WO2010073915A1 - Surface-modified fiber and process for producing same - Google Patents

Surface-modified fiber and process for producing same Download PDF

Info

Publication number
WO2010073915A1
WO2010073915A1 PCT/JP2009/070655 JP2009070655W WO2010073915A1 WO 2010073915 A1 WO2010073915 A1 WO 2010073915A1 JP 2009070655 W JP2009070655 W JP 2009070655W WO 2010073915 A1 WO2010073915 A1 WO 2010073915A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
axis direction
resin
ion beam
producing
Prior art date
Application number
PCT/JP2009/070655
Other languages
French (fr)
Japanese (ja)
Inventor
香菜 橋本
靖憲 福島
享 北河
Original Assignee
東洋紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡績株式会社 filed Critical 東洋紡績株式会社
Priority to CN200980144397.9A priority Critical patent/CN102209805B/en
Priority to JP2009554821A priority patent/JP5671798B2/en
Publication of WO2010073915A1 publication Critical patent/WO2010073915A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/06Inorganic compounds or elements
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J3/00Modifying the surface
    • D02J3/02Modifying the surface by abrading, scraping, scuffing, cutting, or nicking
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/32Elastic yarns or threads ; Production of plied or cored yarns, one of which is elastic
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/003Treatment with radio-waves or microwaves
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/061Load-responsive characteristics elastic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength

