WO2014069743A1 - Bidirectionally operable battery charging device for electric vehicle - Google Patents

Bidirectionally operable battery charging device for electric vehicle Download PDF

Info

Publication number
WO2014069743A1
WO2014069743A1 PCT/KR2013/005946 KR2013005946W WO2014069743A1 WO 2014069743 A1 WO2014069743 A1 WO 2014069743A1 KR 2013005946 W KR2013005946 W KR 2013005946W WO 2014069743 A1 WO2014069743 A1 WO 2014069743A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
voltage
switching
electric vehicle
unit
Prior art date
Application number
PCT/KR2013/005946
Other languages
French (fr)
Korean (ko)
Inventor
이준영
박승희
김원용
신철준
Original Assignee
명지대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 명지대학교 산학협력단 filed Critical 명지대학교 산학협력단
Publication of WO2014069743A1 publication Critical patent/WO2014069743A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • Embodiments of the present invention relate to a battery charging device for an electric vehicle that can operate in both directions, and more particularly, it is possible to compensate for input current distortion without using a high-capacity electrolytic capacitor, and to operate a two-way electric vehicle battery charging that can operate at a high power factor. Relates to a device.
  • a battery charging device for an electric vehicle takes commercial power as an input. Therefore, the battery charging device for an electric vehicle can be used at 110Vac or 220Vac, and power factor correction should be considered.
  • the battery charger for an electric vehicle requires a wide output of 100V to 500V to charge all the specifications of various specifications of the battery.
  • an AC / DC converter 110 in charge of power factor correction (PFC) 110 and a high voltage link capacitor 120 for converting a power varying according to an AC voltage into a stable DC power are shown.
  • a battery charging apparatus 100 for an electric vehicle having a two-stage configuration including a DC / DC converter 130 using a transformer for charge control.
  • high frequency switching should be performed to reduce the size of the battery charging device for an electric vehicle.
  • FIG. 2 is a diagram illustrating a power flow of the conventional battery charging device 100 for an electric vehicle shown in FIG. 1.
  • the conventional charging apparatus for an electric vehicle 100 performs a current control in the power factor improving stage so as to rectify the AC input and follow the voltage at which the current at the input side is rectified.
  • Fluctuating Power is generated in the voltage output from the power factor improving stage, and a high voltage DC link capacitor is used to filter it.
  • a DC / DC converter using a transformer for insulation using the DC voltage formed at the AC / DC stage charges the battery through current control.
  • the conventional electric vehicle charging device 100 has a two-stage structure has a disadvantage in that the configuration is complicated.
  • the conventional charging device for an electric vehicle 100 should use an electrolytic capacitor having a high power density and a high power density of several thousand uF or more to filter the Fluctuating Power.
  • the electrolytic capacitor has a disadvantage in that its life is rapidly reduced when the temperature increases. There is a problem that it is not suitable for applications requiring long life, such as electric vehicles.
  • a method of using a film capacitor instead of an electrolytic capacitor may be considered.
  • the film capacitor has a very low power density compared to the electrolytic capacitor, it is not suitable for a charger requiring a high power density when designed with a high capacity. There was a problem.
  • DCM discontinuous conduction mode
  • the present invention is to propose a battery charging device for a two-way electric vehicle capable of compensating for the input current distortion without using a high-capacity electrolytic capacitor and operable at a high power factor.
  • the rectifying unit for rectifying the input voltage to a first voltage; A first converter boosting the first voltage to change the voltage to a second voltage; And a second converter configured to generate and output a third voltage for charging the battery for the electric vehicle by changing the second voltage, wherein the second converter unit is connected to an output terminal of the first converter unit in parallel with the first switching unit.
  • An inductor including a second and a second switching unit, one end of which is connected to an output terminal of the first converter unit; A first switching element having one end connected to the other end of the inductor and the other end connected to ground; And a second switching element having one end connected to the other end of the inductor and one end of the first switching element.
  • an electric vehicle battery charging apparatus capable of bidirectional operation, comprising: a rectifier for rectifying the input voltage to the first voltage; A first converter boosting the first voltage to change the voltage to a second voltage; And a second converter configured to generate and output a third voltage for charging the battery for the electric vehicle by changing the second voltage, wherein the second converter part has a first inductor having one end connected to an output end of the first converter part.
  • a first-first switching device having one end connected to the other end of the first inductor and the other end connected to ground;
  • a first-second switching element having one end connected to the other end of the first inductor and one end of the first-first switching element;
  • a second inductor connected in parallel with the first inductor based on an output terminal of the first converter unit;
  • a 2-1 switching element having one end connected to the other end of the second inductor and the other end connected to ground;
  • a second-2 switching element having one end connected to the other end of the second inductor and one end of the 2-1 switching element and the other end connected to the other end of the 1-2 switching element.
  • the 1-2 switching element and the 2-2 switching element are in an off state, and the 1-1 switching element and the 2-1 switching element are periodically turned on / off.
  • the battery charging device for the electric vehicle is turned off and operates in the other direction, the first-first switching element and the second-first switching element are in an off state, the first-second switching element and the second-second switching element.
  • the switching device is provided with a battery charging device for an electric vehicle, characterized in that the on / off periodically.
  • the battery charging device for a bidirectional electric vehicle is capable of compensating for input current distortion without using a high capacity electrolytic capacitor, and has an advantage of operating at a high power factor.
  • FIG. 1 is a block diagram showing a schematic configuration of a conventional battery charging device for an electric vehicle.
  • FIG. 2 is a diagram illustrating a power flow of the conventional battery charging apparatus for an electric vehicle shown in FIG. 1.
  • FIG. 3 is a block diagram showing a schematic configuration of a charging device for an electric vehicle according to an embodiment of the present invention.
  • FIG. 4 is a circuit diagram showing a detailed configuration of a charging device for an electric vehicle according to an embodiment of the present invention.
  • 5 to 8 are views for explaining the concept of the forward operation of the battery charging device for an electric vehicle according to an embodiment of the present invention.
  • 9 and 10 are views for explaining a concept of the reverse operation of the battery charging device for an electric vehicle according to an embodiment of the present invention.
  • FIG. 11 is a diagram schematically showing an example of on / off of each switching element included in the charging device 300 for an electric vehicle.
  • connection may mean “electrical connection”.
  • FIG 3 is a block diagram showing a schematic configuration of a charging device for an electric vehicle according to an embodiment of the present invention
  • Figure 4 is a circuit diagram showing a detailed configuration of the charging device for an electric vehicle according to an embodiment of the present invention.
  • the charging device 300 for an electric vehicle may include a first rectifying unit 310, a first converter unit 320, a second converter unit 330, and a controller ( 340 may be included.
  • a first rectifying unit 310 may rectif a first rectifying unit 310
  • a first converter unit 320 may rectif a first converter 320
  • a second converter unit 330 may be included.
  • a controller may be included.
  • the function of each component will be described in detail.
  • the first rectifier 310 generates a first voltage by half-wave rectifying or full-wave rectifying an AC voltage (Vac, hereinafter referred to as an “input voltage”) input from the outside.
  • the input voltage Vac may have a size of greater than or equal to 90 Vac and less than or equal to 260 Vac.
  • the input AC voltage may be a commercial AC voltage having a size of 110 Vac or 220 Vac.
  • the first rectifier 310 is connected to an external power source as shown in FIG. 4, and four switching elements SR1, SR2, SR3, SR4 connected in the form of a full bridge. ) May be included.
  • each of the four switching elements SR1, SR2, SR3, and SR4 included in the first rectifier 310 may include one transistor (eg, a MOSFET) and an input terminal of the transistor.
  • the diode may be connected to a second conductive electrode (eg, a drain terminal), and an output terminal may be connected to a first conductive electrode (eg, a source terminal) of the transistor.
  • a MOSFET is used as the transistor, bidirectional operation of the charging device 300 for an electric vehicle is facilitated.
  • the four switching elements SR1, SR2, SR3, and SR4 are controlled on / off by the control unit 340 described below.
  • the four switching elements (SR1, SR2, SR3, SR4) included in the first rectifier 310 is controlled on / off according to the phase of the input voltage (Vac).
  • the control unit 340 has the same phase as the input voltage and the same angular frequency by using a single phase lock loop (PLL) using an all pass filter.
  • PLL phase lock loop
  • a sin wave having a ⁇ may be generated and the on / off of the four switching elements SR1, SR2, SR3, and SR4 may be controlled using the sin wave.
  • the capacitor C in and the first converter 320 are sequentially connected to the output terminal of the first rectifier 310.
  • the first converter 320 boosts the first voltage received by full-wave rectification by the first rectifying unit 310 and changes the voltage into a second voltage.
  • the first converter unit 320 may have a configuration of an LLC converter as shown in FIG. 4.
  • the first converter 320 is connected to the first rectifier 310 and connected to the third switch 321 and the third switch 321 to receive the first voltage to perform a boost operation.
  • a second rectifying unit 323 connected to the transformer unit 322 and the transformer unit 322 to rectify the voltage generated as a result of the boosting operation to generate and output a second voltage (first switching unit).
  • a second switching unit is provided in the second converter unit 330 described below).
  • the third switching unit 321 may be connected to two output terminals of the first rectifying unit 310 and may include four switching elements SLp1, SLp2, SLp3, and SLp4 connected in a full bridge form.
  • each of the four switching elements SLp1, SLp2, SLp3, and SLp4 included in the third switching unit 321 includes one transistor (eg, a MOSFET) and an input terminal of the transistor.
  • the diode may be connected to a second conductive electrode of the transistor (eg, a drain terminal), and an output terminal thereof may be connected to the first conductive electrode (eg, a source terminal) of the transistor.
  • a MOSFET is used as the transistor, bidirectional operation of the charging device 300 for an electric vehicle is facilitated.
  • the four switching elements SLp1, SLp2, SLp3, and SLp4 may be periodically turned on / off according to a specific period, which is controlled by the controller 340 described below.
  • the switching element SLp3 and the switching element SLp4 may be simultaneously turned on and off, and the switching element SLp2 and the switching element SLp3 may be simultaneously turned on and off.
  • the time when the switching element SLp1 / switching element SLp4 is turned on and the time when the switching element SLp2 / switching element SLp3 is turned on and the time when the third switching element SL1 and the sixth switching element SL4 are turned on are mutually different from each other. It may not overlap.
  • the transformer unit 322 is connected to the third switching unit 321, and boosts the voltage output from the switching unit 321.
