WO2010076399A1 - Solide cristallise im-20 et son procédé de préparation - Google Patents

Solide cristallise im-20 et son procédé de préparation Download PDF

Info

Publication number
WO2010076399A1
WO2010076399A1 PCT/FR2009/001347 FR2009001347W WO2010076399A1 WO 2010076399 A1 WO2010076399 A1 WO 2010076399A1 FR 2009001347 W FR2009001347 W FR 2009001347W WO 2010076399 A1 WO2010076399 A1 WO 2010076399A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
geo
crystallized solid
source
crystallized
Prior art date
Application number
PCT/FR2009/001347
Other languages
English (en)
Inventor
Mathias Dodin
Yannick Lorgouilloux
Jean-Louis Paillaud
Philippe Caullet
Joël Patarin
Nicolas Bats
Original Assignee
Ifp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ifp filed Critical Ifp
Priority to EP09796762.4A priority Critical patent/EP2379450B1/fr
Priority to CN2009801504046A priority patent/CN102245507B/zh
Priority to DK09796762.4T priority patent/DK2379450T3/da
Priority to US13/140,501 priority patent/US8444952B2/en
Priority to JP2011541530A priority patent/JP2012512800A/ja
Publication of WO2010076399A1 publication Critical patent/WO2010076399A1/fr
Priority to ZA2011/04415A priority patent/ZA201104415B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • C01B39/08Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis the aluminium atoms being wholly replaced

