WO2010075675A1 - 一种太阳能吸热管及制造方法 - Google Patents

一种太阳能吸热管及制造方法 Download PDF

Info

Publication number
WO2010075675A1
WO2010075675A1 PCT/CN2009/001602 CN2009001602W WO2010075675A1 WO 2010075675 A1 WO2010075675 A1 WO 2010075675A1 CN 2009001602 W CN2009001602 W CN 2009001602W WO 2010075675 A1 WO2010075675 A1 WO 2010075675A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
flexible
heat absorbing
solar heat
heat
Prior art date
Application number
PCT/CN2009/001602
Other languages
English (en)
French (fr)
Inventor
刘阳
Original Assignee
北京实力源科技开发有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京实力源科技开发有限责任公司 filed Critical 北京实力源科技开发有限责任公司
Publication of WO2010075675A1 publication Critical patent/WO2010075675A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • F24S10/45Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors the enclosure being cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/80Arrangements for concentrating solar-rays for solar heat collectors with reflectors having discontinuous faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/80Accommodating differential expansion of solar collector elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/60Fixation means, e.g. fasteners, specially adapted for supporting solar heat collector modules
    • F24S2025/6012Joining different materials
    • F24S2025/6013Joining glass with non-glass elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the invention relates to the field of solar thermal utilization technology, in particular to a solar heat absorption tube structure and a manufacturing method thereof. Background technique
  • Figure 1 illustrates a heat absorbing tube device that is primarily used in an atmospheric environment.
  • the absorber tube assembly mainly includes a glass plate 101, a heat transfer tube 103, and a compound parabolic focusing mirror 105.
  • sunlight is incident from the glass plate 101, and most of the light is directly incident on the heat transfer pipe 103, and part of the sunlight that has not entered the heat transfer pipe 102 is reflected again into the heat transfer pipe through the compound parabolic focusing mirror 105.
  • the heat pipe is generally used in an air environment. There is a thermal insulation layer behind the compound paraboloid above the heat pipe.
  • the air around the heat absorbing tube is limited to flow within a certain range to reduce heat loss.
  • the general reflection system is focused on a long focal line, and a high-absorption, low-emission coating is typically applied by vacuum coating on the endothermic tube.
  • the heat absorption tube on the focal line is usually connected by a number of coated heat absorbing tubes.
  • the connection method is welding or flange connection at the installation site. Due to the limitation of construction conditions, the connection quality control is difficult. , high cost.
  • the temperature of the heat absorbing tube from normal temperature to normal working temperature generally has a temperature difference of 300 ⁇ 400 °C. Due to the thermal expansion and contraction, the length of the heat absorbing tube will change greatly. Therefore, the heat absorbing tube device must be provided with a length compensation mechanism.
  • FIG. 2 illustrates a rigid endothermic tube with local compensation for use under vacuum.
  • the heat absorbing tube device includes an outer glass tube 201, an inner layer seamless heat conductive steel tube 203 with an absorbing coating, and an inner and outer layer size compensation metal bellows 205.
  • a vacuum state is maintained between the seamless heat conducting steel pipe 203 and the glass pipe 201.
  • the internal heat pipe is provided with a system of cold and heat size compensation at the end of the device to eliminate the influence of the thermal expansion and contraction of the heat pipe on the vacuum sealing during operation.
  • Each set of devices is generally fixed length of about 4 meters. When used, it is usually connected in series and fixed on the focal line. The cost of the device is high, and the wide-area wide-scale promotion is subject to certain restrictions. At the same time, a large number of glass metal vacuum sealing and excessive field welding pipe connection points also bring disadvantages to manufacturing cost and operational reliability. Summary of the invention
  • the object of the present invention is to solve the problems of high manufacturing cost and complicated installation of the solar heat absorbing tube, and the defects of high cost, complicated manufacturing process and poor spreadability of the metal glass sealing structure.
  • the solar heat absorption tube comprises an outer glass tube, a flexible heat transfer tube and a positioning device, wherein the flexible heat transfer tube passes through the inside of the glass tube parallel to the glass tube axis and is fixed by the positioning device.
  • the flexible heat pipe can be a flexible bellows structure or a structure connected by a plurality of flexible bellows, or a flexible corrugated joint and a corrugated heat exchange tube or a rigid straight pipe.
  • a high absorption and low emission characteristic film for enhancing solar absorption can be plated on the outer surface of the heat pipe.
  • a mirror can be mounted inside the glass tube.
  • the flexible heat pipe is fixedly mounted in the glass tube, bending deformation may occur in the longitudinal direction, so that a support frame can be installed between the outer glass tube and the flexible heat pipe to reduce the bending deformation of the heat pipe.
  • the positioning device can fix the flexible heat pipe in a pre-stretched state.
  • the amount of pre-stretching is preferably greater than or equal to the amount of change in length of the thermal expansion and contraction of the flexible heat pipe caused by the temperature difference.
  • the entire interior of the heat absorbing tube can be in a vacuum or non-vacuum state.
  • the non-vacuum state it is necessary to fill the high-performance insulation material between the mirror surface and the glass tube to reduce heat loss.
  • the vacuum state the space between the outer glass tube and the heat pipe is connected to the vacuum pumping device.
  • a second aspect of the invention includes a method of making a solar heat absorbing tube.
  • the method comprises the steps of: plating or folding a flexible heat-conducting tube; passing the flexible heat-conducting tube from inside the glass tube in a manner parallel to the axis of the glass tube; pre-stretching and fixing the flexible heat-conducting tube by means of a fixing device.
  • the solar heat absorbing pipe of the present invention has high heat absorption efficiency due to the use of the flexible heat pipe; (2) Since the flexible heat pipe structure is adopted in the invention, the thick wall has small heat resistance, thereby reducing heat conduction.
  • the tube has the effect of thermal expansion and contraction, and the operation is stable and reliable; (3)
  • the structure and the manufacturing method of the invention are simple, the cost is low, the installation and maintenance are exceptionally convenient, and it is suitable for large-scale popularization and application;
  • the corrugated hose used in the invention The structure enhances the heat transfer effect of the heat-conducting medium, and the heat transfer is faster, and the through-end structure at both ends eliminates the mixed flow phenomenon in the blind pipe.
  • Figure 1 is a schematic view of a heat absorbing tube device of the prior art