Definitions

  • the present invention relates to a high-strength fiber having a modified surface and a method for producing the same, and more specifically, a surface-modified fiber having good adhesion to a resin and suitable as a composite material, and a method for producing the same. About.
  • High-strength, high-modulus fibers called so-called super fibers are widely used as reinforcing fibers for prepregs, FRPs and the like.
  • the adhesiveness with the resin is important. If the adhesiveness is low, the adhesion interface becomes defective, and the mechanical properties possessed by the reinforcing fibers are changed to the FRP or the like. It cannot be reflected in physical properties. Therefore, as the performance of the reinforcing fiber increases, improvement in adhesiveness is also required, and various studies have been made.
  • polybenzazole (PBZ) fiber has strength and elastic modulus more than twice that of polyparaphenylene terephthalamide fiber, which is a representative super fiber currently on the market, and is expected as a next generation super fiber.
  • polyparaphenylene benzobisoxazole (PBO) fiber has the highest elastic modulus among PBZ fibers (see, for example, Patent Document 1).
  • Patent Document 2 proposes for improving adhesiveness.
  • the present invention was devised in view of the current state of the prior art described above, and the purpose thereof is a high-strength surface having excellent adhesiveness capable of reflecting excellent mechanical properties of reinforcing fibers in physical properties such as FRP. It is to provide a modified fiber and a production method thereof.
  • the first invention in the present invention is a fiber having a strength of 8 cN / dtex or more, and in an area of 4 ⁇ m in the fiber major axis direction ⁇ 2 ⁇ m in the fiber rectangular axis direction in the field of view of the atomic force microscope on the fiber surface.
  • the fiber is characterized in that there are 20 or more cracked recesses having a depth of 10 to 100 nm and continuous in the fiber rectangular axis direction by 0.1 ⁇ m or more.
  • Preferred embodiments of the fiber of the present invention are as follows. (1) The surface roughness Ra of the surface uneven structure in the average cross-sectional profile is 1.5 to 6.0 nm. (2) The average of the heights of the cross section of the fiber surface that passes through the center of the convex portion, randomly cut into three sections from the fiber long axis direction 4 ⁇ m x the fiber rectangular axis direction 2 ⁇ m in the field of view of the atomic force microscope The difference in height is 20 to 100 nm.
  • a manufacturing method characterized by irradiating the surface of the fiber with an ion beam.
  • the ion beam processing gas is oxygen, air, nitrogen, argon, or a mixed gas thereof.
  • the ion particle energy of the ion beam treatment is 10 ⁇ 2 to 10 0 KeV, the treatment pressure is 0.1 to 1.0 Pa, the treatment power is 50 to 5000 W, and the fiber feeding speed is 0.01 to 1 m / min. To process.
  • the fiber of the present invention has high adhesiveness compared to conventional surface-treated fibers due to its unique surface structure, and has extremely high adhesion to the resin. Furthermore, since the fiber of this invention improves adhesiveness by the specificity of surface shape, high adhesiveness is obtained without depending on compatibility with resin and a fiber. In the fiber of the present invention, the surface-modified fiber can be easily obtained by irradiating the fiber surface with an ion beam.
  • the fiber of the present invention needs to have a strength of 8 cN / dtex or more. This is because such a fiber can sufficiently reflect the fiber performance in a composite material such as FRP.
  • the upper limit of the fiber strength is not particularly a problem, but if it exceeds 70 cN / dtex, it is difficult to sufficiently reflect the fiber performance in the composite material even with the surface structure of the fiber of the present invention.
  • Examples of such a strong fiber include a high-molecular weight polyethylene fiber having a particularly high strength.
  • the fiber of the present invention preferably has a single yarn fiber diameter of 8 to 15 ⁇ m.
  • a more preferable single yarn fiber diameter is 9 to 13 ⁇ m, and further preferably 10 to 12 ⁇ m.
  • the fiber of the present invention has a crack-like concave portion having a depth of 10 to 100 nm and continuous in an area of 4 ⁇ m in the fiber long axis direction ⁇ 2 ⁇ m in the fiber rectangular axis direction in the field of view of the atomic force microscope on the fiber surface. There are 20 or more.
  • the fiber rectangular axis direction is a direction perpendicular to the fiber major axis direction.
  • the concave portion in the surface uneven structure found in the conventional fiber is circular. However, since the fiber of the present invention is cracked in a direction substantially perpendicular to the fiber axis, shear is received on the surface, and excellent adhesiveness is obtained. Demonstrate.
  • the above-described cracked recesses exist in the above-described area, and it is more preferable that 35 or more and 100 or less exist. If the depth of the cracked recess is less than 10 nm, it cannot be expected to improve the adhesiveness with the resin, and if it exceeds 100 nm, the fiber surface is likely to be broken.
  • the fibers of the present invention preferably have a surface roughness Ra of 1.5 to 6.0 nm in a surface uneven structure in an average cross-sectional profile. More preferably, Ra is 2.0 nm or more, more preferably 2.5 nm or more. If Ra is in this range, the influence on the decrease in fiber properties is small, while an excellent anchor effect can be exhibited. Moreover, the convex part with a large width
  • the fiber of the present invention is obtained by randomly cutting the cross section into three from the fiber long axis direction 4 ⁇ m ⁇ fiber quadrature axis direction 2 ⁇ m in the atomic force microscope observation field range of the fiber surface, and the cross section passing through the center of the convex portion.
  • the height difference which is an average value of the height, is preferably 20 nm to 100 nm. More preferably, the height difference is 30 nm or more, and more preferably 40 nm or more.
  • the height difference in the present invention refers to the difference in height between the valleys and vertices of the convex portions of the surface uneven structure. If the height difference is within this range, the influence on the deterioration of the fiber properties is small, while an excellent anchor effect can be exhibited.
  • the manufacturing method of the fiber of this invention uses the fiber which has the intensity
  • plasma treatment, high-frequency sputter etching treatment, or the like is used, if the irradiation time and irradiation energy are increased, the convex portion itself begins to be scraped, making it difficult to obtain the fiber of the present invention.
  • the ion beam irradiates a convex part or cracked concave part with a large difference in height as described above, the ion beam has a directionality in the ion velocity, so that the height difference is effectively reduced. It is estimated that a large convex part is obtained.
  • the object to be treated may be a fiber bundle that is split into single fibers and aligned in one direction, or a woven fabric.
  • a closed drift ion source manufactured by Kaufman can be used.
  • an ion source DC discharge, RF discharge, microwave discharge, or the like can be used.
  • the gas used in the ion gun is not limited as long as it can generate ion particles.
  • hydrogen, helium, oxygen, nitrogen, air, fluorine, neon, argon, krypton, or N 2 O and mixtures thereof are appropriately selected from the above.
  • oxygen and air are particularly preferable because they can provide the functional group at the same time as forming the above-mentioned convex portions on the fiber surface.
  • the type and intensity of the ion beam applied to the fiber is not particularly limited as long as the fiber surface structure can be modified to the above-mentioned range.
  • the energy of the ion particles constituting the ion beam is the discharge voltage of the ion gun,
  • the discharge current, discharge power, beam gas flow rate, etc. are selected as appropriate, and the energy of the ion particles constituting the ion beam is selected from 10 ⁇ 2 to 10 0 KeV by appropriately selecting the discharge voltage, discharge current, beam gas flow rate, etc. of the ion gun.
  • the discharge voltage is adjusted to about 295 to 800 W, and the discharge current is adjusted to about 0.1 to 10 A for irradiation. Irradiation is preferably performed by adjusting the processing pressure to about 0.1 to 1.0 Pa and the fiber feed rate to about 0.01 to 0.3 m / min.
  • a droplet method or an ILSS method is used as a method for evaluating the adhesion between the fiber and the resin.
  • the droplet method is a method of evaluating by stress when a fiber is pulled out from a resin ball, but there is a problem in accuracy and efficiency because it is difficult to obtain a resin ball having a uniform shape.
  • the ILSS method is a method of evaluating by an interface shear stress when a shear stress is applied to a resin piece in which fibers are embedded by a four-point bending test. The accuracy is low.
  • FIG. 1 is a diagram schematically showing a method for producing a sample piece. Specifically, the following method was adopted.
  • a slit 2 having a depth of 0.05 to 0.1 mm with a single blade is placed on two opposite sides of an embedding plate for an electron microscope having a length of 12 mm, a width of 5 mm, and a thickness of 3 mm, and placed on a 20 cm square base.
  • the base is preferably a glass plate, but is not particularly limited as long as it is flat and can withstand heating at 60 ° C.
  • the single fiber 1 (monofilament) is divided from the yarn, the fiber is passed so as to straddle the embedding board, and the fiber is sandwiched between the slits 2 and fixed. At this time, one length of the single fiber 1 outside the resin is 15 to 20 cm, and both ends of the fiber are fixed to the base (silicon rubber mold 4) with an adhesive tape so that the single fiber 1 is not slack.
  • a thermosetting epoxy resin base material Libeac 812) and a curing agent (Lubeac DDSA) are mixed at 62 cc / 100 cc, and the one stored in the refrigerator is returned to room temperature in a desiccator.
  • FIG. 2 is a diagram schematically showing a stress distribution measurement method using Raman scattering.
  • the sample piece is attached to a sample stage for microscopic Raman scattering measurement, the single fiber 1 outside the resin is transferred to a roller attached to the end of the sample stage, and the front and back of the sample piece are fixed with a stopper.
  • a load (6) of 15 gf is attached to a piece of paper attached to the single fiber 1 outside the resin, and the Raman scattering of the single fiber 1 in the resin is measured along the fiber axis at intervals of 10 ⁇ m by microscopic Raman scattering. Since the wave number of Raman scattering is determined by the applied stress 7 of the molecule, the applied stress 7 is obtained from the wave number of Raman scattering using a calibration curve.
  • FIG. 3 is a graph schematically showing the stress distribution in the above-described adhesion evaluation method. Since the single fiber 1 is supported by the resin in the resin, the tensile stress applied to the fiber is attenuated toward the inside of the resin. That is, a stress distribution is obtained when viewed as a function of distance along the fiber axis. When the applied stress is increased, the adhesion interface yields from the position where the fiber enters the resin, and the interface yield region expands as the applied stress increases. The interface yield region is different from the fully bonded region.
  • the adhesiveness is evaluated by using the distance along the fiber axis, the interface yield point (x c ) and stress, and the interface yield stress ( ⁇ c ) at the inflection point of the stress distribution in the interface yield region and the complete adhesion region. It is possible.
  • FIG. 4 is a diagram schematically showing the above-described method for determining the standard of the adhesive interface strength.
  • a method of judging the strength of the adhesive interface in the composite material with the resin a method of judging the presence or absence of an interface yield region when a certain strain is applied to the composite material can be adopted.
  • a constant strain in the long axis direction is applied to a test piece in which a 2-3 mm PBZ single yarn is completely embedded in a strip-shaped resin so as to be parallel to the long axis direction. multiply.
  • the stress of the fiber is measured by a resistance strain meter 8 by Raman scattering, and the presence or absence of an interface yield region is confirmed from the stress distribution with respect to the fiber axis.
  • the fiber of the present invention is the first to have the interface yield stress ( ⁇ c) when the number of cracked recesses, the surface roughness Ra of the surface uneven structure in the average cross-sectional profile, and the height difference of the surface uneven structure have the values as described above. ) Is 1.2 GPa or more, and the interface yield point (x c ) is 0.10 mm or less.
  • the interface yield stress is preferably 1.5 GPa or more, more preferably 1.7 GPa or more
  • the range of the interface yield point is preferably 0.09 mm or less, more preferably 0.08 mm or less.
  • the uneven structure of the fiber surface was evaluated using an atomic force microscope (AFM).
  • AFM used SPA300 of SII Nano Technology Co., Ltd. (SII).
  • the AFM probe used was DF-40P sold by SII, and was limited to new ones.
  • the scanner used was FS-20A.
  • the number of imaging pixels was 520 pixels ⁇ 256 pixels.
  • the observation visual field was cut into 300 sections, and each surface roughness Ra of the averaged image of these sections obtained by the average section profile function was analyzed.
  • the average value of the Ra values in five observation fields randomly cut obtained by this method was defined as the surface roughness Ra.
  • AFM atomic force microscope
  • SII SII Nano Technology Co., Ltd.
  • the AFM probe used was DF-40P sold by SII, and was limited to new ones.
  • the scanner used was FS-20A.
  • Three sections were randomly cut out from the observation field, and the average value of the heights of the sections passing through the center of the convex portion was defined as the height difference.
  • AFM used SPA300 of SII Nano Technology Co., Ltd. (SII).
  • SII SII Nano Technology Co., Ltd.
  • the AFM probe used was DF-40P sold by SII, and was limited to new ones.
  • the scanner used was FS-20A.
  • the observed image was analyzed with a Scanning Probe Image Processor manufactured by Image Metrology A / S.
  • Slices were cut out at intervals of 0.02 ⁇ m in parallel to the fiber long axis direction, and a concave portion continuous with 0.1 ⁇ m or more in the fiber short axis direction was defined as a cracked concave portion, and the number in the observation field range 4 ⁇ m ⁇ 2 ⁇ m was measured. .
  • the Raman scattering spectrum was measured by the following method.
  • the Raman measuring device (spectrometer) was measured using a Renishaw system 1000.
  • the light source used was a helium-neon laser (wavelength 633 nm).
  • Fiber and resin sample pieces were attached to a sample stage for microscopic Raman scattering measurement, fibers outside the resin were passed to a roller attached to the end of the sample stage, and the front and back of the sample pieces were fixed with stoppers.
  • a load of 15 g was attached to a piece of paper attached to a fiber outside the resin, and the Raman scattering of the fiber in the resin was measured along the fiber axis at intervals of 10 ⁇ m by microscopic Raman scattering.
  • Raman is measured in the static mode in the measurement range 970 to 1810 (cm -1 ), the number of integration is 64 times, the exposure time is 1 second, and the laser intensity is optimal intensity among 1, 10, 25, 50, 100% It was adopted.
  • the peak used for the analysis was a 1619 cm ⁇ 1 band attributed to the stretching vibration of the aromatic ring. Since the baseline distortion was large and the peak shape was distorted, curve fitting using a Gaussian function was not adopted, and the peak shape was determined by visual measurement to determine the peak center.
  • the applied stress of the fiber was obtained from the obtained Raman band wave number using the calibration curve of the Raman band wave number and the tensile stress, and the stress distribution with respect to the distance along the fiber axis was obtained.
  • the inflection points of the completely bonded region and the interface yield region were determined by drawing the approximate line of the obtained stress distribution.
  • the distance along the fiber axis at the inflection point was the interface yield point x c
  • the stress was the interface yield stress ⁇ c .
  • Examples of fibers to be treated include Zylon (registered trademark) HM (Example 1), Zylon (registered trademark) AS (Example 2), Dynane (registered trademark) SK60 (Example 3) manufactured by Toyobo Co., Ltd., and Toray Industries, Inc. -Kevlar (registered trademark) 29 (Example 4) manufactured by DuPont was used. These fibers were separated from a fiber bundle into single fibers, arranged on a polyimide film at intervals, and attached using a polyimide adhesive tape. While this film was rolled in a vacuum chamber, the surface of the fiber was treated by irradiating oxygen ions with an ion gun.
  • the ion beam processing apparatus is a roll-to-roll apparatus, in which surface treatment is sequentially performed while the film is moved from the roll to the unwinding chamber, the sputtering chamber, the preliminary chamber, and the winding chamber. Rolled up.
  • Each chamber is roughly partitioned by a slit.
  • the film was in contact with the chill roll, cooled by the temperature of the chill roll ( ⁇ 5 ° C.), and a wide ion gun was used so that uniform ion irradiation was possible in the roll width direction.
  • the ion gun 38CMLIS manufactured by Advanced Energy Industries was used. Using oxygen as a gas to be introduced into the ion gun, an ion beam was irradiated from a position 4 cm from the film and fiber at a discharge voltage of 540 V, a discharge current of 0.56 A, a discharge power of 295 W, a beam gas flow rate of 45 sccm, and a processing pressure of 3 ⁇ 10 ⁇ 1 Pa.
  • Example 5 As fibers to be processed, Toyobo Co., Ltd. Zylon (registered trademark) HM (Example 5) and Zylon (registered trademark) AS (Example 6) were used. In order to reduce the energy applied to the unit area, ion beam treatment was performed in the same manner as in Examples 1 to 4 except that the roll feed rate was 0.25 m / min. The details and evaluation results of the fibers obtained in Examples 5 and 6 are shown in Table 1.
  • Comparative Example 1 As a fiber to be processed, Zylon (registered trademark) AS manufactured by Toyobo Co., Ltd. was used, but no ion beam treatment was performed. The details and evaluation results of the fibers obtained in Comparative Example 1 are shown in Table 1.
  • Comparative Example 6 A Zylon (registered trademark) AS manufactured by Toyobo Co., Ltd. was used as the fiber to be treated, and vacuum plasma treatment was performed using the same method as in Comparative Examples 2 to 5 except that the fiber feed rate was 0.01 m / min. The details and evaluation results of the fiber obtained in Comparative Example 6 are shown in Table 1.
  • the surface-modified fiber of the present invention has practical adhesiveness as a composite material, it can sufficiently exhibit the high elastic modulus of the fiber in the composite material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Reinforced Plastic Materials (AREA)
  • Artificial Filaments (AREA)

Abstract

A high-strength surface-modified fiber having such excellent bondability that the excellent mechanical properties of the reinforcing fiber can be reflected in the material properties of FRPs or the like, and a process for producing the fiber. The surface-modified fiber has a strength of 8 cN/dtex or higher, and is characterized in that when the fiber surface is examined with an atomic force microscope, 20 or more crack-like recesses extending over 0.1 µm or more in the fiber minor-axis direction and having a depth of 10-100 nm are present in an area with dimensions of 4 µm (fiber major-axis direction) by 2 µm (fiber minor-axis direction) within the field of view.  The process for producing the fiber is characterized by treating the surface of a fiber by bombardment with ion beams.