  • the secondary winding number of the transformer unit 322 may be larger than the primary winding number.
  • a capacitor C r and an inductor L r may be connected in series between the third switching unit 321 and the transformer unit 322.
  • the second rectifier 323 is connected to the transformer unit 322 and rectifies the voltage output from the transformer unit 322 to generate and output a second voltage.
  • the second rectifier 323 may include four switching elements SLs1, SLs2, SLs3, and SLs4 connected in a full bridge shape as illustrated in FIG. 4.
  • each of the four switching elements SLs1, SLs2, SLs3, and SLs4 included in the second rectifier 323 includes one transistor (eg, a FET) and an input terminal of the transistor.
  • the diode may be connected to a second conductive electrode (eg, a drain terminal), and an output terminal may be connected to a first conductive electrode (eg, a source terminal) of the transistor.
  • a MOSFET is used as the transistor, bidirectional operation of the charging device 300 for an electric vehicle is facilitated.
  • the four switching elements SLs1, SLs2, SLs3, and SLs4 may also be periodically turned on / off according to a specific period, and the on / off may be controlled by the controller 340.
  • the switching element SLs3 and the switching element SLs4 may be simultaneously turned on and off, and the switching element SLs2 and the switching element SLs3 may be simultaneously turned on and off.
  • a time when the switching element SLs1 / the switching element SLs4 is turned on and a time when the switching element SLs2 / the switching element SLs3 is turned on and the time when the third switching element SL1 and the sixth switching element SL4 are turned on may not overlap.
  • the switching element SLp1 / switching element SLp4 and the switching element SLs1 / switching element SLs4 are simultaneously turned on and off, and the switching element SLp2 / switching element SLp3 and the switching element SLs2 / The switching element SLs3 may be turned on and off at the same time.
  • the first converter unit 320 configured as described above may be operated at a fixed frequency fixed ratio. In this case, since the voltage can be scaled by adjusting only the turn ratio of the transformer, the loss due to soft switching can be reduced, and the size of the transformer can be reduced.
  • an output terminal of the second rectifying unit 323 (that is, an output terminal of the first converter unit 320) is connected to the capacitor CL and the second converter unit 330.
  • the second converter 330 controls the charging current of the battery 350 for the electric vehicle by changing the second voltage to generate and output a third voltage for charging the battery 350 for the electric vehicle.
  • the second converter unit 330 may include a first switching unit 331 and a second switching unit 332 connected in parallel with the output terminal of the first converter unit 320.
  • Each of the switching units 331 and 332 has one end connected to the output terminal of the first converter unit 320, one end connected to the other end of the inductor L1 and L2, and the other end connected to the ground.
  • the first switching elements Sa1 and Sb1, and the second switching elements Sa2 and Sb2, one end of which is connected to the other end of the inductors L1 and L2 and one end of the first switching elements Sa1 and Sb1, may be included.
  • the other ends of the second switching elements Sa2 and Sb2 are connected to each other and are connected to the battery 350 for the electric vehicle.
  • the inductor L1 and the two switching elements Sa1 and Sa2 included in the first switching unit 331 are respectively referred to as “first inductor L1” and “first-first switching element ( Sa1) and “ 1-2 switching element Sa2 " and the inductor L2 and the two switching elements Sb1 and Sb2 included in the second switching unit 332, respectively, “ second inductor L2 " ) ",” 2-1 switching element Sb1 “and” 2-2 switching element Sb2 ".
  • the second converter unit 330 has one end connected to an output terminal of the first converter unit 320, one end connected to the other end of the first inductor L1, and the other end connected to the ground.
  • 1-1 switching element Sa1 one end of which is connected to the other end of the first inductor L1 and one end of the 1-1 switching element Sa1, the second switching element Sa2, and the first converter unit
  • a second inductor L2 connected in parallel with the first inductor L1 based on the output terminal of the 320, and a second-first switching in which one end is connected to the other end of the second inductor L2 and the other end is connected to ground;
  • 2-2 in which one end of the element Sb1 is connected to the other end of the second inductor L2 and one end of the 2-1 switching element Sb1, and the other end thereof is connected to the other end of the 1-2 switching element Sa2.
  • the switching element Sb2 is included.
  • the switching operations of the 1-1 switching element Sa1 and the 2-1 switching element Sb1 are controlled together, and the 1-2 switching element Sa2 and the 2-2 are controlled together.
  • the switching operation of the switching element Sb2 can be controlled together.
  • the controller 340 controls on / off of the switching elements SR1, SR2, SR3, SR4, SLp1, SLp2, SLp3, SLp4, SLs1, SLs2, SLs3, SLs4, Sa1, Sa2, Sb1, and Sb2. do.
  • the controller 340 is four switching elements included in the second converter unit 330 by using a proportional-integral (PI) control method and a pulse width modulation (PWM) control method. On / off of (Sa1, Sa2, Sb1, Sb2) can be controlled.
  • the controller 340 may include a PI controller 341, a multiplier 342, and a PWM controller 343 as shown in FIG. 3.
  • the PI controller 341 receives an absolute value (
  • IO_ref a reference value
  • the PI control value will be referred to as "first control parameter”.
  • of the output current and the reference value IO_ref of the output current may be expressed by Equation 1 below.
  • D o is the first control parameter
  • V L is the voltage at the output terminal of the first converter unit 320
  • T S is the four switching elements Sa1, Sa2, Sb1 included in the second converter unit 330.
  • Sb2) L denotes the inductance of the second converter 330
  • P denotes the power consumed by the second converter 330, respectively.
  • the multiplier 342 performs a multiplication operation between the first control parameter and the second control parameter.
  • the second control parameter is a frequency of the input voltage (Vac), the voltage of the battery 350 for the electric vehicle (that is, the voltage across the capacitor (C b )) and the voltage of the output terminal of the first converter unit 320 (that is, Voltage across the capacitor C L ).
  • These second control parameters may be different from each other depending on the operation direction (forward and reverse) of the battery charging apparatus 300 for an electric vehicle, which will be described in detail below.
  • the PWM controller 343 receives the value of the product of the first control parameter and the second control parameter to generate and output a PWM control value, which is the first-first switching element Sa1 and the first-second switching element Sa2. ), And applied to at least one of the 2-1 switching element Sb1 and the 2-2 switching element Sb2 to control the on / off of the switching element.
  • a value of a product of the first control parameter and the second control parameter is referred to as a "third control parameter”
  • a control value output from the PWM control unit 343 is referred to as a "switching control signal”.
  • the operation direction of the battery charging device 300 for an electric vehicle is divided into forward and reverse directions to turn on / off operations of the four switching elements Sa1, Sa2, Sb1, and Sb2 included in the second converter 330.
  • the operation of the battery charging apparatus 300 for an electric vehicle will be described in more detail.
  • the first-second switching element Sa2 and the second-second switching element Sb2 are turned off, and the first The -1 switching element Sa1 may be controlled on / off by a switching control signal output from the PWM control unit 343, and the 2-1 switching element Sb1 is a switching control output from the PWM control unit 343.
  • On / off may be controlled by a signal delayed by a predetermined phase, and as a result, the second converter 330 may operate as a boost converter.
  • the second control parameter may be expressed as Equation 2 below
  • the third control parameter finally applied to the PWM controller 343 may be expressed as Equation 3 below.
  • HMF is the second control parameter
  • V L is the voltage of the output terminal (that is, both ends of the capacitor CL) of the first converter unit 320
  • V batt is the voltage of the battery 350 for the electric vehicle
  • is the input
  • Each frequency of the voltage (Vac) means.
  • sin ⁇ t may be obtained by generating a virtual voltage having a phase difference of 90 degrees with the input voltage Vac by using the all pass filter APF, and passing the virtual voltage through the phase lock circuit PLL.
  • FIG. 5 illustrates signal waveforms of the parameters included in Equation 3
  • FIG. 6 illustrates switching control signals input to the first-first switching element Sa1 and the second-first switching element Sb1.
  • the waveform of the input phase delayed switching control signal and the current flowing through the first inductor L1 and the second inductor L2 is illustrated.
  • a time interval at which the first-first switching element Sa1 and the second-first switching element Sb1 in which the on / off operation is repeated is turned on is a fixed value. It has a value that varies within each switching period according to V L, pk , V batt , and ⁇ .
  • the waveform has a curved shape having a central convex shape.
  • the waveform connecting the peak values has a curved shape with a flat or slightly concave center portion.
  • the switching control signal is adjusted by the HMF described in Equation 2 above, so that the rate of application (i.e., switching at the point where the current of the inductor is high (i.e., the center portion on the graph)
  • the ratio between the time interval at which the device is turned on and the time interval at which the device is turned off is reduced, resulting in an effect of reducing the current peak of the inductor. Accordingly, it is possible to compensate for the distortion generated in the input current, and as a result, it is possible to achieve a high power factor.
  • FIG. 8 illustrates waveforms of an input voltage, a first parameter, a second parameter, a third parameter, and an input current in which current and distortion of an inductor are compensated for.
  • the 1-1st switching element Sa1 and the 2-1th switching element Sb1 are turned off, and the first The -2 switching element Sa2 can be controlled on / off by a switching control signal output from the PWM control unit 343, and the 2-2 switching element Sb2 is a switching output from the PWM control unit 343.
  • the on / off may be controlled by a signal in which the control signal is delayed by a predetermined phase, and as a result, the second converter 330 may operate as a buck converter.
  • the second control parameter may be expressed as Equation 4 below
  • the third control parameter finally applied to the PWM controller 343 may be expressed as Equation 5 below.
  • FIG. 9 illustrates signal waveforms of the parameters included in Equation 5, and in FIG. 10, the switching control signal and the second-2 switching element Sb2 input to the 1-2 switching element Sa2 are illustrated.
  • the waveform of the input phase delayed switching control signal and the current flowing through the first inductor L1 and the second inductor L2 is illustrated.
  • the first-second switching element Sa2 and the second-second switching element Sb2 having the on / off operation repeated are turned on.
  • the time interval is not a fixed value and has a value that changes within each switching period according to V L, pk , V batt , and ⁇ .
  • the switching control signal is adjusted by the HMF described in Equation 5 above, whereby the rate of application at the point where the current of the inductor is high (ie, the center portion on the graph) is increased.
  • the second converter unit 330 operates as a buck converter, a compensation effect of distortion generated in the input current is generated similarly to that described in the operation in the forward direction.
  • FIG 11 illustrates an example of on / off of each switching element included in the charging device 300 for an electric vehicle.
  • the battery charging device 300 for an electric vehicle can compensate for distortion generated in an input current, and thus does not need to use a high capacity electrolytic capacitor to compensate for luctuating power.
  • the use of a capacitor eliminates only high frequency ripple, reducing the size and extending the lifespan.