  • FIG. 2 is a schematic view of a prior art rigid heat absorbing tube using a glass metal vacuum sealing method
  • Figure 3 is a structural view of a heat absorbing tube according to a first embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a heat absorbing tube according to a second embodiment of the present invention.
  • Figure 5 is a schematic structural view of a heat absorbing tube according to a third embodiment of the present invention.
  • Figure 6 is the storage and transportation mode of the flexible corrugated joint and the straight metal pipe connection structure;
  • Figure 7 is the vacuum coating method corresponding to the whole flexible bellows;
  • Figure 8 is a vacuum coating method corresponding to the flexible corrugated joint and the rigid straight pipe connection structure;
  • Figure 9 is a mounting method of the entire flexible bellows;
  • Figure 10 is a cross-sectional view of a heat absorbing tube using a compound parabolic mirror
  • Figure 1 is a schematic cross-sectional view of a solar heat absorbing tube device without a compound parabolic focusing mirror device
  • Figure 12 is a schematic cross-sectional view of a solar heat absorbing tube device provided with a reflective coating
  • Figure 13 is a schematic view of a solar heat absorbing tube using a dynamic vacuum method
  • Figure 14 is a schematic view of a non-vacuum integral internal device of a solar heat absorbing tube
  • Figure 15 is a partial enlarged view of the connection of the heat absorbing tube
  • Figure 16 is a schematic view of the back of the mirror filled with a heat insulating material. detailed description
  • Fig. 3 is a schematic structural view of a heat absorbing tube according to a first embodiment of the present invention.
  • the heat absorbing tube includes a glass tube 301 and a flexible heat transfer tube 309 located inside the glass tube 301.
  • the glass tube is linear and can be one or more connected in series.
  • the flexible heat transfer tube 309 has a heat absorbing coating disposed parallel to the axis of the glass tube.
  • the flexible heat pipe 309 can be bent or segmented and bent when it is outside the glass tube 301, and is sent into the glass tube 301. It is placed in a straight line and is connected at both ends. It has an integral internal compensation function, that is, it has a length compensation for thermal expansion and contraction.
  • the flexible heat pipe 309 may be formed by a whole flexible bellows or by a plurality of flexible bellows by, for example, welding.
  • a flexible bellows refers to a conventional bellows.
  • the flexible corrugated tube can also be connected in series with at least one rigid straight tube and/or corrugated heat exchange tube.
  • the flexible heat pipe having the above structure has a significantly reduced wall thickness, a reduced thermal resistance, and a large material cost.
  • the corrugated hose structure used helps to enhance the heat transfer effect of the heat transfer medium and heat transfer is faster.
  • a high absorption and low emission characteristic film for enhancing solar absorption can be plated on the outer surface of the heat pipe 309.
  • the positioning device 307 is used to fix the heat pipe 309.
  • the positioning device 307 is a tensioning device that acts on the heat transfer tubes 309 at both ends of the outer glass tube to be in a pretensioned state.
  • the amount of pre-stretching in the normal temperature state is greater than or equal to the temperature difference causing the thermal expansion and contraction of the heat pipe, and the effect of the change in the elongation of the heat pipe caused by the working pressure needs to be considered, so that the thermal expansion and contraction effect of the heat pipe It is compensated to ensure that the outlets at both ends of the heat pipe are always the same in the axial direction, which is easy to seal and connect.
  • the glass tube 301 provides a reaction force for the stretching of the heat transfer tube 309; however, it will be understood by those of ordinary skill that other external structures may be utilized to accomplish this function.
  • the mirror 305 can be fixedly mounted at a position away from the light inside the glass tube 301 to increase the absorption of sunlight by the heat transfer tube.
  • Mirror 305 can be a parabolic mirror, a compound paraboloid or a circular arc.
  • the mirror structure can reflect some of the light that is not directly incident on the heat pipe to the heat pipe, thereby reducing the tracking accuracy of the system and reducing the heat radiation loss of the heat pipe. Further structure and details will be described below.
  • the corrugated hose is stretched and fixed inside the glass tube 301, and the metal tube 303 is welded to both ends of the corrugated hose.
  • the corrugated hose structure after tension support can be unrestricted in length, and can generally be larger than, for example, six meters.
  • the flexibility of the heat pipe is increased, which makes transportation more convenient and convenient.
  • the flexible heat pipe is more reliable, has fewer joints, is less prone to air leakage, and is easy to maintain.
  • the flexible heat pipe has a fast heat transfer, and the through pipe is used to overcome the blind pipe. The phenomenon of mixed flow in the middle.
  • Fig. 4 is a schematic view showing the structure of a heat absorbing tube according to a second embodiment of the present invention. 4 differs from FIG. 3 in that the heat pipe 309 is replaced with a connection structure of the corrugated (or nodal) heat exchange tube 408 and the flexible corrugated joint 409.
  • the flexible corrugated joint 409 refers to a length of flexible bellows. Although two corrugated (or nodal) heat exchange tubes 408 and one flexible corrugated joint 409 are shown, the number of corrugated (or nodal) heat exchange tubes 408 and flexible corrugated joints 409 is variable. .
  • the corrugated heat exchange tube 408 and the flexible corrugated joint 409 are joined by, for example, welding.
  • the compensation wavy heat exchange tube has good resistance to thermal expansion and contraction.
  • FIG. 5 is a schematic view showing the structure of a heat absorbing tube according to a third embodiment of the present invention.
  • Figure 5 differs from Figure 3 in that the heat pipe 309 is replaced by a flexible corrugated joint 509 and a rigid straight metal pipe 503.
  • the flexible corrugated joint 509 is connected to the straight metal pipe 503 by, for example, welding.
  • the flexible heat pipe can also be in other combinations, such as a structure formed by a flexible bellows and a flexible bellows joint, for example by welding.
  • the manufacture of large length scales includes welding, heat treatment, leak detection, coating and other processes.
  • the main feature of the structure is that it can be made very long, generally more than or equal to, for example, six meters, and the outer layer of the flexible heat pipe is convenient to be coated, and can be plated and folded. The installation is convenient, and the flexible heat pipe is installed into the glass tube.
  • the flexible heat-conducting tube is convenient to transport, and is transported in a tray, and is transported into the whole tube; the flexible heat-conducting tube is reliable, the joint is less, and the air is not easy to leak; the flexible heat-conducting tube is easy to maintain, can be simply taken out for maintenance, and then installed; Fast, continuous, no mixed flow.