Description

表面改質繊維及びその製造方法Surface-modified fiber and method for producing the same
 本発明は、表面が改質された高強度繊維及びその製造方法に関するものであり、更に詳しくは、樹脂との接着性が良好で、複合材料用資材として好適な表面改質繊維及びその製造方法に関する。 The present invention relates to a high-strength fiber having a modified surface and a method for producing the same, and more specifically, a surface-modified fiber having good adhesion to a resin and suitable as a composite material, and a method for producing the same. About.
 いわゆるスーパー繊維と呼ばれる高強度、高弾性率繊維は、プリプレグ、FRP等の補強繊維として広く用いられている。補強繊維が有する力学物性をFRP等の物性に反映させるためには、樹脂との接着性が重要となり、接着性が低ければ接着界面が欠陥となって、補強繊維の有する力学物性をFRP等の物性に反映することができない。従って、補強繊維の高性能化が進むにつれて、接着性の向上も同時に要求され、種々の検討がなされている。 High-strength, high-modulus fibers called so-called super fibers are widely used as reinforcing fibers for prepregs, FRPs and the like. In order to reflect the mechanical properties possessed by the reinforcing fibers in the physical properties such as FRP, the adhesiveness with the resin is important. If the adhesiveness is low, the adhesion interface becomes defective, and the mechanical properties possessed by the reinforcing fibers are changed to the FRP or the like. It cannot be reflected in physical properties. Therefore, as the performance of the reinforcing fiber increases, improvement in adhesiveness is also required, and various studies have been made.
 例えば、ポリベンザゾール(PBZ)繊維は、現在市販されているスーパー繊維の代表であるポリパラフェニレンテレフタルアミド繊維の2倍以上の強度と弾性率を有し、次世代スーパー繊維として期待されており、また、PBZ繊維のなかでもポリパラフェニレンベンゾビスオキサゾール(PBO)繊維は最も高い弾性率を有することが知られている(例えば、特許文献1を参照)。
 そして、かかる繊維の高性能化に伴い、接着性改良の提案がなされ、例えばコロナ処理によって繊維表面に接着性に寄与する官能基を付与した繊維が開示されている(例えば、特許文献2を参照)。しかしながら、コロナ処理ではエネルギーが低く十分に表面に官能基を付与することができないため、満足できる接着性は得られていない。そこで、より多くの官能基を付与するため、更にエネルギーが高い大気圧プラズマ処理の検討がなされている(例えば、特許文献3を参照)。
 しかし、大気圧プラズマ処理で官能基を付与しても、満足な接着性は得られていない。そこで、表面に官能基を付与すると同時に、繊維表面に微細な凹凸を付与することも提案されている(例えば、特許文献4を参照)。しかしながら、かかる表面改質繊維であっても、PBO繊維が有する力学物性を十分に発揮させる接着性を得るには至っていない。
米国特許第5296185号公報 特開平7-102473号公報 特開2003-221778号公報 特開2003-201625号公報
For example, polybenzazole (PBZ) fiber has strength and elastic modulus more than twice that of polyparaphenylene terephthalamide fiber, which is a representative super fiber currently on the market, and is expected as a next generation super fiber. Moreover, it is known that polyparaphenylene benzobisoxazole (PBO) fiber has the highest elastic modulus among PBZ fibers (see, for example, Patent Document 1).
And with the improvement of the performance of such fibers, proposals for improving adhesiveness have been made. For example, a fiber in which a functional group contributing to adhesiveness is imparted to the fiber surface by corona treatment is disclosed (for example, see Patent Document 2). ). However, since the corona treatment has low energy and cannot sufficiently impart a functional group to the surface, satisfactory adhesiveness is not obtained. Then, in order to provide more functional groups, examination of atmospheric pressure plasma processing with higher energy has been made (see, for example, Patent Document 3).
However, even if a functional group is added by atmospheric pressure plasma treatment, satisfactory adhesiveness is not obtained. Therefore, it has also been proposed to impart fine irregularities to the fiber surface at the same time as providing a functional group on the surface (see, for example, Patent Document 4). However, even such surface-modified fibers have not yet achieved adhesiveness that sufficiently exhibits the mechanical properties of PBO fibers.
US Pat. No. 5,296,185 JP-A-7-102473 JP 2003-221778 A JP 2003-201625 A
 本発明は、上記従来技術の現状に鑑み創案されたものであり、その目的は、補強繊維の優れた力学物性をFRP等の物性に反映させることができる、優れた接着性を有する高強度表面改質繊維及びその製造方法を提供することである。 The present invention was devised in view of the current state of the prior art described above, and the purpose thereof is a high-strength surface having excellent adhesiveness capable of reflecting excellent mechanical properties of reinforcing fibers in physical properties such as FRP. It is to provide a modified fiber and a production method thereof.
 本発明者らは、上記目的を達成するために鋭意研究した結果、遂に本発明を完成するに至った。
 即ち、本発明における第1の発明は、8cN/dtex以上の強度を有する繊維であって、繊維表面の原子間力顕微鏡観察視野範囲の繊維長軸方向4μm×繊維矩軸方向2μmの面積中に繊維矩軸方向に0.1μm以上連なりかつ10~100nmの深さを有するひび割れ状の凹部が20個以上存在することを特徴とする繊維である。
As a result of diligent research to achieve the above object, the present inventors finally completed the present invention.
That is, the first invention in the present invention is a fiber having a strength of 8 cN / dtex or more, and in an area of 4 μm in the fiber major axis direction × 2 μm in the fiber rectangular axis direction in the field of view of the atomic force microscope on the fiber surface. The fiber is characterized in that there are 20 or more cracked recesses having a depth of 10 to 100 nm and continuous in the fiber rectangular axis direction by 0.1 μm or more.
 本発明の繊維の好ましい態様は以下の通りである。
(1)平均断面プロファイルにおける表面凹凸構造の表面粗さRaが1.5~6.0nmである。
(2)繊維表面の原子間力顕微鏡観察視野範囲の繊維長軸方向4μm×繊維矩軸方向2μmからランダムに断面を3つに切り出し、断面が凸部の中心を通っているものの高さの平均値である高低差が20~100nmである。
Preferred embodiments of the fiber of the present invention are as follows.
(1) The surface roughness Ra of the surface uneven structure in the average cross-sectional profile is 1.5 to 6.0 nm.
(2) The average of the heights of the cross section of the fiber surface that passes through the center of the convex portion, randomly cut into three sections from the fiber long axis direction 4 μm x the fiber rectangular axis direction 2 μm in the field of view of the atomic force microscope The difference in height is 20 to 100 nm.
 また、本発明における第2の発明は、前記の繊維の表面にイオンビームを照射して処理することを特徴とする製造方法である。
 さらに、本発明の繊維の製造方法の好ましい態様は以下の通りである。
(1)イオンビームの処理ガスが、酸素、空気、窒素、アルゴン、またはそれらの混合気体である。
(2)イオンビーム処理のイオン粒子エネルギーを10-2~10KeV、処理圧力を0.1~1.0Pa、処理電力を50~5000W、繊維送り速度を0.01~1m/minにして処理する。
According to a second aspect of the present invention, there is provided a manufacturing method characterized by irradiating the surface of the fiber with an ion beam.
Furthermore, the preferable aspect of the manufacturing method of the fiber of this invention is as follows.
(1) The ion beam processing gas is oxygen, air, nitrogen, argon, or a mixed gas thereof.
(2) The ion particle energy of the ion beam treatment is 10 −2 to 10 0 KeV, the treatment pressure is 0.1 to 1.0 Pa, the treatment power is 50 to 5000 W, and the fiber feeding speed is 0.01 to 1 m / min. To process.
 本発明の繊維は、その特異な表面構造から、従来の表面処理された繊維に比べて高い接着性を有し、樹脂との密着性が極めて高い。さらに、本発明の繊維は、表面形状の特異性によって接着性を向上させるため、樹脂と繊維との相性に依存せずに高い接着性が得られる。また、本発明の繊維は、繊維表面にイオンビームを照射することによって容易に表面改質繊維が得られる。 The fiber of the present invention has high adhesiveness compared to conventional surface-treated fibers due to its unique surface structure, and has extremely high adhesion to the resin. Furthermore, since the fiber of this invention improves adhesiveness by the specificity of surface shape, high adhesiveness is obtained without depending on compatibility with resin and a fiber. In the fiber of the present invention, the surface-modified fiber can be easily obtained by irradiating the fiber surface with an ion beam.
本発明で採用した、ラマン散乱を用いた接着性評価法における、サンプル片の作成方法を模式的に示した図である。It is the figure which showed typically the preparation method of the sample piece in the adhesiveness evaluation method using Raman scattering employ | adopted by this invention. 本発明で採用した、ラマン散乱を用いた接着性評価法における、応力分布の測定方法を模式的に示した図である。It is the figure which showed typically the measuring method of the stress distribution in the adhesiveness evaluation method using Raman scattering employ | adopted by this invention. 本発明で採用した、ラマン散乱を用いた接着性評価法における、応力分布、および接着性評価指標を模式的に示した図である。It is the figure which showed typically stress distribution and the adhesive evaluation parameter | index in the adhesiveness evaluation method using Raman scattering employ | adopted by this invention. 本発明で採用した、接着界面強度の目安の判断方法に用いる試験片の模式図である。It is a schematic diagram of the test piece used for the judgment method of the standard of the adhesive interface strength employ | adopted by this invention.
    1:単繊維
    2:スリット
    3:熱硬化性エポキシ樹脂
    4:シリコンゴム製型枠
    5:樹脂
    6:荷重
    7:印加応力
    8:抵抗ひずみ計
1: Single fiber 2: Slit 3: Thermosetting epoxy resin 4: Silicon rubber mold 5: Resin 6: Load 7: Applied stress 8: Resistance strain gauge
 以下、本発明の繊維及びその製造方法を詳細に説明する。
(繊維)
 本発明の繊維は、8cN/dtex以上の強度を有することが必要である。かかる強度の繊維であれば、その繊維性能をFRP等の複合材料に十分に反映することができるからである。繊維強度の上限は特に問題とならないが、70cN/dtexを超えると、本発明の繊維の表面構造をもってしても、繊維性能を十分に複合材料に反映し難くなる。
 かかる強度の繊維としては、例えば特別に強度の高い高分子量ポリエチレン繊維などが挙げられる。本発明の繊維は、単糸繊維直径が8~15μmであることが好ましい。かかる繊維直径であれば、十分な表面積を有し、上記表面凹凸構造を多数付与できる一方で、凹凸部付与による強度低下が少ないからである。より好ましい単糸繊維直径は9~13μmであり、更に好ましくは10~12μmである。
Hereinafter, the fiber of the present invention and the production method thereof will be described in detail.
(fiber)
The fiber of the present invention needs to have a strength of 8 cN / dtex or more. This is because such a fiber can sufficiently reflect the fiber performance in a composite material such as FRP. The upper limit of the fiber strength is not particularly a problem, but if it exceeds 70 cN / dtex, it is difficult to sufficiently reflect the fiber performance in the composite material even with the surface structure of the fiber of the present invention.
Examples of such a strong fiber include a high-molecular weight polyethylene fiber having a particularly high strength. The fiber of the present invention preferably has a single yarn fiber diameter of 8 to 15 μm. This is because such a fiber diameter has a sufficient surface area and can provide a large number of the above-described surface uneven structures, while the strength reduction due to the provision of the uneven parts is small. A more preferable single yarn fiber diameter is 9 to 13 μm, and further preferably 10 to 12 μm.
