5, as shown in FIG. 5 (b), the annular core (13) is insert-molded (resin-sealed), and the entire surface of the annular core (13) is formed by a mold resin (17) having a substantially uniform thickness. An annular mold core (18) having a predetermined outer dimension is obtained by covering.
With such an insert mold, a high dimensional accuracy can be obtained for the mold core (18).
 工程P6では、図5(c)の如く、モールドコア(18)の互い平行に延びる2つの直線状部分をそれぞれ円弧状角部の近傍位置(より具体的には、コアの直線状部分と円弧状部分の境界線)で、カッター(19)により2つに分断し、図5(d)に示す如く、U字状の固定コア片(1)とI字状の可動コア片(2)を得る。
 モールドコア(18)の切断においては、環状コア(13)がモールド樹脂(17)によって周囲から固められているので、環状コア(13)を構成する積層鋼板に剥離が生じることはなく、高い寸法精度が維持される。
In step P6, as shown in FIG. 5 (c), two linear portions of the mold core (18) extending in parallel with each other are respectively positioned near the arcuate corners (more specifically, the linear portion of the core and the circular portion). At the boundary of the arc-shaped part), the cutter (19) divides it into two, and as shown in FIG. 5 (d), the U-shaped fixed core piece (1) and the I-shaped movable core piece (2) obtain.
In cutting the mold core (18), since the annular core (13) is hardened from the periphery by the mold resin (17), the laminated steel sheet constituting the annular core (13) does not peel off and has a high dimension. Accuracy is maintained.
 この様にして得られた固定コア片(1)と可動コア片(2)を用いて、図1に示すソレノイドを組み立てる。
 該ソレノイドにおいては、固定コア片(1)及び可動コア片(2)の素材として方向性珪素鋼板が用いられているので、軟鉄を素材とする従来のソレノイドよりも、応答性が高く、然も大きな吸引力が得られる。従って、電磁弁などを高速駆動するソレノイドとして高い動作特性を実現することが出来る。
The solenoid shown in FIG. 1 is assembled using the fixed core piece (1) and the movable core piece (2) thus obtained.
In this solenoid, a directional silicon steel plate is used as the material of the fixed core piece (1) and the movable core piece (2), so that the response is higher than that of the conventional solenoid made of soft iron. A large suction force can be obtained. Therefore, high operating characteristics can be realized as a solenoid for driving a solenoid valve or the like at high speed.
 又、固定コア片(1)及び可動コア片(2)は、それらの全表面が略一定厚さのモールド樹脂(4)(5)によって覆われているので、外形に高い寸法精度が得られるばかりでなく、防錆効果や高い電気絶縁性が得られる。 Moreover, since the fixed core piece (1) and the movable core piece (2) are entirely covered with the mold resin (4) (5) having a substantially constant thickness, high dimensional accuracy can be obtained in the outer shape. In addition, a rust prevention effect and high electrical insulation can be obtained.
 図6は、本発明に係る他のソレノイド用コアの製造方法によって製造した固定コア片(1)と可動コア片(8)を具えたソレノイドを表わしており、U字状を呈する固定コア片(1)は、表面がモールド樹脂(4)によって覆われている。 FIG. 6 shows a solenoid having a fixed core piece (1) and a movable core piece (8) manufactured by another method for manufacturing a solenoid core according to the present invention. The surface of 1) is covered with the mold resin (4).
 固定コア片(1)の一対の平行アーム部には一対のコイル(3)(3)が巻装されている。可動コア片(8)はバネ(6)(6)によって一方向に付勢されており、該可動コア片(2)に負荷(7)が繋がっている。
 該ソレノイドにおいては、コイル(3)(3)に対する通電をオン/オフすることにより、可動コア片(8)を往復移動させて、弁等の負荷(7)を駆動する。
A pair of coils (3) and (3) are wound around a pair of parallel arms of the fixed core piece (1). The movable core piece (8) is biased in one direction by springs (6) and (6), and a load (7) is connected to the movable core piece (2).
In the solenoid, the coil (3) (3) is turned on / off to reciprocate the movable core piece (8) to drive the load (7) such as a valve.
 固定コア片(1)の製造においては、図4(a)~(c)に示す工程P1~P3と同様にして、焼鈍が施された環状コア(13)を作製した後、図5(a)に示す工程P4と同様にして、環状コア(13)にワニス含浸を施す。 In the manufacture of the fixed core piece (1), an annular core (13) subjected to annealing is manufactured in the same manner as in Steps P1 to P3 shown in FIGS. The annular core (13) is impregnated with varnish in the same manner as in Step P4 shown in FIG.