  • the storage, transportation, and installation of flexible heat pipes will be described in detail below.
  • Figure 6 shows the storage and transportation of the flexible corrugated joint and the straight metal pipe connection structure.
  • the flexible corrugated joint 609 can be bent or folded, so that the combination of the originally long flexible corrugated joint 609 and the straight metal tube 603 is compressed in a small space.
  • the folding method makes it easy to store and transport flexible heat pipes.
  • Figure 7 is a vacuum coating method corresponding to a flexible bellows.
  • a flexible bellows 709 is spirally wound in a vacuum coater 719, and a sputtering target 712 is disposed inside and outside the spiral, and the spirally coiled flexible heat transfer tube is integrally rotated to coat the flexible bellows 709. Therefore, the flexible bellows can conveniently complete large-area coating in the vacuum coating machine, and the production cost is low.
  • Figure 8 shows the vacuum coating method corresponding to the flexible corrugated joint and the rigid straight tube connection structure.
  • the connection structure of the flexible corrugated telescopic section 809 and the rigid straight tube 803 is bent in the manner of FIG. 6 and arranged in the vacuum coating machine 819, and is wound into a cylindrical surface, inside and outside the cylindrical surface.
  • the sputtering target 821 is placed, and the flexible conduit in the form of a cylindrical surface is integrally rotated to coat the connection structure of the flexible corrugated telescopic joint 809 and the rigid straight tube 803.
  • Figure 9 shows an installation of the entire flexible bellows. As shown in Fig. 9, a flexible bellows 909 is wound around the cable reel 919. The flexible bellows 909 is fed from the cable reel 919 into the outer glass tube 901 to complete the installation.
  • a mirror can be fixedly mounted inside the glass tube.
  • Figure 10-12 shows the situation.
  • Figure 10 is a cross-sectional view of a solar heat absorbing tube device equipped with a compound parabolic focusing mirror device.
  • a compound parabolic focusing mirror device 1005 between the outer glass tube 1001 and the inner flexible heat pipe 1003.
  • the outer flexible heat pipe 1003 is coated with a high absorptivity low emissivity film that absorbs sunlight.
  • the compound parabolic focusing mirror is coated with materials such as pure silver or high-reverse aluminum to improve the reflectivity of the re-reflection, and the structure can also reduce the heat radiation loss of the heat-conducting tube.
  • a high-performance heat insulating material may be filled between the compound parabolic focusing device 1005 and the outer glass tube to make the compound parabolic focusing device.
  • the locally concentrated heat between the 1005 and the flexible heat pipe 1003 is isolated from the glass.
  • Fig. 16 is a schematic view showing the inside of the mirror filled with the heat insulating material. Most of the sunlight incident from the solar reflecting device (not shown) can be collected and absorbed by the inner flexible heat pipe 1003, and part of the sunlight that is not incident into the inner flexible heat pipe 1003 is focused by the compound paraboloid.
  • the mirror device is again reflected and then incident into the flexible heat pipe 1003, and all absorbed solar heat energy is continuously discharged outside the tube by the heat medium source flowing in the heat pipe 1003.
  • Figure 1 is a schematic cross-sectional view of a solar heat absorbing tube device without a compound parabolic focusing mirror device. The difference from Fig. 10 is that Fig. 11 does not have a compound parabolic focusing device.
  • FIG. 12 is a schematic cross-sectional view of a solar heat absorbing tube device provided with a reflective coating. Different from FIG. 11 , FIG. 12 is provided with a reflective coating 1223 on the inner wall of the outer glass tube 1201 , and the solar reflected light that is not irradiated to the inner flexible heat pipe 1203 can be reflected by the reflective coating 1223 to the inner layer. Flexible metal tube 1203 with the function of reducing heat radiation loss.
  • Figure 13 is a schematic view of a solar heat absorbing tube in a dynamic vacuum mode of operation. As shown in Fig. 13, a plurality of outer glass tubes 1301 are joined together by closed connecting means 1307 and 1329, and a vacuum-tight connection is maintained. The end of the outer glass tube 1301 passes through the 1307 and the inner layer is soft. The connecting structure of the tube 1309 and the metal tube 1303 is connected.
  • the inner flexible pipe 1309 is always elastically stretched by the tensile force in the working state under the action of the tensioning device 1307 at both ends of the pipe, and the amount of deformation is greater than or equal to the temperature difference causing the change of the thermal expansion and contraction of the metal pipe, that is, When the flexible heat pipe 1309 is heated, the change in the degree of thermal expansion is less than the amount of pre-variation under the tension of the tensioning device 1307 at both ends.
  • a dynamic evacuation port 1315 is provided below the end of the outer glass tube 1301 to maintain a dynamic vacuum of the space between the inner heat pipe 1309 and the outer glass tube 1301 by means of a vacuum.
  • the degree of vacuum required for the dynamic vacuum is maintained, for example, below 1000 Pa, preferably below 10 Pa.
  • Dynamic vacuum helps to block conduction and convection, thereby increasing endothermic efficiency.
  • the vacuuming device continuously or intermittently draws air to maintain the vacuum of the space below 1000 Pa, preferably below 10 Pa, reducing convection and conduction heat loss, while greatly reducing the oxygen concentration and reducing the effects of high temperature oxidation.
  • multiple heat-absorbing tubes can share a vacuum pumping device to protect the heat-absorbing tube and the absorbing coating on its surface to delay its performance degradation and prolong its service life.
  • the endothermic efficiency can be further improved by using a compound parabolic focusing device 1305.
  • a support frame 131 1 may be installed between the outer glass tube 1301 and the flexible heat transfer tube 1309 to reduce bending deformation of the heat transfer tube 1309.
  • Figure 14 is a schematic illustration of a non-vacuum integral internal device of a solar heat absorbing tube.
  • a plurality of outer glass tubes 1401 are connected by a fixing device 1405.
  • the connection between the end of the outer glass tube 1401 and the inner flexible metal tube 1409 and the straight metal tube 1403 is connected by a fixing device 1405, and the inner flexible tube 1409 is always in operation under the action of the tensioning device 1407 at both ends of the tube.
  • the device operates in a non-vacuum environment and is filled with a good insulating material in the compound parabolic concentrating mirror 1417 to reduce conduction losses.
  • the support frame 141 1 also serves to reduce the bending deformation of the heat pipe 1409.
  • FIG. 15 is a partial enlarged view of the connection between the outer glass tubes, through the sealing structure between the outer glass tubes, such as the sealing member 1527 and the apron 1525, after sealing, multiple series connection can be realized, and the inner flexible heat pipe processing It is one of the large lengths, which greatly increases the length of use of a single focal line.

