WO2010074434A2 - High voltage power supply used in plasma environment facilities and a control method thereof - Google Patents

High voltage power supply used in plasma environment facilities and a control method thereof Download PDF

Info

Publication number
WO2010074434A2
WO2010074434A2 PCT/KR2009/007316 KR2009007316W WO2010074434A2 WO 2010074434 A2 WO2010074434 A2 WO 2010074434A2 KR 2009007316 W KR2009007316 W KR 2009007316W WO 2010074434 A2 WO2010074434 A2 WO 2010074434A2
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
voltage power
high voltage
output
Prior art date
Application number
PCT/KR2009/007316
Other languages
French (fr)
Korean (ko)
Other versions
WO2010074434A3 (en
Inventor
김수홍
이정흠
권병기
Original Assignee
주식회사 포스콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090117267A external-priority patent/KR101030576B1/en
Application filed by 주식회사 포스콘 filed Critical 주식회사 포스콘
Publication of WO2010074434A2 publication Critical patent/WO2010074434A2/en
Publication of WO2010074434A3 publication Critical patent/WO2010074434A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • H02M3/3378Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current in a push-pull configuration of the parallel type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0085Partially controlled bridges

Definitions

  • the present invention relates to a high-voltage power supply device and a control method thereof used in a plasma environment facility, and more particularly, to a large-capacity N-series voltage source structure, and to increase the voltage easily when a high frequency high voltage is required in the plasma reactor.
  • the present invention relates to a high voltage power supply device and a control method for improving stability by using feedback control.
  • FIG. 1 is a diagram briefly illustrating environmental facilities using plasma.
  • the plasma environment facility includes a high voltage power supply device 110, a magnetic pulse compressor tank 120, and a plasma reactor 130 that generate high frequency high voltage.
  • the high voltage of the high voltage generated by the high voltage power supply 11 is charged in the capacitors CL, C1, and C2 of the MPC tank 120, and the operation of each of the switches SW1, SW2, and SW3.
  • a high voltage vout is formed in the plasma reactor 130 so as to cause a plasma reaction by the current flowing out.
  • a high voltage power supply device 110 for generating a high frequency high voltage applied to the plasma reactor 130 is essential to the plasma environment facility.
  • the size of the high voltage required in the plasma reactor may be different depending on the capacity of the plasma environmental equipment. Therefore, there is a growing need for a high voltage power supply device that can easily cope with the voltage fluctuation according to the magnitude of the voltage value required in the plasma reactor.
  • the problem to be solved by the present invention is to provide a high-voltage power supply for use in a plasma environment, a high-voltage power supply including a high-voltage power supply that can easily increase the output voltage provided to the output by modularized and connected in series; It is to provide a control method.
  • another object of the present invention is to provide a high-voltage power supply device and a method of controlling the same that can be charged at the same time, the charging unit in the individual high-voltage power supply means.
  • the high pressure power supply device used for the plasma environment facility wherein the high pressure power supply device is a first to Nth (where N is a natural number of 2 or more)
  • a first rectifying unit including a power supply means, each of the first to Nth high voltage power supply means generating a DC voltage by full-wave rectifying an AC voltage;
  • An inverter for converting the DC voltage into a high frequency square wave voltage by switching based on a switching control signal;
  • a transformer for receiving the high frequency square wave voltage from a primary side and generating a high voltage boosted from the secondary side;
  • a secondary rectifier for full-wave rectifying the secondary high voltage of the transformer;
  • a charging unit configured to charge a voltage output from the secondary rectifying unit, wherein the charging units of the first to Nth high voltage charging units are connected in series, and the first to Nth detection currents flowing through the first to Nth high voltage power supply means.
  • reference voltages for providing first to Nth divided voltages output from the first to Nth high voltage power supply means, total output voltages of the first to Nth high voltage power means, and reference values of the charging unit applied from the outside.
  • an inverter controller configured to receive a synchronization flag signal applied from the outside and output the synchronized switching control signal.
  • the transformer in the first to N-th high-voltage power supply means compared to the inverter is characterized in that one-to-one.
  • the transformer in the first to N-th high-voltage power supply means the transformer is one-to-many.
  • the inverter control unit the divided voltage deviation calculation unit for calculating the difference between the reference voltage and the first detected divided voltage output from the charging unit in the first high-voltage power supply means;
  • a first proportional integrator that proportionally integrates the voltage deviation output from the divided voltage deviation calculation unit;
  • a divided voltage adding unit configured to add first to Nth detected divided voltages output from the first to Nth high voltage power supply means and output a divided voltage;
  • a total voltage deviation calculation unit for calculating a difference between the total output voltage of the first to Nth high voltage power supply means and the divided voltage summation voltage;
  • a current limiting unit configured to limit the first reference value current not to increase when the output of the total voltage deviation calculator is outside the set range;
  • a current deviation calculator for calculating a difference between the first reference value current and the first detection current flowing through the inverter in the first high voltage power supply unit and outputting a current deviation;
  • a second proportional integrator configured to proportionally integrate the current deviation to output a switching control signal;
  • a synchronizer configured
  • the inverter is a phase shift pulse width modulated inverter operated by zero voltage switching.
  • the control method of the high-voltage power supply device used in the plasma environmental equipment comprising a first to N (where N is a natural water of two or more) high-voltage power supply means used for the plasma environmental equipment
  • a voltage divider voltage deviation calculating step of calculating a difference between a reference voltage applied from the outside and a first detected divided voltage output from a charging unit in the first high voltage power supply means
  • a first proportional integration step of proportionally integrating the voltage deviation output from the divided voltage deviation calculation step
  • a total voltage deviation calculation step of calculating a difference between the total output voltage of said first to Nth high voltage power supply means and said divided voltage
  • a current limiting step of limiting the first reference value current from increasing when the output of the total voltage deviation calculation step is out of a set range
  • the output stage structure of the inverter included in the high voltage power supply device is simple, and the production of a transformer is easy, so that the modularization of the high voltage power supply generating high voltage of high frequency is possible, and a plurality of high voltage power supply units are connected in series Since the power supply device can be configured, the magnitude of the output voltage can be easily changed in accordance with the capacity of the plasma environmental facility.
  • the breakdown voltage of the elements constituting the high voltage power supply device is low and closed-loop control is used, it is robust against load and parameter variations of the elements.
  • the charging sections in the individual high voltage power supply means can be charged simultaneously, and can be charged in a balanced manner.
  • FIG. 1 is a view briefly illustrating an environmental facility using a plasma
  • FIG. 2 is a block diagram showing a high voltage power supply unit used in an environmental facility using plasma
  • FIG. 3 is a view showing a high-voltage power supply device implemented by parallelizing the high-voltage power supply unit according to FIG. 2;
  • FIG. 4 is an overall block diagram showing an N-series high voltage power supply according to an embodiment of the present invention.
  • FIG. 5 is a detailed block diagram of the inverter control unit according to FIG. 4, and
  • FIG. 6 is a detailed circuit diagram of an individual high voltage power supply unit according to an embodiment of the present invention.
  • inverter 440 current limiting unit
  • FIG. 2 is a diagram illustrating a high voltage power supply unit used in a plasma environment facility
  • FIG. 3 is a diagram illustrating a high voltage power supply device implemented by paralleling the high voltage power supply unit of FIG. 2.
  • the high voltage power supply device used in the plasma environment equipment includes a high voltage power supply unit for generating a high frequency high voltage.
  • the high voltage power supply unit includes a primary rectifier 111, a smoothing capacitor Cf, a resonance inverter 112, a resonance capacitor Cs, The transformer 113, the secondary rectifier 114, and the voltage divider 115.
  • the primary rectifier 111 rectifies a three-phase AC voltage having a commercial frequency of 60 Hz into a three-phase full bridge method and converts it into a direct current (DC) voltage, and the smoothing capacitor (Cf) is a primary.
  • the DC voltage converted by the rectifier 111 is smoothed.
  • the resonant inverter 112 is composed of an Insulated Gate Bipolar Transistor (IGBT) module for power conversion, and a high frequency series resonant inverter composed of a single-phase full bridge is used, and a smoothing capacitor is used.
  • the voltage smoothed by Cf is adjusted to generate a sinusoidal voltage having a predetermined frequency by adjusting a switch duty ratio.
  • a resonant capacitor Cs for resonance is inserted into an output terminal of the resonant inverter 112, and a transformer 113 for boosting a high voltage to generate a high voltage is connected to the resonant capacitor Cs.
  • the resonant inverter 112 is configured to operate in series resonance form together with the capacitor component of the resonant capacitor Cs and the inductor parasitic component of the transformer 113, so that each switch of the resonant inverter 112 is zero voltage switching (ZVS: Allows soft switching by zero voltage switching (Zero) or zero current switching (ZCS).
  • the transformer 113 is a high frequency high voltage transformer operated in a high frequency band.
  • the transformer 113 is composed of a voltage multiplying transformer having multiple channels on the secondary side, and by generating a total output voltage by combining the boosted output voltage, respectively, compared to the conventional method using a single transformer. Lower the voltage boost ratio of the transformer to produce a stable high voltage.
  • the secondary rectifier 114 is connected to the secondary side of the transformer 113, and serves to full-wave rectify the high voltage generated at the secondary side of the transformer 113.
  • the voltage divider 115 uses a capacitor-resistor voltage divider (CR) in which a capacitor and a resistor are coupled in parallel.
  • the DC voltage of the rectified high frequency high voltage generated at the secondary side of the transformer 113 is approximately 10,000: 1.