Abstract

A bidirectionally operable battery charging device for an electric vehicle is disclosed. The disclosed battery charging device for an electric vehicle comprises: a rectification unit for converting an input voltage into a first voltage by rectifying the input voltage; a first converter unit for converting the first voltage into a second voltage by boosting the first voltage; and a second converter unit for converting the second voltage so as to generate and output a third voltage for charging a battery for the electric vehicle, wherein the second converter unit comprises first and second switching units connected in parallel to an output end of the first converter unit, and each of the first and second switching units comprises: an inductor, one end of which is connected to the output end of the first converter unit; a first switching element, one end of which is connected to the other end of the inductor, and the other end of which is connected to the ground; and a second switching element, one end of which is connected to the other end of the inductor and the one end of the first switching element.

Description

양방향 동작이 가능한 전기 차량용 배터리 충전 장치Battery charger for electric vehicles with two-way operation
본 발명의 실시예들은 양방향 동작이 가능한 전기 차량용 배터리 충전 장치에 관한 것으로서, 더욱 상세하게는 고용량의 전해 캐패시터를 사용하지 않으면서도 입력 전류 왜곡의 보상이 가능하며 고역률로 동작 가능한 양방향 전기 차량용 배터리 충전 장치에 관한 것이다. Embodiments of the present invention relate to a battery charging device for an electric vehicle that can operate in both directions, and more particularly, it is possible to compensate for input current distortion without using a high-capacity electrolytic capacitor, and to operate a two-way electric vehicle battery charging that can operate at a high power factor. Relates to a device.
일반적으로 전기 차량(EV: Electric Vehicle)용 배터리 충전 장치는 상용 전원을 입력으로 한다. 따라서, 전기 차량용 배터리 충전 장치는 110Vac 또는 220Vac에서 사용이 가능하며 역률 보정이 고려되어야 한다. 그리고 다양한 사양의 스팩의 배터리를 모두 충전할 수 있도록 전기 차량용 배터리 충전 장치는 100V 내지 500V 의 넓은 출력이 요구된다. In general, a battery charging device for an electric vehicle (EV) takes commercial power as an input. Therefore, the battery charging device for an electric vehicle can be used at 110Vac or 220Vac, and power factor correction should be considered. In addition, the battery charger for an electric vehicle requires a wide output of 100V to 500V to charge all the specifications of various specifications of the battery.
이를 위해, 도 1에 도시된 바와 같이 역률 개선(PFC: Power Factor Correction)을 담당하는 AC/DC 컨버터(110), AC 전압에 따라 변하는 전력을 안정된 DC 전력으로 변환하기 위한 고압 링크 캐패시터(120) 및 충전 제어를 위한 변압기를 사용하는 DC/DC 컨버터(130)를 포함하는 2단 구성의 전기 차량용 배터리 충전 장치(100)가 일반적으로 사용되고 있다. 이와 함께 전기 차량용 배터리 충전 장치의 크기를 줄이기 위해 고주파 스위칭이 수행되어야 한다. To this end, as illustrated in FIG. 1, an AC / DC converter 110 in charge of power factor correction (PFC) 110 and a high voltage link capacitor 120 for converting a power varying according to an AC voltage into a stable DC power are shown. And a battery charging apparatus 100 for an electric vehicle having a two-stage configuration including a DC / DC converter 130 using a transformer for charge control. In addition, high frequency switching should be performed to reduce the size of the battery charging device for an electric vehicle.
도 2는 도 1에 도시된 종래의 전기 차량용 배터리 충전 장치(100)의 전력 흐름을 도시한 도면이다. FIG. 2 is a diagram illustrating a power flow of the conventional battery charging device 100 for an electric vehicle shown in FIG. 1.
도 2를 참조하면, 종래의 전기 차량용 충전 장치(100)는 AC 입력을 정류하여 입력측의 전류가 정류된 전압을 추종하도록 역률 개선단에서 전류 제어를 수행한다. 이 경우, 역률 개선단에서 출력되는 전압에는 Fluctuating Power가 발생하며 이를 필터링하기 위해 고압의 DC 링크 캐패시터가 이용된다. 그리고, AC/DC 단에서 형성된 DC 전압을 이용하여 절연을 위해 변압기를 사용하는 DC/DC 컨버터는 전류 제어를 통해 배터리를 충전하게 된다. Referring to FIG. 2, the conventional charging apparatus for an electric vehicle 100 performs a current control in the power factor improving stage so as to rectify the AC input and follow the voltage at which the current at the input side is rectified. In this case, Fluctuating Power is generated in the voltage output from the power factor improving stage, and a high voltage DC link capacitor is used to filter it. In addition, a DC / DC converter using a transformer for insulation using the DC voltage formed at the AC / DC stage charges the battery through current control.
그러나, 상기한 종래의 전기 차량용 충전 장치(100)는 2단 구조로 되어 있어 구성이 복잡하다는 단점이 있었다. 또한, 종래의 전기 차량용 충전 장치(100)는 Fluctuating Power를 필터링하기 위해 수천 uF 이상의 고용량이면서 전력밀도가 높은 전해 캐패시터를 사용하여야 하는데, 전해 캐패시터는 온도가 높아지면 수명이 급격하게 줄어드는 단점이 있어서, 전기 차량과 같이 긴 수명이 요구되는 응용 분야에는 적합하지 않다는 문제점이 있었다.However, the conventional electric vehicle charging device 100 has a two-stage structure has a disadvantage in that the configuration is complicated. In addition, the conventional charging device for an electric vehicle 100 should use an electrolytic capacitor having a high power density and a high power density of several thousand uF or more to filter the Fluctuating Power. The electrolytic capacitor has a disadvantage in that its life is rapidly reduced when the temperature increases. There is a problem that it is not suitable for applications requiring long life, such as electric vehicles.
이를 해결하기 위해, 전해 캐패시터를 대신하여 필름 캐패시터를 사용하는 방법을 고려할 수는 있으나, 필름 캐패시터는 전해 캐패시터에 비해 전력밀도가 매우 낮아 고용량으로 설계할 경우 높은 전력밀도를 요구하는 충전기에 적합하지 않는다는 문제점이 있었다. 그리고, 인덕터 전류제어에 있어 DCM(Discontinuous Conduction Mode) 기법을 사용하는 경우, 입력전류에 왜곡이 생기고 고역률을 달성하기 어렵다는 문제점 또한 존재하였다. In order to solve this problem, a method of using a film capacitor instead of an electrolytic capacitor may be considered. However, since the film capacitor has a very low power density compared to the electrolytic capacitor, it is not suitable for a charger requiring a high power density when designed with a high capacity. There was a problem. In addition, in the case of using a discontinuous conduction mode (DCM) technique for inductor current control, there is a problem that distortion occurs in the input current and it is difficult to achieve high power factor.
상기한 바와 같은 종래기술의 문제점을 해결하기 위해, 본 발명에서는 고용량의 전해 캐패시터를 사용하지 않으면서도 입력 전류 왜곡의 보상이 가능하며 고역률로 동작 가능한 양방향 전기 차량용 배터리 충전 장치를 제안하고자 한다. In order to solve the problems of the prior art as described above, the present invention is to propose a battery charging device for a two-way electric vehicle capable of compensating for the input current distortion without using a high-capacity electrolytic capacitor and operable at a high power factor.
본 발명의 다른 목적들은 하기의 실시예를 통해 당업자에 의해 도출될 수 있을 것이다.Other objects of the present invention may be derived by those skilled in the art through the following examples.
상기한 목적을 달성하기 위해 본 발명의 바람직한 일 실시예에 따르면, 입력 전압을 정류하여 제1 전압으로 변화시키는 정류부; 상기 제1 전압을 승압하여 제2 전압으로 변화시키는 제1 컨버터; 및 상기 제2 전압을 변화시켜 전기 차량용 배터리를 충전하기 위한 제3 전압을 생성하여 출력하는 제2 컨버터;를 포함하되, 상기 제2 컨버터부는 상기 제1 컨버터부의 출력단과 병렬로 연결되는 제1 스위칭부 및 제2 스위칭부를 포함하고, 상기 제1 스위칭부 및 상기 제2 스위칭부 각각은 일단이 상기 제1 컨버터부의 출력단과 연결되는 인덕터; 일단이 상기 인덕터의 타단과 연결되고 타단이 접지와 연결되는 제1 스위칭 소자; 및 일단이 상기 인덕터의 타단 및 상기 제1 스위칭 소자의 일단과 연결되는 제2 스위칭 소자를 포함하는 것을 특징으로 하는 전기 차량용 배터리 충전 장치가 제공된다. According to a preferred embodiment of the present invention to achieve the above object, the rectifying unit for rectifying the input voltage to a first voltage; A first converter boosting the first voltage to change the voltage to a second voltage; And a second converter configured to generate and output a third voltage for charging the battery for the electric vehicle by changing the second voltage, wherein the second converter unit is connected to an output terminal of the first converter unit in parallel with the first switching unit. An inductor including a second and a second switching unit, one end of which is connected to an output terminal of the first converter unit; A first switching element having one end connected to the other end of the inductor and the other end connected to ground; And a second switching element having one end connected to the other end of the inductor and one end of the first switching element.
또한, 본 발명의 다른 실시예에 따르면, 양방향 동작이 가능한 전기 차량용 배터리 충전 장치에 있어서, 입력 전압을 정류하여 제1 전압으로 변화시키는 정류부; 상기 제1 전압을 승압하여 제2 전압으로 변화시키는 제1 컨버터; 및 상기 제2 전압을 변화시켜 전기 차량용 배터리를 충전하기 위한 제3 전압을 생성하여 출력하는 제2 컨버터;를 포함하되, 상기 제2 컨버터부는 일단이 상기 제1 컨버터부의 출력단과 연결되는 제1 인덕터; 일단이 상기 제1 인덕터의 타단과 연결되고 타단이 접지와 연결되는 제1-1 스위칭 소자; 일단이 상기 제1 인덕터의 타단 및 상기 제1-1 스위칭 소자의 일단과 연결되는 제1-2 스위칭 소자; 상기 제1 컨버터부의 출력단을 기준으로 상기 제1 인덕터와 병렬로 연결되는 제2 인덕터; 일단이 상기 제2 인덕터의 타단과 연결되고 타단이 접지와 연결되는 제2-1 스위칭 소자; 일단이 상기 제2 인덕터의 타단 및 상기 제2-1 스위칭 소자의 일단과 연결되고 타단이 상기 제1-2 스위칭 소자의 타단과 연결되는 제2-2 스위칭 소자;를 포함하며, 상기 전기 차량용 배터리 충전 장치가 일방향으로 동작하는 경우, 상기 제1-2 스위칭 소자 및 상기 제2-2 스위칭 소자는 오프 상태에 있고, 상기 제1-1 스위칭 소자 및 상기 제2-1 스위칭 소자는 주기적으로 온/오프되고, 상기 전기 차량용 배터리 충전 장치가 타방향으로 동작하는 경우, 상기 제1-1 스위칭 소자 및 상기 제2-1 스위칭 소자는 오프 상태에 있고, 상기 제1-2 스위칭 소자 및 상기 제2-2 스위칭 소자는 주기적으로 온/오프되는 것을 특징으로 하는 전기 차량용 배터리 충전 장치가 제공된다. In addition, according to another embodiment of the present invention, an electric vehicle battery charging apparatus capable of bidirectional operation, comprising: a rectifier for rectifying the input voltage to the first voltage; A first converter boosting the first voltage to change the voltage to a second voltage; And a second converter configured to generate and output a third voltage for charging the battery for the electric vehicle by changing the second voltage, wherein the second converter part has a first inductor having one end connected to an output end of the first converter part. ; A first-first switching device having one end connected to the other end of the first inductor and the other end connected to ground; A first-second switching element having one end connected to the other end of the first inductor and one end of the first-first switching element; A second inductor connected in parallel with the first inductor based on an output terminal of the first converter unit; A 2-1 switching element having one end connected to the other end of the second inductor and the other end connected to ground; And a second-2 switching element having one end connected to the other end of the second inductor and one end of the 2-1 switching element and the other end connected to the other end of the 1-2 switching element. When the charging device operates in one direction, the 1-2 switching element and the 2-2 switching element are in an off state, and the 1-1 switching element and the 2-1 switching element are periodically turned on / off. When the battery charging device for the electric vehicle is turned off and operates in the other direction, the first-first switching element and the second-first switching element are in an off state, the first-second switching element and the second-second switching element. The switching device is provided with a battery charging device for an electric vehicle, characterized in that the on / off periodically.
본 발명에 따른 양방향 전기 차량용 배터리 충전 장치는 고용량의 전해 캐패시터를 사용하지 않으면서도 입력 전류 왜곡의 보상이 가능하며 고역률로 동작 가능한 장점이 있다. The battery charging device for a bidirectional electric vehicle according to the present invention is capable of compensating for input current distortion without using a high capacity electrolytic capacitor, and has an advantage of operating at a high power factor.