Description

一种太阳能吸热管及制造方法 技术领域
本发明涉及太阳能热利用技术领域, 具体来说是一种太阳能吸热管 结构及其制造方法。 背景技术
作为一种洁净、 环保的能源, 长期以来人们一直致力于对太阳能的 开发和利用。 特别是近年来, 由于油价的不断攀升和对减少碳排放的要 求, 各国更加努力地开展了太阳能利用方面的研究, 在光热利用的推广 中对太阳能吸热管的生产效率、 安装的方便性、 运行的可靠性和降低成 本提出了更高的要求。
近年来, 一些特定环境中使用太阳能吸热管技术获得了发展。 图 1 示意了一种主要在大气环境中使用的吸热管装置。 吸收管装置主要包括 玻璃板 101、 导热管 103和复合抛物面聚焦镜面 105。 如图 1所示, 太阳 光从玻璃板 101 入射, 大部分直接射入导热管 103 , 部分未入射导热管 102的太阳光经过复合抛物面聚焦镜面 105再次反射至吸导热管内。所述 导热管一般在空气环境中使用。 导热管上方的复合抛物面背后有隔热层。 吸热管周围空气被限定在一定范围内流动, 减少热量散失。 在大面积使 用过程中, 一般反射系统光线聚焦于一条较长的焦线上, 在吸热管上一 般采用真空镀膜方法涂镀高吸收低发射涂层。 由于镀膜设备尺寸的限制, 焦线上的吸热管通常为若干根有涂层吸热管连接而成, 连接方式为在安 装现场焊接或法兰连接, 由于施工条件限制, 连接质量控制较难, 成本 高。 吸热管自常温至正常工作温度一般有 300 ~ 400°C的温差, 由于热胀 冷缩的原因, 吸热管长度会有较大变化, 所以吸热管装置必须设有长度 补偿机构。
图 2示意了一种真空下使用的一种采用局部补偿的刚性吸热管。 如 图 2所示, 吸热管装置包括外层玻璃管 201、 带有吸收涂层的内层无缝导 热钢管 203 和内外层尺寸补偿用途金属波纹管 205。 无缝导热钢管 203 和玻璃管 201 之间维持真空状态。 内部导热管在装置端头设置冷热尺寸 补偿的系统, 消除工作时内导热管的热胀冷缩对真空封接的影响。 每套 装置一般为 4米左右固定长度, 使用时通常多个串接, 固定于焦线上。 该装置成本很高, 大面积广泛推广中受到一定制约, 同时大量的玻璃金 属真空封接和过多的现场焊接的管路连接点也给制造成本和运行可靠性 带来不利。 发明内容
本发明的目的在于解决太阳能吸热管制造成本高、 安装复杂的问题, 以及利用金属玻璃封接结构成本高、 制造工艺复杂、 扩展性差的缺陷。
为此, 本发明在第一方面提出一种新型的太阳能吸热管。 该太阳能 吸热管包括外层玻璃管、 柔性导热管及定位装置, 其中柔性导热管从玻 璃管内部平行于玻璃管轴线穿过, 并由定位装置固定。
柔性导热管可以采用柔性波纹管结构或是由若干根柔性波纹管连接 成的结构, 也可以采用柔性波纹伸缩节和波纹换热管或刚性直管的连接 结构。
为增加导热管的吸热效率, 可以在导热管外表面镀增强太阳光吸收 的高吸收低发射特性膜。
为减少未直接入射到导热管的太阳光损失, 可以在玻璃管内部安装 反射镜。
由于柔性导热管固定安装在玻璃管内, 在纵向可能发生弯曲变形, 因此可以在外层玻璃管和柔性导热管之间安装支撑架减少导热管的弯曲 变形。
定位装置可以将柔性导热管固定在预拉伸状态下。 预拉伸量优选大 于或等于温差引起的柔性导热管热胀冷缩的长度变化量。
整个吸热管内部可以处于真空或非真空状态下。 在非真空状态下时, 需要在反射镜面与玻璃管之间填充高性能绝热材料, 减少热量损失。 在 真空状态下时, 外层玻璃管与导热管之间的空间连接真空抽气装置。
本发明的第二方面包括太阳能吸热管的制造方法。 该方法的步骤包 括: 将柔性导热管盘镀或折叠镀; 将柔性导热管以平行于玻璃管轴线的 方式从玻璃管内部穿过; 利用固定装置将柔性导热管预拉伸后固定。
本发明的结构和方法和已有的太阳能吸热管结构及制造安装方法相 比较具有以下优点:
( 1 ) 由于采用了柔性导热管, 本发明的太阳能吸热管吸热效率高; (2 ) 由于本发明中采用了柔性导热管结构, 厚壁, 热阻小, 从而减少了导热 管热胀冷缩的影响, 运行稳定可靠; (3 ) 本发明结构和制造方法简单, 成本造价低廉, 安装和维修异常方便, 适合大规模推广应用; (4 )本发 明中采用的波纹软管结构增强了导热介质的换热效果, 传热更快, 同时 两端贯通式结构杜绝了盲管中存在的混流现象。 附图说明
下面将参照附图对本发明的具体实施方案进行详细说明, 附图中: 图 1是现有技术的一种吸热管装置示意图;
图 2是现有技术的一种采用玻璃金属真空封接方式的刚性吸热管示 意图;
图 3是本发明第一实施例的吸热管的结构图;
图 4是本发明第二实施例的吸热管结构示意图;
图 5是本发明第三实施例的吸热管的结构示意图;
图 6是柔性波纹伸缩节与直金属管连接结构的储存与运输方式; 图 7是整根柔性波纹管对应的真空镀膜方式;
图 8为柔性波纹伸缩节与刚性直管连接结构对应的真空镀膜方式; 图 9是整根柔性波纹管的一种安装方式;
图 10是采用复合抛物面反射镜的吸热管截面图;
图 1 1是未设置复合抛物面聚焦镜面装置的太阳能吸热管装置的剖面 示意图;
图 12是设有反射涂层的太阳能吸热管装置的剖面示意图;
图 13是采用动态真空方式的太阳能吸热管示意图;