Definitions

  • the present invention relates to a novel crystallized solid, hereinafter referred to as IM-20, having a new crystalline structure and to the process for preparing said solid.
  • zeolite NU-87 US-5,178,748
  • zeolite MCM-22 US Pat. No. 4,954,325
  • gallophosphate cloverite
  • zeolites ITQ-12 US-6,471,939
  • UQ-13 UQ-13
  • CIT-5 US-6,043,179
  • ITQ-21 WO-02/092511
  • ITQ-22 Corma, A.
  • sources of germanium and silicon in the synthesis media can also make it possible to obtain new frameworks of this type, that is to say containing D4R units, both in conventional non-fluorinated basic medium and in fluorinated medium, as in the case of ITQ-17 and ITQ-21 zeolites (Corma et al., Chem., 2001, 16, 1486, Chem., 2003, 9, 1050), or M-12 (JL. Paillaud et al., Science, 2004, 304, 990).
  • the present invention relates to a new crystalline solid, called crystallized solid IM-20, having a new crystalline structure.
  • Said solid has a chemical composition expressed by the following general formula: mXO 2 : nGeO 2 : PZ 2 O 3 : qR: sF: wH 2 0 wherein R represents one or more organic species, X represents a or more tetravalent element (s) different from germanium, Z represents at least one trivalent element and F is fluorine, m, n, p, q, s and w respectively representing the number of moles of XO 2 , GeO 2 , Z 2 O 3 , R, F and H 2 O and m is between 0.3 and 0.8, n is between 0.2 and 0.7, p is between 0 and 0.1.
  • q is 0 to 0.2
  • s is 0 to 0.2
  • w is 0 to 1.
  • the crystallized solid IM-20 according to the invention has, in its crude synthesis form, an X-ray diffraction pattern including at least the lines listed in Table 1.
  • the crystallized solid Evl-20 according to the invention has, in its calcined form, an X-ray diffraction pattern including at least the lines listed in Table 2.
  • This new crystalline solid EVI-20 has a new crystalline structure.
  • the measurement error ⁇ (d hk i) on d hk i is calculated by means of the Bragg relation as a function of the absolute error ⁇ (2 ⁇ ) assigned to the measurement of 2 ⁇ .
  • An absolute error ⁇ (2 ⁇ ) equal to ⁇ 0.02 ° is commonly accepted.
  • the relative intensity 1 / I 0 assigned to each value of d h w is measured from the height of the corresponding diffraction peak.
  • the X-ray diffraction pattern of the crystallized solid IM-20 according to the invention in its raw synthesis form, comprises at least the lines at the values of d hk given in Table 1.
  • the X-ray diffraction pattern of the EVI-20 crystalline solid according to the invention in its calcined form, has at least the lines of the hk values i given in table 2. in the column of d hkl, it was reported the average values of interplanar spacings in Angstroms ( ⁇ ). Each of these values shall be assigned the measurement error ⁇ (d hk i) between ⁇ 0,2 and ⁇ 0,003.
  • Table 1 Mean values of d h ki and relative intensities measured on an X-ray diffraction pattern of the crystallized solid IM-20 crude synthesis
  • Table 2 Mean dhki values and relative intensities measured on an X-ray diffraction pattern of the calcined IM-20 calcined solid
  • the relative intensity I / Io is given in relation to a scale of relative intensity where it is assigned a value of 100 to the most intense line of the X-ray diffraction pattern: ff ⁇ 15; ⁇ F ⁇ 30; ⁇ Mf ⁇ 50; 50 ⁇ m ⁇ 65; 65 ⁇ F ⁇ 85;FF> 85.
  • the IM-20 crystallized solid according to the invention has a novel basic crystal structure or topology which is characterized by its X-ray diffraction patterns in the synthetic and calcined synthetic forms given in FIG. 1 and FIG. 2 respectively.
  • Said solid EVI-20 has a chemical composition defined by the following general formula: mx0 2: nGeO 2: pZ 2 O 3: qR: sF: wH 2 O (I) wherein R represents one or more kind (s) organic ( s), X represents one or more tetravalent element (s) different from the germanium, Z represents at least one trivalent element and F is fluorine.
  • m, n, p, q, s and w respectively represent the number of moles of XO 2 , GeO 2 , Z 2 O 3 , R, F and H 2 O and m is between 0.3 and 0.8, n is between 0.2 and 0.7, p is between 0 and 0.1, q is between 0 and 0.2, s is between 0 and 0.2 and w is between 0 and 1.
  • the molar ratio m / n of the framework of crystallized solid IM-20 according to the invention is between 1 and 10, preferably between 1 and 5. and most preferably between 1.5 and 2.
  • the molar ratio ⁇ (n + m) / p ⁇ is greater than or equal to 10 and is preferably greater than or equal to 20.
  • the value of p is between 0 and 0.1, very preferably between 0 and 0.05 and even more preferably between 0.005 and 0.02.
  • the value of q is between 0 and 0.2, advantageously between 0.02 and 0.2 and very advantageously between 0.05 and 0.15.
  • s is between 0 and 0.2, preferably s is between 0.01 and 0.2 and very preferably s is between 0.02 and 0.1.
  • the value taken by w is, according to the invention, between 0 and 1, preferably between 0.3 and 0.5.
  • X is preferably selected from silicon, tin and titanium, very preferably X is silicon, and Z is preferably selected from aluminum, boron, iron, indium and gallium. and very preferably Z is aluminum.
  • X is silicon: the crystallized solid IM-20 according to the invention is then, when element Z is present, a crystallized metallogermanosilicate having an X-ray diffraction pattern identical to that described in Table 1 when it is in its raw form of synthesis and identical to that described in Table 2 when it is in its calcined form.
  • the crystallized solid EM-20 according to the invention is then a crystallized aluminogermanosilicate having an X-ray diffraction pattern identical to that described in Table 1 when it is in its raw form of synthesis and identical to that described in Table 2 when it is in its calcined form.
  • the crystallized solid IM-20 according to the invention comprises at least one organic species such as that described below or its decomposition products, or its precursors.
  • the organic species (s) R (s) present in the general formula defining the IM-20 solid is (are) at least partly, and preferably wholly, the said organic species (s).
  • R is the 1-butyl-3-methylimidazolium cation.
  • Said organic species R which acts as a structurant, can be removed by the conventional routes of the state of the art such as heat and / or chemical treatments.
  • the crystallized solid IM-20 according to the invention is preferably a zeolitic solid.
  • the invention also relates to a process for preparing crystalline solid M-20 in which an aqueous mixture comprising at least one source of at least one germanium oxide, at least one source of at least one oxide XO 2 , is reacted, optionally at least one source of at least one oxide Z 2 O 3 , at least one organic species R and at least one source of fluoride ions, the mixture preferably having the following molar composition: (XO 2 + GeO 2 ) / Z 2 O 3 : at least 5, preferably at least 10, H 2 O / (XO 2 + GeO 2 ): 1 to 50, preferably 5 to 20, R / (XO 2 + GeO 2 ): 0.3 to 3, preferably 0.4 to 1.5,
  • XO 2 / GeO 2 0.5 to 10, preferably 1 to 10, and very preferably 1 to 5, F / (XO 2 + GeO 2 ): 0.1 to 2, preferably 0.2 to 1, where X is one or more different tetravalent element (s) of germanium, preferably chosen from silicon, tin and titanium and very preferably X is silicon, Z is one or more trivalent element (s) chosen from the group formed by the following elements: aluminum, iron, boron, indium and gallium, preferably aluminum.
  • R is an organic species acting as an organic structuring agent.
  • R is the compound 1-butyl-3-methylimidazolium.
  • the source of the element X can be any compound comprising the element X and able to release this element in aqueous solution in reactive form.
  • the silica source may be any of those commonly used in the synthesis of zeolites, for example powdered solid silica, silicic acid or colloidal silica. or dissolved silica or tetraethoxysilane (TEOS).
  • TEOS tetraethoxysilane
  • the silicas in powder form it is possible to use precipitated silicas, in particular those obtained by precipitation from an alkali metal silicate solution, such as aerosilic silicas, pyrogenic silicas, for example "CAB-O-SIL" and silica gels.
  • Colloidal silicas having different particle sizes, for example of equivalent diameter may be used average between 10 and 15 nm or between 40 and 50 nm, such as those sold under the trademark "LUDOX”.
  • the source of germanium may be any compound comprising the germinal element and able to release this element in aqueous solution in reactive form.
  • the source of germanium may be a germanium oxide crystallized in the forms called quartz or rutile. It is also possible to use germanium sources such as tetraethoxygermanium or tetraisopropoxygermanium.
  • the germanium source may preferably be GeO 2 amorphous germanium oxide.
  • the source of element Z may be any compound comprising element Z and capable of releasing this element in aqueous solution in reactive form.
  • the source of alumina is preferably sodium aluminate, or an aluminum salt, for example chloride, nitrate, hydroxide or sulfate, a aluminum alkoxide or alumina proper, preferably in hydrated or hydratable form, such as for example colloidal alumina, pseudoboehmite, gamma alumina or alpha or beta trihydrate. It is also possible to use mixtures of the sources mentioned above.
  • the fluorine may be introduced in the form of alkali metal or ammonium salts, for example NaF, NH 4 F or NH 4 HF 2, or in the form of hydrofluoric acid or in the form of hydrolyzable compounds which can release fluoride anions in the form of water such as silicon fluoride SiF 4 or fluorosilicates ammonium (NH 4 ) 2 SiF 6 or sodium Na 2 SiF 6 .
  • an aqueous mixture comprising silica, optionally alumina, a germanium oxide, 1-butyl-3-methylimidazolium and a source of fluoride ions is reacted. .
  • the process according to the invention consists in preparing an aqueous reaction mixture called gel containing at least one source of at least one germanium oxide, at least one source of at least one oxide XO 2 , optionally at least one source of at least one oxide Z 2 O 3 , at least one source of fluoride ions, and at least one organic species R.
  • the amounts of said reagents are adjusted so as to give this gel a composition enabling it to crystallize crystalline solid IM-20 of general formula mXO 2 : nGeO 2 : pZ 2 O 3 : qR: sF: wH 2 0, where m, n, p, q, s and w meet the criteria defined above.
  • the gel is then subjected to hydrothermal treatment until crystallized solid IM-20 is formed.
  • the gel is advantageously placed under hydrothermal conditions under an autogenous reaction pressure, optionally by adding gas, for example nitrogen, at a temperature comprised between 12O 0 C and 200 ° C, preferably between 140 ° C and 180 ° C, and even more preferably at a temperature between 150 ° C. and 175 ° C. until the formation of the IM-20 solid crystals according to the invention.
  • the time required to obtain the crystallization generally varies between 1 hour and several months, preferably between 10 hours and 20 days, depending on the composition of the reagents in the gel, the stirring and the reaction temperature.
  • the reaction is carried out with stirring or without stirring.
  • seeds may be advantageous to add seeds to the reaction mixture to reduce the time required for crystal formation and / or the total crystallization time. It may also be advantageous to use seeds to promote the formation of crystalline solid IM-20 at the expense of impurities.
  • Such seeds comprise crystalline solids, in particular IM-20 solid crystals.
  • the crystalline seeds are generally added in a proportion of between 0.01 and 10% of the weight of the oxides (XO 2 + GeO 2 ), XO 2 preferably being silica, used in the reaction mixture.
  • the solid phase is filtered and washed; it is then ready for subsequent steps such as drying, dehydration and calcination and / or ion exchange. For these steps, all the conventional methods known to those skilled in the art can be used.
  • the calcination step is advantageously carried out by one or more heating steps at temperatures ranging from 100 to 1000 ° C. for periods ranging from a few hours to several days.
  • the crystallized solid in its crude synthesis form first undergoes heating under a neutral gas, for example under a sweep. nitrogen, at a temperature preferably between 100 and 250 ° C for a period advantageously between 2 and 8 hours and calcination under an atmosphere of a neutral gas, for example under a nitrogen atmosphere, at a temperature preferably between 400 and 700 ° C for a period advantageously between 6 and 10 hours.
  • the crystallized solid IM-20 obtained is calcined at a temperature between 400 and 700 ° C for a period of between 6 and 10 hours under air flow and then for a period preferably between 6 and 10 hours. and 10 hours under oxygen flow.
  • the present invention also relates to the use of said IM-20 solid as an adsorbent.
  • said solid M-20 is stripped of the organic species, preferably the 1-butyl-3-methylimidazolium cation, when it is used as an adsorbent.
  • the IM-20 crystallized solid according to the invention is generally dispersed in an inorganic matrix phase which contains channels and cavities which allow access of the fluid to be separated to the crystallized solid.
  • These matrices are preferably mineral oxides, for example silicas, aluminas, silica-aluminas or clays. The matrix generally represents between 2 and 25% by weight of the adsorbent thus formed.
  • the Teflon jacket containing the synthesis mixture (pH ⁇ 9) is then introduced into an autoclave, which is placed in an oven at 170 ° C for a period of 14 days without agitation. After filtration, the product obtained is washed several times with distilled water. It is then dried at 70 ° C for 24 hours. The mass of dry product obtained is about 4.23 g.
  • the dried solid product is first heated under a nitrogen flush at the temperature of 200 ° C. for 4 hours and then calcination under a nitrogen atmosphere at 550 ° C. for 8 hours. Following these first treatments, the solid obtained is calcined at 550 ° C. for 8 hours under an air flow and then for another 8 hours under an oxygen flow.
  • the solid obtained was analyzed by X-ray diffraction and identified as consisting of crystallized solid IM-20: the diffractogram carried out on the solid IM-20 is given in FIG.
  • Teflon jacket containing the synthesis mixture (pH ⁇ 9) is then introduced into an autoclave, which is placed in an oven at 170 0 C for a period of 14 days without agitation.
  • the dried solid product is first heated under a nitrogen sweep at a temperature of 200 ° C for 4 hours and then calcined under a nitrogen atmosphere at 550 ° C for 8 hours. Following these first treatments, the solid obtained is calcined at 550 ° C for 8 hours under air flow and another 8 hours under oxygen flow.
  • the solid obtained was analyzed by X-ray diffraction and identified as consisting of crystallized solid IM-20: the diffractogram carried out on the solid IM-20 is given in FIG.
  • Example 3 Preparation of an IM-20 Crystalline Solid According to the Invention 6.952 g of 1-butyl-3-methylimidazolium hydroxide (Solvionic) are added to 7.64 ml of distilled water in a 20 ml Teflon container. mL of interior volume. 0.349 g of aluminum hydroxide (63 to 67% by weight of Al 2 O 3 , Fluka) and 1.862 g of germanium oxide (Aldrich) are then added to this solution. The mixture is stirred for 1 hour with the aid of a magnetic stirrer.
  • Solvionic 1-butyl-3-methylimidazolium hydroxide
  • the molar composition of the resulting mixture is: 0.6 SiO 2 : 0.4 GeO 2 : 0.05 Al 2 O 3 : 1 l -butyl-3-methylimidazolium: 1 HF : 10 H 2 O (+ 2% by weight of seeds with respect to the oxides SiO 2 and GeO 2 ).
  • the Teflon jacket containing the synthesis mixture (pH ⁇ 9) is then introduced into an autoclave, which is placed in an oven at 170 ° C for a period of 14 days without agitation. After filtration, the product obtained is washed several times with distilled water. It is then dried at 70 ° C for 24 hours. The mass of dry product obtained is about 2.27 g.
  • the dried solid product is first heated under nitrogen flushing at a temperature of 200 ° C. for 4 hours and then calcination under a nitrogen atmosphere at 55 ° C. for 8 hours. Following these first treatments, the solid obtained is calcined at 550 ° C. for 8 hours under an air flow and then for another 8 hours under an oxygen flow.
  • the solid obtained was analyzed by X-ray diffraction and identified as consisting of crystallized solid IM-20: the diffractogram carried out on the solid IM-20 is given in FIG.
  • the solid used is the calcined solid of Example 1. It is extruded by kneading with boehmite (Pural SB3, Sasol) in a Z-arm kneader and extruding the paste obtained with a piston extruder. . The extrudates are then dried at 120 ° C. for 12 hours in air and calcined at 55 ° C. for 2 hours under an air flow in a muffle furnace.
  • the adsorbent thus prepared is composed of 80% by weight of the zeolitic solid IM-20 and 20% by weight of alumina.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