도 1은 종래의 전기 차량용 배터리 충전 장치의 개략적인 구성을 도시한 블록도이다. 1 is a block diagram showing a schematic configuration of a conventional battery charging device for an electric vehicle.
도 2는 도 1에 도시된 종래의 전기 차량용 배터리 충전 장치의 전력 흐름을 도시한 도면이다. FIG. 2 is a diagram illustrating a power flow of the conventional battery charging apparatus for an electric vehicle shown in FIG. 1.
도 3은 본 발명의 일 실시예에 따른 전기 차량용 충전 장치의 개략적인 구성을 도시한 블록도이다. 3 is a block diagram showing a schematic configuration of a charging device for an electric vehicle according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 전기 차량용 충전 장치의 상세한 구성을 도시한 회로도이다. 4 is a circuit diagram showing a detailed configuration of a charging device for an electric vehicle according to an embodiment of the present invention.
도 5 내지 도 8은 본 발명의 일 실시예에 따른 전기 차량용 배터리 충전 장치의 정방향 동작의 개념을 설명하기 위한 도면이다. 5 to 8 are views for explaining the concept of the forward operation of the battery charging device for an electric vehicle according to an embodiment of the present invention.
도 9 및 도 10은 본 발명의 일 실시예에 따른 전기 차량용 배터리 충전 장치의 역방향 동작의 개념을 설명하기 위한 도면이다. 9 and 10 are views for explaining a concept of the reverse operation of the battery charging device for an electric vehicle according to an embodiment of the present invention.
도 11은 전기 차량용 충전 장치(300)에 포함된 각 스위칭 소자의 온/오프의 일례를 정리하여 도시한 도면이다.FIG. 11 is a diagram schematically showing an example of on / off of each switching element included in the charging device 300 for an electric vehicle.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the drawings, similar reference numerals are used for similar elements.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 여기서, "연결"은 "전기적인 연결"을 의미할 수 있다. When a component is referred to as being "connected" to another component, it should be understood that there may be a direct connection to that other component, but other components may be present in between. On the other hand, when a component is said to be "directly connected" to another component, it should be understood that there is no other component in between. Here, "connection" may mean "electrical connection".
이하에서, 본 발명에 따른 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 3은 본 발명의 일 실시예에 따른 전기 차량용 충전 장치의 개략적인 구성을 도시한 블록도이고, 도 4는 본 발명의 일 실시예에 따른 전기 차량용 충전 장치의 상세한 구성을 도시한 회로도이다. 3 is a block diagram showing a schematic configuration of a charging device for an electric vehicle according to an embodiment of the present invention, Figure 4 is a circuit diagram showing a detailed configuration of the charging device for an electric vehicle according to an embodiment of the present invention.
도 3 및 도 4를 참조하면, 본 발명의 일 실시예에 따른 전기 차량용 충전 장치(300)는 제1 정류부(310), 제1 컨버터부(320), 제2 컨버터부(330) 및 제어부(340)를 포함할 수 있다. 이하, 각 구성 요소 별로 그 기능을 상세히 설명하기로 한다. 3 and 4, the charging device 300 for an electric vehicle according to an embodiment of the present invention may include a first rectifying unit 310, a first converter unit 320, a second converter unit 330, and a controller ( 340 may be included. Hereinafter, the function of each component will be described in detail.
제1 정류부(310)는 외부로부터 입력되는 교류 전압(Vac, 이하 "입력 전압"이라 함)을 반파 정류 또는 전파 정류하여 제1 전압을 생성한다. 이 때, 입력 전압(Vac)은 90Vac 이상 260Vac 이하의 크기를 가질 수 있다. 일례로, 입력되는 교류 전압은 110Vac 또는 220Vac의 크기를 가지는 상용 교류 전압일 수 있다. The first rectifier 310 generates a first voltage by half-wave rectifying or full-wave rectifying an AC voltage (Vac, hereinafter referred to as an “input voltage”) input from the outside. In this case, the input voltage Vac may have a size of greater than or equal to 90 Vac and less than or equal to 260 Vac. For example, the input AC voltage may be a commercial AC voltage having a size of 110 Vac or 220 Vac.
본 발명의 일 실시예에 따르면, 제1 정류부(310)는 도 4에 도시된 바와 같이 외부 전원과 연결되며, 풀 브리지(Full Bridge) 형태로 연결된 4개의 스위칭 소자(SR1, SR2, SR3, SR4)를 포함할 수 있다. According to an embodiment of the present invention, the first rectifier 310 is connected to an external power source as shown in FIG. 4, and four switching elements SR1, SR2, SR3, SR4 connected in the form of a full bridge. ) May be included.
일례로서, 도 4에 도시된 바와 같이, 제1 정류부(310)에 포함되는 4개의 스위칭 소자(SR1, SR2, SR3, SR4) 각각은 하나의 트랜지스터(예를 들어, MOSFET) 및 입력단이 트랜지스터의 제2 도통전극(예를 들어, 드레인 단자)과 연결되고, 출력단이 트랜지스터의 제1 도통전극(예를 들어, 소스 단자)과 연결되는 다이오드로 구성될 수 있다. 트랜지스터로써 MOSFET이 사용되는 경우 전기 차량용 충전 장치(300)의 양방향 동작이 용이하게 된다. 그리고, 4개의 스위칭 소자(SR1, SR2, SR3, SR4)는 아래에서 설명하는 제어부(340)에 의해 온/오프가 제어된다. For example, as illustrated in FIG. 4, each of the four switching elements SR1, SR2, SR3, and SR4 included in the first rectifier 310 may include one transistor (eg, a MOSFET) and an input terminal of the transistor. The diode may be connected to a second conductive electrode (eg, a drain terminal), and an output terminal may be connected to a first conductive electrode (eg, a source terminal) of the transistor. When a MOSFET is used as the transistor, bidirectional operation of the charging device 300 for an electric vehicle is facilitated. The four switching elements SR1, SR2, SR3, and SR4 are controlled on / off by the control unit 340 described below.
한편, 이와 같은 제1 정류부(310)에 포함된 4개의 스위칭 소자(SR1, SR2, SR3, SR4)는 입력 전압(Vac)의 위상에 따라 온/오프가 제어된다. 그런데, 위상의 측정을 위해 입력 전압(Vac)을 센싱하는 경우, 센싱된 전압에는 노이즈가 포함될 수 있으므로 정확한 입력 전압(Vac)의 위상을 측정하기 어려울 수 있다. 따라서, 본 발명의 일 실시예에 따르면, 제어부(340)는 전역 통과 필터(All Pass Filter)를 이용한 단상 위상 고정 회로(PLL: Phase Lock Loop)를 이용하여 입력전압과 동일한 위상을 가지며 동일한 각주파수를 가지는 sin파를 생성하고, 이를 이용하여 4개의 스위칭 소자(SR1, SR2, SR3, SR4)의 온/오프를 제어할 수 있다. On the other hand, the four switching elements (SR1, SR2, SR3, SR4) included in the first rectifier 310 is controlled on / off according to the phase of the input voltage (Vac). However, when sensing the input voltage Vac to measure the phase, it may be difficult to accurately measure the phase of the input voltage Vac since the sensed voltage may include noise. Therefore, according to an embodiment of the present invention, the control unit 340 has the same phase as the input voltage and the same angular frequency by using a single phase lock loop (PLL) using an all pass filter. A sin wave having a λ may be generated and the on / off of the four switching elements SR1, SR2, SR3, and SR4 may be controlled using the sin wave.
다음으로, 제1 정류부(310)의 출력단에는 캐패시터(Cin) 및 제1 컨버터부(320)가 순차적으로 연결된다. Next, the capacitor C in and the first converter 320 are sequentially connected to the output terminal of the first rectifier 310.
제1 컨버터부(320)는 제1 정류부(310)에 의해 전파 정류되어 입력되는 제1 전압을 승압하여 제2 전압으로 변화시킨다. 일례로서, 제1 컨버터부(320)는 도 4에 도시된 바와 같이 LLC 컨버터의 구성을 가질 수 있다. The first converter 320 boosts the first voltage received by full-wave rectification by the first rectifying unit 310 and changes the voltage into a second voltage. As an example, the first converter unit 320 may have a configuration of an LLC converter as shown in FIG. 4.
보다 상세하게, 제1 컨버터부(320)는 제1 정류부(310)와 연결되어 제1 전압을 입력받는 제3 스위칭부(321), 제3 스위칭부(321)와 연결되어 승압 동작을 수행하는 변압기부(322) 및 변압기부(322)와 연결되어 상기 승압 동작의 결과로 생성된 전압을 정류하여 제2 전압을 생성하여 출력하는 제2 정류부(323)를 포함할 수 있다(제1 스위칭부 및 제2 스위칭부는 아래에서 설명하는 제2 컨버터부(330)에 구비됨). 각 구성 요소에 대해 보다 상세히 설명하면 다음과 같다. In more detail, the first converter 320 is connected to the first rectifier 310 and connected to the third switch 321 and the third switch 321 to receive the first voltage to perform a boost operation. And a second rectifying unit 323 connected to the transformer unit 322 and the transformer unit 322 to rectify the voltage generated as a result of the boosting operation to generate and output a second voltage (first switching unit). And a second switching unit is provided in the second converter unit 330 described below). The detailed description of each component is as follows.
먼저, 제3 스위칭부(321)는 제1 정류부(310)의 2개의 출력단자와 연결되며, 풀 브리지 형태로 연결된 4개의 스위칭 소자(SLp1, SLp2, SLp3, SLp4)를 포함할 수 있다. First, the third switching unit 321 may be connected to two output terminals of the first rectifying unit 310 and may include four switching elements SLp1, SLp2, SLp3, and SLp4 connected in a full bridge form.
일례로서, 도 4에 도시된 바와 같이, 제3 스위칭부(321)에 포함되는 4개의 스위칭 소자(SLp1, SLp2, SLp3, SLp4) 각각은 하나의 트랜지스터(예를 들어, MOSFET) 및 입력단이 트랜지스터의 제2 도통전극(예를 들어, 드레인 단자)과 연결되고, 출력단이 트랜지스터의 제1 도통전극(예를 들어, 소스 단자)과 연결되는 다이오드로 구성될 수 있다. 트랜지스터로써 MOSFET이 사용되는 경우 전기 차량용 충전 장치(300)의 양방향 동작이 용이하게 된다. As an example, as shown in FIG. 4, each of the four switching elements SLp1, SLp2, SLp3, and SLp4 included in the third switching unit 321 includes one transistor (eg, a MOSFET) and an input terminal of the transistor. The diode may be connected to a second conductive electrode of the transistor (eg, a drain terminal), and an output terminal thereof may be connected to the first conductive electrode (eg, a source terminal) of the transistor. When a MOSFET is used as the transistor, bidirectional operation of the charging device 300 for an electric vehicle is facilitated.
이와 같은 4개의 스위칭 소자(SLp1, SLp2, SLp3, SLp4)는 특정 주기에 따라 주기적으로 온/오프(on/off)될 수 있으며, 이는 아래에서 설명하는 제어부(340)에 의해 제어된다. 일례로서, 스위칭 소자(SLp3) 및 스위칭 소자(SLp4)는 동시에 온/오프되고, 스위칭 소자(SLp2) 및 스위칭 소자(SLp3)는 동시에 온/오프될 수 있다. 그리고, 스위칭 소자(SLp1)/스위칭 소자(SLp4)가 온되는 시간과 스위칭 소자(SLp2)/스위칭 소자(SLp3) 제3 스위칭 소자(SL1) 및 제6 스위칭 소자(SL4)가 온되는 시간과 서로 겹치지 않을 수 있다.The four switching elements SLp1, SLp2, SLp3, and SLp4 may be periodically turned on / off according to a specific period, which is controlled by the controller 340 described below. As an example, the switching element SLp3 and the switching element SLp4 may be simultaneously turned on and off, and the switching element SLp2 and the switching element SLp3 may be simultaneously turned on and off. The time when the switching element SLp1 / switching element SLp4 is turned on and the time when the switching element SLp2 / switching element SLp3 is turned on and the time when the third switching element SL1 and the sixth switching element SL4 are turned on are mutually different from each other. It may not overlap.
다음으로, 변압기부(322)는 제3 스위칭부(321)와 연결되며, 스위칭부(321)로부터 출력된 전압을 승압한다. 이를 위해, 변압기부(322)의 2차측 권선수는 1차측 권선수보다 클 수 있다. Next, the transformer unit 322 is connected to the third switching unit 321, and boosts the voltage output from the switching unit 321. To this end, the secondary winding number of the transformer unit 322 may be larger than the primary winding number.
한편, 제3 스위칭부(321)와 변압기부(322) 사이에는 캐패시터(Cr) 및 인덕터(Lr)가 직렬로 연결될 수 있다. Meanwhile, a capacitor C r and an inductor L r may be connected in series between the third switching unit 321 and the transformer unit 322.
마지막으로, 제2 정류부(323)는 변압기부(322)와 연결되며, 변압기부(322)에서 출력된 전압을 정류하여 제2 전압을 생성하여 출력한다. Finally, the second rectifier 323 is connected to the transformer unit 322 and rectifies the voltage output from the transformer unit 322 to generate and output a second voltage.
본 발명의 일 실시예에 따르면, 제2 정류부(323)는 도 4에 도시된 바와 같이 풀 브리지 형태로 연결된 4개의 스위칭 소자(SLs1, SLs2, SLs3, SLs4)다이오드를 포함할 수 있다. According to an embodiment of the present invention, the second rectifier 323 may include four switching elements SLs1, SLs2, SLs3, and SLs4 connected in a full bridge shape as illustrated in FIG. 4.