  • the voltage is dropped, and the dropped DC voltage is fed back to the IGBT control unit 117 and output.
  • the IGBT control unit 117 controls the resonant inverter 112 according to the output voltage dropped to about 1 / 10,000.
  • FIG. 3 illustrates a plurality of high voltage power supplies 110-1, 110-2,..., 110-n connected in parallel, and each of the high voltage power supplies follows the configuration of FIG. 2.
  • Each of the high voltage power supply units 110-1, 110-2,..., 110-n has a plurality of high voltage power supply units 110-1 and 110-as shown in FIG. 2, ..., 110-n) are respectively connected in parallel.
  • the capacitor component of the resonant capacitor Cs for the resonance and the inductor component of the transformer 113 are the most important components of the high voltage power supply, and transfer the energy using LC resonance to the load in the switching frequency band, To determine the amount of energy that delivers energy to the load over time.
  • a product having a small error in each parameter should be used for the LC resonance element, and the operating range of the resonance frequency should be maintained to minimize the change of each parameter during the operation of the high voltage power supply.
  • the primary side is a single winding structure
  • the secondary side is a decentralized structure
  • the core of the transformer is a single core
  • the output side of the transformer is composed of multi-channels.
  • control range is determined by the resonance parameter and the switching frequency.
  • the resonant frequency should be more than twice the switching frequency and the control range should be within the above boundary conditions, so the control width is narrow.
  • the effective charge voltage must be controlled by controlling the duty ratio, and the switching frequency must be adjusted to be equal to the resonance point in order to control the current, which causes problems in the reliability and stability of the system when the resonance point changes.
  • an n-parallel method should be used between the high-voltage power supply units because the output stage is a current source.
  • the current is usually large and the voltage source is predetermined, so the application range may be limited.
  • the output terminal of the high voltage power supply unit uses a CR divider for high voltage measurement, and a multi-channel method in which voltage is distributed through the secondary side decentralization of the transformer of the high voltage power supply unit.
  • a multi-channel method in which voltage is distributed through the secondary side decentralization of the transformer of the high voltage power supply unit.
  • FIG. 4 is a block diagram illustrating an N-series high voltage power supply unit according to an embodiment of the present invention
  • FIG. 5 is a detailed block diagram of an inverter controller according to FIG. 4.
  • the N-serial high voltage power supply unit includes first to Nth high voltage power supply units 400-1, 400-2, N output terminals connected in series to provide an output voltage vout. , 400 -N, and an inverter controller 480.
  • the first to Nth high voltage power supply units 400-1, 400-2,..., 400 -N include the primary rectifying unit 410, the smoothing unit 420, the inverter 430, and the high frequency transformer 450.
  • the secondary rectifying unit 460 and the charging unit 470 may further include a current limiting unit 440.
  • Inverter control unit 480 is a current (i1 ⁇ iN) flowing in each of the high-voltage power supply, the divided voltage (vo1 ⁇ voN) output from each of the high-voltage power supply, the total output voltage (vout) of the high-voltage power supply, reference value of the charging unit 470
  • the reference voltage Vref and the sync flag signal Sync are provided to provide the synchronized switching control signals Scon1 to SconN.
  • the inverter controller 480 operates as follows.
  • the divided voltage deviation calculation unit 510-1 calculates a difference between the reference voltage Vref applied from the outside and the first detected divided voltage vo1.
  • the first proportional integrator 520-1 proportionally integrates the calculated voltage deviation verr1 and outputs it.
  • the divided voltage adder 570 outputs the divided voltage added by adding the divided voltages vo1 to voN output from the respective high voltage power supplies 400-1, 400-2,.
  • the voltage deviation calculator 580 calculates a difference between the total output voltage vout and the divided voltage sum.
  • the current limiter 530-1 restricts the first reference value current iref1 from increasing when the output of the total voltage deviation calculator 580 is out of a predetermined range.
  • the current deviation calculation unit 540-1 calculates a difference between the first reference value current reef1 and the first detection current i1.
  • the second proportional integrator 550-1 proportionally integrates the calculated current deviation ierr1 and outputs the proportional integral.
  • the synchronization unit 560-1 outputs the synchronized switching control signal Scon1 by synchronizing the switching control signal output from the second proportional integrator 550-1 with the synchronization flag signal Sync applied from the outside.
  • the switching control signals Scon2 to SconN for the second to Nth high voltage power supply means 400-2, ..., 400-N also occur at the same time in the same manner.
  • the inverter control unit 480 may control the current i1 flowing in the primary side of the high frequency transformer 440 and the divided voltages vo1,..., VoN output from the charging unit 470. According to the present invention, it is possible to easily cope with the variation in the capacity of the plasma environmental equipment by selecting the appropriate number of modular high-voltage power supply unit according to the size of the high voltage required in the plasma reactor and connecting them in series.
  • FIG. 6 is a detailed circuit diagram of an individual high voltage power supply unit according to an embodiment of the present invention.
  • the primary rectifier 410 includes a full-wave rectifier circuit 610 composed of a diode, and further includes a smoothing capacitor 620 for smoothing.
  • the full-wave rectifying circuit 610 converts the three-phase AC voltage (AC Vin) having a commercial frequency of 60 Hz into full-wave rectification by a three-phase full bridge method, and converts the DC voltage into a direct current (DC) voltage. Smooth the full-wave rectified DC voltage.
  • the inverter unit 630 is composed of an IGBT module and generates a square wave voltage having a high frequency by switching the DC voltage passed through the primary rectifier 410.
  • the switching frequency can be appropriately determined, and a switching frequency of 20 KHz can be used in the present invention.
  • the inverter unit 630 may be a phase shift width modulation inverter operated by zero voltage switching.
  • the inverter 630 is controlled by the inverter controller 480, and the current i1 and the voltage dividing unit flowing to the primary side of the high frequency transformer 640 by the PWM control of the inverter controller 480.
  • the output voltage vo1 output from 670 is controlled.
  • the high frequency transformer 450 includes one or a plurality of transformers HTr1, HTr2,..., 650, and is connected to an output terminal of the inverter unit 630 to boost a high-frequency spherical voltage generated by the inverter unit 630. do. Between the inverter unit 630 and the high frequency transformer 650 may limit the maximum current and a current limiting unit 640 for soft switching control may be inserted in series, and an inductor Lr 1 may be inserted into the current limiting unit 640. Can be used.
  • the primary current i1 of the high frequency transformer 650 is fed back to the inverter controller 480.
  • the secondary rectifier 660 full-wave rectifies the high-frequency spherical voltage boosted by the high-frequency transformer 650.
  • the secondary rectifier 660 may be configured as a full-wave rectifier circuit composed of a diode, according to an embodiment of the present invention, the full-wave rectifier circuit 660 is a plurality of transformers (HTr1 included in the high frequency transformer 650) , HTr2, ..., 650), respectively.
  • the voltage divider 670 is connected in parallel with each of the full-wave rectifier circuits included in the secondary rectifier 660, and the plurality of capacitors in the voltage divider 670 are connected in series, respectively, and the voltages Vc_1, Both Vc_2 and Vc_3 are added together, and the output voltage vo1 is finally applied to the output terminal of the voltage divider 670.
  • it may further include a voltage divider resistor connected in parallel with the capacitor to distribute the voltage.
  • the inverter unit 430 of the high voltage power supply unit of FIG. 4 is easier to control than the resonant inverter 112 of the high voltage power supply unit of FIG. 2, and the output terminal structure thereof may be simplified.
  • the transformer included in the high frequency transformer 450 according to FIG. 4 is easier to manufacture than the transformer of the transformer 113 according to FIG. 2.
  • the high-voltage power supply according to FIG. 4 is composed of low pressure, it is easy to manufacture the load of the simulator, and through this, sufficient performance verification is possible, thereby increasing the reliability of the product.
  • the resonant inverter 112 according to FIG. 2 is difficult to design the optimum value of the LC resonant element, and it is difficult to control the resonant frequency when the resonance parameter changes due to deterioration.
  • the application range of the resonant frequency according to the load variation connected to the final output terminal of the voltage divider 115 is narrow, and when applied to the plasma environment equipment requiring high frequency and high voltage, the rating of the device compared to the high voltage power supply unit of the N-serialized voltage source structure This increases and requires a transformer with a large turn ratio has the disadvantage that the modularity is difficult.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Plasma Technology (AREA)

Abstract

The present invention is directed to a high voltage power supply used in plasma environment facilities, which can easily increase an output voltage to be supplied to an output end by serial connection through modularization, and simultaneously and uniformly charge chargers in an individual high voltage power supply means. The high voltage power supply used in plasma environment facilities according to the present invention comprises 1st to N-th (N is a natural number no less than 2) high voltage power supply means, each of the 1st to N-th high voltage power supply means including: a primary rectifier for performing full-wave rectification on an AC voltage to generate a DC voltage; an inverter for converting the DC voltage into a radio-frequency square wave voltage by switching based on a switching control signal; a transformer having a primary side to receive the radio-frequency square wave voltage and a secondary side to generate a boosted, high voltage; a secondary rectifier for performing full-wave rectification on a high voltage on the secondary side of the transformer; and a charger for charging a voltage output from the secondary rectifier, and an inverter controller, which outputs 1st to N-th detected currents flowing through the 1st to N-th high voltage power supply means, 1st to N-th detected, divided voltages output from the 1st to N-th high voltage power supply means, a total output voltage of the 1st to N-th high voltage power supply means, and a reference voltage to provide a reference value of the charger being applied from outside and which receives a synchronous flag signal applied from outside and then outputs a synchronized switching control signal.