L'invention concerne un solide cristallisé, désigné sous l'appellation EV1-20, lequel présente un diagramme de diffraction de rayons X tel que donné ci-dessous. Ledit solide présente une composition chimique exprimée selon la formule empirique mX02 : nGeO2 : pZ2O3 : qR : sF : wH20, où R représente une ou plusieurs espèce(s) organique(s), X représente un ou plusieurs élément(s) tétravalent(s) différent(s) du germanium, Z représente au moins un élément trivalent et F est le fluor.

Description

SOLIDE CRISTALLISE IM-20 ET SON PROCEDE DE PREPARATION
Domaine technique
La présente invention se rapporte à un nouveau solide cristallisé appelé ci-après IM-20 présentant une nouvelle structure cristalline ainsi qu'au procédé de préparation dudit solide.
Art antérieur
La recherche de nouveaux tamis moléculaires microporeux a conduit au cours des dernières années à la synthèse d'une grande variété de cette classe de produits. Une grande variété d'aluminosilicates à structure zéolithique caractérisés notamment par leur composition chimique, le diamètre des pores qu'ils contiennent, la forme et la géométrie de leur système microporeux a ainsi été développée.
Parmi les zéolithes synthétisées depuis une quarantaine d'années, un certain nombre de solides ont permis de réaliser des progrès significatifs dans les domaines de l'adsorption et de la catalyse. Parmi celles-ci, on peut citer la zéolithe Y (US 3,130,007) et la zéolithe ZSM-5 (US 3,702,886). Le nombre de nouveaux tamis moléculaires, recouvrant les zéolithes, synthétisés chaque année est en progression constante. Pour avoir une description plus complète des différents tamis moléculaires découverts, on peut utilement se référer à l'ouvrage suivant : "Atlas of Zeolite Framework Types", Ch. Baerlocher, W.M. Meier and D.H. Oison, Fifth Revised Edition, 2001, Elsevier. On peut citer la zéolithe NU-87 (US-5,178,748), la zéolithe MCM-22 (US-4,954,325) ou bien encore le gallophosphate (clovérite) de type structural CLO (US-5,420,279), ou encore les zéolithes ITQ-12 (US-6,471,939), UQ-13 (US-6,471,941), CIT-5 (US-6,043,179), ITQ-21 (WO-02/092511), ITQ-22 (Corma, A. et al, Nature Materials 2003, 2, 493), SSZ-53 (Burton, A., et al, Chemistry : a Eur. Journal, 2003, 9, 5737), SSZ-59 (Burton, A., et al, Chemistry : a Eur. Journal, 2003, 9, 5737), SSZ-58 (Burton, A., et al, J. Am. Chem. Soc, 2003, 125, 1633) et UZM-5 (Blackwell, CS. et al, Angew. Chem., Int. Ed., 2003, 42 , 1737).
Plusieurs des zéolithes précédemment citées ont été synthétisées en milieu fluorure dans lequel l'agent mobilisateur n'est pas l'ion hydroxyde habituel mais l'ion fluorure selon un procédé initialement décrit par Flanigen et al (US-4,073,865), puis développé par J. -L. Guth et al. (Proc. Int. Zeol. Conf, Tokyo, 1986, p. 121). Les pH des milieux de synthèses sont typiquement proches de la neutralité. Un des avantages de ces systèmes réactionels fluorés est de permettre l'obtention de zéolithes purement siliciques contenant moins de défauts que les zéolithes obtenues en milieu OH" traditionnel (J.M. Chézeau et al., Zeolites, 1991, 11, 598). Un autre avantage décisif lié à l'utilisation de milieux réactionnels fluorés est de permettre l'obtention de nouvelles topologies de charpente silicique contenant des doubles cycles à quatre tétraèdres (D4R), comme dans le cas des zéolithes ITQ-7, ITQ- 12 et ITQ-13. Par ailleurs, l'utilisation conjointe de sources de germanium et de silicium dans les milieux de synthèse peut aussi permettre l'obtention de nouvelles charpentes de ce type, c'est-à-dire contenant des unités D4R, aussi bien en milieu basique classique non fluoré qu'en milieu fluoré, comme dans le cas des zéolithes ITQ-17 et ITQ-21 (A. Corma et al, Chem. Commun., 2001, 16, 1486, Chem. Commun., 2003, 9, 1050), ou M-12 (JL.Paillaud et al, Science, 2004, 304, 990).
Description de l'invention
La présente invention a pour objet un nouveau solide cristallisé, appelé solide cristallisé IM-20, présentant une nouvelle structure cristalline. Ledit solide présente une composition chimique exprimée par la formule générale suivante : mX02 : nGeO2 : PZ2O3 : qR : sF : wH20 dans laquelle R représente une ou plusieurs espèce(s) organique(s), X représente un ou plusieurs élément(s) tétravalent(s) différent(s) du germanium, Z représente au moins un élément trivalent et F est le fluor, m, n, p, q, s et w représentant respectivement le nombre de moles de XO2, GeO2, Z2O3, R, F et H2O et m est compris entre 0,3 et 0,8, n est compris entre 0,2 et 0,7, p est compris entre 0 et 0,1, q est compris entre 0 et 0,2, s est compris entre 0 et 0,2 et w est compris entre 0 et 1.
Le solide cristallisé IM-20 selon l'invention présente, sous sa forme brute de synthèse, un diagramme de diffraction de rayons X incluant au moins les raies inscrites dans le tableau 1.
Le solide cristallisé Evl-20 selon l'invention présente, sous sa forme calcinée, un diagramme de diffraction de rayons X incluant au moins les raies inscrites dans le tableau 2. Ce nouveau solide cristallisé EVI-20 présente une nouvelle structure cristalline.
Ces diagrammes de diffraction sont obtenus par analyse radiocristallographique au moyen d'un diffractomètre en utilisant la méthode classique des poudres avec le rayonnement Ka1 du cuivre (λ = l,5406Â). A partir de la position des pics de diffraction représentée par l'angle 2θ, on calcule, par la relation de Bragg, les équidistances réticulaires dhki caractéristiques de l'échantillon. L'erreur de mesure Δ(dhki) sur dhki est calculée grâce à la relation de Bragg en fonction de l'erreur absolue Δ(2Θ) affectée à la mesure de 2Θ. Une erreur absolue Δ(2Θ) égale à ± 0,02° est communément admise. L'intensité relative 1/I0 affectée à chaque valeur de dhw est mesurée d'après la hauteur du pic de diffraction correspondant. Le diagramme de diffraction des rayons X du solide cristallisé IM-20 selon l'invention, sous sa forme brute de synthèse, comporte au moins les raies aux valeurs de dhki données dans le tableau 1. Le diagramme de diffraction des rayons X du solide cristallisé EVÏ-20 selon l'invention, sous sa forme calcinée, comporte au moins les raies aux valeurs de dhki données dans le tableau 2. Dans la colonne des dhki, on a indiqué les valeurs moyennes des distances inter-réticulaires en Angstrôms (Â). Chacune de ces valeurs doit être affectée de l'erreur de mesure Δ(dhki) comprise entre ± 0,2Â et ± 0,003Â.
Tableau 1 : Valeurs moyennes des dhki et intensités relatives mesurées sur un diagramme de diffraction de rayons X du solide cristallisé IM-20 brut de synthèse
Figure imgf000004_0001
Tableau 2 Valeurs moyennes des dhki et intensités relatives mesurées sur un diagramme de diffraction de rayons X du solide cristallisé IM-20 calciné
Figure imgf000005_0001
où FF = très fort ; m = moyen ; f = faible ; F = fort ; mf = moyen faible ; ff = très faible. L'intensité relative I/Io est donnée en rapport à une échelle d'intensité relative où il est attribué une valeur de 100 à la raie la plus intense du diagramme de diffraction des rayons X : ff <15 ; 15 <f <30 ; 30 < mf <50 ; 50 <m < 65 ; 65 <F < 85 ; FF > 85.
Le solide cristallisé IM-20 selon l'invention présente une nouvelle structure cristalline de base ou topologie qui est caractérisée par ses diagrammes de diffraction X sous les formes brute de synthèse et calcinée donnés par la figure 1 et la figure 2 respectivement.