 本発明の繊維は、繊維表面の原子間力顕微鏡観察視野範囲の繊維長軸方向4μm×繊維矩軸方向2μmの面積中に0.1μm以上連なりかつ10~100nmの深さを有するひび割れ状の凹部が20個以上存在することを特徴とする。繊維矩軸方向は繊維長軸方向に対して直角な方向である。従来の繊維に見られる表面凹凸構造における凹部は円形であるところ、本発明の繊維は繊維軸と略垂直な方向にひび割れ状であるため、剪断を面で受け止めることになり、優れた接着性を発揮する。上述のひび割れ状の凹部は上述の面積中に30個以上存在することが好ましく、35個以上100個以下存在することが更に好ましい。ひび割れ状の凹部の深さが10nm未満であると樹脂との接着性向上をあまり期待できず、100nmを超えると繊維表面が破壊されやすくなると考えられる。 The fiber of the present invention has a crack-like concave portion having a depth of 10 to 100 nm and continuous in an area of 4 μm in the fiber long axis direction × 2 μm in the fiber rectangular axis direction in the field of view of the atomic force microscope on the fiber surface. There are 20 or more. The fiber rectangular axis direction is a direction perpendicular to the fiber major axis direction. The concave portion in the surface uneven structure found in the conventional fiber is circular. However, since the fiber of the present invention is cracked in a direction substantially perpendicular to the fiber axis, shear is received on the surface, and excellent adhesiveness is obtained. Demonstrate. It is preferable that 30 or more of the above-described cracked recesses exist in the above-described area, and it is more preferable that 35 or more and 100 or less exist. If the depth of the cracked recess is less than 10 nm, it cannot be expected to improve the adhesiveness with the resin, and if it exceeds 100 nm, the fiber surface is likely to be broken.
 本発明の繊維は、平均断面プロファイルにおける表面凹凸構造に表面粗さRaが1.5~6.0nmであることが好ましい。より好ましくは、Raは2.0nm以上、さらに好ましくは、2.5nm以上である。Raがこの範囲にあれば、繊維物性の低下に対する影響が小さい一方、優れたアンカー効果を発揮できる。また、幅が大きく剪断に強い凸部を表面に形成することができる。 The fibers of the present invention preferably have a surface roughness Ra of 1.5 to 6.0 nm in a surface uneven structure in an average cross-sectional profile. More preferably, Ra is 2.0 nm or more, more preferably 2.5 nm or more. If Ra is in this range, the influence on the decrease in fiber properties is small, while an excellent anchor effect can be exhibited. Moreover, the convex part with a large width | variety and strong to a shear can be formed in the surface.
 本発明の繊維は、繊維表面の原子間力顕微鏡観察視野範囲の繊維長軸方向4μm×繊維矩軸方向2μmからランダムに断面を3つに切り出し、断面が凸部の中心を通っているものの高さの平均値である高低差が20nm~100nmであることが好ましい。より好ましくは、高低差は30nm以上、さらに好ましくは、40nm以上である。本発明における高低差とは、表面凹凸構造の凸部の谷と頂点との高さの差を示す。高低差がこの範囲にあれば、繊維物性の低下に対する影響が小さい一方、優れたアンカー効果を発揮できる。 The fiber of the present invention is obtained by randomly cutting the cross section into three from the fiber long axis direction 4 μm × fiber quadrature axis direction 2 μm in the atomic force microscope observation field range of the fiber surface, and the cross section passing through the center of the convex portion. The height difference, which is an average value of the height, is preferably 20 nm to 100 nm. More preferably, the height difference is 30 nm or more, and more preferably 40 nm or more. The height difference in the present invention refers to the difference in height between the valleys and vertices of the convex portions of the surface uneven structure. If the height difference is within this range, the influence on the deterioration of the fiber properties is small, while an excellent anchor effect can be exhibited.
(製造方法)
 また、本発明の繊維の製造方法は、例えば、8cN/dtex以上の強度を有する繊維を使用し、その表面にイオンビームを照射することによって表面凹凸構造を形成することが好ましい。プラズマ処理、高周波スパッタエッチング処理等を使用した場合、照射時間、照射エネルギーを高くすると、凸部自体が削られ始め、本発明の繊維を得難くなる。イオンビームを照射することにより、上述のような高低差が大きい凸部やひび割れ状の凹部が得られる理由は定かではないが、イオンビームがイオン速度に方向性を有するために効果的に高低差が大きい凸部が得られると推測される。
(Production method)
Moreover, it is preferable that the manufacturing method of the fiber of this invention uses the fiber which has the intensity | strength of 8 cN / dtex or more, for example, and forms an uneven surface structure by irradiating the surface with an ion beam. When plasma treatment, high-frequency sputter etching treatment, or the like is used, if the irradiation time and irradiation energy are increased, the convex portion itself begins to be scraped, making it difficult to obtain the fiber of the present invention. Although it is not clear why the ion beam irradiates a convex part or cracked concave part with a large difference in height as described above, the ion beam has a directionality in the ion velocity, so that the height difference is effectively reduced. It is estimated that a large convex part is obtained.
 繊維に対してイオンビーム処理を行うためには、紡糸または熱処理後、ロールツウロールで巻き出し、イオンビーム処理装置で連続的にロールツウロール処理する方法や、バッチ式の方法が採用できるが、操業性の面からロールツウロール方式が好ましい。被処理物は繊維束の他に、繊維束を単繊維に分繊し一方向に揃えたものや、織物でもよい。イオンビームを繊維に照射するためのイオンガンとしては、例えばカウフマン製のクローズドドリフトイオンソースを利用することができ、イオン源としては、DC放電、RF放電、マイクロ波放電などを利用することができる。特に、ロール・ツウ・ロール処理においては、リニアイオンソースを用いることが好ましい。 In order to perform the ion beam treatment on the fiber, after spinning or heat treatment, a roll-to-roll roll can be used, and a roll-to-roll process can be continuously performed with an ion beam treatment apparatus, or a batch method can be adopted. The roll-to-roll method is preferable from the viewpoint of operability. In addition to the fiber bundle, the object to be treated may be a fiber bundle that is split into single fibers and aligned in one direction, or a woven fabric. As an ion gun for irradiating a fiber with an ion beam, for example, a closed drift ion source manufactured by Kaufman can be used. As an ion source, DC discharge, RF discharge, microwave discharge, or the like can be used. In particular, in the roll-to-roll process, it is preferable to use a linear ion source.
 イオンガンに使用されるガスとしては、イオン粒子を生成しうるものならいかなるガスも制限されないが、例えば水素、ヘリウム、酸素、窒素、空気、フッ素、ネオン、アルゴン、クリプトンまたはNOおよびこれらの混合物の中から適宜選択して使用される。これらの中では、特に酸素、空気が、繊維表面に上述の凸部を形成すると同時に官能基も付与することができるので好ましい。 The gas used in the ion gun is not limited as long as it can generate ion particles. For example, hydrogen, helium, oxygen, nitrogen, air, fluorine, neon, argon, krypton, or N 2 O and mixtures thereof Are appropriately selected from the above. Among these, oxygen and air are particularly preferable because they can provide the functional group at the same time as forming the above-mentioned convex portions on the fiber surface.
 繊維に照射するイオンビームの種類や強さは、繊維表面構造を上述の範囲に改質することができれば特に限定されないが、通常、イオンビームを構成するイオン粒子のエネルギーは、イオンガンの放電電圧、放電電流、放電電力、ビームガス流量などを適宜選択して、イオンビームを構成するイオン粒子のエネルギーは、イオンガンの放電電圧、放電電流、ビームガス流量などを適宜選択して、10-2~10KeV程度に調節し、放電電圧は295~800W程度、放電電流は0.1~10A程度に調節して照射される。処理時圧力は0.1~1.0Pa程度、繊維送り速度は0.01~0.3m/min程度に調節して照射することが好ましい。 The type and intensity of the ion beam applied to the fiber is not particularly limited as long as the fiber surface structure can be modified to the above-mentioned range. Usually, the energy of the ion particles constituting the ion beam is the discharge voltage of the ion gun, The discharge current, discharge power, beam gas flow rate, etc. are selected as appropriate, and the energy of the ion particles constituting the ion beam is selected from 10 −2 to 10 0 KeV by appropriately selecting the discharge voltage, discharge current, beam gas flow rate, etc. of the ion gun. The discharge voltage is adjusted to about 295 to 800 W, and the discharge current is adjusted to about 0.1 to 10 A for irradiation. Irradiation is preferably performed by adjusting the processing pressure to about 0.1 to 1.0 Pa and the fiber feed rate to about 0.01 to 0.3 m / min.
(接着性の評価方法)
 繊維と樹脂の接着性の評価法としては、一般にドロップレット法やILSS法が用いられる。ドロップレット法は、樹脂の玉から繊維を引き抜くときの応力で評価する方法であるが、均一な形状の樹脂の玉が得にくいため、精度と効率に問題がある。一方、ILSS法は、繊維が埋め込まれた樹脂片に4点曲げ試験によりせん断応力を加えたときの界面せん断応力で評価する方法であるが、樹脂や繊維の強度特性の影響を受けやすいため、精度が低い。
(Adhesion evaluation method)
In general, a droplet method or an ILSS method is used as a method for evaluating the adhesion between the fiber and the resin. The droplet method is a method of evaluating by stress when a fiber is pulled out from a resin ball, but there is a problem in accuracy and efficiency because it is difficult to obtain a resin ball having a uniform shape. On the other hand, the ILSS method is a method of evaluating by an interface shear stress when a shear stress is applied to a resin piece in which fibers are embedded by a four-point bending test. The accuracy is low.
 本発明の繊維の樹脂との接着性の評価には、樹脂に繊維を埋め込み繊維を引き抜くときの繊維の引張応力の減衰挙動を用いて評価する方法を採用した。この評価法では、一定の形状のサンプル片を得ることができ、さらに、材料の強度特性の影響が少なく、高精度高効率の評価が可能である。 In the evaluation of the adhesion of the fiber of the present invention to the resin, a method of evaluating using the damping behavior of the tensile stress of the fiber when the fiber was embedded in the resin and the fiber was pulled out was adopted. In this evaluation method, a sample piece having a fixed shape can be obtained, and furthermore, the influence of the strength characteristics of the material is small, and highly accurate and efficient evaluation is possible.
 図1はサンプル片の作成方法を模式的に示した図である。具体的には、以下の方法を採用した。
 (a)長さ12mm、幅5mm、厚み3mmの電子顕微鏡用包埋板の対面する二辺に、片刃で深さ0.05~0.1mmのスリット2を入れ、20cm四方の土台上に置く。土台はガラス板が好ましいが、平坦で60℃の加熱に耐えうるものであれば特に限定されない。
 (b)次に、ヤーンから単繊維1(モノフィラメント)を分繊して、包埋板をまたぐように繊維を渡して、スリット2に挟んで固定する。このとき、樹脂外の単繊維1の一方の長さは15~20cmにし、さらに、単繊維1に弛みがないよう繊維の両端を粘着テープで土台(シリコンゴム製型枠4)に固定する。
 (c)次に、熱硬化性エポキシ樹脂の基材(ルベアック812)と硬化剤(ルベアックDDSA)を62cc/100ccで調合し、冷蔵庫内に保存しておいたものをデシケーター内で常温に戻す。調合液5mlに、硬化促進剤(ルベアック-DMP30)を直径4mmのガラス棒で10滴加え、気泡が入らないよう注意しながら1分間撹拌する。調合液の保存期限は1ヶ月とする。該樹脂液3を包埋板に流し込み、包埋板から約0.5mm盛り上がるように量を調節し、粘着テープを除去して、60℃のオーブンで12時間硬化させる。
 (d)室温で放冷した後、単繊維1が破断しないよう注意して樹脂片を包埋板から取り出して、樹脂5と単繊維1からなるサンプル片を得る。3×2cmの紙片を、樹脂外の単繊維1の一方の端に繊維を挟むように折り曲げて、接着剤で固定する。
FIG. 1 is a diagram schematically showing a method for producing a sample piece. Specifically, the following method was adopted.
(A) A slit 2 having a depth of 0.05 to 0.1 mm with a single blade is placed on two opposite sides of an embedding plate for an electron microscope having a length of 12 mm, a width of 5 mm, and a thickness of 3 mm, and placed on a 20 cm square base. . The base is preferably a glass plate, but is not particularly limited as long as it is flat and can withstand heating at 60 ° C.
(B) Next, the single fiber 1 (monofilament) is divided from the yarn, the fiber is passed so as to straddle the embedding board, and the fiber is sandwiched between the slits 2 and fixed. At this time, one length of the single fiber 1 outside the resin is 15 to 20 cm, and both ends of the fiber are fixed to the base (silicon rubber mold 4) with an adhesive tape so that the single fiber 1 is not slack.
(C) Next, a thermosetting epoxy resin base material (Lubeac 812) and a curing agent (Lubeac DDSA) are mixed at 62 cc / 100 cc, and the one stored in the refrigerator is returned to room temperature in a desiccator. Add 10 drops of a curing accelerator (Lubeak-DMP30) to 5 ml of the prepared solution with a glass rod with a diameter of 4 mm, and stir for 1 minute, taking care not to enter bubbles. The shelf life of the preparation is one month. The resin liquid 3 is poured into the embedding plate, the amount is adjusted so as to rise about 0.5 mm from the embedding plate, the adhesive tape is removed, and it is cured in an oven at 60 ° C. for 12 hours.