图 14是太阳能吸热管非真空整体内部装置的示意图;
图 15是吸热管连接局部放大图;
图 16是反射镜后部填充绝热材料的示意图。 具体实施方式
图 3是本发明第一实施例的吸热管的结构示意图。 如图 3所示, 吸 热管包括玻璃管 301和位于玻璃管 301 内的柔性导热管 309。
玻璃管为直线型, 可为一根或多根串接。
柔性导热管 309具有热吸收镀层, 平行于玻璃管轴线布置。 柔性导 热管 309在玻璃管 301外时可弯曲或分段折曲, 送入玻璃管 301 内后呈 直线安放, 两端贯通, 具有整体内补偿功能, 即具有热胀冷缩的长度补 偿。
柔性导热管 309可采用整根柔性波纹管, 也可以采用多根柔性波纹 管通过例如焊接方式连接而成。 柔性波纹管是指常规的波纹管。 柔性波 纹管也可串接至少一根刚性直管和 /或波纹换热管。
采用上述结构的柔性导热管与常规刚性金属管相比, 壁厚显著减小, 热阻降低, 材料成本也有大幅下降。
所采用的波纹软管结构有助于增强导热介质的换热效果, 传热更快。 为增加导热管的吸热效率, 可以在导热管 309外表面镀增强太阳光 吸收的高吸收低发射特性膜。
定位装置 307 用于固定导热管 309。 在一个例子中, 定位装置 307 是拉紧装置, 它在外层玻璃管两端头作用于导热管 309 , 使其处在预拉伸 状态下。 预拉伸量在常温状态大于或等于温差引起导热管热胀冷缩的变 化量, 并且需要考虑在工作压力下造成的导热管伸长量变化的影响, 这 样使导热管的热胀冷缩效应得到补偿, 从而保证导热管两端出口在轴向 上尺寸始终不变, 易于系统密封和连接。 在本例中, 由玻璃管 301 为导 热管 309 的拉伸提供反作用力; 但是, 普通技术人员理解, 也可以采用 其它的外部结构实现这一功能。
可在玻璃管 301 内部背离光入射的部位固定安装反射镜 305 ,增加导 热管对太阳光的吸收。 反射镜 305 可为抛物镜面、 复合抛物面或圓弧形 截面。 此反射镜结构可以将部分未直接射到导热管上的光线再次反射至 导热管上, 从而降低对系统跟踪精度的要求, 也可以减少导热管的热辐 射损失。 其进一步的结构和细节将在下文描述。
为方便固定装置 307将波纹软管拉伸固定在玻璃管 301 内部, 波纹 软管的两头焊接了金属管 303。
由于柔性导热管 309固定安装在玻璃管 301 内, 在纵向可能发生弯 曲变性, 因此可以在外层玻璃管 301和柔性导热管 309之间安装支撑架 31 1减少导热管 309的弯曲变形。采用拉伸支撑后的波纹软管结构可以在 长度上不受限制, 通常可大于例如六米。
由于采用了柔性导热管结构, 增加了导热管的可弯曲性, 使运输更 为便捷方便。 此外, 柔性导热管可靠性更强, 接头少, 不易漏气, 维护 方便。 更为重要的是, 柔性导热管传热快, 采用贯通方式, 克服了盲管 中存在的混流现象。
图 4是本发明第二实施例的吸热管结构示意图。 图 4不同于图 3的 地方在于导热管 309替换为波纹(或波节)换热管 408和柔性波纹伸缩 节 409的连接结构。 柔性波纹伸缩节 409是指一段柔性波纹管。 虽然图 中显示了两根波纹 (或波节 )换热管 408和一根柔性波纹伸缩节 409 , 但 是, 波纹 (或波节 )换热管 408和柔性波纹伸缩节 409的数量是可变的。
波纹换热管 408与柔性波纹伸缩节 409通过例如焊接连接。 补偿波 纹换热管有良好抗热胀冷缩性能。
图 5是本发明第三实施例的吸热管的结构示意图。 图 5不同于图 3 的地方在于导热管 309替换为柔性波纹伸缩节 509与刚性直金属管 503 的结构。 该柔性波纹伸缩节 509与直金属管 503通过例如焊接连接。
需要理解的是, 柔性导热管还可以采用其它的组合形式, 比如由柔 性波纹管和柔性波纹伸缩节通过例如焊接而构成的结构。 的大长度尺寸规模的制造, 包括焊接、 热处理、 检漏、 镀膜等工序。 其 结构带来的主要特点为可以制作的很长, 一般大于等于例如六米, 且柔 性导热管外层镀膜方便, 可以整体盘镀、 折叠镀; 安装方便, 将柔性导 热管安装入玻璃管拉紧即可; 柔性导热管运输方便, 成盘运输, 放入管 内整体运输; 柔性导热管可靠, 接头少, 不易漏气; 柔性导热管维护方 便, 可简单抽出维修, 再安装; 柔性导热管传热快, 贯通方式, 无混流 现象。 下文将详细描述柔性导热管的储存、 运输和安装。
图 6是柔性波纹伸缩节与直金属管连接结构的储存与运输方式。 如 图 6所示, 可以将柔性波纹伸缩节 609弯曲或折叠, 使得原本很长的柔 性波纹伸缩节 609和直金属管 603的组合压缩在较小的空间。 使用折叠 方式可以 艮方便对柔性导热管完成储存和运输。
图 7是柔性波纹管对应的真空镀膜方式。 如图 7所示, 柔性波纹管 709螺旋盘绕在真空镀膜机 719内, 并且在螺旋内外布置溅射靶 712 , 螺 旋盘绕的柔性导热管整体旋转以便对柔性波纹管 709进行镀膜。 由此, 柔性波纹管可以很方便地在真空镀膜机内完成大面积镀膜, 生产成本低。