Ledit solide EVI-20 présente une composition chimique définie par la formule générale suivante : mX02 : nGeO2 : pZ2O3 : qR : sF : wH2O (I), où R représente une ou plusieurs espèce(s) organique(s), X représente un ou plusieurs élément(s) tétravalent(s) différent(s) du germanium, Z représente au moins un élément trivalent et F est le fluor. Dans la formule (I), m, n, p, q, s et w représentent respectivement le nombre de moles de XO2, GeO2, Z2O3, R, F et H2O et m est compris entre 0,3 et 0,8, n est compris entre 0,2 et 0,7, p est compris entre O et 0,1, q est compris entre O et 0,2, s est compris entre O et 0,2 et w est compris entre O et 1. Avantageusement, le rapport molaire m/n de la charpente du solide cristallisé IM-20 selon l'invention est compris entre 1 et 10, de préférence entre 1 et 5 et de manière très préférée entre 1,5 et 2. Le rapport molaire {(n+m)/p} est supérieur ou égal à 10 et est de manière préférée supérieur ou égal à 20. La valeur de p est comprise entre 0 et 0,1, très préférentiellement comprise entre 0 et 0,05 et de manière encore plus préférée comprise entre 0,005 et 0,02. La valeur de q est comprise entre 0 et 0,2, avantageusement entre 0,02 et 0,2 et très avantageusement entre 0,05 et 0,15. Selon l'invention, s est compris entre 0 et 0,2, de manière préférée, s est compris entre 0,01 et 0,2 et de manière très préférée s est compris entre 0,02 et 0,1. La valeur prise par w est, selon l'invention, comprise entre 0 et 1, de préférence comprise entre 0,3 et 0,5. Sous la forme sèche et calcinée du solide cristallisé IM-20 selon l'invention, les valeurs de q, s et w sont nulles. Conformément à l'invention, X est préférentiellement choisi parmi le silicium, l'étain et le titane, très préférentiellement X est le silicium, et Z est préférentiellement choisi parmi l'aluminium, le bore, le fer, l'indium et le gallium et très préférentiellement Z est l'aluminium. De manière préférée, X est le silicium : le solide cristallisé IM-20 selon l'invention est alors, lorsque l'élément Z est présent, un métallogermanosilicate cristallisé présentant un diagramme de diffraction des rayons X identique à celui décrit dans le tableau 1 lorsqu'il se trouve sous sa forme brute de synthèse et identique à celui décrit dans le tableau 2 lorsqu'il se trouve sous sa forme calcinée. De manière encore plus préférée, X est le silicium et Z est l'aluminium : le solide cristallisé EM-20 selon l'invention est alors un aluminogermanosilicate cristallisé présentant un diagramme de diffraction des rayons X identique à celui décrit dans le tableau 1 lorsqu'il se trouve sous sa forme brute de synthèse et identique à celui décrit dans le tableau 2 lorsqu'il se trouve sous sa forme calcinée.
Dans le cas où le solide cristallisé IM-20 selon l'invention se présente sous sa forme brute de synthèse, c'est-à-dire directement issu de la synthèse et préalablement à toute étape de calcination(s) et/ou d'échange(s) d'ions bien connue de l'Homme du métier, ledit solide IM-20 comporte au moins une espèce organique telle que celle décrite ci-après ou ses produits de décomposition, ou encore ses précurseurs. Sous forme brute de synthèse, la (ou les) espèce(s) organique(s) R présente(s) dans la formule générale définissant le solide IM-20 est (sont) au moins en partie, et de préférence entièrement, la(les)dite(s) espèce(s) organique(s). Selon un mode préféré de l'invention, R est le cation l-butyl-3-méthylimidazolium. Ladite espèce organique R, qui joue le rôle de structurant, peut être éliminée par les voies classiques de l'état de la technique comme des traitements thermiques et/ou chimiques. Le solide cristallisé IM-20 selon l'invention est de préférence un solide zéolithique.
L'invention concerne également un procédé de préparation du solide cristallisé M-20 dans lequel on fait réagir un mélange aqueux comportant au moins une source d'au moins un oxyde de germanium, au moins une source d'au moins un oxyde XO2, éventuellement au moins une source d'au moins un oxyde Z2O3, au moins une espèce organique R et au moins une source d'ions fluorures, le mélange présentant préférentiellement la composition molaire suivante : (XO2+GeO2)/Z2O3 : au moins 5, de préférence au moins 10, H2θ/(XO2+GeO2) : 1 à 50, de préférence 5 à 20, R/(XO2+GeO2) : 0,3 à 3, de préférence 0,4 à 1,5,
XO2/GeO2 : 0,5 à 10, de préférence 1 à 10, et de manière très préférée de 1 à 5, F/(XO2+ GeO2) : 0,1 à 2, de préférence 0,2 à 1 , où X est un ou plusieur(s) élément(s) tétravalent(s) différent(s) du germanium, de préférence choisi(s) parmi le silicium, l'étain et le titane et très préférentiellement X est le silicium, Z est un ou plusieurs élément(s) trivalent(s) choisi(s) dans le groupe formé par les éléments suivants : aluminium, fer, bore, indium et gallium, de préférence l'aluminium. Conformément au procédé selon l'invention, R est une espèce organique jouant le rôle de structurant organique. Préférentiellement, R est le composé l-butyl-3-méthylimidazolium. La source de l'élément X peut être tout composé comprenant l'élément X et pouvant libérer cet élément en solution aqueuse sous forme réactive. Avantageusement, lorsque l'élément X est le silicium, la source de silice peut être l'une quelconque de celles couramment utilisées dans la synthèse des zéolithes, par exemple de la silice solide en poudre, de l'acide silicique, de la silice colloïdale ou de la silice dissoute ou du tétraéthoxysilane (TEOS). Parmi les silices en poudre, on peut utiliser les silices précipitées, notamment celles obtenues par précipitation à partir d'une solution de silicate de métal alcalin, telles que des silices aérosiles, des silices pyrogénées, par exemple du "CAB-O-SIL" et des gels de silice. On peut utiliser des silices colloïdales présentant différentes tailles de particules, par exemple de diamètre équivalent moyen compris entre 10 et 15 nm ou entre 40 et 50 nm, telles que celles commercialisées sous la marque déposée "LUDOX".
La source de germanium peut être tout composé comprenant l'élément germnaium et pouvant libérer cet élément en solution aqueuse sous forme réactive. La source de germanium peut être un oxyde de germanium cristallisé sous les formes dites quartz ou rutile. On peut aussi utiliser des sources de germanium telles que le tétraéthoxygermanium ou le tétraisopropoxygermanium. La source de germanium peut être de préférence un oxyde de germanium amorphe GeO2. La source de l'élément Z peut être tout composé comprenant l'élément Z et pouvant libérer cet élément en solution aqueuse sous forme réactive. Dans le cas préféré où Z est l'aluminium, la source d'alumine est de préférence de l'aluminate de sodium, ou un sel d'aluminium, par exemple du chlorure, du nitrate, de l'hydroxyde ou du sulfate, un alkoxyde d'aluminium ou de l'alumine proprement dite, de préférence sous forme hydratée ou hydratable, comme par exemple de l'alumine colloïdale, de la pseudoboehmite, de l'alumine gamma ou du trihydrate alpha ou bêta. On peut également utiliser des mélanges des sources citées ci-dessus.
Le fluor peut être introduit sous forme de sels de métaux alcalins ou d'ammonium comme par exemple NaF, NH4F, NH4HF2 ou sous forme d'acide fluorhydrique ou encore sous forme de composés hydrolysables pouvant libérer des anions fluorures dans l'eau comme le fluorure de silicium SiF4 ou les fluorosilicates d'ammonium (NH4)2SiF6 ou de sodium Na2SiF6. Selon un mode de réalisation préféré du procédé selon l'invention, on fait réagir un mélange aqueux comportant de la silice, éventuellement de l'alumine, un oxyde de germanium, du l-butyl-3-méthylimidazolium et une source d'ions fluorures.
Le procédé selon l'invention consiste à préparer un mélange réactionnel aqueux appelé gel et renfermant au moins une source d'au moins un oxyde de germanium, au moins une source d'au moins un oxyde XO2, éventuellement au moins une source d'au moins un oxyde Z2O3, au moins une source d'ions fluorures, et au moins une espèce organique R. Les quantités desdits réactifs sont ajustées de manière à conférer à ce gel une composition permettant sa cristallisation en solide cristallisé IM-20 de formule générale mX02 : nGeO2 : pZ2O3 : qR : sF : wH20, où m, n, p, q, s et w répondent aux critères définis plus haut. Puis le gel est soumis à un traitement hydrothermal jusqu'à ce que le solide cristallisé IM-20 se forme. Le gel est avantageusement mis sous conditions hydrothermales sous une pression de réaction autogène, éventuellement en ajoutant du gaz, par exemple de l'azote, à une température comprise entre 12O0C et 200°C, de préférence entre 140°C et 180°C, et de manière encore plus préférentielle à une température comprise entre 150°C et 175°C jusqu'à la formation des cristaux de solide IM-20 selon l'invention. La durée nécessaire pour obtenir la cristallisation varie généralement entre 1 heure et plusieurs mois, de préférence entre 10 heures et 20 jours, en fonction de la composition des réactifs dans le gel, de l'agitation et de la température de réaction. La mise en réaction s'effectue sous agitation ou en absence d'agitation.