Description

플라즈마 환경설비에 이용되는 고압 전원 장치 및 그 제어방법High voltage power supply device and plasma control method
본 발명은 플라즈마 환경설비에 이용되는 고압 전원 장치 및 그 제어방법에 관한 것으로서, 더욱 상세하게는 N-직렬 전압원 구조로 대용량화가 가능하고, 플라즈마 반응기에서 고주파의 고전압이 요구될 경우 그 전압 증가가 용이하고, 피드백 제어를 사용하여 안정성을 향상시키는 고압 전원 장치 및 그 제어방법에 관한 것이다.The present invention relates to a high-voltage power supply device and a control method thereof used in a plasma environment facility, and more particularly, to a large-capacity N-series voltage source structure, and to increase the voltage easily when a high frequency high voltage is required in the plasma reactor. The present invention relates to a high voltage power supply device and a control method for improving stability by using feedback control.
도 1은 플라즈마 환경 설비(environment facilities using plasma)를 간략히 예시한 도면이다.1 is a diagram briefly illustrating environmental facilities using plasma.
도 1을 참조하면, 플라즈마 환경설비는 고주파의 고전압을 발생시키는 고압 전원 장치(110), MPC 탱크(magnetic pulse compressor tank, 120) 및 플라즈마 반응기(plasma reactor, 130)로 구성된다.Referring to FIG. 1, the plasma environment facility includes a high voltage power supply device 110, a magnetic pulse compressor tank 120, and a plasma reactor 130 that generate high frequency high voltage.
고압 전원 장치(11)에서 발생되는 고주파의 고전압(high voltage with high frequency)은 MPC 탱크(120)의 커패시터(CL, C1, C2)에 충전되고, 각 스위치(SW1, SW2, SW3)의 동작에 따라 흐르는 전류(iout)에 의하여 플라즈마 반응을 일으킬 수 있도록 플라즈마 반응기(plasma reactor, 130)에서 고전압(vout)이 형성된다.The high voltage of the high voltage generated by the high voltage power supply 11 is charged in the capacitors CL, C1, and C2 of the MPC tank 120, and the operation of each of the switches SW1, SW2, and SW3. A high voltage vout is formed in the plasma reactor 130 so as to cause a plasma reaction by the current flowing out.
이처럼 플라즈마 환경설비에는 플라즈마 반응기(130)에 인가되는 고주파의 고전압을 발생시키는 고압 전원 장치(110)가 필수적이다. 한편, 플라즈마 환경설비의 용량에 따라 플라즈마 반응기에서 요구되는 고전압의 크기가 상이할 수 있다. 따라서, 플라즈마 반응기에서 요구되는 전압 값의 크기에 따라 그 전압 변동에 용이하게 대응할 수 있는 고압 전원 장치의 필요성이 점차 커지고 있다.As such, a high voltage power supply device 110 for generating a high frequency high voltage applied to the plasma reactor 130 is essential to the plasma environment facility. On the other hand, the size of the high voltage required in the plasma reactor may be different depending on the capacity of the plasma environmental equipment. Therefore, there is a growing need for a high voltage power supply device that can easily cope with the voltage fluctuation according to the magnitude of the voltage value required in the plasma reactor.
본 발명이 해결하고자 하는 과제는 플라즈마 환경설비에 이용되는 고압 전원 장치를 제공하는 것으로서, 모듈화하여 직렬로 연결함으로써 출력단에 제공하는 출력 전압을 용이하게 증가시킬 수 있는 고압 전원부를 포함하는 고압 전원 장치 및 그 제어방법을 제공하는 데에 있다.The problem to be solved by the present invention is to provide a high-voltage power supply for use in a plasma environment, a high-voltage power supply including a high-voltage power supply that can easily increase the output voltage provided to the output by modularized and connected in series; It is to provide a control method.
또한, 본 발명은 개별 고압 전원 수단 내 충전부가 동시에 충전될 수 있고, 균형적으로 충전될 수 있는 고압 전원 장치 및 그 제어방법을 제공함에 다른 목적이 있다.In addition, another object of the present invention is to provide a high-voltage power supply device and a method of controlling the same that can be charged at the same time, the charging unit in the individual high-voltage power supply means.
본원의 제1 발명에 따른 플라즈마 환경설비에 이용되는 고압 전원 장치는, 플라스마 환경설비에 이용되는 고압 전원 장치에 있어서, 상기 고압 전원 장치는 제1 내지 제N(여기서, N은 2 이상의 자연수) 고압 전원 수단을 포함하고, 상기 제1 내지 제N 고압 전원 수단 각각은, 교류 전압을 전파 정류하여 직류 전압을 생성하는 1차 정류부; 스위칭 제어신호에 기초한 스위칭에 의해 상기 직류 전압을 고주파의 구형파 전압으로 변환하는 인버터; 상기 고주파의 구형파 전압을 1차측에서 입력받고, 2차측에서 승압된 고전압을 생성하는 변압부; 상기 변압부의 2차측 고전압을 전파 정류하는 2차 정류부; 및 상기 2차 정류부에서 출력되는 전압을 충전하는 충전부를 포함하고, 상기 제1 내지 제N 고압 충전부의 충전부는 직렬연결되며, 상기 제1 내지 제N 고압 전원 수단에 흐르는 제1 내지 제N 검출전류, 상기 제1 내지 제N 고압 전원 수단으로부터 출력되는 제1 내지 제N 검출분압전압, 상기 제1 내지 제N 고압 전원 수단의 전체 출력전압, 외부에서 인가되는 상기 충전부의 기준치를 제공하기 위한 기준전압, 및 외부에서 인가되는 동기 플래그 신호를 입력받아 동기된 상기 스위칭 제어신호를 출력하는 인버터 제어부를 포함한다.In the high pressure power supply device used for the plasma environment facility according to the first invention of the present application, the high pressure power supply device used for the plasma environment facility, wherein the high pressure power supply device is a first to Nth (where N is a natural number of 2 or more) A first rectifying unit including a power supply means, each of the first to Nth high voltage power supply means generating a DC voltage by full-wave rectifying an AC voltage; An inverter for converting the DC voltage into a high frequency square wave voltage by switching based on a switching control signal; A transformer for receiving the high frequency square wave voltage from a primary side and generating a high voltage boosted from the secondary side; A secondary rectifier for full-wave rectifying the secondary high voltage of the transformer; And a charging unit configured to charge a voltage output from the secondary rectifying unit, wherein the charging units of the first to Nth high voltage charging units are connected in series, and the first to Nth detection currents flowing through the first to Nth high voltage power supply means. And reference voltages for providing first to Nth divided voltages output from the first to Nth high voltage power supply means, total output voltages of the first to Nth high voltage power means, and reference values of the charging unit applied from the outside. And an inverter controller configured to receive a synchronization flag signal applied from the outside and output the synchronized switching control signal.
바람직하게는, 상기 제1 내지 제N 고압 전원 수단 내 인버터 대비 변압부는 일대일인 것을 특징으로 한다.Preferably, the transformer in the first to N-th high-voltage power supply means compared to the inverter is characterized in that one-to-one.
바람직하게는, 상기 제1 내지 제N 고압 전원 수단 내 인버터 대비 변압부는 일대다인 것을 특징으로 한다.Preferably, the transformer in the first to N-th high-voltage power supply means, the transformer is one-to-many.
바람직하게는, 상기 인버터 제어부는, 상기 기준전압과 제1 고압 전원 수단 내 충전부로부터 출력되는 제1 검출분압전압의 차이를 산출하는 분압전압 편차산출부; 상기 분압전압 편차산출부로부터 출력되는 전압편차를 비례 적분하는 제1 비례적분기; 상기 제1 내지 제N 고압 전원 수단으로부터 출력되는 제1 내지 제N 검출분압전압을 가산하여 분압합산전압을 출력하는 분압전압 가산부; 상기 제1 내지 제N 고압 전원 수단의 전체 출력전압과 상기 분압합산전압의 차이를 산출하는 전체전압 편차산출부; 상기 전체전압 편차산출부의 출력이 설정된 범위를 벗어나는 경우 제1 기준치 전류가 증가하지 않도록 제한하는 전류 제한부; 상기 제1 기준치 전류와 제1 고압 전원 수단 내 인버터를 흐르는 제1 검출전류의 차이를 산출하여 전류편차를 출력하는 전류 편차산출부; 상기 전류편차를 비례 적분하여 스위칭 제어 신호를 출력하는 제2 비례적분기; 및 상기 제2 비례적분기로부터 출력되는 스위칭 제어 신호를 외부로부터 인가되는 동기 플래그 신호에 동기시켜 동기된 스위칭 제어 신호를 출력하는 동기부를 포함한다.Preferably, the inverter control unit, the divided voltage deviation calculation unit for calculating the difference between the reference voltage and the first detected divided voltage output from the charging unit in the first high-voltage power supply means; A first proportional integrator that proportionally integrates the voltage deviation output from the divided voltage deviation calculation unit; A divided voltage adding unit configured to add first to Nth detected divided voltages output from the first to Nth high voltage power supply means and output a divided voltage; A total voltage deviation calculation unit for calculating a difference between the total output voltage of the first to Nth high voltage power supply means and the divided voltage summation voltage; A current limiting unit configured to limit the first reference value current not to increase when the output of the total voltage deviation calculator is outside the set range; A current deviation calculator for calculating a difference between the first reference value current and the first detection current flowing through the inverter in the first high voltage power supply unit and outputting a current deviation; A second proportional integrator configured to proportionally integrate the current deviation to output a switching control signal; And a synchronizer configured to output a synchronized switching control signal by synchronizing a switching control signal output from the second proportional integrator with a synchronization flag signal applied from the outside.
바람직하게는, 상기 인버터는 영전압 스위칭에 의해 동작되는 위상 천이 펄스 폭 변조 인버터이다.Preferably, the inverter is a phase shift pulse width modulated inverter operated by zero voltage switching.