图 8 为柔性波纹伸缩节与刚性直管连接结构对应的真空镀膜方式。 如图 8所示, 将柔性波纹伸缩节 809和刚性直管 803的连接结构按图 6 方式弯曲, 排列在真空镀膜机 819 内, 绕成一个圓柱面, 圓柱面内、 外 都安放溅射靶 821 , 圓柱面形式的柔性导管整体旋转, 以便对柔性波纹伸 缩节 809和刚性直管 803的连接结构镀膜。
图 9是整根柔性波纹管的一种安装方式。 如图 9所示, 电缆式卷轴 919中缠绕着柔性波纹管 909。 从电缆式卷轴 919中将柔性波纹管 909往 外层玻璃管 901 内送, 即可完成安装。
如前文所述, 为降低对跟踪控制精度要求, 增加整个吸热管对太阳 能热量的利用率,可以在玻璃管内部固定安装反射镜。 图 10-12分别示意 了有关情况。
图 10是配有复合抛物面聚焦镜面装置的太阳能吸热管装置的剖面示 意图。 如图 10所示, 外层玻璃管 1001和内层柔性导热管 1003之间有一 个复合抛物面聚焦镜面装置 1005。内层柔性导热管 1003外表面镀有强力 吸收太阳光的高吸收率低发射率薄膜。 复合抛物面聚焦镜面镀有纯银或 高反铝等材料, 以便提高再次反射的反射率, 同时该结构还可以减少导 热管的热辐射损失。
当外层玻璃管 1001与内层柔性导热管 1003之间的空间为非真空工 作状态时, 可在复合抛物面聚焦装置 1005与外层玻璃管之间填充高性能 绝热材料, 以便使复合抛物面聚焦装置 1005和柔性导热管 1003之间局 部聚集的热量与玻璃隔离开。图 16是反射镜内部填充绝热材料的示意图。 大部分从太阳能反射装置 (未图示) 入射来的太阳光都能聚集在内层柔 性导热管 1003上且被其吸收, 部分未入射到内层柔性导热管 1003 内的 太阳光经过复合抛物面聚焦镜面装置再次反射, 然后入射到柔性导热管 1003内,所有吸收的太阳热能都被导热管 1003内流动的导热介质源源不 断导出管外。
图 1 1是未设置复合抛物面聚焦镜面装置的太阳能吸热管装置的剖面 示意图。 不同于图 10的地方在于, 图 1 1没有设置复合抛物面聚焦装置。
图 12是设有反射涂层的太阳能吸热管装置的剖面示意图。 不同于图 11的地方在于, 图 12在外层玻璃管 1201的内壁设有反射涂层 1223 , 可 以将部分未能照射到内层柔性导热管 1203 的太阳反射光经反射涂层 1223反射向内层柔性金属管 1203 , 并具备减少热辐射损失的功能。
图 13是采用动态真空工作方式的太阳能吸热管示意图。 如图 13所 示, 多个外层玻璃管 1301通过封闭连接装置 1307和 1329连接在一起, 并且保持真空不漏气连接。 外层玻璃管 1301 的端头通过 1307与内层柔 性管 1309和金属管 1303的连接结构连接。 内层柔性管 1309在管两端拉 紧装置 1307的作用下在工作状态时始终保持受拉力弹性伸长的状态, 且 拉伸量大于或等于温差引起金属管热胀冷缩的变化量, 即当柔性导热管 1309 受热状态时受到的热胀长度变化小于其受两端拉紧装置 1307 的拉 力作用下的预变化量。
在外层玻璃管 1301端头下方设置动态抽真空接口 1315 ,以便通过抽 真空装置保持内层导热管 1309与外层玻璃管 1301之间空间的动态真空 状态。 其中, 动态真空所需的真空度保持在例如 1000帕以下, 最佳在 10 帕以下。 动态真空有助于阻隔传导和对流, 从而提高吸热效率。
在工作期间, 抽真空装置连续或断续抽气, 以保持该空间的真空度 在 1000 Pa以下, 优选在 10 Pa以下, 减少对流及传导热损失, 同时大幅 降低氧气浓度, 减少高温氧化影响, 在大气系统中, 多根吸热管可以共 用一套真空抽气装置可保护吸热管及其表面的吸收镀层延緩其性能衰 退, 延长使用寿命。
采用复合抛物面聚焦装置 1305可以进一步提高吸热效率。
在外层玻璃管 1301和柔性导热管 1309之间可以安装支撑架 131 1 , 以减少导热管 1309的弯曲变形。
图 14是太阳能吸热管非真空整体内部装置的示意图。 如图 14所示, 多个外层玻璃管 1401通过固定装置 1405连接。 外层玻璃管 1401的端头 与内层柔性金属管 1409和直金属管 1403的连接组合通过固定装置 1405 连接, 内层柔性管 1409在管两端拉紧装置 1407的作用下在工作状态时 始终保持受拉力的状态, 且预拉伸量大于或等于导热介质温差引起导热 管热胀冷缩的变化量, 即当柔性导热管 1409受热状态时受到的热胀长度 变化小于其受两端拉紧装置 1407的拉力作用下的预拉伸长度变化量。 该 装置工作时处于非真空环境下, 在复合抛物面聚光镜面 1417内填充良好 绝热材料, 减少传导损失。 支撑架 141 1 同样起着减少导热管 1409弯曲 变形的作用。
本发明的太阳能吸热管可以实现大范围、 大尺寸的安装和连接。 图 15是外层玻璃管之间的连接局部放大图,外层玻璃管之间通过密封结构, 比如密封件 1527和胶圈 1525 , 密封后即可以实现多根串接, 内层柔性导 热管加工成大长度尺寸的一根, 由此可大大增加单条焦线的使用长度。
显而易见, 在不偏离本发明的真实精神和范围的前提下, 在此描述 的本发明可以有许多变化。 因此, 所有对于本领域技术人员来说显而易 见的改变, 都应包括在本权利要求书所涵盖的范围之内。 本发明所要求 保护的范围由所述的权利要求书进行限定。