(D) After standing to cool at room temperature, the resin piece is taken out of the embedding plate with care not to break the single fiber 1 to obtain a sample piece made of the resin 5 and the single fiber 1. A 3 × 2 cm piece of paper is folded so as to sandwich the fiber at one end of the single fiber 1 outside the resin, and fixed with an adhesive.
 図2はラマン散乱を用いた応力分布の測定方法を模式的に示した図である。
 前記のサンプル片を、顕微ラマン散乱測定用の試料台に取り付け、樹脂外の単繊維1を試料台端に付属したローラーに渡し、サンプル片の前後をストッパーで固定する。樹脂外の単繊維1に取り付けた紙片に荷重(6)15gfを取りつけ、顕微ラマン散乱により樹脂中の単繊維1のラマン散乱を、10μm間隔で繊維軸に沿って測定する。ラマン散乱の波数は分子の印加応力7によって決まるため、検量線を用いてラマン散乱の波数から印加応力7が得られる。
FIG. 2 is a diagram schematically showing a stress distribution measurement method using Raman scattering.
The sample piece is attached to a sample stage for microscopic Raman scattering measurement, the single fiber 1 outside the resin is transferred to a roller attached to the end of the sample stage, and the front and back of the sample piece are fixed with a stopper. A load (6) of 15 gf is attached to a piece of paper attached to the single fiber 1 outside the resin, and the Raman scattering of the single fiber 1 in the resin is measured along the fiber axis at intervals of 10 μm by microscopic Raman scattering. Since the wave number of Raman scattering is determined by the applied stress 7 of the molecule, the applied stress 7 is obtained from the wave number of Raman scattering using a calibration curve.
 図3は上記の接着性評価法における応力分布を模式的に示したグラフである。
 樹脂中では単繊維1は樹脂によって支えられるため、繊維に印加された引張応力は樹脂内部に行くほど減衰する。すなわち、繊維軸に沿った距離の関数として見たとき応力分布が得られる。印加応力を大きくすると、繊維が樹脂に入り込む位置から接着界面の降伏が生じ、印加応力が大きくなるにしたがい、界面降伏領域が拡大する。界面降伏領域は完全接着領域と異なる。
FIG. 3 is a graph schematically showing the stress distribution in the above-described adhesion evaluation method.
Since the single fiber 1 is supported by the resin in the resin, the tensile stress applied to the fiber is attenuated toward the inside of the resin. That is, a stress distribution is obtained when viewed as a function of distance along the fiber axis. When the applied stress is increased, the adhesion interface yields from the position where the fiber enters the resin, and the interface yield region expands as the applied stress increases. The interface yield region is different from the fully bonded region.
 接着性が良いと完全接着領域が広く、さらに、界面の降伏が生じる応力のしきい値は大きい。したがって、界面降伏領域と完全接着領域の応力分布の変曲点における、繊維軸に沿った距離、界面降伏点(x)と応力、界面降伏応力(σ)を用いて接着性を評価することが可能である。 When the adhesiveness is good, the complete adhesion region is wide, and the threshold value of the stress at which the interface yields is large. Therefore, the adhesiveness is evaluated by using the distance along the fiber axis, the interface yield point (x c ) and stress, and the interface yield stress (σ c ) at the inflection point of the stress distribution in the interface yield region and the complete adhesion region. It is possible.
 図4は上記の接着界面強度の目安判断方法を模式的に示した図である。
 本発明の繊維について、樹脂との複合材料における接着界面の強度の目安を判断する方法としては、複合材料に一定のひずみを与えたときの界面降伏領域の有無を判断する方法が採用できる。すなわち、2~3mmのPBZの単糸を、短冊状の樹脂中に長軸方向と平行になるように完全に埋め込んだ試験片に、引張強度測定装置を用いて、長軸方向へ一定のひずみをかける。ひずみをかけた状態で、ラマン散乱により、繊維の応力を抵抗ひずみ計8で測定し、繊維軸に対する応力分布から界面降伏領域の有無を確認する。
FIG. 4 is a diagram schematically showing the above-described method for determining the standard of the adhesive interface strength.
For the fiber of the present invention, as a method of judging the strength of the adhesive interface in the composite material with the resin, a method of judging the presence or absence of an interface yield region when a certain strain is applied to the composite material can be adopted. In other words, using a tensile strength measuring device, a constant strain in the long axis direction is applied to a test piece in which a 2-3 mm PBZ single yarn is completely embedded in a strip-shaped resin so as to be parallel to the long axis direction. multiply. In a state where strain is applied, the stress of the fiber is measured by a resistance strain meter 8 by Raman scattering, and the presence or absence of an interface yield region is confirmed from the stress distribution with respect to the fiber axis.
 本発明の繊維は、ひび割れ状の凹部の個数、平均断面プロファイルにおける表面凹凸構造の表面粗さRa、表面凹凸構造の高低差が上述のような値を持つことによって初めて、界面降伏応力(σ)が1.2GPa以上、界面降伏点(x)が0.10mm以下となり、上記の接着界面強度の目安の判断方法において、樹脂がエポキシ樹脂で、歪み0.8%のとき界面の降伏を生じることがなく、信頼性の高い実用に耐えうる複合材料が得られる。界面降伏応力の範囲は好ましくは1.5GPa以上、さらに好ましくは1.7GPa以上、また、界面降伏点の範囲は好ましくは0.09mm以下、さらに好ましくは0.08mm以下である。 The fiber of the present invention is the first to have the interface yield stress (σ c) when the number of cracked recesses, the surface roughness Ra of the surface uneven structure in the average cross-sectional profile, and the height difference of the surface uneven structure have the values as described above. ) Is 1.2 GPa or more, and the interface yield point (x c ) is 0.10 mm or less. In the above-described method for determining the adhesive interface strength, when the resin is an epoxy resin and the strain is 0.8%, the interface yield is reduced. A highly reliable composite material that can withstand practical use is obtained. The range of the interface yield stress is preferably 1.5 GPa or more, more preferably 1.7 GPa or more, and the range of the interface yield point is preferably 0.09 mm or less, more preferably 0.08 mm or less.
 以下、本発明をさらに実施例によって詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、各種特性の評価は下記の方法を採用した。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In addition, the following method was employ | adopted for evaluation of various characteristics.
(1)引張強度
 標準状態(温度:20±2℃、相対湿度(RH)65±2%)の試験室内に24時間以上繊維を放置した後、繊維の引張強度をJIS-L-1013に準じて引張試験機にて測定した。
(1) Tensile strength After leaving the fiber in the test chamber in the standard condition (temperature: 20 ± 2 ° C, relative humidity (RH) 65 ± 2%) for 24 hours or more, the tensile strength of the fiber conforms to JIS-L-1013. And measured with a tensile tester.
(2)表面粗さRa
 繊維表面の凹凸構造は、原子間力顕微鏡(AFM)を用いて評価した。AFMはエスアイアイ・ナノテクノロジー株式会社(SII)のSPA300を使用した。AFM探針は、SIIから販売されているDF-40Pを使用し、新品のものに限定使用した。スキャナーはFS-20Aを使用した。また、撮影画素数は、520ピクセル×256ピクセルとした。観察前にAFM探針を試料表面に接触させる位置は繊維短軸方向の中心部付近とし、走査方向は繊維長軸に平行とした。観察視野範囲は、(繊維長軸方向)×(繊維短軸方向)=4μm×2μmとした。観察視野を300断面に切り出し、平均断面プロファイル機能により得られるこれらの断面の平均化画像の各表面粗さRaを解析した。この方法によって得られる、ランダムに切り出した5つの観察視野におけるRa値の平均値を、表面粗さRaとした。
(2) Surface roughness Ra
The uneven structure of the fiber surface was evaluated using an atomic force microscope (AFM). AFM used SPA300 of SII Nano Technology Co., Ltd. (SII). The AFM probe used was DF-40P sold by SII, and was limited to new ones. The scanner used was FS-20A. In addition, the number of imaging pixels was 520 pixels × 256 pixels. Before observation, the position where the AFM probe was brought into contact with the sample surface was near the center of the fiber minor axis direction, and the scanning direction was parallel to the fiber major axis. The observation visual field range was (fiber long axis direction) × (fiber short axis direction) = 4 μm × 2 μm. The observation visual field was cut into 300 sections, and each surface roughness Ra of the averaged image of these sections obtained by the average section profile function was analyzed. The average value of the Ra values in five observation fields randomly cut obtained by this method was defined as the surface roughness Ra.
(3)高低差
 繊維表面の凹凸構造は、原子間力顕微鏡(AFM)を用いて評価した。AFMはエスアイアイ・ナノテクノロジー株式会社(SII)のSPA300を使用した。AFM探針はSIIから販売されているDF-40Pを使用し、新品のものに限定使用した。スキャナーはFS-20Aを使用した。観察前にAFM探針を試料表面に接触させる位置は繊維短軸方向の中心部付近とし、走査方向は繊維長軸に平行とした。観察視野範囲は(繊維長軸方向)×(繊維短軸方向)=4μm×2μmとした。観察視野内からランダムに断面を3つ切り出し、断面が凸部の中心を通っているものの高さの平均値を高低差とした。
(3) Height difference The uneven structure on the fiber surface was evaluated using an atomic force microscope (AFM). AFM used SPA300 of SII Nano Technology Co., Ltd. (SII). The AFM probe used was DF-40P sold by SII, and was limited to new ones. The scanner used was FS-20A. Before observation, the position where the AFM probe was brought into contact with the sample surface was near the center of the fiber minor axis direction, and the scanning direction was parallel to the fiber major axis. The observation visual field range was (fiber long axis direction) × (fiber short axis direction) = 4 μm × 2 μm. Three sections were randomly cut out from the observation field, and the average value of the heights of the sections passing through the center of the convex portion was defined as the height difference.
(4)ひび割れ状凹部の個数
 繊維表面の凹凸構造は、原子間力顕微鏡(AFM)を用いて評価した。AFMはエスアイアイ・ナノテクノロジー株式会社(SII)のSPA300を使用した。AFM探針はSIIから販売されているDF-40Pを使用し、新品のものに限定使用した。スキャナーはFS-20Aを使用した。観察前にAFM探針を試料表面に接触させる位置は繊維短軸方向の中心部付近とし、走査方向は繊維長軸に平行とした。観察視野範囲は(繊維長軸方向)×(繊維短軸方向)=4μm×2μmとした。観察像をImage Metrology A/S社製のScanning Probe Image Processorで解析した。繊維長軸方向に平行に0.02μm間隔でスライスして断面出しし、繊維短軸方向に0.1μm以上連なる凹部をひび割れ状凹部として定義し、観察視野範囲4μm×2μm中の個数を測定した。
(4) Number of cracked recesses The uneven structure on the fiber surface was evaluated using an atomic force microscope (AFM). AFM used SPA300 of SII Nano Technology Co., Ltd. (SII). The AFM probe used was DF-40P sold by SII, and was limited to new ones. The scanner used was FS-20A. Before observation, the position where the AFM probe was brought into contact with the sample surface was near the center of the fiber minor axis direction, and the scanning direction was parallel to the fiber major axis. The observation visual field range was (fiber long axis direction) × (fiber short axis direction) = 4 μm × 2 μm. The observed image was analyzed with a Scanning Probe Image Processor manufactured by Image Metrology A / S. Slices were cut out at intervals of 0.02 μm in parallel to the fiber long axis direction, and a concave portion continuous with 0.1 μm or more in the fiber short axis direction was defined as a cracked concave portion, and the number in the observation field range 4 μm × 2 μm was measured. .
(5)ラマン散乱測定