또한, 본원의 제2 발명에 따른 플라즈마 환경설비에 이용되는 고압 전원 장치의 제어방법은, 플라스마 환경설비에 이용되는 제1 내지 제N(여기서, N은 2 이상의 자연수) 고압 전원 수단을 포함하는 고압 전원 장치를 제어함에 있어서, 외부에서 인가되는 기준전압과 상기 제1 고압 전원 수단 내 충전부로부터 출력되는 제1 검출분압전압의 차이를 산출하는 분압전압 편차산출 단계; 상기 분압전압 편차산출 단계로부터 출력되는 전압편차를 비례 적분하는 제1 비례적분 단계; 상기 제1 내지 제N 고압 전원 수단으로부터 출력되는 제1 내지 제N 검출분압전압을 가산하여 분압합산전압을 출력하는 분압전압 가산단계; 상기 제1 내지 제N 고압 전원 수단의 전체 출력전압과 상기 분압합산전압의 차이를 산출하는 전체전압 편차산출 단계; 상기 전체전압 편차산출 단계의 출력이 설정된 범위를 벗어나는 경우 제1 기준치 전류가 증가하지 않도록 제한하는 전류 제한 단계; 상기 제1 기준치 전류와 제1 고압 전원 수단 내 인버터를 흐르는 제1 검출전류의 차이를 산출하여 전류편차를 출력하는 전류편차 산출 단계; 상기 전류편차를 비례 적분하여 스위칭 제어 신호를 출력하는 단계; 및 상기 스위칭 제어 신호를 외부로부터 인가되는 동기 플래그 신호에 동기시켜 동기된 스위칭 제어 신호를 출력하는 단계를 포함한다.In addition, the control method of the high-voltage power supply device used in the plasma environmental equipment according to the second invention of the present application, the high-pressure power supply means comprising a first to N (where N is a natural water of two or more) high-voltage power supply means used for the plasma environmental equipment In the control of the power supply device, a voltage divider voltage deviation calculating step of calculating a difference between a reference voltage applied from the outside and a first detected divided voltage output from a charging unit in the first high voltage power supply means; A first proportional integration step of proportionally integrating the voltage deviation output from the divided voltage deviation calculation step; A divided voltage adding step of adding first to Nth divided voltages output from the first to Nth high voltage power means and outputting a divided voltage; A total voltage deviation calculation step of calculating a difference between the total output voltage of said first to Nth high voltage power supply means and said divided voltage; A current limiting step of limiting the first reference value current from increasing when the output of the total voltage deviation calculation step is out of a set range; A current deviation calculating step of calculating a difference between the first reference value current and a first detection current flowing through the inverter in the first high voltage power supply means and outputting a current deviation; Outputting a switching control signal by proportionally integrating the current deviation; And outputting a synchronized switching control signal by synchronizing the switching control signal with a synchronization flag signal applied from the outside.
본 발명에 따르면, 고압 전원 장치에 포함된 인버터의 출력단 구조가 간단하고 변압기의 제작이 용이하여 고주파의 고전압을 발생시키는 고압 전원부의 모듈화가 가능하며, 복수개의 모듈화된 고압 전원부를 직렬로 연결하여 고압 전원 장치를 구성할 수 있으므로 플라즈마 환경설비의 용량에 따라 그 출력 전압의 크기를 용이하게 변동시킬 수 있다.According to the present invention, the output stage structure of the inverter included in the high voltage power supply device is simple, and the production of a transformer is easy, so that the modularization of the high voltage power supply generating high voltage of high frequency is possible, and a plurality of high voltage power supply units are connected in series Since the power supply device can be configured, the magnitude of the output voltage can be easily changed in accordance with the capacity of the plasma environmental facility.
또한, 본 발명에 따르면, 고압 전원 장치를 구성하는 소자의 내압이 낮으며, 폐루프 제어를 이용하기 때문에 부하 및 소자의 파라미터 변동에 대해 강인성을 가진다.Further, according to the present invention, since the breakdown voltage of the elements constituting the high voltage power supply device is low and closed-loop control is used, it is robust against load and parameter variations of the elements.
또한, 본 발명에 따르면, 개별 고압 전원 수단 내 충전부가 동시에 충전될 수 있고, 균형적으로 충전될 수 있다.Furthermore, according to the invention, the charging sections in the individual high voltage power supply means can be charged simultaneously, and can be charged in a balanced manner.
도 1은 플라즈마를 이용한 환경설비를 간략히 예시한 도면,1 is a view briefly illustrating an environmental facility using a plasma,
도 2는 플라즈마를 이용한 환경설비에 이용되는 고압 전원부를 나타낸 블록도,2 is a block diagram showing a high voltage power supply unit used in an environmental facility using plasma;
도 3은 도 2에 따른 고압 전원부를 병렬화하여 구현한 고압 전원 장치를 나타낸 도면,3 is a view showing a high-voltage power supply device implemented by parallelizing the high-voltage power supply unit according to FIG. 2;
도 4는 본 발명의 일실시예에 따른 N-직렬 고압 전원부를 나타낸 전체 블록도,4 is an overall block diagram showing an N-series high voltage power supply according to an embodiment of the present invention;
도 5는 도 4에 따른 인버터 제어부의 상세 블록도, 및 5 is a detailed block diagram of the inverter control unit according to FIG. 4, and
도 6은 본 발명의 일실시예에 따른 개별 고압 전원부의 상세 회로도이다.6 is a detailed circuit diagram of an individual high voltage power supply unit according to an embodiment of the present invention.
* 도면의 주요 부호에 대한 설명 *Description of the main symbols in the drawings
400-1, 400-2, ..., 400-N : 제1 내지 제N 고압 전원 수단400-1, 400-2, ..., 400-N: 1st to Nth high voltage power supply means
410: 1차 정류부 420: 평활부410: primary rectifying unit 420: smoothing unit
430: 인버터 440: 전류제한부430: inverter 440: current limiting unit
450: 고주파 변압부 460: 2차 정류부450: high frequency transformer 460: secondary rectifier
470: 충전부 480: 인버터 제어부470: charging unit 480: inverter control unit
이하에서 첨부된 도면을 참조하여, 본 발명의 바람직한 실시예를 상세히 설명한다. 각 도면에 제시된 동일한 참조부호는 동일한 부재를 나타낸다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Like reference numerals in the drawings denote like elements.
도 2는 플라즈마 환경설비에 이용되는 고압 전원부를 나타낸 도면이고, 도 3은 도 2의 고압 전원부를 병렬화하여 구현한 고압 전원 장치를 나타낸 도면이다.FIG. 2 is a diagram illustrating a high voltage power supply unit used in a plasma environment facility, and FIG. 3 is a diagram illustrating a high voltage power supply device implemented by paralleling the high voltage power supply unit of FIG. 2.
플라즈마 환경설비에 이용되는 고압 전원 장치는 고주파의 고전압을 발생시키는 고압 전원부를 포함하며, 고압 전원부는 1차 정류부(111), 평활 커패시터(Cf), 공진 인버터(112), 공진 커패시터(Cs), 변압부(113), 2차 정류부(114), 분압부(115)로 구성된다.The high voltage power supply device used in the plasma environment equipment includes a high voltage power supply unit for generating a high frequency high voltage. The high voltage power supply unit includes a primary rectifier 111, a smoothing capacitor Cf, a resonance inverter 112, a resonance capacitor Cs, The transformer 113, the secondary rectifier 114, and the voltage divider 115.
1차 정류부(111)는 60Hz의 상용 주파수를 가지는 3상 교류(AC) 전압을 3상 풀브릿지(Full Bridbe) 방식으로 정류하여 직류(DC) 전압으로 변환하며, 평활 커패시터(Cf)는 1차 정류부(111)에서 변환된 직류(DC) 전압을 평활시킨다.The primary rectifier 111 rectifies a three-phase AC voltage having a commercial frequency of 60 Hz into a three-phase full bridge method and converts it into a direct current (DC) voltage, and the smoothing capacitor (Cf) is a primary. The DC voltage converted by the rectifier 111 is smoothed.
공진 인버터(112)는 전력 변환용 IGBT(Insulated Gate Bipolar Transistor) 모듈로 구성되고, 단상(單相) 풀 브릿지(Full Bridbe)로 구성된 고주파 직렬 공진형 인버터(Series Resonant Inverter)가 이용되며, 평활 커패시터(Cf)에 의해 평활된 전압을 스위치 듀티비(Duty Ratio)를 조정하여 소정 주파수를 가지는 정현파 전압을 발생시킨다.The resonant inverter 112 is composed of an Insulated Gate Bipolar Transistor (IGBT) module for power conversion, and a high frequency series resonant inverter composed of a single-phase full bridge is used, and a smoothing capacitor is used. The voltage smoothed by Cf is adjusted to generate a sinusoidal voltage having a predetermined frequency by adjusting a switch duty ratio.
공진 인버터(112)의 출력단에는 공진을 위한 공진 커패시터(Cs)가 삽입되고, 그 공진 커패시터(Cs)에는 고전압으로 승압하여 고전압을 발생시키는 변압부(113)가 연결된다.A resonant capacitor Cs for resonance is inserted into an output terminal of the resonant inverter 112, and a transformer 113 for boosting a high voltage to generate a high voltage is connected to the resonant capacitor Cs.
공진 인버터(112)는 공진 커패시터(Cs)의 커패시터 성분 및 변압부(113)의 인덕터 기생 성분과 함께 직렬 공진 형태로 동작하게 구성됨으로써, 공진 인버터(112)의 각 스위치들이 영전압 스위칭(ZVS: Zero Voltage Switching) 또는 영전류 스위칭(ZCS: Zero Current Switching)에 의해 소프트 스위칭되도록 한다.The resonant inverter 112 is configured to operate in series resonance form together with the capacitor component of the resonant capacitor Cs and the inductor parasitic component of the transformer 113, so that each switch of the resonant inverter 112 is zero voltage switching (ZVS: Allows soft switching by zero voltage switching (Zero) or zero current switching (ZCS).
그리고 변압부(113)는 고주파 대역에서 동작되는 고주파 고전압 변압기(High Frequency High Voltage Transformer)가 이용된다. 변압부(113)는 2차측이 다채널로 구성되는 전압 체배방식의 변압기로 구성되며, 각각 승압된 출력전압의 결합에 의해 전체 출력전압이 발생되도록 함으로써, 단일 변압기를 사용하는 종래의 방식에 비해 변압기의 승압 비율을 낮춰서 안정된 고전압이 발생되게 한다.The transformer 113 is a high frequency high voltage transformer operated in a high frequency band. The transformer 113 is composed of a voltage multiplying transformer having multiple channels on the secondary side, and by generating a total output voltage by combining the boosted output voltage, respectively, compared to the conventional method using a single transformer. Lower the voltage boost ratio of the transformer to produce a stable high voltage.