Claims

权 利 要 求 书
1、 一种太阳能吸热管, 包括外层玻璃管, 柔性导热管及定位装置, 其 特征在于, 柔性导热管从玻璃管内部平行于玻璃管轴线穿过, 并由定位 装置固定。
2、 根据权利要求 1所述的太阳能吸热管, 其特征在于, 柔性导热管包 括柔性波纹管或柔性波纹伸缩节。
3、 根据权利要求 2所述的太阳能吸热管, 其特征在于, 柔性导热管还 包括波纹换热管或刚性直管, 所述波纹换热管或刚性直管与柔性波纹管 或柔性波紋伸缩节相连接。
4、 根据权利要求 1、 2或 3所述的太阳能导热管, 其特征在于柔性导 热管外表面镀有增强吸收太阳光的高吸收低发射特性膜。
5、根据权利要求 1所述的太阳能吸热管,其特征在于包括固定安装在 所述玻璃管和柔性导热管之间的反射镜。
6、 根据权利要求 5所述的太阳能吸热管, 其特征在于, 所述反射镜是 由复合槽式抛物面组成的反射镜面。
7、 根据权利要求 5所述的太阳能吸热管, 其特征在于, 所述反射镜由 直接镀在玻璃管内壁的反射膜形成。
8、 根据权利要求 1 所述的太阳能吸热管, 其特征在于, 外层玻璃管 和柔性导热管之间安装支撑架, 以减少导热管的弯曲变形。
9、 根据权利要求 1 所述的太阳能吸热管, 其特征在于, 定位装置将 柔性导热管固定在预拉伸状态下。
10、 根据权利要求 9所述的太阳能吸热管, 其特征在于预拉伸量大于 或等于温差引起柔性导热管热胀冷缩的变化量。
1 1、 根据权利要求 1所述的太阳能吸热管, 其特征在于外层玻璃管之 间采用密封结构进行固定连接。
12、 根据权利要求 5或 6所述的太阳能导热管, 其特征在于, 当吸热 管内部处于非真空中时, 反射镜面与外层玻璃管之间填充绝热材料, 减 少反射镜面的热量损失。
13、 根据权利要求 1所述的太阳能吸热管, 其特征在于所述吸热管内 部处于真空状态, 且所述太阳能吸热管包括连接在外层玻璃管与柔性导 热管之间的空间的真空抽气装置。
14、 根据权利要求 13 所述的太阳能吸热管, 其特征在于, 多根吸热 管连接后共用一套真空抽气装置。
15、 根据权利要求 13 所述的太阳能吸热管, 其特征在于, 所述真空 抽气装置连续或断续工作, 保持空间压强在 1000 Pa以下。
16、 一种太阳能吸热管的制造方法, 其特征在于, 所述方法包括以下 步骤:
将柔性导热管盘镀或折叠镀;
将柔性导热管以平行于玻璃管轴线的方式从玻璃管内部穿过; 利用固定装置将柔性导热管预拉伸后固定。
17、 根据权利要求 16 所述的一种太阳能吸热管的制造方法, 其特征 在于, 还包括将盘镀或折叠镀后的柔性导热管成盘或折叠整体存储或运 输的步骤。
PCT/CN2009/001602 2008-12-31 2009-12-30 一种太阳能吸热管及制造方法 WO2010075675A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810247422.3 2008-12-31
CNA2008102474223A CN101464064A (zh) 2008-12-31 2008-12-31 一种太阳能吸热管及制造方法