 ラマン散乱スペクトルは、下記の方法で測定を行った。ラマン測定装置(分光器)はレニショー社のシステム1000を用いて測定した。光源はヘリウム-ネオンレーザー(波長633nm)を用いた。繊維と樹脂のサンプル片を、顕微ラマン散乱測定用の試料台に取り付け、樹脂外の繊維を試料台端に付属したローラーに渡し、サンプル片の前後をストッパーで固定した。樹脂外の繊維に取り付けた紙片に荷重15gを取りつけ、顕微ラマン散乱により樹脂中の繊維のラマン散乱を、10μm間隔で繊維軸に沿って測定した。ラマンの測定はStatic Modeにて測定範囲970~1810(cm-1)について、積算回数は64回、露光時間は1秒、レーザー強度は1、10、25、50、100%のうち最適な強度を採用した。解析に用いたピークは芳香族環の伸縮振動に帰属される1619cm-1のバンドを採用した。ベースラインの乱れが大きくピークの形にゆがみがあるため、ガウス関数を用いたカーブフィットは採用せず、ピーク形状を目測で定めてピークセンターを割り出した。ラマンバンド波数と引張応力の検量線を用いて、得られたラマンバンド波数から繊維の印加応力を求め、繊維軸に沿った距離に対する応力分布を得た。得られた応力分布の近似線をひき、完全接着領域と界面降伏領域の変曲点を決定した。変曲点での繊維軸に沿った距離を界面降伏点x、応力を界面降伏応力σとした。
(5) Raman scattering measurement The Raman scattering spectrum was measured by the following method. The Raman measuring device (spectrometer) was measured using a Renishaw system 1000. The light source used was a helium-neon laser (wavelength 633 nm). Fiber and resin sample pieces were attached to a sample stage for microscopic Raman scattering measurement, fibers outside the resin were passed to a roller attached to the end of the sample stage, and the front and back of the sample pieces were fixed with stoppers. A load of 15 g was attached to a piece of paper attached to a fiber outside the resin, and the Raman scattering of the fiber in the resin was measured along the fiber axis at intervals of 10 μm by microscopic Raman scattering. Raman is measured in the static mode in the measurement range 970 to 1810 (cm -1 ), the number of integration is 64 times, the exposure time is 1 second, and the laser intensity is optimal intensity among 1, 10, 25, 50, 100% It was adopted. The peak used for the analysis was a 1619 cm −1 band attributed to the stretching vibration of the aromatic ring. Since the baseline distortion was large and the peak shape was distorted, curve fitting using a Gaussian function was not adopted, and the peak shape was determined by visual measurement to determine the peak center. The applied stress of the fiber was obtained from the obtained Raman band wave number using the calibration curve of the Raman band wave number and the tensile stress, and the stress distribution with respect to the distance along the fiber axis was obtained. The inflection points of the completely bonded region and the interface yield region were determined by drawing the approximate line of the obtained stress distribution. The distance along the fiber axis at the inflection point was the interface yield point x c , and the stress was the interface yield stress σ c .
(実施例1~4)
 処理する繊維として、東洋紡績(株)製Zylon(登録商標)HM(実施例1)、Zylon(登録商標)AS(実施例2)、Dyneema(登録商標)SK60(実施例3)、および、東レ・デュポン製Kevlar(登録商標)29(実施例4)を用いた。これらの繊維を繊維束から単繊維に分繊し、ポリイミドフィルム上に間隔を空けて並べ、ポリイミド粘着テープを用いて貼り付けた。このフィルムを真空槽中でロール走行させながら、イオンガンにて酸素イオン照射を行い、該繊維の表面を処理した。イオンビーム処理装置は、ロールツウロール方式の装置であり、巻き出し室、スパッタ室、予備室、巻き取り室へとロールからフィルムが移動されながら、順次、表面処理が行われ、その後に、ロールに巻き取られる。
(Examples 1 to 4)
Examples of fibers to be treated include Zylon (registered trademark) HM (Example 1), Zylon (registered trademark) AS (Example 2), Dynane (registered trademark) SK60 (Example 3) manufactured by Toyobo Co., Ltd., and Toray Industries, Inc. -Kevlar (registered trademark) 29 (Example 4) manufactured by DuPont was used. These fibers were separated from a fiber bundle into single fibers, arranged on a polyimide film at intervals, and attached using a polyimide adhesive tape. While this film was rolled in a vacuum chamber, the surface of the fiber was treated by irradiating oxygen ions with an ion gun. The ion beam processing apparatus is a roll-to-roll apparatus, in which surface treatment is sequentially performed while the film is moved from the roll to the unwinding chamber, the sputtering chamber, the preliminary chamber, and the winding chamber. Rolled up.
 各室の間は、スリットによって概略仕切られている。イオンガン室では、フィルムはチルロールに接しており、チルロールの温度(-5℃)によって冷やされ、ロール幅方向に均一なイオン照射ができるように幅の広いイオンガンを用いた。イオンガンはAdvanced Energy Industries社の38CMLISを用いた。イオンガンに導入するガスとして酸素を用い、放電電圧540V、放電電流0.56A、放電電力295W、ビームガス流量45sccm、処理圧力3×10-1Paでフィルムおよび繊維から4cmの位置からイオンビームを照射した。フィルムは250mm幅のものを用い、ロール送り速度は0.05m/minとした。酸素はイオンガン以外からの導入はしなかった。実施例1~4で得られた繊維の詳細と評価結果を表1に示す。 Each chamber is roughly partitioned by a slit. In the ion gun chamber, the film was in contact with the chill roll, cooled by the temperature of the chill roll (−5 ° C.), and a wide ion gun was used so that uniform ion irradiation was possible in the roll width direction. As the ion gun, 38CMLIS manufactured by Advanced Energy Industries was used. Using oxygen as a gas to be introduced into the ion gun, an ion beam was irradiated from a position 4 cm from the film and fiber at a discharge voltage of 540 V, a discharge current of 0.56 A, a discharge power of 295 W, a beam gas flow rate of 45 sccm, and a processing pressure of 3 × 10 −1 Pa. . A film having a width of 250 mm was used, and the roll feed rate was 0.05 m / min. Oxygen was not introduced from anything other than the ion gun. The details and evaluation results of the fibers obtained in Examples 1 to 4 are shown in Table 1.
(実施例5、6)
 処理する繊維として、東洋紡績(株)製Zylon(登録商標)HM(実施例5)およびZylon(登録商標)AS(実施例6)を用いた。単位面積に加わるエネルギーを低下させるため、ロール送り速度を0.25m/minとした以外は実施例1~4と同様にしてイオンビーム処理を実施した。実施例5、6で得られた繊維の詳細と評価結果を表1に示す。
(Examples 5 and 6)
As fibers to be processed, Toyobo Co., Ltd. Zylon (registered trademark) HM (Example 5) and Zylon (registered trademark) AS (Example 6) were used. In order to reduce the energy applied to the unit area, ion beam treatment was performed in the same manner as in Examples 1 to 4 except that the roll feed rate was 0.25 m / min. The details and evaluation results of the fibers obtained in Examples 5 and 6 are shown in Table 1.
(比較例1)
 処理する繊維として、東洋紡績(株)製Zylon(登録商標)ASを用いたが、イオンビーム処理を行わなかった。比較例1で得られた繊維の詳細と評価結果を表1に示す。
(Comparative Example 1)
As a fiber to be processed, Zylon (registered trademark) AS manufactured by Toyobo Co., Ltd. was used, but no ion beam treatment was performed. The details and evaluation results of the fibers obtained in Comparative Example 1 are shown in Table 1.
(比較例2~5)
 処理する繊維として、東洋紡績(株)製Zylon(登録商標)HM(比較例3)、Zylon(登録商標)AS(比較例2,6)、Dyneema(登録商標)SK60(比較例5)、および、東レ・デュポン製Kevlar(登録商標)29(比較例4)を用いた。これらの繊維を繊維束から単繊維に分繊し、A4サイズのPEフィルム製枠(枠組み幅2cm)に間隔を開けて並べ、ポリイミド粘着テープを用いて貼り付けた。このフィルム枠を2つのプラズマ発生電極間に設置し、酸素イオン照射を行い、該繊維の表面を真空プラズマ処理した。放電電力3000W、ガス流量5000sccm、処理圧力400mTorrで処理した。比較例2~5で得られた繊維の詳細と評価結果を表1に示す。
(Comparative Examples 2 to 5)
As fibers to be processed, Toyobo Co., Ltd. Zylon (registered trademark) HM (Comparative Example 3), Zylon (registered trademark) AS (Comparative Examples 2 and 6), Dyneema (registered trademark) SK60 (Comparative Example 5), and Kevlar (registered trademark) 29 (Comparative Example 4) manufactured by Toray DuPont was used. These fibers were separated from a fiber bundle into single fibers, arranged in an A4 size PE film frame (frame width 2 cm) at intervals, and pasted using a polyimide adhesive tape. This film frame was placed between two plasma generation electrodes, irradiated with oxygen ions, and the surface of the fiber was vacuum plasma treated. The treatment was performed at a discharge power of 3000 W, a gas flow rate of 5000 sccm, and a treatment pressure of 400 mTorr. The details and evaluation results of the fibers obtained in Comparative Examples 2 to 5 are shown in Table 1.
(比較例6)
 処理する繊維として、東洋紡績(株)製Zylon(登録商標)ASを用い、繊維送り速度を0.01m/minにする以外は比較例2~5と同じ方法を用いて、真空プラズマ処理した。比較例6で得られた繊維の詳細と評価結果を表1に示す。
(Comparative Example 6)
A Zylon (registered trademark) AS manufactured by Toyobo Co., Ltd. was used as the fiber to be treated, and vacuum plasma treatment was performed using the same method as in Comparative Examples 2 to 5 except that the fiber feed rate was 0.01 m / min. The details and evaluation results of the fiber obtained in Comparative Example 6 are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の表面改質繊維は、複合材料として実用的な接着性を有するため、複合材料中で繊維の高弾性率を十分に発揮することができる。例えば、シリコンチップを実装するための高密度高性能回路基板(コア基板)用途はもとより、ケーブル、電線や光ファイバー等のテンションメンバー、ロープ等の緊張材、ロケットインシュレーション、ロケットケイシング、圧力容器、宇宙服の紐、惑星探査気球、等の航空、宇宙資材、耐弾材等の耐衝撃用部材、手袋等の耐切創用部材、消防服、耐熱フェルト、プラント用ガスケット、耐熱織物、各種シーリング、耐熱クッション、フィルター等の耐熱耐炎部材、ベルト、タイヤ、靴底、ロープ、ホース等のゴム補強剤、釣り糸、釣竿、テニスラケット、卓球ラケット、バトミントンラケット、ゴルフシャフト、クラブヘッド、ガット、弦、セイルクロス、ランニングシューズ、マラソンシューズ、スパイクシューズ、スケートシューズ、バスケットボールシューズ、バレーボールシューズ等の運動靴、競技(走)用自転車及びその車輪、ロードレーサー、ピストレーサー、マウンテンバイク、コンポジットホイール、ディスクホイール、テンションディスク、スポーク、ブレーキワイヤー、変速機ワイヤー、競技(走)用車椅子及びその車輪、プロテクター、レーシングスーツ、スキー、ストック、ヘルメット、落下傘等のスポーツ関係資材、アバンスベルト、クラッチファーシング等の耐摩擦材、各種建築材料用補強剤及びその他ライダースーツ、スピーカーコーン、軽量乳母車、軽量車椅子、軽量介護用ベッド、救命ボート、ライフジャケット等の広範にわたる用途に使用することができる。 Since the surface-modified fiber of the present invention has practical adhesiveness as a composite material, it can sufficiently exhibit the high elastic modulus of the fiber in the composite material. For example, high-density high-performance circuit board (core board) applications for mounting silicon chips, tension members such as cables, electric wires and optical fibers, ropes and other tension materials, rocket insulation, rocket casing, pressure vessels, Space suit strings, planetary exploration balloons, etc. aviation, space materials, impact resistant materials such as bulletproof materials, cut resistant materials such as gloves, fire clothing, heat-resistant felt, plant gaskets, heat-resistant fabrics, various seals, Heat-resistant cushions, heat-resistant flame-resistant members such as filters, rubber reinforcements such as belts, tires, shoe soles, ropes, hoses, fishing lines, fishing rods, tennis rackets, table tennis rackets, badminton rackets, golf shafts, club heads, guts, strings, sails Cross, running shoes, marathon shoes, spike shoes, skate shoes Athletic shoes such as basketball shoes and volleyball shoes, bicycles for competition (running) and their wheels, road racers, pistracers, mountain bikes, composite wheels, disc wheels, tension discs, spokes, brake wires, transmission wires, competition (running) Wheelchairs and their wheels, protectors, racing suits, sports materials such as skis, stocks, helmets, parachutes, friction materials such as avant belts, clutch facings, various building material reinforcements and other rider suits, speaker cones, It can be used in a wide range of applications such as lightweight baby carriages, lightweight wheelchairs, lightweight nursing beds, lifeboats, and life jackets.