일례로서, 도 4에 도시된 바와 같이, 제2 정류부(323)에 포함되는 4개의 스위칭 소자(SLs1, SLs2, SLs3, SLs4) 각각은 하나의 트랜지스터(예를 들어, FET) 및 입력단이 트랜지스터의 제2 도통전극(예를 들어, 드레인 단자)과 연결되고, 출력단이 트랜지스터의 제1 도통전극(예를 들어, 소스 단자)과 연결되는 다이오드로 구성될 수 있다. 트랜지스터로써 MOSFET이 사용되는 경우 전기 차량용 충전 장치(300)의 양방향 동작이 용이하게 된다. As an example, as shown in FIG. 4, each of the four switching elements SLs1, SLs2, SLs3, and SLs4 included in the second rectifier 323 includes one transistor (eg, a FET) and an input terminal of the transistor. The diode may be connected to a second conductive electrode (eg, a drain terminal), and an output terminal may be connected to a first conductive electrode (eg, a source terminal) of the transistor. When a MOSFET is used as the transistor, bidirectional operation of the charging device 300 for an electric vehicle is facilitated.
이러한 4개의 스위칭 소자(SLs1, SLs2, SLs3, SLs4) 역시 특정 주기에 따라 주기적으로 온/오프될 수 있으며, 제어부(340)에 의해 온/오프가 제어될 수 있다. 일례로서, 스위칭 소자(SLs3) 및 스위칭 소자(SLs4)는 동시에 온/오프되고, 스위칭 소자(SLs2) 및 스위칭 소자(SLs3)는 동시에 온/오프될 수 있다. 그리고, 스위칭 소자(SLs1)/스위칭 소자(SLs4)가 온되는 시간과 스위칭 소자(SLs2)/스위칭 소자(SLs3) 제3 스위칭 소자(SL1) 및 제6 스위칭 소자(SL4)가 온되는 시간과 서로 겹치지 않을 수 있다.The four switching elements SLs1, SLs2, SLs3, and SLs4 may also be periodically turned on / off according to a specific period, and the on / off may be controlled by the controller 340. As an example, the switching element SLs3 and the switching element SLs4 may be simultaneously turned on and off, and the switching element SLs2 and the switching element SLs3 may be simultaneously turned on and off. In addition, a time when the switching element SLs1 / the switching element SLs4 is turned on and a time when the switching element SLs2 / the switching element SLs3 is turned on and the time when the third switching element SL1 and the sixth switching element SL4 are turned on It may not overlap.
또한, 스위칭 소자(SLp1)/스위칭 소자(SLp4)와 스위칭 소자(SLs1)/스위칭 소자(SLs4)는 동시에 온/오프되고, 스위칭 소자(SLp2)/스위칭 소자(SLp3)와 스위칭 소자(SLs2)/스위칭 소자(SLs3)는 동시에 온/오프될 수 있다. In addition, the switching element SLp1 / switching element SLp4 and the switching element SLs1 / switching element SLs4 are simultaneously turned on and off, and the switching element SLp2 / switching element SLp3 and the switching element SLs2 / The switching element SLs3 may be turned on and off at the same time.
이와 같이 구성되는 제1 컨버터부(320)는 고정 주파수 고정 시비율로 동작될 수 있다. 이 경우, 변압기의 턴(turn)비 만을 조정하여 전압의 스케일링이 가능하므로, 소프트 스위칭으로 인한 손실을 저감시킬 수 있으며, 변압기의 크기를 감소시킬 수 있다. The first converter unit 320 configured as described above may be operated at a fixed frequency fixed ratio. In this case, since the voltage can be scaled by adjusting only the turn ratio of the transformer, the loss due to soft switching can be reduced, and the size of the transformer can be reduced.
계속하여, 제2 정류부(323)의 출력단(즉, 제1 컨버터부(320))은 출력단)은 캐패시터(CL) 및 제2 컨버터부(330)와 연결된다. Subsequently, an output terminal of the second rectifying unit 323 (that is, an output terminal of the first converter unit 320) is connected to the capacitor CL and the second converter unit 330.
제2 컨버터부(330)는 제2 전압을 변화시켜 전기 차량용 배터리(350)를 충전하기 위한 제3 전압을 생성하여 출력함으로써 전기 차량용 배터리(350)의 충전 전류를 제어한다. The second converter 330 controls the charging current of the battery 350 for the electric vehicle by changing the second voltage to generate and output a third voltage for charging the battery 350 for the electric vehicle.
보다 상세하게, 제2 컨버터부(330)는 제1 컨버터부(320)의 출력단과 병렬로 연결되는 제1 스위칭부(331) 및 제2 스위칭부(332)를 포함할 수 있다. 그리고, 각 스위칭부(331, 332)는 일단이 제1 컨버터부(320)의 출력단과 연결되는 인덕터(L1, L2), 일단이 인덕터(L1, L2)의 타단과 연결되고 타단이 접지와 연결되는 제1 스위칭 소자(Sa1, Sb1) 및 일단이 인덕터(L1, L2)의 타단 및 제1 스위칭 소자(Sa1, Sb1)의 일단과 연결되는 제2 스위칭 소자(Sa2, Sb2)를 포함할 수 있다. 여기서, 제2 스위칭 소자(Sa2, Sb2)의 타단은 서로 연결되면서 전기 차량용 배터리(350)와 연결된다. In more detail, the second converter unit 330 may include a first switching unit 331 and a second switching unit 332 connected in parallel with the output terminal of the first converter unit 320. Each of the switching units 331 and 332 has one end connected to the output terminal of the first converter unit 320, one end connected to the other end of the inductor L1 and L2, and the other end connected to the ground. The first switching elements Sa1 and Sb1, and the second switching elements Sa2 and Sb2, one end of which is connected to the other end of the inductors L1 and L2 and one end of the first switching elements Sa1 and Sb1, may be included. . Here, the other ends of the second switching elements Sa2 and Sb2 are connected to each other and are connected to the battery 350 for the electric vehicle.
이하 설명의 편의를 위해, 제1 스위칭부(331)에 포함된 인덕터(L1) 및 2개의 스위칭 소자(Sa1, Sa2)를 각각 "제1 인덕터(L1)", "제1-1 스위칭 소자(Sa1)" 및 "제1-2 스위칭 소자(Sa2)"로 칭하고, 제2 스위칭부(332)에 포함된 인덕터(L2) 및 2개의 스위칭 소자(Sb1, Sb2)를 각각 "제2 인덕터(L2)", "제2-1 스위칭 소자(Sb1)" 및 "제2-2 스위칭 소자(Sb2)"로 칭하기로 한다. For convenience of description, the inductor L1 and the two switching elements Sa1 and Sa2 included in the first switching unit 331 are respectively referred to as "first inductor L1" and "first-first switching element ( Sa1) and " 1-2 switching element Sa2 " and the inductor L2 and the two switching elements Sb1 and Sb2 included in the second switching unit 332, respectively, " second inductor L2 " ) "," 2-1 switching element Sb1 "and" 2-2 switching element Sb2 ".
정리하면, 제2 컨버터부(330)는 일단이 제1 컨버터부(320)의 출력단과 연결되는 제1 인덕터(L1), 일단이 제1 인덕터(L1)의 타단과 연결되고 타단이 접지와 연결되는 제1-1 스위칭 소자(Sa1), 일단이 제1 인덕터(L1)의 타단 및 제1-1 스위칭 소자(Sa1)의 일단과 연결되는 제1-2 스위칭 소자(Sa2), 제1 컨버터부(320)의 출력단을 기준으로 제1 인덕터(L1)와 병렬로 연결되는 제2 인덕터(L2), 일단이 제2 인덕터(L2)의 타단과 연결되고 타단이 접지와 연결되는 제2-1 스위칭 소자(Sb1), 일단이 제2 인덕터(L2)의 타단 및 제2-1 스위칭 소자(Sb1)의 일단과 연결되고 타단이 제1-2 스위칭 소자(Sa2)의 타단과 연결되는 제2-2 스위칭 소자(Sb2)를 포함한다. In summary, the second converter unit 330 has one end connected to an output terminal of the first converter unit 320, one end connected to the other end of the first inductor L1, and the other end connected to the ground. 1-1 switching element Sa1, one end of which is connected to the other end of the first inductor L1 and one end of the 1-1 switching element Sa1, the second switching element Sa2, and the first converter unit A second inductor L2 connected in parallel with the first inductor L1 based on the output terminal of the 320, and a second-first switching in which one end is connected to the other end of the second inductor L2 and the other end is connected to ground; 2-2 in which one end of the element Sb1 is connected to the other end of the second inductor L2 and one end of the 2-1 switching element Sb1, and the other end thereof is connected to the other end of the 1-2 switching element Sa2. The switching element Sb2 is included.
본 발명의 일 실시예에 따르면, 제1-1 스위칭 소자(Sa1)와 제2-1 스위칭 소자(Sb1)의 스위칭 동작은 함께 제어되고, 제1-2 스위칭 소자(Sa2)와 제2-2 스위칭 소자(Sb2)의 스위칭 동작은 함께 제어될 수 있다. According to an embodiment of the present invention, the switching operations of the 1-1 switching element Sa1 and the 2-1 switching element Sb1 are controlled together, and the 1-2 switching element Sa2 and the 2-2 are controlled together. The switching operation of the switching element Sb2 can be controlled together.
제어부(340)는 상기에서 설명한 스위칭 소자들(SR1, SR2, SR3, SR4, SLp1, SLp2, SLp3, SLp4, SLs1, SLs2, SLs3, SLs4, Sa1, Sa2, Sb1, Sb2)의 온/오프를 제어한다. The controller 340 controls on / off of the switching elements SR1, SR2, SR3, SR4, SLp1, SLp2, SLp3, SLp4, SLs1, SLs2, SLs3, SLs4, Sa1, Sa2, Sb1, and Sb2. do.
특히, 본 발명의 일 실시예에 따르면, 제어부(340)는 PI(Proportional-Integral) 제어 방식 및 PWM(Pulse Width Modulation) 제어 방식을 이용하여 제2 컨버터부(330)에 포함된 4개의 스위칭 소자(Sa1, Sa2, Sb1, Sb2)의 온/오프를 제어할 수 있다. 이를 위해, 제어부(340)는 도 3에 도시된 바와 같이 PI 제어부(341), 곱셈기(342) 및 PWM 제어부(343)를 포함할 수 있다. In particular, according to an embodiment of the present invention, the controller 340 is four switching elements included in the second converter unit 330 by using a proportional-integral (PI) control method and a pulse width modulation (PWM) control method. On / off of (Sa1, Sa2, Sb1, Sb2) can be controlled. To this end, the controller 340 may include a PI controller 341, a multiplier 342, and a PWM controller 343 as shown in FIG. 3.
PI 제어부(341)는 전기 차량용 배터리(350)로 인가되는 출력전류의 절대값(|IO|)과 상기한 출력전류에 대한 기준값(IO_ref)을 입력받고, 이를 이용하여 PI 제어값를 출력한다. 이하, 설명의 편의를 위해, PI 제어값을 "제1 제어 파라미터"라 칭하기로 한다. The PI controller 341 receives an absolute value (| IO |) of the output current applied to the battery 350 for the electric vehicle and a reference value (IO_ref) for the output current, and outputs a PI control value by using the same. Hereinafter, for convenience of description, the PI control value will be referred to as "first control parameter".
한편, 본 발명의 일 실시예에 따르면, 출력전류의 절대값(|IO|)과 출력전류의 기준값(IO_ref)을 이용하여 생성되는 제1 제어 파라미터는 아래의 수학식 1과 같이 표현될 수 있다. Meanwhile, according to an embodiment of the present invention, the first control parameter generated by using the absolute value | IO | of the output current and the reference value IO_ref of the output current may be expressed by Equation 1 below. .
수학식 1
Figure PCTKR2013005946-appb-M000001
Equation 1
Figure PCTKR2013005946-appb-M000001
여기서, Do는 제1 제어 파라미터, VL,pk는 제1 컨버터부(320)의 출력단의 전압, TS는 제2 컨버터부(330)에 포함된 4개의 스위칭 소자(Sa1, Sa2, Sb1, Sb2)의 스위칭 주기, L은 제2 컨버터부(330)의 인덕턴스, P는 제2 컨버터부(330)에서 소비되는 전력을 각각 의미한다. Here, D o is the first control parameter, V L, pk is the voltage at the output terminal of the first converter unit 320, T S is the four switching elements Sa1, Sa2, Sb1 included in the second converter unit 330. , Sb2), L denotes the inductance of the second converter 330, P denotes the power consumed by the second converter 330, respectively.
곱셈기(342)는 제1 제어 파라미터와 제2 제어 파라미터 간의 곱셈 연산을 수행한다. 여기서, 제2 제어 파라미터는 입력 전압(Vac)의 주파수, 전기 차량용 배터리(350)의 전압(즉, 캐패시터(Cb)의 양단 전압) 및 제1 컨버터부(320)의 출력단의 전압(즉, 캐패시터(CL)의 양단 전압)에 의해 정의된다. 이러한 제2 제어 파라미터는 전기 차량용 배터리 충전 장치(300)의 동작 방향(정방향 및 역방향)에 따라 서로 상이할 수 있는데, 이에 대해서는 아래에서 상세하게 설명하기로 한다.The multiplier 342 performs a multiplication operation between the first control parameter and the second control parameter. Here, the second control parameter is a frequency of the input voltage (Vac), the voltage of the battery 350 for the electric vehicle (that is, the voltage across the capacitor (C b )) and the voltage of the output terminal of the first converter unit 320 (that is, Voltage across the capacitor C L ). These second control parameters may be different from each other depending on the operation direction (forward and reverse) of the battery charging apparatus 300 for an electric vehicle, which will be described in detail below.
PWM 제어부(343)는 제1 제어 파라미터와 제2 제어 파라미터의 곱의 값을 입력받아 PWM 제어값을 생성하여 출력하고, 이는 제1-1 스위칭 소자(Sa1), 제1-2 스위칭 소자(Sa2), 제2-1 스위칭 소자(Sb1) 및 제2-2 스위칭 소자(Sb2) 중 적어도 하나의 스위칭 소자로 인가되어 해당 스위칭 소자의 온/오프를 제어하는데 이용된다. 이하, 설명의 편의를 위해, 제1 제어 파라미터와 제2 제어 파라미터의 곱의 값을 "제3 제어 파라미터"로, PWM 제어부(343)에서 출력되는 제어값을 "스위칭 제어신호"라 칭하기로 한다. The PWM controller 343 receives the value of the product of the first control parameter and the second control parameter to generate and output a PWM control value, which is the first-first switching element Sa1 and the first-second switching element Sa2. ), And applied to at least one of the 2-1 switching element Sb1 and the 2-2 switching element Sb2 to control the on / off of the switching element. Hereinafter, for convenience of description, a value of a product of the first control parameter and the second control parameter is referred to as a "third control parameter", and a control value output from the PWM control unit 343 is referred to as a "switching control signal". .