2차 정류부(114)는 변압부(113)의 2차측과 연결되어, 변압부(113)의 2차측에서 발생된 고전압을 전파 정류하는 역할을 한다.The secondary rectifier 114 is connected to the secondary side of the transformer 113, and serves to full-wave rectify the high voltage generated at the secondary side of the transformer 113.
분압기(115)는 커패시터와 저항이 병렬로 결합된 CR 분압기(Capacior-Resistor Voltage Divider)가 이용되며, 변압부(113)의 2차측에서 생성되어 정류된 고주파 고전압의 직류 전압을 약 10,000:1로 전압 강하하고, 강하된 직류 전압을 IGBT 제어부(117)로 궤환(feedback)하여 출력한다.The voltage divider 115 uses a capacitor-resistor voltage divider (CR) in which a capacitor and a resistor are coupled in parallel. The DC voltage of the rectified high frequency high voltage generated at the secondary side of the transformer 113 is approximately 10,000: 1. The voltage is dropped, and the dropped DC voltage is fed back to the IGBT control unit 117 and output.
IGBT 제어부(117)는 약 1/10,000로 강하된 출력 전압에 따라 공진 인버터(112)를 제어한다.The IGBT control unit 117 controls the resonant inverter 112 according to the output voltage dropped to about 1 / 10,000.
도 3은 복수의 고압 전원부(110-1, 110-2, ..., 110-n)가 병렬로 연결된 것으로서, 각각의 고압 전원부는 도 2의 구성에 따른다.3 illustrates a plurality of high voltage power supplies 110-1, 110-2,..., 110-n connected in parallel, and each of the high voltage power supplies follows the configuration of FIG. 2.
각각의 고압 전원부(110-1, 110-2, ..., 110-n)는 출력단이 전류원이므로, 대용량화하여 플라즈마 환경설비에 이용하기 위해서 도 3처럼 복수개의 고압 전원부(110-1, 110-2, ..., 110-n)가 각각 병렬로 연결된다.Each of the high voltage power supply units 110-1, 110-2,..., 110-n has a plurality of high voltage power supply units 110-1 and 110-as shown in FIG. 2, ..., 110-n) are respectively connected in parallel.
공진을 위한 공진 커패시터(Cs)의 커패시터 성분과 변압부(113)의 인덕터 성분은 고압 전원 장치의 가장 중요한 성분으로서, 스위칭 주파수 대역에서 LC 공진을 이용한 에너지를 부하로 전달하며, 소자들의 특성 임피던스를 이용하여 시간에 따라 에너지를 부하로 전달하는 에너지량을 결정한다.The capacitor component of the resonant capacitor Cs for the resonance and the inductor component of the transformer 113 are the most important components of the high voltage power supply, and transfer the energy using LC resonance to the load in the switching frequency band, To determine the amount of energy that delivers energy to the load over time.
그런데, 이러한 형태의 전원장치는 다음과 같은 문제점을 가질 수 있다.However, this type of power supply may have the following problems.
첫째, LC 공진을 위해 LC 공진 소자는 각 파라미터에 있어서 오차가 작은 제품이 이용되어야 하고, 고압 전원 장치의 동작 중 각 파라미터의 변화가 최소화되도록 공진 주파수의 운전 범위가 유지되어야 한다.First, for the LC resonance, a product having a small error in each parameter should be used for the LC resonance element, and the operating range of the resonance frequency should be maintained to minimize the change of each parameter during the operation of the high voltage power supply.
둘째, 변압부(113)의 변압기 구조에 있어서, 1차측은 단권 구조이고, 2차측은 분권 구조이며, 변압기의 코어는 단일 코어이며, 변압기의 출력측이 멀티채널로 구성되어 있다. 이 같은 구조는 고전압 승압에 따른 코어의 열손실이 크며, 변압기 제작시 크기 및 절연 상태를 고려하여야 한다.Second, in the transformer structure of the transformer unit 113, the primary side is a single winding structure, the secondary side is a decentralized structure, the core of the transformer is a single core, and the output side of the transformer is composed of multi-channels. Such a structure has a large heat loss of the core due to the high voltage boost, and the size and insulation state must be taken into consideration when manufacturing a transformer.
셋째, 제어 범위는 공진 파라미터와 스위칭 주파수에 따라 결정된다. 불연속모드로 동작할 경우, 공진 주파수가 스위칭 주파수보다 2배 이상 커야 하며, 제어 범위는 위 경계조건 내에서 이루어져야 하므로 제어폭이 좁다. 연속모드 동작시에는 듀티비를 제어하여 유효 충전 전압을 제어해야 하며, 전류 제어를 위해서는 스위칭 주파수를 공진점과 동일하게 조정하여야 하므로 공진점 변화시 시스템의 신뢰성 및 안정성에 문제를 야기시킨다.Third, the control range is determined by the resonance parameter and the switching frequency. When operating in discontinuous mode, the resonant frequency should be more than twice the switching frequency and the control range should be within the above boundary conditions, so the control width is narrow. In continuous mode operation, the effective charge voltage must be controlled by controlling the duty ratio, and the switching frequency must be adjusted to be equal to the resonance point in order to control the current, which causes problems in the reliability and stability of the system when the resonance point changes.
넷째, 이 고압 전원 장치를 대용량화 할 경우 출력단이 전류원이므로 고압 전원부 간에는 n-병렬 방식이 사용되어야 한다. n-병렬 방식 연결시에는 통상적으로 전류가 커지고 전압원은 소정되므로, 그 적용 범위가 제한될 수 있다. Fourthly, when the high-voltage power supply unit has a large capacity, an n-parallel method should be used between the high-voltage power supply units because the output stage is a current source. In the n-parallel connection, the current is usually large and the voltage source is predetermined, so the application range may be limited.
다섯째, 이 고압 전원 장치의 출력단은 고전압 측정을 위해 CR 분배기가 사용되고, 이 고압 전원 장치의 변압기의 2차측 분권을 통해 전압을 분배한 다중 채널 방식이 이용된다. 그러나 다중 채널 방식의 경우 전압 불균형에 의해 순화 전류가 발생하여 시스템의 안정성이 떨어질 수 있으므로 전압 균형을 맞출 필요성이 있다.Fifth, the output terminal of the high voltage power supply unit uses a CR divider for high voltage measurement, and a multi-channel method in which voltage is distributed through the secondary side decentralization of the transformer of the high voltage power supply unit. However, in the case of the multi-channel method, there is a need to balance the voltage because a shunt current may be generated due to voltage imbalance, which may reduce the stability of the system.
도 4는 본 발명의 일실시예에 따른 N-직렬 고압 전원부를 나타낸 전체 블록도이며, 도 5는 도 4에 따른 인버터 제어부의 상세 블록도이다. 4 is a block diagram illustrating an N-series high voltage power supply unit according to an embodiment of the present invention, and FIG. 5 is a detailed block diagram of an inverter controller according to FIG. 4.
본 발명의 일실시예에 따른 N-직렬 고압 전원부는 N개의 출력단이 직렬로 연결되어 출력전압(vout)을 제공하는 제1 내지 제N 고압 전원 수단(400-1, 400-2, ..., 400-N)과, 인버터 제어부(480)를 포함한다.According to an embodiment of the present invention, the N-serial high voltage power supply unit includes first to Nth high voltage power supply units 400-1, 400-2, N output terminals connected in series to provide an output voltage vout. , 400 -N, and an inverter controller 480.
제1 내지 제N 고압 전원 수단(400-1, 400-2, ..., 400-N)은 1차 정류부(410), 평활부(420), 인버터(430), 고주파 변압부(450), 2차 정류부(460), 충전부(470)를 포함하며, 추가로 전류제한부(440)를 더 포함할 수 있다.The first to Nth high voltage power supply units 400-1, 400-2,..., 400 -N include the primary rectifying unit 410, the smoothing unit 420, the inverter 430, and the high frequency transformer 450. , The secondary rectifying unit 460 and the charging unit 470 may further include a current limiting unit 440.
인버터 제어부(480)는 각각의 고압 전원부에 흐르는 전류(i1~iN), 각각의 고압 전원부로부터 출력되는 분압전압(vo1~voN), 고압 전원부의 전체 출력전압(vout), 충전부(470)의 기준치를 제공하기 위한 기준전압(Vref), 및 동기 플래그 신호(Sync)를 입력받아 동기된 스위칭 제어신호(Scon1~SconN)를 출력한다.Inverter control unit 480 is a current (i1 ~ iN) flowing in each of the high-voltage power supply, the divided voltage (vo1 ~ voN) output from each of the high-voltage power supply, the total output voltage (vout) of the high-voltage power supply, reference value of the charging unit 470 The reference voltage Vref and the sync flag signal Sync are provided to provide the synchronized switching control signals Scon1 to SconN.
즉, 인버터 제어부(480)는 다음과 같이 동작한다.That is, the inverter controller 480 operates as follows.
분압전압 편차산출부(510-1)는 외부에서 인가되는 기준전압(Vref)과 제1 검출분압전압(vo1)의 차이를 산출한다.The divided voltage deviation calculation unit 510-1 calculates a difference between the reference voltage Vref applied from the outside and the first detected divided voltage vo1.
제1 비례적분기(520-1)는 산출된 전압편차(verr1)를 비례 적분하여 출력한다.The first proportional integrator 520-1 proportionally integrates the calculated voltage deviation verr1 and outputs it.
분압전압 가산부(570)는 각각의 고압 전원부(400-1, 400-2, ..., 400-N)로부터 출력되는 분압전압(vo1~voN)을 가산한 분압합산전압을 출력하고, 전체전압 편차산출부(580)는 전체 출력전압(vout)과 분압합산전압의 차이를 산출한다.The divided voltage adder 570 outputs the divided voltage added by adding the divided voltages vo1 to voN output from the respective high voltage power supplies 400-1, 400-2,. The voltage deviation calculator 580 calculates a difference between the total output voltage vout and the divided voltage sum.
전류 제한부(530-1)는 전체전압 편차산출부(580)의 출력이 소정 범위를 벗어나는 경우 제1 기준치 전류(iref1)가 증가하지 않도록 제한한다.The current limiter 530-1 restricts the first reference value current iref1 from increasing when the output of the total voltage deviation calculator 580 is out of a predetermined range.
전류 편차산출부(540-1)는 제1 기준치 전류(iref1)과 제1 검출전류(i1)의 차이를 산출한다.The current deviation calculation unit 540-1 calculates a difference between the first reference value current reef1 and the first detection current i1.