Publications (1)

Publication Number Publication Date
WO2010075675A1 true WO2010075675A1 (zh) 2010-07-08

Family

ID=40804759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001602 WO2010075675A1 (zh) 2008-12-31 2009-12-30 一种太阳能吸热管及制造方法

Country Status (2)

Country Link
CN (1) CN101464064A (zh)
WO (1) WO2010075675A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109365977A (zh) * 2018-11-29 2019-02-22 连云港众沃太阳能技术有限公司 超导热管的加热排气封管一体机

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464064A (zh) * 2008-12-31 2009-06-24 刘阳 一种太阳能吸热管及制造方法
CN102032832B (zh) * 2010-10-22 2012-11-07 浙江大学 一种柔性换热件及其加工方法
CN101949604A (zh) * 2010-11-04 2011-01-19 东南大学 高温玻璃金属真空集热管
CA2935187C (en) * 2015-02-12 2023-09-26 Den Di De Nora Paolo Extensible hose
CN107990563A (zh) * 2017-11-15 2018-05-04 韦治东 叶片式太阳能集热管

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050339A (ja) * 1983-08-29 1985-03-20 Matsushita Electric Ind Co Ltd 真空管式太陽熱集熱器
CN2360800Y (zh) * 1998-07-07 2000-01-26 北京市太阳能研究所 一种内聚光真空太阳集热管
CN1321865A (zh) * 2001-05-29 2001-11-14 清华大学 玻璃-金属真空太阳集热管及其制作方法
CN2861887Y (zh) * 2005-12-31 2007-01-24 连云港市太阳雨热水器制造有限公司 一种真空集热管
CN1908548A (zh) * 2006-08-21 2007-02-07 河海大学 内膨胀槽式太阳能真空集热管
CN101464064A (zh) * 2008-12-31 2009-06-24 刘阳 一种太阳能吸热管及制造方法
CN201377913Y (zh) * 2008-12-31 2010-01-06 刘阳 一种太阳能吸热管

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050339A (ja) * 1983-08-29 1985-03-20 Matsushita Electric Ind Co Ltd 真空管式太陽熱集熱器
CN2360800Y (zh) * 1998-07-07 2000-01-26 北京市太阳能研究所 一种内聚光真空太阳集热管
CN1321865A (zh) * 2001-05-29 2001-11-14 清华大学 玻璃-金属真空太阳集热管及其制作方法
CN2861887Y (zh) * 2005-12-31 2007-01-24 连云港市太阳雨热水器制造有限公司 一种真空集热管
CN1908548A (zh) * 2006-08-21 2007-02-07 河海大学 内膨胀槽式太阳能真空集热管
CN101464064A (zh) * 2008-12-31 2009-06-24 刘阳 一种太阳能吸热管及制造方法
CN201377913Y (zh) * 2008-12-31 2010-01-06 刘阳 一种太阳能吸热管

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109365977A (zh) * 2018-11-29 2019-02-22 连云港众沃太阳能技术有限公司 超导热管的加热排气封管一体机

Also Published As

Publication number Publication date
CN101464064A (zh) 2009-06-24

Similar Documents

Publication Publication Date Title
WO2010075675A1 (zh) 一种太阳能吸热管及制造方法
US8347877B2 (en) Solar energy collecting system and method
US8430093B1 (en) Solar collector using subreflector
CN104508395B (zh) 轻质太阳能集中器
WO2013177951A1 (zh) 一种太阳能光热接收装置
CN102563931A (zh) 具有补偿密封结构的槽式聚光太阳能集热管及其装配工艺
CN100582600C (zh) 紧贴式金属翼片太阳能真空集热管
CN201377913Y (zh) 一种太阳能吸热管
WO2013183067A2 (en) An improved heat collection element for linear collector
US8800548B2 (en) Glass solar receiver with bifurcated annulus responsive to thermal dimensional changes
CN106032941A (zh) 真空集热器
CN112284172A (zh) 空间辐射散热器
US20120312295A1 (en) Solar thermal collection apparatus and methods
CN2849599Y (zh) 新型太阳能真空集热器件
CN1743755A (zh) 内聚光真空太阳能集热管
JPS6051017B2 (ja) 太陽熱集熱装置
JPH0293253A (ja) 集光集熱装置
US4426996A (en) Solar collector apparatus
KR20120113631A (ko) 곡률타입 반사판을 가지는 내집광 진공관식 태양열 집열기
CN207963196U (zh) 一种直通式太阳能集热系统
CN207962594U (zh) 一种直通式太阳能蒸汽发生系统
CN204787357U (zh) 可维护的低能耗热能传输管网
CN2856858Y (zh) 细口式反射聚焦全玻璃真空太阳集热管
CN103673343A (zh) 蛇形多管式真空集热管
CN210441457U (zh) 直通式金属玻璃真空太阳集热管及由此组成的槽式集热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09835962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09835962

Country of ref document: EP

Kind code of ref document: A1