이하, 전기 차량용 배터리 충전 장치(300)의 동작 방향을 정방향 및 역방향으로 구분하여 제2 컨버터부(330)에 포함된 4개의 스위칭 소자(Sa1, Sa2, Sb1, Sb2)의 온/오프 동작 및 이에 따른 전기 차량용 배터리 충전 장치(300)의 동작을 보다 상세하게 설명하기로 한다. Hereinafter, the operation direction of the battery charging device 300 for an electric vehicle is divided into forward and reverse directions to turn on / off operations of the four switching elements Sa1, Sa2, Sb1, and Sb2 included in the second converter 330. The operation of the battery charging apparatus 300 for an electric vehicle will be described in more detail.
1. 정방향(정류부(310)에서 제2 컨버터부(330)로의 방향)으로의 동작1.Operation in the positive direction (direction from the rectifier 310 to the second converter 330)
본 발명의 일 실시예에 따르면, 전기 차량용 배터리 충전 장치(300)가 정방향으로 동작하기 하는 경우, 제1-2 스위칭 소자(Sa2) 및 제2-2 스위칭 소자(Sb2)는 오프되고, 제1-1 스위칭 소자(Sa1)는 PWM 제어부(343)에서 출력된 스위칭 제어신호에 의해 온/오프가 제어될 수 있고, 제2-1 스위칭 소자(Sb1)는 PWM 제어부(343)에서 출력된 스위칭 제어신호가 기 설정된 위상만큼 지연된 신호에 의해 온/오프가 제어될 수 있으며, 결국 제2 컨버터부(330)는 부스트 컨버터로 동작할 수 있다. 이 때, 제2 제어 파라미터는 아래의 수학식 2와 같이 표현될 수 있으며, 최종적으로 PWM 제어부(343)로 인가되는 제3 제어 파라미터는 아래의 수학식 3과 같이 표현될 수 있다. According to an embodiment of the present invention, when the battery charging apparatus 300 for an electric vehicle operates in the forward direction, the first-second switching element Sa2 and the second-second switching element Sb2 are turned off, and the first The -1 switching element Sa1 may be controlled on / off by a switching control signal output from the PWM control unit 343, and the 2-1 switching element Sb1 is a switching control output from the PWM control unit 343. On / off may be controlled by a signal delayed by a predetermined phase, and as a result, the second converter 330 may operate as a boost converter. In this case, the second control parameter may be expressed as Equation 2 below, and the third control parameter finally applied to the PWM controller 343 may be expressed as Equation 3 below.
수학식 2
Figure PCTKR2013005946-appb-M000002
Equation 2
Figure PCTKR2013005946-appb-M000002
수학식 3
Figure PCTKR2013005946-appb-M000003
Equation 3
Figure PCTKR2013005946-appb-M000003
여기서, HMF는 제2 제어 파라미터, VL,pk는 제1 컨버터부(320)의 출력단(즉, 캐패시터(CL) 양단)의 전압, Vbatt는 전기 차량용 배터리(350)의 전압, ω는 입력 전압(Vac)의 각주파수를 각각 의미한다. Here, HMF is the second control parameter, V L, pk is the voltage of the output terminal (that is, both ends of the capacitor CL) of the first converter unit 320, V batt is the voltage of the battery 350 for the electric vehicle, ω is the input Each frequency of the voltage (Vac) means.
여기서, sinωt는 전역 통과 필터(APF)를 이용하여 입력전압(Vac)과 90도의 위상차가 나는 가상 전압을 생성하고, 상기한 가상 전압을 위상 고정 회로(PLL)에 통과시킴으로써 획득될 수 있다. Here, sinωt may be obtained by generating a virtual voltage having a phase difference of 90 degrees with the input voltage Vac by using the all pass filter APF, and passing the virtual voltage through the phase lock circuit PLL.
도 5에서는 상기한 수학식 3에 포함된 각 파라미터들의 신호 파형을 도시하고 있고, 도 6에서는 제1-1 스위칭 소자(Sa1)로 입력되는 스위칭 제어신호와 제2-1 스위칭 소자(Sb1)로 입력되는 위상 지연된 스위칭 제어신호 및 이에 따른 제1 인덕터(L1) 및 제2 인덕터(L2)에 흐르는 전류의 파형을 도시하고 있다. FIG. 5 illustrates signal waveforms of the parameters included in Equation 3, and FIG. 6 illustrates switching control signals input to the first-first switching element Sa1 and the second-first switching element Sb1. The waveform of the input phase delayed switching control signal and the current flowing through the first inductor L1 and the second inductor L2 is illustrated.
상기한 수학식 3과 도 5 및 도 6을 참조하면, 온/오프 동작이 반복되는 제1-1 스위칭 소자(Sa1) 및 제2-1 스위칭 소자(Sb1)가 온되는 시간 간격은 고정된 값을 갖지 않고 VL,pk, Vbatt, ω에 따라 각 스위칭 주기 내에서 변화하는 값을 가지게 된다. Referring to Equation 3 and FIGS. 5 and 6, a time interval at which the first-first switching element Sa1 and the second-first switching element Sb1 in which the on / off operation is repeated is turned on is a fixed value. It has a value that varies within each switching period according to V L, pk , V batt , and ω.
다시 말해, 스위칭 주기 내에서 제1-1 스위칭 소자(Sa1)/제2-1 스위칭 소자(Sb1)가 온되는 시간 간격이 고정된 경우, 인덕터(L1, L2)에 흐르는 전류의 피크치를 연결한 파형은 도 7의 (a)와 도시된 바와 같이 중앙부가 볼록한 형태의 곡선의 형태를 가진다. In other words, when the time interval between the first-first switching element Sa1 / second-first switching element Sb1 is turned on within the switching period is fixed, the peak values of currents flowing through the inductors L1 and L2 are connected. As shown in FIG. 7A, the waveform has a curved shape having a central convex shape.
그러나, 본 발명에서와 같이 스위칭 주기 내에서 제1-1 스위칭 소자(Sa1)/제2-1 스위칭 소자(Sb1)가 온되는 시간 간격이 변화하는 경우, 인덕터(L1, L2)에 흐르는 전류의 피크치를 연결한 파형은 도 7의 (b)와 도시된 바와 같이 중앙부가 평평하거나 약간 오목한 형태의 곡선형태를 가지게 된다. However, as in the present invention, when the time interval at which the 1-1st switching element Sa1 / 2-1 switching element Sb1 is turned on changes in the switching period, the current flowing through the inductors L1 and L2 is changed. As shown in FIG. 7B, the waveform connecting the peak values has a curved shape with a flat or slightly concave center portion.
즉, 본 발명에 따르면, 스위칭 제어신호는 상기의 수학식 2에서 설명한 HMF에 의해 조절되며, 이에 따라 인덕터의 전류가 높은 지점(즉, 그래프 상에서의 중앙의 부분)에서의 시비율(즉, 스위칭 소자가 온되는 시간간격과 오프되는 시간간격의 비율)이 감소되게 되며, 결국 인덕터의 전류 피크가 저감되는 효과가 발생한다. 이에 따라, 입력전류에서 발생하는 왜곡을 보상할 수 있게 되고, 그 결과 고역률을 달성할 수 있게 된다. That is, according to the present invention, the switching control signal is adjusted by the HMF described in Equation 2 above, so that the rate of application (i.e., switching at the point where the current of the inductor is high (i.e., the center portion on the graph) The ratio between the time interval at which the device is turned on and the time interval at which the device is turned off is reduced, resulting in an effect of reducing the current peak of the inductor. Accordingly, it is possible to compensate for the distortion generated in the input current, and as a result, it is possible to achieve a high power factor.
도 8에서는 입력전압, 제1 파라미터, 제2 파라미터, 제3 파라미터 및 인덕터의 전류와 왜곡이 보상된 입력 전류의 파형을 도시하고 있다. 8 illustrates waveforms of an input voltage, a first parameter, a second parameter, a third parameter, and an input current in which current and distortion of an inductor are compensated for.
2. 역방향(제2 컨버터부(330)에서 정류부(310)로의 방향)으로의 동작2. Operation in the reverse direction (direction from the second converter section 330 to the rectifier section 310)
본 발명의 일 실시예에 따르면, 전기 차량용 배터리 충전 장치(300)가 역방향으로 동작하기 하는 경우, 제1-1 스위칭 소자(Sa1) 및 제2-1 스위칭 소자(Sb1)는 오프되고, 제1-2 스위칭 소자(Sa2)는 PWM 제어부(343)에서 출력된 스위칭 제어신호에 의해 온/오프가 제어될 수 있고, 및 제2-2 스위칭 소자(Sb2)는 PWM 제어부(343)에서 출력된 스위칭 제어신호가 기 설정된 위상만큼 지연된 신호에 의해 온/오프가 제어될 수 있으며, 결국 제2 컨버터부(330)는 벅 컨버터로 동작할 수 있다. 이 때, 제2 제어 파라미터는 아래의 수학식 4와 같이 표현될 수 있으며, 최종적으로 PWM 제어부(343)로 인가되는 제3 제어 파라미터는 아래의 수학식 5와 같이 표현될 수 있다. According to an embodiment of the present invention, when the battery charging apparatus 300 for an electric vehicle operates in the reverse direction, the 1-1st switching element Sa1 and the 2-1th switching element Sb1 are turned off, and the first The -2 switching element Sa2 can be controlled on / off by a switching control signal output from the PWM control unit 343, and the 2-2 switching element Sb2 is a switching output from the PWM control unit 343. The on / off may be controlled by a signal in which the control signal is delayed by a predetermined phase, and as a result, the second converter 330 may operate as a buck converter. In this case, the second control parameter may be expressed as Equation 4 below, and the third control parameter finally applied to the PWM controller 343 may be expressed as Equation 5 below.
수학식 4
Figure PCTKR2013005946-appb-M000004
Equation 4
Figure PCTKR2013005946-appb-M000004
수학식 5
Figure PCTKR2013005946-appb-M000005
Equation 5
Figure PCTKR2013005946-appb-M000005
도 9에서는 상기한 수학식 5에 포함된 각 파라미터들의 신호 파형을 도시하고 있고, 도 10에서는 제1-2 스위칭 소자(Sa2)로 입력되는 스위칭 제어신호와 제2-2 스위칭 소자(Sb2)로 입력되는 위상 지연된 스위칭 제어신호 및 이에 따른 제1 인덕터(L1) 및 제2 인덕터(L2)에 흐르는 전류의 파형을 도시하고 있다. 9 illustrates signal waveforms of the parameters included in Equation 5, and in FIG. 10, the switching control signal and the second-2 switching element Sb2 input to the 1-2 switching element Sa2 are illustrated. The waveform of the input phase delayed switching control signal and the current flowing through the first inductor L1 and the second inductor L2 is illustrated.
상기한 수학식 5과 도 9 및 도 10을 참조하면, 앞서 정방향 동작에서 설명한 바와 마찬가지로 온/오프 동작이 반복되는 제1-2 스위칭 소자(Sa2) 및 제2-2 스위칭 소자(Sb2)가 온되는 시간 간격은 고정된 값을 갖지 않고 VL,pk, Vbatt, ω에 따라 각 스위칭 주기 내에서 변화하는 값을 가지게 된다. Referring to Equation 5 and FIGS. 9 and 10, as described above in the forward operation, the first-second switching element Sa2 and the second-second switching element Sb2 having the on / off operation repeated are turned on. The time interval is not a fixed value and has a value that changes within each switching period according to V L, pk , V batt , and ω.
즉, 본 발명에 따르면, 스위칭 제어신호는 상기의 수학식 5에서 설명한 HMF에 의해 조절되며, 이에 따라 인덕터의 전류가 높은 지점(즉, 그래프 상에서의 중앙의 부분)에서의 시비율은 증가하게 된다. 여기서, 제2 컨버터부(330)는 벅 컨버터로 동작하므로 앞서 정방향으로의 동작에서 설명한 것과 유사하게 입력전류에서 발생하는 왜곡의 보상효과가 발생하게 된다. That is, according to the present invention, the switching control signal is adjusted by the HMF described in Equation 5 above, whereby the rate of application at the point where the current of the inductor is high (ie, the center portion on the graph) is increased. . Here, since the second converter unit 330 operates as a buck converter, a compensation effect of distortion generated in the input current is generated similarly to that described in the operation in the forward direction.
한편, 도 11에서는 전기 차량용 충전 장치(300)에 포함된 각 스위칭 소자의 온/오프의 일례를 정리하여 도시하였다. 11 illustrates an example of on / off of each switching element included in the charging device 300 for an electric vehicle.
이상에서 설명한 바와 같이, 본 발명의 일 실시예에 따른 전기 차량용 배터리 충전 장치(300)는 입력 전류에서 발생하는 왜곡의 보상이 가능한 바, Fluctuating power를 보상하기 위해 고용량 전해 캐패시터를 사용할 필요가 없으므로 필름 캐패시터를 사용하여 고주파 리플만을 제거해 사이즈 감소와 수명을 연장할 수 있는 장점이 있다. As described above, the battery charging device 300 for an electric vehicle according to an embodiment of the present invention can compensate for distortion generated in an input current, and thus does not need to use a high capacity electrolytic capacitor to compensate for luctuating power. The use of a capacitor eliminates only high frequency ripple, reducing the size and extending the lifespan.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.In the present invention as described above has been described by the specific embodiments, such as specific components and limited embodiments and drawings, but this is provided to help the overall understanding of the present invention, the present invention is not limited to the above embodiments, Various modifications and variations can be made by those skilled in the art to which the present invention pertains. Therefore, the spirit of the present invention should not be limited to the described embodiments, and all the things that are equivalent to or equivalent to the claims as well as the following claims will belong to the scope of the present invention. .