제2 비례적분기(550-1)는 산출된 전류편차(ierr1)를 비례 적분하여 출력한다.The second proportional integrator 550-1 proportionally integrates the calculated current deviation ierr1 and outputs the proportional integral.
동기부(560-1)는 제2 비례적분기(550-1)로부터 출력되는 스위칭 제어 신호를 외부로부터 인가되는 동기 플래그 신호(Sync)에 동기시켜 동기된 스위칭 제어 신호(Scon1)를 출력한다. The synchronization unit 560-1 outputs the synchronized switching control signal Scon1 by synchronizing the switching control signal output from the second proportional integrator 550-1 with the synchronization flag signal Sync applied from the outside.
한편, 제2 내지 제N 고압 전원 수단(400-2, ..., 400-N)용 스위칭 제어 신호(Scon2~SconN)도 동일한 방식으로 동일한 시점에 발생한다.On the other hand, the switching control signals Scon2 to SconN for the second to Nth high voltage power supply means 400-2, ..., 400-N also occur at the same time in the same manner.
이에 따라, 인버터 제어부(480)에 의하여 고주파 변압부(440)의 1차측에 흐르는 전류(i1)와 충전부(470)에서 출력되는 분압전압(vo1, ..., voN)이 제어될 수 있다. 본 발명에 따르면, 플라즈마 반응기에서 필요로 하는 고전압의 크기에 맞춰 적절한 개수의 모듈화된 고압 전원부를 선택하고 이를 직렬로 연결함으로써 플라즈마 환경설비의 용량 변동에 쉽게 대응할 수 있다.Accordingly, the inverter control unit 480 may control the current i1 flowing in the primary side of the high frequency transformer 440 and the divided voltages vo1,..., VoN output from the charging unit 470. According to the present invention, it is possible to easily cope with the variation in the capacity of the plasma environmental equipment by selecting the appropriate number of modular high-voltage power supply unit according to the size of the high voltage required in the plasma reactor and connecting them in series.
도 6은 본 발명의 일실시예에 따른 개별 고압 전원부의 상세 회로도이다.6 is a detailed circuit diagram of an individual high voltage power supply unit according to an embodiment of the present invention.
1차 정류부(410)는 다이오드로 구성된 전파 정류 회로(610)를 포함하며, 추가로 평활을 위한 평활 커패시터(620)를 더 포함한다. 전파 정류 회로(610)는 60Hz의 상용 주파수를 갖는 3상 교류 전압(AC Vin)을 3상 풀 브릿지(Full Bridge) 방식으로 전파 정류하여 직류(DC) 전압으로 변환하며, 평활 커패시터(620)는 전파 정류된 직류 전압을 평활시킨다.The primary rectifier 410 includes a full-wave rectifier circuit 610 composed of a diode, and further includes a smoothing capacitor 620 for smoothing. The full-wave rectifying circuit 610 converts the three-phase AC voltage (AC Vin) having a commercial frequency of 60 Hz into full-wave rectification by a three-phase full bridge method, and converts the DC voltage into a direct current (DC) voltage. Smooth the full-wave rectified DC voltage.
인버터부(630)는 IGBT 모듈로 구성되며, 1차 정류부(410)를 거친 직류 전압을 스위칭하여 고주파를 가지는 구형파 전압을 생성한다. 스위칭 주파수는 적절하게 결정될 수 있으며, 본 발명에서는 20KHz의 스위칭 주파수가 이용될 수 있다. 인버터부(630)는 영전압 스위칭에 의해 동작되는 위상 천이 펄스 폭 변조(phase shift width modulation) 인버터일 수 있다. 인버터(630)는 인터버 제어부(480)에 의하여 제어되며, 인버터 제어부(480)의 PWM(Pulse Width Modulation) 제어에 의하여 고주파 변압부(640)의 1차측에 흐르는 전류(i1)와 분압부(670)에서 출력되는 출력 전압(vo1)이 제어된다.The inverter unit 630 is composed of an IGBT module and generates a square wave voltage having a high frequency by switching the DC voltage passed through the primary rectifier 410. The switching frequency can be appropriately determined, and a switching frequency of 20 KHz can be used in the present invention. The inverter unit 630 may be a phase shift width modulation inverter operated by zero voltage switching. The inverter 630 is controlled by the inverter controller 480, and the current i1 and the voltage dividing unit flowing to the primary side of the high frequency transformer 640 by the PWM control of the inverter controller 480. The output voltage vo1 output from 670 is controlled.
고주파 변압부(450)는 하나 또는 복수의 변압기(HTr1, HTr2,..., 650)를 포함하며, 인버터부(630)의 출력단과 연결되어 인버터부(630)에서 생성된 고주파 구형 전압을 승압한다. 인버터부(630)와 고주파 변압부(650) 사이에는 최대 전류를 제한하고 소프트 스위칭 제어를 위한 전류 제한부(640)가 직렬로 삽입될 수 있으며, 전류 제한부(640)에는 인덕터(Lr1)가 이용될 수 있다.The high frequency transformer 450 includes one or a plurality of transformers HTr1, HTr2,..., 650, and is connected to an output terminal of the inverter unit 630 to boost a high-frequency spherical voltage generated by the inverter unit 630. do. Between the inverter unit 630 and the high frequency transformer 650 may limit the maximum current and a current limiting unit 640 for soft switching control may be inserted in series, and an inductor Lr 1 may be inserted into the current limiting unit 640. Can be used.
한편, 고주파 변압부(650)의 1차측 전류(i1)는 인버터 제어부(480)로 피드백된다.Meanwhile, the primary current i1 of the high frequency transformer 650 is fed back to the inverter controller 480.
2차 정류부(660)는 고주파 변압부(650)에서 승압된 고주파 구형 전압을 전파 정류한다. 2차 정류부(660)는 다이오드로 구성된 전파 정류 회로로 구성될 수 있고, 본 발명의 일실시예에 따르면, 전파 정류 회로(660)는 고주파 변압부(650)에 포함된 복수의 변압기((HTr1, HTr2,..., 650)의 2차측과 각각 연결된다.The secondary rectifier 660 full-wave rectifies the high-frequency spherical voltage boosted by the high-frequency transformer 650. The secondary rectifier 660 may be configured as a full-wave rectifier circuit composed of a diode, according to an embodiment of the present invention, the full-wave rectifier circuit 660 is a plurality of transformers (HTr1 included in the high frequency transformer 650) , HTr2, ..., 650), respectively.
분압부(670)는 2차 정류부(660)에 포함된 각각의 전파 정류 회로와 병렬로 연결되고, 분압부(670) 내 복수의 커패시터는 각각 직렬연결되며, 각 커패시터에 인가되는 전압(Vc_1, Vc_2, Vc_3)이 모두 합해져서 분압부(670)의 출력단에는 최종적으로 출력전압(vo1)이 인가된다. 한편, 커패시터와 병렬로 연결되어 전압을 분배하는 분압 저항을 더 포함할 수 있다. The voltage divider 670 is connected in parallel with each of the full-wave rectifier circuits included in the secondary rectifier 660, and the plurality of capacitors in the voltage divider 670 are connected in series, respectively, and the voltages Vc_1, Both Vc_2 and Vc_3 are added together, and the output voltage vo1 is finally applied to the output terminal of the voltage divider 670. On the other hand, it may further include a voltage divider resistor connected in parallel with the capacitor to distribute the voltage.
도 4에 따른 고압 전원부의 인버터부(430)는 도 2에 따른 고압 전원부의 공진 인버터(112)보다 제어가 용이하고, 그 출력단 구조가 간단하게 제작될 수 있다. 또한, 도 4에 따른 고주파 변압부(450)에 포함된 변압기는 도 2에 따른 변압부(113)의 변압기보다 그 제작이 용이하다. 또한 도 4에 따른 고압 전원부는 저압으로 구성되어 있으므로 시뮬레이터의 부하 제작이 용이하고, 이를 통하여 충분한 성능 검증이 가능하므로 제품의 신뢰성을 증가시킬 수 있다.The inverter unit 430 of the high voltage power supply unit of FIG. 4 is easier to control than the resonant inverter 112 of the high voltage power supply unit of FIG. 2, and the output terminal structure thereof may be simplified. In addition, the transformer included in the high frequency transformer 450 according to FIG. 4 is easier to manufacture than the transformer of the transformer 113 according to FIG. 2. In addition, since the high-voltage power supply according to FIG. 4 is composed of low pressure, it is easy to manufacture the load of the simulator, and through this, sufficient performance verification is possible, thereby increasing the reliability of the product.
도 2에 따른 공진 인버터(112)는 LC 공진 소자의 최적값 설계가 어렵고, 열화에 의한 공진파라미터 변동시 공진 주파수를 제어하기가 어렵다. 또한 분압부(115)의 최종 출력단에 연결되는 부하 변동에 따른 공진 주파수의 적용 범위가 좁으며, 고주파수와 고전압이 요구되는 플라즈마 환경설비에 적용될 경우 N-직렬화 전압원 구조의 고압 전원부에 비해 소자의 정격이 증가되며, 큰 턴수비를 갖는 변압기가 요구되어 모듈화가 어려운 단점을 가지고 있다.The resonant inverter 112 according to FIG. 2 is difficult to design the optimum value of the LC resonant element, and it is difficult to control the resonant frequency when the resonance parameter changes due to deterioration. In addition, the application range of the resonant frequency according to the load variation connected to the final output terminal of the voltage divider 115 is narrow, and when applied to the plasma environment equipment requiring high frequency and high voltage, the rating of the device compared to the high voltage power supply unit of the N-serialized voltage source structure This increases and requires a transformer with a large turn ratio has the disadvantage that the modularity is difficult.
이상에서는 도면에 도시된 구체적인 실시예를 참고하여 본 발명을 설명하였으나 이는 예시적인 것에 불과하므로, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명의 보호 범위는 후술하는 특허청구범위에 의하여 해석되어야 하고, 그와 균등한 범위 내에 있는 모든 기술적 사상은 본 발명의 보호 범위에 포함되는 것으로 해석되어야 할 것이다.In the above described the present invention with reference to the specific embodiment shown in the drawings, but this is only illustrative, those skilled in the art to which the present invention pertains various modifications and variations therefrom. Therefore, the protection scope of the present invention should be interpreted by the claims to be described later, and all technical ideas within the equivalent scope will be construed as being included in the protection scope of the present invention.