Claims (6)

  1.  8cN/dtex以上の強度を有する繊維であって、繊維表面の原子間力顕微鏡観察視野範囲の繊維長軸方向4μm×繊維矩軸方向2μmの面積中に繊維矩軸方向に0.1μm以上連なり、かつ10~100nmの深さを有するひび割れ状の凹部が20個以上存在することを特徴とする繊維。 It is a fiber having a strength of 8 cN / dtex or more, and is continuous in an area of 4 μm in the fiber long axis direction in the visual field range of the atomic force microscope observation on the fiber surface × 2 μm in the fiber rectangular axis direction, 0.1 μm or more in the fiber rectangular axis direction, A fiber having 20 or more cracked recesses having a depth of 10 to 100 nm.
  2.  平均断面プロファイルにおける表面凹凸構造の表面粗さRaが1.5~6.0nmであることを特徴とする請求項1に記載の繊維。 2. The fiber according to claim 1, wherein the surface roughness Ra of the surface uneven structure in the average cross-sectional profile is 1.5 to 6.0 nm.
  3.  繊維表面の原子間力顕微鏡観察視野範囲の繊維長軸方向4μm×繊維矩軸方向2μmからランダムに断面を3つに切り出し、断面が凸部の中心を通っているものの高さの平均値である高低差が20~100nmであることを特徴とする請求項1に記載の繊維。 This is the average value of the height of the cross section of the fiber surface that is randomly cut into three sections from the fiber long axis direction 4 μm x the fiber rectangular axis direction 2 μm in the field of view of the atomic force microscope on the fiber surface. The fiber according to claim 1, wherein the height difference is 20 to 100 nm.
  4.  請求項1~3のいずれかに記載の繊維の表面に、イオンビームを照射して処理することを特徴とする繊維の製造方法。 A method for producing a fiber, comprising treating the surface of the fiber according to any one of claims 1 to 3 by irradiating with an ion beam.
  5.  イオンビームの処理ガスが、酸素、空気、窒素、アルゴン、またはそれらの混合気体であることを特徴とする請求項4に記載の繊維の製造方法。 The method for producing a fiber according to claim 4, wherein the processing gas of the ion beam is oxygen, air, nitrogen, argon, or a mixed gas thereof.
  6.  イオンビーム処理のイオン粒子エネルギーを10-2~10KeV、処理圧力を0.1~1.0Pa、処理電力を50~5000W、繊維送り速度を0.01~1m/minにして処理することを特徴とする請求項5に記載の繊維の製造方法。 Ion beam treatment of the ion particle energy 10 -2 ~ 10 0 KeV, process pressure 0.1 ~ 1.0 Pa, the processing power 50 ~ 5000 W, it is treated in a 0.01 ~ 1m / min fiber feed speed The method for producing a fiber according to claim 5.
PCT/JP2009/070655 2008-12-26 2009-12-10 Surface-modified fiber and process for producing same WO2010073915A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980144397.9A CN102209805B (en) 2008-12-26 2009-12-10 Surface-modified fiber and process for producing same
JP2009554821A JP5671798B2 (en) 2008-12-26 2009-12-10 Surface-modified fiber and method for producing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008333300 2008-12-26
JP2008-333299 2008-12-26
JP2008-333300 2008-12-26
JP2008333299 2008-12-26
JP2009-110408 2009-04-30
JP2009110408 2009-04-30