Claims (14)

  1. 입력 전압을 정류하여 제1 전압으로 변화시키는 정류부;A rectifying unit rectifying the input voltage to change the first voltage to a first voltage;
    상기 제1 전압을 승압하여 제2 전압으로 변화시키는 제1 컨버터; 및A first converter boosting the first voltage to change the voltage to a second voltage; And
    상기 제2 전압을 변화시켜 전기 차량용 배터리를 충전하기 위한 제3 전압을 생성하여 출력하는 제2 컨버터;를 포함하되, And a second converter configured to change the second voltage to generate and output a third voltage for charging the battery for the electric vehicle.
    상기 제2 컨버터부는 상기 제1 컨버터부의 출력단과 병렬로 연결되는 제1 스위칭부 및 제2 스위칭부를 포함하고, The second converter unit includes a first switching unit and a second switching unit connected in parallel with the output terminal of the first converter unit,
    상기 제1 스위칭부 및 상기 제2 스위칭부 각각은 일단이 상기 제1 컨버터부의 출력단과 연결되는 인덕터; 일단이 상기 인덕터의 타단과 연결되고 타단이 접지와 연결되는 제1 스위칭 소자; 및 일단이 상기 인덕터의 타단 및 상기 제1 스위칭 소자의 일단과 연결되는 제2 스위칭 소자를 포함하는 것을 특징으로 하는 전기 차량용 배터리 충전 장치.Each of the first switching unit and the second switching unit may include an inductor having one end connected to an output terminal of the first converter unit; A first switching element having one end connected to the other end of the inductor and the other end connected to ground; And a second switching element having one end connected to the other end of the inductor and one end of the first switching element.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1 스위칭부에 포함된 제2 스위칭 소자(제1-2 스위칭 소자)의 타단과 상기 제2 스위칭부에 포함된 제2 스위칭 소자(제2-2 스위칭 소자)의 타단은 연결되며, 상기 제1-2 스위칭 소자의 타단 및 상기 제2-2 스위칭 소자의 타단은 상기 전기 차량용 배터리와 연결되는 것을 특징으로 하는 전기 차량용 배터리 충전 장치. The other end of the second switching element (1-2 switching element) included in the first switching unit and the other end of the second switching element (2-2 switching element) included in the second switching unit are connected. The other end of the 1-2 switching element and the other end of the second switching element is connected to the battery for the electric vehicle, characterized in that the electric vehicle battery charging device.
  3. 제1항에 있어서, The method of claim 1,
    상기 제1 스위칭부에 포함된 제1 스위칭 소자(제1-1 스위칭 소자) 및 제2 스위칭 소자(제1-2 스위칭 소자)와 상기 제2 스위칭부에 포함된 제1 스위칭 소자(제2-1 스위칭 소자) 및 제2 스위칭 소자(제2-2 스위칭 소자)의 온/오프를 제어하기 위한 스위칭 제어신호를 생성하는 제어부;를 더 포함하는 것을 특징으로 하는 전기 차량용 배터리 충전 장치. First switching element (first-first switching element) and second switching element (first-second switching element) included in the first switching unit and first switching element (second-second switching element) included in the second switching unit And a controller configured to generate a switching control signal for controlling the on / off of the first switching element) and the second switching element (second-2 switching element).
  4. 제3항에 있어서, The method of claim 3,
    상기 제어부는 The control unit
    상기 전기 차량용 배터리로 인가되는 출력전류의 절대값 및 상기 출력전류에 대한 기준값을 입력받아 제1 제어 파라미터를 생성하여 출력하는 PI(Proportional-Integral) 제어부; 및 A PI (Proportional-Integral) control unit that receives an absolute value of the output current applied to the battery for the electric vehicle and a reference value for the output current, and generates and outputs a first control parameter; And
    상기 제1 제어 파리미터와 상기 입력 전압의 주파수, 상기 전기 차량용 배터리의 전압 및 상기 제1 컨버터부의 출력단의 전압에 의해 정의되는 제2 제어 파라미터의 곱의 값을 입력받아 스위칭 제어신호를 생성하여 출력하는 PWM(Pulse Width Modulation) 제어부;를 포함하되, Generating and outputting a switching control signal by receiving a value of a product of a second control parameter defined by a frequency of the first control parameter and the input voltage, a voltage of the battery for the electric vehicle, and a voltage of an output terminal of the first converter unit; Pulse Width Modulation (PWM) control unit; including;
    상기 PWM 제어부에서 출력된 스위칭 제어신호는 제1-1 스위칭 소자, 상기 제1-2 스위칭 소자, 상기 제2-1 스위칭 소자 및 상기 제2-2 스위칭 소자 중 적어도 하나의 스위칭 소자의 온/오프의 제어에 이용되는 것을 특징으로 하는 전기 차량용 배터리 충전 장치. The switching control signal output from the PWM controller is on / off of at least one switching element among the 1-1 switching element, the 1-2 switching element, the 2-1 switching element, and the 2-2 switching element. Battery charging apparatus for an electric vehicle, characterized in that used for the control of.
  5. 제4항에 있어서, The method of claim 4, wherein
    상기 제1 제어 파라미터는 아래의 수학식과 같이 표현되는 것을 특징으로 하는 전기 차량용 배터리 충전 장치. The first control parameter is an electric vehicle battery charging apparatus, characterized in that expressed as the following equation.
    Figure PCTKR2013005946-appb-I000001
    Figure PCTKR2013005946-appb-I000001
    여기서, Do는 상기 제1 제어 파라미터, VL,pk는 상기 제1 컨버터부의 출력단의 전압, L은 상기 제2 컨버터부의 인덕턴스, P는 제2 컨버터부에서 소비되는 전력을 각각 의미함.Here, D o denotes the first control parameter, V L, pk denotes a voltage of an output terminal of the first converter portion, L denotes an inductance of the second converter portion, and P denotes power consumed by the second converter portion.
  6. 제4항에 있어서, The method of claim 4, wherein
    상기 전기 차량용 배터리 충전 장치가 상기 정류부에서 상기 제2 컨버터부로의 방향인 정방향으로 동작하는 경우, When the battery charging device for an electric vehicle operates in a positive direction that is a direction from the rectifying unit to the second converter unit,
    상기 제1-2 스위칭 소자 및 상기 제2-2 스위칭 소자는 오프되고, 상기 제1-1 스위칭 소자는 상기 PWM 제어부에서 출력된 스위칭 제어신호에 의해 온/오프가 제어되고, 및 상기 제2-1 스위칭 소자는 상기 PWM 제어부에서 출력된 스위칭 제어신호가 기 설정된 위상만큼 지연된 신호에 의해 온/오프가 제어되며, The first-second switching element and the second-second switching element are turned off, and the first-first switching element is controlled on / off by a switching control signal output from the PWM controller, and the second-second switching element 1 switching element is controlled on / off by a signal delayed by a predetermined phase of the switching control signal output from the PWM control unit,
    상기 제2 제어 파라미터는 아래의 수학식과 같이 표현되는 것을 특징으로 하는 전기 차량용 배터리 충전 장치. The second control parameter is an electric vehicle battery charging apparatus, characterized in that expressed as the following equation.
    Figure PCTKR2013005946-appb-I000002
    Figure PCTKR2013005946-appb-I000002
    여기서, HMF는 상기 제2 제어 파라미터, VL,pk는 상기 제1 컨버터부의 출력단의 전압, Vbatt는 상기 전기 차량용 배터리의 전압, ω는 상기 입력 전압의 각주파수를 각각 의미함. Here, HMF is the second control parameter, V L, pk is the voltage of the output terminal of the first converter unit, V batt is the voltage of the battery for the electric vehicle, ω means the angular frequency of the input voltage, respectively.
  7. 제4항에 있어서, The method of claim 4, wherein
    상기 전기 차량용 배터리 충전 장치가 상기 제2 컨버터부에서 상기 정류부로의 방향인 역방향으로 동작하는 경우, When the battery charging device for an electric vehicle operates in a reverse direction from the second converter unit to the rectifier unit,
    상기 제1-1 스위칭 소자 및 상기 제2-1 스위칭 소자는 오프되고, 상기 제1-2 스위칭 소자는 PWM 제어부에서 출력된 스위칭 제어신호에 의해 온/오프가 제어되고, 및 상기 제2-2 스위칭 소자는 PWM 제어부에서 출력된 스위칭 제어신호가 기 설정된 위상만큼 지연된 신호에 의해 온/오프가 제어되며, The first-first switching element and the second-first switching element are turned off, and the first-second switching element is controlled on / off by a switching control signal output from a PWM controller, and the second-2. The switching element is controlled on / off by a signal in which the switching control signal output from the PWM controller is delayed by a predetermined phase.
    상기 제2 제어 파라미터는 아래의 수학식과 같이 표현되는 것을 특징으로 하는 전기 차량용 배터리 충전 장치. The second control parameter is an electric vehicle battery charging apparatus, characterized in that expressed as the following equation.
    Figure PCTKR2013005946-appb-I000003
    Figure PCTKR2013005946-appb-I000003
    여기서, HMF는 상기 제2 제어 파라미터, VL,pk는 상기 제1 컨버터부의 출력단의 전압, Vbatt는 상기 전기 차량용 배터리의 전압, ω는 상기 입력 전압의 각주파수를 각각 의미함. Here, HMF is the second control parameter, V L, pk is the voltage of the output terminal of the first converter unit, V batt is the voltage of the battery for the electric vehicle, ω means the angular frequency of the input voltage, respectively.
  8. 제1항에 있어서,The method of claim 1,
    제1 컨버터부는 The first converter section
    상기 제1 전압이 입력되는 제3 스위칭부;A third switching unit to which the first voltage is input;
    상기 제3 스위칭부와 연결된 변압기부; 및 A transformer unit connected to the third switching unit; And
    상기 변압기부와 연결되어 상기 제2 전압을 출력하는 제2 정류부;를 포함하는 것을 특징으로 하는 전기 차량용 배터리의 충전 장치.And a second rectifying unit connected to the transformer unit to output the second voltage.
  9. 양방향 동작이 가능한 전기 차량용 배터리 충전 장치에 있어서, In the electric vehicle battery charging device capable of bidirectional operation,
    입력 전압을 정류하여 제1 전압으로 변화시키는 정류부;A rectifying unit rectifying the input voltage to change the first voltage to a first voltage;
    상기 제1 전압을 승압하여 제2 전압으로 변화시키는 제1 컨버터; 및A first converter boosting the first voltage to change the voltage to a second voltage; And
    상기 제2 전압을 변화시켜 전기 차량용 배터리를 충전하기 위한 제3 전압을 생성하여 출력하는 제2 컨버터;를 포함하되, And a second converter configured to change the second voltage to generate and output a third voltage for charging the battery for the electric vehicle.
    상기 제2 컨버터부는 일단이 상기 제1 컨버터부의 출력단과 연결되는 제1 인덕터; 일단이 상기 제1 인덕터의 타단과 연결되고 타단이 접지와 연결되는 제1-1 스위칭 소자; 일단이 상기 제1 인덕터의 타단 및 상기 제1-1 스위칭 소자의 일단과 연결되는 제1-2 스위칭 소자; 상기 제1 컨버터부의 출력단을 기준으로 상기 제1 인덕터와 병렬로 연결되는 제2 인덕터; 일단이 상기 제2 인덕터의 타단과 연결되고 타단이 접지와 연결되는 제2-1 스위칭 소자; 일단이 상기 제2 인덕터의 타단 및 상기 제2-1 스위칭 소자의 일단과 연결되고 타단이 상기 제1-2 스위칭 소자의 타단과 연결되는 제2-2 스위칭 소자;를 포함하며, A first inductor having one end connected to an output end of the first converter part; A first-first switching device having one end connected to the other end of the first inductor and the other end connected to ground; A first-second switching element having one end connected to the other end of the first inductor and one end of the first-first switching element; A second inductor connected in parallel with the first inductor based on an output terminal of the first converter unit; A 2-1 switching element having one end connected to the other end of the second inductor and the other end connected to ground; And a second-2 switching element having one end connected to the other end of the second inductor and one end of the 2-1 switching element and the other end connected to the other end of the 1-2 switching element.
    상기 전기 차량용 배터리 충전 장치가 일방향으로 동작하는 경우, 상기 제1-2 스위칭 소자 및 상기 제2-2 스위칭 소자는 오프 상태에 있고, 상기 제1-1 스위칭 소자 및 상기 제2-1 스위칭 소자는 주기적으로 온/오프되고, 상기 전기 차량용 배터리 충전 장치가 타방향으로 동작하는 경우, 상기 제1-1 스위칭 소자 및 상기 제2-1 스위칭 소자는 오프 상태에 있고, 상기 제1-2 스위칭 소자 및 상기 제2-2 스위칭 소자는 주기적으로 온/오프되는 것을 특징으로 하는 전기 차량용 배터리 충전 장치. When the battery charging apparatus for the electric vehicle operates in one direction, the 1-2 switching element and the 2-2 switching element are in an off state, and the 1-1 switching element and the 2-1 switching element are Periodically on / off, and when the battery charger for the electric vehicle operates in the other direction, the first-first switching element and the second-first switching element are in an off state, and the first-second switching element and The 2-2 switching element is a battery charging device for an electric vehicle, characterized in that the on / off periodically.
  10. 제9항에 있어서,The method of claim 9,
    상기 제1-1 스위칭 소자, 상기 제1-2 스위칭 소자, 상기 제2-1 스위칭 소자 및 상기 제2-2 스위칭 소자의 스위칭 소자의 온/오프를 제어하기 위한 스위칭 제어신호를 생성하는 제어부;를 더 포함하는 것을 특징으로 하는 전기 차량용 배터리 충전 장치. A controller configured to generate a switching control signal for controlling on / off of the first-first switching element, the first-second switching element, the second-first switching element, and the switching element of the second-second switching element; Battery charging device for an electric vehicle further comprising a.
  11. 제10항에 있어서, The method of claim 10,
    상기 제어부는 The control unit
    상기 전기 차량용 배터리로 인가되는 출력전류의 절대값 및 상기 출력전류에 대한 기준값을 입력받아 제1 제어 파라미터를 생성하여 출력하는 PI(Proportional-Integral) 제어부; 및 A PI (Proportional-Integral) control unit that receives an absolute value of the output current applied to the battery for the electric vehicle and a reference value for the output current, and generates and outputs a first control parameter; And
    상기 제1 제어 파리미터와 상기 입력 전압의 주파수, 상기 전기 차량용 배터리의 전압 및 상기 제1 컨버터부의 출력단의 전압에 의해 정의되는 제2 제어 파라미터의 곱의 값을 입력받아 스위칭 제어신호를 생성하여 출력하는 PWM(Pulse Width Modulation) 제어부;를 포함하되, Generating and outputting a switching control signal by receiving a value of a product of a second control parameter defined by a frequency of the first control parameter and the input voltage, a voltage of the battery for the electric vehicle, and a voltage of an output terminal of the first converter unit; Pulse Width Modulation (PWM) control unit; including;
    상기 PWM 제어부에서 출력된 스위칭 제어신호는 제1-1 스위칭 소자, 상기 제1-2 스위칭 소자, 상기 제2-1 스위칭 소자 및 상기 제2-2 스위칭 소자 중 적어도 하나의 스위칭 소자의 온/오프의 제어에 이용되는 것을 특징으로 하는 전기 차량용 배터리 충전 장치. The switching control signal output from the PWM controller is on / off of at least one switching element among the 1-1 switching element, the 1-2 switching element, the 2-1 switching element, and the 2-2 switching element. Battery charging apparatus for an electric vehicle, characterized in that used for the control of.
  12. 제11항에 있어서, The method of claim 11,
    상기 제1 제어 파라미터는 아래의 수학식과 같이 표현되는 것을 특징으로 하는 전기 차량용 배터리 충전 장치. The first control parameter is an electric vehicle battery charging apparatus, characterized in that expressed as the following equation.
    Figure PCTKR2013005946-appb-I000004
    Figure PCTKR2013005946-appb-I000004
    여기서, Do는 상기 제1 제어 파라미터, VL,pk는 상기 제1 컨버터부의 출력단의 전압, L은 상기 제2 컨버터부의 인덕턴스, P는 제2 컨버터부에서 소비되는 전력을 각각 의미함.Here, D o denotes the first control parameter, V L, pk denotes a voltage of an output terminal of the first converter portion, L denotes an inductance of the second converter portion, and P denotes power consumed by the second converter portion.
  13. 제11항에 있어서, The method of claim 11,
    상기 전기 차량용 배터리 충전 장치가 상기 정류부에서 상기 제2 컨버터부로의 방향인 정방향으로 동작하는 경우, When the battery charging device for an electric vehicle operates in a positive direction that is a direction from the rectifying unit to the second converter unit,
    상기 제1-2 스위칭 소자 및 상기 제2-2 스위칭 소자는 오프되고, 상기 제1-1 스위칭 소자는 PWM 제어부에서 출력된 스위칭 제어 신호에 의해 온/오프가 제어되고, 및 상기 제2-1 스위칭 소자는 PWM 제어부에서 출력된 스위칭 제어 신호가 기 설정된 위상만큼 지연된 신호에 의해 온/오프가 제어되며, The 1-2 switching element and the 2-2 switching element are turned off, and the 1-1 switching element is controlled on / off by a switching control signal output from a PWM controller, and the second-1 The switching element is controlled on / off by a signal in which the switching control signal output from the PWM controller is delayed by a predetermined phase.
    상기 제2 제어 파라미터는 아래의 수학식과 같이 표현되는 것을 특징으로 하는 전기 차량용 배터리 충전 장치. The second control parameter is an electric vehicle battery charging apparatus, characterized in that expressed as the following equation.
    Figure PCTKR2013005946-appb-I000005
    Figure PCTKR2013005946-appb-I000005
    여기서, HMF는 상기 제2 제어 파라미터, VL,pk는 상기 제1 컨버터부의 출력단의 전압, Vbatt는 상기 전기 차량용 배터리의 전압, ω는 상기 입력 전압의 각주파수를 각각 의미함. Here, HMF is the second control parameter, V L, pk is the voltage of the output terminal of the first converter unit, V batt is the voltage of the battery for the electric vehicle, ω means the angular frequency of the input voltage, respectively.
  14. 제11항에 있어서, The method of claim 11,
    상기 전기 차량용 배터리 충전 장치가 상기 제2 컨버터부에서 상기 정류부로의 방향인 역방향으로 동작하는 경우, When the battery charging device for an electric vehicle operates in a reverse direction from the second converter unit to the rectifier unit,
    상기 제1-1 스위칭 소자 및 상기 제2-1 스위칭 소자는 오프되고, 상기 제1-2 스위칭 소자는 PWM 제어부에서 출력된 스위칭 제어 신호에 의해 온/오프가 제어되고, 및 상기 제2-2 스위칭 소자는 PWM 제어부에서 출력된 스위칭 제어 신호가 기 설정된 위상만큼 지연된 값에 의해 온/오프가 제어되며, The first-first switching element and the second-first switching element are turned off, and the first-second switching element is controlled on / off by a switching control signal output from a PWM controller, and the second-2. The switching element is controlled on / off by a value in which the switching control signal output from the PWM controller is delayed by a predetermined phase.
    상기 제2 제어 파라미터는 아래의 수학식과 같이 표현되는 것을 특징으로 하는 전기 차량용 배터리 충전 장치. The second control parameter is an electric vehicle battery charging apparatus, characterized in that expressed as the following equation.
    Figure PCTKR2013005946-appb-I000006
    Figure PCTKR2013005946-appb-I000006
    여기서, HMF는 상기 제2 제어 파라미터, VL,pk는 상기 제1 컨버터부의 출력단의 전압, Vbatt는 상기 전기 차량용 배터리의 전압, ω는 상기 입력 전압의 각주파수를 각각 의미함. Here, HMF is the second control parameter, V L, pk is the voltage of the output terminal of the first converter unit, V batt is the voltage of the battery for the electric vehicle, ω means the angular frequency of the input voltage, respectively.
PCT/KR2013/005946 2012-11-01 2013-07-04 Bidirectionally operable battery charging device for electric vehicle WO2014069743A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120122863A KR101359264B1 (en) 2012-11-01 2012-11-01 Bidirectional operable battery charging device for electric vehicle
KR10-2012-0122863 2012-11-01