Claims (6)

  1. 플라즈마 환경설비에 이용되는 고압 전원 장치에 있어서,In the high-voltage power supply device used for the plasma environmental equipment,
    상기 고압 전원 장치는 제1 내지 제N(여기서, N은 2 이상의 자연수) 고압 전원 수단을 포함하고,The high voltage power supply device includes first to Nth power, wherein N is a natural water of 2 or more,
    상기 제1 내지 제N 고압 전원 수단 각각은,Each of the first to Nth high voltage power supply means,
    교류 전압을 전파 정류하여 직류 전압을 생성하는 1차 정류부;A primary rectifier for full-wave rectifying the AC voltage to generate a DC voltage;
    스위칭 제어신호에 기초한 스위칭에 의해 상기 직류 전압을 고주파의 구형파 전압으로 변환하는 인버터;An inverter for converting the DC voltage into a high frequency square wave voltage by switching based on a switching control signal;
    상기 고주파의 구형파 전압을 1차측에서 입력받고, 2차측에서 승압된 고전압을 생성하는 변압부;A transformer for receiving the high frequency square wave voltage from a primary side and generating a high voltage boosted from the secondary side;
    상기 변압부의 2차측 고전압을 전파 정류하는 2차 정류부; 및A secondary rectifier for full-wave rectifying the secondary high voltage of the transformer; And
    상기 2차 정류부에서 출력되는 전압을 충전하는 충전부를 포함하고, It includes a charging unit for charging the voltage output from the secondary rectifier,
    상기 제1 내지 제N 고압 충전부의 충전부는 직렬연결되며,The charging unit of the first to Nth high-pressure charging unit is connected in series,
    상기 제1 내지 제N 고압 전원 수단에 흐르는 제1 내지 제N 검출전류, 상기 제1 내지 제N 고압 전원 수단으로부터 출력되는 제1 내지 제N 검출분압전압, 상기 제1 내지 제N 고압 전원 수단의 전체 출력전압, 외부에서 인가되는 상기 충전부의 기준치를 제공하기 위한 기준전압, 및 외부에서 인가되는 동기 플래그 신호를 입력받아 동기된 상기 스위칭 제어신호를 출력하는 인버터 제어부Of the first to Nth detection currents flowing through the first to Nth high voltage power means, the first to Nth divided voltages output from the first to Nth high voltage power means, and the first to Nth high voltage power means Inverter control unit for receiving the total output voltage, the reference voltage for providing a reference value of the charging unit applied from the outside, and the synchronization flag signal applied from the outside to output the synchronized switching control signal
    를 포함하는 플라즈마 환경설비에 이용되는 고압 전원 장치.High voltage power supply device used in the plasma environmental equipment comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1 내지 제N 고압 전원 수단 내 인버터 대비 변압부는 일대일인 것을 특징으로 하는 플라즈마 환경설비에 이용되는 고압 전원 장치.The high-voltage power supply device used for the plasma environment equipment, characterized in that the transformer unit in the first to N-th high-voltage power supply means compared to the inverter.
  3. 제1항에 있어서,The method of claim 1,
    상기 제1 내지 제N 고압 전원 수단 내 인버터 대비 변압부는 일대다인 것을 특징으로 하는 플라즈마 환경설비에 이용되는 고압 전원 장치.The high-voltage power supply device used for the plasma environment equipment, characterized in that the transformer unit is one-to-many compared to the inverter in the first to N-th high-voltage power supply means.
  4. 제2항 또는 제3항에 있어서, 상기 인버터 제어부는,The method of claim 2 or 3, wherein the inverter control unit,
    상기 기준전압과 제1 고압 전원 수단 내 충전부로부터 출력되는 제1 검출분압전압의 차이를 산출하는 분압전압 편차산출부;A divided voltage deviation calculation unit calculating a difference between the reference voltage and the first detected divided voltage output from the charging unit in the first high voltage power supply means;
    상기 분압전압 편차산출부로부터 출력되는 전압편차를 비례 적분하는 제1 비례적분기; A first proportional integrator that proportionally integrates the voltage deviation output from the divided voltage deviation calculation unit;
    상기 제1 내지 제N 고압 전원 수단으로부터 출력되는 제1 내지 제N 검출분압전압을 가산하여 분압합산전압을 출력하는 분압전압 가산부;A divided voltage adding unit configured to add first to Nth detected divided voltages output from the first to Nth high voltage power supply means and output a divided voltage;
    상기 제1 내지 제N 고압 전원 수단의 전체 출력전압과 상기 분압합산전압의 차이를 산출하는 전체전압 편차산출부;A total voltage deviation calculation unit for calculating a difference between the total output voltage of the first to Nth high voltage power supply means and the divided voltage summation voltage;
    상기 전체전압 편차산출부의 출력이 설정된 범위를 벗어나는 경우 제1 기준치 전류가 증가하지 않도록 제한하는 전류 제한부;A current limiting unit configured to limit the first reference value current from increasing when the output of the overall voltage deviation calculator is out of a set range;
    상기 제1 기준치 전류와 제1 고압 전원 수단 내 인버터를 흐르는 제1 검출전류의 차이를 산출하여 전류편차를 출력하는 전류 편차산출부;A current deviation calculator for calculating a difference between the first reference value current and the first detection current flowing through the inverter in the first high voltage power supply unit and outputting a current deviation;
    상기 전류편차를 비례 적분하여 스위칭 제어 신호를 출력하는 제2 비례적분기; 및A second proportional integrator configured to proportionally integrate the current deviation to output a switching control signal; And
    상기 제2 비례적분기로부터 출력되는 스위칭 제어 신호를 외부로부터 인가되는 동기 플래그 신호에 동기시켜 동기된 스위칭 제어 신호를 출력하는 동기부A synchronizer configured to output a synchronized switching control signal by synchronizing a switching control signal output from the second proportional integrator with a synchronization flag signal applied from the outside;
    를 포함하는 플라즈마 환경설비에 이용되는 고압 전원 장치.High voltage power supply device used in the plasma environmental equipment comprising a.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 인버터는 영전압 스위칭에 의해 동작되는 위상 천이 펄스 폭 변조 인버터인 것을 특징으로 하는 플라즈마 환경설비에 이용되는 고압 전원 장치.And said inverter is a phase shift pulse width modulation inverter operated by zero voltage switching.
  6. 플라스마 환경설비에 이용되는 제1 내지 제N(여기서, N은 2 이상의 자연수) 고압 전원 수단을 포함하는 고압 전원 장치를 제어함에 있어서,In controlling the high-voltage power supply device including the first to Nth (where N is two or more natural water) high-voltage power supply means used for the plasma environmental equipment,
    외부에서 인가되는 기준전압과 상기 제1 고압 전원 수단 내 충전부로부터 출력되는 제1 검출분압전압의 차이를 산출하는 분압전압 편차산출 단계;A divided voltage deviation calculation step of calculating a difference between a reference voltage applied from the outside and a first detected divided voltage output from the charging unit in the first high voltage power supply means;
    상기 분압전압 편차산출 단계로부터 출력되는 전압편차를 비례 적분하는 제1 비례적분 단계; A first proportional integration step of proportionally integrating the voltage deviation output from the divided voltage deviation calculation step;
    상기 제1 내지 제N 고압 전원 수단으로부터 출력되는 제1 내지 제N 검출분압전압을 가산하여 분압합산전압을 출력하는 분압전압 가산단계;A divided voltage adding step of adding first to Nth divided voltages output from the first to Nth high voltage power means and outputting a divided voltage;
    상기 제1 내지 제N 고압 전원 수단의 전체 출력전압과 상기 분압합산전압의 차이를 산출하는 전체전압 편차산출 단계;A total voltage deviation calculation step of calculating a difference between the total output voltage of said first to Nth high voltage power supply means and said divided voltage;
    상기 전체전압 편차산출 단계의 출력이 설정된 범위를 벗어나는 경우 제1 기준치 전류가 증가하지 않도록 제한하는 전류 제한 단계;A current limiting step of limiting the first reference value current from increasing when the output of the total voltage deviation calculation step is out of a set range;
    상기 제1 기준치 전류와 제1 고압 전원 수단 내 인버터를 흐르는 제1 검출전류의 차이를 산출하여 전류편차를 출력하는 전류편차 산출 단계;A current deviation calculating step of calculating a difference between the first reference value current and a first detection current flowing through the inverter in the first high voltage power supply means and outputting a current deviation;
    상기 전류편차를 비례 적분하여 스위칭 제어 신호를 출력하는 단계; 및Outputting a switching control signal by proportionally integrating the current deviation; And
    상기 스위칭 제어 신호를 외부로부터 인가되는 동기 플래그 신호에 동기시켜 동기된 스위칭 제어 신호를 출력하는 단계Outputting a synchronous switching control signal by synchronizing the switching control signal with a synchronous flag signal applied from the outside;
    를 포함하는 플라즈마 환경설비에 이용되는 고압 전원 장치의 제어방법.Control method of a high-voltage power supply device used in the plasma environment equipment comprising a.
PCT/KR2009/007316 2008-12-26 2009-12-08 High voltage power supply used in plasma environment facilities and a control method thereof WO2010074434A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20080134940 2008-12-26
KR10-2008-0134940 2008-12-26
KR10-2009-0117267 2009-11-30
KR1020090117267A KR101030576B1 (en) 2008-12-26 2009-11-30 High voltage power supply for environment facilities using plasma and its control method