Il peut être avantageux d'additionner des germes au mélange réactionnel afin de réduire le temps nécessaire à la formation des cristaux et/ou la durée totale de cristallisation. Il peut également être avantageux d'utiliser des germes afin de favoriser la formation du solide cristallisé IM-20 au détriment d'impuretés. De tels germes comprennent des solides cristallisés, notamment des cristaux de solide IM-20. Les germes cristallins sont généralement ajoutés dans une proportion comprise entre 0,01 et 10 % de la masse des oxydes (XO2+GeO2), XO2 étant de préférence de la silice, utilisée dans le mélange réactionnel. A la fin de la réaction, la phase solide est filtrée et lavée ; elle est ensuite prête pour des étapes ultérieures telles que le séchage, la déshydratation et la calcination et/ou l'échange d'ions. Pour ces étapes, toutes les méthodes conventionnelles connues de l'Homme du métier peuvent être employées. L'étape de calcination s'effectue avantageusement par une ou plusieurs étapes de chauffage à des températures allant de 100 à 1000°C pour des durées allant de quelques heures à plusieurs jours. De manière préférée, pour obtenir la forme calcinée du solide cristallisé IM-20 selon l'invention, le solide cristallisé sous sa forme brute de synthèse subit tout d'abord un chauffage sous balayage d'un gaz neutre, par exemple sous balayage d'azote, à une température préférentiellement comprise entre 100 et 250°C pendant une durée avantageusement comprise entre 2 et 8 heures puis une calcination sous atmosphère d'un gaz neutre, par exemple sous atmosphère d'azote, à une température préférentiellement comprise entre 400 et 700°C pendant une durée avantageusement comprise entre 6 et 10 heures. A la suite de ces premiers traitements, le solide cristallisé IM-20 obtenu est calciné à une température comprise entre 400 et 700°C pendant une durée comprise entre 6 et 10 heures sous flux d'air puis encore pendant une durée préférentiellement comprise entre 6 et 10 heures sous flux d'oxygène. La présente invention concerne également l'utilisation dudit solide IM-20 en tant qu'adsorbant. De préférence, ledit solide M-20 est débarrassé de l'espèce organique, de préférence du cation l-butyl-3-méthylimidazolium, lorsqu'il est utilisé comme adsorbant. Lorsqu'il est utilisé comme adsorbant, le solide cristallisé IM-20 selon l'invention est généralement dispersé dans une phase matricielle inorganique qui contient des canaux et des cavités qui permettent l'accès du fluide à séparer au solide cristallisé. Ces matrices sont préférentiellement des oxydes minéraux, par exemple des silices, des alumines, des silices-alumines ou des argiles. La matrice représente de manière générale entre 2 et 25% en masse de l'adsorbant ainsi formé.
L'invention est illustrée au moyen des exemples suivants.
Exemple 1 : préparation d'un solide cristallisé EVI-20 selon l'invention.
4,335 g diiydroxyde de l-butyl-3-méthylimidazolium (Solvionic) sont ajoutés à 9,17 mL d'eau distillée dans un récipient en Téflon de 20 mL de volume intérieur. 2,330 g d'oxyde de germanium (Aldrich) sont ensuite ajoutés à cette solution. Le mélange est agité pendant 15 minutes à l'aide d'un agitateur magnétique. 2,002 g d'Aerosil 200 (silice précipitée, Degussa) sont alors introduits. Le mélange est ensuite agité pendant 2 heures à température ambiante. 1,218 ml (1,389 g) de solution aqueuse de HF (acide fluorhydrique 40 % massique, Riedel de Haën) sont ensuite ajoutés. Le mélange est alors agité pendant 15 minutes. Après pesée et ajustement de la teneur en eau requise, la composition molaire du mélange obtenu est : 0,6 SiO2 : 0,4 GeO2 : 0,5 l-butyl-3-méthylimidazolium : 0,5 HF : 10 H2O.
La chemise en Téflon contenant le mélange de synthèse (pH ~ 9) est alors introduite dans un autoclave, qui est placé dans une étuve à 170 °C pour une durée de 14 jours en absence d'agitation. Après filtration, le produit obtenu est lavé plusieurs fois avec de l'eau distillée. Il est ensuite séché à 70 °C pendant 24 heures. La masse de produit sec obtenue est d'environ 4,23 g. Le produit solide séché subit tout d'abord un chauffage sous balayage d'azote à la tempétraure de 2000C pendant 4 heures puis une calcination toujours sous atmosphère d'azote à 550°C pendant 8 heures. A la suite de ces premiers traitements, la solide obtenu est calciné à 5500C pendant 8 heures sous flux d'air puis encore 8 heures sous flux d'oxygène. Le solide obtenu a été analysé par diffraction des rayons X et identifié comme étant constitué de solide cristallisé IM-20 : le diffractogramme effectué sur le solide IM-20 est donné sur la figure 2.
Exemple 2 : préparation d'un solide cristallisé IM-20 selon l'invention
3,476 g d'hydroxyde de l-butyl-3-méthylimidazolium (Solvionic) sont ajoutés à 8,30 mL d'eau distillée dans un récipient en Téflon de 20 mL de volume intérieur. 1,862 g d'oxyde de germanium (Aldrich) sont ensuite ajoutés à cette solution. Le mélange est agité pendant 15 minutes à l'aide d'un agitateur magnétique. 5,945 ml (5,553 g) de TEOS (tétraéthoxysilane, Aldrich) sont alors introduits. Le mélange est ensuite agité pendant 48 heures à température ambiante, afin d'évaporer Péthanol formé par l'hydrolyse du TEOS. 0,975 ml (1,113 g) de solution aqueuse de HF (acide fiuorhydrique 40 % massique, Riedel de Haën) sont ensuite ajoutés. Le mélange est alors agité pendant 15 minutes. Après pesée et ajustement de la teneur en eau requise, la composition molaire du mélange obtenu est : 0,6 SiO2 : 0,4 GeO2 : 0,5 l-butyl-3-méthylimidazolium : 0,5 HF : 10 H2O.
La chemise en Téflon contenant le mélange de synthèse (pH ~ 9) est alors introduite dans un autoclave, qui est placé dans une étuve à 170 0C pour une durée de 14 jours en absence d'agitation.
Après filtration, le produit obtenu est lavé plusieurs fois avec de l'eau distillée. Il est ensuite séché à 70 0C pendant 24 heures. La masse de produit sec obtenue est d'environ 2,45 g.
Le produit solide séché subit tout d'abord un chauffage sous balayage d'azote à la température de 200°C pendant 4 heures puis une calcination toujours sous atmosphère d'azote à 550°C pendant 8 heures. A la suite de ces premiers traitements, le solide obtenu est calciné à 550°C pendant 8 heures sous flux d'air puis encore 8 heures sous flux d'oxygène. Le solide obtenu a été analysé par diffraction des rayons X et identifié comme étant constitué de solide cristallisé IM-20 : le diffractogramme effectué sur le solide IM-20 est donné sur la figure 2.
Exemple 3 : préparation d'un solide cristallisé IM-20 selon l'invention 6,952 g d'hydroxyde de l-butyl-3-méthylimidazolium (Solvionic) sont ajoutés à 7,64 mL d'eau distillée dans un récipient en Téflon de 20 mL de volume intérieur. 0,349 g d'hydroxyde d'aluminium (63 à 67% en masse d'Al2O3, Fluka) et 1,862 g d'oxyde de germanium (Aldrich) sont ensuite ajoutés à cette solution. Le mélange est agité pendant 1 heure à l'aide d'un agitateur magnétique. Environ 0,070 g du produit de la synthèse décrite dans l'exemple 1 préalablement broyé (soit 2% en masse par rapport aux oxydes SiO2 et GeO2) sont alors introduits en tant que germes, puis le mélange est agité pendant 15 minutes. 5,945 ml (5,553 g) de TEOS (tétraéthoxysilane, Aldrich) sont alors introduits. Le mélange est ensuite agité pendant 48 heures à température ambiante, afin d'évaporer l'éthanol formé par l'hydrolyse du TEOS. 1,952 ml (2,225 g) de solution aqueuse de HF (acide fluorhydrique 40% massique, Riedel de Haën) sont alors ajoutés puis le mélange est agité pendant 15 minutes. Après pesée et ajustement de la teneur en eau requise, la composition molaire du mélange obtenu est : 0,6 SiO2 : 0,4 GeO2 : 0,05 Al2O3 : 1 l-butyl-3-méthylimidazolium : 1 HF : 10 H2O (+ 2% en masse de germes par rapport aux oxydes SiO2 et GeO2).
La chemise en Téflon contenant le mélange de synthèse (pH ~ 9) est alors introduite dans un autoclave, qui est placé dans une étuve à 170 °C pour une durée de 14 jours en absence d'agitation. Après filtration, le produit obtenu est lavé plusieurs fois avec de l'eau distillée. Il est ensuite séché à 70 °C pendant 24 heures. La masse de produit sec obtenue est d'environ 2,27 g. Le produit solide séché subit tout d'abord un chauffage sous balayage d'azote à la température de 2000C pendant 4 heures puis une calcination toujours sous atmosphère d'azote à 55O0C pendant 8 heures. A la suite de ces premiers traitements, le solide obtenu est calciné à 5500C pendant 8 heures sous flux d'air puis encore 8 heures sous flux d'oxygène.
Le solide obtenu a été analysé par diffraction des rayons X et identifié comme étant constitué de solide cristallisé IM-20 : le diffractogramme effectué sur le solide IM-20 est donné sur la figure 2.
Exemple 4 : préparation d'un adsorbant contenant le solide cristallisé IM-20.
Le solide utilisé est le solide calciné de l'exemple 1. Il est mis sous forme d'extrudés par malaxage avec de la boehmite (Pural SB3, Sasol) dans un malaxeur à bras en Z et extrusion de la pâte obtenue avec une extrudeuse piston. Les extradés sont alors séchés à 1200C pendant 12 h sous air et calcinés à 55O0C pendant 2 heures sous flux d'air dans un four à moufle. L'adsorbant ainsi préparé est composé de 80% poids du solide zéolithique IM-20 et de 20% poids d'alumine.