 その後、工程P5では、図7(a)の如く、環状コア(13)にインサートモールドを施して、環状コア(13)の全表面を略均一な厚さのモールド樹脂(17)によって覆い、所定の外形寸法を有する環状のモールドコア(18)を得る。 Thereafter, in step P5, as shown in FIG. 7 (a), an insert mold is applied to the annular core (13), and the entire surface of the annular core (13) is covered with a molding resin (17) having a substantially uniform thickness. An annular mold core (18) having the following outer dimensions is obtained.
 次に工程P6′では、図7(b)の如く、モールドコア(18)を互いに隣接する2つの円弧状角部を繋ぐ直線状部分の中心位置で、カッター(19)により2つに分断し、図7(c)に示す如く、2つのU字状の固定コア片(1)(1)を得る。
 モールドコア(18)の切断においては、環状コア(13)がモールド樹脂(17)によって周囲から固められているので、環状コア(13)を構成する積層鋼板に剥離が生じることはなく、高い寸法精度が維持される。
Next, in step P6 ′, as shown in FIG. 7B, the mold core (18) is divided into two by the cutter (19) at the center position of the linear portion connecting the two arcuate corners adjacent to each other. As shown in FIG. 7C, two U-shaped fixed core pieces (1) and (1) are obtained.
In cutting the mold core (18), since the annular core (13) is hardened from the periphery by the mold resin (17), the laminated steel sheet constituting the annular core (13) does not peel off and has a high dimension. Accuracy is maintained.
 この様にして得られた2つの固定コア片(1)(1)の内、何れか一方の固定コア片(1)と別途作製した可動コア片(8)とを用いて、図6に示すソレノイドを組み立てる。可動コア片(8)は例えば平板状鋼板を積層することにより作製することが出来る。 Of the two fixed core pieces (1) and (1) obtained in this way, either one of the fixed core pieces (1) and a separately produced movable core piece (8) are shown in FIG. Assemble the solenoid. The movable core piece (8) can be produced, for example, by laminating flat steel plates.
 該ソレノイドにおいては、固定コア片(1)の素材として方向性珪素鋼板が用いられているので、軟鉄を素材とする従来のソレノイドよりも、応答性が高く、然も大きな吸引力が得られる。従って、電磁弁などを高速駆動するソレノイドとして高い動作特性を実現することが出来る。 In the solenoid, a directional silicon steel plate is used as the material of the fixed core piece (1). Therefore, the solenoid is more responsive than the conventional solenoid made of soft iron, and a large suction force can be obtained. Therefore, high operating characteristics can be realized as a solenoid for driving a solenoid valve or the like at high speed.
 又、固定コア片(1)は、それらの全表面が略一定厚さのモールド樹脂(4)によって覆われているので、外形に高い寸法精度が得られるばかりでなく、防錆効果や高い電気絶縁性が得られる。 Moreover, since the fixed core piece (1) is covered with the mold resin (4) having a substantially constant thickness on the entire surface, not only high dimensional accuracy can be obtained in the outer shape, but also the rust prevention effect and high electrical performance. Insulation is obtained.
 尚、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。例えば、環状コア(13)の素材となる鋼板としては、方向性珪素鋼板に限らず、方向性珪素鋼板と同等の特性を有する公知の鋼板を採用することが出来る。 The configuration of each part of the present invention is not limited to the above-described embodiment, and various modifications can be made within the technical scope described in the claims. For example, the steel plate used as the material of the annular core (13) is not limited to the directional silicon steel plate, and a known steel plate having the same characteristics as the directional silicon steel plate can be employed.
(1) 固定コア片
(2) 可動コア片
(3) コイル
(4) モールド樹脂
(5) モールド樹脂
(11) コア素材
(12) 治具
(13) 環状コア
(14) 電気炉
(17) モールド樹脂
(18) モールドコア
(19) カッター
(1) Fixed core piece
(2) Movable core piece
(3) Coil
(4) Mold resin
(5) Mold resin
(11) Core material
(12) Jig
(13) Ring core
(14) Electric furnace
(17) Mold resin
(18) Mold core
(19) Cutter