Publications (1)

Publication Number Publication Date
WO2014069743A1 true WO2014069743A1 (en) 2014-05-08

Family

ID=50270039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/005946 WO2014069743A1 (en) 2012-11-01 2013-07-04 Bidirectionally operable battery charging device for electric vehicle

Country Status (2)

Country Link
KR (1) KR101359264B1 (en)
WO (1) WO2014069743A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3501090A4 (en) * 2016-08-18 2020-06-10 Thin Energy Ltd. Miniature power charger for electrical devices
DE102019217450A1 (en) * 2019-11-12 2021-05-12 Siemens Aktiengesellschaft Charging station and method for charging a consumer with load sharing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101601549B1 (en) * 2014-02-27 2016-03-08 단국대학교 산학협력단 Method for battery charging control and apparatus therefor
KR101553147B1 (en) * 2014-02-27 2015-09-14 명지대학교 산학협력단 Single-stage battery charging device for electric vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633577A (en) * 1994-06-06 1997-05-27 Nippondenso Co., Ltd. Battery charging system for electric vehicles
US5710699A (en) * 1996-05-28 1998-01-20 General Electric Company Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems
JP2009033800A (en) * 2007-07-24 2009-02-12 Toyota Industries Corp Bidirectional dc/ac inverter
US20100244775A1 (en) * 2009-03-25 2010-09-30 Smith Lynn B Bidirectional energy converter
KR101031217B1 (en) * 2009-10-21 2011-04-27 주식회사 오리엔트전자 Two-stage bidirectional isolated dc/dc power converter using fixed duty llc resonant converter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI278172B (en) * 2004-12-03 2007-04-01 Delta Electronics Inc Power supply device and operating method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633577A (en) * 1994-06-06 1997-05-27 Nippondenso Co., Ltd. Battery charging system for electric vehicles
US5710699A (en) * 1996-05-28 1998-01-20 General Electric Company Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems
JP2009033800A (en) * 2007-07-24 2009-02-12 Toyota Industries Corp Bidirectional dc/ac inverter
US20100244775A1 (en) * 2009-03-25 2010-09-30 Smith Lynn B Bidirectional energy converter
KR101031217B1 (en) * 2009-10-21 2011-04-27 주식회사 오리엔트전자 Two-stage bidirectional isolated dc/dc power converter using fixed duty llc resonant converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3501090A4 (en) * 2016-08-18 2020-06-10 Thin Energy Ltd. Miniature power charger for electrical devices
DE102019217450A1 (en) * 2019-11-12 2021-05-12 Siemens Aktiengesellschaft Charging station and method for charging a consumer with load sharing

Also Published As

Publication number Publication date
KR101359264B1 (en) 2014-02-07

Similar Documents

Publication Publication Date Title
WO2012141434A2 (en) Battery charging apparatus for electric vehicle
CN110120752B (en) Power converter and control method thereof
WO2014069900A1 (en) Device for compensating for ripples of output voltage of pfc converter and battery charging device for electric vehicle using same
US9973028B2 (en) Apparatus and method for grid-to-vehicle battery charging
WO2013094871A1 (en) Battery charging device for an electric vehicle
WO2014069743A1 (en) Bidirectionally operable battery charging device for electric vehicle
CN210075077U (en) Power factor correction circuit and vehicle-mounted charger
US20190115779A1 (en) On-Board Charging System
CN110649820A (en) Vehicle-mounted bidirectional charger circuit integrated with vehicle-mounted DC/DC converter
US11368037B2 (en) On-board charger (OBC) single-stage converter
CN111431297B (en) Multi-relay multi-load bidirectional wireless power transmission system with strong anti-offset performance
WO2023098146A1 (en) Direct current to direct current (dc-dc) converter and control method therefor
WO2021241831A1 (en) Obc- and ldc-combination-integrated power converting circuit for electric vehicle
WO2010126220A2 (en) Direct current uninterruptible power supply device having serial compensation rectifier
WO2020027374A1 (en) Single-phase isolated sepic converter for power factor correction
US11431253B2 (en) Large capacity bidirectional isolated DC-DC converter and control method thereof
WO2010074434A2 (en) High voltage power supply used in plasma environment facilities and a control method thereof
JP2022124673A (en) DC-DC converter and vehicle
WO2012128441A1 (en) Power supply apparatus for rapid charging
US20220149721A1 (en) On-board charger for a battery of an electric vehicle
WO2021107480A1 (en) Dc-dc converter
CN103633848A (en) Method and circuit for controlling output voltage of isolated AC-DC (Alternating Current-Direct Current) power supply
CN211764987U (en) Main circuit of vehicle-mounted bidirectional charger of electric automobile
WO2012074311A2 (en) Parallel operating inverter wind power generating system using a current balancer
CN210669899U (en) Vehicle-mounted bidirectional charger circuit integrated with vehicle-mounted DC/DC converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13851202

Country of ref document: EP

Kind code of ref document: A1