Claims

REVENDICATIONS
1. Solide cristallisé IM-20 présentant sous sa forme calcinée un diagramme de diffraction des rayons X incluant au moins les raies inscrites dans le tableau ci-dessous :
Figure imgf000013_0001
où FF = très fort ; m = moyen ; f = faible ; F = fort ; mf = moyen faible ; ff = très faible et présentant une composition chimique exprimée par la formule générale suivante : mX02 : nGeO2 : pZ2O3 : qR : sF : wH2O dans laquelle R représente une ou plusieurs espèce(s) organique(s), X représente un ou plusieurs élément(s) tétravalent(s) différent(s) du germanium, Z représente au moins un élément trivalent et F est le fluor, m, n, p, q, s et w représentant respectivement le nombre de moles de XO2, GeO2, Z2O3, R, F et H2O et m est compris entre 0,3 et 0,8, n est compris entre 0,2 et 0,7, p est compris entre O et 0,1, q est compris entre O et 0,2, s est compris entre O et 0,2 et w est compris entre O et 1.
2. Solide cristallisé IM-20 selon la revendication 1 dans lequel X est le silicium.
3. Solide cristallisé EVI-20 selon la revendication 1 ou la revendication 2 dans lequel Z est l'aluminium.
4. Solide cristallisé IM-20 selon l'une des revendications 1 à 3 dans lequel le rapport molaire {(n+m)/p} est supérieur ou égal à 10, p est compris entre 0,005 et 0,02, q est compris entre 0 et 0,2, s est compris entre 0 et 0,2 et w est compris entre 0 et 1.
5. Procédé de préparation d'un solide cristallisé IM-20 selon l'une des revendications 1 à 4 consistant à procéder au mélange, en milieu aqueux, d'au moins une source d'au moins un oxyde de germanium, d'au moins une source d'au moins un oxyde XO2, éventuellement d'au moins une source d'au moins un oxyde Z2O3, d'au moins une source d'ions fluorures, et d'au moins une espèce organique R puis à procéder au traitement hydrothermal dudit mélange, jusqu'à ce que ledit solide cristallisé IM-20 se forme.
6. Procédé de préparation d'un solide cristallisé Evl-20 selon la revendication 5 tel que la composition molaire du mélange réactionnel est telle que :
(XO2+GeO2)/Z2O3 : au moins 5, H2O/(XO2+GeO2) : 1 à 50, R/(XO2+GeO2) : 0,3 à 3,
XO2/GeO2 : 0,5 à 10,
FV(XO2+ GeO2) : 0,1 à 2.
7. Procédé de préparation selon la revendication 5 ou la revendication 6 tel que ladite espèce organique R est le cation l-butyl-3-méthylimidazolium.
8. Procédé de préparation selon l'une des revendications 5 à 7 tel que des germes sont additionnés au mélange réactionnel.
9. Utilisation du solide cristallisé LM-20 selon l'une des revendications 1 à 4 ou préparé selon l'une des revendications 5 à 8 comme adsorbant.
PCT/FR2009/001347 2008-12-18 2009-11-26 Solide cristallise im-20 et son procédé de préparation WO2010076399A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP09796762.4A EP2379450B1 (fr) 2008-12-18 2009-11-26 Solide cristallise im-20 et son procédé de préparation
CN2009801504046A CN102245507B (zh) 2008-12-18 2009-11-26 Im-20结晶固体和其制备方法
DK09796762.4T DK2379450T3 (da) 2008-12-18 2009-11-26 Krystalliseret faststof IM-20 og fremgangsmåde til fremstilling heraf
US13/140,501 US8444952B2 (en) 2008-12-18 2009-11-26 IM-20 crystalline solid and process for its preparation
JP2011541530A JP2012512800A (ja) 2008-12-18 2009-11-26 結晶固体im−20およびその調製方法
ZA2011/04415A ZA201104415B (en) 2008-12-18 2011-06-14 Im-20 crystallised solid and method for making same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR08/07.271 2008-12-18
FR0807271A FR2940266B1 (fr) 2008-12-18 2008-12-18 Solide cristallise im-20 et son procede de preparation