Claims (8)

  1.  U字状の固定コア片と該固定コア片の両端面に対向して配置されるべき可動コア片とからなるソレノイド用コアの製造方法において、
     帯状の鋼板を環状に巻き取ることによって環状コアを作製するコア巻き取り工程と、
     前記作製された環状コアの表面をモールド樹脂により覆って環状のモールドコアを作製するモールド工程と、
     前記作製されたモールドコアを切断して、前記固定コア片を得る切断工程
    とを有し、前記切断工程で得られた固定コア片と可動コア片とを組み合わせてソレノイド用コアを組み立てることを特徴とするソレノイド用コアの製造方法。
    In a method for manufacturing a solenoid core comprising a U-shaped fixed core piece and a movable core piece to be disposed opposite to both end faces of the fixed core piece,
    A core winding process for producing an annular core by winding a belt-shaped steel sheet in an annular shape;
    A molding step of producing an annular mold core by covering the surface of the produced annular core with a mold resin;
    Cutting the produced mold core to obtain the fixed core piece, and assembling the solenoid core by combining the fixed core piece and the movable core piece obtained in the cutting step. A method for manufacturing a solenoid core.
  2.  前記切断工程では、前記作製されたモールドコアを2つに分断して、1つの固定コア片と1つの可動コア片とを得る請求項1に記載のソレノイド用コアの製造方法。 The method for manufacturing a solenoid core according to claim 1, wherein in the cutting step, the produced mold core is divided into two to obtain one fixed core piece and one movable core piece.
  3.  前記環状コアは、4つの円弧状角部と互いに隣接する2つの円弧状角部を繋ぐ4つの直線状部分とを有する環状を呈し、前記切断工程では、互い平行に延びる2つの直線状部分をそれぞれ円弧状角部の近傍位置で切断する請求項2に記載のソレノイド用コアの製造方法。 The annular core has an annular shape having four arcuate corners and four linear parts connecting two arcuate corners adjacent to each other. In the cutting step, the two linear parts extending in parallel to each other are formed. The method for manufacturing a solenoid core according to claim 2, wherein the solenoid core is cut at positions near the arcuate corners.
  4.  前記切断工程では、前記作製されたモールドコアを2つに分断して、2つの固定コア片を得る請求項1に記載のソレノイド用コアの製造方法。 The method for manufacturing a solenoid core according to claim 1, wherein in the cutting step, the produced mold core is divided into two to obtain two fixed core pieces.
  5.  前記環状コアは、4つの円弧状角部と互いに隣接する2つの円弧状角部を繋ぐ4つの直線状部分とを有する環状を呈し、前記切断工程では、互い平行に延びる2つの直線状部分をそれぞれ二等分する位置で切断する請求項4に記載のソレノイド用コアの製造方法。 The annular core has an annular shape having four arcuate corners and four linear parts connecting two arcuate corners adjacent to each other. In the cutting step, the two linear parts extending in parallel to each other are formed. The method for manufacturing a solenoid core according to claim 4, wherein the solenoid core is cut at a position that bisects each.
  6.  前記コア巻き取り工程では、前記鋼板として、方向性珪素鋼板を用いる請求項1乃至請求項5の何れかに記載のソレノイド用コアの製造方法。 The method for manufacturing a solenoid core according to any one of claims 1 to 5, wherein a directional silicon steel plate is used as the steel plate in the core winding step.
  7.  前記モールド工程では、前記環状コアの全表面を略均一な厚さのモールド樹脂によって覆うことにより、所定の外形寸法を有するモールドコアを得る請求項1乃至請求項6の何れかに記載のソレノイド用コアの製造方法。 The solenoid core according to any one of claims 1 to 6, wherein in the molding step, a mold core having a predetermined outer dimension is obtained by covering the entire surface of the annular core with a mold resin having a substantially uniform thickness. Core manufacturing method.
  8.  前記コア巻き取り工程によって作製された環状コアに焼鈍を施した後、前記モールド工程を実施する請求項1乃至請求項7の何れかに記載のソレノイド用コアの製造方法。 The method of manufacturing a solenoid core according to any one of claims 1 to 7, wherein the molding step is performed after annealing the annular core produced by the core winding step.
PCT/JP2009/071545 2008-12-29 2009-12-25 Solenoid core manufacturing method WO2010076877A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010544866A JPWO2010076877A1 (en) 2008-12-29 2009-12-25 Manufacturing method of solenoid core