Publications (2)

Publication Number Publication Date
WO2010074434A2 true WO2010074434A2 (en) 2010-07-01
WO2010074434A3 WO2010074434A3 (en) 2010-08-26

Family

ID=42288242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007316 WO2010074434A2 (en) 2008-12-26 2009-12-08 High voltage power supply used in plasma environment facilities and a control method thereof

Country Status (1)

Country Link
WO (1) WO2010074434A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170310111A1 (en) * 2016-04-22 2017-10-26 The Secretary, Department Of Atomic Energy High voltage dc power supply for high power radio frequency amplifiers
CN107579662A (en) * 2017-10-25 2018-01-12 吉林大学 A kind of double-plasma ion source discharge power supply
CN110289775A (en) * 2019-05-30 2019-09-27 中国工程物理研究院应用电子学研究所 A kind of multichannel is interlocked high voltage power supply and control method
CN114069886A (en) * 2021-11-17 2022-02-18 西安交通大学 One-to-many wireless power transmission system and control method thereof
CN114157127A (en) * 2020-09-08 2022-03-08 新奥(天津)能源技术有限公司 Constant-current power supply circuit for plasma torch and plasma torch system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010408A (en) * 2000-06-19 2002-01-11 Hitachi Ltd Automobile and its electric power unit
JP2002063923A (en) * 2000-08-14 2002-02-28 Equos Research Co Ltd Fuel cell circuit
KR20040057673A (en) * 2002-12-26 2004-07-02 주식회사 엔시스 N+1 Module Type UPS Having Self-Support Control Structure
KR100820171B1 (en) * 2006-11-02 2008-04-07 한국전기연구원 Pulse power generator using semiconductor switch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010408A (en) * 2000-06-19 2002-01-11 Hitachi Ltd Automobile and its electric power unit
JP2002063923A (en) * 2000-08-14 2002-02-28 Equos Research Co Ltd Fuel cell circuit
KR20040057673A (en) * 2002-12-26 2004-07-02 주식회사 엔시스 N+1 Module Type UPS Having Self-Support Control Structure
KR100820171B1 (en) * 2006-11-02 2008-04-07 한국전기연구원 Pulse power generator using semiconductor switch

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170310111A1 (en) * 2016-04-22 2017-10-26 The Secretary, Department Of Atomic Energy High voltage dc power supply for high power radio frequency amplifiers
US10027122B2 (en) * 2016-04-22 2018-07-17 The Secretary, Department Of Atomic Energy High voltage DC power supply for high power radio frequency amplifiers
CN107579662A (en) * 2017-10-25 2018-01-12 吉林大学 A kind of double-plasma ion source discharge power supply
CN107579662B (en) * 2017-10-25 2024-04-09 吉林大学 Double-plasma ion source discharge power supply
CN110289775A (en) * 2019-05-30 2019-09-27 中国工程物理研究院应用电子学研究所 A kind of multichannel is interlocked high voltage power supply and control method
CN114157127A (en) * 2020-09-08 2022-03-08 新奥(天津)能源技术有限公司 Constant-current power supply circuit for plasma torch and plasma torch system
CN114069886A (en) * 2021-11-17 2022-02-18 西安交通大学 One-to-many wireless power transmission system and control method thereof
CN114069886B (en) * 2021-11-17 2024-05-24 西安交通大学 One-to-many wireless power transmission system and control method thereof

Also Published As

Publication number Publication date
WO2010074434A3 (en) 2010-08-26

Similar Documents

Publication Publication Date Title
Krishnamoorthy et al. A new multilevel converter for megawatt scale solar photovoltaic utility integration
EP3306774B1 (en) Energy balancing method and apparatus
KR20070039127A (en) Bi-directional energy conversion system
WO2010074434A2 (en) High voltage power supply used in plasma environment facilities and a control method thereof
CN110022071B (en) Hybrid energy storage type direct current transformer and control method thereof
EP3382874B1 (en) Bi-directional dc-dc converter with load and source synchronized power control
KR102181321B1 (en) Power conversion apparatus
Yang et al. Three-phase three-level phase-shifted PWM DC–DC converter for electric ship MVDC application
WO2020091168A1 (en) Power converter
CN111262456A (en) Rectifier, system and method for power rectification
EP2975753A1 (en) A three-level converter
WO2010126220A2 (en) Direct current uninterruptible power supply device having serial compensation rectifier
WO2020075902A1 (en) Dc/dc converter having plurality of converter modules
WO2018074861A1 (en) Magnetic induction power supply device
WO2014069743A1 (en) Bidirectionally operable battery charging device for electric vehicle
WO2012128441A1 (en) Power supply apparatus for rapid charging
Ahmadi et al. Mitigation of voltage unbalances in bipolar DC microgrids using three-port multidirectional DC-DC converters
US20230216297A1 (en) System and Methods for Regulating Connections of Loads to a Network
KR101030576B1 (en) High voltage power supply for environment facilities using plasma and its control method
WO2021107480A1 (en) Dc-dc converter
WO2021040355A2 (en) Intelligent transformer topology in which small power converter is added to conventional distribution transformer
TWI739064B (en) Uninterruptible power supply with dc output
WO2021079593A1 (en) Power supply device
WO2012074311A2 (en) Parallel operating inverter wind power generating system using a current balancer
CN106992664A (en) Isolated power conversion system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09835200

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09835200

Country of ref document: EP

Kind code of ref document: A2