Publications (1)

Publication Number Publication Date
WO2010076399A1 true WO2010076399A1 (fr) 2010-07-08

Family

ID=41050324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/001347 WO2010076399A1 (fr) 2008-12-18 2009-11-26 Solide cristallise im-20 et son procédé de préparation

Country Status (8)

Country Link
US (1) US8444952B2 (fr)
EP (1) EP2379450B1 (fr)
JP (1) JP2012512800A (fr)
CN (1) CN102245507B (fr)
DK (1) DK2379450T3 (fr)
FR (1) FR2940266B1 (fr)
WO (1) WO2010076399A1 (fr)
ZA (1) ZA201104415B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9289757B2 (en) 2009-04-09 2016-03-22 California Institute Of Technology Molecular sieves and related methods and structure directing agents

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10828625B2 (en) 2015-06-01 2020-11-10 California Institute Of Technology Crystalline germanosilicate materials of new CIT-13 topology and methods of preparing the same
CN107873015B (zh) * 2015-06-01 2021-12-24 加州理工学院 具有新的cit-13拓扑结构的晶体锗硅酸盐材料及其制备方法
US10913053B2 (en) 2016-03-04 2021-02-09 California Institute Of Technology Germanosilicate compositions and methods of preparing the same
JP6906049B2 (ja) * 2016-11-17 2021-07-21 シェブロン ユー.エス.エー. インコーポレイテッド アルミニウム置換モレキュラーシーブcit−13
US10974967B2 (en) * 2017-06-13 2021-04-13 China Petroleum & Chemical Corporation Molecular sieve SCM-15, synthesis method therefor and use thereof
SG11201912126PA (en) 2017-06-13 2020-01-30 China Petroleum & Chem Corp Molecular sieve SCM-14, a preparation process and use thereof
CN111032572B (zh) * 2018-02-20 2023-01-24 雪佛龙美国公司 分子筛ssz-113、其合成及应用
WO2021234551A1 (fr) 2020-05-22 2021-11-25 Chevron U.S.A. Inc. Tamis moléculaire ssz-120, sa synthèse et son utilisation

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3130007A (en) 1961-05-12 1964-04-21 Union Carbide Corp Crystalline zeolite y
US3702886A (en) 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
US4073865A (en) 1976-09-27 1978-02-14 Union Carbide Corporation Silica polymorph and process for preparing same
US4954325A (en) 1986-07-29 1990-09-04 Mobil Oil Corp. Composition of synthetic porous crystalline material, its synthesis and use
US5178748A (en) 1988-12-22 1993-01-12 Imperial Chemical Industries Catalytic reactions using zeolites
US5420279A (en) 1991-04-04 1995-05-30 Institut Francais Du Petrole Crystallised microporous gallium phosphate and its substituted derivatives and a method of preparing them
US6043179A (en) 1997-08-13 2000-03-28 California Institute Of Technology Zeolite CIT-5 and method of making
US6471941B1 (en) 2001-05-29 2002-10-29 Exxonmobil Research And Engineering Company Synthetic porous crystalline material ITQ-13, its synthesis and use
US6471939B1 (en) 2001-05-29 2002-10-29 Exxonmobil Research And Engineering Company Synthetic porous crystalline material ITQ-12, its synthesis and use
WO2002092511A1 (fr) 2001-05-14 2002-11-21 Consejo Superior De Investigaciones Cientificas Matiere cristalline poreuse (zeolite itq-21), son procede de preparation et son utilisation dans la conversion catalytique de composes organiques
EP1518827A1 (fr) * 2003-09-26 2005-03-30 Institut Francais Du Petrole Solide cristallisé IM-12 et son procédé de préparation

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4483835A (en) * 1983-11-14 1984-11-20 Chevron Research Company Process for preparing molecular sieves using imidazole template
US5173281A (en) * 1991-10-07 1992-12-22 Mobil Oil Corp. Synthesis of a synthetic porous crystalline material
US5779882A (en) * 1996-07-22 1998-07-14 Mobil Oil Corporation Modified MCM-56, its preparation and use
FR2754809B1 (fr) * 1996-10-21 2003-04-04 Inst Francais Du Petrole Zeolithe im-5, son procede de preparation et ses applications catalytiques
US6034179A (en) * 1998-08-28 2000-03-07 Dow Corning Corporations Polyolefin compositions containing organosilicon compounds as adhesion additives
ES2155761B1 (es) * 1998-12-22 2001-12-01 Univ Valencia Politecnica Zeolita itq-7.
US6555089B1 (en) * 2001-07-13 2003-04-29 Chevron U.S.A. Inc. Zeolite SSZ-58 composition of matter and synthesis thereof
US6569401B1 (en) * 2002-08-01 2003-05-27 Chevron U.S.A. Inc. Zeolite SSZ-64 composition of matter and synthesis thereof
FR2850099B1 (fr) * 2003-01-16 2005-03-04 Inst Francais Du Petrole Solide cristallise im-9 et son procede de preparation
FR2852024B1 (fr) * 2003-03-05 2005-04-15 Inst Francais Du Petrole Solide cristallise im-10 et son procede de preparation
US7713513B2 (en) * 2003-03-21 2010-05-11 Uop Llc High silica zeolites: UZM-8HS
US7108843B2 (en) * 2004-12-23 2006-09-19 Chevron U.S.A. Inc. Molecular sieve SSZ-70 composition of matter and synthesis thereof
US7959899B2 (en) * 2006-07-28 2011-06-14 Exxonmobil Chemical Patents Inc. Molecular sieve composition (EMM-10-P), its method of making, and use for hydrocarbon conversions
WO2008016477A2 (fr) * 2006-07-28 2008-02-07 Exxonmobil Chemical Patents Inc. Nouvelle composition de tamis moléculaire, son procédé de production, et son procédé d'utilisation
FR2908127B1 (fr) * 2006-11-07 2009-02-06 Inst Francais Du Petrole Solide cristallise im-15 et son procede de preparation
GB0623997D0 (en) * 2006-12-01 2007-01-10 Ici Plc Thermal transfer printing
EP2099713B1 (fr) * 2006-12-07 2012-09-19 ExxonMobil Research and Engineering Company Itq-34, matériau cristallin microporeux
US8704025B2 (en) * 2008-07-28 2014-04-22 Exxonmobil Chemical Patents Inc. Molecular sieve composition EMM-12, a method of making and a process of using the same
RU2519168C2 (ru) * 2008-07-28 2014-06-10 Эксонмобил Кемикэл Пейтентс Инк. Новая молекулярно-ситовая композиция емм-13, способы ее получения и применения
US7820141B2 (en) * 2008-10-10 2010-10-26 Chevron U.S.A. Inc. Molecular sieve SSZ-82 composition of matter and synthesis thereof
US8597611B2 (en) * 2010-07-01 2013-12-03 Uop Llc UZM-45 aluminosilicate zeolite, method of preparation and processes using UZM-45