Publications (1)

Publication Number Publication Date
WO2010073915A1 true WO2010073915A1 (en) 2010-07-01

Family

ID=42287531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070655 WO2010073915A1 (en) 2008-12-26 2009-12-10 Surface-modified fiber and process for producing same

Country Status (5)

Country Link
JP (1) JP5671798B2 (en)
KR (1) KR20110099094A (en)
CN (1) CN102209805B (en)
TW (1) TWI482895B (en)
WO (1) WO2010073915A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013224840A1 (en) * 2013-12-04 2015-06-11 Robert Bosch Gmbh Process for producing a fiber-resin composite, in particular for manufacturing a printed circuit board
CN103993385B (en) * 2013-12-31 2017-11-21 江苏德力化纤有限公司 A kind of FDY fiber of face checking and preparation method thereof
CN103993386B (en) * 2013-12-31 2018-02-02 江苏德力化纤有限公司 A kind of core-skin composite fiber of face checking and preparation method thereof
CN109312505B (en) * 2016-06-22 2021-07-30 东丽株式会社 Partially split fiber bundle and method for producing same, and fiber-reinforced resin molding material and method for producing same
NZ776877A (en) * 2018-11-22 2022-07-29 Otsuka Pharma Factory Inc Endoscope visual field-securing viscoelastic composition
CN110553930B (en) * 2019-09-17 2022-03-18 大连宇晨高新材料有限公司 Improved test device and test method for shear performance of composite material base/fiber interface

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216729A (en) * 1994-01-19 1995-08-15 Teijin Ltd Aramid fibrous structure
JP2003201625A (en) * 2001-12-27 2003-07-18 Toyobo Co Ltd Polybenzazole fiber and method for producing the same
JP2005293976A (en) * 2004-03-31 2005-10-20 Nissan Motor Co Ltd Gas diffusion layer and fuel cell
JP2006328599A (en) * 2005-05-27 2006-12-07 Teijin Techno Products Ltd Monofilament with high abrasion resistance and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BG32652A1 (en) * 1980-03-13 1982-09-15 Kolev Method for surface laying of metals on synthetic, natural and artificial polymers
JP2777565B2 (en) * 1988-12-26 1998-07-16 東レ株式会社 Acrylic carbon fiber and method for producing the same
CN1180152C (en) * 2001-04-12 2004-12-15 中国科学院化学研究所 Superamphipathatic fabric fibre and its preparation method and application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216729A (en) * 1994-01-19 1995-08-15 Teijin Ltd Aramid fibrous structure
JP2003201625A (en) * 2001-12-27 2003-07-18 Toyobo Co Ltd Polybenzazole fiber and method for producing the same
JP2005293976A (en) * 2004-03-31 2005-10-20 Nissan Motor Co Ltd Gas diffusion layer and fuel cell
JP2006328599A (en) * 2005-05-27 2006-12-07 Teijin Techno Products Ltd Monofilament with high abrasion resistance and method for producing the same

Also Published As

Publication number Publication date
KR20110099094A (en) 2011-09-06
JPWO2010073915A1 (en) 2012-06-14
TW201028508A (en) 2010-08-01
JP5671798B2 (en) 2015-02-18
CN102209805A (en) 2011-10-05
TWI482895B (en) 2015-05-01
CN102209805B (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5671798B2 (en) Surface-modified fiber and method for producing the same
ES2411694T3 (en) Process to manufacture composite materials
JP4617912B2 (en) Carbon fiber dividing method and sheet molding compound manufacturing method
WO2016190194A1 (en) Tape-shaped prepreg and fiber-reinforced molded object
Dobb et al. Compressional behaviour of carbon fibres
Fan et al. Enhanced interfacial adhesion of aramid fiber III reinforced epoxy composites via low temperature plasma treatment
US9656130B2 (en) Sporting goods with graphene material
US8474499B2 (en) Puncture resistant tire
JP5332879B2 (en) Prepreg using surface modified fiber
JP5929270B2 (en) Prepreg and manufacturing method thereof, slit prepreg, carbon fiber reinforced composite material
EP4180568A1 (en) Carbon fiber bundle with adhered sizing agent
EP3808880A1 (en) Carbon fiber and method for producing same
WO2001083862A1 (en) Polybenzasol fiber and use of the same
US11372326B2 (en) Pellicle comprising graphite thin film
JP2015010290A (en) Carbon fiber bundle and production method thereof
CN114317939B (en) Skate blade of skating shoe, preparation method thereof and skating shoe
JP3546591B2 (en) Carbon fiber and prepreg
EP4098334A1 (en) Badminton racket
JP3815596B2 (en) Polybenzazole fiber
JP2002030520A (en) Polybenzazole fiber
JP2004232133A (en) Carbon fiber filament yarn and method for producing the same
JPH11188790A (en) Biaxially oriented polypropylene film and its manufacture
JP2004250570A (en) Method for producing unidirectional prepreg
CN114654763A (en) Manufacturing process of middle tube of badminton racket and middle tube of badminton racket
TW205053B (en)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980144397.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009554821

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117012093

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834718

Country of ref document: EP

Kind code of ref document: A1