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008335607 2008-12-29
JP2008-335607 2008-12-29

Publications (1)

Publication Number Publication Date
WO2010076877A1 true WO2010076877A1 (en) 2010-07-08

Family

ID=42309924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071545 WO2010076877A1 (en) 2008-12-29 2009-12-25 Solenoid core manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2010076877A1 (en)
WO (1) WO2010076877A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790924A (en) * 1980-11-27 1982-06-05 Toshiba Corp Manufacture of c cut core
JPH1092678A (en) * 1996-09-11 1998-04-10 Nissin Electric Co Ltd Manufacture of cut core
JPH10256066A (en) * 1997-03-13 1998-09-25 Nkk Corp Winding core with improved iron loss characteristic and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6178111A (en) * 1984-09-25 1986-04-21 Matsushita Electric Works Ltd Manufacture of magnetic core

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790924A (en) * 1980-11-27 1982-06-05 Toshiba Corp Manufacture of c cut core
JPH1092678A (en) * 1996-09-11 1998-04-10 Nissin Electric Co Ltd Manufacture of cut core
JPH10256066A (en) * 1997-03-13 1998-09-25 Nkk Corp Winding core with improved iron loss characteristic and its manufacturing method

Also Published As

Publication number Publication date
JPWO2010076877A1 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
KR100374837B1 (en) Stator for linear motor
KR101197234B1 (en) Amorphous Metal Core, Inductive Device Using the Same, and Manufacturing Method thereof
US9553495B2 (en) Wound core, electromagnetic component and manufacturing method therefor, and electromagnetic equipment
KR101345029B1 (en) Method of manufacturing molded stator of dynamo electric machine
US20220014053A1 (en) Adhesively-laminated core for stator and electric motor
JP2003339128A (en) Motor, stator core and rotor core, and manufacturing methods of motor, stator core and rotor core
JP2011120328A (en) Rotor for permanent magnet type motor, the permanent magnet type motor, and method of manufacturing the rotor and the permanent magnet type motor
JP5192531B2 (en) Ignition coil for internal combustion engine
JP3636446B2 (en) Motor core lamination method and laminated structure thereof
KR20040080448A (en) Structure of stator assembly for linear motor
WO2012073565A1 (en) Reactor device utilizing amorphous material, and process for manufacture thereof
WO2012011389A1 (en) Reactor device
US6770990B2 (en) Reciprocating motor
WO2010076877A1 (en) Solenoid core manufacturing method
KR20150132826A (en) Double stator and Motor having the same
KR20040047320A (en) Assembling structure of stator for liner motor and manufacturing method thereof
KR20100100410A (en) Amorphous transformer and manufacturing method thereof
JP3671171B2 (en) Coil device and manufacturing method thereof
WO2019035400A1 (en) Stator structure and brushless motor
JP2007166759A (en) Stator manufacturing method therefor, and motor employing the stator
KR100230781B1 (en) Lamination fixing structure of linear motor
KR100308294B1 (en) Stator assembly for linear motor
JPS5849010B2 (en) Wound core with gap
US11621115B2 (en) Method for assembling a magnetic core for a transformer
KR100273415B1 (en) Structure for fixing lamination sheet of core in linear motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09836214

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2010544866

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09836214

Country of ref document: EP

Kind code of ref document: A1