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3130007A (en) 1961-05-12 1964-04-21 Union Carbide Corp Crystalline zeolite y
US3702886A (en) 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
US4073865A (en) 1976-09-27 1978-02-14 Union Carbide Corporation Silica polymorph and process for preparing same
US4954325A (en) 1986-07-29 1990-09-04 Mobil Oil Corp. Composition of synthetic porous crystalline material, its synthesis and use
US5178748A (en) 1988-12-22 1993-01-12 Imperial Chemical Industries Catalytic reactions using zeolites
US5420279A (en) 1991-04-04 1995-05-30 Institut Francais Du Petrole Crystallised microporous gallium phosphate and its substituted derivatives and a method of preparing them
US6043179A (en) 1997-08-13 2000-03-28 California Institute Of Technology Zeolite CIT-5 and method of making
WO2002092511A1 (fr) 2001-05-14 2002-11-21 Consejo Superior De Investigaciones Cientificas Matiere cristalline poreuse (zeolite itq-21), son procede de preparation et son utilisation dans la conversion catalytique de composes organiques
US6471941B1 (en) 2001-05-29 2002-10-29 Exxonmobil Research And Engineering Company Synthetic porous crystalline material ITQ-13, its synthesis and use
US6471939B1 (en) 2001-05-29 2002-10-29 Exxonmobil Research And Engineering Company Synthetic porous crystalline material ITQ-12, its synthesis and use
EP1518827A1 (fr) * 2003-09-26 2005-03-30 Institut Francais Du Petrole Solide cristallisé IM-12 et son procédé de préparation

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
A. CORMA ET AL., CHEM. COMMUN., vol. 16, 2001, pages 1486
A. CORMA, M.-J. DIAZ CABAÑAS, J. MARTINEZ-TRIGUERO, F. REY AND J. RIUS,: "A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst", NATURE, vol. 418, 2002, DOI: 10.1038/nature00924, pages 514, XP002545185 *
BLACKWELL, C.S. ET AL., ANGEW. CHEM., INT. ED., vol. 42, 2003, pages 1737
BRIAN G. TREWYN, CHAD M. WHITMAN, AND VICTOR S.-Y. LIN: "Morphological Control of Room-Temperature Ionic Liquid Templated Mesoporous Silica Nanoparticles for Controlled Release of Antibacterial Agents", NANO LETTERS, vol. 4, no. 1, 28 September 2004 (2004-09-28), DOI: 10.1021/nl048774r, pages 2139 - 2143, XP002545182 *
BURTON, A. ET AL., CHEMISTRY : A EUR. JOURNAL, vol. 9, 2003, pages 5737
BURTON, A. ET AL., J AM. CHEM. SOC., vol. 125, 2003, pages 1633
C. J. ADAMS, A. E. BRADLEY AND K. R. SEDDON: "Rapid Communication: The Synthesis of Mesoporous Materials Using Novel Ionic Liquid Templates in Water", AUSTRALIAN JOURNAL OF CHEMISTRY, 2001, XP002545181, Retrieved from the Internet <URL:http://www.publish.csiro.au/paper/CH01191.htm> [retrieved on 20090910] *
CH. BAERLOCHER; W.M. MEIER; D.H. OLSON: "Atlas of Zeolite Framework Types", 2001, ELSEVIER
CHEM. COMMUN., vol. 9, 2003, pages 1050
CORMA, A. ET AL., NATURE MATERIALS, vol. 2, 2003, pages 493
H.LI AND O. M. YAGH: "Transformation of Germanium Dioxide to Microporous Germanate 4-Connected Nets", J. AM. CHEM. SOC, vol. 120, no. 40, 1998, DOI: 10.1021/ja982384n, pages 10569 - 10570, XP002545187 *
J.-L. GUTH ET AL., PROC. INT. ZEOL. CONF., 1986, pages 121
J.M. CHÉZEAU ET AL., ZEOLITES, vol. 1 L, 1991, pages 598
JL.PAILLAUD ET AL., SCIENCE, vol. 304, 2004, pages 990
L. A. ASLANOV, M. A. ZAKHAROV, E. E. KNYAZEVA AND A. V. YATSENKO: "Preparation of mesoporous aluminum hydroxide and oxide in ionic liquids", RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, vol. 52, no. 10, October 2007 (2007-10-01), 10.1134/S0036023607100051, pages 1511 - 1513, XP002545183 *
L.A. VILLAESCUSA, P.A. BARRET AND M.A.: "ITQ-7: A new pure silica polymorph with a three-dimensional system of large pore channels", ANGEWANDTE CHEMIE - INTERNATIONAL EDITION, vol. 38, no. 13-14, 12 July 1999 (1999-07-12), pages 1997 - 2000, XP002545188 *
LIQIU TANG AND XIAODONG ZOU: "SU-21, a layered silicogermanate with organic amines covalently-bonded to germanium", MICROPOROUS AND MESOPOROUS MATERIALS, vol. 101, no. 1-2, April 2007 (2007-04-01), doi:10.1016/j.micromeso.2006.11.005, pages 24 - 29, XP002545186 *
YANNICK MATHIEU, JEAN-LOUIS PAILLAUD, PHILIPPE CAULLET AND NICOLAS BATS: "Synthesis and characterization of IM-10: a new microporous silicogermanate with a novel topology", MICROPOROUS AND MESOPOROUS MATERIALS, vol. 75, no. 1-2, 12 October 2004 (2004-10-12), doi:10.1016/j.micromeso.2004.06.023, pages 13 - 22, XP002545184 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9289757B2 (en) 2009-04-09 2016-03-22 California Institute Of Technology Molecular sieves and related methods and structure directing agents
US9957166B2 (en) 2009-04-09 2018-05-01 California Institute Of Technology Molecular sieves and related methods and structure directing agents

Also Published As

Publication number Publication date
ZA201104415B (en) 2012-02-29
EP2379450B1 (fr) 2013-06-26
US20120041210A1 (en) 2012-02-16
EP2379450A1 (fr) 2011-10-26
DK2379450T3 (da) 2013-09-02
FR2940266B1 (fr) 2010-12-31
FR2940266A1 (fr) 2010-06-25
CN102245507B (zh) 2013-11-20
US8444952B2 (en) 2013-05-21
CN102245507A (zh) 2011-11-16
JP2012512800A (ja) 2012-06-07

Similar Documents

Publication Publication Date Title
EP2379450B1 (fr) Solide cristallise im-20 et son procédé de préparation
EP2170768B1 (fr) Solide cristallise im-16 et son procede de preparation
EP2170769B1 (fr) Solide cristallise izm-2 et son procédé de préparation
EP1518827B1 (fr) Solide cristallisé IM-12 et son procédé de préparation
EP2219998B1 (fr) Solide cristallise im-18 et son procede de preparation
FR2850099A1 (fr) Solide cristallise im-9 et son procede de preparation
EP2086882A2 (fr) Solide cristallise im-15 et son procede de preparation
CA2025937C (fr) Zeolithe de type beta et son procede de preparation
EP2219999B1 (fr) Solide cristallise izm-3 et son procede de preparation
EP2219997B1 (fr) Solide cristallise im-17 et son procede de preparation
WO2007135266A1 (fr) Solide cristallisé im-13 et son procédé de préparation
FR2852024A1 (fr) Solide cristallise im-10 et son procede de preparation
EP1510501B1 (fr) Solide cristallisé IM-11 de type structural LTA et son procédé de préparation.
WO2008059121A2 (fr) Solide cristallise im-14 et son procede de preparation
WO2012056118A1 (fr) Solide cristallise izm-4 et son procede de preparation
EP0347273B1 (fr) Nouveau procédé de synthèse de zéolithes de type structural MTT
EP1591420A2 (fr) Solide cristallisé ITQ-31 et son procédé de préparation
EP0437989A1 (fr) Zéolithe de type lévyne et son procédé de préparation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980150404.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09796762

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009796762

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011541530

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5079/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13140501

Country of ref document: US